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Identification of a Dynamic 
System Using Ambient Vibration 
Measurements 
This paper demonstrates how ambient vibration measurements at a limited number 
of  locations can be effectively utilized to estimate parameters o f  a finite element 
model o f  a large-scale structural system involving a large number o f  elements. System 
identification using ambient vibration measurements presents a challenge requiring 
the use o f  special identification techniques, which can deal with very small magnitudes 
o f  ambient vibration contaminated by noise without the knowledge of  input forces. 
In the present study, the modal parameters" such as natural frequencies, damping 
ratios, and mode shapes of  the structural system were estimated by means of  appro- 
priate system identification techniques including the random decrement method. 
Moreover, estimation of  parameters such as the stiffness matrix of  the finite element 
model from the system response measured by a limited number of  sensors is another 
challenge. In this study, the system stiffness matrix was estimated by using the qua- 
dratic optimization involving the computed and measured modal strain energy of the 
system, with the aid of  a sensitivity relationship between each element stiffness and 
the modal parameters established by the second-order inverse modal perturbation 
theory. The finite element models thus identified represent the actual structural system 
very well, as their calculated dynamic characteristics satisfactorily matched the ob- 
served ones from the ambient vibration test performed on a large-scale structural 
system subjected primarily to ambient wind excitations. It is noted that newly devel- 
oped optical fiber accelerometers were used for  this ambient vibration test. The 
dynamic models identified by this study will be used for  design of  an active mass 
damper system to be installed on this structure for  suppressing its wind vibration. 

1 Introduction 

As a U.S.-China collaborative research project, an active 
mass damper system is currently under development for a 310- 
m tall TV tower recently constructed in the city of Nanjing, 
China. Figure 1 shows the main structure of the tower. It con- 
sists of three prestressed concrete legs placed in 120 deg with 
each other, each of which has a box section with four compart- 
ments. The legs are incorporated into a space frame with seven 
coupling ring beams placed along the height. There is a large 
observation hall at the level of 185 m and a small observation 
hall at 240 m, connected by a reinforced concrete cylinder tube 
structure (Cheng, 1992; Ding and Ren, 1994). The objective 
of the active control is to reduce the wind response of the tower, 
especially at the small observation hall and the antenna at the 
top of the tower, in order to improve the human comfort of 
the tourists and operators as well as to enhance the tower's 
communication and broadcasting quality. In May of 1995, the 
first author of this paper and her associates performed an ambi- 
ent vibration test on this structural system, for the purpose of 
establishing an accurate and reliable dynamic model of the 
tower for the use in the design of the active vibration control 
system. 
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The sensors used for this test were optical fiber accelerome- 
ters recently developed by the first author and her associates. 
Because of their advantages such as immunity to electromag- 
netic fields and ease in installation, optical fiber sensors recently 
attracted great attention in the civil engineering community. 
Recent developments and applications of optical fiber sensors 
in civil engineering are summarized in papers by Ansari (1993) 
and Kersey (1994). The optical fiber accelerometer used for 
this field testing, however, has an unique configuration totally 
different from those existing optical fiber sensors summarized in 
these papers. Each durable sensor head consists of an oscillatory 
circuit and transforms a measured quantity into a frequency- 
modulated (FM) signal with proven reliability even over a long- 
distance transmission. The details of the sensing mechanism are 
given in (Feng, 1996) based on which a similar sensor was 
developed earlier. The optical fiber accelerometers were exten- 
sively tested and proven to be accurate with a sufficient dynamic 
range (up to 25 Hz) before being used for this field measure- 
ment. 

The acceleration response of the structural system measured 
by the optical fiber sensors under ambient conditions was used 
to identify the dynamic characteristics of the structural system. 
System identification using ambient vibration measurements 
presents a challenge requiring the use of special identification 
techniques, which can deal with very small magnitudes of ambi- 
ent vibration contaminated by noise in the situation where input 
forces usually cannot be measured. 

Studies have been conducted on identification of modal pa- 
rameters including natural frequencies, modal damping ratios, 
and mode shapes of structural systems using ambient vibration 
records without input measurements (see Wang and Haldar 
(1994) for an extensive literature review). Mathematical for- 
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Fig. 1 Elevation, plan, and sensor locations of example structure 

mulations for such a identification problem are highly compli- 
cated involving too many parameters to be identified. As a 
result, solutions are  usually based on smooth spectral curves 
obtained by signal processing techniques. Among them, the 
random decrement technique (Cole, 1973; Ibrahim, 1977; Yang 
et al., 1984; Tasi and Yang, 1988) appears ideal for near-station- 
ary wind excitations as in the case of the present field testing. 

Upon identifying these model parameters, further identifica- 
tion of mass, stiffness, and damping matrices was carried out 
in order to develop the analytical model of the structural system 
which is important not only for design of the active mass damper 
controller of the structure but for evaluation of its dynamic 
response to wind and seismic excitations. The mass matrix in 
general can be estimated from the design drawings and the 
damping matrix constructed utilizing modal damping ratios, 
together with the mass and stiffness matrices. A technical chal- 
lenge thus exists in the determination of the dynamic model 
arising from the difficulties in estimating the stiffness matrix 
from the ambient vibration measurements at a limited number 
of sensor locations. 

In this study, an initial "baseline" stiffness matrix was esti- 
mated from the available design drawings of the structure. Start- 
ing from the baseline, an iterative optimization procedure was 
used to successively update the stiffness matrix by correlating 

it with the modal parameters including the natural frequencies 
and mode shapes measured from the field test. Available tech- 
niques for this purpose (e.g., Yun and Shinozuka, 1980; Stetson 
and Harrison, 1981; Tokamani and Ahmadi, 1988; Ting and 
Ojalvo, 1989; Hosiya and Sutoh, 1993; Okuma, 1993) usually 
require a sensitivity matrix of modal parameters to each element 
stiffness of the structural system. In this study, the second-order 
inverse modal perturbation theory was employed to obtain the 
sensitivity matrix of the natural frequencies and mode shapes 
to the flexural stiffness of a finite element. The first-order in- 
verse modal perturbation technique was developed by Stetson 
and his colleagues for redesign problem (Stetson and Palma, 
1975; Stetson and Harrison, 1981 ), and extended to the second- 
order theory by Yun and Hong (1992) for the purpose of identi- 
fying the extent and location of structural damage. However, the 
problem of how to utilize the ambient vibration measurements at 
limited sensor locations in order to develop a stiffness matrix 
involving a large number of elements for a large-scale structure 
has not been adequately addressed in the literature, thus posing 
a major challenge to the present study. 

2 Ambient Vibration Measurement 
The monitoring system consisted of five optical fiber acceler- 

ometers, a single conditioner, and a tape recorder. The acceler- 
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ometers were installed on the tower at two sets of different 
locations (with some in common), as shown in Fig. 1, to mea- 
sure the ambient vibration in two perpendicular horizontal direc- 
tions (X and Y). The sensors at the first set of locations (Set 
1 ) were concentrated on the upper part of the structure since 
this part is more flexible resulting in more vibration than the 
lower part, while those at the second set of locations (Set 2) 
were distributed along the height of the whole structure. The 
accelerometers were placed as close as possible to the center of 
the cross section of the tower in order to minimize the response 
component due to torsional vibration. 

There are some substantial advantages in the proposed optical 
fiber sensor in relation to its installation on large-scale civil 
structures. In this study, the TV tower has strong electromag- 
netic fields and electric cables of a conventional sensor must 
be heavily shielded in order to avoid the electromagnetic inter- 
ference. This results in very heavy cables and as a consequence, 
installation of the conventional sensor over such a long vertical 
distance, as required for this TV tower, becomes highly labor- 
intensive and cumbersome. However, in the proposed optical 
fiber sensor, both cables for power supply and for signal trans- 
mission are optical fibers weighing extremely light and requir- 
ing no shielding, thus eliminating these major practical diffi- 
culties associated with installation. Indeed, these advantages 
contributed significantly to the ease of installation of these five 
sensors over the long vertical distances in the present field 
experiment. 

Acceleration records were obtained simultaneously at five 
sensor locations in one direction each time, with a sampling 
time interval of 0.03125 sec and total recording time of ap- 
proximately 600 sec. In total, four sets of simultaneously 
measured acceleration time histories, 1X, 1Y, 2X, and 2Y, 
were recorded. Figure 3 shows two sets of them (up to 200 
sec) measured at the first and second sets of locations in the 
X-direction. 

3 Es t imat ion  of  M o d a l  Parameters  

When a large-scale structure is subjected to such natural 
and man-made excitations as wind, traffic, or water waves or 
their combinations, it is extremely difficult to measure the 
input dynamic forces acting on the structure. As a result, only 
the structural response is usually measured, and frequency 
domain approaches (e.g., Ewins, 1984; Hong and Yun, 1992) 
rather than time domain approaches (e.g., Yun and Shinozuka, 
1980; Shinozuka and Ghanem, 1995; Yun et al., 1997) are 
more appropriate for identifying modal parameters. In the pres- 
ent study, frequency domain identification techniques were 
used to extract natural frequencies, damping ratios, and mode 
shapes of the Nanjing TV Tower from the four sets of mea- 
sured records. 

3.1 Randomdec Signals, The response signal y(t)  mea- 
sured on the structure can be decomposed into free-vibration 
component xo(t) and forced-vibration component xf(t): 

y(t)  = ( y , ( t ) ,  y2(t)  . . . . .  YNo~(t)) r 

= x0(t) + x i ( f ( t ) ;  t) (1) 

where Nob is the number of measurement points and f (t) repre- 
sents wind load vector which is assumed to be a random process 
with a zero mean. Traffic and other load can be ignored com- 
pared to the wind load because the tower structure is tall. The 
free-vibration component contains an impulse and/or step re- 
sponses, while the forced-vibration component represents re- 
sponse to the random wind load. Even in the case that the 
complete information for the random force is not available, the 
modal parameters such as natural frequencies and damping ra- 
tios can be estimated accurately using signals of the free-re- 
sponse component. The free-vibration component can easily be 
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Fig. 2 Finite element model of example structure 

generated by a special averaging procedure called the random 
decrement technique as long as measurements are carried out 
simultaneously at sensor locations (Ibrahim, 1977). 

The randomdec signal Yr ( r )  of the measured signal is defined 
by Eq. (2a) and similarly corresponding force vector fr(T) is 
defined by Eq. (2b) 

N 
1 • 

Yr(~-) -= ~ ,~1,,- y(tm + T) (2a) 

N 

fr('r) ~ ~m~=~=t f(t,, + ~-) (2b) 

where t,, is determined from original data as all the time instants 
satisfying initial conditions specified for the randomdec signal, 
e.g., y~(t,,) = yo and j l ( tm)  >-- 0; and Nr is the number of time 
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Fig. 3 T i m e  h i s t o r i e s  o f  h o r i z o n t a l  ( X - d i r e c t i o n )  a c c e l e r a t i o n  r e c o r d s  

points with respect to which the average is taken. If the number 
of data sets N,. is sufficiently large and f (t) is a weakly station- 
ary random process, the randomdec force vector f,.(T) will be 
averaged out owing to the zero-mean property of f ( t ) .  Thus 
the randomdec signal is expected to be tree from the forced- 
vibration component under those conditions. 

lim L(T) = 0 (3) 
N r ~  

In this study, t,,'s are taken as those of zero crossing time 
with positive slope on the acceleration time history recorded at 
the small observation hall (Ch. 5 sensor location). The total 
length of the randomdec signal is 4096 points. Based on these 
conditions, four sets of randomdec signals were obtained from 
the original data sets of 1 X, 2X, 1 Y, and 2Y. Figure 4 shows 
the randomdec time histories, and Fig. 5 displays Fourier ampli- 
tudes of typical randomdec signals compared with those of the 
measured signals which have been averaged using the conven- 
tional approach with data length of 8192 points and 30 percent 
overlap. Apparently, the time histories of the randomdec signals 
look like free-vibration responses, and their FFT plots are much 
smoother than those of the original. Now, various modal param- 
eter estimation techniques using free-vibration measurements 
can be employed. It is more accurate to identify the natural 
frequencies and damping ratios from the randomdec signals, 
than from the original signals. 

3.2 Natural Frequencies. The natural frequencies of the 
structural system were estimated by reading directly the frequen- 
cies at the peaks of the FF[" plots of the measured acceleration 
averaged using the conventional approach with the total data 
length of 8192 points and 30 percent overlap. Because the ob- 
served frequencies might result from the dominant frequencies 
of the input excitations as well as structural resonance frequen- 
cies, the direct estimates were verified by checking coherence 
functions between two response records measured at different 
locations. Meanwhile, the natural frequencies were also esti- 
mated by applying the circle-fit method on the randomdec signals 
taking advantage of circle characteristics of frequency response 
function around natural frequencies in the complex plane 
(Ewins, 1984). The first seven natural frequencies of the struc- 
ture were estimated averaging the results from the two aforemen- 
tioned methods. The results are shown in Table 1 together with 
the estimates from the previous measurement using conventional 
servo-type accelerometers performed by Tang et al. (1995). It 
is demonstrated that the estimated frequencies based on this 
measurement using optical fiber accelerometers are very close 
to those using the conventional accelerometers. The first five 
identified natural frequencies were 0.237 Hz, 0.727 Hz, 1.271 
Hz, 1.588 Hz, and 2.721 Hz, and they are judged to be accurate 
since the deviation of the estimates obtained by different meth- 
ods and from different data sets was very small. 

The small observation hall (Ch. 5 sensor location) is an 
important location whose vibration is the major control target 
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150 

of the active mass damper system to be installed. As seen in 
Fig. 6, the dominant modes associated with the response of the 
small observation hall are the first, second, and fourth modes. 
Therefore, the analytical model of the structural system to be 
developed from this study should well match the measured 
modal properties especially at these dominant modes. 

A mode with a frequency around 2.5 Hz was identified from 
the acceleration recorded at the locations below the large obser- 
vation hall. It appears to be a torsional mode since the sensors 
at those locations were placed at a distance from the vertical 
axis of the structure. In this study, this mode was neglected 

in development of a two-dimensional dynamic model for the 
structural system. 
3.3 Damping Ratios. In general, the damping values esti- 
mated from the wind-induced structural response contains 
aerodynamic effects. For this reason, the direct estimation of 
damping ratios using the original acceleration records may 
result in an overestimation, and the randomdec signals free 
from the wind loads are ideal to use. On the other hand, the 
Fourier transformed response functions obtained from the ran- 
domdec signals are generally much smoother than those using 
the original records, as shown in Fig. 5. Therefore, damping 
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Table 1 Natural f requencies of  Nanjing TV Tower  est imated using measured vibrat ion data (unit: 
HZ) 

Mode This Study 

Number Signal 1X 1Y 2X 2Y 
Used 

Original 0.236 0.238 0.234 0.238 
1 

Randomdec 0.236 0.237 0.235 0.238 

Original 0.729 0.727 0.727 0.729 
2 

Randomdec 0.727 0.727 0.727 0,726 

Original 1.272 1.268 1.268 1.277 
3 

Randomdec 1.271 1,270 1.266 1.277 

Original 1.588 1.588 1,582 1.596 
4 

Randomdec 1.586 1.589 1.584 1392 

Original 2.709 2,712 2,723 2.719 
5 

Randomdec 2.727 2.722 2.719 2.738 

Original 3.471 3.481 3.453 3.467 
6 

Randomdec . . . . . . . .  

Original 5.432 5.422 5.434 5.424 
7 

Randomdec . . . . . . . .  

Average 

0.237 

0.727 

1.271 

1.588 

2.721 

3.468 

5.428 

Tang 
(1995) 

0.234 

0.730 

1.266 

1.596 

Original: It is read from FFr plot of averaged acceleration (number of data points = 8192) 
Randomdec: It is estimated by applying the circle fitting method on randomdec signals. 

ratios, which are very sensitive to the smoothness of the Fou- 
rier transformed response functions near the resonant frequen- 
cies, can be estimated more accurately utilizing the randomdec 
signals. In this study, the damping ratios for the first four 

modes of the structural system were estimated from the ran- 
domdec signals by the half-power bandwidth method. The 
estimated values are summarized in Table 2, along with other 
experimental results from Tang et al. (1995). The estimated 
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Table 2 Estimated damping ratios of the Nanjing "IV Tower utilizing randomdec signals 

Estimated Damping Ratio (%) 
Used Record 

mode I mode 2 mode 3 mode 4 

5 1.298 1 . 5 8 5  . . . .  

4 1.302 1.591 0.544 - 

1X 3 1.326 0.746 0.584 0.680 

1.420 0.596 -- 

1Y 

5 

3 

2X 1 

2 

4 

5 

3 

2Y 1 

2 

4 

This Study 

(Average) 

Tang 

2 1.330 

1 1355 

5 

4 

3 

2 

1 

1.661 0.596 -- 

1.700 0 . 3 9 6  . . . .  

1.715 0 . 3 9 6  . . . .  

1.725 0 . 3 9 7  . . . .  

1.731 0 . 3 9 4  . . . .  

1.787 0 . 3 9 0  . . . . .  

1.273 0.385 0.748 0.431 

1.285 0.389 -- 0.433 

1,308 0.389 -- 0.410 

1.268 0.387 -- 0.434 

1.396 0.437 - 0.392 

2.036 0.504 0.761 0.607 

2.518 0.502 0.623 0.534 

2.178 0.512 0.624 0.558 

2.490 0.500 0.601 0.515 

2.231 0.473 -- 0.534 

1.663 

1.480 

0.677 

1.348 

0.631 

0.887 

0.503 

0.760 

damping  rations were 1.66 percent  for the first mode  and less 
than one percent  for the other  modes,  which are comparable  
with typical values observed  in similar  structures (Bao  and 
Ko, 1991 ). 

3.4 M o d e  Shapes .  I f  the estimates of natural frequencies 
are accurate, corresponding mode shapes at the measured  points 
can be easily obtained using power spectral density functions, 
as follows (Bao and Ko, 1991; Gavin et al., 1992):  

~;~(1) SyPYq ( fk )  
pk (4a )  

Syqyq ( A ) 

pk = (4b)  Sy,~, (f~) 

~("1) ^u> / SY, Y, (A)  
pe = sign ( ~ p k ) - /  " ~ ' -  ~ ( 4 c )  

~lSy~y~(A) 
in Which ~-~(1) ¢~-~(H) (~)(Ill) ",-pk, ~pk , and are estimates of  the kth mode ~pk 
shape at point p normalized to the amplitude at reference point 
q; Sy;,, and Sy,y, are respectively auto and cross-spectral density 
functions; fk is the kth natural frequency; and sign ( . )  is a sign 
function which equals to 1 or - 1 .  Assuming the measured 
response yp(t) at point  p can be separated into uncorrelated 
pure response ~p(t) and noise np(t), Eq. (4)  can be rewritten 
as 

pk = 1 + Sl~q.tl(fk)/a~q~q(A ) 

~.~,,, ( s,,,,..(A)) 

(5a) 

(Sb) 

^ [ 1  + S, ,%(A)/S#~,(A) 
~,,~*~'~ = ~,,k~/7 + s,q.q(A)/&q;, (A) (5c) 

where ~pk = s;j~(fA)/s;~y~(f~). Equation ( 5 c )  shows that the 

mode shape can be identified accurately regardless of noise 
level, if  the noise levels at all the measured locations are propor- 
tional to the corresponding intensity levels of records. Because &(/)[ < ^ < " ( 1 1 )  ^ (1 )  < ^ ( m )  < ~ ( H )  

*,,k - lope[ - [~pk I and I~pk I -- I~pk I -- ["bpe [ , t h e  
effects of  noise on the mode shape estimation can also be exam- 
ined by evaluat ing the difference between the lower bound 
~u~ and the upper bound -~pk of  the mode shape estimates. pk ,~ (i/) 

The first four mode shapes were identified from the power  
spectral density functions of the randomdec signals and acceler- 
ation records averaged using the conventional  approach with 
4096 points segments and 30 percent overlap. The Ch. 5 location 
(small  observation hal l )  was chosen as the reference point q. 
The estimated results by Eq. ( 5 c )  are shown in Fig. 6 (com- 
pared with those calculated by the identified mass and stiffness 
matrices to be described in the next sect ion).  Despite of  the fact 
that the input loads on the structural system were not possible 
to measure, the estimated mode shapes appear reasonable. In 
addition, the differences between the lower bound and the upper 
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Table 3 Nodalooordinatea, lumped masses, and stiffness parameters of baselinefinite element 
modelA0 

Node Lumped Mass 
Number (Mg) 

0 - -  

1 3992.9o 

2 3186.74 

3 2820.10 

4 2319.79 

5 1917.95 

6 1624.51 

7 1628.07 

8 1322.34 

9 3395.32 

10 5678.60 

11 1325.79 

12 359.10 

13 1081.47 

14 165.13 

15 18.70 

16 12.00 

17 4.00 

Element 
Number 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

Cross Sectional Moment of 
Area (m 2) Inertia (m 4) 

53.22 3695.5 

47.95 2707.4 

42.69 1938.7 

38.89 1457.4 

32.77 1114.2 

30.79 883,0 

29.57 792.6 

27.90 673.0 

25.31 568.5 

47.26 1134.7 

47.26 465.9 

7.386 27,78 

7.386 27.78 

4.96 8,08 

0.2124 1.10930e-01 

0.1075 2.07160e-02 

0.0584 5.19079e-03 

bound of the mode shape estimates were less than one percent 
in the present ambient vibration records. Therefore, the noise 
effects can be neglected in this analysis. 

4 Fini te  E l e m e n t  Mode l  Corre lated  W i t h  Measure -  
m ent s  

4.1 Baseline Finite Element Model. A two-dimensional 
baseline finite element model for the tower structural system, 
namely A0, is constlructed based on design drawings of the 
structure and the finite element model developed by Cheng 
(1992). The model consists of 17 beam elements and lumped 
masses. The elevation of the finite element model is shown in 
Fig. 2. The element properties of the baseline model are shown 
in Table 3. In this model, tapered beams were replaced by 
equivalent piece-wise uniform prismatic beams for the analysis 
purpose. The cross-sectional area and moment of inertia were 
taken at the midsection of each element. Lumped masses were 
assumed to be the same as Cheng's model. The Young's moduli 
for the finite elements used in analysis are: Ec = 3.237 × 107 
KPa for concrete members, and E~ = 2.060 × 10 s KPa for steel 
members. 

4.2 Method of Updating Baseline Model. 

Definition of  Updated Model. Updated mass and stiffness 
matrices can be written in the form 

1 V I = M + A M  (6) 

= K + AK (7) 

where M and K are the baseline mass and stiflhess matrices; 
AM and AK are correction mass and stiffness matrices. It is 
assumed that the updated mass matrix is the same as the baseline 
mass matrix, and the correction stiffness matrix is represented 
by a linear combination of the element stiffness matrices in the 
baseline model 

AM = 0 (8) 
N e 

AK = ~ a~K~ (9) 
e = l  

in which ae is correction coefficient of flexural stiffness E1 for 
the eth element; N~ denotes the number of finite elements; and 
K~ is the eth element stiffness matrix of the baseline. 

Inverse Modal Perturbation Theory. The sensitivities of the 
natural frequencies and mode shapes to the stiffness correction 
coefficients were obtained from the second-order inverse modal 
perturbation theory (Yun and Hong, 1992), as follows: 

Xt = ~* + skta 10) 
,ut(1 + Dtk) 

{ a t  } = TtSka 11 ) 

where 

St ( j ,  e) = {q~j}rKe{~t} 12) 

~ij 13) T t ( i , j )  = /.zj(kk -- Xj) 

Nmod e 

1 +Dkk=  ~ t - -  2 ,ujD~j 14) 
j = i , j m k  

stja 15) O .  = Uj(Xt - Xj) 

~ t =  {~t}~M{k~t}, ,fit= {~t}TM{~k}. 16) 

kt and ~t are, respectively, the square of the kth natural frequen- 
cies from baseline and updated models; Nmode is the number of 
modes used; { %} and { fPt} are, respectively, the kth mode 
shape vectors of baseline and updated models; Skj is thejth row 
vector of matrix Sk; and a is the stiffness correction coefficient 
vector. 
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Quadratic Optimization. From Eq. (10), an expected dif- 
ference in the normalized strain energy of the kth mode between 
an updated model and the measurement can be written as 

1 
ek(a) = ~ {skka -- #~(1 + Dkk)Akk} (17) 

where Akk is a difference in the square of kth natural frequency 
between the baseline and measurement (=~k - kk); and Kk 
denotes the square of measured natural frequency of the kth 
mode. Now, the following objective function is established and 
minimized to obtain the optimal value of a, 

N~ 
min J =  ~ {wkek(a)} 2, (18) 

a k 1 

in which N~ is the number of measured natural frequencies, and 
w~ is a weighting factor for the kth mode that may be assumed 
as the amplitude of Fourier transformed response function at 
the kth natural frequency. 

Measured mode shapes are considered in constraining equa- 
tions with proper error bounds, rather than being involved in 
the objective function, since their accuracy is worse than that 
of natural frequencies. Moreover, since it is impossible to mea- 
sure the ambient vibration at all nodal points in practice for a 
large-scale structural system, it is very difficult to define an 
objective lhnction in conjunction with the natural frequencies 
systematically. Thus the relative values of mode shapes were 
incorporated into constraining equations in this study. Eventu- 
ally, the constraining equations related to the kth mode shape 
is expressed as 

(p = 1,2 . . . . .  Nob;butp :~ q) (19) 

where ~)pk is the kth measured mode shape at point p; and ck 
is an error bound for the kth mode shape. In addition to the 
constraints, upper and lower bounds for the stiffness correction 
coefficient vector a, which can be determined by engineering 
judgment, are added to the constraints to reflect real conditions 
of the structure. Because the measurement points did not coin- 
cide with the nodal points of the finite element model in this 
study, the constraining equations were applied after representing 
the mode shape data by the corresponding nodal responses and 
shape functions of the beam element. 

In summary, the system identification problem to establish 
an appropriate dynamic model correlating with measured modal 
parameters can be represented as an optimization problem to 
determine the stiffness correction coefficients under con- 
straining equations, as follows: 

Find out vector a which minimizes the following objective 
function: 

J = ½atria + fTa (20) 

subject to conditions as 

Ga -< b and amin -< a -~ a ..... (21) 

where H and f are derived from Eqs. (17) and (18), and G 
and b are from Eqs. (11) and (19). 

Because the matrices H, f, and G are dependent on parameter 
a, the solution should be found by iteration. 

4.3 Updated Finite Element Model of Nagtjing TV 
Tower. 

Better Baseline Finite Element Model. It is well known 
that the convergence and accuracy of an optimization solution 
depend on the initial baseline estimates. In this study, an analyti- 
cal model, namely Ab, was developed as a better baseline (corn- 
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Fig, 7 Normalized element modal strain energy diagram 

pared with model A0 mentioned in Section 4.1 ). The normalized 
element modal strain energy diagram (skk/max (s~)), which 
represents the contribution of an element stiffness to the kth 
natural frequency, was produced in order to get insight on how 
to modify the element stiffness to reduce the difference in natu- 
ral frequencies between the calculated and the measured. The 
diagram for the first four modes of the initial baseline model 
A0 is shown in Fig. 7. From the figure, it can be seen that 
stiffness correction coefficients for the lower part of the struc- 
ture, say elements below level of 100 m, .shall be positive to 
increase natural frequency for the first mode of updated model, 
while those for the upper part of the structure for the second 
and third modes. Therefore, the stiffness correction coefficient 
vector can be determined by trial and error referring to the 
diagram and comparing to the recalculated and measured natural 
frequencies. Natural frequencies by this better baseline are listed 
in Table 6, which show a much better agreement with the mea- 
sured ones than those by the baseline. 

Updated Model Three updated models A *o, Amo, and A,,b 
were obtained starting from baseline models A0 and Ab. The 
model A,,*0 has been updated by using the measured natural 
frequencies only, while models A,,,0, and A,,b were identified 
utilizing the measured mode shape data as well as the natural 
frequencies. The brief descriptions regarding the models are 
given in Table 4. Seven natural frequencies and four mode 
shapes identified on the basis of the measurement data were 
used in updating the finite element models. 

In the optimization process, the degree of convergence and 
accuracy of solutions are fairly sensitive to the upper and lower 
bounds of the stiffness correction factor (a.l,, and am,x), the 
error bounds for the mode shape data (e~.) and weighting factors 
(wk) in the objective function. The various parameters used in 
the optimization process are given in Table 5. Convergence of 
the natural frequencies is demonstrated in Fig. 8. The converged 
stiffness correction coefficients are summarized in Table 5 and 
Fig. 9. As shown in Fig. 9, the stiffness scale factors of different 
updated models are very similar to each other, independent of 
the baseline model and information used. In particular, models 
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Table 4 Description on baseline and updated finite element models 

Construction 
Model Name Base Model Information Used 

Method 

Cheng's 3D 
Ao Design drawings, 3D model 

model 

A*mo A0 IMP* 7 measured natural frequencies 

7 m e a s u r e d  n a t u r a l  frequencies 
Amo A0 IMP* 

and 4 mode shapes 

Element modal strain energy diagram 
Ab A0 trial and error 

(Fig. 7) 

Arab Ab IMP* 
7 measured natural frequencies 

a n d  4 mode shapes 

Note: * Inverse Modal Perturbation 

Amo and Arab are nearly identical despite of their quite different 
baseline models. The updated stiffness models appear stiffer 
than the baseline model,  especially in the location of small and 
large observation hall structures and lower part of the main 
three-leg structure. These may result f rom difference of concrete 
stiffness between the baseline and the real structure, and addi- 
tional stiffening effects by prestressing forces, reinforced steel, 
and nonstructural  components.  

The natural frequencies and mode shapes calculated from the 
updated models are shown in Table 6 and Fig. 6, respectively. 
The first five natural frequencies show excellent agreement  with 

the measured results. The corresponding mode shapes also 
match very well with the measured ones except the third mode 
which is, however,  not a critical mode for the response at the 
small  observation hall. 

Al though a better baseline model, such as Ab in this study, 
may improve the convergence,  a convent ional  model made from 
the design drawings of the structure, such as A0 in this study, 
appears to be a reasonable baseline for establishing the updated 
model, if sufficient information tbr  the real structure can be 
incorporated in the optimization process. In general, the updated 
models Am0 and A,,b constructed in conjunction with both the 

Table 5 Stiffness correction coefficients of better baseline and updated finite element models 

Element 
Number 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 
Note: * The u' 

Stiffness Correction Coefficient (ae)* 

Ab A'm0 Am0 Arab 

0.1 -0.300 -0.262 -0.300 

2.0 3.000 3.000 2.349 

1.5 3.000 3.000 3.000 

1.5 3.000 3.000 3.000 

-0.2 0.047 0.757 0.779 

-0.3 -0.400 -0.400 -0.400 

-0.3 -0.400 -0.400 -0.400 

"0.2 3.000 -0.400 -0.400 

0.1 3.000 3.000 3.000 

1.5 4.000 4.000 4.000 

1.1 3.000 -0.400 -0.400 

0.2 0.016 0.116 0.174 

0.5 4.000 

0.4 0.162 

4.000 4.000 

0.191 0.154 

0.0 0.085 0.150 0.150 

0.0 -0.150 -0.088 -0.031 

0.0 -0.150 -0.150 -0.150 
~dated element stiffness matrix shall be (l+ae) K,, in which I~ is the e-th element stiffness 

matrix of baseline model. The coefficients used for optimization are as follows: wl=w2=lO0, w3=w4=4, w5=1, 
w6=wr~0.001; - 0.3 ~ a I ~ 3.0, - 0.3 ~ alo ~ 4.0, - 0.4 £ al3 ~ 4.0, - 0.3 g a~ ~ 3.0 for other concrete member, 
and - 0.15 ~ a~ ~ 0.15 for steel members; t~ l = 0.0075 and ~k = 0.01 for the other modes. 
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Fig. 8 Convergence of natural frequencies of updated finite element models 
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Fig. 9 Element stiffness scale factor (1 + ae) of baseline and updated 
finite element models 

measured natural frequencies and mode shapes show better 
agreement with the measured mode shapes than the updated 
model A~0 using natural frequency information only. 

5 C o n c l u s i o n  

Ambient vibration tests were performed on a large-scale 
structural system using the newly developed optical fiber accel- 
erometers, in order to establish an analytical model of the struc- 
ture for designing an active mass damper system to control the 
structural vibration under wind excitations. Modal parameters 
including natural fl'equencies, damping ratios, and mode shapes 
were estimated from the measured acceleration records by using 
various system identification techniques, among which the ran- 
dom decrement technique was found to be particularly effective 
in identifying the damping ratios due to the removal of random 
wind effects from the measured signals. More importantly, sev- 
eral finite element stiffness matrices involving a large number 
of elements were successfully estimated taking advantage of 
the very limited ambient vibration information obtained from a 
limited number of sensors. The second-order inverse modal 
perturbation theory was effective in establishing the sensitivity 
relationship between the element stiffness and the modal param- 
eters, which was convenient used in the quadratic optimization 
to derive the system stiffness matrix producing the minimum 
difference between the calculated and measured modal strain 
energy. In the process of this optimization, it was found reason- 
able to consider the mode shape information as a constraint, 
rather than embedding it together with the natural frequency 
information in the objective function. The finite element models 
thus identified represent the actual structural system very well, 
as their calculated dynamic characteristics satisfactorily 
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Table 6 Comparison of natural frequencies calculated using finite element models with measured results 
(unit: HZ) 

Mode 

N u m b e r  

Calculated us ing  Finite Element  Model  

Measured  

Ao Ab A*mo A~o Arab 

1 0,199 0,228 0,235 0.236 0.233 0,237 

2 0.628 0,716 0.727 0.711 0.716 0.727 

1.228 1.285 

1.681 

1.264 

1.605 

1.257 

1.600 

1.256 

1.602 1.625 

1.271 

1.588 

5 2.489 2.798 2.726 2.730 2.721 2,721 

6 4.153 4.385 4.622 4.605 4.611 3.468 

7 4.705 4.822 5.461 4.868 4.864 5.428 

m a t c h e d  the  o b s e r v e d  ones  f r o m  the  a m b i e n t  v ibra t ion  test  ac tu-  
al ly p e r f o r m e d  on  the  l a rge - sca le  s t ruc tura l  sy s t em.  
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