
 
 

 
 
 
 
Quantifying Atherosclerosis: IVUS Imaging For Lumen 

Border Detection And Plaque Characterization 

 
 

Amin Katouzian 
 
 
 
 
 
 
 
 

Submitted in partial fulfillment of requirements for 

 the degree of Doctor of Philosophy  

in the Graduate School of Arts and Sciences 

 
 
 
 
 
 
 
 
 
 
 
 

COLUMBIA UNIVERSITY 
 
 

2011 
 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
© 2011 

 
Amin Katouzian 

 
All Rights Reserved 

 



 
 

ABSTRACT 

 

Quantifying Atherosclerosis: IVUS Imaging For Lumen 

Border Detection And Plaque Characterization 

 
 
 

Amin Katouzian 
 

 

The importance of atherosclerotic disease in coronary artery has been a subject of study 

for many researchers in the past decade. In brief, the aim is to understand progression of 

such a disease, detect plaques at risks (vulnerable plaques), and treat them selectively to 

prevent mortality and immobility. Consequently, several imaging modalities have been 

developed and among them intravascular ultrasound (IVUS) has been of particular 

interest since it provides useful information about tissues microstructures and images 

with sufficient penetration as well as resolution. In general, the ultimate goal is to provide 

interventional cardiologists with reliable clinical tools so they can identify vulnerable 

plaques, make decisions confidently, choose the most appropriate drugs or implant 

devices (i.e. stent), and stabilize them during catheterization procedures with minimal 

risk. 



 
 

In this work, we review existing atherosclerotic tissue characterization algorithms 

including the state-of-the-art virtual histology (VH) framework, which has been 

implemented in the Volcano (Rancho Cordova, CA) IVUS clinical scanners using 64-

elements 20 MHz phased-array transducer. Initially, we intended to extend this technique 

for data acquired with 40 MHz single-element transducers. For this reason, we started 

acquiring in vitro IVUS data and studied involved challenges from specimen preparation 

toward classification. We observed inconsistency among extracted features along with 

transducer’s spectral parameters (i.e. bandwidth, center frequency). This, in addition to 

infeasibility of construction of reliable training dataset due to heterogeneity of 

atherosclerotic tissues motivated us to develop an unsupervised texture-based 

atherosclerotic tissue characterization algorithm.  

 

We proposed a two-dimensional multiscale wavelet-based algorithm to expand IVUS 

backscattered signals and/or grayscale images onto orthogonal symmetric quadrature 

mirror filters (QMF) such as Lemarie-Battle. At the bottom of decomposition tree, we 

employed ISODATA to cluster enveloped detected features in an unsupervised fashion 

and classify atherosclerotic plaque constitutes into fibrotic, lipidic, calcified, and no 

tissues. For the first time, we studied numbers of factors that were necessary for 

extension of in vitro derived classifier for in vivo applications such as reliability of 

classified tissues behind arc of calcified plaques and effects of pressure changes as well 

as flowing blood on constructed tissue color maps, called prognosis histology (PH) 

images.  



 
 

The second half of this dissertation is devoted to automatic detection of lumen borders in 

IVUS grayscale images acquired with high frequency (40 MHz up) transducers where 

more scattering exhibited within lumen area that makes the problem of interest more 

challenging. We established our framework on three-dimensional expansion of IVUS 

sub-volumes onto orthonormal brushlet basis function. The rational behind our 

framework was presence of incoherent (i.e. blood) versus coherent (i.e. plaque, 

surrounding fat) textural patterns along pullback direction, which was motivated by what 

an interventional cardiologist does to locate the lumen border visually by going back and 

forth among IVUS frames. We studied the feasibility of brushlet analysis through 

filtering blood speckles and supervised classification of blood versus non-blood regions. 

Our preliminary study confirmed that the most informative features reside in the 

innermost cubes, representing low-frequency components in transformed domain. 

Finally, we explored that tissue responses to IVUS signals are proportionally preserved in 

brushlet coefficients and it enabled us to classify blood regions in complex brushlet 

space. Subsequently, we employed surface function actives (SFA) to estimate the lumen 

borders after regularization. In a comparison study, we quantified our results with two of 

existing algorithms, employing IVUS grayscale images acquired with 40 MHz and 45 

MHz single-element transducers. Overall, our proposed algorithm outperformed and the 

resulting automated detected borders showed good correlation with manually traced 

borders by an expert.    
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1.  Chapter One: 

INTRODUCTION 

1.1.  Medical Background 

Heart disease or cardiopathy is the number one killer of human worldwide and is 

responsible for 25.4% of all deaths in the United States [1,2]. It refers to variety of 

different diseases affecting the heart, which among them coronary heart disease (CHD) is 

the most common type of heart disease and takes about 500,000 lives in the United States 

every year [3]. Although CHD is commonly equated with coronary artery disease (CAD) 

it may be due to other causes such as coronary vasopasm. Nevertheless, both may 

correlate with deficiency or failure in coronary circulation and ultimately supplying 

adequate blood, oxygen, and nutrients to cardiac muscles (myocardium) and surrounding 

tissues, resulting instable or stable angina pectoris (chest pain or discomfort), myocardial 

infarction also known as heart attack, and sudden death due to full occlusion of coronary 

artery when an atherosclerotic plaque ruptures, activating the clotting system and 

atheroma-clot interaction fills the lumen of the artery to the point of sudden closure. 

Persons at risk typically have no premonitory symptoms, and angiographic studies of 

coronary arteries in patients with non-fatal acute coronary syndromes (ACS) showed that 

most such events are because of rapid progression of mild, hemodynamically 

insignificant lesions [4-6]. In fact, by the time that heart problems due to CAD are 

detected, the underlying cause (atherosclerosis) is usually quite advanced. Many forms of 

heart disease including CAD and cardiovascular disease can be prevented or treated with 
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healthy lifestyle choices, diet, and exercise. In practice, CAD is treated by cardiologists, 

interventional radiologists or cardiologists through medication, non-invasive, or invasive 

procedures. The choice of physical treatment approach depends on severity of extended 

disease, which could lead to minimally invasive (e.g. angioplasty, stent implantation) or 

invasive (e.g. bypass, heart transplantation) surgical procedures.  

 

Atherosclerosis was a widely misunderstood disease because of misconception about the 

nature of the arteries that had been thought of as stiff pipes that progressively become 

clogged. Now a day, the atherosclerosis disease has been redefined and is recognized as a 

chronic inflammatory disease that affects arteries functionality. In this revised vision, the 

arteries viewed as muscular organs that adapt their environment in response to various 

factors, such as change of pressure, by contraction and expansion. More importantly, a 

new era has begun to unravel the biochemical processes that trigger atherosclerosis 

disease and has yet to filter into mainstream medicine. Hence, the most progressive and 

forward-thinking researchers develop innovative approaches to compensate for the 

endothelial dysfunction that underlies coronary heart disease.  

 

1.1.1.  Coronary Atherosclerosis 

The CAD or atherosclerotic heart disease is indeed the leading life taking disease in the 

world, particularly in developed countries. The word “atherosclerosis” comes from the 

Greek words “athero” and “sclerosis”, meaning gruel or paste and hardness, respectively. 

As it is inferred from the name, it is a disease in which atheromatous plaque, consisting 

of fatty substances (i.e. cholesterol), platelets, cellular waste products, and calcium build 
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up in the innermost layer of an artery called endothelium. Figure 1.1 illustrates the 

schematic of a normal artery in comparison with diseased counterpart and corresponding 

cross sections. The disease is typically asymptomatic, chronic, slowly progressive, 

cumulative, and eventually leads to plaque ruptures and therefore clots inside the artery 

lumen over the ruptures. The clots heal and usually shrink but leave behind stenosis 

(narrowing) or in worse case scenario complete occlusion of the artery, leading to 

insufficient blood supply to myocardium tissues and ultimately myocardial infarction 

(MI). The known risk factors associated with causes of damage to the arterial wall 

(endothelial cells) include: 

- Elevated level of cholesterol and triglyceride in blood.  

- High blood pressure.  

- Tobacco smoke. 

- Diabetes.  

Fig. 1.1. Schematic of a normal artery (a) and its diseased (narrowed) counterpart (b) along with 
corresponding cross sections. (Reference: http://www.nhlbi.nih.gov). 
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Other factors such as advanced age, male sex, hypertension, short sleep duration, and 

high carbohydrate and trans fat intake may increase the risk as well [7]. Not every person 

who suffers from atherosclerosis has the risk factors we commonly associated with the 

disease, such as elevated cholesterol, but every single person with atherosclerosis has 

endothelial dysfunction. 

 

1.1.2.  Endothelial Dysfunction 

The arterial wall consists of three layers, intima, media, and adventitia as it appears in 

Figure 1.2(a). The cause and progression of atherosclerosis are intimately related to the 

health of the inner arterial wall (intima) that is a smooth with protective surface and 

consists of a thin layer of endothelial cells, called endothelium. This layer is mainly 

responsible for adjusting the arterial wall response to any change in blood pressure and 

preventing toxic as well as blood-borne substances from penetrating to the middle layer 

(media), which consists of smooth muscles and controls blood flow and pressure by 

contraction and expansion. Finally, the outer layer (adventitia) is mostly connective 

tissues and provides structures to the layers beneath.  

 

As we age, the endothelium protective surface becomes leaky, allowing toxins and lipids 

to infiltrate the middle layer and cause injury. Consequently, the smooth muscle cells 

congregate at site of injury, resulting loss of flexibility, and endothelium signals white 

blood cells to immune the wound by damaging free radicals and releasing pro-

inflammatory substances such as leukotrienes and prostaglandins. At this point, toxins 

begin to break into the arterial wall, where low-density lipoprotein (LDL), cholesterol, 
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and triglycerides start accumulating and oxidizing. In response to the oxidized lipids, the 

body forms an intensive immune response by provoking more white blood cells to attack 

the fats, which causes more inflammation within the arterial wall. Meanwhile, the smooth 

muscle cells begin to produce collagen to construct a cap over the site of injury. In fact, 

the atherosclerotic plaque is a result of the mixture of oxidized lipids, white blood cells, 

and smooth muscle cells. Over time, calcium is also deposited into the plaque and 

ensembles a brittle cap. Once the calcified plaque ruptures, a blood clot can form and 

may result in a heart attack or stroke.  All the processes described above, in which the 

Fig. 1.2. Endothelium dysfunction. Normal artery with structural layers (a), atherosclerotic plaque 
builds up in the endothelial layer (intima) that may lead to unstable plaque (b). It becomes stable if 
thick fibrotic cap is constructed on top of the lipid core (c) or ruptures (d) that may result in ACS (e) or 
sudden death (f) depending on sized of blood clot occlusion. (Reference: http://www.americanheart.org).  
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inner arterial wall is damaged and normal endothelial function is compromised, are 

collectively referred to as endothelial dysfunction. Figure 1.2 illustrates endothelium 

dysfunction and progression of atherosclerotic plaque within endothelial wall that may 

result in formation of vulnerable plaque and potentially ACS or sudden death. As we can 

see the risk of complication proportionally increases with percentage of stenois. Although 

the average absolute risk of severely stenotic plaques may be higher than the average 

absolute risk of mildly stenotic plaques, there are more plaques with mild stenosis than 

plaques with severe stenosis. 

 

1.1.3.  Vulnerable Plaque 

In 1966, Constantinides [20] examined 17 autopsied cases and for the first time 

concluded that fissure of thin fibrous cap in atherosclerotic plaque causes thrombosis.  

This primary study led to further investigations on plaque rupture and its consequences 

[21-25]. Sine then, the term “culprit plaque” widely has been used by interventional 

cardiologists and cardiovascular pathologists and it refers to a plaque responsible for 

coronary occlusion and ultimately death regardless of its histopathologic characteristics. 

In the meantime, prospective evaluations motivated clinicians to define a new term for 

describing such plaques before ruptures or those that were responsible for acute coronary 

events. For the past about 40 years, different terminologies have been introduced and 

continually updated by scientists such as “unstable plaque”, “dangerous plaque”, “plaque 

disruption” [10,11], “high-risk plaque” [12], and “vulnerable plaque” [12,13]. Over the 

past few years, the vulnerable plaque (initially proposed for describing plaques with large 

lipid pool, thin fibrotic cap, and macrophage-dense inflammation on or beneath its 
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surface, Figure 1.3(A)) has been broadly adopted by investigators and clinicians to 

denote susceptible plaques with different morphological features, Figure 1.3, that 

potentially could lead to ACS or sudden cardiac death.  

 

During these years, there was no consensus on either employed terminologies or 

definition for vulnerability of plaque [14-18]. Hence, in a comprehensive report, Naghavi 

et al. [19] suggested a uniform language to standardize the terminology and 

recommended “vulnerable plaque” as a benchmark. Based on their new definition, the 

rupture-prone plaques are not the only vulnerable plaques and all types of atherosclerotic 

Fig. 1.3. Different types of vulnerable plaques introduced by Naghavi et al. [19]. Rupture-prone plaque 
with large lipid core and thin fibrous cap infiltrated by macrophages (A). Ruptured plaque with 
subocclusive thrombus and early organization (B). Erosion-prone plaque with proteoglycan matrix in a 
smooth muscle cell-rich plaque (C). Eroded plaque with subocclusive thrombus (D). Intraplaque 
hemorrhage secondary to leaking vasa vasorum (E). Calcific nodule protruding into the vessel lumen 
(F). Chronically stenotic plaque with severe calcification, old thrombus, and eccentric lumen (G). 
Correlation between degree of stenosis (green bar), frequency of plaques (yellow bar), and risk of 
complication per plaque (red bar) as a function of plaque progression. 
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plaques, Figure 1.3, with high likelihood of thrombotic complications, rapid progression, 

and thus becoming culprit plaques must be considered as vulnerable plaques. They 

further introduced numbers of vulnerability morphological/structural markers based on 

study of culprit and stenotic plaques such as: 

- Cap Thickness.  

- Lipid core size.  

- Percentage of stenosis (narrowing). 

- Mechanical stability (stiffness and elasticity). 

- Calcification burden and pattern (nodule vs. scattered, superficial vs. deep, etc).  

- Shear stress (flow pattern throughout the artery). 

                                    (c)                                                                                       (d) 
Fig. 1.4. A vulnerable plaque before (a) and after (b) rupture. Degree of vulnerability significantly 
decreases if the fibrotic cap becomes thicker, which turns an unstable plaque (a) to a stable plaque (c). 
Histology image (d) corresponding to the stable plaque.  

                                  (a)                                                                                       (b) 
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- Remodeling (expansive vs. constrictive). 

 

From mechanical point of view, hemodynamic pulsating expansion during systole and 

elastic recoil contraction during diastole contribute to a high mechanical stress zone on 

the fibrous cap of the atheroma, making it prone to rupture. Figure 1.4(a,b) demonstrates 

a vulnerable plaque before and after rupture.   

 

 

1.1.4.  Stabilization of Vulnerable Plaque  

Often degree of vulnerability significantly decreases if fibrotic cap becomes thicker, 

Figure 1.4(c,d). In traditional language, an unstable plaque evolves to a stable plaque by 

construction of a thick fibrous cap on top of a lipid rich pool. Although this natural 

process stabilizes the vulnerable plaque it may not be certain for all cases. Therefore, 

researchers strive to take advantage of different mechanisms at physical, biochemical, 

and cellular levels to stabilize the vulnerable plaque. Lowering lipid contents of 

atheromatous plaques and improving endothelial function are two possible alternatives 

for plaque stabilization. It has been shown that the reduced lipid content is usually 

accompanied by an increase in collagen concentration that may enhance plaque stiffness 

and increase stability [26,27]. Among drugs, the lipid-lowering agent such as statin that 

reduces the LDL cholesterol and increases endothelial functionality is probably the most 

effective. Another beneficial possibility is the use of gene therapy that requires better 

understanding of the molecular bases of vulnerable plaque. Needless to say, in the present 

outcome-oriented era, the future direction of plaque stabilization developments and 
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therefore atherosclerotic disease management is greatly influenced by new screening 

modalities that can identify vulnerable plaques with detail characteristics.  

 

 

1.2.  Identification of Vulnerable Plaques 

Recent technological advances along with important role of vulnerable plaques in CHDs 

have drawn investigators’ attentions into expansion of physiological, pharmaceutical, and 

technological approaches in the field of cardiovascular medicine. For the past couple of 

decades, we have observed changes in life styles, diets, drug therapies, screening 

modalities, and interventional devices/procedures to prevent progression of 

atherosclerotic disease in patients. Among all aforementioned alternatives, the imaging 

technique was the core component that provided interventional cardiologist imperative 

characteristics of plaques so they could make better decisions during catheterization 

procedures and validated the effectiveness of new drugs on progression or regression of 

atherosclerotic plaques in clinical trials. More importantly, the successful treatment of 

atherosclerosis extremely depends on the stage of the disease so diagnosis systems play a 

crucial part in correct identification and characterization of the lesions. In this section, we 

briefly review existing intravascular imaging modalities along with overall advantages, 

disadvantages, and limitations. Based on interventional cardiologist diagnosis, non-

invasive or minimally invasive screening modality might be employed to evaluate the 

stage of atherosclerosis disease and underlying plaques. Non-imaging approaches are 

excluded in this study.  
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1.2.1.  Non-Invasive Techniques 

Non-invasive screening techniques are usually recommended for routine check-ups, 

follow-ups, and for those who have no premonitory symptoms.  

 

1.2.1.1.  Computed Tomography Angiography (CTA) 

Electron-Beam Computed Tomography (EBCT) is a diagnosis imaging modality that 

combines the use of X-ray with computerized technology to produce two-dimensional 

(2D) cross-sectional images (slices) of an organ. In this technique, the X-ray beam 

circularly moves around the area of interest, allowing different views from the same 

organ, and interacted X-ray information is characterized by a computer. A newer 

technology, ultrafast computed tomography (UCT), provides multiple images of the heart 

                                       (a)                                                                                   (b) 
Fig. 1.5. Transaxial view of a contrast-enhanced CTA (a) and corresponding angiogram (b). Yellow 
arrows point to site of occlusion.  
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with detailed structures within a single heartbeat. This mechanism is currently being used 

to quantify the amount of calcium in coronary arteries. Figure 1.5 illustrates transaxial 

view of a contrast-enhanced CTA and its corresponding angiogram.  

 

This technique is usually recommended by physicians to diagnose early CHD in people 

with no symptoms. Although calcification is weighted for CHD its presence might not be 

correlated with identification of vulnerable plaque. Strictly speaking, the morphological 

property of a calcified plaque and its interpretation by interventional cardiologist must be 

taken into account. For example, calcified nodules are sometimes found in vulnerable 

plaques, Figure 1.3(F), while arc of calcified plaques usually considered as natural stents 

that make plaques stable. Furthermore, measurement of coronary calcium is not 

considered relevant in patients, who have already had a heart attack, undergone coronary 

bypass surgery, or coronary angioplasty. Similarly to all X-ray based diagnosis imaging 

techniques, exposure of patient to X-rays that are ionizing radiations can be a health 

hazard.   

 

1.2.1.2.  Magnetic Resonance (MR) Based Techniques  

MR angiography (MRA) is a MR imaging (MRI) based technique to visualize blood 

vessels throughout the body. Different methods can be used to generate the images based 

on flow effects or inherent as well as pharmacologically generated contrast agents. 

Although MRA has been successful for studying many arteries in the body it has been 

less successful for studying coronary arteries, comparing with CTA and catheter 

angiography. The main drawback of MRA is limited spatial resolution, which is a 
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constraint particularly for delineation of vulnerable plaques. Instead, high-resolution MRI 

has been employed for detection and classification of atherosclerotic plaques based on 

biophysical and biochemical characteristics of plaque constitutes [28]. The advantage of 

MR based modalities over CTA and catheter angiography is that the patient is not 

exposed to any ionizing radiation and contrast agents are less toxic. The disadvantages of 

this method are lengthier scan time and higher expense. The only limitation associated 

with these techniques is that patients with pacemakers and metals (i.e. surgical clips) 

should be excluded due to the presence of high magnetic fields.  

 

1.2.2.  Invasive Techniques 

These screening techniques are usually deployed when interventional cardiologist is 

certain about stenosis and aims for balloon angioplasty or stent implantation.   

 

1.2.2.1.  Coronary Angiography 

It is the most conventional screening technique that enables interventional cardiologists 

and radiologists to diagnose stenosis inside coronary arteries. Traditionally, a guide wire 

along with a catheter is advanced from femoral artery toward major coronary arteries in 

order to administer a radio-opaque contrast agent that absorbs X-rays. Once the contrast 

agent is injected into the blood at desired location, 2D real-time images are taken at 15-30 

frames per second using X-ray based techniques such as fluoroscopy. X-ray images of the 

transient radio-contrast within flowing blood display the site of occlusion, Figure 1.6(a). 

Although this technique allows the visualization of the anatomy of the coronary arterial 

vessels, there are important shortcomings. The angiogram is a 2D presentation of a three-
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dimensional (3D) structure. Stenosis that appears insignificant in one projection can 

appear severe in other projections, leading to under- or over-estimation of plaque burden, 

Figure 1.6(b). For this reason, interventional cardiologist needs to take multiple 

projections during catheterization procedure or employs recently developed 3D 

angiography systems. With regards to detection of vulnerable plaques, this imaging 

method fails because it does not provide any information about plaque components. 

Minor complications associated with this imaging modality are bleeding or bruising at the 

site where the contrast agent is injected, exposure of patient to ionizing radiation, allergic 

reaction to the contrast agent, and similar to all catheterization procedures the catheter 

may damage the blood vessels on the route to the desired location.  

 

1.2.2.2.  Angioscopy 

Intracoronary angioscopy, recognized as the first intravascular imaging device, is based 

on fiberoptic transmission of visible light. It facilitates direct visualization of the plaque 

(a) (b) 
Fig. 1.6. A typical angiogram (a). Different projections may lead to under- or over-estimation of plaque 
burden (b). Red arrows point to the site of occlusion. (Reference: Cleveland clinic core lab). 
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surface, color of the luminal surface, presence of thrombus, and macroscopic features of 

the arterial wall. With this technique, the old thrombus or the normal appearance of the 

vessel surface, fibrin/erythrocyte-rich thrombus or lipid rich core, and thin fibrous cap 

appear to be white, red, and yellow, respectively. This technique has several drawbacks. 

First, size of the device limits access to vessel trees or areas with severe stenosis. 

Secondly, it does not provide arterial wall structures at different layers. Third, the artery 

needs to be occluded and remaining blood must be flushed away with saline during 

examination.  

 

1.2.2.3.  Intracoronary Thermography (ICT) 

Atherosclerosis is an inflammatory chronic disease, resulting from intensive immune 

response by white blood cells when damage to endothelial wall is occurred. The 

measurement of plaque temperature, released by activated inflammatory cells, has been 

shown to be an indicator for detection of culprit and vulnerable plaques [29-32]. The 

more inflammatory cells accumulate in plaque, the more heat is generated. The ICT is a 

catheter-based technique for functional imaging of atherosclerotic plaques and enables 

the direct measurement of plaque thermal heterogeneity. The local vessel wall 

temperature can be assessed by thermistor-, thermocouple- or infrared-based 

measurements. The former technique requires direct contact of either a single or multiple 

thermal sensors on the end of a catheter tip with the vessel wall, whereas the latter uses 

an infrared fiber optic catheter to measure temperature without contacting the vessel wall.  

 

The use of ICT catheters appears to be feasible for detection of hot and thus suspected 
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vulnerable plaques. However, no detailed information about the type of vulnerability and 

plaque components is provided. The main limitation associated with this technique is that 

there is no consensus on the amount of temperature heterogeneity. Therefore, 

identification of vulnerable plaque through this technique becomes subjective. This could 

be due to several factors such as cooling effect of blood flow, its type as well as velocity, 

differences in types of thermistors, and use of medication like statin that has been 

reported to reduce the thermal heterogeneity.  

 

1.2.2.4.  Intravascular Optical Coherence Tomography (OCT) 

Intravascular OCT is a catheter-based, high-resolution imaging method that provides 

cross-sectional images of arterial wall and its structures. In this technique, the intensity of 

reflected light from tissues is measured and compared with a reference. Due to its high 

resolution, OCT is considered to be the most promising imaging modality for detecting 

the thin-cap fibroatheroma (TCFA). Moreover, the OCT atherosclerotic tissue 

characterization has been subject of study for researchers and can be divided into 

intensity- and optical-derived techniques. In former approach, plaque components are 

classified by their relative intensities. For example, it has been suggested that fibrous 

plaques appears as homogeneous signal-rich regions, lipid plaques as signal poor regions 

with diffuse borders, and calcified plaques as sharply delineated signal-poor regions with 

islands of signal-rich regions [33,34]. Albeit absence of fundamental physical 

explanations and formulations, this approach has been utilized for in vivo applications 

[34-37]. On the other hand, optical-derived techniques are established from quantitative 

measurement of optical properties of atherosclerotic plaques such as scattering 
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coefficients [38] or combination of backscattering and attenuation properties of each 

tissue type [39]. The intravascular OCT imaging modality poses a serious limitation 

particularly for complete characterization and interpretation of atherosclerotic plaques, 

which is lack of sufficient penetration. As a result, the full radial extend of atherosclerotic 

plaques cannot be imaged. This can be clearly observed in Figure 1.7 that shows a rotary 

OCT image and corresponding transverse image along with its histology.  

 

1.2.2.5.  Near Infrared (NIR) Spectroscopy  

This technique relies on interactions between organic molecules and photon absorption 

that varies depending on the wavelength of the incident NIR light. Basically, the 

absorbance of light by organic molecules and vibrational transitions are measured in the 

range of NIR (750-2500 nm). The precise identification of subtle chemical differences is 

achieved through a highly developed mathematical method such as principal component 

analysis (PCA) that compares the characteristics of equations describing the reflectance 

spectra. The NIR and Raman spectroscopy have been used for characterization and 

quantification of chemical components of atherosclerotic plaques [40-44]. Recently, the 

NIR spectroscopy catheters have been developed to detect and assess the intracoronary 

                        (a)                                                     (b)                                                     (c) 
Fig. 1.7. [39] Rotary OCT image acquired with 500µm wavelength (a) corresponding transverse image 
(b) and Movat pentachrome histology (c).   
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composition of lipid core plaques, which has been one of the indicators for vulnerable 

plaques.  In general, the NIR spectra have low absorptivity and large bandwidths that 

highly overlap, which strongly influences spectral analysis, particularly in differentiating 

the precise biochemical components (i.e. cholesterol, lipid).   

 

1.2.2.6.  Intravascular Ultrasound (IVUS)  

Similar to intravascular OCT and NIR imaging modalities, IVUS is a catheter-based 

technique but uses high frequency sound waves (20 MHz – 45 MHz) instead of light. In 

this technique, the catheter is pulled back from distal to proximal segments of an artery 

with certain speed and sound waves are sent and received by a transducer that has been 

designed at the tip of a catheter. Subsequently, the echoed signals are converted to 

grayscale images, Figure 1.8. It provides real-time relatively high-resolution cross-

sectional images of arterial wall and lumen with sufficient penetration. It offers instant 

evaluation of morphological information regarding plaque and luminal area particularly 

in cases where the degree of stenosis is unclear when angiogram is used. Generally, the 

IVUS is deployed before and after stent implantation to make sure that the stent has been 

properly placed. Because, if a stent is not expanded flush against the wall of the vessel, 

turbulent flow may occur between the stent and the arterial wall, which could result in 

acute thrombosis and restenosis. Without a doubt, IVUS has enabled advances in clinical 

research providing a more thorough perspective and better behavioral understanding of 

atherosclerosis process since early 1990. It is also used for pathological interpretation of 

plaque components and identification of vulnerable plaques. After angiography, IVUS is 

the only imaging methodology that is widely available in coronary catheterization labs 
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worldwide and increasingly being used to evaluate newer and evolving strategies for 

treatment of coronary artery disease. In fact, the IVUS is the only dependable screening 

method for quantification of novel technical and pharmaceutical approaches. The primary 

disadvantages of IVUS being used routinely in cathlabs are its expense and additional 

examination time, which are inherent in all catheter-based imaging methodologies (i.e. 

OCT, NIR).   

 

 

1.3.  Problem Statement 

For many years, the ultimate goal of an interventional cardiologist was to physically 

expand narrowed artery, using balloon and stent, or create additional blood supply 

Fig. 1.8. Pullback pathway of IVUS catheter on angiogram (top row) and IVUS grayscale images 
(bottom row) at three distinct locations (A,B,C).  
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connections through bypass surgery. With the invention and refinement of new 

intravascular imaging modalities, today, primary responsibility of an interventional 

cardiologist is not only to open up the site of occlusion but also to properly cure the 

atherosclerosis. For example, the United States food and drug administration (FDA) 

safety panel has suggested that cardiologists take more measures to reduce risks 

associated with the stents due to troubling headlines about potentially deadly clotting 

risks in small percentage of them. So far, researchers have mainly focused on the stents 

themselves and how they are made. But now, attention is turning more toward the way 

they are being used. There has been a consensus that widespread use of drug-coated 

stents may increase the risk of deadly clots formation, which has called attentions in the 

United States and widely reported in the media (Fox News report, October 9, 2008 - The 

New York Times, February 13, 2007 – The Wall Street Journal, May 7, 2007 - The Boston 

Globe, December 26, 2004) and in many scientific journals [45-49]. The medicine on the 

stent is released gradually over time to stop the progression of the scar tissue. However, it 

can also cause the artery to become narrow again, which is known as restenosis.  

 

For chronic disease such as atherosclerosis, which may reoccur after balloon angioplasty, 

atherectomy, stent deployment, and even bypass surgery, the accurate diagnosis of 

vulnerable plaques is significantly imperative. In brief, what make atherosclerosis one of 

the deadliest diseases is not stenosis alone but failure in detection and proper treatment 

of vulnerable plaques. The problem becomes more complicated when we observe that 

there is no consensus on interpretation of vulnerable plaques from imaging perspectives 

as well as pathological point of view and it is rather performed in a subjective manner. 

Today, more than ever, there is a need for reliable, reproducible, clinically approved 
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atherosclerotic plaque characterization algorithms so interventional cardiologists can 

make confident decisions and choose appropriate devices/drugs during catheterization 

procedures. Furthermore, they can be used to study the efficacy of different agents coated 

on drug-eluting stents (DES) and regression of plaques. Undoubtedly, current 

developments in intravascular coronary imaging systems and atherosclerotic tissue 

characterization techniques will be a basis for future consistent management and 

dependable treatment of atherosclerosis. Consequently, more lives will be saved and 

overwhelming medical expenses burdened on the government and individuals can be 

considerably reduced. 

 

 

 

1.4.  Specific Aims of The Thesis 

The specific aims of current work are: 

1. Atherosclerotic tissue characterization.  

a. We study realistic challenges from tissue preparation toward 

classification.  

b. We implement the state-of-the-art virtual histology (VH) algorithm for 

data acquire with 40 MHz single-element transducers.  

c. We develop an unsupervised texture-based tissue characterization 

technique with proper histology validation. This way, the constructed 

tissue color maps could be used for tissue labeling as an alternative 

approach for manual labeling.  
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d. For the first time, we investigate the results of effects of blood and 

pressure change on constructed tissue color maps and reliability of 

classified tissues behind arc of calcified plaques. 

2. Detection of lumen borders in IVUS images.  

a. We study the feasibility of brushlet analysis.  

b. We develop an automated lumen border detection technique for images 

acquire with high frequency (40 MHz) transducers.  

c. We evaluate our proposed algorithm performance in comparison with two 

of existing techniques and quantify resulting automated detected borders 

with manually traced borders by an expert.  
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2.  Chapter Two: 

INTRAVASCULAR ULTRASOUND (IVUS) 

2.1.  Why IVUS? 

In previous section, we briefly reviewed existing coronary intravascular imaging 

modalities. Among them, angiography is the only system routinely being used in all 

percutaneous coronary intervention (PCI) procedures. It provides immediate visualization 

of stenosis throughout heart vessel trees and guides interventional cardiologist to advance 

other catheters for imaging and balloon/stent deployment. However, it suffers from lack 

of adequate geometrical and pathological information regarding plaque burden and its 

components. Therefore, experts often tend to take advantage of alternative imaging 

modalities in order to advance their understanding of atherosclerotic process with the 

goal of development of new therapeutic interventions. So far, the feasibility of IVUS, as 

the best supplemented imaging modality, has been proven because of the following 

reasons: 

- It provides real-time cross-sectional grayscale images of arterial wall and its 

morphologic as well as pathologic structures with sufficient resolution and 

adequate penetration, allowing precise tomographic assessment of lumen area 

[152].  

- IVUS grayscale images and/or backscattered signals can be employed for 

characterization of plaques and identification of vulnerable ones (see Chapter 3). 

- Using IVUS, an interventional cardiologist can determine: 
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o The need for further treatment (angioplasty, stent implantation, bypass). 

o The exact spatial location for angioplasty and stent implantation.  

o How well angioplasty and stenting has worked out.  

o The need for aggressive management of risk factors prior to onset of 

symptoms and advanced disease. 

o The predictors of transplant coronary artery disease. 

 

 

Compared with other modalities, the scientific and diagnostic advantages of IVUS are 

evident. Additionally, IVUS is the primary choice for validation of other competitive 

imaging modalities (i.e. OCT, NIR) and has been widely used in preliminary and large 

perspective trials to investigate the efficacy of new endovascular devices/drugs. With 

respect to detection of vulnerable plaques, the IVUS is capable of becoming the most 

common and trustworthy technique given a reliable and reproducible plaque 

characterization algorithm. Recalling vulnerable plaque features, the IVUS could 

encompass a greater predictive value in detecting vulnerable plaques since the 

combination of indices (TCFA, lipid core size, calcification patterns) would be detectable 

and measurable at once, which would not be the case for competitive imaging modalities 

such as NIR and OCT.  
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2.2.  Technical Principles of IVUS 

2.2.1.  Basic Physics of Ultrasound 

Ultrasound technology has been employed as a diagnostic tool in modern medicine for 

the past 50 years. The ultrasound is pressure generated sound wave with frequency 

greater than audible range of human (2kHz – 20kHz). In IVUS applications, the 

frequency, f , may vary from 10MHz to 45MHz. The ultrasound technology has been 

established upon transmission of ultrasound signals into a medium and interpretation of 

echoes that carry signatures corresponding to the medium. The final interpreted result is 

usually represented in a grayscale image format. The speed of sound, c  , in a medium is 

calculated as follows: 

                                                               c =
1
Kρ

= λ f 2.1( )  

where, λ  , ρ  , and K ,  are wavelength of ultrasound signal, density, and compressibility 

of medium, respectively. The speed of sound does not depend on its frequency but the 

characteristics of medium in which it passes through. In IVUS systems, the average speed 

of sound in atherosclerotic tissues is customarily set to 1.5625mm µ sec .  

 

A transducer, which converts electrical signals to ultrasound counterparts, is used to 

transmit ultrasound waves into a medium. When the ultrasound signals travel through a 

medium and interact with tissues, three different phenomena may occur; reflection, 

refraction and scattering, Figure 2.1. The scattering happens when the size of particle is 

less than the wavelength of ultrasound wave. The same transducer is used to receive 
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reflected-attenuated (backscattered) signals from tissues that are proportional to the 

acoustic impedance mismatch, Z = ρ c , between two boundaries (mediums). These 

signals are digitized, stored, and analyzed by a computer to construct typical grayscale 

images from medium and its structures.  

 

2.2.2.  IVUS Acquisition System Specifications 

The IVUS is relatively inexpensive imaging modality and could be used in minimally 

invasive catheterization procedures. The acquisition system consists of a catheter, 

pullback device, and scanner console. The scanner console carries a computer, keyboard, 

and screening monitor. We briefly describe the functionality of each part.  

 

 

Fig. 2.1. Schematic of transmission of ultrasound wave through two different mediums and resulting 
reflected-attenuated, refracted, and scattered signals. The reflected-attenuated signals, received by the 
transducer, are depicted in voltages and grayscale intensities after envelope detection and quantization.  
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2.2.2.1.  IVUS Catheter 

Catheter is a device that carries a transducer or inflatable balloon with or without stent for 

imaging purposes and/or expansion of narrowed area, Figure 2.2. It is typically advanced 

from femoral artery toward coronary arteries under angiogram guidance. The tip of the 

catheter is visible in angiogram so cardiologist can maneuver it with, Figure 2.2 (B,C), 

or without, Figure 2.2 (A), help of a guide wire depending on type of the catheter. A 

guide wire rail can be designed next to the catheter plastic sheath Figure 2.2 (B) or at its 

center, Figure 2.2 (C). The advantage of the latter design is that there is no guide wire 

Fig. 2.2. Schematic of four different types of imaging catheters. A catheter without guide wire rail (A), 
a catheter with guide wire rail designed at the side (B), a catheter with guide wire rail designed at its 
center (C), a catheter with guide wire rail at its center, inflatable balloon and stent (D). (Reference: 
http://ee.isikun.edu.tr/research.asp-page=projects_files). 

                                         (a)                                                                               (b) 
Fig. 2.3. Single-element mechanically rotating focused IVUS transducer and its beam width (a), multi-
elements phased-array IVUS transducer and its beam width (b). 
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artifact in constructed grayscale images. Usually, this type of catheter is stiffer, thicker, 

and harder for maneuvering.  

 

2.2.2.2.  IVUS Transducer 

Currently, there are two types of IVUS transducers commercially available in market 

regardless of their nominal center frequencies. The main difference is in the way that they 

transmit and receive IVUS signals. Figure 2.3(A) shows a single-element mechanically 

rotating focused IVUS transducer (i.e. Atlantis® Boston Scientific imaging catheter) that 

rotates at approximately 1800 revolutions per minutes and its beam width. For a 40 MHz 

transducer, the axial and lateral resolutions are about 80-100mm and 200-250mm, 

respectively. The transducer sends a signal and receives the backscattered signal. Figure 

2.3(B) demonstrates a multi-elements phased-array transducer (i.e. Eagle Eye Gold® 

Volcano imaging catheter) with its beam width. An electronic board has been designed so 

a subset of elements sends signals at once and receives the backscattered signals.    

 

2.2.2.3.  Catheter Pullback Device 

Once interventional cardiologist diagnoses the location of stenosis the catheter is 

advanced to the distal side of the stenosis and the transducer is pulled backed while 

taking cross-sectional images. The apparatus that pulls back the transducer is called 

pullback device and works manually or automatically, Figure 2.4. In automatic option, 

the speed of pullback can set to 0.5mm or 1mm per second. Typically, a syringe is used 

to flush Saline in the plastic sheath of the catheter to remove airs and obtain better IVUS 

images.  



 

 

29 

 

2.2.2.4.  IVUS Scanner Console 

Figure 2.5 illustrates a portable scanner console for Volcano (Rancho Cordova, CA) s5 

imaging system. It carries a computer that is used for post-processing and storing of 

acquired IVUS data. A cable from end of pullback device is connected to a designed port 

in computer for data transformation. During catheterization procedure, experts use 

keyboard and functional buttons to enter patient information, determine percentage of 

stenosis, and apply image processing and possibly tissue characterization techniques to 

better understand and evaluate atherosclerotic plaques.  

 

 

2.3.  IVUS Image Formation and Display 

Figure 2.6 displays a schematic of an artery, its anatomical structures, catheter and four 

distinct IVUS frames acquired with transducers with different center frequencies. As we 

Fig. 2.4. Catheter pullback apparatus. (Reference: http://img.medscape.com). 
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can observe, at higher center frequency spatial resolution is improved, at the cost of more 

scattering from red blood cells inside the lumen. It is worth mentioning that the axial and 

lateral resolutions depend on transducer center frequency and beam width, respectively.  

 

During acquisition, IVUS backscattered radiofrequency (RF) signals that are continuous-

time real-valued and band-limited signals, x t( ) , are digitized x nTs( ) = x n[ ] = xn  at 

periodic time intervals of Ts =
1
fs

 and stored in hard disk of a computer. The fs  is 

sampling rate of digitizing board that may vary from one system to another. For example, 

in Boston Scientific (Fremont, CA) GalaxyTM or iLab® imaging systems, the acquisition 

boards sample IVUS signals at the rate of fs = 400MHz  whereas the sampling rate for 

Volcano s5TM imaging system is fs = 200MHz . Once the IVUS backscattered signals are 

digitized, numbers of steps need to be taken in order to convert digitized signals into 

typical eyeball IVUS grayscale images. First, the envelope of signal in each acquisition 

Fig. 2.5. An IVUS scanner console (Volcano s5TM imaging system). 
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line is computed by corresponding analytical signal [50] followed by decimation and 

interpolation in axial and lateral directions, respectively. The Log compression is also 

used to enhance the image quality followed by quantization (ex. 8-bit).  

 

As it is depicted in Figure 2.6(a), the transducer has a spiral trajectory (yellow dashed 

line) while taking cross-sectional grayscale images with optional rate of 30 frames per 

second, which can be increased to 60 frames as well. This is due to the fact that the 

transducer rotates and at the same time is pulled back with speed of 0.5mm / sec  that 

provides IVUS frames of 16.7µm  thickness. Therefore, the original domain of 

acquisition is polar r,θ( )  and the resulting grayscale image should be transformed to 

x, y( )  Cartesian coordinates to construct a typical IVUS frame. Another advantage of 

IVUS is that a planar cut through stack of cross-sectional images provides longitudinal 

                (c)                                        (d)                                      (e)                                        (f) 
Fig. 2.6. Schematic of an artery, catheter, atherosclerotic plaque, and IVUS image cross-section (a) 
(Reference: http://www.bmj.com), cross-sectional anatomy of arterial wall (b), four distinct IVUS 
frames acquired with 20 MHz (c), 30 MHz (d), 40 MHz (e), and 45 MHz (f) transducers. Red and 
green borders represent vessel wall and lumen borders, respectively. The yellow dashed line depicts 
trajectory of transducer scan lines.  
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appearance of an artery. Therefore, interventional cardiologist can assess the length of the 

artery and distribution of atherosclerotic plaques within pullback direction. Figure 2.7 

illustrates an IVUS grayscale image in polar and Cartesian representations along with an 

example of longitudinal mode.   

 

2.3.1.  Appearance of Atherosclerotic Tissues, Vessel Wall, and 

Lumen Borders in IVUS Images 

Based on pathohistologicalological study of dissected coronary arteries from autopsied or 

transplanted hearts, there are four types of tissues associated with atherosclerotic plaques: 

Fig. 2.7. An IVUS grayscale image in polar r,θ( ) (a) and x, y( )  Cartesian (b) domains along with 
longitudinal display (c) along an arbitrary planar cut (yellow line).    
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fibrotic, lipidic, calcified, and necrotic core. However, the interpretation of histology 

images can often vary among experts yielding a subjective process. As a result, one may 

differentiate between the levels of presence of fatty materials and add fibro-lipidic to 

compromise between fibrotic and lipidic or another may differentiate between early and 

old necrotic cores. Figure 2.8 demonstrates an IVUS grayscale image acquired in vitro, 

corresponding Movat-Pentachrome histology image with manually traced tissues, 

constructed tissue color map, and imposed tissue color map on original IVUS grayscale 

image.  

 

2.3.1.1.  Calcified Tissue 

This is the easiest identifiable tissue in atherosclerotic plaque since it is hyperechoic and 

appears even brighter than adventitia. Calcified tissues can come out as small nodules so 

called micro-calcification or in an arc outline, Figure 2.8(a) from 7-9 o’clock. The arc of 

calcified plaque is often so dense and obstructs ultrasound signal penetration, resulting 

acoustic shadowing.  

 

               (a)                                     (b)                                      (c)                                         (d) 
Fig. 2.8. An IVUS grayscale image acquired in vitro (a), corresponding Movat-Pentachrome histology 
image with manually traced tissues (b), constructed tissue color map (c), and imposed tissue color map 
on original IVUS grayscale image (d). Yellow, magenta, white, and cyan colors represent fibrotic, 
lipidic, calcified and necrotic core tissues, respectively. 
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2.3.1.2.  Lipidic and Fibrotic Tissues 

Majority of atherosclerotic lesion consists of fatty materials such as lipidic and fibrotic 

tissues. Fibrotic tissues are dense, hyperechoic, and appear relatively bright so sometimes 

they are misclassified as calcified tissues. On the other hand lipidic tissues are softer, less 

echogenic, and appear relatively darker. As a role of thumb, the more fatty material a 

tissue contains, the softer it becomes, and the less echogenic it comes out. The lipidic 

tissue is the most frequent tissue in atherosclerotic plaques. Differentiation between 

fibrotic and lipidic tissues is known to be very challenging in the field [51,52]. Reduced 

echogenicity may also be due to presence of thrombus, intramural hemorrhage, and 

necrotic core.  

 

2.3.1.3.  Necrotic Core Tissue 

It is a rare and the most complex detectable tissue found in atherosclerotic plaques based 

on pathohistological studies. Generally speaking, it refers to dead tissues. Appearance of 

this tissue in IVUS images has not been confirmed to date. It may appear as dark or low 

intensity regions that could be correlated with old and early necrotic core, respectively. 

Hence, it is the most challenging detectable tissues in atherosclerotic plaques.  

 

2.3.1.4.  Lumen and Vessel Wall Borders 

During catheterization procedure, two borders are required to be traced in order to 

evaluate the degree of stenosis and measure the luminal area in which blood flows. The 

lumen border is a border at the innermost surface of atherosclerotic plaque and appears 

relatively darker in comparison with plaque (intimal disease) depends on time gain 
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compensation (TGC) setup, type of transducer, and particularly its center frequency. 

Since signals are progressively weakened with depth, the TGC buttons have been 

assigned on IVUS console to compensate for attenuated signals at certain depths, Figure 

2.9. The vessel wall border, also recognized as external elastic membrane (EEM) border, 

is a contour, which is drawn on media, which is located between intima and adventitia 

and made of smooth muscle cells. The media does not reflect ultrasound signal and 

appears as dark regions. Adventitia is the outer layer of an artery contains sheets of that 

are hyperechogenic and appears as bright regions. Figure 2.10 demonstrates these 

(a) (b) 
Fig. 2.9. An IVUS grayscale image without (a) and with (b) TGC adjustment.  

                     (a)                                                 (b)                                                         (c) 
Fig. 2.10. An IVUS grayscale image with manually traced vessel wall (green) and lumen (red) borders 
(a), zoomed in region with anatomical structures of the artery such as lumen, intima (I) or plaque, 
media (M) and adventitia (A) (b), histology image of artery anatomical structures (c).   
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borders and corresponding anatomical structures in an IVUS grayscale image and a 

histology image.  

 

2.3.2.  IVUS Image Artifacts 

There are five artifacts associated with IVUS images: guide wire, ring-down, non-

uniform rotational distortion (NURD), reverberation, and discontinuity at 0o in Cartesian 

domain. When a guide wire rail is design along with plastic sheath of a catheter, Figure 

2.2(B), it obstructs ultrasound signals, resulting shadowing behind the guide wire, Figure 

2.11(a). The second artifact is repetitive reflection of ultrasound signals from surface of 

transducer because of impedance mismatch, Figure 2.11(b). The NURD artifact is due to 

mechanical glitch in driving shaft or binding of catheter in arteries curvatures, Figure 

2.11(d). The fourth artifact, known as reverberation, is oscillation of ultrasound signals 

between transducer and arc of calcified plaques, which causes repetitive appearance of 

calcified arcs, Figure 2.11(c). The last artifact is discontinuity at 0o in Cartesian domain 

due to abrupt change in tissues textures due to spiral trajectory of transducer as well as 

severe catheter or heart motions, Figure 2.11(a).  

                (a)                                       (b)                                      (c)                                       (d) 
Fig. 2.11. IVUS image artifacts. Guide wire artifact (a), discontinuity artifact at 0o (a), Ring-down 
artifact (b,c), reverberation artifact (c), NURD artifact (d). 
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3.  Chapter Three: 

EXISTING ATHEROSCLEROTIC PLAQUE 

CHARACTERIZATION ALGORITHMS 

3.1.  Introduction 

In Chapter one, we described the importance of detection of vulnerable plaques and 

treatment of them selectively before they rupture in order to prevent mortality and 

morbidity [53]. For this reason, atherosclerotic tissue characterization and detection of 

vulnerable plaques has been of extensive interest among researchers in the field. In 

Chapter two, we concluded that the IVUS has been the most favored and clinically 

approved imaging modality since it is relatively inexpensive and provides adequate 

spatial resolution along with sufficient penetration while other comparable imaging 

techniques, such as NIR and OCT with excellent resolution, lack adequate penetration.  

 

Atherosclerotic plaque characterization refers to computer-assisted methods of analyzing 

IVUS RF signals or images and identifying the component tissue types. The ultimate goal 

is to deliver information beyond what is possible from a visual reading of unprocessed 

images or “eyeballing.” As applied to IVUS imaging, tissue characterization methods 

have the potential to refine the evaluation of the atherosclerotic process and detect 

rupture-prone plaques. It has been shown that the ultrasound RF signals provide 

quantitative information on tissue microstructures [54-57]. Consequently, several groups 

have developed IVUS-based atherosclerotic tissue characterization and vulnerable plaque 
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detection techniques using spectral analysis as an alternative approach to image-based 

methods.  

 

In this chapter, we review data acquisition as well as staining methodologies and existing 

IVUS-based atherosclerotic plaque characterization techniques in the context of 

pathohistological atherosclerotic studies.  

 

3.2.  IVUS Data Collection Specification 

3.2.1.  In Vivo Acquisition 

Generally, an IVUS catheter is advanced into LAD or RCA and possibly in some side 

branches on a guide wire coming out of a guiding catheter inserted in the femoral artery, 

Figure 3.1. Acquisition of cross-sectional ultrasound images of right coronary arteries 

(RCA), left anterior descending (LAD), and left circumflex (LCX) coronary arteries can 

be performed with rotating single-element or phased array transducers. The catheter 

pullback speed varies between 0.5-1 mm/sec and the frame rate can be set to 30 or 60 

frames/sec. The IVUS RF data and images are acquired as described in Section 2.3.  

                          (a)                                                     (b)                                                      (c) 
Fig. 3.1. The heart and coronary arteries. Illustration of advanced schematic catheter (red) into LAD (a) 
LCX (b) and RCA (c). 
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3.2.2.  In Vitro Acquisition and Histology Preparation 

Sine the overall justification of in vivo real-time plaque characterization is made by 

interventional cardiologists through use of classified tissues, for supervised classification 

approaches, it is indispensable to train the classifier with the most reliable features. In 

order to collect a training dataset, the regions of interest (ROIs) on the arteries are marked 

and relative cross-sectional histology images obtained. The IVUS-histology frame 

alignment plays a crucial role because the IVUS frames are labeled through the 

interpretation of the corresponding histology images. Subsequently, the signals are 

assigned to labeled tissues and desirable features are extracted. The IVUS-histology 

matching problem becomes more challenging due to the: 1) curvature of arteries, 

especially in the LCX, 2) registration between an IVUS image and its histology since the 

IVUS imaging plane and the slicing plane of microtome are somewhat different, 3) the 

thickness differences in histology slides that is 5µ  that is far less than IVUS frames of 

about 200µ , and 4) shrinkage of the arteries after formalin fixation. Here, we describe 

two methodologies to prepare specimen and obtain the most precise one-to-one matched 

IVUS-histology cross-sections.  

 

 

3.2.2.1.  Local Marking of ROIs 

In this methodology, as we proposed in [58], the arteries are not dissected as the whole 

heart is examined. Electrocauterization of small distal arteries is performed when 

necessary to avoid any leakage. A cannula is fixed in the ostium of the left main coronary 

artery and a circulating system consisting of phosphate buffered saline (PBS) is used to 
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ensure a constant pressure (100 mmHg) and flow in order to maintain arteries 

physiologically opened at 37° Celsius. The IVUS catheter is introduced and advanced on 

a 0.014” guide wire and manual pullback is performed to search for sites of significant 

plaques. One of the main challenges in this method is to mark ROIs as precisely as 

possible to get the best match of IVUS-histology cross-sections. In order to do so, a 

fluoroscopic X-ray system is deployed to visualize the tip of the IVUS catheter. After 

stabilizing of catheter at the site of interest, two needles were implanted under 

fluoroscopic guidance into surrounding fat so that they crossed above the tip of the IVUS 

catheter. Thereafter, a third needle is passed through the crossing point to mark it by a 

suture, Figure 3.2. The first two needles are then removed. This procedure is repeated for 

3-5 different ROIs per artery and the corresponding RF signals are acquired as described 

in Section 2.3 while complete automatic pullback is taken. Sutures are used to locate the 

ROIs for slicing and histology processing.  

 

Histology Preparation and Staining 

The whole heart is fixed by cannulating coronary arteries to recirculate 10% buffered 

formaldehyde under 100 mmHg pressure for three hours. In the next step, the arteries are 

prepared for staining after decalcification. Blocks of 2-3 mm are cut from distal locations 

                 (a)                                       (b)                                       (c)                                      (d) 
Fig. 3.2. Marking ROIs on LAD of a transplant heart; Two needles (pointed with white arrows) are 
placed into surrounding fat (a) at the tip of the IVUS catheter visualized under fluoroscopic guidance 
(b). The third needle is passed through the crossed point and a suture is done to mark the ROI (c). The 
first two needles are removed and the procedure is repeated for each ROI (d).  
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of the sutures. The proximal end is marked with ink. Histology slices are taken from 

distal to proximal after arteries are decalcified and embedded in paraffin. In this 

methodology, for each block, three serial sections are taken at 500 µm intervals, which 

correspond to 30 frames in IVUS acquisition, Figure 3.3. The first two sections are 

stained with hematoxylin and eosin (H&E) and Movat Pentachrome, and the last section 

could be kept unstained for future additional staining (e.g., Sirius Red). Figure 3.3(a) 

shows a marked ROI with needle and a side branch as well as corresponding histology 

image. Taking a complete automatic pullback (or a short pullback along each ROI) and 

sectioning three slices at intervals of 500 µm allows to find the best possible match 

between ROI’s cross sections and corresponding histology images. Besides reflection of 

the needle, natural markers such as side branches and small calcified inclusions could be 

used to improve the IVUS-histology frames correlation accuracy.  

                          (a)                                                  (b)                                                (c)      
Fig. 3.3. Taking three sections at each ROI with 500 micrometer intervals, which corresponds to 30 
frames. Marked ROI with reflection of the needle (white arrow) and side branch (*) with corresponding 
histology (a). Two IVUS frames with 500 micrometer intervals and corresponding histology sections 
(b,c). 
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3.2.2.2.  Systematic Marking of ROIs 

In this methodology, the arteries are dissected from heart, placed in tissue cage fixture, 

Figure 3.4(a), and attached to a circulating fluid flow system, Figure 3.4(b).  Average 

length of the arterial segments attached to the fluid system could be 50mm.  The arterial 

segments are perfused with saline at body temperature (37oC) with pulsatile flow (60 

bpm, 135mL/min) at physiologic pressure (80-120 mmHg). Then, an IVUS catheter is 

advanced on a 0.014” guide wire and a complete automatic pullback is performed from 

the distal to the proximal side. The same procedure is repeated using human blood.  Prior 

to the experiment, the blood is agitated by hand for approximately one minute to mix and 

then stirred at low speed with a magnetic stir bar using a hot/stir plate until the 

experiments begun. The RF data is collected as described in Section 2.3. 

 

Histology Preparation and Staining 

After imaging, the arteries are pressure fixed with 10% buffered formaldehyde followed 

by decalcification. The histology blocks are prepared every 2mm (corresponding to 120 

                                    (a)                                                                                 (b) 
Fig. 3.4. Tissue cage fixture (a), in vitro experiment set-up (b). (Courtesy of Jennifer Lisauskas at InfrareDx 
(Burlington, MA)). 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frames of the IVUS pullback) using the sidebars. All blocks are embedded in paraffin and 

sectioned for histological staining. Two 5µm thick histologic cross sections are stained 

with H&E and Russell-Movat Pentachrome. The transplant arteries included a third 

histologic cross-section, which remained unstained for subsequent staining (e.g., Sirius 

Red). 

 

This methodology has two main advantages. First, the orientation of artery is not changed 

throughout the whole procedure. Therefore, more reliable IVUS-histology pairs could be 

obtained and the number of cross sections of interest (CSIs) per vessel is significantly 

increased (average of 25 regions) compared to the traditional methods (3-5 regions). 

Secondly, it allows us to investigate the effect of flowing that is expected to introduce 

signal changes (i.e. attenuation) and may alter classification results. 

 

3.2.3.  Cardiovascular Histopathology  

Hematoxylin and eosin are among the most commonly used stains in histopathology. 

Hematoxylin turns nuclei blue; eosin turns the cytoplasm (mostly composed of proteins 

arginine and lysine) pink. Another stain, the Russell-Movat pentachrome, colors 

cytoplasm in red, elastic fibers in black, collagen and reticulum fibers in yellow to 

greenish and proteoglycans in blue. Clear areas might represent water, carbohydrate, 

lipid, gas or decalcified areas. Sirius red, on the other hand, has been used exclusively for 

collagen staining in cardiovascular histopathology. Collagen fibers are stained red and 

can be distinguished morphologically from other tissue components in the plaque.  



 

 

44 

 
 

3.3.  RF- and Spectrum-Based Plaque Characterization 

Algorithms 

Post-processing of the backscattered RF IVUS signal has been developed in order to 

better characterize plaque composition. The basic tenet of ultrasound tissue 

characterization is that different tissue types imprint their distinctive “signatures” on the 

backscattered echo received by transducer. Hence, spectral analysis of the ultrasound RF 

signals has been extensively studied and employed in different applications [59-62]. This 

is because the tissues of interest generate signals that are stochastic (i.e. their internal 

constituents exhibit randomness in size, position, orientation, etc.) and the spectra 

represent the ensemble properties of the scatterers. If the spatial autocorrelation function 

describing these factors has a known form, then the theoretical scattering models can be 

Fig. 3.5. Dissimilarity among four tissue spectra, calcium, necrotic core, fibrofatty, and fibrotic 
measured in sample size of 64 collected from one cross section of interest (CSI). 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used with spectral data to estimate two physical scatterer properties: the effective sizes of 

constituent scatterers and their “acoustic concentration” [61,63]. It is a statistically 

observable fact that on averaging a large number of spectra obtained from homogenous 

areas of tissue in carefully controlled in vitro experiments, different types of tissue give 

rise to recognizably different spectra, Figure 3.5. In most recent methods of tissue 

characterization, the spectrum is characterized using a few values (e.g., seven parameters 

in [64]) to capture its basic attribute.  

 

3.3.1.  IVUS-Virtual Histology (IVUS-VH) 

In 1983, Lizzi et al. presented a sliding-window analysis method to identify tumors in the 

eye and liver by using two spectral signatures extracted from calibrated tissue spectra 

[65]. Those parameters were the slope of the regression line fitted to the mid-band 

portion of calibrated spectrum and intercept of that regression line at zero frequency. 

They demonstrated that the slope and intercept are indicative of the scatterer size and 

concentration. Authors in [64] extended Lizzi’s approach and introduced the first 

commercially available IVUS-based atherosclerotic tissue characterization algorithm 

known as virtual histology (VH). This methodology has now been implemented in the 

Volcano (Rancho Cordova, CA) IVUS clinical scanners that offer near real-time tissue 

characterization in vivo using 64-elements 20MHz phased-array transducer. 

 

This approach is based on seven spectral parameters (intercept, slope, mid-band-fit 

(MBF), and minimum and maximum powers and their corresponding frequencies) 

extracted from tissue spectra, which were normalized through the spectrum of a Plexiglas 
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reflector. The normalization is necessary in order to eliminate transducer impulse 

response prior to feature extraction. Basically, a short ultrasonic pulse is transmitted 

toward perfect reflector and the spectrum of the reflected signal is considered as an 

estimate of the transducer frequency response. This is not a feasible approach for clinical 

real-time plaque characterization but has been performed for in vitro experiments. The 

same group deployed blind deconvolution to prevail this problem [66].  They also added 

integrated backscatter (IB) coefficient as an additional feature [67] and later showed that 

autoregressive (AR) models were superior to the Fourier technique [68].  

Fig. 3.6. Linear regression fit to normalized tissue’s spectrum and extracted features; intercept, slope, 
mid-band-fit (MBF), and minimum and maximum powers and their corresponding frequencies. Slopes 
(decibels per megahertz) of regression line and integrated backscatter coefficient have not been shown. 
The corresponding IVUS data has been collected with 40 MHz unfocused transducer.  
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Figure 3.6 demonstrates an arbitrary tissue spectrum, averaged Plexiglas spectrum fitted 

with Gaussian model, normalized spectrum, and extracted features through linear 

regression fit. Finally, they employed classification tree to differentiate plaque 

compositions. Figure 3.7 shows an IVUS cross-section of interest (CSI), corresponding 

histology image, and VH result. The accuracy of the IVUS-VH technique using AR 

                 (a)                                      (b)                                     (c)                                       (d) 
Fig. 3.7. [64] Original IVUS grayscale image acquired in vitro (a), histological validation showing a 
fibroatheroma with a thick fibrotic cap (b), pathologist’s pencil sketch showing the four major tissue 
types present in the lesion using the IVUS-VH color-coded classification: dark green codes for fibrotic 
tissue; light green, fibrofatty tissue; red, necrotic core. Micro-calcifications are here marked with small 
dark points (c), IVUS-VH coding with calcium here coded in white (d).  
 

Fig. 3.8. IVUS-VH in vivo results. Four IVUS grayscale images (top row) acquired with 20 MHz 64-
elements phased array transducer from distal (left) to proximal (right) and their corresponding VH 
results (bottom row). Dark green, light green, white, and red represent fibrotic, fibrofatty, calcified, and  
necrotic core, respectively. 
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analysis in combination with classification tree for IVUS data acquired with 30 MHz 

single element transducers has been reported as 90.4%, 92.8%, 90.9% and 89.5% in 

training dataset and 79.7%, 81.2%, 92.8% and 85.5% in the test dataset for fibrotic, 

fibrofatty, calcified and calcified necrotic regions, respectively. Figure 3.8 illustrates four 

grayscale IVUS images acquired in vivo with 20 MHz phased array transducer and 

corresponding VH results. The dark green, light green, red, white, and gray represent 

fibrotic, fibrofatty, necrotic core, calcium, and media, respectively. 

 

3.3.2.  IVUS-Integrated Backscatter (IVUS-IB) 

Kawasaki et al. introduced an alternative tissue classification scheme based solely on 

another RF-derived parameter: the integrated backscatter (IB). In this approach, RF 

signals are windowed and the IB value is computed in frequency domain as follows: 

                                     IB =
1

fBWmax − fBWmin

PSD f( )df
fBWmin

fBW max∫ 3.1( )  

where PSD is estimated power spectral density and fBWmin
and fBWmax

 are the minimum and 

maximum frequency in the specified bandwidth, respectively. This system is presently 

distributed only in Japan (YD Co. Ltd, Tokyo) and uses the IVUS catheter from Boston 

Scientific (Fremont, CA) based on a 40MHz single rotating crystal [69,70]. Color-coded 

maps of plaques are constructed by use of these IB data, which reflects the plaque 

histology of autopsied coronary arteries. IVUS-IB values have been divided into five 

categories to construct color-coded maps: thrombus, intimal hyperplasia or lipid core, 

fibrous tissue, mixed lesions, and calcification, Figure 3.9.  
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Comparisons of IVUS-IB with histopathology demonstrated a high sensitivity for 

characterizing calcification, fibrosis, and lipid pool (100%, 94%, and 84%, respectively) 

and a high specificity (99%, 84%, and 97%, respectively). The tissue IB values were 

calibrated by subtracting the IB values from the IB value of stainless steel placed at a 

Fig. 3.9. [69] Color-coded maps of coronary arterial plaques constructed by IB-IVUS and histology, 
coronary angiography, or angioscopy. A, Autopsy study of coronary arterial plaque. A1, Histological 
finding with fibrosis, mixed lesion, calcification, and large (right) and small (left) lipid cores (*) stained 
with Masson’s trichrome. Bar=1 mm. A2, Conventional IVUS image of same segment as A1. A3, Color-
coded map of intima of A1 constructed by IB-IVUS. B, In vivo study of coronary arterial plaque. B1, 
Angiography of left coronary artery. Arrow indicates a segment with 60% diameter stenosis. B2, 
Conventional IVUS image of same segment as shown by arrow in B1. B3, Color-coded map of intima of 
B1 constructed by IB-IVUS. B4, Angioscopic finding of plaque at right in B3. Note that white plaque is 
related to fibrous tissue. C, In vivo study of coronary arterial plaque. C1, Angiography of right coronary 
artery. Arrow indicates a segment with 40% diameter stenosis. C2, Conventional IVUS image of same 
segment as shown by arrow in C1. C3, Colorcoded map of intima in C1 constructed by IB-IVUS. Note 
large lipid core (*) with fibrous cap (arrowhead). C4, Angioscopic finding of plaque at top in C3. Note 
that yellow plaque is related to thin fibrous cap. Red and yellow contours represent traced lumen and 
vessel wall borders, respectively. 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distance of 1.5 mm from the catheter. In the ex vivo studies, each site of each tissue 

characteristic was placed at a distance of ~1.5 mm from the catheter. They further 

validated their IVUS-IB in vivo results with corresponding angioscopy images. The same 

group recently compared and reported the overall agreement between IVUS-IB and 

IVUS-VH in the tissue characterization of plaques from the same coronary arterial cross-

sections and quantified their results with corresponding histopathological images [71], 

Figure 3.10. 

 

 

Fig. 3.10. [71] Comparison between IVUS-IB results with corresponding IVUS-VH. Histological 
image (Masson’s trichrome staining) (top row). * depicts lipid pool region, corresponding color-coded 
maps constructed by the IVUS-IB technique (middle row), red, yellow, green and blue colors represent 
calcification, dense fibrosis, fibrosis and lipid pool, respectively.  Corresponding IVUS-VH images 
(bottom row). 
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3.3.3.  IVUS Elastography (IVE) 

The principle of elastography is to study the response of tissue to mechanical excitation 

(e.g. compression). Several groups have deployed elasticity imaging in order to assess the 

local mechanical properties of atherosclerotic plaque or vessel wall using different 

techniques such as envelope based elastography [38], spectral-based strain imaging [39], 

phase sensitive speckle tracking [40], and cross-correlation based technique between RF 

signals in consecutive frames [41]. De Korte et al. [41] computed the relative local 

displacements between IVUS images acquired at two different levels of intravascular 

pressure with a 30 MHz single element mechanically rotating transducer. These 

displacements were estimated from the time shift between gated radiofrequency echo 

signals using cross-correlation algorithms with interpolation around the peak. Then, the 

strain information was presented in an independent complimentary two-dimensional 

image of the strain called elastogram. Authors demonstrated the feasibility of this 

technique for intravascular purposes using phantom studies and studies on human arteries 

both in vitro and in vivo. The results were further validated with conventional IVUS 

images, corresponding histology images, and compression modulus values. Figure 3.11 

illustrates two in vitro IVUS grayscale images, resulting elastogram, and corresponding 

histopathological images. The results demonstrate the capability of intravascular 

elastography to characterize different plaque types and classify tissues based on their 

mean strain values to fibrous, fibro-fatty and fatty. Additional IVE validation has been 

reported by authors in [42] that employed the Lagrangian speckle model estimator 

(LSME) along with the scaling factor estimator (SFE) to compute the radial strain 

elastograms.  
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3.4.  Texture-Based Tissue Characterization and Vulnerable 

Plaque Detection Algorithms 

IVUS findings have shown that the sonographic differences yielded the visual 

discrimination among plaque constituents [72,73]. In other words, variations of 

intensities are attributed to the repetitive tissue microstructure patterns. These have 

motivated researchers to develop texture-based algorithms on IVUS images to 

differentiate tissue types [74-76]. One of the main differences between texture-derived 

atherosclerotic plaque characterization algorithms with their spectrum-based counterparts 

is that no RF signal is needed. This can be advantageous since usually RF signals are not 

accessible. On the other hand, the appearance of images may vary depends on selected 

Fig. 3.11. [41] Two in vitro IVUS grayscale images acquired at two different levels of pressures (85 
mmHg and 90 mmHg) and resulting elastogram along with corresponding histopathological images, 
Picro-sirus red (a), Alpha-actin (b). The IVUS image reveals an eccentric plaque between 2 and 11 
o’clock. The elastogram shows that the plaque can be divided into two parts: a low-strain part (0.2%) 
between 4 and 11 o’clock and a high-strain part (1%) between 2 and 4 o’clock, both compared with the 
moderate strain (0.5%) in the normal vessel wall. The histology reveals that the region between 4 and 
11 o’clock is fibrous material and the region between 2 and 4 o’clock is fatty material. 
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parameters during acquisition (i.e. TGC), normalization, or reconstruction (i.e. non-linear 

transformation) that makes the problem of interest more challenging.  

 

3.4.1.  IVUS-Error Correcting Output Codes (IVUS-ECOC) 

Authors in [77] introduced a new technique to characterize intravascular ultrasound 

tissues based on different types of features, such as radial frequency, texture-based 

features, and combined features. They presented a Sub-class approach of error correcting 

output codes (ECOC) that splits the tissue classes into different sub-sets according to the 

applied base classifier. To deal with the classification of multiple tissues, the use of 

robust multiclass learning techniques is required. In this sense, ECOC shows to robustly 

combine binary classifiers to solve multi-class problems. Complex IVUS data sets 

containing overlapping data are solved by splitting the original set of classes into sub-

classes, and embedding the binary problems in a problem-dependent ECOC design.  

 

In the proposed technique, three types of features are employed.  The first ones obtained 

from RF signals by computing the energy of A-line and the energy of windowed 

spectrum. The second ones extracted based on texture-based features from reconstructed 

images including co occurrence Matrix [78], local binary patterns [79] and Gabor filters 

[80,81]. Additionally, taking into account that highly non-echogenic plaques produce 

significant shade in the radial direction of the vessel, a complementary feature that 

represents the presence of shading in the image, was included in the feature set. Finally, 

the slope-based features proposed in [64].   
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Authors used the RF signals and their reconstructed images from a set of 10 different 

Patients. To generate the data set on texture features, the intersection between segmented 

images has been mapped into a feature vector. Then, all collected features were 

categorized by patient and each of the three possible plaques types. The image features 

were extracted by using the previous texture descriptors: co-occurrence matrix, local 

binary patterns, and Gabor filters. Those features were calculated for each pixel and 

gathered in a feature vector of 68 dimensions. An example of a manual and automatic 

texture-based segmentation for the same sample is shown in Figure 3.12.  

 

To generate the data set of RF features, the RF signals were acquired with single element 

rotating 40 MHz Boston Scientific catheters using a 12-bit acquisition card with a 

sampling rate of 200 Mhz. To analyze the RF signals, the sliding window was composed 

Fig. 3.12. [77] Left: IVUS data set samples. Right: (top) segmentation by a physician and (down) 
Automatic classification with texture based features. The white area corresponds to calcium, the light 
gray area to fibrosis, and the dark gray area to soft plaque. 
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of 64 samples of depth and 12 radial A-lines, and the displacement was fixed in 16 

samples and four A-lines. The power spectrum of the window ranges from 0 to 100 m/s 

and it was sampled by 100 points. Then, it was complemented with two energy measures 

yielding a 102 feature vector. We also consider a third data set that concatenates the 

descriptors from the previous RF and texture based features, obtaining a feature vector of 

length 170 features. 

 

Authors compared their technique with the state of-the-art ECOC coding designs: one-

versus-one [82], one-versus-all [83], dense random [83], sparse random [84], and 

discriminant ECOC (DECOC) [85]. Three different base classifiers were applied over 

each ECOC configuration: nearest mean classifier (NMC) with the classification decision 

using the Euclidean distance between the mean of the classes, discrete AdaBoost with 40 

iterations of decision stumps [86], and Fisher linear discriminant analysis (FLDA). The 

method automatically characterizes different tissues, showing performance improvements 

over the state-of-the-art ECOC techniques for FLDA, Discrete AdaBoost, and NMC. In 

particular, the results show higher performance when using texture-based features 

compared with RF signals and slope-based features, and slights improvements when the 

sets of features are combined, Figure 3.13.  
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3.4.2.  IVUS-Image Based Histology (IVUS-IBH) 

Authors in [87] developed a technique for characterization of atherosclerotic plaques via 

textural processing of IVUS images. In this approach, similar to IVUS-PH (See Chapter 

4), the generated tissue color maps can be provided for every IVUS frames acquired 

Fig. 3.13. [77] Performance results for different sets of features, ECOC designs and base classifiers on 
the IVUS data set 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during pullback while in IVUS-VH methodology the VH images are generated for every 

other 30 frames due to ECG-gated protocol, Figure 3.14. This would resolve the poor 

longitudinal resolution in current IVUS-VH technique. What makes this approach 

different from existing technique is detection of acoustic shadowing behind arc of 

calcified plaques. These shadow regions which exist and displayed in the plaque area of 

some IVUS images appears as echo-soft; so, when treated within other parts of plaque 

area, although they are mostly Calcium and Necrotic Core tissues, normally should be 

classified to the lipid or Fibrofatty classes [88,89]. 

 

Acoustic shadow regions displayed in IVUS grayscale images cannot represent any 

useful information for plaque component analysis [90], however, IVUS-VH images 

classifies tissues behind arc of calcified regions in shadow areas. In proposed technique, 

Fig. 3.14. [87] Illustration of enhancement of the longitudinal resolution of atherosclerosis plaque 
composition characterization of grayscale IVUS using IVUS-IBH method compared to IVUS-VH. In 
IVUS-IBH approach, the tissue color maps are generated for every frame, similar to IVUS-PH 
algorithm 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“shadow regions” is detected through two thresholding steps; one thresholding procedure 

for detecting the high-intensity regions, and another one to identify the existence of the 

low intensity regions behind the regions detected in the previous step and mark them as 

”shadow region”. In order to characterize the rest of plaque regions, two feature 

extraction methods, local binary pattern (LBP) [79] and the run-length method [91] were 

combined. In-vivo and ex-vivo results were validated with corresponding IVUS-VH 

images as gold standard and the overall accuracy for all tissue types found to be 73%. 

Sensitivities (specificities) were reported 80% (86%) for dense calcium, 80% (92%) for 

fibro-fatty tissues and 60% (81%) for necrotic core. Figure 3.15 shows an in vivo 

acquired IVUS frame and generated tissue color map through IBH approach along with 

corresponding VH image for comparison. 

 

3.4.3.  IVUS-Vasa Vasorum (IVUS-VV) Imaging 

The vasa vasorum (VV) are microvessels that nourish vessel walls and possibly 

atherosclerotic plaques Figure 3.16. It has been shown that the rich capillary networks of 

                     (a)                                                        (b)                                                        (c) 
Fig. 3.15. [87] An in vivo acquired IVUS grayscale image (a), corresponding VH image (b), generated 
tissue color map through IVUS-IBH approach (c). The red, white, green, and blue colors represent 
necrotic core, calcified, fibro-fatty, and acoustic shadowing regions, respectively.  
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VVs are correlated with vessel wall inflammation and plaque vulnerability [92,93]. 

Therefore, detection of such neovascularizations is of importance because any disruption 

in plaque nourishment may lead to regression of atherosclerosis disease. For this reason, 

Fig. 3.17. [94] A grayscale IVUS frame before contrast agent injection (a), enhanced frame before (b) 
and after thresholding (c), zoomed area (d) corresponding to white rectangle in (a), imposed colored 
VVs (e).   

                                                     (a)                                                                      (b) 
Fig. 3.16. Schematic of different VV formations in coronary artery (a), Visualization of VV and 
neovascularization of atherosclerotic coronary arteries by cinematography of silicone injection in 
cleared human hearts [95] (b).  
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authors in [94] deployed IVUS technology to visualize proliferation of VV 

neovascularizations for the first time. Their framework relied on two steps: 1) injection of 

contrast agent (OptisonTM) to increase echogenity of VVs, 2) registration among collected 

IVUS frames before and after injections for elimination of vessel and catheter 

movements, 3) enhancement detection through difference-imaging and statistical 

techniques. Figure 3.17 demonstrates a grayscale IVUS frame prior to injection of 

contrast agent and resulting enhanced image before and after thresholding that show 

presence of VVs.  

 

 

3.5.  Summary and Conclusion 

The numbers of developed IVUS-based frameworks and conducted researches signify the 

capability of this imaging modality and the importance of better understanding of 

atherosclerosis disease. It is reasonable to conclude that the ultimate goal of any tissue 

characterization is the algorithmic detection of all tissue compositions, especially 

vulnerable plaques, which are ultimately identified by an expert that assesses the 

classified tissue color maps. In the concept of atherosclerotic plaque characterization, all 

described methods have their own advantages, however, in their clinical applications, 

they have been only partially successful due to various reasons including: 

- Stringent characteristics of atherosclerotic tissues.  

- Variations among extracted tissues features.  

- Intrinsic variability among transducer spectral parameters (i.e. center frequency, 

bandwidth). 
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- Lack of precise, sufficient, and comprehensive matched IVUS-histology datasets 

(ground truth). 

- Extension of in vitro trained classifiers for in vivo applications without proper 

validation.  

 

In the next chapter, we consider the realistic challenges from data collection and 

normalization toward classification. We investigate the possibility of extension of VH 

algorithm using 40MHz single element transducer.   
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4.  Chapter Four: 

CHALLENGES IN ATHEROSCLEROTIC PLAQUE 

CHARACTERIZATION ALGORITHMS WITH IVUS 

 

In vivo plaque characterization is an important research field in interventional cardiology. 

We will study the realistic challenges to this goal by deploying 40 MHz single-element, 

mechanically rotating transducers. In this chapter, the intrinsic variability among the 

transducers spectral parameters as well as tissue signals will be demonstrated. 

Subsequently, we will show that global data normalization is not suited for data 

calibration, due to the aforementioned variations as well as the stringent characteristics of 

spectral features. We will describe the sensitivity of an existing feature extraction 

algorithm based on eight spectral signatures (integrated backscatter coefficient, slope, 

midband-fit (MBF), intercept, and maximum and minimum powers and their relative 

frequencies) to a number of factors, such as the window size and order of AR model. It 

will be further demonstrated that the variations in the transducer’s spectral parameters 

(i.e., center frequency and bandwidth) cause inconsistencies among extracted features. In 

this chapter, two fundamental questions are addressed: 1) what is the best reliable way to 

extract the most informative features? and 2) which classification algorithm is the most 

appropriate for this problem? We will present a full-spectrum analysis as an alternative 

to the eight-feature approach. For the first time, different classification algorithms, such 

as k-nearest neighbors (k-NN) and linear Fisher, will be employed and their performances 

quantified. Finally, we will explore the reliability of the training dataset and the 
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complexity of the recognition algorithm and illustrate that these two aspects can highly 

impact the accuracy of the end result, which has not been considered until now. 

 

 

4.1.  Introduction 

In [64], the authors presented a spectrum-based technique on the IVUS signals and 

employed classification tree to differentiate plaque compositions using 30-MHz, 

unfocused, mechanically rotating transducers. This approach was based on seven spectral 

parameters (intercept, slope, midband-fit (MBF), and minimum and maximum powers 

and their corresponding frequencies) extracted from tissue spectra, which were 

normalized through the spectrum of a Plexiglas reflector. The same group used the IB 

coefficient as an additional feature and showed that AR models are superior to the 

Fourier technique [68]. The first two signatures (intercept, slope) were initially 

introduced by Lizzi et al. [65] and extracted through linear regression fit to the calibrated 

tissue power spectrum. They further quantified their results through analytical tissue 

models for eye and liver separately [61]. They demonstrated that the slope and intercept 

are indicative of the scatterer size and concentration. Although the same spectral features 

were used for both experiments, their interpretations, weights, and variations were 

studied independently in two distinct databases of examined organs. In addition to the 

slope and intercept, the IB coefficient has been shown to impart tissue characteristics 

[70]. The premises of tissue characterization rely upon the principle that any change in 

the spectrum can reflect tissue attributes. However, due to the: 1) ambiguity in source of 

perturbation; 2) variations in the transducer spectral parameters (center frequency, 
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bandwidth); and 3) stringent behavior of closely related tissues (i.e., fibrotic–fibrolipidic 

or calcified-necrotic core), a reliable feature extraction algorithm, along with a robust 

classifier, is required. 

 

For the rest of this chapter, we discuss the realistic challenges from preparation of 

specimens toward classification and review the eight-feature extraction algorithm along 

with its difficulties supported with experimental results. We describe the complexity of 

classification algorithm along with full-spectrum analysis. All data was collected in vitro 

as described in Section 3.2.2.2.  

 

 

4.2.  Methodological Challenges 

4.2.1.  Variability of Tissue Signatures 

The basic tenet of ultrasound tissue characterization is that different tissue types imprint 

their signatures on the backscattered echo received by the transducer. It has been shown 

that the spectral analysis of ultrasound signals would provide informative features for 

tissue characterization [61,63]. This is because the tissues of interest generate signals that 

are stochastic (their internal constituents exhibit randomness in size, position, orientation, 

etc.) and the spectra represent the ensemble properties of the scatterers. If the spatial 

autocorrelation function describing these factors has a known form, then the theoretical 

scattering models can be used with spectral data to estimate two physical scatterer 

properties: the effective sizes of constituent scatterers and their acoustic concentration. 
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It is a statistically observable fact that on averaging a large number of spectra obtained 

from homogenous areas of tissue in carefully controlled in vitro experiments, different 

types of tissue give rise to recognizably different spectra, Figure 3.5. The principal 

challenge in building a tissue characterization system is to develop a proper definition for 

tissue signatures that maintains their similarity within each tissue type and distinction 

between tissue types. This is indeed a challenge since the tissue signatures corresponding 

to a single tissue type can, in general, be shown to vary across different cross-sectional 

slices even within the same vessel. This is illustrated in Figure 4.1, which shows 

summary statistics of normalized spectra corresponding to two tissue types: lipidic and 

fibrotic. The normalized spectrum at a point on the IVUS image is computed as follows: 

a small segment (typically 250 µm) of the digitized RF signal corresponding to that point 

Fig. 4.1. Normalized spectra of two types of plaque tissues found in one particular frame of data. The 
bars represent the interquartile range of variation. The unfilled bars represent lipidic tissue and the filled 
bars, fibrotic tissue. For meaningful comparison, each sample spectrum has been normalized to have 
unit energy. The N referes to the number of spectra used to compute the statistics. 
 



 

 

66 

is identified. The windowed Fourier transform of that signal segment is then computed 

and normalized by scaling so that the total sum of squares is unity. A normalization step 

is necessary in order to compare the shapes of spectra that might differ significantly in 

total energy. The bars in Figure 4.1 were constructed by computing the statistical 

measures of a number of spectra for each tissue type separately. From the graph, it 

appears that these two tissue types might be recognizable—albeit with some errors-–on 

the basis of their normalized spectra. It is also clear that increased errors in 

characterization would be incurred if any single frequency component were used for 

characterization. A formal pattern recognition algorithm that uses all the spectral 

information available must be used to achieve the maximum possible accuracy based on 

the available data. 

 

The source of such variations can be related to: 1) image formation, such as small 

changes in the angle of incidence of the ultrasound beam or variations in the geometric 

configuration of scatterers; 2) genuine changes in physical characteristics within the 

particular tissue type; 3) and variation in transducer properties that confound the recovery 

of tissue type from tissue signatures. The variability in normalized spectrum across four 

frames of RF signals acquired from two randomly selected cadaver hearts in Figure 4.2. 

The overlapping spectra visually confirm the difficulty that is involved in characterizing 

these two tissue types on the basis of their spectral signatures. For example, at 20 MHz, 

for the third frame analyzed (see filled bar), lipidic tissue seems to be well separated from 

fibrotic tissue. However, if a classifier were built taking into account the 20 MHz 

components of the spectra derived from this frame alone, it would be impossible to 
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discriminate between lipidic and fibrotic tissue in another frame (see unfilled bar). In 

addition to the aforementioned factors, imaging of the plaque through blood, which is 

difficult to simulate in vitro, can be expected to introduce signal changes, e.g., 

attenuation. Furthermorre, tissue fixation might alter the acoustic and structural properties 

of the tissues. A tissue characterization algorithm developed using in vitro data will work 

on in vivo data to the extent that the tissue signatures remain similar. As long as the 

differences found in the tissue signatures between the in vitro and in vivo imaging 

situations are consistent, it may still be possible to empirically retune an in vitro–trained 

algorithm and have it perform well in vivo. However, not much is known about the nature 

of these differences, so they need to be further studied and validated. 

 

Once a database of signatures and the corresponding known tissue types has been built, a 

pattern recognition algorithm is trained that will take in a signature as the input, carry out 

Fig. 4.2. Normalized spectra of two distinct types of plaque tissue found in four cross-sections of data 
from two cadaver hearts. As before, the bars represent the interquartile range of variation. The unfilled 
bars represent lipidic tissue and the filled bars, fibrotic tissue. 
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the computations, and arrive at the most likely estimate of tissue type. This method has 

been established [64,96,97] albeit within limitations due to the variability of tissue 

signatures. 

 

4.2.2.  Ground Truth 

The overall justification of in vivo real-time plaque characterization is made by 

interventional cardiologists through the use of classified tissues, therefore, it is 

indispensable to train the classifier with the most reliable features. In this research, the 

labeling of IVUS images and validation of color map (classified) tissues are compared 

with corresponding histology images. Although the histology image is the gold standard, 

its interpretation can be subjective. Consequently, experts may categorize tissues 

differently, and as a result, different training datasets may lead to different classification. 

For example, one can simply categorize tissues as fibrotic, lipid pool, necrotic core and 

calcium, or one may differentiate between the levels of presence of fatty materials and 

add fibro-lipid to compromise between fibrotic and lipid. Basically, in order to collect a 

training dataset, the ROIs in the arteries are marked and relative cross-sectional histology 

images obtained. The IVUS-histology frame alignment plays a crucial role in this study 

because the IVUS frames are labeled through the interpretation of the corresponding 

histology images. Subsequently, the signals are assigned to label tissues and relative 

features are extracted. The IVUS-histology matching problem becomes more challenging 

due to the: 1) curvature of arteries, especially in the LCX; 2) registration between an 

IVUS image and its relative histology since the IVUS imaging plane and the slicing plane 

of the microtome are somewhat different; and 3) shrinkage of the arteries after formalin 
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fixation.  

 

The main advantage of presented methodology in Section 3.2.2.2 is that the orientation of 

the artery is not changed throughout the whole procedure before and after fixation. 

Therefore, more reliable IVUS–histology pairs can be obtained and the number of CSIs 

per vessel is significantly increased (average of 25 regions per vessel). In fact, increasing 

the number of ROIs will help to assemble more comprehensive signature database. It is 

frequently observed that when tissue characterization algorithms are applied to new data 

(data that is not part of the training set), unsatisfactory results are obtained [98]. This is 

explained, at least in part, by the fact that the training database is not comprehensive 

enough—the pattern recognition algorithm has not seen enough examples to learn to 

recognize new data with sufficient generality. The sufficiency of the training dataset will 

be discussed in Section 4.4.2. 

 

 

4.3.  Eight-Spectral-Feature Extraction Algorithm 

In 1983, Lizzi et al. presented a sliding-window analysis method to identify tumors in the 

eye and liver by using two spectral signatures extracted from calibrated tissue spectra 

[65]. Those parameters were the slope of the regression line fitted to the mid-band 

portion of the calibrated spectrum and the intercept of that regression line at zero 

frequency. In [64], Nair et al. extended Lizzi’s approach for coronary atherosclerotic 

plaque characterization employing five additional spectral features (MBF, and maximum 

and minimum power and their relative frequencies). They later added an IB coefficient as 
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the eighth parameter [67]. Unlike the complementary study by Lizzi on uncertainties 

associated with the extracted spectral features and the accuracy of spectral estimation for 

prostate and liver examinations [63,99], no comprehensive statistics regarding the 

consistency of the eight features or the reliability of linear regression fitting of 

normalized atherosclerotic tissues spectra using 40-MHz single-element transducers have 

previously been reported to our knowledge. In fact, the liver and prostate tissues are more 

homogeneous than the coronary plaques and the preliminary assumption of this 

windowing technique is that the tissues are homogeneous in the windowed samples. In 

addition, the ultimate goal in liver, prostate, and ocular examinations is to distinguish 

between benign and malignant tissues. However, in coronary artery plaque 

characterization, the tissue spectral features are stringent in which any perturbation in 

calibrated spectrum may lead to misclassification of one tissue for another. 

 

In the rest of this section, we will describe the normalization techniques and consider the 

variation among transducer spectral parameters, such as bandwidth and center frequency. 

We will also take into account the influence of such factors on the eight spectral features 

and demonstrate the variations of slope and intercept in four tissue types (necrotic core, 

calcium, fibro-lipid, and fibrotic). 

 

4.3.1.  IVUS Data Normalization  

Using convolution theory, the measured IVUS signal x k( )  which is corrupted by 

uncorrelated noise signal n k( )  can be modeled as: 
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x k( ) = h k( )* r k( ) + n k( ) 4.1( )  

where * denotes the convolution and k  is the time index. h k( )  and r k( )  are the 

transducer impulse response and tissue acoustic impedance functions, respectively. We 

assume that the reflected signals are wide sense stationary (WSS) and rewrite Eq. 4.1 in 

the frequency domain as: 

                                                X f( ) = H f( ). R f( ) + N f( ) 4.2( )  

To ease the problem, we will further assume that the noise term is zero. Before we 

describe the deconvolution algorithms, we need to consider the purpose of performing 

data calibration in more detail. Prior to feature extraction, the spectra of the tissues are 

required to be normalized in order to eliminate the transducer frequency response. The 

contradiction arises when the transfer function of the transducer is considered to be 

consistent. In this case, according to Eq. 4.2, the classification results should be the same 

with or without doing any data normalization since the extracted features are transformed 

from one location to another preserving their separability in the feature space. However, 

due to manufacturing limitations and sensitivity of electronic circuits to noise, the 

transducer spectral parameters (bandwidth, center frequency, and power) differ not only 

from transducer to transducer but also during acquisition. The problem becomes more 

complex when the influence of the transducer position and the incident angle of the 

ultrasound beam on the spectral features are taken into account [100]. Under these 

circumstances, the best representation of the spectrum of the transducer remains 

questionable. Researchers have used global normalization techniques based on the 

spectrum of a perfect reflector in various applications [64,68,99,101,102]. More recently, 

a blind deconvolution technique was deployed as an alternative [66]. In the following 
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sections, we will study a global normalization technique and investigate its limitations as 

well as effects on coronary artery plaque classification using eight spectral features. 

 

4.3.1.1.  Global Data Calibration Using Plexiglas Spectrum 

According to Eq. 4.2, given any spectrum of a transducer H f( ) , we can simply 

normalize the data by subtracting its logarithm from the logarithm of the measured IVUS 

spectrum, X f( )  (the noise term is assumed to be zero),  

                                  20 logR f( ) = 20 log X f( ) − 20 logH f( ) 4.3( )  

Basically, a short ultrasonic pulse is transmitted toward perfect reflector and the spectrum 

of the reflected signal is considered as an estimate of the transducer frequency response. 

This is not a feasible approach for clinical real-time plaque characterization but has been 

performed for in vitro experiments. During our in vitro experiments, after collecting 

IVUS data from each specimen, the same catheter was inserted into a plexiglas cylinder 

of 4 mm in diameter. The transducer must be centered and placed perpendicular to the 

plexiglas wall. The latter condition might not be exactly met for single-element rotating 

transducers with 1.41◦ (360o/256) spacing between A-lines unless the rotation of the 

transducer is halted. We followed a strict protocol to acquire the preeminent plexiglas 

signals, and studied the variation of center frequency, bandwidth at −6 and −12 dB, of 

three different transducers. Figure 4.3(a) demonstrates a reflected signal from the 

plexiglas wall with a center frequency of 37.01 MHz. For each Plexiglas frame, the angle 

with the maximum absolute non-saturated amplitude Amax was found. Then, a Hamming 

window of sample size 64 was centered at the corresponding time index, tmax  and 

exerted. Subsequently, a 4096-point FFT was performed and the computed spectra were 
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averaged. Our results showed the inter- and intra-frame variations of the aforementioned 

factors. Inter- and intra-frame variations indicate that the transducer’s spectral parameters 

deviated from line to line in the same frame and among distinct frames. The statistical 

variations of the center frequency and the bandwidth of 12 averaged spectra measured in 

12 distinct frames during pullback have been listed in Table 4.1 and shown in Figure 

4.3(b). 

 

 

 

 

 

The transducer center frequency appears to be fairly consistent around a frequency, that 

is, off from the nominal frequency (40 MHz). This may not directly impact any extracted 

spectral feature but becomes crucial when the bandwidth is measured. In fact, the 

 
     Table 4.1. Statistical variations of catheters’ spectral parameters 
 

 Catheter 1 Catheter 2 Catheter 3 

Center frequency 34.48 ± 0.14  41.93 ± 0.31  36.46 ± 0.69  

Bandwidth (-6dB) 29.31 ± 1.64  37.34 ± 2.28  32.32 ± 2.65  
Bandwidth (-12dB) 59.22 ± 2.82  63.68 ± 3.39  66.79 ± 5.36  

 

                                    (a)                                                                                       (b)  
Fig. 4.3.  Signal reflected from plexiglas wall (a), averaged spectra measured from 12 distinct plexiglas 
acquisition frames using Fourier analysis (catheter 3 in Table 4.1) (b) 
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bandwidth is the most important spectral parameter, since the eight features are extracted 

within a specific bandwidth. It is expected that the variations in the bandwidth increase at 

lower signal-to-noise ratios (SNRs).  

 

The inter- and intra-frames variations of the spectra of transducers are inevitable and can 

be the source of (large) perturbations in the tissue spectra, as discussed before. Given 

these variations, a global normalization technique does not appear suitable to extract the 

eight spectral features, especially when a statistical classification tree is used for 

decision-making. In the next sections, we will normalize the spectra of four tissue types 

within the bandwidth of 30–50 MHz and show overlaps between two spectral features 

(slope and intercept). 

 

Short-time AR analysis has been employed for ultrasound signals [60,103-105], and 

shown to be superior to short-time Fourier analysis, depending on the application. 

However, the accuracy of the estimated power spectral density (PSD) can be influenced 

by the sampling frequency, order, and window size [106,107], which may not be crucial 

in other applications but need to be considered in this case due to the stringent 

characteristics of atherosclerotic tissue spectra. The AR process of order p  can be 

written as: 

                                                x k( ) = αmx k − m( ) + n k( ) 4.4( )
m=1

p

∑                                                   

where n k( )  is the noise term of variance σ 2  . The PSD can be estimated by AR 

coefficients αm  using the Yule–Walker equations [108,109] as follows: 
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PAR =
σ 2

1+ αme
− j2π fmTs

m=1

p

∑
= Rxx q( )e− j2π fmqTs

q=−∞

∞

∑ 4.5( )  

where 

                            Rxx q( ) =
− αmRxx q − m( ) ; q > 0
m=1

p

∑

− αmRxx −m( ) +σ 2 ; q ≥ 0
m=1

p

∑

⎧

⎨
⎪⎪

⎩
⎪
⎪

4.6( )  

The Ts = 2.5nsec  is the sampling interval and the Rxx  is the autocorrelation function of 

x k( ) . Equation 4.6 can be augmented and expressed in the matrix form in order to 

incorporate the σ 2  as follows: 

               

 

Rxx 0( ) Rxx −1( )  Rxx − p( )
Rxx 1( ) Rxx 0( )  Rxx − p −1( )( )
   

Rxx p( ) Rxx p −1( )  Rxx 0( )

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

1
α1



α p

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

σ 2

0


0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

4.7( )  

The AR coefficients αm  and σ 2  can be computed by solving the p +1  estimated 

autocorrelation lags and using Rxx −m( ) = Rxx
* m( ) , where * denotes complex conjugate.  

 

Figure 4.4 shows estimated PSD of reflected signal from the plexiglas wall, Figure 

4.3(a), with different AR model orders. The estimated PSD with a low-order (4) AR 

model has narrower bandwidth, and those with higher orders (15,40) suffer from 

inconsistencies within the bandwidth that can hinder the normalization accuracy. 
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4.3.2.  Linear Regression Analysis and Eight-Spectral-Feature 

Computation 

In order to extract eight spectral features, the measured IVUS signals reflected from 

tissues are segmented into short subsequences using overlapped windows. The 

fundamental assumption is that the tissue is homogeneous in the sampled volume. 

Subsequently, the spectral Fourier analysis or AR estimate of each piece is performed. 

The window length is inversely proportional to the main-lobe width of the calculated 

spectrum, producing a tradeoff on the time–frequency space resolution. After 

normalization, a linear regression line is fitted to the calibrated spectrum within the 

specified bandwidth to compute eight spectral features. In order to eliminate any 

Fig. 4.4. PSD estimation of plexiglas signal with AR models of order 4, 15, 40, 100 along with Fourier 
analysis. 
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reverberation from the plexiglas wall and obtain more consistent results, the averaged 

plexiglas spectrum fitted with a Gaussian model was used, Figure 4.5. 

Seven spectral features are computed through the linear regression fit: 1) the slope of the 

regression line (in decibels per megahertz); 2) the intercept (in decibels), which is the 

extrapolation of the regression line at zero frequency; 3) the MBF (in decibels), which is 

the value of the regression line at the center frequency; 4) the minimum power Pmin  (in 

decibels); 5) the relative frequency fmin  (in megahertz); 6) the maximum power Pmax  (in 

decibels); and 7) the relative frequency fmax  (in megahertz). The last feature, IB , is 

measured as Eq. 3.1. 

 

Figure 3.6 illustrates the extracted features within the bandwidth of 30–50 MHz. Besides 

the sampled volume, the bandwidth is the other crucial factor that determines on the 

Fig. 4.5. Plexiglas spectrum fitted with Gaussian model within specific range of bandwidth (30-50 MHz 
~ -20 dB). 
 



 

 

78 

statistical accuracy of the spectral estimation and extracted features. Among these 

spectral features, a linear dependency is deduced from the first three: slope, intercept, and 

MBF. From the classification point of view, only two of them are informative, since one 

can be derived from the other two. This has also been noted by Lizzi et al. and reported in 

[110]. They not only used the slope and MBF as independent spectral features for tissue 

characterization but also pointed out that the intercept could be useful due to its 

insensitivity to intervening acoustic attenuation. The same dependency can be derived for 

IB and MBF, since the MBF is the first-order approximation of IB, which has been 

normalized by the bandwidth [111]. 

 

4.3.3.  Experimental Results 

For illustration, one CSI, Figure 2.8(a), containing four tissue types was chosen from an 

LCX coronary artery imaged with a 40-MHz single-element Boston Scientific transducer 

(transducer 2 in Table 4.1). The slope and intercept were extracted from 92, 73, 299, and 

1234 ROIs of necrotic core, calcified, fibrolipid, and fibrotic signals, respectively, in 

three distinct frames with 10-frame interval. Each ROI contained 64 Hamming-

windowed samples. For each ROI, the signals were passed through a linear phase 

bandpass Butterworth filter of order 10 with cutoff frequencies of fcmin = 10MHz  and 

fcmax = 80MHz . Then, five adjacent line spectra were computed using a 4096-point FFT. 

In order to get a smoother spectrum, a median filter of size  was slided on the 

calculated spectra. The purpose of this experiment was to evaluate the consistency of the 

intercept and slope along with the reliability of linear regression fitting to the normalized 

tissue spectra. The bandwidth was chosen to be 30–50 MHz (~ -20 dB) and an average of 

5 ! 3



 

 

79 

the five plexiglas spectra (measured, as described in Section 4.3.1.1) fitted with a 

Gaussian model was considered. 

 

Figure 4.6 shows the box-whisker plots of the Pearson’s coefficient of correlation (r) of 

the linear regression analysis for the four tissue types in three frames. The interquartile 

ranges of boxes demonstrate the high variations in confidence levels. Ignoring the 

                               (a)                                                                                                       (b) 
Fig. 4.6. Box whisker plots of confidence level of linear regression analysis in four tissue types, 92 
ROIs for NC: necrotic core, 73 ROIs for Ca: calcium, 299 ROIs for FF: fibrofatty, 1234 ROIs for 
F: fibrotic (a) and three frames (b). Each ROI contains 64 hamming windowed samples. 
 

                                        (a)                                                                                    (b) 
Fig. 4.7. Variations of two spectral features extracted from four tissue types. Intercept (a) and Slop (b). 
necrotic core (NC), Calcium (Ca), fibro-fatty (FF) and fibrotic (F).  
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outliers, we can conclude that the regression lines fitted to the necrotic core and calcified 

plaque’s normalized spectra are more reliable than those of the fibro-lipid and fibrotic. 

Approximately, the same variations were found in three collected frames. The low 

confidence levels actually imply that a linear regression of normalized tissue spectra 

within the selected bandwidth can hardly be achieved. The variations of spectral intercept 

and slope have been illustrated in Figure 4.7. The overlap of the 95% confidence 

intervals for each parameter (intercept and slope) in the four tissue types suggest the 

difficulties of classification based on these parameters. Only the calcified region can be 

easily recognized due to its higher intercept values, but this can also be visually discerned 

examining the gray-scale final IVUS image. 

 

Variations among spectral features can be expected due to inconsistencies associated with 

tissue spectra and transducer spectral parameters. Perturbations in extracted features are 

increased if a broader bandwidth is chosen. Despite these variations and inconsistencies, 

the plaque characterization in the coronary artery may still be feasible, even through an 

eight-feature algorithm, if an appropriate classification algorithm is used. 

 

 

 

4.4.  Full-Spectrum Analysis and Algorithmic Challenges 

4.4.1.  Full-Spectrum Analysis Algorithm 

We showed the perturbations among tissue spectra and pointed out that global 

normalization could not resolve these variations. However, the atherosclerotic plaque 
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classification could be achievable if: 1) appropriate features were extracted, with some of 

them having potential physical and/or biological grounds (i.e. intercept that is indicative 

of acoustic impedance and concentration), and 2) the apposite classification algorithm is 

deployed. In this section, we will use full-spectrum analysis and extract features in the 

functional range of the bandwidth of the transducers. For a single-element rotating 

transducer with nominal 40-MHz center frequency and 100% bandwidth, this range is 

measured to be 20–60 MHz. The dissimilarities of tissue spectra in this range, Figure 3.5, 

motivated us to use full-spectrum analysis. It can be seen that the most recognizable 

difference in the backscattered signals spectra is energy. Therefore, we extracted the 

energy norm Enorm  as one of the features that could be a measure for the softness or 

hardness of the tissue structures. For this reason, signals in the regions behind calcified 

and necrotic core are attenuated sharply and shadows are often visible behind arcs of 

calcified plaques. The tissue characterization in these regions remains uncertain [38] and 

needs further study and validation. For a given tissue signal of length l ,x = x1,..., xl[ ]  the 

energy norm is calculated as follows: 

                                                        Enorm = x = x.xT 4.8( )  

where . and T are vector inner product and transpose notations, respectively. As a second 

feature, we extract the radial position r( )  of the tissue from the center of the transducer 

in order to incorporate tissue signals attenuations. 

 

In Section 4.2.1, we described the variations among tissue spectra and also illustrated the 

variations of spectral magnitude at five frequency bins in one and four CSIs for two 

closely related tissue types (lipidic, fibrotic), Figure 4.1 and Figure 4.2 and 5). By 
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looking at these figures, we will realize that the lipidic tissue spectra have relatively 

higher mean magnitude compared to fibrotic. Consequently, we opted to extract the 

spectral magnitudes at every frequency bin within the functional range of bandwidth as 

supplemental spectral features. For this reason, the IVUS RF signals were windowed 

followed by taking a N-point FFT. For real-valued time domain signals, we could ignore 

the negative frequencies as they result in the same estimates as their positive 

counterparts. Therefore, only N/2 frequency bins were required to cover the spectrum up 

to fs 2 , fs = 400MHz . In order to get smoother spectrum and alleviate perturbations, a 

2-D median filter of size M ×1  was applied on the magnitude spectra and N 2 − M +1

spectral features: 

                                         v = vi
i. fs
2 ;i = 1,...,N 2 − M +1

⎧
⎨
⎩

⎫
⎬
⎭

4.9( )

were extracted (the dc component was ignored). The vi
i. fs
2  is the i-th PSD magnitude 

corresponding to the frequency at 
i × fs
2

 Hz. However, due to the narrowband 

characteristic of IVUS signals, only spectral features within the functional range of 

transducer bandwidth were considered. In this case, the integer number, i, should be 

found such that the value of 
i × fs
2

 approximates the lower and upper frequencies of the 

bandwidth. Therefore, 

                                                        

 

imin 
fBWmin

× N
fs

imax 
fBWmax

× N
fs

⎧

⎨
⎪
⎪

⎩
⎪
⎪

4.10( )  
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Obviously, the resolution of the spectrum is proportional to the number of FFT points. If 

N is increased, more spectral features can be extracted; however, the training and testing 

algorithms become more expensive computationally. Finally, the features vector  

W  was 

formed as follows: 

                                            

 


W =

vBW
Enorm

,Enorm ,r
⎡

⎣
⎢

⎤

⎦
⎥

vBW = vj
i. fs
N , j = imin ,...,imax

⎧
⎨
⎩

⎫
⎬
⎭

4.11( )
 

Figure 4.8 depicts examples of full-spectrum analysis in two CSIs, each collected from 

different cadavers in the database using the linear Fisher and k-NN classifiers. The 

parameters were selected as l = 128 , N = 512 , fBWmin
= 20MHz , fBWmax

= 60MHz , k = 5 . 

Only pixels that could be confidently classified were colored. Confidence was related to 

distance between feature vector and the decision surface. Although both methods show a 

                   (a)                                           (b)                                  (c)                                   (d) 
Fig. 4.8. Pictorial illustration of two full-spectrum based classification methods. Movat Pentachrome 
histology image (a), IVUS image (b), IVUS tissue map generated by Fisher (c),  IVUS tissue map 
generated by k-NN, k=5 (d). 
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good correlation between the corresponding histological regions and the classification 

color outputs, they should be further investigated with more clinical data in order to 

assess their efficacy and robustness. In the next section, we shall consider the realistic 

challenges related to the classification algorithms and training dataset.  

 

4.4.2.  Complexity of Algorithm and Sufficiency of Data 

The linear Fisher classifier can recognize specific tissue by determining which side of the 

predetermined hyperplane the features vector  

W  is located. The distance between the 

feature vector and the hyperplane is computed as a measure of reliability. The k-NN 

classifier recognizes the tissue type by computing distances between the given feature 

vector and every feature vector in the training set. It determines the most frequently 

occurring training type among the five nearest neighbors (for k = 5). The Fisher classifier 

is fast and easy to implement but may not be accurate because it does not capture 

nonlinear separation of spectral regions. On the other hand, the k-NN classifier can 

capture complex features of the spectral regions but it is computationally expensive. 

 

When assessing the accuracy of a characterization system, one must use a cross-

validation approach in which different subsets of the database are, in turn, set aside for 

testing against an algorithm trained on remaining data. It is important that the test subsets 

be drawn from separate distributions completely absent in the training data. For IVUS 

tissue characterization, this translates to drawing test data from cadavers not represented 

in the training data. Note that this condition is not met by creating a test set by simply 

drawing a random set of signatures from the entire database. If such procedures that 
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estimate accuracy are not followed, it might be estimated overly optimistically, especially 

for small training set sizes. Once the proper method of assessing accuracy is employed, 

the estimate turns out to be much lower-–consistent with what is encountered in clinical 

evaluations of currently existing algorithms. 

 

In order to appreciate this behavior of pattern recognition algorithms, we show in Figure 

4.9 the estimates of the accuracy of a “tissue characterization” algorithm for lumen 

detection using in vivo data. It is clear that, even for this “simple” problem of 

discriminating regions of flowing blood (lumen) from regions corresponding to tissue, 

only modest accuracies are obtained using ten frames even when the very exhaustive k-

NN algorithm is deployed. The k-NN algorithm finds the class (“Blood” or “Tissue”) of a 

given instance of normalized spectrum by searching for the most frequently occurring 

class among k nearest instances of normalized spectrum found in the training set. In this 

numerical experiment, the Euclidean metric was used as a measure of nearness and k was 

set to 5. From this graph, we see that a classifier that is built using data from four frames 

will correctly detect blood-filled areas in novel frames only 40% of the time. The 

Fig. 4.9. Realistic estimates of the accuracy attainable by a spectrum based tissue characterization 
algorithm trained to differentiate between blood filled regions (solid line) and tissue (dashed line) in 
IVUS image. 
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accuracy improves to 70% when 11 frames are used. An examination of the spectra in 

Figure 4.10 suggests that a simple linear classifier may not be able to satisfactorily 

discriminate between lipidic and fibrotic tissue because of the large amount of overlap 

and bracketing seen in each frequency component. However, results obtained using 

simple linear classifiers are still useful to understand the differences in characterizability 

of different tissue types. Using simple linear classifiers also helps us establish a standard, 

against which we can evaluate other characterization schemes. 

 

A useful way to evaluate the accuracy of a classifier is by drawing the receiver-operating-

characteristic curve (ROC) that portrays the tradeoff between sensitivity and specificity 

when the threshold is varied. The area under the ROC curve (AUC) is a metric that can 

be used to rate different classifiers. We have evaluated the relative ease of 

characterization of four tissue types (lipidic, fibrotic, fibro-lipidic, and calcified tissue) 

using the specific definition of tissue signatures suggested previously [64]. As suggested 

Fig. 4.10. ROC curves comparing the linear separability of full spectral features (left) with that of a 
reduced set of 7 features (right). 1451, 475, 10668 and 382 volumes of 128 samples of fibro-lipidic, 
lipidic, fibrotic and calcified tissue signals were used, respectively. 
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by the ROC curves shown in Figure 4.10, it is empirically evident that the process of 

summarizing the spectrum by specifying the seven (excluding IB) parameters previously 

described reduces discrimination in comparison to a full-spectrum analysis. 

 

 

4.5.  Summary and Conclusion 

In this chapter, we described the realistic challenges in atherosclerotic plaque 

characterization including specimen preparation and classification. We intended to 

implement eight-feature-algorithm and pointed to in vitro inter- and intra-frame 

variations of tissue spectra extracted from data acquired with single-element 40MHz 

transducer. Spectral slope and intercept were shown to be highly variable and a simple 

linear regression was not often valid. As a complementary study, these variations can be 

evaluated using lower frequency transducers in more homogenous media. Among the 

proposed eight spectral features, we pointed to linear dependency among the slope, 

intercept, MBF, and IB coefficient. Regardless of the normalization methodology, data 

calibration cannot be performed precisely and employed due to: 1) variations among 

tissue and transducer spectra and 2) clinical impracticality.  

 

Full-spectrum analysis algorithm was introduced as an alternative to the eight-feature 

algorithm and evaluated different classifier performances such as linear Fisher, k-NN. 

Our hypothesis was that the relative differences in tissue spectra would be held at every 

frequency bin. In the end we could only partially classify tissues in limited number of 

CSIs. The extension of full spectrum analysis, as a reliable clinical atherosclerotic plaque 
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characterization tool, needed further refinement and quantification. Like all spectrum-

based technique, the full-spectrum analysis algorithm, suffered from inconsistency 

among tissue spectra.   

 

Comprehensive assessment of advantages and disadvantages of each developed 

algorithm, expressed in chapters three and four, is beyond the scope of this research. Our 

findings prompted us to look at atherosclerotic plaque characterization problem from 

more rigorous perspective by attracting attentions toward essential steps for in vivo 

applications as illustrated in Figure 4.11. As we can see, none of reviewed algorithms 

encompass all necessary steps. For example, IVUS-ECOC and IVUS-IBH lack of proper 

labeling and validation. IVE and IVUS-VV suffer from miss-registration among 

Fig. 4.11. Atherosclerotic plaque characterization flowchart from data collection toward algorithm 
development, classification, and validation.  
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successive frames and complete characterization of plaque constitutes are not possible 

through these techniques.  

 

To date, the IVUS-VH is the most well recognized atherosclerotic plaque characterization 

algorithm and the only commercially available platform in the field. Two minor critics on 

IVUS-VH are: 1) excessive detection of necrotic core particularly at the border of 

calcified regions, and 2) Characterization of tissues behind arc of calcified plaques. The 

major critic is extension of this algorithm for in vivo applications without considering 

important factors such as effects of flowing blood and change of pressure on constructed 

tissue color maps (VH images). In addition, the IVUS-VH provides the VH images for 

every other 30 frames.  

 

Recently, ultra-high frequency IVUS transducers (40MHz up) have designed to obtain 

images with higher resolution that are preferred by interventional cardiologists.  

Consequently, we strived to extend this algorithm for data acquired with single-element 

40MHz transducer and found critical difficulties, which made it very challenging if not 

impossible. In the next chapter, we propose an unsupervised texture based framework as 

an alternative approach to supervised spectrum based techniques.  
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5.  Chapter Five: 

UNSUPERVISED ATHEROSCLEROTIC PLAQUE 

CHARACTERIZATION IN IVUS IMAGES VIA 

MULTISCALE WAVELET PACKET ANALYSIS  

IVUS is the predominant imaging modality in the field of interventional cardiology that 

provides high-resolution real time cross-sectional images of coronary arteries and the 

extent of atherosclerosis. In this chapter, we will present a robust texture-derived 

atherosclerotic plaque characterization technique as an alternative to existing spectrum-

based algorithms. We acquired ex vivo IVUS RF signals, using a 40 MHz mechanically 

rotating single-element Boston Scientific (Fremont, CA) Atlantis transducer, from 32 

diseased transplanted and cadaver hearts. For each CSI, we processed its IVUS signals, 

employing discrete wavelet packet frame (DWPF), and extracted envelope detected 

signatures. An unsupervised ISODATA classifier was deployed to partition the wavelet 

packet representations and generate prognosis histology (PH) images. Finally, an 

independent human observer evaluated the algorithm performance by contrasting the 

histology images corresponding to PH images. The effects of blood flow and pressure 

change on the PH images were also studied in vitro. This determined whether in vitro 

trained classifiers were reliable for in vivo applications, an indispensable validation that 

has not been considered by other groups to date. For the first time, we verify the 

reliability of extracted features as well as consistency among constructed PH images. The 
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main advantages of the proposed algorithm are its use independent of the type as well as 

frequency of transducer and its application on both RF signals and grayscale images. The 

main contribution of presented work is that the constructed PH images through our 

unsupervised classification technique can be reliably used for building training sets from 

highly heterogeneous regions in atherosclerotic plaques for any supervised classification 

algorithm. 

 

5.1.  Introduction 

IVUS findings have shown that sonographic differences yielded visual discrimination 

among plaque constituents [72,73]. In other words, variations of intensities are attributed 

to repetitive tissue microstructure patterns. These have motivated researchers to develop 

texture-based algorithms on IVUS images to differentiate tissue types [74,75,77,87]. 

However, none of these studies validated their results with histology images in vitro, an 

indispensable validation step that is required before deploying any algorithm for in vivo 

classification.  In this chapter, we present an effective texture-derived atherosclerotic 

tissue characterization algorithm using discrete wavelet packet frame (DWPF) and a 2D 

envelope detection technique introduced by Laine et al. [112] that relies on the Hilbert 

transform of multiscale representations. The extracted textural features of such 

expansions are perfectly suited for classification and capture characteristics of the plaque 

with the highest correlation to histology. This resolves one of the main limitations of the 

IVUS, which is discrimination between fibrous and fatty tissues [51,52]. The main 

advantages of our proposed technique are its independence on transducer frequency, and 

construction of PH images in an unsupervised fashion that requires no labeling. The latter 
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becomes crucial due inhomogeneity of atherosclerotic tissues that makes manual labeling 

so challenging in training of supervised classification approaches. In fact, the generated 

PH images can be more confidently used as labeled images for training.  

 

 

5.2.  Methods 

5.2.1.  Multi-Channel Wavelet Analysis 

It has been shown that a multi-scale approach for texture discrimination is a compatible 

analysis to human and mammalian vision processing systems due to its conservation of 

energy in both spatial and frequency domains [113,114]. We will take advantage of 

spatial-frequency-localized expansions and their generalization to 2D to discern textural 

patterns on constructed images from backscattered IVUS signals while geometrically 

oriented decompositions are provided at this dimension. Unlike the classical discrete 

wavelet (DWT) [115-117] and discrete wavelet packet transforms (DWPT) [118], we 

compute decompositions that are translation invariant in a discrete wavelet frame (DWF) 

Fig. 5.1. Tree structure for a discrete wavelet packet frame expansion (DWPF) and its associated 
multiscale indexes. 
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[119] or discrete wavelet packet frame (DWPF) where no decimation (down sampling) 

occurs between expansion levels, Figure 5.1. Although the DWPF seems redundant and 

insufficient, it has two advantages that benefit texture analysis and multiscale 

representations; 1) less restriction on filter selection and 2) the variations of the modulus 

in the transform domain are not corrupted by aliasing.  

 

Wavelet packets are orthonormal in the space of summable-integrable functions L2 R( )  

[120] and described by a collection of functions ξ j x( ) j ∈Z + , ξp ,ξq = 0, p ≠ q{ }  

obtained from: 

                                

2
l
2ξ2k 2

l x − n( ) = hm−2n
l 2

l+1
2 ξk 2

l+1x − m( )
m∈Z
∑ 5.1( )

2
l
2ξ2k+1 2

l x − n( ) = gm−2n
l 2

l+1
2 ξk 2

l+1x − m( )
m∈Z
∑ 5.2( )

 

where l , n , k ,ξ0 x( ) = φ x( )  and ξ1 x( ) =ψ x( )  are the scale index, translation index, 

channel index, scaling function and basic wavelet, respectively [116]. We will describe 

our method and rationale for selection of discrete filters hn  and gn  in more details in the 

next section.  The wavelet packets at different scales can also be found by the inverse 

relationship as follows: 

                2
l+1
2 ξk 2

l+1x − m( ) = hm−2n
l 2

l
2ξ2k 2

l x − n( ) +
n
∑ gm−2n

l 2
l
2ξ2k+1 2

l x − n( ) 5.3( )
n
∑  

Any function f x( )∈L2 R( )  can be decomposed onto a wavelet packet basis by 

computing the inner product f x( ),ξk 2l x − n( ) . Using Eq. 5.3 we can write: 
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∞
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Defining the decomposition coefficients as: 

                                                  ρk ,n
l = 2

l
2 f x( )ξk 2l x − n( )dx
−∞

+∞

∫ 5.5( )  

Eq. 4 can be rewritten as: 

                                            ρk ,m
l+1 = hm−2n

l ρ2k ,n
l +

n
∑ gm−2n

l ρ2k+1,n
l

n
∑ 5.6( )  

Using Eq. 5.1 and Eq. 5.2, the coefficients are calculated by: 

                                                     

ρ2k ,n
l = hm−2n

l ρk ,m
l+1

m
∑ 5.7( )

ρ2k+1,n
l = gm−2n

l ρk ,m
l+1

m
∑ 5.8( )

 

In the standard wavelet transform, the index k  is restricted to k = 0  and only two 

wavelet packets ξ0  and ξ1  are used. Consequently, only the leftmost nodes ρ0
l( )  are 

decomposed into high and low frequency subbands. However, in wavelet packets, the 

decompositions are performed on both low and high frequency components. Therefore, a 

tree-structure multiband extension of the standard wavelet transform is constructed, 

Figure 5.1. This can be seen as subband filtering and implemented using iterated 

constructed highpass and lowpass filters in frequency domain. Taking the Fourier 

transform of both sides of Eq. 5.7 and Eq. 5.8 yields: 

                                                   
ϒ2k
l+1 ω( ) = Gl ω( )ϒ k

l ω( ) 5.9( )
ϒ2k+1
l+1 ω( ) = H l ω( )ϒ k

l ω( ) 5.10( )
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where ϒ k
l ω( )  is the Fourier transform of the frame coefficients at channel k  and level l . 

Since the IVUS signals are sampled at the rate of fs , the original discrete signal is 

considered as the set of frame coefficients at the first scale l = 0  for the rest of this 

chapter. 

 

5.2.2.  Filter Selection and Specification 

The highpass Gl ω( )  and the lowpass H l ω( )  filters at each level l  can be realized as 

presented in [117] by: Gl ω( ) = G0 2lω( )  and H l ω( ) = H 0 2lω( ) . Consequently, the 

multi-channel wavelet schematic in Figure 5.1 behaves like a filter bank with channel 

filters Fk
l ω( ) 0 ≤ k ≤ 2l −1{ } , where Fk

l ω( )  can be derived recursively as follows: 

                                  

F0
0 ω( ) = G0 ω( ),F10 ω( ) = H 0 ω( ) 5.11( )

F2k
l+1 ω( ) = Gl+1 ω( )Fkl ω( ) = G0 2l+1ω( )Fkl ω( ) 5.12( )

F2k+1
l+1 ω( ) = H l+1 ω( )Fkl ω( ) = H 0 2l+1ω( )Fkl ω( ) 5.13( )

 

It has been shown that the selection of the filters G0 ω( )  and H 0 ω( )  can have significant 

impact on texture classification performance [112,118]. The filter candidates must satisfy 

necessary criteria such as symmetry as well as boundary accuracy and have optimal 

frequency response. Hence, we selected Lemarie-Battle [116] wavelets that are 

symmetric (have linear phase response) and satisfy quadrature mirror filter (QMF) 

criteria. The former property alleviates boundary effects through simple methods of 

mirror extension. The discrete highpass filter gn
0  is obtained by gn

0 = −1( )n hn0  or 

G0 ω( ) = H 0 ω + π( )  in the frequency domain. Figure 5.2 illustrates the constructed filter 
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bank at level 4 generated by Lemarie-Battle wavelet of order 18. The wavelets using 

QMF as well as constructed filter bank Fk
l ω( ){ }  cover exactly the frequency domain and 

satisfy the property: 

                                     

G0 ω( ) 2 + H 0 ω( ) 2 = G0 ω( ) + H 0 ω( ) = 1 5.14( )

Fk
l ω( ) 2 =

k=0

2l−1

∑ Fk
l ω( ) = 1

k=0

2l−1

∑ 5.15( )
 

Thus this expansion is pointwise/pixelwise 1:1 (a bi-jection across levels of analysis) and 

allows for perfect representation (and reconstruction). 

 

5.2.3.  Feature Extraction 

We processed the IVUS signals from each raw data frame, represented in the r,θ( )  

domain, which is the original domain of acquisition, containing 256 lines that span over 

                                      (a)                                                                                      (b) 
Fig. 5.2. Lemarie-Battle filter of order 18 (a), constructed filter bank at level 4 (b). 
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360 degrees with 2048 samples per line. In order to have an optimal frame size with 

respect to its computational complexity and textural resolution, we decimated and 

interpolated (via a spline) the signals in axial and lateral directions, respectively, to 

generate square M = 512  pixels frame. Figure 2.7(a,b) demonstrates B-mode images of 

an IVUS frame in both r,θ( )  and x, y( )  Cartesian domains. For further information see 

Section 2.3.  

 

For each frame, a separable tensor product was used, in which channel filters were 

denoted by Fi× j
l ω r ,ωθ( ) = Fil ω r( )Fjl ωθ( ) . Consequently, such an extension will lead to 

orientation selectivity in the decomposition tree. Four possible orientations can be 

considered excluding the root node, which is omnidirectional. 

1. The node last filtered by Gl ω r( )H l ωθ( )  corresponds to coefficients having a 

vertical orientation. The highpass filter Gl  and lowpass filter H l  are applied in 

the axial and lateral directions, respectively. 

2. The node last filtered by H l ω r( )Gl ωθ( )  corresponds to horizontal orientation. 

The lowpass filter H l  and highpass filter Gl  are applied in the axial and lateral 

directions, respectively. 

3. The node last filtered by Gl ω r( )Gl ωθ( )  is responsive to coefficients in the 

diagonal orientation. The highpass filter Gl  and highpass filter H l  are applied in 

the axial and lateral directions, respectively. 
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4. The node last filtered by H l ω r( )H l ωθ( )  has the same orientation as its parent. 

The lowpass filter H l  and lowpass filter H l  are applied in the axial and lateral 

directions, respectively. 

 

Due to narrowband characteristic of IVUS signals, the envelope of output signals from 

channel filters were computed using the corresponding 2D analytical signals. Finally, the 

feature matrices were constructed as follows: 

                              Vi, j
l ,k = ei, j

l ,k 0 ≤ k ≤ 2l −1( ) , i, j = 1,...,M{ } 5.16( )  

where ei, j
l ,k  represents the envelope value of pixel i, j( )  for the k -th channel at level l .  

 

5.2.4.  Classification 

The overall justification of in vivo real-time plaque characterization is made by an 

interventional cardiologist through the use of classified tissues. Traditionally, researchers 

build training data sets by marking ROIs in arteries and taking corresponding cross-

sectional histology images to label the plaque compositions.  Once the training data set is 

developed, a supervised classifier is used to differentiate tissue types. Eventually, the 

overall performance of such a classifier is evaluated through cross-validation. Due to 

stringent behavior of closely related tissues (i.e. fibrotic, fibro-lipidic), it is crucial to 

substantiate the validity of extracted features. Although Lizzi et al. quantified the 

extracted spectral parameters (intercept, slope) through analytical tissue models for eye 

and liver experiments [61], no such validation has previously been performed for 

atherosclerotic tissue signatures. For this reason, we chose the ISODATA clustering 



 

 

99 

algorithm in order to generate prognosis histology (PH) images. Our hypothesis was that, 

in an unsupervised classifier, if extracted signatures represent true characteristics of 

atherosclerotic tissues, then they could be more reliably used for supervised 

classification.  

 

For every feature representation matrix, VM ×M , a label was assigned to each pixel by 

modulo Nc  where Nc   represented the number of classes. We computed the center of 

clusters Cκ 0 ≤κ ≤ Nc −1{ }  by calculating the mean vector for each class. The pixel 

vi, j i, j = 1,...,M{ }  was assigned to the class κ , if the Euclidean distance between the 

corresponding pixel and the class center Cκ  was the closest. The centers of the clusters 

were updated and possibly merged in an iterative fashion by recomputing the relative 

mean vectors. The procedure was terminated once no change in labeling occurred.  

 

 

5.3.  Experimental Results and Quantification Analysis 

5.3.1.  Atherosclerotic Plaque Characterization 

Both decomposition and ISODATA algorithms were implemented in C++. All 

computations were executed on an IBM ThinkStation workstation, 64-bit 3 GHz dual 

Intel Core2Quad Processors with 32 GBs of RAM. The execution time for each CSI was 

evaluated to be 20msec.   
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We acquired IVUS data, as described in Section 3.2.2.2, from Autopsy human hearts 

(n=30) and explanted hearts from transplant surgery (n=2) were procured within 24 hours 

postmortem and transplantation, respectively. Eighty-three CSIs collected from 51 

segments of 32 hearts ex vivo, including 19 LADs, 16 RCAs and 16 LCXs segments that 

had more than 30% stenosis were examined. For each frame, an expert manually 

segmented the plaque by tracing the vessel wall and lumen borders, Figure 5.3(a). We 

performed our algorithm on 512-by-512 segmented frames that only contains plaque 

textures and selected Lemarie-Battle filters of order 18, expansion level l = 2  and the 

initial number of classes Nc = 4 (Calcified, Fibrotic, Fibro-lipidic, no tissue). The main 

advantage of ISODATA, over our previously developed framework based on k-means 

clustering algorithm [121], is that the clusters were merged in the absence of one or two 

tissues. Finally, the resulting classified images were transformed into the Cartesian 

coordinates. Figure 5.3 demonstrates a CSI, corresponding H&E histology image, and 

                    (a)                                                        (b)                                                       (c) 
Fig. 5.3. Manually traced vessel wall (green) and lumen border (red) on IVUS B-mode image (a), 
resulting PH image generated by the algorithm (Blue, yellow and pink colors represent calcified, fibrotic 
and fibro-lipidic components) (b), corresponding H&E histology image of cross section of interest (c). 
The white star points to lipid rich pool region that could be sign of vulnerable plaque if thin fibrotic layer 
existed on top of it. 
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resulting PH image. The blue, yellow and pink colors exhibit calcified, fibrotic and fibro-

lipidic plaque components, respectively. 

 

For quantification, histology is the best available version of ground truth for in vitro 

tissue characterization. However, the interpretation of histology images can often vary 

among experts yielding a subjective process. As a result, plaque constitutes can be 

separated into fibrotic, lipidic, necrotic core and calcified while another may differentiate 

between the levels of presence of fatty materials and add fibro-lipidic to compromise 

between fibrotic and lipidic. Generally, in supervised classification techniques, the most 

homogeneous regions, for each tissue type, are selected on histology images and mapped 

to the corresponding IVUS images manually, Figure 5.4(c). Subsequently, the features 

are extracted in order to build the training and testing dataset. Figure 5.4 demonstrates a 

CSI, corresponding histology image with manually segmented ROIs by a 

histopathologist, image containing manually traced labels for each tissue type, and 

constructed PH image. Traditionally, in order to build the training dataset, experts trace 

the most homogeneous regions for each tissue type and extracted corresponding features, 

although the homogeneity assumption may not be completely valid.  

 

As we can observe in histology image and corresponding IVUS as well as PH image, the 

atherosclerotic plaque consists of heterogeneous tissues that makes manual labeling 

tedious and possibly infeasible. Figure 5.4(a,b,d) clearly demonstrate that the manually 

segmented ROI (Figure 5.4(c)), which presumably should only contain fibrotic tissue, is 

heterogeneous and contains mixture of fibrotic and lipidic tissues. This may lead to 
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incorrect classification results if used for training of any supervised classifier. For this 

reason, we designed our tissue characterization framework based on unsupervised 

classification to substantiate extracted features. In this way, we confidently used the 

classification results (PH images) as labeled images for building a training set in any 

supervised classification algorithm.  

 
Due to the nature of the unsupervised classification approach taken, we evaluated the 

algorithm performance employing an independent histopathologist, by contrasting the 

histology images corresponding to PH images. We deployed a scoring approach to 

quantify the results and asked the histopathologist to score each PH image by eye-balling. 

For higher accuracy, each histology image was divided into distinguishable regions, 

Figure 5.4(a). The corresponding PH images were oriented and scaled as the histology 

image and same divisions were mapped visually. The accuracy of characterization was 

evaluated for each region separately and averaged for composite rating for each tissue 

type. Table 5.1 demonstrates the average values for correct and miss-classified tissues in 

83 CSI. For example, the first row shows that 99.70% of calcified tissues in histology 

images were correctly classified as calcified while 0.32% and 0.07% of them were 

misclassified as lipidic and fibro-lipidic, respectively. The overall classification 

performance has been evaluated to be 90.87%, 87.75%, and 99.70% for calcified, 

fibrotic, and fibro-lipidic tissues, respectively. 

 
Table 5.1. Percentage of correct classification as well as misclassification for each tissue type. 

 Calcified Fibrotic Fibro-lipidic No Tissue 
Calcified 99.70 0.32 0.07 0.00 
Fibrotic 7.17 87.75 5.05 0.00 

Fibro-lipidic 1.89 6.50 90.87 0.74 
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In comparison with the spectrum-based classification technique such as IVUS-VH, our 

texture-derived algorithm performs promising. It has been shown that the IVUS-VH 

algorithm implemented through AR models of IVUS signals is superior to the windowed 

Fourier transform [68]. The accuracy of the IVUS-VH technique using AR analysis in 

combination with classification tree for IVUS data acquired with 30 MHz single element 

transducers has been reported as 90.4%, 92.8%, 90.9% and 89.5% in training dataset and 

79.7%, 81.2%, 92.8% and 85.5% in the test dataset for fibrotic, fibro-lipidic, calcified 

and calcified necrotic regions, respectively.  

 

In the case of atherosclerotic tissue characterization, the ultimate goal is detection of 

vulnerable plaques. Pathological and more recent IVUS studies of ruptured plaques have 

                            (a)                                 (b)                               (c)                              (d) 
Fig. 5.4. H&E histology image of CSI with manually segmented ROIs (a), corresponding IVUS 
grayscale image (b), manually selected regions corresponding to presumably homogenous regions for 
each tissue type (c), corresponding PH image (d). The bottom row illustrates the magnified version of 
selected ROI (red square) for fibrotic tissue. The inhomogeneity of atherosclerotic tissues are well 
reflected in (a,b,d). The white star points to lipid rich pool region that could be a sign of vulnerable 
plaque if a thin fibrotic layer existed on top of it. 
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shown that the underlying lesions present a large plaque burden without always much 

lumen compromise, positive remodeling, and a thin macrophage-rich fibrotic cap that 

covers a large necrotic core underneath [122-124] (see Section 1.1.3). Although we 

cannot detect the necrotic core directly, due to unsupervised classification of tissues, the 

vulnerability of plaques can still be deduced through appearance of lipid rich pool region 

with thin layer of fibrotic cap on top of it. In other words, the regions containing necrotic 

core often correlated with relatively large lipid pools. 

 

Resulting PH images in Figure 5.3 and Figure 5.4 demonstrate two vulnerable plaques 

that contain lipid rich pools (depicted with white stars) along with fibrotic cap on top. 

Similar approach has also been taken by Okubo et al. [71] to show the vulnerability of 

atherosclerotic plaques. A vulnerable plaque would be characterized by a thin, or absent 

layer of fibrotic tissue with under a large fibro-lipidic pool.  

 

5.3.2.  Reliability of Extracted Features 

Due to the narrowband characteristic of IVUS signals, the spectral signatures used in 

IVUS-VH and IB-IVUS must be extracted within the functional range of the transducer’s 

bandwidth. It is evident that any changes in the tissue or calibration spectra within the 

specified bandwidth would alter the classification results and could misclassify tissues. In 

Section 4.3, we comprehensively reported on inter- and intra-frame variations of tissues 

spectra and their effects on two spectral parameters (i.e. slope, intercept) employing 40 

MHz single element Boston Scientific Atlantis transducers. We also pointed to variations 

among transducer spectral parameters such as center frequency and bandwidth, which 
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could alter the classification results. Our texture-derived algorithm untangled this 

limitation and can be deployed independently of the transducer’s center frequency and 

bandwidth. We performed three experiments to investigate the consistency of extracted 

features and more importantly considered the effects of change of pressure and blood 

flow on constructed PH images qualitatively for the first time.  

 

5.3.2.1.  Consistency Among PH images in Adjacent Frames  

The best way to examine the consistency among extracted features for atherosclerotic 

plaque characterization using IVUS is to examine the PH images in adjacent frames. We 

know that the local properties of lesions are not changed very much in successive frames 

taken 16µm  apart. In other words, the plaque characteristics are gradually changed 

during pullback and abrupt changes among successive tissue color maps are not expected. 

Movie 5.1 and Movie 5.2 demonstrate the grayscale images and corresponding changes 

in plaque constituents in constructed PH images for 15 consecutive frames where five of 

them have been shown in Figure 5.5(a). Contrary to IVUS-VH algorithm that deploys 

gating protocol and provides the VH images for every other 30 frames, our technique 

generates the PH images for all acquired frames. We counted number of pixels 

corresponding to every tissue types in each frame and Figure 5.5(b) show the Box-

Whisker of counted pixels for all 15 frames. Since fibro-lipidic tissue appears in outer 

boundaries, some of the differences for this tissue are due to manual tracing of luminal 

borders by expert particularly for the last few frames.  
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5.3.2.2.  Stationary Catheter with Change of Pressure 

During catheterization procedure, the coronary artery is dilated and relaxed due to 

pressure changes. The effects of change of pressure on extracted features, especially 

those derived form normalized spectrum, are unknown and have not been investigated 

                                                                                           (b) 
Fig. 5.5. Five consecutive in vivo IVUS grayscale images acquired with a 40MHz single-element 
Boston Scientific transducer (top row) and corresponding generated PH images (bottom row) (a), Box-
Whisker plot of number of pixels for each tissue type in 15 consecutive frames (b). 

  (a) 
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and reported by any group yet. In fact any reliable tissue characterization algorithm must 

be as less sensitive as possible to any change including pressure and its consistency 

should be validated. Therefore, we performed an experiment and changed the pressure 

(a) 

                                                                                (b) 
Fig. 5.6. Effects of change of pressure on generated PH images. In vitro grayscale IVUS images 
acquired at three different levels of pressures (from 20mmHg to 120 mmHg) for a particular cross 
section of interest (no pullback) (top row), and corresponding constructed PH images (bottom row). 
Box-Whisker plot of number of pixels for each tissue type in 30 consecutive frames (b). 
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while acquiring the IVUS images at a single CSI (no pullback), Movie 5.3 and Movie 

5.4. Figure 5.6(a) displays the effects of change of pressure on the grayscale IVUS 

images and constructed PH images at three different levels of pressure, respectively. 

Similar to previous experiment, we counted the number of pixels for every tissue types in 

each frame during change of pressure, Figure 5.6(b). Although the morphology of 

pathological structures are changed, the global interpretations on the PH images remain 

unvaried, keeping in mind that some of the variations are due to the 

contractions/expansions of the plaque in 3-D volume as well as manual tracing of the 

luminal borders by expert. 

 

5.3.2.3.  Effects of Flowing Blood 

It has not been verified by any group to date whether in vitro trained classifier can be 

used for in vivo classification or not. In general, the supervised classifier is trained using 

in vitro derived features deploying PBS while the effects of flowing blood on in vivo 

constructed tissue color maps remained unknown. For this purpose, we acquired the 

IVUS signals in PBS and human blood solution for each segment. Figure 5.7 

demonstrates the IVUS grayscale images of a cross section of interest acquired using 

circulating Saline as well as human blood and corresponding constructed PH images 

along with H&E histology image. As seen, imaging of the plaque in blood introduces 

some differences although the overall interpretation seems to be very similar. However, 

not much is known about the nature of these differences, other than that imaging plaque 

through blood (which is difficult to duplicate in vitro) can be expected to introduce some 

differences and also that tissue fixation through formalin (which situation is absent in 
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vivo) might alter the tissue response to ultrasound. It is therefore crucial that we explore 

the nature of these dissimilarities (i.e. the attenuation of signals in blood, blood flow rate, 

etc.) since it impacts the in vivo classification accuracy using an in vitro trained classifier.  

As long as the differences found in the tissue signatures between the in vitro and in vivo 

imaging situations are systematic, it may still be possible to empirically re-tune an in 

vitro-trained algorithm to reliably perform in vivo.  Since the initial angular position of 

the transducer element during acquisition for two CSIs were different, the IVUS 

grayscale images were slightly rotated. 

 

 

Fig. 5.7. IVUS grayscale image of a cross section of interest using circulating Saline (a) and 
corresponding constructed PH image (b), IVUS grayscale image of the same cross section acquired with 
circulating human blood (c) and corresponding constructed PH image (d), H&E histology image of the 
same cross section (e). 
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5.3.2.4.  Classification of Tissues Behind Arc of Calcified Plaques 

We pointed to the unreliability of tissue classification in the regions behind the arc of 

calcium [90] for the first time. We concluded that the acoustic shadowing in the grayscale 

IVUS images, caused by attenuation of signals in dense calcified tissues, limited lesion 

assessment in these regions. We examined the CSIs that contained calcified plaques and 

confirmed that not enough reliable features existed throughout the regions behind the arc 

of calcified region extended to the vessel wall. We only had found noise-like signals 

behind these regions. Consequently, in the ISODATA classifier, we assigned one of the 

classes to “no tissue” to encompass such limitation into resulting PH images.  Figure 5.8 

illustrates a CSI with a large calcified plaque, in which the corresponding region was 

partially labeled as background or lack of tissue. The reliability of characterization of 

tissues behind arc of classified plaque later was studied and reported by authors in [125]. 

In fact, recent developed algorithms have taken this limitation into account and either 

mark tissues in these regions with “no tissue” [121] or detect them automatically and do 

not classify them [77,87]. 

                       (a)                                                     (b)                                                      (c) 
Fig. 5.8. Sample H&E histology image of a calcified CSI (a), grayscale image of the CSI using Saline 
(b) and corresponding PH image (c). The tissues behind arc of calcified plaque, marked with white star 
(7-9 o’clock), have been classified as no tissue. 
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5.4.  Summary and Conclusion 

In this paper we presented a reliable texture-derived atherosclerotic plaque 

characterization algorithm as an alternative to spectrum-based approaches like IVUS-VH, 

and IB-IVUS analysis. We deployed a multi-channel wavelet packet frame representation 

and extracted textural features along with unsupervised ISODATA classifier to generate 

PH images. The accuracy of the algorithm was evaluated by an independent 

histopathologist and reported to be 99.70%, 87.75% and 90.87% for calcified, fibrotic 

and fibro-lipidic tissues respectively in 83 CSIs collected from 32 hearts ex vivo. We 

presented the qualitative results of fundamental issues that have not been considered by 

any group previously.  We showed that our algorithm could provide fairly reliable results 

under various conditions such as pressure changes and presence of arc of calcified 

plaques (a complete study of such variations is a topic of future work). We also 

demonstrated constructed PH images for same CSIs acquired in vitro using circulating 

saline and human blood and observed that the overall interpretation of PH images were 

alike. It was important to validate the reliability of an in vitro trained classifier for in vivo 

atherosclerotic plaque characterization. Ongoing studies include further analysis and 

quantification of abovementioned issues.  

 

The most important and practical advantage of this algorithm is that it can be performed 

on both IVUS RF signals as well as grayscale images and reliably classify tissues 

independently of the transducer center frequency while inconsistency among the spectral-

derived features within the functional range of bandwidth still remains a major challenge. 

Our results showed a fine differentiation between fibrotic and fibro-lipidic components, 
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which had been a major challenge in the field. Above all, we showed that constructed PH 

images through our unsupervised approach could be reliably used for building training 

sets in any supervised classification approach without any manual labeling in the 

typically highly heterogeneous media of atherosclerotic plaques. 
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6.  Chapter Six: 

AUTOMATIC DETECTION OF LUMINAL BORDER 

IN IVUS IMAGES: PRELIMINARY STUDY 

IVUS image segmentation has been a subject of interest for researchers due to the rapidly 

growing use of this imaging modality in catheterization procedures for the following two 

main reasons. First, one important parameter during angioplasty or stent implantation 

procedure, is the ratio of lumen to artery cross sectional area for stenoses regions. For 

instance, the interventional cardiologist uses these measurements to select the appropriate 

type, length and diameter of a stent. Secondly, vessel walls and lumen contours are 

required to be traced prior to tissue characterization and plaque RF signals extraction. 

Pullback IVUS data files contain thousands of cross-sectional images, automatic 

extraction of vessel wall and lumen borders has been the topic of only a few research 

efforts [126-129] and remains a challenging image processing problem.  

 

Clinical application of automated segmentation methods has seen limited success due to 

the presence of guide wire, the presence of arc of calcified plaques, the motion of the 

catheter as well as heart, and appearance of sub branches. Generally speaking, on IVUS 

image data, detection of the external vessel wall border is relatively easier than internal 

lumen border. This is due to the fact that media, which consists of smooth muscle cells 

reflect no signals and usually appears as dark strip so it is used as a marker for vessel wall 

border detection. Finding such a marker for lumen border is more challenging 
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particularly in images acquired with high frequency transducers (40MHz up). Comparing 

IVUS ultrasound probes, the lumen border is better depicted in images acquired with a 

64-element phased-array 20 MHz transducer in comparison with those acquired with a 

single element mechanically rotating 45 MHz transducer. Figure 6.1 illustrates four 

distinct cross-sectional grayscale IVUS images acquired with 64-elements phased-array 

20MHz, as well as a single-element rotating 30 MHz, 40 MHz, and 45MHz transducer. 

As we can see, at higher center frequency spatial resolution is improved, at the cost of 

more scattering from red blood cells inside the lumen.  

 

This chapter covers developed multiscale brushlet-based algorithms for IVUS image 

filtering and segmentation of lumen border resulting form a collaboration study between 

Heffner Biomedical Imaging Lab (HBIL) at Columbia University (New York, NY) and 

VOLCANO Corporation (Rancho Cordova, CA) from September 2008 to August 2009.  

 

 

                (a)                                       (b)                                       (c)                                       (d) 
Fig. 6.1. Four distinct IVUS frames acquired with 20 MHz (a), 30 MHz (b), 40 MHz (c), and 45 MHz 
(d) transducers. Red border represents lumen border.   
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6.1.  Background 

We collected IVUS grayscale images from patients, as described in Section 3.2.1, using a 

single element mechanically rotating 45 MHz Revolution™ transducer and s5™ imaging 

system manufactured by VOLCANO. The catheter was advanced on top of the guide 

wire from the femoral artery toward the site of coronary arterial occlusion (i.e. RCA, 

LAD, LCX, Figure 3.1) via aorta. Figure 2.6 displays a schematic of an artery, its 

anatomical structures, catheter and four distinct IVUS frames acquired with transducers 

with different center frequencies including 45MHz.  

 

6.1.1.  Rational Behind the Use of Brushlet Basis Function in IVUS 

Image Analysis 

As we mentioned previously, IVUS provides rich temporal as well as spatial resolution of 

plaque and arterial wall structures. Due to sufficient temporal resolution (~0.167mm), 

plaque structures appear to be relatively persistent within limited number of frames (e.g. 

eight frames) that is defined as sub-volume. We hypothesized that projection of IVUS 

temporal sub-volumes on brushlet basis functions provides complex directional-derived 

features of both temporal and spatial domains 1) enabling us to characterize coherent 

plaque textures versus dynamic and incoherent blood speckle noise along the pullback 

dimension, 2) alleviating variations among extracted features from similar plaque 

structures depending on a) their orientations with respect to transducer’s position in its 

spiral-like trajectory, b) genuine changes in physical characteristics within particular 

tissue type, and c) variations in transducer’s properties. The inter- and intra-frame 
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variations in extracted features [130] (i.e. the maximum absolute amplitude and 

maximum power in spatial and spectral domains, respectively) makes tissue 

characterization (i.e. blood versus non-blood) very challenging through global intensity-

based thresholding techniques. It is worth mentioning that the strong spatial coherence in 

the appearance of plaque, arterial wall and surrounding fats within an IVUS sub-volume 

is better expressed and visualized in polar representations (the original domain of 

acquisition) of the image data. Hence, we design our framework upon multi-scale 

analysis of textural features, which is the most compatible analysis to human and 

mammalian vision processing systems due to its conservation of energy in both spatial 

and frequency domains [113,114]. We will take advantage of the spatial-frequency-

localized expansions such as brushlet analysis and their generalization to 3-D to discern 

the textural patterns on constructed images from backscattered IVUS signals. One of the 

major advantages of expansion of IVUS sub-volumes onto orthogonal brushlet basis 

functions is that it is invariant to intensity so that the extracted brushlet coefficients do 

not depend on intensity but spatial frequency content of IVUS signals. In addition, the 

brushlet is a well-localized complex valued function in time and frequency domains that 

is suitable for analyzing the local frequency content of IVUS signals and offers an 

orthogonal transform of the Fourier coefficients, which are Hermitian-symmetric so the 

phase information might also be used in IVUS image filtering and eventually detection of 

lumen border.  
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6.1.2.  Brushlet Analysis 

We are particularly interested in orthogonal localized exponentials basis functions since 

they enable us to characterize valuable information about the direction of textures at 

different scales, frequencies, and locations. Brushlet basis was first introduced in [131], 

as a family of steerable functions, that provide projected coefficients associated with 

particular brushstrokes (of specific sizes and orientations), analogous to a wavelet scaling 

function, yielding the characterization of textural features with distinct directions 

corresponding to specific brushlet functions. The functions divide the real axis into 

subintervals an ,an+1[ ]  of length ln , and define a brushlet analysis function, as follows: 

   

uj ,n x( ) = bn x − ln 2( )ej ,n x( ) + v x − an( )ej ,n 2an − x( ) − v x − an+1( )ej ,n 2an+1 − x( ) 6.1( )  

The bn x( )  and v x( )  are two localized window functions, providing the orthogonality 

property.  The complex orthonormal basis function, uj ,n x( ) , can be constructed using 

these two functions along with the complex exponential function ej ,n x( )  that is defined 

as: 

                                              ej ,n x( ) = 1
ln
e
−2iπ j

x−an( )
ln 6.2( )  

Figure 6.2 illustrates the windowing functions as well as the imaginary and real parts of 

uj ,n x( ) . Given any one-dimensional signal f  in L2 R( ) , its Fourier transform f̂  can be 

projected onto the brushlet basis as f̂ = λ j ,n u j ,n 6.3( )
j
∑

n
∑ , where λ j ,n  are the 

brushlet coefficients. It has been shown that the projection of  f̂  onto the brushlet basis 



 

 

118 

can be implemented in an efficient fashion using a folding technique and fast Fourier 

transform (FFT) [132]. The major advantage of brushlet basis over wavelet packets is the 

unique well-localized frequency response of each extracted coefficient and also arbitrary 

tiling of the time-frequency plane. The analysis can also be extended to n-D via separable 

tensor products. Although the primary application of brushlet analysis, presented in 

[131], was for image compression authors in [133] introduced an overcomplete 

representation of brushlet analysis and successfully developed a denoising/enhancing 

scheme to automatically extract left ventricular (LV) endocardial borders in real-time 3-D 

(RT3D) (4-D) echocardiograms. Figure 6.3 demonstrates the schematic of feature 

extraction procedure (computing brushlet coefficients) and selection of features along 

arbitrary numbers of directions.  

 

By applying the inverse Fourier transform, we can then compute the decomposition of 

signal f  onto the orthonormal synthesis function wj ,n x( )  defined as: 

wj ,n x( ) = ln e
2iπan −

ln
2( ) × −1( ) j b̂σ lnx − j( ) − 2i sin πlnx( ) v̂σ lnx + j( )⎡⎣ ⎤⎦ 6.4( )  

                        (a)                                                        (b)                                                     (c) 
Fig. 6.2. Windowing functions b x( )  and v x( ) (a). The  ε  parameter controls the localization degree 
of brushlet function in time and frequency domains. Real part (b) and imaginary part (c) of analysis 
un , j  brushlet function with ln = 32 ,ε = 16 , j = 8.  
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with scaling factor ln , translation factor j , and steepness factor σ =
ε
ln

. The parameter ε

controls the degree of localization of brushlet analysis and synthesis functions in time and 

frequency domains, respectively. Pair of synthesis brushlet functions has been depicted in 

Figure 6.4. The schematic of reconstruction process, after enhancement or thresholding 

of brushlet coefficients, is also shown in Figure 6.5.  

 

In the rest of this chapter, we project 3-D IVUS volumes in polar coordinates with 

brushlet overcomplete expansion. Our hypothesis is that complex brushlet coefficients in 

transformed domain provide information regarding plaque and blood regions at different 

orientations. Figure 6.3 demonstrates the schematic of feature extraction procedure 

(computing brushlet coefficients) and selection of features along arbitrary numbers of 

directions.  

 

Fig. 6.3. Schematic expansion of IVUS sub-volumes onto brushlet basis, tiling of frequency domain 
(4x4x2) and selective feature extraction along eight directions corresponding to low-frequency 
components.   
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As we can observe, the more cubes for tiling of frequency domain is used, the more 

orientations (angular resolution) are obtained. Perhaps, there is a tradeoff between spatial 

and frequency resolutions and the smaller cubes are employed, the better frequency 

resolution is achieved at cost of less resolution in spatial domain. As we pointed 

previously, authors in [131] introduced the brushlet analysis for compression of richly 

textured images. They further presented an adaptive tiling approach to obtain the most 

concise and precise representation of an image in terms of oriented textures with all 

possible directions, frequencies, and locations. Contrary to image compression where the 

least numbers of coefficients are desirable to be transmitted, we try to preserve as much 

textural information (coefficients) as possible due to stringent behavior of blood and 

plaque signals. Thus, over-completeness of the decomposition is advantageous in IVUS 

Fig. 6.4. Real (a) and imaginary (b) parts of synthesis function, wj ,n x( ) , corresponding to Figure 6.2 
(b,c).  
 

Fig. 6.5. Schematic of reconstruction after thresholding or enhancement of brushlet coefficients.  
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lumen border detection and segmentation. Such redundant representation of the original 

data in multiscale analysis makes the brushlet analysis shift invariant, which is a suitable 

for segmentation task. Before we continue, we need to define some terminologies and 

notations that we will use for the rest of this chapter.  

 

Sub-volume 

We processed each acquired IVUS pullback by truncating it into small volumes called 

sub-volume that contained limited number of frames (e.g. 8 or 16 frames).  

 

Fourier Domain Tiling 

Extension of brushlet analysis to n -D n ≥ 2( )  through separable tensor products 

provides flexibility in partitioning the transform domain known as tiling. The tiling of 

Fourier domain allows us to analyze signals at specific orientation, frequency, and 

resolution.  

 

6.1.2.1.  Notation Convention for Tiling of Fourier Space 

For the sake of clarity, we define our notations so individual or ensemble of cube(s) in 

Fourier space can be uniquely represented. Given expanded sub-volume of IVUS data of 

size X ×Y × Z  onto 3-D brushlet basis in an overcomplete fashion, the Fourier space can 

be tiled with n,m, p  cubes in ux ,uy ,uz  directions, respectively, assuming: 

1- n,m, p  are of power of two.  

2- n = m .  
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After expansion, each cube is indexed incrementally starting from the most left-top cube 

in roster format as shown in Figure 6.6. We also use two terminologies that refer to 

ensemble of cubes, defined as follows: 

 

Subband 

Refers to frequency space tiling resolution. For example, in Figure 6.6, we used 4, 4, and 

3 cubes in ux ,uy  and uz  directions, respectively to tile the frequency space and obtain 4, 

4, and 3 sub-bands of cubes in the same directions.  

 

Ring of cubes 

 

Refers to ensemble of symmetric cubes that span 360o  in any frequency plane. We 

mainly focus on constructed rings in ux ,uy( )  plane, Figure 6.7(a). An individual ring can 

Fig. 6.6. Indexing convention used after tiling of frequency space.  4x4x3 cubes are used to tile the 
frequency space, resulting 48 quadrants. Each quadrant is indexed incrementally, starting from the most 
left-top quadrant in roster format.  An individual quadrant is represented by its index and sub-band 
numbers qindex #

subband # .  
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be represented by its index and subband numbers Rindex #
subband # . For example, the highlighted 

ring in Figure 6.7(a) is denoted by R1
2 .  

 

 

Cubes’ sphere 

Refers to ensemble of cubes that span 360o and encloses the center of the Fourier space 

ux ,uy ,uz( ) = 0,0,0( )( ) , Figure 6.7(b,c). Each sphere can be represented by its index 

number Sindex # . For example the illustrated spheres in Figure 6.7(b) and Figure 6.7(c) 

can be denoted by S1  and S2 , respectively.  

 

For the rest of this chapter, we will investigate numbers of important factors (i.e. tiling of 

frequency domain, selection of the most informative cubes through visualization of 

brushlet coefficients, etc) in IVUS 3-D brushlet analysis, and describe developed 

techniques in details, and demonstrate results along with quantification.  

                                  (a)                                       (b)                                     (c) 
Fig. 6.7. First ring of quadrants in the 2nd subband (a), first quadrants’ sphere (b), and second quadrants’ 
sphere (c).  
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6.2.  Lumen Border Detection via Thresholding of Brushlet 

Coefficients 

The presence of blood speckles within the sub-volume of analysis is considered to be 

dynamic due to blood flow. In other words, the appearance of regions corresponding to 

plaques, vessel wall and surrounding fat is more stable within successive frames than for 

the blood pool. Consequently, we can assume that there is a strong spatial coherence in 

the appearance of plaque, arterial wall and surrounding fats within blocks of the analysis. 

This coherence is organized in concentric circular layers in Cartesian domain and is 

better expressed and visualized in polar representations of the image data. Furthermore, 

in brushlet analysis, tiling of frequency domain and expansion are based on a regular 

square lattice, which are better correlated with homogeneous textured patterns in polar 

r,θ( )  rather than Cartesian x, y( )  image representation. Hence, the analysis is performed 

in polar domain and final results are mapped back to Cartesian coordinates for visual 

display. The underlying hypothesis for brushlet filtering via thresholding is that blood 

speckle can be removed by including the pullback dimension in the textural brushlet 

analysis in the frequency domain and appeared as high frequency components. Therefore, 

we apply a 3D (cross-sectional image of arterial content + pullback distance) 

overcomplete brushlet analysis to sub-volumes of IVUS frames in polar coordinates 

during each pullback.   
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6.2.1.  Frequency Tilling and Overcomplete Representation 

We partitioned the IVUS pullback data into temporal sub-volume of analysis without 

overlap and project them onto 3-D brushlet basis. The decomposition of IVUS sub-

volumes onto the brushlet orthonormal basis provides selectable textural features with 

different orientations in the Fourier (brushlet) domain, Figure 6.3. Since, we deal with 

volumetric datasets, this can be reliably performed by tilling the Fourier domain into 

quadrants (cubes), each representing a specific size and orientation of a brushstroke, 

which is analogous to a wavelet scaling function. We used an overcomplete multiscale 

representation of the brushlet coefficients for two reasons. First, we avoided aliasing 

effect and secondly, we intended to preserve as much textural information as possible in 

the transform domain due to the stringent behavior of blood and plaque signals that 

makes the lumen border detection very challenging. 

 

6.2.2.  Thresholding for Removal of Blood Speckle 

The purpose of this study is to offer a reliable filtering algorithm by removing blood 

speckles, such that the resulting filtered data can be employed as an input for any 2D or 

3D segmentation algorithm. We treated dynamic behavior of blood speckles as noise that 

could emerge as high frequency components in transformed domain. Therefore, we only 

considered coefficients from different directions corresponding to low frequency 

components in 3D brushlet domain.  We then employed the magnitude of brushlet 

coefficients as a condition to perform thresholding and zeroed out the coefficients that 

had values below the selected threshold and finally reconstructed the sub-volume of 

IVUS data. Figure 6.8, Shows the resulting filtered images with two different threshold 
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values. As we can see, when the threshold value was increased T = 0.5( ) , better result 

was obtained and we could partially remove blood speckles, Figure 6.8(c). Although we 

chose the threshold values empirically and results were not perfect (especially for part of 

the pullback that had registration problem) they showed that brushlet-based denoising 

approach had a great potential to be used as a preprocessing step for lumen border 

detection.  

 

 

6.2.3.  Segmentation Framework and Detection of Lumen Border 

We used the iterative conditional model (ICM) segmentation framework to segment the 

IVUS data into 4 regions (layers), characterized by their average gray values. The ICM 

segmentation framework corresponds to a discrete minimization of the piece-wise 

Mumford and Shah functional energy [134] replacing curvature constraints with a 

Markovian regularization of the contours. The Markovian regularization provides a very 

efficient computational framework to control orthogonal and vertical associations of 

similar class labels when applied on a regular lattice corresponding to 4-neighbor pixels 

                       (a)                                                      (b)                                                      (c) 
Fig. 6.8. Original IVUS frame (a), filtered result with threshold values of T=0.25 (b) and T=0.5 (c). 
Manual traced borders (red), representing lumen border and blood speckles inside luminal area.  
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in 2D. Such a constraint is ideal for circular patterns such as vessel layers, when 

displayed in polar coordinates. We therefore applied the ICM on the IVUS original and 

filtered volumes in polar coordinates. Consequently, classification results were 

transformed to the Cartesian coordinates for visualization and extraction of the center 

contours with a standard parametric deformable model applied on thresholded ICM 

classifications for the four classes and imposing a regular growth of vessel contour areas 

by iteratively initializing the deformable model with lower-class results. This extraction 

step was performed after dilation of the ICM classification results with a horizontal line 

structuring element of 70 pixels, in polar coordinates. This computational step was 

designed to close the open and unconnected borders to obtain better results from 

parametric deformable model and estimate the lumen border more precisely, as illustrated 

in Figure 6.9. 

Fig. 6.9. ICM segmentation. 4-classes ICM results for original image in polar (a), Cartesian (b) 
coordinates, and after dilation (c). 4-classes ICM results for filtered image in polar (e), Cartesian (f) 
coordinates, and after dilation (g).  
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6.2.4.  Results and Discussion 

In the first experiment, we processed IVUS volumes of size 512 × 512 × 2  and the 

Fourier domain was tilled using four, four and two cubes in x , y  and pullback 

dimension respectively each with overcomplete representation. In this case, the 

brushstroke orientation was ±90 , ±90   and ±180  in x , y  and pullback direction, 

respectively. We repeated the experiment using volumes of size 512 × 512 × 8  to ensure 

adequate spatial resolution in the pullback dimension (8 slice depth). Higher spatial 

resolution in this dimension resulted in blurred denoised data due to the effects of the 

motion of the catheter and heart.  

 

Figure 6.10 illustrates the results of our segmentation algorithm, in the second 

experiment, on original IVUS image and resulting filtered image using a hard 

(a) (b) 
Fig. 6.10. Segmentation results at two different layers (red and blue) along with manually traced 
contour by an expert (yellow) on original (a) and filtered (b) IVUS images.  



 

 

129 

thresholding operator. For this purpose, the thresholding was performed in each cube 

empirically for the threshold value of 50% of the maximum value of real part of the 

coefficients. The resulting filtered coefficients were then classified into four groups with 

uniform gray level values for ICM initialization. However, we only extracted the 

contours from the first two layers since they better approximated the true lumen border. 

As we can see, the segmentation algorithm outperforms on filtered images and the 

automated borders at two layers (red L1 and blue L2) are well correlated and matched 

with manually traced lumen border (yellow) traced by an expert cardiologist.  

 

For both experiments the regression analysis was performed to evaluate the agreement 

between automated and manual traced contours for 104 frames within a pullback, Figure 

6.11(a). In addition, we computed the Tanimoto coefficients to see how well the 

automated and manual contours are matched throughout the pullback, Figure 6.11(b). 

The Tanimoto coefficient η( )  is calculated as follows: 

                                                          
η =

Nc

Na + Nm − Nc

6.5( )  

where, Na ,Nm  are the number of enclosed pixels in automated and manually traced 

contours respectively and Nc  is the number of common pixels in both. The average 

Tanimoto coefficients for L1 and L2 borders in the first experiment, using block size of 

512 × 512 × 2 , found to be 41.75 ±13.46 and 69.16 ± 7.37 , respectively, which were 

less than the computed Tanimoto coefficients for the second experiment using block size 

of 512 × 512 × 8  IVUS frames (case #1, Table 6.1). The Tanimoto coefficients show the 

highest agreement in positioning of automated and manually traced borders. According to 
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Figure 6.11(b), the higher Tanimoto coefficients were achieved for the first 50 frames 

where the pullback was more consistent. Our results show that the incoherent pattern of 

blood speckle is better captured in longer IVUS volumes although the changes in plaque 

textures or motion artifacts may be more observed that can degrade the results (frames 51 

and 81 in Figure 6.11(a)). This suggests an adaptive processing technique in future. 

Table 6.1 summarizes the Tanimoto coefficients statistics as well as correlation values 

Fig. 6.11. Evaluation of detected contours at two layers (L1,L2) in 104 IVUS frames within a pullback 
with two different block sizes. Tanimoto coefficients (a), Regression analysis (b).  
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for 233 frames extracted from three distinct cases using block size of 512 × 512 × 8  

IVUS frames. Overall, the extracted contour at the second layer (L2) found to have more 

agreement with manually traced borders.  

 
Table 6.1. Tanimoto coefficient statistics and correlation between automated and manually traced borders 
in 233 frames collected from three distinct cases. 

 Number 
of Frames 

Mean Tanimoto 
Coefficients 

Maximum 
Tanimoto 

Coefficients 

Minimum 
Tanimoto 

Coefficients 

Correlation 
(p<0.0001) 

Case # 1 104 L1 : 64.12 ± 10.56

L2 : 71.34 ± 4.74
 

L1 : 84.85

L2 : 81.02
 

L1 : 42.78

L2 : 57.53
 

L1 : 0.79

L2 : 0.78
 

Case # 2 104 L1 : 71.10 ± 9.69

L2 : 72.70 ± 4.05
 

L1 : 84.20

L2 : 81.09
 

L1 : 48.33

L2 : 60.87
 

L1 : 0.78

L2 : 0.80
 

Case # 3 25 L1 : 69.73 ± 4.22

L2 : 77.08 ± 4.63
 

L1 : 77.69

L2 : 86.93
 

L1 : 60.47

L2 : 70.14
 

L1 : 0.94

L2 : 0.95
 

 
 
 
 

6.2.5.  Summary 

We presented a 3D filtering technique based on brushlet representations to remove blood 

speckles in IVUS images acquired with a 45MHz single-element transducer. We further 

used filtered volumes as input to a 3D multi-region multi-channel segmentation algorithm 

to estimate the lumen border. We observed that the algorithm performance was 

encouraging especially in consistent pullback where there is a strong spatial coherence in 

the appearance of plaque. We mainly tiled the Fourier domain using fixed number of 

cubes (four, four and two cubes in x , y  and pullback dimension, respectively) each with 

overcomplete representation and extracted the low frequency complex brushlet 

coefficients. We also considered the tiling of frequency domain using more number of 

cubes (higher resolution) and studied the effects of such tiling on reconstructed filtered 

IVUS volumes. The resulting images were more blurred due to spatial-frequency 
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resolution trade off similar to Heisenberg uncertainty principle. Figure 6.12 illustrates a 

filtered IVUS frames resulting from thresholding of coefficients in cubes corresponding 

the low frequency components. The automated detected borders with elliptical shape 

constraint have been displayed too. It is worth mentioning that the algorithm performance 

was degraded particularly within those frames that encompassed misregistration due to 

catheter and heart motions.  

 

 

6.3.  Distribution of Brushlet Coefficients 

We look at the distribution of coefficients, assuming the most valuable information 

resides in cubes corresponding to low frequency components. For this reason the 

distribution of real and imaginary parts as well as magnitude of coefficients at different 

orientations were considered. We know that tiling the Fourier domain into specific 

numbers of cubes, yields cubes that contain more information for differentiation between 

blood and non-blood regions than the rest. For instance, the real part of brushlet 

                      (a)                                                        (b)                                                       (c) 
Fig. 6.12. Original IVUS frame (a), filtered IVUS frame using tiling of frequency domain with 
16x16x8 cubes (b), automated detected contours with elliptical shape constraint at first layer (L1, red), 
second layer (L2, blue), third layer (L3, green) and forth layer (L4, magenta) along with manually 
traced lumen (yellow) as well as vessel wall (cyan) borders (c).  
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coefficients in one direction, Figure 6.13(c), provides better delineation between blood 

and plaque textures compared to another one that is shown in Figure 6.13(d). This can be 

also seen by looking at the corresponding filtered results after thresholding, Figure 

6.14(a) and Figure 6.14(b). Therefore, the challenge is to identify the most informative 

cubes and set proper threshold values in order to eliminate coefficients corresponding to 

blood textures more efficiently. Considering the distribution of brushlet coefficients 

within each cube can do this.  

 

We used the manual traced borders to differentiate blood from non-blood regions and 

mask out corresponding coefficients in each cube. Figure 6.15 illustrates the 1-D 

                 (a)                                      (b)                                       (c)                                      (d) 
Fig. 6.13. IVUS frame in Cartesian (a) and polar (b) coordinates and the real part of brushlet 
coefficients at two different orientations (cubes) corresponding to low frequency components in 4x4x2 
expansion scheme.  

            (a)                              (b)                              (c)                              (d)                              (e) 
Fig. 6.14. Thresholded brushlet coefficients corresponding to Figure 6.13(c) (a), and Figure 6.13(d) (b), 
classified denoised image using ICM algorithm and four classes in polar (c) and Cartesian (d) 
coordinates, filtered image corresponding to Fig. 6.13(a) and automated detected borders extracted from 
four classes along with manually traced border (yellow) (e).  



 

 

134 

histograms of real and imaginary parts along with magnitude of brushlet coefficients in 

the four innermost cubes at the first subband in 4x4x2 expansion scheme. As we can see, 

the largest separation between blood and non-blood coefficients is derived from cube 14 

(+45 direction). Similar distributions were obtained from cubes at the second subband 

and coefficients in cube 22 (-45 direction) demonstrated the largest separation.  

 

Based on our observations, computed coefficients in cubes that represented expansions 

along ±45  exhibit the most informative features in terms of delineation between blood 

and non-blood regions. Figure 6.16 illustrates the histograms of real and imaginary parts 

of brushlet coefficients as well as their magnitudes at those cubes for both blood and non-

                         (a)                                                      (b)                                                    (c) 
Fig. 6.15. Real part (a), imaginary part (b), and magnitude (c) of brushlet coefficients in the four 
innermost cubes at the first subband in 4x4x2 expansion scheme corresponding to blood and non-blood 
regions.   
 

                         (a)                                                    (b)                                                       (c) 
Fig. 6.16. Real part (a), imaginary part (b), and magnitude (c) of brushlet coefficients in two cubes (14 
and 22) that exhibits the largest separation.  
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blood cases. These findings motivated us to detect lumen borders by using filtered images 

reconstructed from thresholding of coefficients in the most informative cubes. Figure 

Fig. 6.17. Automated (red (L1), blue (L2), green (L3), and magenta (L4)) detected borders depicted on 
few denoised IVUS frames along with corresponding manual (yellow) traced borders. The results are 
achieved from expansion of sub-volume of IVUS frames in 4x4x2 scheme followed by thresholding of 
coefficients in cubes representing ±45o .  

                                        (a)                                                                                     (b) 
Fig. 6.18. Validation of automated detected borders within short pullback with respect to manually 
traced borders. Calculated Tanimoto coefficients and corresponding statistics (a) Linear regression 
analysis (b).  
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6.17 and Figure 6.18 illustrate automated as well as manual traced borders on few IVUS 

frames, resulting from thresholding of coefficients in cubes representing ±45 , and 

computed correlation along with Tanimoto coefficients, respectively. 

 

By looking at depicted histogram of imaginary part of brushlet coefficients in Figure 

6.16, we note that brushlet coefficients in cubes 14 and 22 are anti-symmetric and it is 

because the original IVUS data is real. Hence, we performed another experiments and 

filtered IVUS sub-volumes by thresholding brushlet coefficients only in cube 14 and 

generating a binary mask. The binary mask then used to zero out the coefficients in the 

rest of the innermost cubes. Figure 6.19 and Figure 6.20 illustrate automated as well as 

manual traced borders on few IVUS frames along with computed Tanimoto coefficients 

and corresponding statistics, respectively. 

 

We detected borers at different layers (classes) that depended on number of classes 

chosen in ICM classification algorithm. Although the very two borders estimated the 

lumen border closely we need to find an approach to uniquely select one automatically. 

One possible solution could be use the average of both detected borders (L1 and L2). 

Furthermore, the main limitation associated with employed technique was finding the 

right threshold value. One possible solution is to implement a supervised classification 

approach using Neural Networks (NN) to distinctively approximate the lumen border.  
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Fig. 6.19. Automated (red (L1), blue (L2), green (L3), and magenta (L4)) detected borders depicted on 
few denoised IVUS frames along with corresponding manual (yellow) traced borders. The results are 
achieved from expansion of sub-volume of IVUS frames in 4x4x2 scheme followed by thresholding of 
coefficients in cubes representing +45o  and zeroing out coefficients in the rest of innermost cubes 
using generated binary mask.   
 

Fig. 6.20. Calculated Tanimoto coefficients for a short pullback and corresponding statistics.  
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6.4.  Classification of Blood Regions in IVUS Images Using 3D 

Brushlet Expansions                             

The presence of incoherent blood speckle patterns makes the assessment of lumen size in 

IVUS images a challenging problem, especially for images acquired with recent high 

frequency transducers (40MHz up). In the rest of this section, we present a robust 3D 

feature extraction algorithm based on the expansion of IVUS cross-sectional images and 

pullback directions onto an orthonormal complex brushlet basis. We select the 3D low-

frequency complex brushlet coefficients to train a neural network and generate blood map 

images. Several features are selected from the projections of low-frequency 3D brushlet 

coefficients. These representations are used as inputs to a neural network that is trained to 

classify blood maps on IVUS images. We will evaluated the algorithm performance using 

repeated randomized experiments on sub-samples to validate the quantification of the 

blood maps when compared to expert manual tracings of 258 frames collected from three 

patients. Our results demonstrate that the proposed features extracted in the brushlet 

domain capture the incoherent structures of blood speckle good enough, enabling 

identification of blood pools and enhancement of the lumen area.  

 

6.4.1.  Feature Extraction Methodology 

One of the main advantages of a brushlet expansion is that one can select features along 

specific directions. Tilling the Fourier domain into numbers of cubes, each representing a 

specific size and orientation of a brushstroke, can reliably perform this. In order to train 

and then use a classifier to extract the blood regions on IVUS images, we built a vector of 
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features, combining image information, via brushlet expansion, and geometric 

constraints. First, for each quadrant of brushlet coefficients, we combined redundant 

coefficient value information: (1) magnitude values, which are typically used in spectral-

based tissue characterization algorithms [6,70,130], (2) phase values, (3) real and (4) 

imaginary values. In preliminary experiments, we observed significant improvement of 

the classifier performance when using redundant coefficient information versus only 

(real, imaginary) or (magnitude, phase) information.  

 

Geometric constraints were defined using two distance maps: a radial distance map, with 

respect to the transducer surface, computed in polar coordinates (to encode the fact that 

the blood pool is close to the transducer), and a direct map of individual pixel locations 

Fig. 6.21. IVUS frame in Cartesian (a) and polar  (b) coordinates.  Binary blood  (c) and plaque  (d) 
maps generated from manual tracing by an expert. The radial (c) and angular (d) distances are illustrated 
in red. Real part (e), imaginary part (f), magnitude (g) and phase (h) of brushlet coefficients computed 
on the radial image (b) along a single orientation.  
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(angular distance), to encode geometric information in the feature vector, which is built 

via an arbitrary rasterization of the IVUS data. These two geometric constraints are 

illustrated in Figure 6.21. 

 

6.4.2.  Classification 

Feature vectors are used as the input of a neural network classifier. More specifically, we 

employed a Multi Layer Perceptron (MLP) [135], which was trained using Back 

Propagation (BP) algorithm with adaptive learning rate. The specifications of the MLP 

design are further explained in the next section. 

 

6.4.3.  Experimental Results 

We deployed 258 IVUS frames in pullbacks data collected from three patients, consisting 

of small, medium and large blood pools to accommodate for diversity within patients. For 

each pullback, the volumetric IVUS data was partitioned into sub-volumes of size

512 × 512 × 8 . An overcomplete expansion was performed through tiling of the Fourier 

domain into four, four and two sub-cubes in x , y  and pullback direction that provided 

adequate spatial-temporal resolution. We only preserved the 2 × 2 × 2[ ]  low-frequency 

redundant coefficients, leading to a total of N=32 coefficients-based features. Finally, by 

including the two geometric features, we constructed our feature vector with N=34 

features. For the sake of simplicity and to enable a fair comparison, we used, in our initial 

experiments, an MLP topology as previously employed in IVUS related studies for lumen 

border detection [136] and catheter motion compensation [137]. The MLP had one 
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hidden layer and one neuron as output with linear activation functions. The network goal, 

adaptive learning rate, and maximum number of iterations set to 0.001, 0.01, and 5000 

epochs, respectively. For each experiment, the training set was constructed with random 

selection of 2/3 of the dataset (172 frames) and the remaining 1/3 (86 frames) were used 

for testing. For this purpose, binary masks for blood and non-blood regions in each frame 

were generated using manually traced lumen borders by an expert, as illustrated in 

Figure 6.21(b,c). 

 

First, we repeated the experiments with different numbers of neurons in the hidden layer 

(20 experiments for each) to find out the optimal setting. In order to evaluate the 

classification accuracy, the correct classification (CC) and segmentation (S) rates were 

defined as (TN+TP)/(TN+TP+FP+FN) and (TP)/(TP+FP+FN), respectively, where TP, 

TN, FP, and FN correspond to true positive, true negative, false positive, and false 

negative rates. We computed the S value, in addition to traditional CC rate, for fair 

representation of classification results since the lumen embodied small area compared to 

the whole IVUS image, causing large TN rates. The sensitivity (SE) and specificity (SP) 

Table 6.2. Classification results using neural networks with different topologies: N-M-1; N and M are 
the number of neurons in the input and hidden layers, respectively. Also shown are results using 
different numbers of features.  Correct classification (CC) rate, sensitivity (SE), specificity (SP) and 
correct segmentation (S) rate are reported. The better results are highlighted in yellow. The best 
performance was achieved using 34 features (N) and network topology of N-34-1 (green). 
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rates were also defined as TP/(TP+FN) and TN/(TN+FP), respectively. Table 6.2 

summarizes the results and demonstrates that a hidden layer with more than 15 neurons 

does not alter the results significantly. The best performance was achieved when both 

geometric features were used, confirming the influence of such features. We constructed 

blood maps using the output of linear activation functions and represented the least (blue) 

as well as the most (red) probable blood regions in color jet spectrum. Figure 6.22 

illustrates a blood map generated by the neural network and corresponding to a relatively 

small vessel. The constructed blood map provided fair representation of the lumen cavity, 

confirming that the extracted features were sufficiently reliable.  

 

Fig. 6.22. Two distinct grayscale IVUS frames. Generated blood maps (left column), superimposed 
blood maps on original grayscale IVUS images with manually traced lumen borders (yellow) by an 
expert (middle column), and automated detected lumen border (red) by thresholding the grayscale 
image resulting from output of neural network.  
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Although blood maps offer necessary information on blood regions they are not sufficient 

for detection of the lumen border, which is a priority for any blood detection algorithm. 

For this purpose, we used the output of the linear activation function in the last neuron 

layer of the neural network and constructed 8-bit grayscale images by mapping these 

values from the range of [0,1] onto [0,255], linearly. Subsequently, we used thresholding 

followed by edge detection to delineate the lumen border. Although the value of 0.5 (128 

in grayscale) seemed to be the appropriate threshold, we experimented with several 

values to validate this setting. Results are listed in Table 6.3. Given a threshold value of 

0.5, the classifier slightly overestimated the blood region compared with a threshold 

value of 0.45. This can be due to the non-linear behavior of the neural network or 

insufficiency of our current training dataset. 

 

 

Table 6.3. Classification results and comparison between manual and optimal automated lumen border, 
generated from a thresholded blood map with an optimized threshold value through linear regression 
analysis and computation of Tanimoto Coefficients (η). The best performance was achieved using 
threshold value of 0.45 (green).  
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6.4.4.  Discussion and Conclusion 

We expanded IVUS volumes onto brushlet basis functions in an overcomplete fashion 

and extracted brushlet-based features from cubes corresponding to low frequency 

components in combination with geometric features and used a neural network as a 

classifier. The reconstructed blood maps were compared to blood pools quantified with 

manually traced lumen borders, confirming that the proposed features were sufficiently 

representative of blood speckle appearance and localization. We also extracted the lumen 

border based on reconstructed grayscale images masked with the output of the neural 

network. We achieved promising results although tracking the lumen border depended on 

thresholding of generated blood maps and we chose the threshold values empirically. Our 

results demonstrated that such a supervised classification approach might resolve one of 

the most challenging problems that were detection of lumen borders in vessels with 

relatively large blood pools (lumen area). As complementary study a fast forward 

searching approach could also be a solution for finding the most informative cubes. 

Things that needed further investigation are: 

• Combining brushlet derived features with statistical (mean, standard deviation, 

kurtosis, entropy, etc) and/or textural (homogeneity, contrast, energy, correlation, 

etc) features. 

• Neural network topology.  

• Kernel size for feature extraction. 

• Performance of different classification algorithms (i.e. SVM). 
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6.5.  Visualization of Brushlet Coefficients                             

In previous performed experiments, there were numbers of factors that needed to be 

further studied such as tiling the Fourier domain (we mainly employed 4x4x2 expansion 

scheme), thresholding method (we always selected threshold values empirically), and 

finding the most informative cubes. In this section, we focus on 

visualization/enhancement of brushlet coefficients, investigate several textural features 

extracted from sum and difference histograms computed based on brushlet coefficients.  

Fig. 6.23. 3-D synthetic image, exhibiting textures with different orientations.  

                                     (a)                                                                                     (b) 
Fig. 6.24. Magnitude of brushlet coefficients in first sub-band (a), and second sub-band 
corresponding to of 3-D synthetic data in 4x4x2 expansion scheme.  
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The basic tenet of volumetric IVUS data expansion onto brushlet basis is that the phase 

of brushlet analysis function Eq. 6.1 provides information about the orientation of 

textural patterns. Given any texture with particular orientation, we can simply expand the 

data onto brushlet basis and directly extract features form cube(s) that best represent(s) 

that specific direction. For example, Figure 6.23 and Figure 6.24 display a single frame 

in 3-D synthetic image, exhibiting textures with different orientations, and its magnitude 

of computed brushlet coefficients in 4x4x2 expansion scheme, respectively. As we can 

see, features in cubes q1
1  and q16

1  as well as their correspondence in the second sub-band 

(higher frequency) q1
2  and q16

2  explicitly represent patterns corresponding to texture 1. 

Likewise, features in q4
1,2  and q13

1,2  represent patterns corresponding to texture 2. 

Although the four inner most cubes (R1
1  and R2

1  or R1,2
1  or S1 ) contain features that 

represent textures 1 and 2 they also carry out features corresponding to circular patterns 

in texture 3 and are not as explicit as aforementioned cubes. Therefore, in this particular 

case, we would extract features from cubes located at higher frequencies. 

 

However, none of structures (plaque, blood, arterial wall, epicardial fat) in IVUS images 

appear to have unique orientation. Otherwise, we would have expanded the sub-volume 

of IVUS data and extract features from cubes, representing patterns with orientation of 

interest. Figure 6.25 demonstrates real part, imaginary part and magnitude of brushlet 

coefficients for an arbitrary IVUS frame. The coefficients are anti-symmetric with respect 

to the origin because IVUS is real valued data. 
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Although we may not know precisely which cubes contain the most informative features 

we can confine our search, presuming that 1) blood speckle is translated to high 

frequency components in transformed domain due to its noise-like characteristic, 2) the 

lumen border is smooth and periodic along lateral direction in polar domain. The first 

presumption implies that the most valuable features might be found in cubes, 

                                  (a)                                                                                         (b) 

                                  (e)                                                                                         (f) 
Fig. 6.25. Real part (a,b), imaginary part (c,d), and magnitude (e,f) of brushlet coefficients in the first 
sub-band ( R1

1 , left column) and the second sub-band ( R1
2 , right column) in 4x4x2 expansion scheme.  

                                  (c)                                                                                         (d) 
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representing the low frequency components. The latter suggests a ring of cubes to be 

searched because they span 360o and enfold all possible orientations so the lumen border 

can be reconstructed in transformed domain. This can be simply observed by looking at 

R1
1,2  in Figure 6.25 that displays patterns corresponding to tube’s wall or at q2,3,14,15

1,2  in 

Figure 6.24 that represent the circular pattern corresponding to texture 3 in Figure 6.23. 

Precisely speaking, arithmetic manipulation of coefficients might be necessary to 

reconstruct the feature space of interest, which in this case would be the circular patterns 

of plaque in Cartesian domain. We will elaborate more on this issue in the next section. 

 

6.5.1.  Arithmetic Manipulation of Brushlet Coefficients in 

Transformed Domain 

The ultimate goal of any manipulation of brushlet coefficients is to enrich and suppress 

plaque and blood textures, respectively. The only constraint is to retain cubes that span 

360o so we can preserve all plaque area as well as arterial wall, required for vessel wall 

border detection, after reconstruction. The linear property of brushlet transform allows us 

to use arithmetic operations in selected cubes so we can ease the constraint. This can be 

done by summing up the coefficients in cubes that span 360o. Figure 6.26 demonstrates 

the grayscale images resulting from summation of brushlet coefficients, using four and 

two innermost cubes in 4x4x2 expansion scheme, along with corresponding enhanced 

images. The images were acquired from a tube with circulating blood mimicking fluid. 

We enhanced the coefficients by applying a non-linear operator pixel-wise to the 

magnitude of each coefficient Ienhanced x, y, z( ) = I x, y, z( ) γ . We observed that if γ < 1  and 
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γ > 1  were chosen, textures corresponding to blood speckle were enhanced and 

suppressed, respectively. As we can see in Figure 6.26 (b,c), the enhancement has been 

achieved by suppressing blood speckle in simulated lumen area such that the detection of 

tube’s border appears to be easier. Figure 31 also illustrates the enhanced coefficients for 

all cubes in 4x4x2 expansion scheme corresponding to the original coefficients depicted 

in Figure 6.25(e,f). Movie 6.1 demonstrates grayscale images of original in-vivo data and 

corresponding constructed grayscale images of enhanced summed brushlet coefficients in 

the four innermost cubes in 4x4x2 expansion scheme. 

 

                      (a)                                                      (b)                                                       (c) 
Fig. 6.26. Resulting grayscale images from summation of brushlet coefficients (a) in four (top row) and 
two (bottom row) innermost cubes in 4x4x2 expansion scheme. Enhanced images using γ = 1.6 (b) and 
γ = 2.2 (c).  
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We also performed the enhancement technique on real part, imaginary part, magnitude 

and angle of coefficients and the best results were achieved when the magnitude of 

brushlet coefficients were used, Figure 6.27. Such an enhancement seems to be very 

effective, suppressing blood speckle in lumen area particularly in cubes representing the 

low frequency components. Figure 6.28 illustrates the results of the same enhancement 

technique on real part, imaginary part, magnitude and angle of summed coefficients in 

the four innermost cubes using synthetic images. As we can see, the enhancement 

significantly improved the textures particularly when applied on the imaginary part and 

angle of coefficients.  

                                    (a)                                                                                      (b) 

                                    (c)                                                                                      (d) 
Fig. 6.27. Original grayscale images of brushlet coefficients in 4x4x2 expansion (a,b) and 
corresponding grayscale images of enhanced coefficients (c,d). 
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As an alternative to the abovementioned non-linear enhancement technique, we also 

deployed logarithmic transformation on real part, imaginary part, magnitude and angle of 

coefficients using in-vitro as well as in-vivo data and the results were not of particular 

interest. Previously, we observed that the best filtering (denoising) results were achieved 

by thresholding the real part of the brushlet coefficients. Therefore, we decided to employ 

logarithmic transform and investigate the enhancement results. We made the real part of 

the brushlet coefficients positive (ignoring the imaginary part), took the magnitude and 

applied the logarithmic transform but no significant improvement was achieved.  

 

 

 

 

               (a)                                       (b)                                       (c)                                        (d)  
Fig. 6.28. Real part (a), imaginary part (b), magnitude (c), angle (d) of summed coefficients in the four 
innermost cubes in 4x4x2 expansion scheme (top row) and their corresponding counterparts after 
enhancement γ = 2  (bottom row). The original image is depicted in Figure 6.23. 
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6.6.  Incremental/Decremental Expansion and Reconstruction 

of IVUS Sub-Volumes                             

So far, we only projected sub-volumes of IVUS data onto brushlet basis using 4x4x2 

expansion scheme. In this section, we study the effects of different tiling schemes, and try 

to tease out as much information as possible from cubes representing low frequency 

components. The overcomplete nature of analysis is desirable in isolating blood speckles 

and detecting lumen border due to stringent behavior of IVUS signals especially when 

high frequency transducers (40 MHz up) are used. Moreover, we can preserve numbers 

of coefficients at each level of analysis equal to the original dimension of sub-volume of 

analysis and ensure the existence of a direct homomorphism between the data and 

transform domains. Such redundant representation of original data in multiscale analysis 

makes the analysis shift invariant, which is suitable for segmentation purpose. 

 

 

Fig. 6.29. Schematic representation of arbitrary tiling of Fourier space using 2x2x2 cubes (a) 4x4x4 
cubes (b) in ux ,uy ,uz directions.  
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Here, we strive to answer to two main questions: 1) what would be the best tiling scheme 

to analyze IVUS data and remove blood speckle or detect lumen border? and 2) where 

the most valuable features are located in Fourier space? As shown in Figure 6.29, tiling 

of the Fourier space determines the resolution of analysis in terms of angular directions. 

More numbers of cubes corresponds to more directions and therefore higher resolution in 

frequency domain at the costs of lower spatial resolution. Meyer and Coifman [131] 

               (a)                                       (b)                                        (c)                                         (d) 
Fig. 6.30. Original IVUS frame (a), reconstructed IVUS frame using brushlet coefficients in  (b),  (c) 
and  (d) in 4x4x2 expansion scheme.  

               (a)                                        (b)                                         (c)                                       (d) 
Fig. 6.31. Original IVUS frame (a), reconstructed IVUS frame using brushlet coefficients in  (b), (c) 
and (d) in 6x6x2 expansion scheme.  
 

                (a)                                        (b)                                       (c)                                        (d) 
Fig. 6.32. Reconstructed IVUS frame using brushlet coefficients in (a), (b), (c), and in 8x8x2 expansion 
scheme. Corresponding original IVUS frame is depicted in Figure 6.30(a) and Figure 6.31(a).  
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developed an algorithm to find the optimal tiling of the Fourier domain based on some 

cost function for recursive quadtree decomposition to compromise between spatial and 

frequency resolutions with respect to the content of the data.  

 

Due to noisy behavior of blood speckles, we had hypothesized that blood textures are 

translated into high frequency components so we often reconstructed IVUS sub-volumes 

using thresholded coefficients in cubes that contained low frequency - DC - components. 

Figure 6.30 illustrates an individual reconstructed IVUS frame from selected brushlet 

coefficients in R1
1,2 S1( ) , R2

1,2 S2( )  and R1,2
1,2 S1,2( )  without any thresholding. As we can see, 

a large amount of energy is concentrated in R1
1,2  and reconstructed frame using this ring 

is similar to the original frame except it is somewhat blurred. In this case, brushlet 

coefficients in R2
1,2  do not appear to be of particular interest. However, we need to 

validate this by processing the IVUS sub-volumes with different expansion schemes of 

Fourier space with finer tiling of cubes representing low frequency components. Figure 

6.31 and Figure 6.32 demonstrate the same IVUS frame, reconstructed from coefficients 

in different rings (spheres) without any thresholding using 6x6x2 and 8x8x2 expansion 

schemes. 

 

Finer tiling along ux  and uy  directions, resulting lower spatial resolution after 

reconstruction, Figure 6.33. It is also apparent that as we go toward outer spheres (rings), 

higher frequency components appear and the overall energy decreases. This can be seen 

in Figure 6.34, when the low frequency components are localized in R1
1,2 S1( )  using 

64x64x2 expansion scheme. Although finer resolution in Fourier space was used the 
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results demonstrated that the innermost cubes contain majority of energy of IVUS data. 

In the rest of this section we introduce a systematic approaches to further investigate the 

localization of energies in cubes representing low frequency components using 

incremental and decremental expansions along with reconstruction.  

 

We often observed that reconstructed IVUS sub-volumes using innermost spheres 

remove some high frequency content. This can be noticed by comparing Figure 6.34(c) 

and Figure 6.34(f). For better delineation of borders, higher degree of expansion is 

              (a)                                        (b)                                        (c)                                       (d) 
Fig. 6.33. Original IVUS frame (a), reconstructed IVUS frame using coefficients in R1

1, 2 S1( )  in 
32x32x2 (b), 64x64x2 (c), and 128x128x2 (d) expansion schemes. Vessel wall and lumen borders have 
been traced by green and red colors, respectively.  
 

Fig. 6.34. Original IVUS frame (a), grayscale images of summed brushlet coefficients in S1  (b) S2  (c) 
S3  using 64x64x2 expansion scheme and corresponding reconstructed IVUS frames in spatial domain. 
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needed. This is achieved by increasing the resolution along each direction in Fourier 

domain n,m, p( ) . However, this increases computational complexity, causes more 

distortion in reconstructed volumes and hardens the analysis and observation of 

coefficients in cubes. In order to prevail these limitations, we implemented an iterative 

method in order to tease as much information as possible from cubes that preserve low 

frequency components.  

 
 

6.6.1.  Iterative Expansion and Reconstruction 

 
Experiment #1  

Figure 6.35, displays schematic of an iterative method such that sub-volume of IVUS 

images projected onto brushlet basis and cubes preserving low frequency components are 

further decomposed iteratively. The purpose of such experiment was to remove high 

frequency components at each level of decomposition and retrieve features as close as 

possible to DC components. The algorithm is performed as described below: 

1. Apply brushlet transform to the IVUS sub-volume. 

2. Reconstruct the IVUS sub-volume using selected cubes (i.e. rings or spheres) 

particularly those that contain low frequency components (i.e. S1 ).  

3. Apply brushlet transform again to the reconstructed IVUS sub-volume. 

4. Repeat steps 2 and 3 until the desired level of information is reached. 
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Figure 6.36, illustrates the magnitude of extracted coefficients at each level of 

decomposition. 

 

Results show that the proposed approach provides deeper observations of cubes 

preserving low frequency components. In order to make the proposed approach more 

flexible and to allow even deeper analysis, we modified the algorithm and increased the 

tiling resolution at each level of decomposition, Figure 6.37. 

  

 

 

Fig. 6.35. Iterative projections of the innermost spheres, corresponding to low frequency 
components, using 4x4x2 expansions scheme.  
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                                   (a)                                                                                         (b) 

                                    (c)                                                                                        (d) 

                                   (e)                                                                                         (f) 
Fig. 6.36. Magnitude of computed brushlet coefficients derived from iterative decomposition of the 
innermost spheres that preserve low frequency components. Magnitude of coefficients in the first (a) 
and the second (b) subband after the first decomposition (the first level). Magnitude of coefficients in 
the first (c) and the second (d) subband after the second decomposition (the second level). Magnitude of 
coefficients in the first (e) and the second (f) subband after the third decomposition (the third level).  
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Experiment #2  

1. Apply brushlet transform to the IVUS sub-volume. 

2. Reconstruct the IVUS sub-volume using selected cubes (i.e. rings or spheres) 

particularly those that contain low frequency components (i.e. S1 ).  

3. Apply brushlet transform on reconstructed IVUS sub-volume and increase the 

resolution of tiling in Fourier domain.  

4. Repeat steps 2 and 3 until the desired level of information is reached. 

 

We performed abovementioned decomposition/reconstruction technique on sub-volume 

of IVUS frames and at each level of decomposition we increased the resolution of tiling 

Fig. 6.37. Iterative projections of the innermost spheres, corresponding to low frequency 
components. Unlike previous approach the resolution of tiling was fixed, here the resolution is 
increased at each level of decomposition.  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with power of two along ux  and uy  directions while the resolution along uz  was kept 

constant. Figure 6.38 shows the reconstructed IVUS frames at each level of 

decomposition. Our results show that high frequency components were removed step by 

step at each level of decomposition since coefficients in S1  were deployed. Moreover, the 

IVUS frames become smoother (i.e. contain less speckle) when higher resolution of tiling 

is applied. The results exhibit potential application of various segmentation methods (i.e. 

region growing) and/or edge detection algorithms for lumen border detection. We 

repeated the same experiment but at each level of decomposition we only used 

coefficients in R1
1  instead of R1

1,2 S1( ) . Comparing results in Figure 6.38 and Figure 

6.39, we realized that some edges were appeared well when coefficients in R1
1  were 

employed in addition to lesser computational complexity. 

                    (a)                                                        (b)                                                        (c) 

                    (d)                                                        (e)                                                        (f) 
Fig. 6.38. Original IVUS frame (a), reconstructed IVUS frame using coefficients in S1  in 8x8x2 (b), 
16x16x2 (c), 32x32x2 (d), 64x64x2 (e), and 128x128x2 (f) expansion schemes.  
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                    (a)                                                        (b)                                                        (c) 
Fig. 6.39. Reconstructed IVUS frame using coefficients in S1  (top row) and R1

1  (bottom row) in 8x8x2 
(a) 64x64x2 (b) and 128x128x2 (c) expansion schemes.  

               (a)                                        (b)                                       (c)                                         (d) 
Fig. 6.40. Original IVUS frame (a), reconstructed frame using coefficients in S1  in 8x8x2 (b), 8x8x4 
(c) and 8x8x8 (d) expansion schemes.  

              (a)                                        (b)                                       (c)                                         (d) 
Fig. 6.41. Original IVUS frame (a), reconstructed frame using coefficients in  in 8x8x2 (b), 8x8x4 
(c) and 8x8x8 (d) expansion schemes. The highlighted rectangle shows that some border information 
can be extracted from high frequency cubes  when uz  is increased.  
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Experiment #3 

Finally, we studied the effects of tiling resolution along uz  direction in Fourier domain. 

Figure 6.40 and Figure 6.41 demonstrate reconstructed IVUS frames from coefficients 

in S1  and S2 , respectively, while resolution of tiling is increased along pullback 

direction. As we can see in Figure 6.40, when resolution of tiling is increased, 

reconstructed images become blurred. This could be due to the fact that IVUS frames 

within sub-volume of analysis were not perfectly registered.  

 

Experiment #4 

We also compare resulting reconstructed frames from direct and iterative decomposition 

schemes, described in experiment #2. Figure 6.42 displays resulting reconstructed IVUS 

Fig. 6.42. Reconstructed IVUS frames through direct (top row) and iterative (bottom row) 
decomposition techniques using coefficients in S1 , S2 , and S3  in 64x64x2 expansion scheme.  
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frames from both techniques. The obvious difference is that the iterative approach 

provides results with a bit more details. This can be particularly visible in reconstructed 

images at 360o.  

 

 

6.7.  Summary and Discussion 

We performed numbers of experiments in order to extract features as close as possible to 

DC component and study the effects of different tiling schemes. We presented two 

iterative methods to tease out features as close as possible to low frequency components. 

In the first method, we kept the resolution of tiling constant at each level of 

decomposition while in the second method the resolution was increased along ux  and uy  

directions. Our results from both method demonstrated that a large amount of energy was 

preserved in cubes representing low frequency components and cubes containing high 

frequency components did not provide any useful features visually. In order to verify 

energy localization particularly in the innermost cubes, we need to come up with a 

quantitative approach to compute energy in rings or spheres at each level of 

decomposition. We also started tiling the Fourier space along ux  and uy  directions using 

4x4 cubes and increased the resolution by 32 folds. In all expansion schemes, the 

innermost cubes provided the most informative features. Furthermore, enhancement 

techniques, as describe in previous section, could be used to investigate extracted features 

in cubes representing high frequency components at each level of decomposition.  
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Increasing the tiling resolution in Fourier space resulting more blurred reconstructed 

images in spatial domain. Segmentation or edge detection algorithms might be used to 

detect borders. In this case, detection of vessel wall border is more feasible since 

adventetia appears as a large and bright region.  We selectively chose coefficients in 

particular cubes and compared resulting grayscale images in brushlet domain with 

corresponding ones in spatial domain.  Some of the results were interesting in a sense that 

lumen area exhibited less speckles, choosing coefficients in particular cubes, Figure 

6.34(c,f). We increased the resolution of tiling along pullback direction and observed that 

the resulting reconstructed images became more blurred since images within sub-volume 

of analysis were not perfectly registered.  
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7.  Chapter Seven: 

AUTOMATIC DETECTION OF LUMINAL 

BORDERS IN IVUS IMAGES BY MAGNITUDE-

PHASE HISTOGRAMS OF COMPLEX BRUSHLET 

COEFFICIENTS 

 

In previous chapter, we projected the IVUS sub-volume of grayscale images onto 

brushlet basis and took advantage of orientation selectivity of expanded volumes in 

complex transformed domain to either threshold the coefficients or remove high 

frequency components followed by reconstruction. In this chapter, we look at the analysis 

from different perspective and study one of the most important characteristics of such 

analysis that has not been considered by any group before. We will present a technique, 

which has a great potential to be employed in any complex domain (i.e. wavelet, 

brushlet) to study behavior of computed coefficients and manipulate them.  

 

We present a new framework to delineate lumen borders in intravascular ultrasound 

(IVUS) volumes of images acquired with a high-frequency Volcano (Rancho Cordova, 

CA) 45MHz transducer. Through selective projection of IVUS sub-volumes images and 

their Fourier transforms, tissue-specific backscattered magnitudes and phases identified 

within brushlet coefficients. We take advantage of such characteristics and construct 2.5-
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dimensional (2.5-D) magnitudes-phase histograms of coefficients in the transformed 

complex brushlet domain that contain distinct peaks corresponding to blood and non-

blood regions. We exploit these peaks to mask out coefficients that represent blood 

regions and ultimately detect the luminal border after spatial regularization employing 

surface function actives (SFA). We perform our algorithm on both phantom as well as in 

vivo data, acquired with different transducers (40MHz, and 45MHz), and quantify results 

by comparing them to manually traced borders by an expert. As a complementary study, 

we evaluate the performance of developed algorithm with two of existing lumen 

detection techniques. Our results show the potential application of this framework for 

isolating coherent structures (i.e. plaque) from incoherent (i.e. blood) ones particularly in 

IVUS pullbacks and detecting of lumen border. 

 

 
 
 

7.1.  A Brief Review on Existing IVUS Lumen Border 

Detection Algorithms 

Often patients with chest pain and high cardiac risk factors undergo PCI procedures. As a 

result, a catheter is inserted from the femoral artery toward potential sites of coronary 

occlusions to open up blocked artery with a stent or inflating a balloon. An interventional 

cardiologist may also deploy an IVUS catheter to acquire cross sectional images of 

arterial walls and atherosclerotic plaque structures. During such a procedure, hundreds to 

thousands of IVUS images are recorded. Therefore automatic detection of vessel wall 

(media-adventitia) and luminal borders has become a subject of study for the following 
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two reasons. First, one important parameter during angioplasty or stent implantation 

procedure, is the ratio of lumen to artery cross sectional area for stenosis regions. For 

instance, the interventional cardiologist uses these measurements to select the appropriate 

type, length and diameter of a stent. Secondly, vessel walls and lumen contours are 

required to be traced prior to tissue characterization and plaque RF signals extraction. 

These have motivates researchers to develop different algorithms that each can be 

categorized based on its application, domain of analysis, transducer center frequency, 

dimensionality, and employed technique as listed in Table 7.1. 

 

Table 7.1. List of some of existing border detection algorithms in IVUS images and their specifications. 

 

Authors, [Ref.#] 

 

Implementation Technique 

 

Application 

 

Domain of 

Analysis 

Transducer 

Center 

Frequency 

(MHz) 

Sonka et al. 
[127] 

2D graph search Vessel wall and 
Lumen 

Cartesian  30 

Shekhar et al. 
[138] 

3D deformable model Vessel wall and 
Lumen 

Cartesian 30 

Plissiti et al. 
[136] 

2D deformable model Vessel wall and 
Lumen 

Cartesian 30 

Cardinal et al. 
[126] 

3D PDF-based fast 
marching 

Vessel wall and 
Lumen 

Polar 20 

Unal et al.  
[128] 

2D/3D statistical shape 
model 

Vessel wall and 
Lumen 

Polar 20 

Gil et al. 
[139,140] 

2D Probabilistic approach Vessel wall or 
Lumen 

Cartesian 40 

Taki et al.  
[141] 

2D Probabilistic approach Vessel wall and 
Lumen 

Cartesian 20 

Hibi et al.  
[142] 

3D spatio/temporal analysis Blood speckle 
reduction 

Polar 40 

Ballocco et al. 
[143] 

3D spatio/temporal analysis Blood speckle 
reduction 

Cartesian 30 

Katouzian et al. 
[144] 

3D Multiscale Brushlet 
analysis 

Blood speckle 
reduction 

Polar 45 

Rotger et al. 
[145]  

3D, Adaboost classifier Blood detection Longitudinal 
Cut 

Unknown 

O’Malley et al. 
[146] 

3D spatio/temporal/spectral 
analysis and support vector 

machine (SVM) 

Blood detection Polar 40 

Katouzian et al. 
[147] 

3D Multiscale Brushlet 
analysis and neural network 

Blood detection Polar 45 
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As we can see, there are three main approaches: 1) direct detection of border(s), 2) blood 

speckle reduction as a preprocessing step prior to border detection, and 3) classification 

of blood versus non-blood regions. For example, authors in [126-128] directly detect 

vessel wall and lumen borders, employing, fast-marching algorithm with gray level 

probability density functions (PDFs) of arterial wall structures, heuristic graph search 

technique on edge sets, and statistical shape models through principle component analysis 

(PCA), respectively. Authors in [139,140] deployed probabilistic models to detect one of 

the borders and later refined the results using regularized curvature flow and anisotropic 

processing technique along with statistical classification methods [148,149]. In a similar 

approach, Taki et al. [141] deployed affine invariant anisotropic filters for preprocessing 

and used global statistical properties of gray level intensities to detect both borders. 

 

Generally speaking, detection of vessel wall borders is less difficult than lumen borders 

since the vessel media consists of smooth muscle cells and does not reflect IVUS signals. 

It therefore appears as a dark region on IVUS images, which can be used as a marker to 

detect the vessel wall. In contrast, due to high scattering from red blood cells inside the 

lumen, detection of a luminal border is a more formidable challenge especially when a 

high-frequency transducer is used. Comparing IVUS ultrasound probes, the lumen border 

is better depicted in images acquired with a 64-element phased-array 20 MHz transducer 

in comparison with those acquired with a single-element mechanically rotating 45 MHz 

transducer. At higher center frequency spatial resolution is improved, at the cost of more 

scattering from red blood cells inside the lumen. Figure 6.1 illustrates four distinct cross-

sectional grayscale IVUS images acquired with 64-elements phased-array 20MHz, 
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single-element 30 MHz, 40 MHz, and 45 MHz transducers. As an alternative approach, 

researchers strived to look at detection of luminal border from different perspective. They 

either tried to alleviate blood speckle effects [142-144] as a preprocessing step or to 

detect blood regions through supervised classification methods [145-147]. 

 

In any case, clinical applications of automated segmentation methods have seen limited 

success due to intrinsic (presence of guide wire, presence of calcified plaque, presence of 

side branch, motion of catheter and heart) and extrinsic (system parameter specifications 

such as time gain compensation, compression) challenges associated with data 

acquisition. For example, presence of guide wire, arc of calcified plaques, and side 

branch significantly affects algorithm performance particularly when deformable models 

are employed [126,136,138-141,144,147-149]. On the other hand, variability among 

system specifications or change of acquisition parameters by experts would lead to 

inconsistency among data sets so that supervised techniques [128,145-147,149], 

knowledge based methods [127], or those that are rely on statistical properties of gray 

level intensities [139-141] may not perform efficiently. 
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7.2.  Methodology 

7.2.1.  Motivations 

We design our framework upon what interventional cardiologists often do while tracing 

the lumen border manually. They usually go back and forth among consecutive frames to 

be able to visually locate the lumen contour on a single frame. By doing so, blood speckle 

and plaque embody visually incoherent and coherent spatial patterns, respectively, 

suggesting a 3-D processing approach. Hence, we design our framework upon multi-scale 

analysis of textural features, which is the most compatible analysis to human and 

mammalian vision processing systems due to its conservation of energy in both spatial 

and frequency domains [113,114]. We will take advantage of the spatial-frequency-

localized expansions such as brushlet analysis and their generalization to 3-D to discern 

the textural patterns on constructed images from backscattered IVUS signals. One of the 

major advantages of expansion of IVUS sub-volumes onto orthogonal brushlet basis 

functions is that it is invariant to intensity so that the extracted brushlet coefficients do 

not depend on intensity but spatial frequency content of IVUS signals. In addition, the 

brushlet is a well-localized complex valued function in time and frequency domains that 

is suitable for analyzing the local frequency content of IVUS signals and offers an 

orthogonal transform of the Fourier coefficients which are Hermitian-symmetric so the 

phase information might also be used in IVUS image filtering and eventually detection of 

lumen border. 

 

Our technique was primary developed for images acquired with single-element 45 MHz 

VOLCANO transducers but later employed for detection of luminal borders in images 
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obtained with 40 MHz transducers. The IVUS grayscale images were acquired in vivo as 

described in section 3.2.1. 

 

7.2.2.  IVUS Signal Modeling in Fourier Domain and Sources 

Assumptions 

In chapter 6, we reviewed the multiscale brushlet analysis and explained how the phase 

of brushlet function provides useful information about orientation of the brushlet so we 

could characterize textures with specific directions, frequencies, and locations. We 

further described how to project any signal onto brushlet basis indirectly using its Fourier 

transform, Eq. 6.3, which in our case would be the Fourier transform of IVUS signal. We 

establish our framework by hypothesizing that distinct responses coming from blood and 

non-blood tissues may be reflected by differences among magnitudes and phases of 

brushlet coefficient values. Consider the measurements of an IVUS transducer during 

pullback. In this case, each acquisition line, f , contains information regarding tissues as 

well as flowing blood and can be represented in transformed domain as follows: 

                                                         f̂n, j = αn, j e
−iωϕn, j ŝ

j
∑

n
∑ 7.1( )  

where ϕn, j  and αn, j  are  the resulting phase and amplitude of tissue response ŝ  to IVUS 

signal. Using Eq. 7.1 we rewrite Eq. 6.3 and obtain: 

                                              
αn, j e

− iωϕn , j ŝ
j
∑ = λn, j un, j

j
∑

n
∑

n
∑ 7.2( )  

We call two functions s1  and s2  disjoint orthogonal if the frequency supports of their 

Fourier transforms, ŝ1  and ŝ2 , are disjoint. In other words the point-wise product: 
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ŝp . ŝq = 0 , ∀ p ≠ q , ∀N . This is a legitimate assumption in our IVUS application 

because each frequency bin is a function of only and only one tissue’s response, which in 

our case would be blood or non-blood. Since brushlet basis are orthonormal, we can 

reorganize Eq. 4 in the following form: 

                                           
λn, j = αn, j e

−iωϕn, j ŝn, j , un, j
j
∑

n
∑ 7.3( )  

where ,  denotes the inner product. Looking at Eq. 7.3, we realize that the phase of 

brushlet functions results in orientation selectivity in transformed space when separable 

tensor product is used while image phases and amplitudes associated with tissue 

responses are proportionally preserved in brushlet coefficients. We further hypothesize 

that the magnitude and phase of brushlet coefficients provide informative features for 

coherent (non-blood) and incoherent (blood) patterns so we can estimate the lumen 

border in transformed domain via selection of specific clusters of phases-magnitudes 

combinations avoiding any thresholding and reconstruction. In the rest of this section we 

present a classification framework to associate frequency-based clusters of brushlet 

coefficients with each tissue type (blood or non-blood). 

 

7.2.3.  Construction of 2.5-D Magnitude-Phase Histogram in 

Brushlet Space 

Due to homomorphism between the original domain of acquisition (spatial domain) and 

brushlet space, there is a unique correspondence between a signal and its brushlet 

transform. Once the IVUS sub-volumes of size X,Y ,Z( )  are projected onto brushlet basis, 

we end up with sub-volumes of brushlet coefficients in the transformed domain. As we 
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described in previous chapter, the coefficients in the innermost cubes, representing the 

low frequency components, contained the most informative features regarding blood and 

non-blood textures. The overcomplete representation of brushlet coefficients guaranties a 

bi-jection within and among each expansion sub-volume and a one-to-one 

correspondence of the coefficients across sub-spaces of the expansion. Hence, we can 

sum up the coefficients in the innermost cubes to span 360o of spatially oriented 

information and construct the complete arterial wall and plaque in transformed domain. 

Taking the union of summed coefficients 
 

F̂ = α k e
− iϕk

k=1

X×Y

 , we can write: 

                                 F̂ r,θ( ) = α r,θ( )e− iϕ r ,θ( ) , r = 1,...,X ,θ = 1,...,Y 7.4( )  

The magnitude and phase associated with each coefficient can be written as:  

                                     
 
α r,θ( ),ϕ r,θ( )( ) = F̂ r,θ( ),F̂ r,θ( )( ) 7.5( )  

A 2.5-D histogram can be constructed for every pair of α r,θ( ),ϕ r,θ( )( )  in α,ϕ( )  space 

as follows. First, we define a mask for α,ϕ( ) : 

                          Mα ,ϕ ,Δα ,Δϕ
r,θ( ) = 1 :

lnα r,θ( ) − lnα <
Δα

2

ϕ r,θ( ) −ϕ <
Δϕ

2

⎧

⎨
⎪⎪

⎩
⎪
⎪

0 : o.w.

⎧

⎨

⎪
⎪

⎩

⎪
⎪

7.6( )  

We are taking the difference between computed magnitude and phase of brushlet 

coefficients, α r,θ( )  and ϕ r,θ( )  within Δα
2  of α  and 

Δϕ
2  of ϕ  in the histogram, 

respectively, where Δα  and Δϕ  are the magnitude and phase resolution widths of the 

histogram. Then, we can define the histogram as below: 
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h α,ϕ( ) = Mα ,ϕ ,Δα ,Δϕ

r,θ( ) F̂ r,θ( )
r ,θ
∑

p
7.7( )  

The parameter p  acts similar to the parameter γ  in enhancement technique described in 

Section 6.5.1. As the final step, we will use a 2-D rectangular kernel K α,ϕ( ) , 

                              K α,ϕ( ) =
1
AD

, α,ϕ( )∈ −A
2
, A
2

⎡
⎣⎢

⎤
⎦⎥
×

−D
2
, D
2

⎡
⎣⎢

⎤
⎦⎥

0 , o.w.

⎧
⎨
⎪

⎩⎪
7.8( )  

to smooth out the histogram as follows: 

                                                     

H α,ϕ( ) = h *K[ ] α,ϕ( ) 7.9( )  

Fig. 7.1. Constructed magnitude-phase 2.5-D histogram from summed coefficients in R1
1 after 

projection of in-vitro IVUS sub-volume using 4x4x2 expansion scheme before (a) and after (b) 
smoothing. The resolution of both histograms is 200x200.  
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where  denotes 2-D convolution. The importance of the smoothing is clear in that it 

combines all the energy from the estimates in a local region. Figure 7.1 shows an 

example histogram before and after smoothing created using summed coefficients in R1
1  

derived from expansion of phantom IVUS sub-volume. We are particularly interested in 

locations of the histogram peaks and the surrounding regions, as these shall be used to 

generate binary masks to label blood and non-blood regions. Figure 7.2 also illustrates 

!

Fig. 7.2. The effects of parameter p  on created histogram. p = 0.5 (a), p = 1 (b), p = 2  (c).  
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the effects of the parameter p  on the created histogram. We can suppress or heighten the 

peaks by choosing the right value for p  and improve the segmentation results. 

 

We are particularly interested in locations of the histogram peaks and the surrounding 

regions, as these shall be used to generate binary masks to label blood and non-blood 

regions. For this reason, we used manual thresholding to mask out coefficients 

corresponding to each peak, Figure 7.3. The results demonstrate that the peaks provide 

valuable information regarding blood and non-blood regions, suggesting a technique to 

automatically retrieve coefficients from each peak and generated a binary mask. 

 

 

7.2.4.  Segmentation of Coefficients and Recovery of Regional 

Peak Correspondences 

In order to localize the histogram peaks, α peak ,ϕ peak( ) , we used a K-mean classifier to 

cluster the data in Eq. 7.7. The partitioning algorithm minimizes the sum of point-to-

centroid distances, summed over all clusters. We assigned each point to the nearest 

cluster centroid and updated all centroids iteratively. Once the magnitudes and phases 

corresponding to the principal Q  peaks were found, we computed, Q* , masks based the 

following L2  norm in the histogram space, 

 

∀ α peak
l ,ϕ peak

l( ) , l = 1,...,K{ }
Q

α peak
l* ,ϕ peak

l*
r,θ( ) = 1 , min

l
α r,θ( ) −α peak

l( )2 + ϕ r,θ( ) −ϕ peak
l( )2⎡

⎣
⎤
⎦

0 , o.w.

⎧
⎨
⎪

⎩⎪
7.10( )
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where Eq. 7.10 is minimum over all l  and K  is the number of tissues (classes). Note 

that the number of classes defined for the K-means classifier may not be necessarily the 

same as the number of peaks that we observe in the histogram. We expected that the 

magnitudes and phases of brushlet coefficients would provide some information about 

tissue types. Hence, α peak ,ϕ peak( )  corresponds to an approximate magnitude-phase for a 

tissue (class). In Eq. 7.10, we tried to identify specific α peak ,ϕ peak( )  among all 

magnitudes and phases derived from the brushlet coefficients, α,ϕ( ) , and estimated the 

corresponding regions by masking the coefficients that exhibited the closest magnitude 

and phase to the approximated one. Once the desirable mask corresponding to blood 

regions was found (i.e., the one that contains zeros around the surface of the transducer, 

as illustrated in Figure 7.3(c)), spatial regularization (i.e. removal of small objects) 

followed by detection of the most reliable lumen border is requisite. 

 

 

7.2.5.  Spatial Regularization and Detection of Lumen Border via 

Surface Function Actives (SFA) 

Although researchers have introduced novel border detection algorithms in IVUS images 

challenges associated with this particular problem have not been considered cautiously. 

The performance of any method, regardless of its implementation technique, could be 

degraded due to presence of guide wire, appearance of side branch, reflection from 

surface of the transducer because of impedance mismatch, and presence of arc of 

calcified plaques. Therefore, regularization plays a crucial role in getting the most 
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accurate and reliable borders. One of the main advantages of our proposed technique is 

that we end up with binary images, which are easier to manipulate for spatial 

regularization. For example, we can get rid of the guide wire by removing small objects 

and look for objects with 180o or 0o orientation close to the transducer’s surface in order 

to eliminate any possible reflection.  

 

In fact, the major challenges are appearance of side branch, shadows behind guide wire, 

and presence of eccentric arc of calcified plaques. These are particularly problematic 

when a deformable model is deployed, leading to leakage or underestimation of the 

lumen border. In this paper, we employ 1-D evolving curve through surface function 

actives (SFA) with analytical solution or function basis [150]. SFA not only has great 

advantages in terms of efficiency and dimensionality reduction but also provides closed 

form solution, which is a requirement for lumen border, and deals with abovementioned 

problems. We may choose a 1-D surface function with arbitrary bases functions to 

represent the luminal border in 2-D polar domain. The proper choice of bases can be 

incorporated with some prior knowledge such as smoothness of lumen border and its 

periodicity along lateral direction. Hence, we opt sine and cosine bases and represent the 

lumen border as follows: 

g ak ,bk ,θ( ) = a0 2 + ak cos
2kπθ
Nθ

⎛

⎝⎜
⎞

⎠⎟
+ bk sin

2kπθ
Nθ

⎛

⎝⎜
⎞

⎠⎟
⎛

⎝
⎜

⎞

⎠
⎟

k=1

M −1

∑ 7.11( )  

where Nθ  is number of angles that span 360o in Cartesian space or the width of the 

image in polar domain. The analytical representation of lumen border can be translated 

into analytical differentiation in downstream analysis, which is beneficial in terms of 
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computational efficiency. Now the problem is to find the optimal Fourier series 

coefficients that minimize the segmentation functional. Basically, probabilistic models 

are used to optimize a cost function, assigning each pixel to a class (blood or non-blood) 

until convergence is occurred. In such segmentation techniques the gray level intensities 

or probability density functions corresponding to each class assumed to be distinct and 

therefore incorporated into the model. As we mentioned in section 7.1, the main 

drawback of such an approach is the variability among IVUS images. In our proposed 

framework, the problem becomes simpler since we deal with binary images generated 

from regional peak correspondences. We find the optimal coefficients in an iterative 

process as described in Algorithm I. Similar approach was also taken by authors in 

[153].   

 

Algorithm I: Detection of lumen border through 1-D evolving curve g  using SFA. 

1. Define the number of coefficients M , step size Δ t , and threshold value τ . 

2. Initialize the curve g  by initializing the coefficients ak , bk . 

3. Set acceptable error ζ . 

4. While ε >ζ   

a.   

a0t+Δt = a0t − 2Δt I x,y( )−τ( )
ak
t+Δt = ak

t − 2Δt I x,y( )−τ( )cos 2kπθNθ

⎛

⎝⎜
⎞

⎠⎟

bk
t+Δt = bk

t − 2Δt I x,y( )−τ( )sin 2kπθ
Nθ

⎛

⎝⎜
⎞

⎠⎟

 

b. Compute gt+Δt akt+Δt ,bkt+Δt ,θ( ) . 
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c. Compute ε = gt+Δt − gt . 

5. End.  

 

Movie 7.1 demonstrates the initialized contour at the center of the transducer, the 

convergence process, and final detected lumen border after 101 iterations. The 

smoothness of evolving curve depends on the number of coefficients M  and we 

empirically set M = 5  and it worked out well. Since we deal with binary images, the 

threshold value could be set to 0 < τ < 1  as well. Once the contour is found in polar 

domain it can be transformed and represented in Cartesian space.  

 

 

 

7.3.  Experimental Results 

We processed IVUS sub-volumes of size 512 × 512 × 8  to ensure adequate spatial 

resolution in the pullback direction (8 slice depth). Higher spatial resolution in this 

dimension degraded the performance due to the effects of the motion of the catheter and 

heart.  The Fourier domain was tilled using four, four and two cubes in x , y  and 

pullback dimension, respectively each with overcomplete representation. In this case, the 

brushstroke orientation was ±90 , ±90  and ±180  in x , y  and pullback direction, 

respectively. All computations were implemented in MATLAB© and executed on an IBM 

ThinkStation workstation, 64-bit 3 GHz dual Intel Core2Quad Processors with 32 GBs of 

RAM in Linux platform. The execution time for expansion of each sub-volume onto 
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brushlet basis and detection of lumen borders through SFA framework was evaluated to 

be 63ms. 1158 IVUS frames collected from 5 patients and for each frame, an expert 

manually segmented the lumen border. 

 

 

7.3.1.  Evaluation of Proposed Framework Using Phantom Data 

We acquired IVUS frames from phantom cylinder of shrink-wrap material using 

circulating blood mimicking fluid to study the feasibility of our proposed technique. 

Figure 7.3 illustrates an IVUS grayscale image, constructed 2.5-D magnitude-phase 

histogram, generated binary masks corresponding to each peak, and resulting detected 

phantom border. Although the histogram exhibited three peaks we only needed to detect 

two peaks corresponding to coherent (cylinder wall) and incoherent (blood) pattern. 

Because the binary mask, Figure 7.3(e), generated from the first peak centered at the 

center of the histogram does not provide any useful information and it represents regions 

with zero magnitude and phase 
 
α  0,ϕ  0( )  (e.g. catheter, measurement markers).  

 

Previously, we presented a multiscale brushlet based technique to filter IVUS images and 

characterize blood speckle patterns as a preprocessing step for lumen border detection 

[11]. In order to validate our framework, we followed the same approach and 

reconstructed IVUS frame after thresholding the real part of coefficients with threshold 

value of 0.5 for 2-D and 3-D cases using 4 × 4  and 4 × 4 × 2  expansion schemes, 

respectively. Then, we performed our algorithm on coefficients derived from 4 × 4

expansion scheme in 2-D case. Although the reconstructed results, Figure 7.4(a,b), do 

not seem to be that much different visually the constructed magnitude-phase histograms, 
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Figure 7.3(b) and Figure 7.4(c), provide more valuable information. We concluded that 

the 3-D analysis is superior over its 2-D counterpart to isolate coherent versus incoherent 

patterns since the cylinder border failed to be detected when 2-D analysis was done, 

Figure 7.4(d). 

 

 

7.3.2.  Evaluation of Proposed Framework Using In Vivo Data 

7.3.2.1.  IVUS Images Acquired With Single-Element 45 MHz Transducer 

We evaluated the algorithm performance on 1158 IVUS frames acquired from 5 patients 

during catheterization procedure. Our datasets consist of small and large arteries with no, 

mild, and severe stenosis as well as variety of atherosclerotic plaque morphologies (i.e. 

centric, eccentric). Figure 7.5 illustrates a constructed magnitude-phase histogram for a 

                                     (c)                                 (d)                                 (e) 
Fig. 7.3. IVUS grayscale image acquired from phantom cylinder of shrink-wrap material with 
circulating blood mimicking fluid in polar domain (a), constructed 2.5-D magnitude-phase histogram 
(b), generated binary masks corresponding to each peak (c-e), detected cylinder border (red) imposed 
on the IVUS grayscale image corresponding to (a) in Cartesian domain (f).  
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single IVUS frame, generated binary masks corresponding to blood and non-blood 

regions, and automated detected luminal border along with manual traced contour by an 

expert. As we can observe, the peaks are not as well separated as in the case of the 

phantom data but they still provide good estimates of relative magnitudes and phases for 

blood and non-blood regions and hence detection of lumen border in vivo.  

 

 

                                                      (c)                                                                                        (d) 
Fig. 7.4. Reconstructed IVUS frame after projection of the frame onto 2-D (a) and 3-D (b) brushlet 
basis and thresholding the real part of the coefficients, constructed 2.5-D magnitude-phase histogram 
from coefficients derived from 4x4 expansion scheme in 2-D case (c), and resulting detected cylinder 
border (d).  
 

                            (a)                                                     (b)                              (c)                           (d) 
Fig. 7.5. Constructed magnitude-phase histogram (a), generated binary masks (b,c), automated (red) 
and manual (green) traced borders imposed on original IVUS grayscale image (d).  
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Movie 7.2 demonstrates automated (red) and manual (green) traced borders for a short 

pullback (Case 6), containing 104 frames. Figure 7.6 also shows resulting automated 

lumen border detected contours (red) along with manual traced ones (green) for six 

frames collected from arteries with distinctive pathological and morphological structures 

as described in Table 7.2. We quantified the results comparing the automated detected 

borders with manual traced contours by an expert using SFA algorithm. The statistics, 

true positive (TP), false positive (FP), and root mean square error (RMSE) rates are 

reported in Table 7.2. For each case, the degree of difficulty as well as morphological 

and pathological specifications was provided too. Figure 7.7 illustrates the Bland-Altman 

Fig. 7.6. Resulting automated lumen detected border (red) along with manual traced contour (green) 
imposed on six distinct IVUS frames. The case specifications have been described in Table 7.2.            
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plot and depicts the consistency between lumen areas computed from automated and 

manual traced borders for all processed IVUS frames (total of 1158 frames). 

 
Table 7.2. Quantification of automated detected borders with corresponding manual ones for images 

acquired with single-element 45MHz transducers 

Case 

# 

Difficulty Case specification (Number of IVUS 

frames) 

TP (%) FP (%) RMSE  

mm( )  

1 High Registered data. Small centric artery with 

severe stenosis and calcified plaques 

(131) 

96.7 ± 0.05  3.9 ± 0.01  0.01 ± 0.025  

2 Low Registered data. Case # 1 after stent 

implantation (94) 

95.4 ± 0.03  7.8 ± 0.04  0.005 ± 0.004  

3 Medium Registered data. Large artery with no 

stenosis (23) 

96.5 ± 0.02  7.4 ± 0.06  0.03 ± 0.080  

4 High Registered data. Medium artery with mild 

stenosis, calcification, and guide wire 

artifact (500) 

91.1 ± 1.00  5.0 ± 0.20  0.03 ± 0.129  

5 High Registered data. Large and medium artery 

with mild as well as relatively severe 

stenosis and calcification (306) 

89.5 ± 0.03  4.7 ± 0.1  0.04 ± 0.195  

6 High Persistent* and unregistered data. 

Medium artery with mild stenosis (104) 

96.5 ± 0.01  5.0 ± 0.01  0.01 ± 0.021  

* Persistency refers to an averaging protocol employed during acquisition resulting relatively blurred 
images.  

Fig. 7.7. The Bland-Altman plot for lumen areas derived from automated and manual traced borders.  
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7.3.2.2.  IVUS Images Acquired With Single-Element 40MHz Transducer 

In order to further evaluate our proposed algorithm performance, we performed our 

technique on 320 IVUS images acquired from seven patients using single-element 

40MHz transducer. Figure 7.8 illustrates automated detected contours along with 

manually traced borders in images collected from six different cases with distinctive 

pathological and morphological structures as described in Table 7.3. As we can see, the 

overall appearance of images varies case to case. This could be due to dissimilarity 

among acquisition systems and/or different adjustment of acquisition parameters. For 

example, the possible effects of TGC parameter could be notable in case #5 and case #7 

in Figure 7.8.     

Fig. 7.8. Resulting automated lumen detected border (red) along with manual traced contour (green) 
imposed on six distinct IVUS images acquired from six patients using single-element 40MHz 
transducers. The case specifications have been listed in Table 7.3.  
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Table 7.3. Quantification of automated detected borders with corresponding manual ones for images 

acquired with single-element 40MHz transducers.  

Case 

# 

Difficulty Case specification (Number of IVUS 

frames) 

TP (%) FP (%) RMSE  

mm( )  

1 Low Unregistered data. Small artery with no 

stenosis (48) 

91.74 ± 0.01  0.6 ± 0.01  0.03 ± 0.060  

2 Medium Unregistered data. Small artery with no 

stenosis (48) 

91.93 ± 0.08  1.0 ± 0.12  0.04 ± 0.092  

3 Medium Unregistered data. Medium eccentric 

artery with stenosis (48) 

92.91 ± 0.03  0.1 ± 0.12  0.03 ± 0.023  

4 Low Unregistered data. Medium artery with 

about 30% stenosis (48) 

91.49 ± 0.06  1.2 ± 0.10  0.04 ± 0.176  

5 High Unregistered data. Large artery with no 

stenosis. The images appear very bright 

(48) 

97.78 ± 0.03  4.45 ± 0.06  0.04 ± 0.081  

6 Low Unregistered data. Small artery with no 

stenosis (48) 

95.20 ± 0.24  0.12 ± 0.00  0.02 ± 0.010  

7 High Unregistered data. Large artery with no 

significant stenosis (32) 

92.80 ± 0.43  0.50 ± 0.00  0.04 ± 0.054  

 
 

Fig. 7.9. The Bland-Altman plot for lumen areas derived from automated and manual traced borders. 
The plot is for data acquired with single-element 40MHz transducers.  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Figure 7.9 illustrates the Bland-Altman plot and depicts the consistency between lumen 

areas computed from automated and manual traced borders for all processed IVUS 

frames (total of 320 frames). 

 

 

7.3.3.  Comparison of Our Proposed Algorithm with Existing 

Techniques 

In order to assess our algorithm (Method 1) performance in comparison with existing 

techniques, we choose two methods introduced in [128,141] to contrast the results. Unal 

et. al [128] (Method 2) presented a 2-D algorithm, implemented in polar domain, by 

building a statistical shape space through principle component analysis (PCA). Once the 

shape space was built, an initialized contour evolved by minimization of region-based 

non-parametric probabilistic energy function described in [151]. They estimated the 

probability distribution inside ρin( ) and outside ρout( )  the lumen using intensity profiles 

in training dataset. Primarily, this technique was developed for IVUS images acquired 

with 64-elements phased array 20MHz transducer, Figure 6.1(a). Unlike images acquired 

with 40MHz and 45MHz transducers, the blood has low echogenicity and lumen appears 

relatively darker than surrounding plaque in images acquired with 20MHz transducer.  

As the second method of comparison, we preprocessed the IVUS images using affine 

invariant anisotropic filter in combination with hard thresholding and employed 

geometric deformable model to estimate the lumen border as Taki et. al (Method 3) 

suggested in [141]. They applied this technique on IVUS images acquired with 30MHz 
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single-element transducer and highlighted the advantage of despeckling techniques on 

IVUS images. Authors in [139,140] also took similar approach for IVUS border 

detection. We implemented this technique, and opted the threshold value for each dataset 

empirically to achieve the best possible performance.   

Figure 7.10 illustrates the automated detected lumen borders in images acquired with 

45MHz single-element transducer through our proposed technique (red), Method 2 

(yellow) and Method 3 (cyan) along with manually traced borders (green) by an expert. 

For this experiment, we calculated ρin  and ρout , Figure 7.12(c), using 30 frames (four 

frames from case 1, six frames from case 2, two frames from case 3, nine frames from 

Fig. 7.10. Resulting automated lumen detected border in images acquired with 45MHz single-element 
transducer through our proposed technique (red), Method 2 (yellow), and Method 3 (cyan), along with 
manual traced contour (green) imposed on six distinct IVUS images acquired from six patients using 
single-element 45MHz transducers. The case specifications have been listed in Table 7.2. 
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case 4, six frames from case 5, three frames from case 6) collected from different sections 

of pullbacks in five cases listed in Table 7.2. For the second method of comparison, we 

observed that a global threshold would not be very well suited for all cases and therefore 

empirically selected thresholds for each case. Table 7.4 shows the quantitative results for 

all three methods and six cases.  

 

Table 7.4. Quantification of automated detected borders through three different methods with 
corresponding manual ones for images acquired with single-element 45MHz transducers. The first, second, 
and third outperforming methods have been highlighted with green, orange, and red colors, respectively.  

 TP (%) FP (%) RMSE 
 

Case # 1 
Method # 1 
Method # 2 
Method # 3 

 
96.7 ± 0.05  
97.6 ± 0.90  
93.9 ± 0.10  

 

 
3.9 ± 0.01  
38.7 ± 4.50  
2.4 ± 0.00  

 
0.010 ± 0.025  
0.114 ± 1.300  
0.025 ± 0.039  

Case # 2 
Method # 1 
Method # 2 
Method # 3 

 
95.4 ± 0.03  
93.4 ± 0.10  
83.2 ± 0.20  

 
7.8 ± 0.04  
2.1 ± 0.07  
4.5 ± 0.07  

 
0.005 ± 0.004  
0.031 ± 0.072  
0.073 ± 0.274  

Case # 3 
Method # 1 
Method # 2 
Method # 3 

 
96.5 ± 0.02  
92.5 ± 1.10  
71.9 ± 0.20  

 
7.4 ± 0.06  
7.5 ± 0.10  
0.2 ± 0.03  

 
0.030 ± 0.080  
0.091 ± 0.466  
0.191 ± 0.506  

Case # 4 
Method # 1 
Method # 2 
Method # 3 

 
91.1 ± 1.00  
83.8 ± 0.40  
80.8 ± 0.05  

 
5.0 ± 0.20  
5.1 ± 0.20  
9.0 ± 0.20  

 
0.030 ± 0.129  
0.104 ± 0.946  
0.130 ± 0.982  

Case # 5 
Method # 1 
Method # 2 
Method # 3 

 
89.5 ± 0.03  
80.3 ± 1.80  
73.1 ± 1.50  

 
4.7 ± 0.10  
8.3 ± 0.21  
5.6 ± 0.20  

 
0.040 ± 0.195  
0.145 ± 0.328  
0.166 ± 1.674  

Case # 6 
Method # 1 
Method # 2 
Method # 3 

 
96.5 ± 0.01  
93.0 ± 0.20  
83.5 ± 0.40  

 
5.0 ± 0.01  
9.5 ± 0.20  
4.8 ± 0.08  

 
0.010 ± 0.021  
0.062 ± 0.363  
0.081 ± 0.370  

mm( )
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We repeated the same experiment using IVUS images acquired with 40MHz transducer 

as described in Table 7.3. For Method 2, we computed ρin  and ρout  with two distinct 

datasets, Figure 7.12(b). In the first dataset we only used the IVUS frames collected 

from the same cases in Table 7.3 (Method 2 (T1)) whereas in the second dataset we 

employed the IVUS frames that were not among those cases (Method 2 (T2)). Like 

previous experiment, we selected the threshold empirically for each case in Method 3. 

Fig. 7.11. Resulting automated lumen detected border in images acquired with 45MHz single-element 
transducer through our proposed technique (red), Method 2 (yellow), and Method 3 (cyan), along with 
manual traced contour (green) imposed on six distinct IVUS images acquired from six patients using 
single-element 45MHz transducers. The case specifications and quantitative results have been listed in 
Table 7.3 and Table 7.4, respectively.  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Figure 7.11 and Table 7.5 shows the resulting automated detected borders using each 

technique in six IVUS frames and quantitative results, respectively.   

 

Table 7.5. Quantification of automated detected borders through three different methods with 
corresponding manual ones for images acquired with single-element 40MHz transducers. The first, second, 
third, and forth outperforming methods have been highlighted with green, orange, red, and yellow colors, 
respectively.  

 TP (%) FP (%) RMSE 
 

Case # 1 
Method # 1 

Method # 2 (T1) 
Method # 2 (T2) 

Method # 3 

 
91.7 ± 0.01  
81.78 ± 0.15  
78.7 ± 0.50  
96.4 ± 0.02  

 
0.6 ± 0.01  
13.3 ± 0.021  
10.4 ± 0.32  
1.6 ± 0.04  

 
0.030 ± 0.060  
0.099 ± 0.186  
0.101 ± 0.228  
0.021 ± 0.047  

Case # 2 
Method # 1 

Method # 2 (T1) 
Method # 2 (T2) 

Method # 3 

 
91.93 ± 0.08  
78.28 ± 0.46  
78.2 ± 0.46  
98.5 ± 0.01  

 
1.0 ± 0.12  
13.0 ± 0.14  
12.9 ± 0.14  
4.1 ± 0.03  

 
0.040 ± 0.092  
0.158 ± 0.634  
0.158 ± 0.631  
0.035 ± 0.065  

Case # 3 
Method # 1 

Method # 2 (T1) 
Method # 2 (T2) 

Method # 3 

 
92.9 ± 0.03  
83.8 ± 0.14  
74.9 ± 3.12  
93.9 ± 0.20  

 
0.1 ± 0.12  
12.9 ± 0.15  
9.7 ± 0.50  
2.3 ± 0.02  

 
0.030 ± 0.023  
0.125 ± 0.313  
0.145 ± 0.961  
0.046 ± 0.135  

Case # 4 
Method # 1 

Method # 2 (T1) 
Method # 2 (T2) 

Method # 3 

 
91.5 ± 0.06  
81.47 ± 0.03  
83.3 ± 0.21  
90.0 ± 0.01  

 
1.2 ± 0.10  
22.3 ± 1.70  
24.1 ± 1.86  
1.4 ± 0.01  

 
0.040 ± 0.176  
0.165 ± 1.271  
0.165 ± 1.283  
0.073 ± 0.124  

Case # 5 
Method # 1 

Method # 2 (T1) 
Method # 2 (T2) 

Method # 3 

 
97.8 ± 0.03  
36.2 ± 0.00  
51.2 ± 0.00  
58.1 ± 0.10  

 
4.4 ± 0.06  
0.0 ± 0.00  
0.0 ± 0.00  
0.07 ± 0.00  

 
0.040 ± 0.081  
1.206 ± 0.217  
0.980 ± 0.121  
0.231 ± 0.206  

Case # 6 
Method # 1 

Method # 2 (T1) 
Method # 2 (T2) 

Method # 3 

 
95.2 ± 0.24  
92.3 ± 0.00  
77.7 ± 4.20  
97.8 ± 0.02  

 
0.12 ± 0.00  
2.7 ± 0.00  
1.9 ± 0.02  
0.2 ± 0.06  

 
0.020 ± 0.010  
0.04 ± 0.024  
0.086 ± 0.958  
0.015 ± 0.078  

Case # 7 
Method # 1 

Method # 2 (T1) 
Method # 2 (T2) 

Method # 3 

 
92.8 ± 0.43  
94.8 ± 0.09  
94.3 ± 0.27  
99.9 ± 0.06  

 
0.500 ± 0.001  
0.12 ± 0.03  
1.8 ± 0.52  
3.7 ± 0.03  

 
0.040 ± 0.054  
0.023 ± 0.016  
0.033 ± 0.018  
0.025 ± 0.023  

 

mm( )
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7.4.  Conclusion and Discussion 

We presented a 3-D segmentation framework for automatic detection of luminal borders 

through classification of incoherent (blood) and coherent (non-blood) patterns in IVUS 

grayscale images by constructing the joint magnitude-phase histogram of complex 

brushlet coefficients. This was possible since brushlet offered orthogonal transformation 

of Fourier domain so we could sum up the brushlet coefficients derived from Hermitian 

Fourier coefficients. We studied the feasibility of our proposed framework using both 

phantom and in vivo IVUS data. One of the main advantages of our technique was that 

the generated binary masks made regularization simpler and therefore detection of lumen 

border in presence of guide wire and its shadow, side branch, arc of calcified plaque 

became easier and more accurate. We found SFA segmentation framework more suitable 

for lumen border detection in comparison with traditional deformable models. We 

performed our algorithm on 1478 IVUS frames acquired with single-element 45MHz and 

40MHz transducers, containing distinctive arteries with variety of pathological and 

morphological structures, collected from 13 patients.  

 

We achieved promising results on datasets with relatively small (45MHz: Case 1) and 

large vessels (45MHz: Case 3, Case 5 and 40MHz, Case 5, Case 7), which were of 

particular interest and demonstrated that our algorithm was reliable, comparing with 

manual traced borders by an expert and two of existing techniques by Unal et. al [128] 

(Method 2) and Taki et. al [141] (Method 3). The results show that our proposed 

technique (Method 1) is able to reliably detect lumen borders in IVUS images acquired 
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with both 40MHz and 45MHz transducers. Overall, it outperforms Method 2 and Method 

3, keeping in mind that the threshold values in Method 3 were selected empirically for 

each case, otherwise, its performance could have been dramatically diminished if a fixed 

threshold had been deployed. In fact, one of the main limitations associated with PDF- or 

threshold-based segmentation techniques in IVUS images is that the appearance of 

images may vary depends on selected parameters during acquisition (i.e. TGC), 

normalization, or reconstruction (i.e. non-linear transformation). This leads to variation 

among intensity profiles derived from inside ρin( )  and outside ρout( ) of luminal area, 

which is observed among IVUS image dataset acquired with 40 MHz transducer 

especially Case 5 and Case 7.  

 

In order to better express the challenge inherited with PDF- and threshold-derived 

segmentation techniques, we calculated the nonparametric probability distribution ρin  

and ρout  using Parzen windowing technique also called the kernel density estimator 

ρ ς( ) = 1nσ K ς − ς i σ( )
i=1

n

∑  where n  is the number of pixels inside or outside of lumen 

area and K p( ) = 1
2π

e
− p2

2
⎛

⎝⎜
⎞

⎠⎟  is the Gaussian kernel with heuristically chosen σ  (e.g. 

σ = 10 ).  We excluded the intensities resulting from reflection of signals from surface of 

transducer when calculating ρin . Figure 7.12 shows the resulting probability distribution 

ρin  and ρout  derived from images acquired with 20 MHz, 40 MHz, and 45 MHz 

transducers. As we can see, the separation between ρin  and ρout  vanishes while 

transducer center frequency is increased from 20MHz to 45MHz, making segmentation 
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problem more challenging. This is due to the fact that more scattering from red blood 

cells emerges as we increase transducer’s center frequency. In fact, this explains that why 

even visual detection of luminal borders in images acquired with 45MHz transducer does 

not look so easy unless the expert goes back and forth among numbers of frames and look 

for blood incoherent patterns. As a matter of fact, this is as exactly as what happens when 

we project sub-volume of analysis onto brushlet basis and look for incoherent (i.e. blood) 

versus coherent (i.e. plaque) textures by constructing 2.5-D magnitude-phase histograms. 

This has also been verified when we compared 2-D and 3-D analysis and observed the 

advantage of 3-D process in Section 7.3.1. In the same context, we can point to Case 5 in 

IVUS dataset acquired with 40 MHz transducers, which is a perfect example to observe 

Fig. 7.12. Probability distribution ρin  and ρout  derived from images acquired with 20 MHz (a), 40 
MHz (b), and 45 MHz (c) transducers. The probability distributions were computed from two datasets 
(solid and dashed lines) in images acquired with 40 MHz and 45 MHz transducers. 
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the effectiveness of our proposed technique. As we can see in Figure 7.11 and Table 7.5, 

Method 2 and Method 3 fail to detect lumen borders whereas our algorithm performs 

quite well.  

 

Another shortcoming of Method 2 is that its performance may vary depending on 

probability distribution profiles derived from different training datasets. For example, in 

IVUS dataset acquired with 40 MHz transducers, we utilized two distinct sets (T1 and 

T2) of probability distributions, Figure 7.12 (b), and consequently got different results, 

Table 7.5.   

 

In brief, the presented technique is advantageous since it can be applied directly on 

complex brushlet domain and unlike traditional filtering (denoising) methods it does not 

require thresholding. Nevertheless, we can further improve the results, refine the 

algorithm, and speed up the computational time, taking into account certain aspects of 

processing steps.  

 

7.4.1.  Registered Versus Unregistered Data  

One of the main limitations associated with the proposed framework is misregistration 

among successive frames within sub-volume of analysis due to heart or catheter motions. 

This could affect the results in a sense that the lobes corresponding to blood and non-

blood regions in 2.5-D magnitude-phase histogram space overlap. In this case, the 

estimated peaks would not be the true representatives of associated magnitude-phase of 

tissue types. Our hypothesis is that less registration artifact among frames resulting more 
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separated lobes. We investigated this issue by constructing the magnitude-phase 

histograms for a single frame before and after registration. Figure 7.13 demonstrates 

Fig. 7.13. Constructed magnitude-phase histograms for two cases: 1) a frame within stable 
(consistent) sub-volume of analysis before (a) and after (b) registration, 2) a frame within unstable 
(inconsistent) sub-volume of analysis before (c) and after (d) registration.  
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resulting histograms before and after registration for two cases: 1) a frame within stable 

(consistent) sub-volume of analysis, 2) a frame within unstable (inconsistent) sub-volume 

of analysis. As we can see, constructed histograms for the frame within consistent 

pullback are very similar. On the other hand, the histograms are slightly different for the 

one that is within inconsistent pullback. Perhaps, we could validate the results by 

comparing both cases, before and after registration, using manually traced borders.  

 

 

7.4.2.  Effects of Tiling Resolution on Constructed Magnitude-

Phase Histogram 

In Chapter 6, we extensively studied the effects of different tiling schemes, visualized 

coefficients in various rings or spheres, and reconstructed IVUS sub-volumes 

accordingly. We persuaded the same path and constructed the magnitude-phase 

histograms using summed coefficients in different rings or spheres to further investigate 

where the most informative features are located or whether there is sufficient information 

in cubes representing high frequency components that we were not able to systematically 

study them through visualization previously. Figure 7.14 displays the grayscale images 

of magnitude of summed coefficients in different rings using 4x4x2 and 4x4x4 expansion 

schemes. Figure 7.15 also illustrates the corresponding constructed magnitude-phase 

histograms.  

 

The recent results confirmed our previous observations. We noticed that the most 

informative features are located in the innermost cubes Figure 7.14(b,g) and Figure 
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7.15(b,g). As we can see, the lobes are more separated in Figure 7.15(b,g) and 

corresponding histograms contain the majority of energy. Although in Chapter 6 we 

could not make any firm judgment about rings or spheres representing high frequency 

components, some of the histograms show separated lobes, Figure 7.15 (a,c,d,e,i,k). This 

is encouraging since we can also employ the corresponding coefficients in addition to 

those in the innermost rings or spheres, construct the histograms, and estimate the lumen 

border. It is worth mentioning that the magnitude-phase histogram approach does not rely 

                (i)                                       (j)                                        (k)                                        (l) 
Fig. 7.14. Constructed grayscale images from summed coefficients in R1

2 (a), R1
1 (b), R2

2 (c), R2
1 (d) 

using 4x4x2 expansion scheme and R1
1 (e), R1

2 (f), R1
3 (g), R1

4 (h), R2
1 (i), R2

2 (j), R2
3 (k), and R2

4 (l) using 
4x4x4 expansion scheme.  

                (a)                                       (b)                                       (c)                                      (d) 

                (e)                                      (f)                                       (g)                                       (h) 
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on the overall energy preserved in rings or spheres and only depends on relative 

magnitudes and phases. Some of the results also confirm that there is not any adequate 

information in some of the rings or spheres, Figure 7.15(f,h,j,l).We repeated the same 

experiment and compare the histograms resulting from 8x8x2 vs. 8x8x4 and 16x16x2 vs. 

16x16x4 expansion schemes and the results were similar to those depicted in Figures 

7.14 and Figure 7.15. 

 

For all experiments we processed the IVUS sub-volumes containing 8 frames per sub-

volume of analysis. We increased the number of frames per blocks and constructed the 

magnitude-phase histograms to investigate the results. We previously had observed that 

increasing the number of frames in block of analysis resulting more blurred images after 

reconstruction especially when there are misregistration among frames. Figure 7.16 

demonstrates constructed histograms for two frames in registered dataset within 

consistent and inconsistent sub-volume of analysis, respectively. We processed them by 

choosing 8 frames and 16 frames per block in 4x4x4 expansion scheme. 
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Fig. 7.15. Magnitude-phase histograms constructed from coefficients depicted in Figure 7.14.  
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Fig. 7.16. Constructed magnitude-phase histograms from coefficients in S1  in 4x4x4 expansion scheme 
for two cases: 1) a frame within stable (consistent) sub-volume of analysis by choosing 8 (a) and 16 (b) 
frames per block and corresponding detected lumen borders (red) (b,d) along with manually traced 
borders (green), 2) a frame within unstable (inconsistent) sub-volume of analysis by choosing 8 (a) and 
16 (b) frames per block and corresponding detected lumen borders (red) (f,g) along with manually 
traced borders (green). 
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Fig. 7.17. Constructed multiframe magnitude-phase histograms from coefficients in all cubes in S1  
in 4x4x4 expansion scheme for two cases: 1) a frame within stable (consistent) sub-volume of 
analysis by choosing 8 (a) and 16 (b) frames per block, 2) a frame within unstable (inconsistent) 
sub-volume of analysis by choosing 8 (a) and 16 (b) frames per block.  
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7.4.3.  Multiple-Frame Magnitude-Phase Histogram 

We constructed the magnitude-phase histogram from coefficients corresponding to a 

single frame. We extended such construction to 3-D and generated the magnitude-phase 

histograms using all coefficients in cubes within particular rings or spheres. In this case, 

we can generate a single mask for all frames in block of analysis contrary to the previous 

method that a mask used to be generated for each frame. This method is advantageous in 

perfectly registered dataset (sub-volume of analysis) and the speed of segmentation 

algorithm can be increased. Figure 7.17 demonstrates the constructed multi-frame 

magnitude-phase histograms for two cases using 8 and 16 frames per block of analysis in 

4x4x4 expansion scheme. The single-frame version of the histograms has been depicted 

in Figure 7.16. 
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8.  Chapter Eight: 

SUMMARY, CONCLUSION, AND FUTURE WORK  

 

8.1.  Atherosclerotic Plaque Characterization 

We described the importance of detection of vulnerable plaques in coronary arteries and 

concluded that IVUS technology is the predominant imaging modality to date for 

visualization of arterial wall and its pathological structures, comparing with other 

comparable imaging techniques. To reach this goal, we investigated realistic challenges 

from specimen preparation, IVUS data collection toward classification and strived to 

implement VH algorithm for data collected with single-element 40MHz transducer. 

However, we observed variations among transducer spectral parameters (i.e. bandwidth, 

center frequency) and extracted features (i.e. slope, intercept) that made classification 

very challenging if not impossible. As an alternative approach we presented an 

unsupervised multiscale 2-D wavelet-derived approach in combination with ISODATA 

clustering algorithm to classify tissues into fibrotic, fibro-lipidic, calcified, and no tissue. 

We then quantify the results employing gold standard histology images and studied 

numbers of critical factors that had not been considered by any group previously such as 

effects of flowing blood as well as change of pressure on constructed tissue color maps 

along with reliability of extracted features in successive frames and classification of 

tissues in regions behind arc of calcified plaques.  
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We showed that our algorithm could provide fairly reliable results under various 

conditions such as pressure changes and presence of arc of calcified. The accuracy of the 

algorithm was evaluated by an independent histopathologist and reported to be 99.70%, 

87.75% and 90.87% for calcified, fibrotic and fibro-lipidic tissues respectively in 83 CSIs 

collected from 32 hearts ex vivo. Our results showed a fine differentiation between 

fibrotic and fibro-lipidic components, which had been a major challenge in the field.  

 

Indeed the main contribution of our work was that the constructed PH images through our 

unsupervised approach could be reliably used for building training sets in any supervised 

classification approach without any manual labeling in the typically highly heterogeneous 

media of atherosclerotic plaques. Initially, we chose an unsupervised approach to validate 

the reliability of extracted features, however, extension of algorithm to supervised 

classification for in vivo applications is indispensible. This may also resolve one of the 

limitations associated with our developed technique, which was direct detection of 

necrotic core.  

 

8.1.1.  Refinement of Proposed Algorithm and Future Work 

In Chapter 3, we reviewed existing IVUS-based tissue characterization or vulnerable 

plaque detection techniques. Although each presented method has its own advantages, in 

their clinical applications, they have been only partially successful. For example, the 

challenges associated with RF-based algorithms (i.e. [64,69]) have been comprehensively 

studied in [130]. On the other hand developed textured-based techniques such as [77,87] 

miss some of the associated factors with vulnerable plaques or the one introduced in 
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[121] needs to be extended for supervised classification and direct detection of necrotic 

core tissue. Table 8.1 demonstrates the existing techniques and their ability to detect 

factors associated with vulnerable plaques [18,19].  

 

Table 8.1. Existing atherosclerotic tissue characterization algorithms. 
RF-Based Techniques Texture-Based Techniques  

IVUS-VH IVUS-IB IVE ECOC IBH IVUS-PH 
Author 
 (Year) 

Nair et. al 
(2001) [64] 

Kawaski et.al 
(2002) [69] 

de Corte et. al 
(2000) [9] 

Escalera et. al 
(2009) [77] 

Taki et. al 
(2009) [87] 

Katouzian et. al 
(2008) [121] 

Fibrotic Cap Yes 
(inferred) 

Yes 
(inferred) 

N/A Not Shown Yes 
(inferred) 

Yes (inferred) 

Lipid Core Size Yes Yes Maybe Not Shown  Maybe Yes 
Percentage of 

Stenosis 
Yes Yes Yes Yes Yes Yes 

Calcification Yes  Yes Maybe Yes Yes Yes 
Detection of VP Yes 

(inferred) 
Yes 

(inferred) 
No Not Shown Maybe Yes (inferred) 

Histology Validation Yes Yes Yes No Yes Yes 

Tissue Types Fibrotic 
Fibrofatty 
Calcified 
Necrotic  

Fibrotic 
Lipidic 

Calcified 

Fibrous 
Fibrofatty 

Fatty 

Fibrotic  
Soft Plaque 

Calcified 

Fibrotic 
Calcified 
Necrotic 

Fibrotic 
Lipidic 

Calcified 
No Tissue 

 

 

As we can see, the existing atherosclerotic tissue characterization techniques that are able 

to provide tissue color maps [64,69,87,121], have deployed either spectral or textural 

features for classification. The spectral features are basically derived from early work of 

Lizzi et. al [61,63], who strived to differentiate between benign and malignant tissues in 

prostate cancer, which were relatively more homogenous comparing with atherosclerotic 

plaques. They assumed that tissue’s spectra have a known autocorrelation function [65] 

given homogeneity of tissues within windowed backscattered signal. The advantage of 

spectral-derived technique is that it can provide more details about tissues 

microstructures given informative, consistent, and reliable features. However, as we 

presented in Chapter 4, we found large variations among extracted atherosclerotic tissue 

spectral features particularly when high-frequency transducer (40 MHz up) was used due 
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to inconsistency among transducer spectral parameters (i.e. center frequency, bandwidth), 

heterogeneity of tissue’s windowed signal, non-linear response of tissue’s response to 

ultrasound signal, geometric configuration of scatterers, transducer position and/or beam 

angle of incidence, etc. [130]. On the other hand, texture-based designed techniques fail 

to detect early versus late necrotic core tissues or dense fibrotic tissues that appear similar 

to calcified tissues. Hence, we hypothesize that combining both spectral and textural 

features alleviate inconsistencies while improving detection of tissues. For this purpose, 

the generated PH images could be used to retrieve signals corresponding to each tissue 

locally and then spectral features would be computed. At the end, the features vector 

might be consist of only spectral features or both spectral and textural features.   

 

From classification point of view, we may employ SVM scheme for classification for two 

main reasons. First, we could classify data that exhibit linear or non-linear behavior in 

input space so we may be able to take into account tissue’s non-linear response to 

ultrasound signals. Secondly, we not only could generate tissue color maps but also the 

distance from hyperplanes to each data point in feature space might be used as confident 

scaling factor. This would allow us to incorporate the reliability of classified results into 

color codes and generate tissue maps (e.g. PH images) with spectrum of colors. 

Subsequently, an interventional cardiologist can make decisions more confidently.  
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8.2.  Automatic Detection of Luminal Borders In IVUS Images 

In this study we explored the applicability of brushlet analysis on IVUS datasets to filter 

3-D grayscale IVUS images and detect the lumen borders. We deployed three filtering 

methods to remove or alleviate the effects of blood speckles prior to lumen border 

detection. First, we employed similar approach presented in [133] and directly 

thresholded brushlet coefficients followed by reconstruction. Our hypothesis was that the 

magnitude or real part of brushlet coefficients corresponding to blood speckles was lower 

than those of non-blood regions. Secondly, we strived to discover where the most 

informative features were located and thus developed incremental/decremental expansion 

and reconstruction algorithms. During such process, we kept the most valuable features, 

mainly located in cubes/rings/spheres representing low frequency components, and 

ignored the rest. We looked at the filtered grayscale images constructed from magnitude 

of brushlet coefficients in transformed domain and also their correspondences after 

reconstruction in spatial domain. Finally, we developed an algorithm based on estimation 

and compensation of magnitude as well as phase of ensemble of distinct textures (i.e. 

blood and non-blood in IVUS images) in transformed domain through construction of 

corresponding 2.5-D magnitude-phase histograms.  

 
Our findings demonstrated that 3-D brushlet analysis had a great potential to isolate 

coherent patterns (i.e. non-blood) from incoherent ones (blood). We visualized brushlet 

coefficients extensively and observed that they carry out valuable information at different 

scales, orientations, and frequencies. This was also confirmed through supervised 

classification of coefficients corresponding to blood versus non-blood regions using 

neural networks.  
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The main contribution of this work is classification of brushlet coefficients corresponding 

to blood and non-blood regions through estimation of peaks of relative magnitudes and 

phases in constructed 2.5-D magnitude-phase histograms. Once the magnitudes and 

phases were approximated, we generated binary masks corresponding to blood and non-

blood regions in transformed domain and employed the same masks to estimate the 

lumen borders. Our results showed that the proposed framework performed promising, 

detecting the lumen border in images acquired with both 40MHz and 45MHz transducers.  

 

Despite encouraging results, there are existing challenges that degrade resulting 

automated detected borders so further study is required to improve algorithm 

performance. For example, in some cases, we observed that the lumen borders are 

underestimated in large arteries with eccentric plaques and deep shallows, Figure 8.1(a). 

Previously we described that the algorithm removes objects close to transducer surface 

(a) (b) 
Fig. 8.1. Two examples where the algorithm fails to correctly identify lumen borders. An eccentric 
artery with deep shallow (a), repetitive reflection of ultrasound signals (ring-down artifact) from 
surface of transducer’s element (b).  



 

 

211 

with 180o orientation that could be due to reflection of ultrasound signals from 

transducer’s element surface because of impedance mismatch. However, in some cases, 

the reflection from transducer’s element surface (ring-down artifact) could be repetitive, 

Figure 8.1(b), which calls for more sophisticated regularization.   

 

 

For future work, we define numbers of projects to explore different aspects of developed 

methods. 

 

8.2.1.  Refinement of Supervised Classification of Blood Versus 

Non-Blood Regions 

In Section 6.4, we confirmed that brushlet coefficients provided valuable information 

about blood regions so they could be used for supervised classification of blood versus 

non-blood regions. We achieved encourging results on datasets with relatively small and 

large vessels, which were of particular interest. However, there are several items that 

need to be further studied in order to improve the algorithm performance. For example, 

we can combine brushlet derived features with statistical (mean, standard deviation, 

kurtosis, entropy, etc), textural (homogeneity, contrast, energy, correlation, etc) and/or 

spatial/temporal/spectral features presented in [146]. We can also consider other 

classification algorithms such as support vector machine (SVM) that is known to be 

faster and more robust.  
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We employed two iterative techniques in Section 6.6 in order to extract features as close 

as possible to low frequency components. We had observed that these features were more 

informative of those representing high frequency components. In supervised 

classification approach, this may be verified through a common method of feature 

selection, known as sequential feature selection. Such techniques have been designed 

based on an objective function, called the criterion (i.e. mean squared error for regression 

models), which the method seeks to minimize over all feasible feature subsets. The 

method has two variants: 1) sequential forward selection (SFS), in which features are 

sequentially added to an empty candidate set until the addition of further features does 

not decrease the criterion, 2) sequential backward selection (SBS), in which features are 

sequentially removed from a full candidate set until the removal of further features 

increase the criterion. In either method, we can verify the localization of the most 

informative features in an optimum framework. 

 

 

8.2.2.  Quantitative Measurement for Energy Localization in 

Incremental/Decremental Decomposition Frameworks 

Although we visually observed that the most informative features were located in the 

innermost rings/spheres we needed to verify it in a justifiable basis. Hence, we propose a 

quantitative measurement technique to calculate the energy at each level of 

decomposition. In this way, we can investigate that how many percent of the energy in 

the innermost rings/spheres would be preserve in the innermost rings/spheres after each 

level of decomposition. 
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8.2.3.  Decreasing Processing Time by Adaptive Selection of 

Numbers of Frames per Blocks of Analysis 

We examined the effects of tiling resolution along pullback direction in Section 6.6.1, 

experiment # 3. We observed that reconstructed images became blurred due 

misalignment among frames when we increased resolution of tiling along pullback 

direction, Figure 6.40. This limits numbers of frames per blocks of analysis and therefore 

increases processing time. We know that frames acquired close to end of diastolic (ED) 

phase exhibit more misalignment and most of registration algorithms are designed based 

on such attribute. Given registered dataset with critical frame numbers (those that present 

more misalignment), we can increase and decrease numbers of frames per blocks of 

analysis. For example, in frames that represent consistent and inconsistent pullbacks we 

can employ 16 and 4 frames per blocks of analysis, respectively. Our hope is to decrease 

processing time and obtain more reliable results simultaneously. 

 

 

8.2.4.  Dual-Modal Brushlet-Based Lumen Border Detection 

Technique with Cross Refinement 

In Chapter 6 and 7, we demonstrated that brushlet analysis is well suited for delineation 

of blood pool and confirmed that brushlet coefficients provided valuable information 

about blood and non-blood regions. We achieved the best results, deploying two distinct 

techniques: 1) supervised classification of blood regions described in Section 6.4, 2) 

estimation of relative magnitudes and phases in constructed 2.5-D histogram and 
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construction of binary masks corresponding to blood and non-blood regions, presented in 

Chapter 7. Although both techniques provide reasonable results, they have their own 

advantages and disadvantages. For example, the supervised approach works encouraging 

and deserves further exploration in large vessels while the histogram-based technique 

sometimes may not work perfectly due to attenuation of signals in regions far from 

transducer. On the other hand, the lumen border could be directly detected in masks 

corresponding to blood regions generated by histogram-based technique with proper 

regularization, while we needed to threshold the output of the Neural Network to estimate 

the blood pool and approximate the lumen border with some regularization. Nevertheless, 

both techniques are common in one thing and it is brushlet space.  

 

Once we come into brushlet space, we can derive required features for either 

abovementioned algorithm concurrently. Given a trained classifier, we can generate 

blood maps and binary masks corresponding to blood regions simultaneously. The main 

question here is “how to use one of the results to refine the other one?” or “how can we 

come up with some rules to refine both results all at the same time?” Although 

refinement of both results simultaneously seems to be more challenging we might be able 

to use one of them to refine the other one.  
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Appendix 

A. List of Abbreviations 

 

2-D  Two-Dimensional 

3-D  Three-Dimensional 

ACS  Acute Coronary Artery 

AR  Autoregressive 

AUC  Area Under Curve 

CAD  Coronary Artery Disease  

CHD  Coronary Heart Disease 

CSI  Cross Section of Interest 

CT  Computed Tomography 

CTA  Computed Tomography Angiography 

DECOC Discriminant Error Correcting Output Codes 

DES  Drug-Eluting Stent 

DWF  Discrete Wavelet Frame 

DWPF  Discrete Wavelet Packet Frame 

DWPT Discrete Wavelet Packet Transform 

EBCT  Electron-Beam Computed Tomography 

ECOC  Error Correcting Output Codes 

ED  End of Diastolic 

EEM  External Elastic Membrane 
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FDA  Food and Drug Administration 

FFT  Fast Fourier Transform 

FLDA  Fisher Linear Discriminant Analysis 

H&E  Hematoxylin and Eosin 

IB  Integrated Backscatter 

ICM  Iterative Conditional Mode 

ICT  Intracoronary Thermography 

IFFT  Inverse Fast Fourier Transform 

IVE  Intravascular Elastography 

K-NN  K Nearest Neighbor 

LAD  Left Anterior Descending 

LCX  Left Circumflex 

LDL  Low Density Lipoprotein 

LMSE  Least Mean Square Error 

LV  Left Ventricle 

MBF  Mid-Band-Fit 

MI  Myocardial Infarction 

MRA  Magnetic Resonance Angiography 

MRI  Magnetic Resonance Imaging  

NIR  Near Infrared  

NMC  Nearest Mean Classifier 

NURD  Non Uniform Rotational Distortion 

OCT  Optical Coherence Tomography 
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PBS  Phosphate Buffered Saline 

PCA  Principle Component Analysis 

PCI  Percutaneous Coronary Intervention 

PH  Prognosis Histology 

PSD  Power Spectral Density 

QMF  Quadrature Mirror Filter 

RCA  Right Coronary Artery 

RF  Radio Frequency 

ROC  Receiver-Operating-Characteristic 

ROI  Region of Interest 

RMSE  Root Mean Square Error 

RT3-D  Real-Time Three-Dimensional 

SBS  Sequential Backward Search 

SFA  Surface Function Active 

SFE  Scaling Factor Estimator 

SFS  Sequential Forward Search 

SNR  Signal-to-Noise Ratio 

TCFA  Thin-Cap Fibro Atheroma 

TGC  Time Gain Compensation 

UCT  Ultrafast Computed Tomography 

VH  Virtual Histology 

VV  Vasa Vasorum 
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