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Abstract

Bayesian Model Selection in terms of Kullback-Leibler discrepancy

Shouhao Zhou

In this article we investigate and develop the practical model assessment and selec-

tion methods for Bayesian models, when we anticipate that a promising approach

should be objective enough to accept, easy enough to understand, general enough

to apply, simple enough to compute and coherent enough to interpret. We mainly

restrict attention to the Kullback-Leibler divergence, a widely applied model evalua-

tion measurement to quantify the similarity between the proposed candidate model

and the underlying true model, where the true model is only referred to a probability

distribution as the best projection onto the statistical modeling space once we try

to understand the real but unknown dynamics/mechanism of interest. In addition

to review and discussion on the advantages and disadvantages of the historically and

currently prevailing practical model selection methods in literature, a series of conve-

nient and useful tools, each designed and applied for different purposes, are proposed

to asymptotically unbiasedly assess how the candidate Bayesian models are favored

in terms of predicting a future independent observation. What’s more, we also ex-

plore the connection of the Kullback-Leibler based information criterion to the Bayes

factors, another most popular Bayesian model comparison approaches, after seeing

the motivation through the developments of the Bayes factor variants. In general, we

expect to provide a useful guidance for researchers who are interested in conducting

Bayesian data analysis.
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Chapter 1

Introduction

The choice of an appropriate model to characterize the underlying distribution for

the given set of data is essential for applied statistical practice. There has been con-

siderable discussion over the past half century and numerous theoretical works have

been contributed to its development. Just for multiple linear regression, a partial list

of the model assessment tools is composed of adjusted R2 (Wherry, 1931), Mallow’s

Cp (Mallows, 1973, 1995), Akaike information criterion (AIC, Akaike, 1973, 1974),

prediction sum of squares (PRESS, Allen, 1974), generalized cross-validation (GCV,

Craven and Wahba, 1979), minimum description length (MDL, Rissanen, 1978), Sp

criterion (Breiman and Freedman, 1983), Fisher information criterion (FIC, Wei,

1992), risk inflation criterion (RIC, Foster and George, 1994), L-criterion (Laud and

Ibrahim, 1995), generalized information criterion (GIC, Konishi and Kitagawa, 1996),

covariance inflation criterion (CIC, Tibshirani and Knight, 1999) and focused infor-

mation criterion (FIC, Claeskens and Hjort, 2003), to name but a few. (On the

topic of the subset variable selection in regression, see Hocking (1976) for the re-

view of early works, George (2000) for the recent development and Miller (1990,

2002) for the comprehensive introduction and bibliography.) For the criteria corre-

sponding to time series modeling, some important findings are final prediction error

1
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(FPE, Akaike, 1969), autoregressive transfer function criterion (CAT, Parzen, 1974),

Hannan-Quinn’s criterion (HQ, Hannan and Quinn, 1979) and corrected AIC (AICc,

Hurvich and Tsai, 1989), while an introduction on the time series model selection

techniques is given by McQuarrie and Tsai (1998). One special kind of model selec-

tion technique related is the automatic regression procedures, by which the choice of

explanatory variables is carried out according to a specific criterion, such as those

mentioned above. It includes all possible subsets regression (Garside, 1965) and step-

wise regression, the latter of which consists of forward selection (Efroymson, 1966)

and backward elimination (Draper and Smith, 1966).

Compared with the abundance of model selection proposals in the frequentist do-

main, Bayesian methods also have drawn a large amount of attention. The availability

of both fast computers and advanced numerical methods in recent years enables the

empirical popularity of Bayesian modeling, which allows the additional flexibility to

incorporate the information out of the data, represented by the prior distribution.

The fundamental assumption of Bayesian inference is also quite different, for the

unknown parameters are treated as random variables, in the form of a probability

distribution. Taking the above into account, it is important to have the selection

techniques specially designed for Bayesian modeling. In the literature, most of the

key model selection tools for Bayesian models can be classified into two categories:

1. methods with respect to posterior model probability, including Bayes factors

(Jeffreys, 1961; Kass and Raftery, 1995), Schwarz information criterion (SIC,

Schwarz, 1978), posterior Bayes factors (Aitkin, 1991), fractional Bayes factors

(O’Hagan, 1995) and intrinsic Bayes factors (Berger and Pericchi, 1996), etc.

2. methods with respect to Kullback-Leibler divergence, including deviance infor-

mation criterion (DIC, Spiegelhalter et al., 2002), conditional AIC (cAIC, Vaida

and Blanchard, 2005), Bayesian predictive information criterion (BPIC, Ando,
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2007), deviance penalized loss (Plummer, 2008), etc.

There are also one kind of generally applicable procedures, such as cross-validation

(Stone, 1974; Geisser, 1975) and Bootstrap (Efron, 1979; Efron and Tibshirani, 1993),

requiring a loss/discrepancy function to be specified in advance for model performance

assessment, in accordance with either a frequentist or Bayesian philosophy. A list of

widely accepted discrepancy functions is provided in Linhart and Zucchini (1986).

Stone (1979) shows that the cross-validation method employs the Kullback-Leibler

discrepancy and AIC is asymptotically equivalent in the order of op(1).

Explanatory vs Predictive

From either a frequentist or a Bayesian perspective, it is essential to distinguish the

ultimate goal of modeling when confronting a statistical data analysis project. Geisser

and Eddy (1979) challenge research workers two fundamental questions that should

be asked in advance of any procedure conducted for model selection:

• Which of the models best explains a given set of data?

• Which of the models yields the best predictions for future observations from

the same process which generated the given set of data?

The former, which cares about how accurately a model describes the current data in

the explanatory point of view, has been the problem of empirical science for many

years; whereas the latter, which focuses on predicting future data as accurately as

possible in the predictive perspective, is more crucial and difficult to answer and has

drawn more attentions in recent decade.

If an infinitely large quantity of data is available, the predictive perspective and

the explanatory perspective might not differ significantly. With only limited number

of observations in practice, it is a more difficult task for predictive model selection
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methods to achieve an optimal balance between goodness of fit and parsimony. A

central issue for the predictive methods is to avoid the impact from the ‘double use’ of

the data, i.e. the whole set of data is used both in the parameter estimation stage and

in the model evaluation stage. One solution is to split the data into two independent

subsets, using one as the training set to fit the model and the other as the testing set

to assess the validity of the model. Subsequently, it is crucial to implement it with

either cross-validation or bootstrap, for the data-split approach obviously reduces the

data usage efficiency and intermediately raises the question how to make the proper

data separation. However, it is quite computer-intensive to apply those numerical

procedures, especially for Bayesian modeling. On the contrary, it is computationally

more efficient to take the alternative approach by evaluating each model with an ad

hoc penalized estimator of the out-of-sample discrepancy.

The goal of the study

In this article we investigate and develop the practical model assessment and selec-

tion methods for Bayesian models, when we expect that a promising methodology

should be objective enough to accept, easy enough to understand, general enough

to apply, simple enough to compute and coherent enough to interpret. We mainly

restrict attention to the Kullback-Leibler divergence, a widely applied model evalua-

tion measurement to quantify the similarity between the proposed candidate model

and the underlying true model, where the true model is only referred to a model as

the best projection unto the statistical modeling space once we try to understand

the real but unknown dynamics/mechanism of interest. In addition to review and

discussion on the advantages and disadvantages of the historically and currently pre-

vailing practical model selection methods in literature, a series of convenient and

useful tools, each applied for different purposes, are proposed to asymptotically unbi-
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asedly assess how the candidate Bayesian models are favored in terms of predicting a

future independent observation. What’s more, we also explore the connection of the

Kullback-Leibler based information criterion to the Bayes factors, another most pop-

ular Bayesian model comparison approaches, after seeing the motivation through the

developments of the Bayes factor variants. In general, we expect to provide a useful

guidance for researchers who are interested in conducting Bayesian data analysis.

The structure of the article

In Chapter 2, we first introduce the Kullback-Leibler divergence and give a short liter-

ature review how it is applied in the frequentist paradigm for model selection. Among

the various criteria proposed in the past a few decades, the generalized information

criterion (GIC, Konishi and Kitagawa, 1996) is the most promising one in terms of

the generality by relaxing the two restrictive assumptions of Akaike Information Cri-

terion (AIC, Akaike, 1973). Considering the fact that many statisticians also evaluate

the Bayesian models with point estimators, we review the prevailing Bayesian meth-

ods and propose the Bayesian generalized information criterion (BGIC) as a general

tool to choose Bayesian models estimated with distinct plug-in parameters. Theoret-

ically, BGIC inherits all the attractive properties of GIC, including the asymptotic

unbiasedness and applicable generality. BTIC, the Bayesian version of Takeuchi’s

information criterion (TIC, Takeuchi, 1976), is illustrated as a special case when we

consider the posterior mode as a proper plug-in estimator. Heuristically, the poste-

rior mode plays a similar role as maximum likelihood estimator in the frequentist’s

setting. A simulation study is conducted to compare the bias correction of BTIC

together with other prevalent criteria, such as cross-validation, DIC (Spiegelhalter et

al., 2002) and plug-in deviance penalized loss (Plummer, 2008), when the sample size

is small and prior distribution is either weakly or strongly informative.
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In Chapter 3, we shift our attention to the K-L based predictive criterion for

models evaluated by averaging over the posterior distributions of parameters. After

reviewing the available criteria, such as the Bayesian predictive information criterion

(BPIC, Ando, 2007) and the expected deviance penalized loss (Plummer, 2008), we

propose a generally applicable method for comparing different Bayesian statistical

models, developed by correcting the asymptotic bias of the posterior mean of the

log likelihood as an estimator of its expected log likelihood. Under certain standard

regularity conditions, we prove the asymptotic unbiasedness of the proposed criterion

even when the candidate models are misspecified. In addition to its appealing large

sample properties, we present some numerical comparisons in both normal and bino-

mial cases to investigate the small sample performance. A real data variable selection

example is also provided to exhibit the possible difference between the explanatory

and predictive approaches.

In Chapter 4, we re-visit the philosophy underneath the Bayes factors after taking

a close look at the candidate Bayesian models for pairwise comparison. We demon-

strate that, when the standard Bayes factor and its derivatives compare the proposed

original models, it is of more interest for Bayesian researchers to make comparisons

among the fitted models. Taking the above into account, the predictive Bayes factor

is proposed on top of the posterior predictive information criterion (PPIC), both of

which are assessed in terms of the Bayesian posterior predictive density. Through

the theoretical link between predictive Bayes factor and PPIC, we investigate the

significance level of one model outperforming another in accordance to the difference

between their information criterion values. For illustrative purpose, we perform the

numerical comparison of the predictive Bayes factor with the standard Bayes factor

to emphasize the empirical difference.

Conclusion is drawn in the final chapter. Furthermore, we will discuss a few



7

interesting topics frequently encountered in data analysis when applying Bayesian

model selection criteria, and give our suggestions to select the proper Bayesian model.

Notation

Before we go through any technical details, we provide a brief explanation about some

of the notation used in this article.

Let y1, y2, · · · , yn be n independent observations on a random vector y generated

from probability distribution F with density function f(ỹ), and ỹ a future observation

generated from the same true density f , independent of the random vector y. Let y−i

denote the leave-one-out random vector y1, y2, · · · , yi−1, yi+1, · · · , yn. An approximat-

ing model k is proposed with density gk(ỹ|θk) among a list of potential models k =

1, 2, · · · , K, and the likelihood function can be written as L(θk|y) = ∏n
i=1 gk(yi|θk).

Under the Bayesian setting, the prior distribution of model k is denoted by πk(θ
k),

and the posterior is

pk(θ
k|y) = L(θk|y)πk(θ

k)∫
L(θk|y)πk(θk)dθk

.

Given the prior probabilities P (Mk) for each model, the data y produce the posterior

probabilities

pk(θ
k,Mk|y) = pk(θ

k|y)P (Mk|y)

For notational purposes, we ignore the model index m hereinafter when there is

no ambiguity.

Define log π0(θ) = limn→∞ n−1 log π(θ). By the law of large numbers we have

1
n
log{L(θ|y)π(θ)} → Eỹ[log{g(ỹ|θ)π0(θ)}] as n tends to infinity. Without specifica-

tion, the notation Eỹ and Ey in this article exclusively denote the expectation with

respect to the underlying true distribution f . Let θ0, θ̂ denote the expected and
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empirical posterior mode of the log unnormalized posterior density log{L(θ|y)π(θ)},

θ0 = argmax
θ

Eỹ[log{g(ỹ|θ)π0(θ)}];

θ̂ = argmax
θ

1

n
log{L(θ|y)π(θ)}.

Last, the empirical matrices

Jn(θ) = − 1

n

n∑

i=1

(
∂2 log{g(yi|θ)π

1

n (θ)}
∂θ∂θ′

), (1.1)

In(θ) =
1

n− 1

n∑

i=1

(
∂ log{g(yi|θ)π

1

n (θ)}
∂θ

∂ log{g(yi|θ)π
1

n (θ)}
∂θ′

) (1.2)

are considered in our article to unbiasedly estimate the Bayesian Hessian matrix and

Bayesian Fisher information matrix

J(θ) = −Eỹ(
∂2 log{g(ỹ|θ)π0(θ)}

∂θ∂θ′
),

I(θ) = Eỹ(
∂ log{g(ỹ|θ)π0(θ)}

∂θ

∂ log{g(ỹ|θ)π0(θ)}
∂θ′

).



Chapter 2

Bayesian Generalized Information

Criterion

2.1 Kullback-Leibler divergence: an objective cri-

terion for model comparison

Kullback and Leibler (1951) introduce an information measure, termed as Kullback-

Leibler divergence, to assess the directed ‘distance’ between any two distributions. If

we assume f(ỹ) and g(ỹ) respectively represent the probability density distributions

of the ‘true model’ and the ‘approximating model’ on the same measurable space,

Kullback-Leibler divergence is defined by

I(f, g) =

∫
f(ỹ) · log f(ỹ)

g(ỹ)
dỹ = Eỹ[log f(ỹ)]− Eỹ[log g(ỹ)]. (2.1)

Note that such a quantity is always non-negative, reaching the minimum value 0 when

f is the same as g almost surely, and interpretable as the ‘information’ lost when g

is used to approximate f . Namely, the smaller (and hence the closer to 0) the value

of I(f, g), the closer we consider the model g to be to the true distribution.

9
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Without the full knowledge of true distribution f , only the second term of I(f, g)

is relevant to compare different possible models in practice. This is because the first

term, Eỹ[log f(ỹ)] is a function of f but independent of the proposed model g, and

negligible in model comparison for given data y = (y1, y2, · · · , yn).

As n increases to infinity, the average of log-likelihood

1

n
L(θ|y) = 1

n

n∑

i=1

log g(yi|θ)

tends to Eỹ[log g(ỹ|θ)] by the law of large numbers, which gives us hints on how to

estimate the second term of I(f, g). Here ỹ is supposed to be an unknown but po-

tentially observable quantity coming from the same distribution f and independent

of y, and the second term of I(f, g) is the Kullback-Leibler discrepancy (if inter-

ested, see Linhart and Zucchini, 1986, for the discussion why it is improper to call it

Kullback-Leibler loss or Kullback-Leibler risk).

The model selection based on Kullback-Leibler divergence is obvious in the sim-

plest case when all the candidate models are parameter-free probability distributions,

i.e., g(ỹ|θ) = g(ỹ) when models with large empirical log-likelihood 1
n
log g(yi) are fa-

vored. When some unknown parameters θ are contained in the distribution family

g(ỹ|θ), a general procedure is to perform the model fitting first so that we may know

what values the parameters most probably will take given the data, and make the

model comparison thereafter.

In the frequentist setting, the general model selection procedure starts from choos-

ing one ‘best’ candidate model specified by some point estimate θ̂ based on a certain

statistical principle such as maximum likelihood. There have been a considerable

number of references addressing this problem theoretically. For example, assuming

the fitted model with MLE θ̂ as the best for family G = {g(ỹ|θ), θ ∈ Θ}, Akaike
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(1973) proves that under the assumption f(·) ∈ G, asymptotically,

1

n

n∑

i=1

log g(yi|θ̂)−K/n ∼= Eỹ[log g(ỹ|θ̂)], (2.2)

where the number of parametersK can be considered as the penalty of over-estimating

the out of sample log-likelihood. Akaike information criterion (AIC) is defined to be

the estimator of (2.2) multiplied by −2n. It favors candidate models with small

AIC values for the purpose of model selection. Hurvich and Tsai (1989) study the

second-order bias adjustment under the normality assumption in small samples. The

above two criteria assume that the true model is contained in the candidate class un-

der consideration, an assumption relaxed by Takeuchi’s information criterion (TIC)

(Takeuchi, 1976). In addition to that, Konishi and Kitagawa (1996) propose the gen-

eralized information criterion (GIC) when the parameter estimate θ̂ is not necessarily

to be MLE. Meanwhile, Murata et al. (1994) generalize TIC to network information

criterion (NIC) Meanwhile, Murata et al.(1994) generalize TIC to network informa-

tion criterion (NIC) by introducing a discrepancy function to measure the difference

between the proposed distribution and the underlying true distribution, where K-

L divergence can be considered as a special case. A comprehensive review is given

by Burnham and Anderson (2002), when the theoretical discussions on asymptotic

efficiency of the AIC-type criteria can be found in Shibata (1981, 1984) and Shao

(1997).

2.2 K-L based Bayesian predictive model selection

criteria

While there are an abundance of theoretical works in the frequentist’s framework,

there were no generally applicable K-L based predictive model selection criteria specif-

ically designed for Bayesian modeling in the last century. It used to be prevailing to
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apply frequentist criteria such as AIC directly for Bayesian model comparison. How-

ever, if we seriously think of the difference of the underlying philosophies between

Bayesian and frequentist statistical inference, it is dangerous to make such kind of

direct applications by discounting the information within the prior distribution.

The prior works on approaches to use Kullback-Leilber divergence for Bayesian

model selection have been considered over last 30 years, for example, see Geisser and

Eddy (1979), San Martini and Spezzaferri (1984) and Laud and Ibrahim (1995), while

a detailed review is given in Kadane and Lazar (2004) for most of them. However,

those methods are either limited in the scope of methodology or computationally

infeasible for general Bayesian models, especially when parameters are in hierarchical

structures. To find out a good Kullback-Leibler based criterion for Bayesian models,

we focus the literature review in this section on most recent or widely applied methods

by which model evaluation in terms of plug-in parameter estimators was conducted.

The criteria on model evaluation with respect to averaging over parameter posterior

distribution will be discussed in next chapter.

DIC

Spiegelhalter et al. (2002) is the most popular paper on this topic, in which they

define the deviance information criterion (DIC)

DIC = D(θ̂, y) + 2pD

as an adaptation of the Akaike information criterion for Bayesian models after arguing

the plausibility to consider pD

pD = Eθ|y[D(θ, y)]−D(θ̂, y)

to estimate the ‘effective number of parameters’ as a model complexity measure,

where the deviance function D(θ, y) = −2
∑

i log g(yi|θ). Here θ̂ could be either the
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posterior mean or mode instead of MLE since the full model specification of Bayesian

statistics contains a prior specification π(θ) in addition to the likelihood, and the

inference can only be derived from the posterior distribution p(θ|y) ∝ L(θ|y)π(θ).

Spiegelhalter et al. (2002) heuristically demonstrate that, as a model selection

criterion, −DIC/2n estimates the expected expected out-of-sample log-likelihood

η1 = EθtEỹ|θt

[
log g(ỹ|θ̂)

]
, where θt are considered as the true parameters after assum-

ing that the proposed model encompasses the true model with θ̂ → θt. However, the

estimation is pointed out to be lack of theoretical foundation by various researchers,

for instance, Meng and Vaida (2006) in a radical prognosis and Celeux et al. (2006b)

in an agreement.

In practice, DIC is simple to calculate after deriving the posterior samples by using

Markov chain Monte Carlo (MCMC) method. An open-source software developed for

its computation is BUGS (Spiegelhalter et al., 1994; 2003), while JAGS (Plummer,

2007) provides an alternative approach of estimation by using importance sampling

method.

cAIC

To evaluate the goodness of the Gaussian linear mixed-effects models for clustered

data under the normality assumption

g(y|β, b) = N(Xβ + Zb; σ2)

p(b) = N(0; Σ),

Vaida and Blanchard (2005) propose the conditional Akaike’s information criterion

(cAIC). One of their important assumptions is that the true model is within the class

of approximating parametric probability distributions, that is, there exist a pair of β0

and random effects u with distribution p(u) which satisfy f(y|u) = g(y|β0, u). The
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conditional Akaike information

η2 = EuEy|uEỹ|u

[
log g(ỹ|β̂, b̂)

]

is treated as the adjusted target function of model selection criterion when replac-

ing the true density in the expected out-of-sample log likelihood by its parametric

estimation, where β̂, b̂ are the maximum likelihood estimator for β and the empirical

Bayes estimator for b respectively, and the expectation is over the posterior predictive

distribution p(ỹ|y) =
∫
g(ỹ|β̂, b)p(b|y)db.

When the variance σ2 and covariance matrix Σ are known,

cAIC = −2
∑

i

log g(yi|β̂, b̂) + 2ρ

is proved to be unbiased for −2n · η2. where ρ = tr(H), and H is the ‘hat’ matrix

mapping the observed y onto the fitted ŷ such that ŷ = Xβ̂ + Zb̂ = Hy. It is worth

mentioning that ρ is considered to be a measure of degrees of freedom for mixed effects

models by Hodges and Sargent (2001). With an interpretation in terms of subspace

geometrical projection, they argue that the complexity of the random effects is a

‘fraction’ of the number of parameters because of the constraints from the hyper-level

covariance.

Liang et al. (2009) generalize cAIC by removing the assumption on variance.

They prove that, when both the variance and the covariance matrix of the linear

mixed-effects model are unknown, an unbiased estimator for −2n · η2 is

GcAIC = −2
∑

i

log g(yi|β̂, b̂) + 2Φ0(y),

where Φ0(y) =
∑N

i=1 ∂ŷi/∂yi is inherent to the generalized degrees of freedom defined

by Ye (1998).
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Cross-validation

Cross-validation (Stone, 1974; Geisser, 1975) is an algorithm to assess the out-of-

sample performance of a discrepancy function, which could be either the log-likelihood

evaluated with plug-in estimator or averaging over the posterior in our case. For

example, Geisser and Eddy (1979) provide a cross-validative approach to estimate

posterior predictive density for Bayesian model selction. Stone (1977) shows that

cross-validation is asymptotically equivalent to the AIC in the order of op(1). The

comprehensive review on the recent development of cross-validation in the frequentist

paradigm is given by Arlot and Celisse (2010), whereas Vehtari and Lampinen (2002)

explore the application of the cross-validation procedure to estimate expected utilities

for Bayesian models.

The computation of the cross-validation estimate is always challenging for Bayesian

modeling. For leave-one-out cross-validation, every candidate model need to be re-

fitted for n times to generate a series of the posterior p(θ|y−i), each with a single

observation i deleted. The process will be unfeasibly time-consuming for iterative

computation. An alternative is to use importance sampling when the posterior given

the full data p(θ|y) is chosen as the sampling proposal; however, this is still not a

good solution because the weights, 1/g(yi|θ), are unbounded, making the importance-

weighted estimate unstable. The k-fold cross-validation can reduce the number of

re-fitting, but the variance of the expected utility estimate will increase for small

k even after the additional higher-order bias correction, and the error of K-folded

cross-validation is generally over-estimated (Vehtari and Lampinen, 2002).

Plug-in/Expected Deviance Penalized Loss

With the definition of ‘optimism’

popti = E{L(yi, y−i)− L(yi, y)|y−i}
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for observation i, Plummer (2008) shows that the penalized loss

L(yi, y) + popti

has the same conditional expectation over the predictive density p(yi|y−i) as the

cross-validation loss L(yi, y−i). After considering 2 special loss functions each based

on distinct treatment to the deviance function: the ‘plug-in deviance’

Lp(yi, z) = −2 log g(yi|θ̂(z)),

and the ‘expected deviance’

Le(yi, z) = −2Eθ|z log g(yi|θ),

the total penalized loss

L(y, y) + popt =
n∑

i=1

{L(yi, y) + popti}

is in the form of a K-L based model selection criterion, where popt is the bias correction

term. It is worth to mention that by employing the predictive density p(yi|y−i) in the

conditional expectation, the assumption of the true model contained in the approx-

imating family is added compared with the cross-validation method. In principle,

the expected deviance penalized loss is a special case of the predictive discrepancy

measure (Gelfand and Ghosh 1998).

A numerical solution similar to BUGS but designed to estimate both the DIC and

the deviance penalized loss is provided by JAGS (Plummer, 2007). Other than Gibbs

sampler and Metropolis algorithm, JAGS uses importance sampling to draw samples

from full posterior p(θ|y) for leave-one-out posterior p(θ|y−i). One caveat is that

importance sampling algorithm may cause inaccurate estimation in practice if some

observation yi was influential, as illustrated in the discussion of cross-validation.
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2.3 Bayesian Generalized Information Criterion

Note that maximization of the expected out-of-sample log likelihood is equivalent

to minimization of the Kullback-Leilber divergence. To estimate the expected out-

of-sample log likelihood, all the approaches listed above consider the empirical log

likelihood as a proxy. However, different approaches employ different bias corrections

to compensate the double use of the data for both model estimation and evaluation.

Besides the computationally costly cross-validation method, the estimations of the

bias correction term from the rest methods are derived under the assumption that

the candidate model is not mis-specified, i.e., the true model f is contained in the

proposed parametric family. It makes the usage of those approaches very challenging,

for such a strong assumption is almost impossible to verify. If that assumption were

not met, the interpretation of the estimated criteria values could significantly mislead

the conclusion.

Another key element in the bias correction term estimation is about the selection

of the plug-in estimator in model assessment. From the literature reviews in the

previous section, one may find that some potential candidates of plug-in estimators

are posterior mean and posterior mode. However, no theoretical foundation has

been built and no agreement settled on the choice of the plug-in estimator for the

parametric distribution.

To develop a generalized model selection criterion for Bayesian modeling without

those shortages, we consider the estimation of bias correction based on functional-type

estimators and the corresponding functional Taylor series expansion (Huber, 1981;

Hampel et al., 1986), when the idea to employ the functional estimator in model

selection is introduced by Konishi and Katagawa (1996) for frequentist modeling. In

the following theorem, a bias estimator of the discrepancy between the true model

against the fitted model is proposed and its asymptotic unbiasedness is proved.
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Theorem 2.1. Let y = (y1, y2, · · · , yn) be n independent observations drawn from

the probability cumulative distribution F (ỹ) with density function f(ỹ). Consider

G = {g(ỹ|θ); θ ∈ Θ ⊆ Rp} as a family of candidate statistical models not neces-

sarily containing the true distribution f , where θ = (θ1, ..., θp)
′ is the p-dimensional

vector of unknown parameters, with prior distribution π(θ). Assume a statistical func-

tional T (·) is both second-order compact differentiable at F and Fisher consistent, i.e.,

T (G) = θ for all θ ∈ Θ. The asymptotic bias of

η̂ =

∫
log g(ỹ|θ̂)dF̂ (ỹ) =

1

n

∑

i

log g(yi|θ̂)

in the estimation of

η =

∫
log g(ỹ|θ̂)dF (ỹ) = Eỹg(ỹ|θ̂)

can be unbiasedly approximated by

Ey(η̂ − η) = b(F ) + op(n
−1), (2.3)

where

b(F ) =
1

n
tr{Eỹ[T

(1)(ỹ;F )′
∂ log{g(ỹ|θ)π 1

n (θ)}
∂θ

|T (F )]} (2.4)

and T (1)(ỹ;F ) = (T
(1)
1 (ỹ;F ), . . . , T

(1)
p (ỹ;F ))′ is the influence function of a p-dimen-

sional functional T (F ) at the distribution F .

The derivation of Theorem 2.1 in spirit is similar to Theorem 2.1 of Konishi and

Katagawa (1996) but now adjusted to the setting for a Bayesian probability model.

Proof of Theorem . The functional Taylor series expansion for vector θ̂ = T (F̂ ) is,

up to order n−1,

θ̂ = T (F ) +
1

n

n∑

i=1

T (1)(yi;F ) +
1

2n2

n∑

i=1

n∑

j=1

T (2)(yi, yj ;F ) + op(n
−1) (2.5)

where T (k)(y1, . . . , yk;F ) is the same as defined on p.888 of Konishi and Katagawa

(1996) with property

Ey1,...,ykT
(k)(y1, . . . , yk;F ) = 0.
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It is simple to derive the asymptotic property of θ̂ through (2.5):

Eỹ(θ̂) = T (F ) + ξ/n+ op(n
−1),

Cov(θ̂) =
1

n
Σ(T (F )),

where ξ = 1
2
EỹT

(2)(ỹ, ỹ;F ) and Σ(T (F )) = Eỹ[T
(1)(ỹ;F )T (1)(ỹ;F )′].

By expanding log{g(ỹ|θ̂)π 1

n (θ̂)} in a Taylor series around θ = T (G) and substitut-

ing (2.5) in the resulting expansion, the stochastic expansions for η and η̂ are given

as follows:

η = Eỹ log{g(ỹ|θ̂)π
1

n (θ̂)} − 1

n
log π(θ̂)

= Eỹ log{g(ỹ|T (F ))π
1

n (T (F ))}

+
1

n

n∑

i=1

T (1)(yi;F )′κ+
1

2n2

n∑

i=1

n∑

j=1

T (2)(yi, yj ;F )′κ

− 1

2n2

n∑

i=1

n∑

j=1

T (1)(yi;F )′J(T (F ))T (1)(yj;F )− 1

n
log π(θ̂) + op(n

−1),

η̂ =
1

n

n∑

i=1

log{g(yi|θ̂)π
1

n (θ̂)} − 1

n
log π(θ̂)

=
1

n

n∑

i=1

log{g(yi|T (F ))π
1

n (T (F ))}

+
1

n2

n∑

i=1

n∑

j=1

T (1)(yi;F )′
∂ log{g(yj|θ)π

1

n (θ)}
∂θ

|T (F )

+
1

2n3

n∑

i=1

n∑

j=1

n∑

k=1

{T (2)(yi, yj;F )′
∂ log{g(yk|θ)π

1

n (θ)}
∂θ

|T (F )

+T (1)(yi;F )′
∂2 log{g(yk|θ)π

1

n (θ)}
∂θ∂θ′

|T (F )T
(1)(yj;F )} − 1

n
log π(θ̂) + op(n

−1)
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Taking expectations term by term yields

Ey η = Eỹ log{g(ỹ|T (F ))π
1

n (T (F ))}+ 1

n
[ξ′κ− 1

2
tr{Σ(F )J(T (F ))}]

− 1

n
Ey log π(θ̂) + op(n

−1) (2.6)

Ey η̂ = Eỹ log{g(ỹ|T (F ))π
1

n (T (F ))}+ 1

n
Eỹ[T

(1)(ỹ;F )′
∂ log{g(ỹ|θ)π 1

n (θ)}
∂θ

|T (F )]

+
1

n
[ξ′κ− 1

2
tr{Σ(F )J(T (F ))}]− 1

n
Ey log π(θ̂) + op(n

−1) (2.7)

where κ and J(θ) are given by

κ = Eỹ
∂ log{g(ỹ|θ)π 1

n (θ)}
∂θ

|T (F ), J(θ) = −Eỹ
∂2 log{g(ỹ|θ)π 1

n (θ)}
∂θ∂θ′

.

By directly comparing (2.6) and (2.7), we complete the proof.

In practice, an estimator of the true bias in (2.4) is b(F̂ ) when replacing the

unknown true distribution F by the empirical distribution F̂ . Subsequently we have

an information criterion based on the bias corrected log likelihood as follows:

BGIC(y; F̂ ) := −2
n∑

i=1

log g(yi|θ̂) +
2

n

n∑

i=1

tr{T (1)(yi; F̂ (y))
∂ log{g(yi|θ)π

1

n (θ)}
∂θ

|θ̂},

where T (1)(yi; F̂ ) = (T
(1)
1 (yi; F̂ ), . . . , T

(1)
p (yi; F̂ ))′ is the p-dimensional empirical influ-

ence function defined by

T
(1)
j (yi; F̂ ) = lim

ε→0
[Tj((1− ε)F̂ + εδ(yi))− Tj(F̂ )]/ε,

with δ(yi) being the Dirac delta function with the point mass at yi. When choosing

among different models, we select the model for which the value of the information

criterion BGIC(y; F̂ ) is small.

The new criterion is a model selection device specially designed to evaluate Bayesian

models, when the prior distribution is properly incorporated into the bias correction.

Benefiting from adopting the functional Taylor series expansion, it asymptotically

unbiasedly estimates the over-estimation bias of the empirical log likelihood. The
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criterion is widely applicable for models specified by any functional-type estimator θ̂,

even when candidate models are misspecified.

Regularly, a functional estimator of interest for Bayesian models is the posterior

mode θ̂ = Tm(F̂ ). In this case, the influence function vector is

T (1)
m (ỹ;F ) = J−1(Tm(F ))

∂ log{g(ỹ|θ)π 1

n (θ)}
∂θ

|Tm(F ) (2.8)

where

J(θ) = −Eỹ
∂2 log{g(ỹ|θ)π 1

n (θ)}
∂θ∂θ′

.

Substituting the influence function T
(1)
m (ỹ;F ) given by (2.8) into the result of (2.4)

yields the asymptotic bias bm(F ) = tr{J−1(Tm(F ))I(Tm(F ))}, where

I(θ) = Eỹ[
∂ log{g(ỹ|θ)π 1

n (θ)}
∂θ

∂ log{g(ỹ|θ)π 1

n (θ)}
∂θ′

],

which induces the following corollary:

Corollary 2.2. Let y = (y1, y2, · · · , yn) be n independent observations drawn from

the probability cumulative distribution F (ỹ) with density function f(ỹ). Consider

G = {g(ỹ|θ); θ ∈ Θ ⊆ Rp} as a family of candidate statistical models not necessarily

containing the true distribution f , where θ = (θ1, ..., θp)
′ is the p-dimensional vector

of unknown parameters, with prior distribution π(θ). Under the regularity conditions:

C1: Both the log density function log g(ỹ|θ) and the log unnormalized posterior density

log{L(θ|y)π(θ)} are twice continuously differentiable in the compact parameter space

Θ;

C2: The expected posterior mode θ0 = argmaxθ Eỹ[log{g(ỹ|θ)π0(θ)}] is unique in Θ;

C3: The Hessian matrix of Eỹ[log{g(ỹ|θ)π0(θ)}] is non-singular at θ0;

the asymptotic bias of η̂ = 1
n

∑
i log g(yi|θ̂) for η = Eỹ log g(ỹ|θ̂) can be unbiasedly

approximated by 1
n
tr{J−1(θ0)I(θ0)}.
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Correspondingly, we derive a Bayesian version of Takeuchi information criterion

(BTIC):

−2
∑

i

log g(yi|θ̂) + 2tr{J−1
n (θ̂)In(θ̂)} (2.9)

when the candidate models with small criterion values are preferred on the purpose

of model selection. Here θ̂ is the posterior mode which minimizes the posterior distri-

bution ∝ π(θ)
∏n

i=1 g(yi|θ), and matrices Jn(θ) and In(θ) are empirical estimators of

Bayesian Hessian matrix J(θ) and Bayesian Fisher information matrix I(θ), respec-

tively.

2.4 A simple linear example

The following simple simulation example demonstrates both the importance of intro-

ducing K-L based criteria for Bayesian modeling and the efficiency of the proposed

criterion in the estimation of bias correction.

Suppose observations y = (y1, y2, ..., yn) are a vector of iid samples generated

from N(µT , σ
2
T ), with unknown true mean µT and variance σ2

T = 1. Assume the

data is analyzed by the approximating model g(yi|µ) = N(µ, σ2
A) with prior π(µ) =

N(µ0, τ
2
0 ), where σ2

A is fixed, but not necessarily equal to the true variance σ2
T .

It is easy to derive the posterior distribution of µ which is normally distributed

with mean µ̂ and variance σ̂2, where

µ̂ = (µ0/τ
2
0 +

n∑

i=1

yi/σ
2
A)/(1/τ

2
0 + n/σ2

A)

σ̂2 = 1/(1/τ 20 + n/σ2
A).

Therefore, we have

η = Eỹ[Eµ|y[log g(ỹ|µ)]] = −1

2
log(2πσ2

A)−
σ2
T + (µT − µ̂)2

2σ2
A

η̂ =
1

n

n∑

i=1

Eµ|y[log g(yi|µ)] = −1

2
log(2πσ2

A)−
1

n

n∑

i=1

(yi − µ̂)2

2σ2
A

.
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To eliminate the estimation error caused by the sampling of the observations y,

we average the bias η̂ − η over y with its true density N(µT , σ
2
T ),

bµ = Ey(η̂ − η) = Ey{
σ2
T

2σ2
A

+
(µT − µ̂)2

2σ2
A

− 1

n

n∑

i=1

(yi − µ̂)2

2σ2
A

}

=
σ2
T

2σ2
A

+
(µT − µ0)

2/τ 40 + nσ2
T/σ

4
A

2σ2
A(

1
τ2
0

+ n
σ2

A

)2

− 1

2σ2
A(

1
τ2
0

+ n
σ2 )2

[
(µT − µ0)

2 + σ2
T

τ 40
+

2(n− 1)σ2
T

τ 20σ
2
A

+
n(n− 1)σ2

T

σ4
A

]

=
σ2
T

2σ2
A

+
−σ2

T/τ
4
0 − 2(n− 1)σ2

T/τ
2
0σ

2
A + n(2− n)σ2

T/σ
4
A

2σ2
A(1/τ

2
0 + n/σ2

A)
2

= σ2
T σ̂

2/σ4
A.

Here we compare the bias estimator of BTIC, bBTIC
µ with 6 other bias estimators:

bAIC
µ Akaike (1973), bTIC

µ Takeuchi (1976), bDIC
µ (Spiegelhalter et al., 2002), bcAIC

µ

(Vaida and Blanchard, 2005), bPLp

µ (Plummer, 2008) and bCV
µ (Stone, 1974).

bBTIC
µ =

1

n− 1
σ̂2

n∑

i=1

((µ0 − µ̂)/(nτ 20 ) + (yi − µ̂)/σ2
A)

2

bAIC
µ = 1

bTIC
µ =

1

n− 1

n∑

i=1

((yi − µ̂)2)/σ2
A

bDIC
µ = bcAIC

µ = σ̂2/σ2
A

bPLp

µ =
1

2n
ppopt = (σ̂2 + 1/(1/τ 20 + (n− 1)/σ2

A))/σ
2
A/2

bCV
µ = η̂ −

n∑

i=1

(yi − (µ0/τ
2
0 +

∑

j 6=i

yj/σ
2
A)/(1/τ

2
0 + (n− 1)/σ2

A))
2/n/σ2

A/2

under the settings of 6 different scenarios:

1. σT = 1; τ0=100, σA = 1;

2. σT = 1; τ0=0.5, σA = 1;

3. σT = 1; τ0=100, σA = 1.5;
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Figure 2.1: Performance of the estimators for Ey(η̂ − η) when σ2
A = σ2

T = 1, i.e., the true

distribution is contained in the candidate models. The left plot is under a relatively non-

informative prior with τ0 = 100; the right plot is under a relatively informative prior with

τ0 = 0.5. The true bias is curved by ( —– ) as a function of sample size n. The averages of

different bias estimators are marked by: (•) for BTIC; (◦) for TIC; (×) for DIC and cAIC;

(∇) for PLp; (+) for cross-validation. Each mark represents the mean of estimated bias of

250,000 replications.

4. σT = 1; τ0=0.5, σA = 1.5;

5. σT = 1; τ0=100, σA = 0.5;

6. σT = 1; τ0=0.5, σA = 0.5.

which include the cases with models exposed to either very weakly-informative or

informative priors, and the true model may or may not contained in the approximating

distribution family.
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Figure 2.2: Performance of the estimators for Ey(η̂− η) when true model is not contained

in the candidate distributions. The left two plots are under a relatively non-informative

prior with τ0 = 100; the right ones are under a relatively informative prior with τ0 = 0.5.

The true bias is curved by ( —– ) as a function of sample size n. The averages of different

bias estimators are marked by: (•) for BTIC; (◦) for TIC; (×) for DIC and cAIC; (∇) for

PLp; (+) for cross-validation. Each mark represents the mean of estimated bias of 250,000

replications.
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Computationally, we simply replicate the process:

1. Draw a vector of length n observations y from the true distribution N(µT , σ
2
T ).

2. Generate the posterior draws from the posterior distribution of µ|y.

3. Estimate bBTIC
µ , bTIC

µ , bDIC
µ , bcAIC

µ , bPLp

µ and bCV
µ . (Here bAIC

µ is constant 1.)

The true mean and the prior mean are set to be µT = 0 and µ0 = 0, respectively, and

the prior variances are set to be either the informative τ 20 = (.5)2 or non-informative

τ 20 = (100)2. After 250,000 replications for each pre-specified n and the averages of

the bias estimators are plotted in Figure 2.1 for the case σ2
A = σ2

T and Figure 2.2

when the equality between σ2
A and σ2

T does not hold.

The results, are in accordance with theory. All of the 7 estimates are close to

the true bias-correction values when σ2
A = σ2

T = 1, especially when the sample size

becomes moderately large. The estimated criterion values based on the AIC, TIC,

DIC and BTIC are consistently closer to the true values than cross-validation and

plug-in deviance penalized loss, which overestimate the bias, especially when sample

size is small. When the models are misspecified, it is not surprising that in all of the

plots given in Figure 2.2, the estimates based on DIC, cAIC and plug-in deviance

penalized loss all miss the target even asymptotically since their assumption is vio-

lated, whereas both the BTIC and cross-validation converge to bµ. Generally, BTIC

out-performs the others.



Chapter 3

Posterior Averaging Information

Criterion

‘... we concede that using a plug-in estimate disqualifies the technique from being

properly Bayesian.’

Celeux et al. (2006) p.703.

3.1 Model evaluation with posterior distribution

In this chapter we focus on Kullback-Leibler divergence based model selection meth-

ods with respect to Bayesian models evaluated by averaging over the posterior distri-

bution. Unlike the preceding methods which assess the model performance in terms

of the similarity between the true distribution f with the model density function

specified by the plug-in parameters, approaches developed to estimate the posterior

averaged K-L discrepancy, i.e., the expected out-of-sample log likelihood Eỹ log g(ỹ|θ)

averaged over the posterior distribution p(θ|y), are investigated.

The attention to the posterior averaged K-L discrepancy has been paid by some

Bayesian researchers in recent years. Ando (2007) makes an important contribu-

27
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tion to the literature by proposing an estimator for the discrepancy measure η3 =

Eỹ[Eθ|y log g(ỹ|θ)] in terms of K-L divergence. Plummer’s paper (Plummer, 2008),

which was reviewed in the previous chapter, introduces the expected deviance penal-

ized loss in a cross-validation perspective. The standard cross-validation method can

also be applied in this circumstance to estimate η3, simply by considering the K-L

discrepancy as the utility function of Vehtari and Lampinen (2002). The estimation

of bootstrap error correction η
(b)
3 − η̂

(b)
3 with bootstrap analogues

η
(b)
3 = Eỹ∗ [Eθ|y∗ log g(ỹ|θ)]

and

η̂
(b)
3 = Eỹ∗ [n

−1Eθ|y∗ logL(θ|y∗)]

for η3 − η̂3 has been discussed in Ando (2007) as a Bayesian adaption to frequentist’s

model selection (Konish and Kitagawa, 1996).

The application of the posterior averaging approaches for Bayesian model com-

parison is consistent with Bayesian philosophy. Other than some unknown but fixed

values implied in frequentist’s inference, the vector of parameters in the Bayesian per-

spective are considered as a (multi-variate) random variable represented by a proba-

bility distribution. A comprehensive representation of the Bayesian inference should

be based on posterior distribution. As the starting sentence in Gelman et al. (2003)

states:

‘Bayesian inference is the process of fitting a probability model to a set of data and

summarizing the result by a probability distribution on the parameters of the

model and on unobserved quantities such as predictions for new observations.’

Correspondingly, instead of considering model specified by a point estimate, the

‘goodness’ of a Bayesian candidate model in terms of prediction should be measured

against the posterior distribution, in which case η3 is much more favorable.
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Usually the computation of the posterior averaged K-L discrepancy is quite in-

tensive, especially in the case that a large set of posterior samples are in need for

numerical averaging; whereas the computation of the K-L discrepancy specified by

the plug-in estimators is relatively straightforward. However, we consider it as a wor-

thy price, mainly with regard to the methodology of Bayesian model selction, when

the computational cost becomes more and more acceptable due to the popularity of

modern computers.

For notational simplicity, we rename η3 to η thereinafter within this chapter.

3.2 Posterior Averaging Information Criterion

Bayesian statistical conclusions about a parameter θ, or unobserved data ỹ, are made

in terms of the probability statements. Accordingly, it is natural to consider the

posterior average over the K-L discrepancy η = Eỹ[Eθ|y log g(ỹ|θ)] to measure the

deviation of the approximating model from the true model.

One substantial proposal in literature on this topic is the Bayesian predictive

information criterion (BPIC). Under certain regularity conditions, Ando (2007) proves

that an asymptotic unbiased estimator of η is

η̂BPIC =
1

n
[log{π(θ̂)L(θ̂|y)} − Eθ|y log π(θ)− tr{J−1

n (θ̂)In(θ̂)} −
K

2
]. (3.1)

Here θ̂ is the posterior mode, K is the cardinality of θ, and matrices Jn and In are

empirical estimators for Bayesian Hessian matrix

J(θ) = −Eỹ(
∂2 log{g(ỹ|θ)π0(θ)}

∂θ∂θ′
)

and Bayesian Fisher information matrix

I(θ) = Eỹ(
∂ log{g(ỹ|θ)π0(θ)}

∂θ

∂ log{g(ỹ|θ)π0(θ)}
∂θ′

).
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BPIC is introduced as −2n · η̂BPIC and model with minimum BPIC values is favored.

Compared with other numerical estimators of η, (3.1) is fast to compute and

applicable when the true model is not necessarily in the specified family of probability

distributions. However, it has the following unpleasant features in practice.

• BPIC is undefined when the prior distribution π(θ) is degenerate, a situation

commonly occurred in Bayesian analysis when objective non-informative prior

is selected.

• The natural estimator for η is not n−1 logL(θ̂|y), but n−1Eθ|y logL(θ|y). The

usage of n−1L(θ̂|y) will reduce the estimation efficiency if the posterior distri-

bution is asymmetric, which occurs in a majority of cases in Bayesian modeling.

In order to avoid those drawbacks, we propose a new model selection criterion in

terms of the posterior mean of the empirical log likelihood η̂ = 1
n

∑
i Eθ|y[log g(yi|θ)],

a natural estimator of η. Without losing any of the attractive properties of BPIC,

the new criterion expands the model scope to all Bayesian models, improves the

unbiasedness for small samples, and enhances the robustness of the estimation.

Note that the entire data y are used for both model fitting and model selection, η̂

always over-estimates η. In order to correct the estimation bias, the following theorem

is derived for the data over-usage.

Theorem 3.1. Let y = (y1, y2, · · · , yn) be n independent observations drawn from

the probability cumulative distribution F (ỹ) with density function f(ỹ). Consider

G = {g(ỹ|θ); θ ∈ Θ ⊆ Rp} as a family of candidate statistical models not necessarily

containing the true distribution f , where θ = (θ1, ..., θp)
′ is the p-dimensional vector

of unknown parameters, with prior distribution π(θ). Under the regularity conditions:

C1: Both the log density function log g(ỹ|θ) and the log unnormalized posterior density

log{L(θ|y)π(θ)} are twice continuously differentiable in the compact parameter space
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Θ;

C2: The expected posterior mode θ0 = argmaxθ Eỹ[log{g(ỹ|θ)π0(θ)}] is unique in Θ;

C3: The Hessian matrix of Eỹ[log{g(ỹ|θ)π0(θ)}] is non-singular at θ0;

asymptotically the bias of η̂ for η can be unbiasedly approximated by

Ey(η̂ − η) = bθ ≈
1

n
tr{J−1

n (θ̂)In(θ̂)}, (3.2)

where θ̂ is the posterior mode minimizing the posterior distribution ∝ π(θ)
∏n

i=1 g(yi|θ)

and

Jn(θ) = − 1

n

n∑

i=1

(
∂2 log{g(yi|θ)π

1

n (θ)}
∂θ∂θ′

)

In(θ) =
1

n− 1

n∑

i=1

(
∂ log{g(yi|θ)π

1

n (θ)}
∂θ

∂ log{g(yi|θ)π
1

n (θ)}
∂θ′

).

With the above result, a new predictive criterion for Bayesian model, the posterior

averaging information criterion (PAIC) is proposed as:

−2
∑

i

Eθ|y[log g(yi|θ)] + 2tr{J−1
n (θ̂)In(θ̂)} (3.3)

The candidate models with small criterion values are preferred on the purpose of

model selection.

The proposed criterion has many attractive properties. It is an objective model

selection criterion consistent with Bayesian philosophy. It is asymptotically unbiased

for the out-of-sample log-likelihood, a measure in terms of K-L divergence for the

similarity of the fitted model and the underlying true distribution. The estimation

averaged over the posterior is more precise and robust than any plug-in based es-

timators especially when the posterior distribution of parameters is asymmetric, a

normal situation especially when parameters are hierarchical. Because it is derived

free of the assumption on the approximating distributions containing the truth, our

criterion is generally applicable. Unlike BPIC, the new criterion is well-defined and

can cope with degenerate non-informative prior distribution for parameters.
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In contrast to frequentist modeling, it is inevitable to include a prior distribution

for parameters in each Bayesian model, either informative or non-informative, repre-

senting the current believing on the parameters independent of the given set of data.

Subsequently, the ad hoc statistical inference depends on the posterior distribution

p(θ|y) ∝ L(θ|y)π(θ) other than the likelihood function L(θ|y) alone; the choice of

the prior distribution may cause a strong impact. Specifically, that impact for model

selection in our case is not limited to the posterior averaging over the discrepancy

function, but to the extent how much the error of the in-sample estimator is cor-

rected. Especially when the prior knowledge is substantive from reliable resources,

the specification of Jn(θ) and In(θ) may depend on π(θ) significantly, as well as the

posterior mode on which both matrices are assessed.

The proof of Theorem 3.1 is given in the rest of the section. We start with a few

lemmas to support the main proof.

Lemma 1a. Under the same regularity conditions of Theorem 3.1,
√
n(θ̂− θ0) is

asymptotically approximated by N(0, J−1
n (θ0)I(θ0)J

−1
n (θ0)).

Proof. Let us consider the Taylor expansion of ∂ log{L(θ|y)π(θ)}
∂θ

|θ=θ̂ at θ0

∂ log{L(θ|y)π(θ)}
∂θ

|θ=θ̂ ≃ ∂ log{L(θ|y)π(θ)}
∂θ

|θ=θ0 +
∂2 log{L(θ|y)π(θ)}

∂θ∂θ′
|θ=θ0(θ̂ − θ0)

=
∂ log{L(θ|y)π(θ)}

∂θ
|θ=θ0 − nJn(θ0)(θ̂ − θ0).

If the parameter θ̂ is the mode of log{L(Y |θ)π(θ)} and satisfies ∂ log{L(Y |θ)π(θ)}
∂θ

|θ=θ̂ =

0, then

nJn(θ0)(θ̂ − θ0) ≃
∂ log{L(θ|y)π(θ)}

∂θ
|θ=θ0 .

From the central limit theorem, the right-hand-side (RHS) is approximately dis-

tributed as N(0, nI(θ0)) when Ey
∂ log{L(θ|y)π(θ)}

∂θ
|θ=θ0 → 0. Therefore

√
n(θ̂ − θ0) ∼ N(0, J−1

n (θ0)I(θ0)J
−1
n (θ0)).
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Lemma 1b. Under the same regularity conditions of Theorem 3.1,
√
n(θ − θ̂) ∼

N(0, J−1
n (θ̂)).

Proof. Taylor-expand the logarithm of L(θ|y)π(θ) around the posterior mode θ̂

logL(θ|y)π(θ) = logL(θ̂|y)π(θ̂)− 1

2
(θ − θ̂)′

1

n
J−1
n (θ̂)(θ − θ̂) + op(n

−1)

where Jn(θ̂) = − 1
n
∂2 log{L(θ|Y )π(θ)}

∂θ∂θ′
|θ=θ̂

Consider it as a function of θ, the first term of RHS is a constant, whereas the

second term is proportional to the logarithm of a normal density, yielding the ap-

proximation of the posterior distribution for θ:

p(θ|y) ≈ N(θ̂,
1

n
J−1
n (θ̂)).

Note that a formal but less intuitive proof can be obtained by applying Berstein-

Von Mises theorem directly.

Lemma 1c. Under the same regularity conditions of Theorem 3.1, Eθ|y(θ0 −

θ̂)(θ̂ − θ)′ = op(n
−1).

Proof. First we have

∂ log{L(θ|y)π(θ)}
∂θ

=
∂ log{L(θ|y)π(θ)}

∂θ
|θ=θ̂ − nJn(θ̂)(θ − θ̂) +Op(1).

θ̂, the mode of log{L(θ|y)π(θ)}, satisfies ∂ log{L(θ|y)π(θ)}
∂θ

|θ=θ̂ = 0, yielding

(θ̂ − θ) = n−1J−1
n (θ̂)

∂ log{L(θ|y)π(θ)}
∂θ

+Op(n
−1).

Note that

Eθ|y
∂ log{L(θ|y)π(θ)}

∂θ
=

∫
∂ log{L(θ|y)π(θ)}

∂θ

L(θ|y)π(θ)
p(y)

dθ

=

∫
1

L(θ|y)π(θ)
∂{L(θ|y)π(θ)}

∂θ

L(θ|y)π(θ)
p(y)

dθ

=
∂

∂θ

∫
L(θ|y)π(θ)

p(y)
dθ =

∂

∂θ
1 = 0.
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Under the assumption (C1), the above equation holds when we change the order of

integral and derivative. Therefore

Eθ|y(θ̂ − θ) = n−1J−1
n (θ̂)Eθ|y

∂ log{L(θ|y)π(θ)}
∂θ

+Op(n
−1) = Op(n

−1).

Together with θ0 − θ̂ = Op(n
−1/2) derived from lemma 1a, we get the desired result.

Lemma 1d. Under the same regularity conditions of Theorem 3.1, Eθ|y(θ0 −

θ)(θ0 − θ)′ = 1
n
J−1
n (θ̂) + 1

n
J−1
n (θ0)I(θ0)J

−1
n (θ0) + op(n

−1).

Proof. Eθ|y(θ0− θ)(θ0− θ)′ can be rewritten as (θ0− θ̂)(θ0− θ̂)′+Eθ|y(θ̂− θ)(θ̂− θ)′+

2Eθ|y(θ0 − θ̂)(θ̂ − θ). Using Lemma 1a, 1b and 1c, we obtain the desired result.

Lemma 1e. Under the same regularity conditions of Theorem 3.1,

Eθ|y
1

n
log{L(y|θ)π(θ)} ≃ 1

n
log{L(θ0|y)π(θ0)}

+
1

2n
(tr{J−1

n (θ0)I(θ0)} − tr{J−1
n (θ̂)Jn(θ0)}) +Op(n

−1).

Proof. 1/n of the posterior mean over the log joint density distribution of (y, θ) can

be Taylor-expanded around θ0 as:

Eθ|y
1

n
log{L(θ|y)π(θ)} =

1

n
log{L(θ0|y)π(θ0)

+Eθ|y(θ − θ0)
′ 1

n

∂ log{L(θ|y)π(θ)}
∂θ

|θ=θ0

+
1

2
Eθ|y(θ − θ0)

′ 1

n

∂2 log{L(θ|y)π(θ)}
∂θ∂θ′

|θ=θ0(θ − θ0)

+op(n
−1)

=
1

n
log{L(θ0|y)π(θ0)}

+Eθ|y(θ − θ0)
′ 1

n

∂ log{L(θ|y)π(θ)}
∂θ

|θ=θ0

−1

2
Eθ|y(θ − θ0)

′Jn(θ0)(θ − θ0) + op(n
−1). (3.4)
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We also expand ∂ log{L(θ|y)π(θ)}
∂θ

|θ=θ̂ around θ0 by Taylor’s theorem to the first order

term and obtain

∂ log{L(θ|y)π(θ)}
∂θ

|θ=θ̂ =
∂ log{L(θ|y)π(θ)}

∂θ
|θ=θ0 − nJn(θ0)(θ̂ − θ0) +Op(n

−1).

Considering that the posterior mode θ̂ is the solution of ∂ log{L(θ|y)π(θ)}
∂θ

= 0, we get

1

n

∂ log{L(θ|y)π(θ)}
∂θ

|θ=θ0 = Jn(θ0)(θ̂ − θ0) +Op(n
−1).

Substitute it into the second term of (3.4), the expansion of Eθ|y
1
n
log{L(θ|y)π(θ)}

becomes:

Eθ|y
1

n
log{L(θ|y)π(θ)} =

1

n
log{L(θ0|y)π(θ0)}+ Eθ|y(θ − θ0)

′Jn(θ0)(θ̂ − θ0)

−1

2
EyEθ|y(θ − θ0)

′Jn(θ0)(θ − θ0) + op(n
−1)

=
1

n
log{L(θ0|y)π(θ0)}+ tr{Eθ|y[(θ̂ − θ0)(θ − θ0)

′]Jn(θ0)}

−1

2
tr{Eθ|y[(θ − θ0)(θ − θ0)

′]Jn(θ0)}+ op(n
−1)

=
1

n
log{L(θ0|y)π(θ0)}+ tr{Eθ|y[(θ − θ0)(θ̂ − θ0)

′]Jn(θ0)}

−1

2
tr{ 1

n
[J−1

n (θ̂) + J−1
n (θ0)I(θ0)J

−1
n (θ0)]Jn(θ0)}

+op(n
−1), (3.5)

where in (3.5) we replace Eθ|y[(θ − θ0)(θ − θ0)
′] with the result of Lemma 1d.

Eθ|y[(θ − θ0)(θ̂ − θ0)
′] in the second term of (3.5) can be rewritten as Eθ|y[(θ̂ −

θ0)(θ̂ − θ0)
′] + Eθ|y[(θ − θ̂)(θ̂ − θ0)

′], where the former term asymptotically equals

to 1
n
J−1
n (θ0)I(θ0)J

−1
n (θ0) by Lemma 1a and the latter is negligible with higher order

op(n
−1) as shown in Lemma 1c. Therefore, the expansion of Eθ|y

1
n
log{L(y|θ)π(θ)} is

finally simplified as

Eθ|y
1

n
log{L(y|θ)π(θ)} ≃ 1

n
log{L(θ0|y)π(θ0)}

+
1

2n
(tr{J−1

n (θ0)I(θ0)} − tr{J−1
n (θ̂)Jn(θ0)}) +Op(n

−1).
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Proof of Theorem 3.1. Recall that the quantity of interest is EỹEθ|y log g(ỹ|θ). To

estimate that, we first look at EỹEθ|y log{g(ỹ|θ)π0(θ)} = EỹEθ|y{log g(ỹ|θ)+log π0(θ)}

and expand it about θ0,

EỹEθ|y log{g(ỹ|θ)π0(θ)} = Eỹ log{g(ỹ|θ0)π0(θ0)}

+Eθ|y(θ − θ0)
′∂Eỹ log{g(ỹ|θ)π0(θ)}

∂θ
|θ=θ0

+
1

2
Eθ|y[(θ − θ0)

′∂
2Eỹ log{g(ỹ|θ)π0(θ)}

∂θ∂θ′
|θ=θ0(θ − θ0)]

+op(n
−1)

= Eỹ log{g(ỹ|θ0)π0(θ0)}

+Eθ|y(θ − θ0)
′∂Eỹ log{g(ỹ|θ)π0(θ)}

∂θ
|θ=θ0

−1

2
Eθ|y[(θ − θ0)

′J(θ0)(θ − θ0)] + op(n
−1)

, I1 + I2 + I3 + op(n
−1) (3.6)

The first term I1 can be linked to the empirical log likelihood function as follows:

Eỹ log{g(ỹ|θ0)π0(θ0)} = Eỹ log g(ỹ|θ0) + log π0(θ0)

= Ey
1

n
logL(θ0|y) + log π0(θ0)

= Ey
1

n
log{L(θ0|y)π(θ0)} −

1

n
log π(θ0) + log π0(θ0)

= EyEθ|y
1

n
log{L(θ|y)π(θ)} − 1

2n
tr{J−1

n (θ0)I(θ0)}

+
1

2n
tr{J−1

n (θ̂)Jn(θ0)} −
1

n
log π(θ0) + log π0(θ0) + op(n

−1)

where the last equation holds due to Lemma 1e.

The second term I2 vanishes since

∂Eỹ log{g(ỹ|θ)π0(θ)}
∂θ

|θ=θ0 = 0

as θ0 is the expected posterior mode.
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Using Lemma 1d, the third term I3 can be rewritten as

I3 = −1

2
Eθ|Y (θ − θ0)

′J(θ0)(θ − θ0)

= −1

2
tr{Eθ|y[(θ − θ0)(θ − θ0)

′]J(θ0)}

= − 1

2n
(tr{J−1

n (θ0)I(θ0)J
−1
n (θ0)J(θ0)}+ tr{J−1

n (θ̂)J(θ0)}) + op(n
−1)

By substituting each term in equation (3.6) and neglecting the residual term, we

obtain

EỹEθ|y log{g(ỹ|θ)π0(θ)} ≃ EyEθ|y
1

n
log{L(θ|y)π(θ)} − 1

2n
tr{J−1

n (θ0)I(θ0)}

+
1

2n
tr{J−1

n (θ̂)Jn(θ0)} −
1

n
log π(θ0) + log π0(θ0)

− 1

2n
(tr{J−1

n (θ0)I(θ0)J
−1
n (θ0)J(θ0)}+ tr{J−1

n (θ̂)J(θ0)})

Recall that we have defined log π0(θ) = limn→∞ n−1 log π(θ), so that we have

log π0(θ0)− 1
n
log π(θ0) ≃ 0 and Eθ|y log{π0(θ)}−Eθ|y

1
n
log{π(θ)} ≃ 0 asymptotically.

Therefore, EỹEθ|y log{g(ỹ|θ)} can be estimated by

EỹEθ|y log{g(ỹ|θ)} = EỹEθ|y log{g(ỹ|θ)π0(θ)} − Eθ|y log{π0(θ)}

≃ EyEθ|y
1

n
log{L(θ|y)π(θ)}

− 1

2n
tr{J−1

n (θ0)I(θ0)}+
1

2n
tr{J−1

n (θ̂)Jn(θ0)}

− 1

2n
(tr{J−1

n (θ0)I(θ0)J
−1
n (θ0)J(θ0)}+ tr{J−1

n (θ̂)J(θ0)})

− 1

n
log π(θ0) + log π0(θ0)− Eθ|y log{π0(θ)}

≃ EyEθ|y
1

n
log{L(θ|y)} − 1

2n
tr{J−1

n (θ0)I(θ0)}

+
1

2n
tr{J−1

n (θ̂)Jn(θ0)} −
1

2n
(tr{J−1

n (θ0)I(θ0)J
−1
n (θ0)J(θ0)}

+tr{J−1
n (θ̂)J(θ0)})

Replacing θ0 by θ̂, J(θ0) by Jn(θ̂) and I(θ0) by In(θ̂), we obtain Eθ|y
1
n
log{L(θ|y)}−

1
n
tr{J−1

n (θ̂)In(θ̂)} as the asymptotically unbiased estimate for EỹEθ|y log{g(ỹ|θ)}.
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3.3 Simulation Study

In this section, we present numerical results to study the behavior of the proposed

method under small and moderate sample sizes. In the first two simulation experi-

ments, we estimate the true expected bias η either analytically (§ 3.3.1) or numeri-

cally by averaging Eθ|y[log g(ỹ|θ)] over a large number of extra independent draws of

ỹ when there is no closed form for integration (§ 3.3.2). The third example is a vari-

able selection problem using real data to illustrate the practical difference between

criteria proposed in an either explanatory and predictive perspective. To have BPIC

well-defined for comparison, only the proper prior distributions are considered.

3.3.1 A simple linear example

The setting of the simulation study is the same as the example in section 3.3. As for

the posterior average over the log-likelihood, we have

η = Eỹ[Eµ|y[log g(ỹ|µ)]] = −1

2
log(2πσ2

A)−
σ2
T + (µT − µ̂)2 + σ̂2

2σ2
A

η̂ =
1

n

n∑

i=1

Eµ|y[log g(yi|µ)]] = −1

2
log(2πσ2

A)−
1

n

n∑

i=1

(yi − µ̂)2 + σ̂2

2σ2
A

.

To eliminate the estimation error caused by the sampling of the observations y,

we average the bias η̂ − η over y with its true density N(µT , σ
2
T ),

bµ = Ey(η̂ − η) = Ey{
σ2
T

2σ2
A

+
(µT − µ̂)2

2σ2
A

− 1

n

n∑

i=1

(yi − µ̂)2

2σ2
A

}

= σ2
T σ̂

2/σ4
A.

Here we compare the bias estimate defined in Theorem 3.1, bPAIC
µ with 3 other
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Figure 3.1: Performance of the estimators for Ey(η̂ − η) when σ2
A = σ2

T = 1, i.e.,

the true distribution is contained in the candidate models. The left plot is under a

relatively non-informative prior with τ0 = 100; the right plot is under a relatively

informative prior with τ0 = 0.5. The true bias is curved by ( —– ) as a function of

sample size n. The averages of different bias estimators are marked by: (N) for PAIC;

(∇) for BPIC; (•) for PLe; (×) for cross-validation. Each mark represents the mean

of estimated bias of 250,000 replications.

bias estimators: bBPIC
µ (Ando, 2007), b

peopt
µ (Plummer, 2008) and bCV

µ (Stone, 1974).

bPAIC
µ =

1

n− 1
σ̂2

n∑

i=1

((µ0 − µ̂)/(nτ 20 ) + (yi − µ̂)/σ2
A)

2

bBPIC
µ =

1

n
σ̂2

n∑

i=1

((µ0 − µ̂)/(nτ 20 ) + (yi − µ̂)/σ2
A)

2

bPLe

µ =
1

2n
peopt = 1/(1/τ 20 + (n− 1)/σ2

A)/σ
2
A

bCV
µ = η̂ − (

n∑

i=1

(yi − (µ0/τ
2
0 +

∑

j 6=i

yj/σ
2
A)/(1/τ

2
0 + (n− 1)/σ2

A))
2/n+ σ̂2)/σ2

A/2
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Figure 3.2: Performance of the estimators for Ey(η̂ − η) when true model is not

contained in the candidate distributions. The left two plots are under a relatively

non-informative prior with τ0 = 100; the right ones are under a relatively informative

prior with τ0 = 0.5. The true bias is curved by ( —– ) as a function of sample size n.

The averages of different bias estimators are marked by: (N) for PAIC; (∇) for BPIC;

(•) for PLe; (×) for cross-validation. Each mark represents the mean of estimated

bias of 250,000 replications.
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The results, are in accordance with theory. All of the 4 estimates are close to

the true bias-correction values when σ2
A = σ2

T = 1, especially when the sample size

becomes moderately large. However, the estimated values based on the PAIC are

consistently closer to the true values than those based on Ando’s method, which

underestimate the bias, or the cross-validation or expected deviance penalized loss,

which overestimate the bias, especially when sample size is small. When the models

are misspecified, it is not surprising that in all of the plots given in Figure 3.2, only

the expected deviance penalized loss misses the target even asymptotically since its

assumption is violated, whileas all of the PAIC, BPIC and cross-validation converge

to bµ. In conclusion, PAIC achieves the best overall performance.

3.3.2 Bayesian hierarchical logistic regression

Consider frequencies y1, . . . , yN which are independent observations from binomial dis-

tributions with respective true probabilities ξT1 , . . . , ξ
T
N , and sample sizes, n1, . . . , nN .

To draw inference of ξ’s, we assume that the logits

βi = logit(ξi) = log
ξi

1− ξi

are random effects which follow the normal distribution

βi ∼ N(µ, τ 2).

The very weakly-informative joint prior distribution N(µ; 0, 10002)·Inv-χ2(τ 2; 0.1, 10)

is proposed on hyper-parameter (µ, τ 2) so that BPIC is properly defined and com-

putable. The posterior distribution is asymmetric, due to both the logistic transfor-

mation and the hierarchical structure of parameters.

In this example, the true bias η does not have an analytical form. We estimate it

through numerical computation. The simulation scheme is as follows:

1. Draw βT
i ∼ N(0, 1), i = 1, . . . , N ; y ∼ Bin(n, logit−1(βT )).
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2. Simulate the posterior draws of (β, µ, τ)|y;

3. Estimate b̂PAIC
β and b̂BPIC

β .

4. Draw z(j) ∼ Bin(n, logit−1(βT )), j = 1, . . . , J ;

5. Estimate b̂β = η̂ − η numerically with {z(j)}, j = 1, . . . , J .

6. Repeat steps 1-5 for 1000 times.

Table 3.1: The estimation error of bias correction: the mean and standard deviation

(in parentheses) from 1000 replications.

η̂ − η − b̂β |η̂ − η − bβ| (η̂ − η − bβ)
2

bPAIC
β 0.159 0.205 0.079

( 0.232 ) ( 0.192 ) ( 0.161 )

bBPIC
β 0.258 0.270 0.122

( 0.235 ) ( 0.221 ) ( 0.206 )

Table 3.1 summarizes the simulation bias and standard deviation of the estimation

error when we choose N = 15 and n1 = . . . = nN = 50 and β’s are independently

simulated from the standard normal distribution. With respect to all three different

metrics our bias estimation is consistently superior to that of BPIC, which matches

our expectation that the natural estimate 1
n

∑
i Eθ|y[log g(yi|θ)] will estimate η3 more

precisely than 1
n

∑
i log g(yi|θ̂) when the posterior distribution is asymmetric. Com-

pared to BPIC, the bias and the average mean squared error are reduced by about

40%, while the absolute bias are reduced by about one quarter.
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Y the number of new accounts sold in a given time period

X1 number of households serviced

X2 number of people selling the new account

X3 1 if the branch is in Manhattan and 0 otherwise

X4 1 if the branch is in the boroughs and 0 otherwise

X5 1 if the branch is in the suburbs and 0 otherwise

X6 demand deposits balance

X7 number of demand deposit

X8 now accounts balance

X9 number of now accounts

X10 balance of money market accounts

X11 number of money market accounts

X12 passbook saving balance

X13 other time balance

X14 consumer loans

X15 shelter loans

Table 3.2: Explanation of Data: The numbers of new accounts sold in some time

period with 15 predictor variables in each of 233 branches. (George and McCulloch,

1993)
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Exclusion SSVS LOO-CV KCV PLpeopt
BPIC PAIC

4,5 827 2603.85 2580.74 2527.32 2528.89 2529.60

2,4,5 627 2572.98 2564.92 2544.77 2533.90 2534.44

3,4,5,11 595 2583.63 2572.59 2545.23 2539.79 2540.20

3,4,5 486 2593.10 2579.97 2567.85 2541.75 2542.32

3,4 456 2590.36 2571.76 2538.80 2533.37 2533.97

4,5,11 390 2589.76 2573.04 2526.77 2527.94 2528.58

2,3,4,5 315 2576.66 2577.17 2561.57 2553.29 2553.77

3,4,11 245 2579.53 2566.28 2565.22 2532.87 2533.42

2,4,5,11 209 2564.67 2559.36 2540.41 2533.60 2534.03

2,4 209 2741.46 2741.17 2737.46 2740.42 2740.51

5,10,12 n/a 2602.23 2572.86 2519.41 2525.07 2525.61

4,12 n/a 2596.51 2570.94 2520.52 2524.31 2524.94

5,12 n/a 2595.86 2570.32 2520.51 2524.19 2524.90

4,5,12 n/a 2596.67 2574.73 2525.65 2526.19 2526.86

4,10,12 n/a 2603.05 2573.80 2520.62 2525.17 2525.70

4,5,10,12 n/a 2603.51 2577.86 2526.53 2527.06 2527.56

Table 3.3: Results from K-L based model selection criteria

3.3.3 Variable selection: a real example

In the last example we explore the problem of finding the best model to predict the

selling of new accounts in branches of a large bank. The data is first introduced in the

example 5.3 of George and McCulloch (1993), analyzed with their SSVS (Stochastic

Search Variable Selection) technique to select the promising subsets of predictors.

Their report on the most 10 frequently selected models after 10,000 iterations of

Gibbs sampling for potential subsets, is listed in the first column of Table 3.3.
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The original data consists of the numbers of new accounts sold in some time period

as the outcome y, together with 15 predictor variables X in each of 233 branches.

The description of the data is given in Table 3.2. The multiple linear regressions are

employed to fit the data in the form of:

yi|β(m), σ2
y ∼ N(X(m)β(m), σ2

y)

with prior β
(m)
i ∼ N(0, 10002) and σ2

y ∼ Inv-Gamma(.001, .001), when m indicates

the specific model with a subset of predictor X(m).

Several model selection estimators for −2n · η, including the leave-one-out cross-

validated estimator, K-fold cross-validated estimator, the expected deviance penal-

ized loss with peopt, BPIC and PAIC, are calculated based on a large amount of MCMC

draws of the posterior distribution for model selection inference. Here the original

data is randomly partitioned for the K-fold cross-validation with a common choice

K = 10. All the posterior samples are simulated from 3 parallel chains based on

MCMC techniques for model selection inference. To generate 15000 effective draws

of the posterior distribution, only one out of five iterations after convergence are kept

to reduce the serial correlation.

The result is presented in Table 3.3 when the models having the smallest estima-

tion value by each criterion are highlighted. An interesting finding is that the favored

model selected by K-L based criteria and SSVS are quite different. Note that all

of the K-L based criteria are developed in a predictive perspective, whereas SSVS

is a variable selection method to pursue the model best describing the given set of

data. This illustrates that with different modeling purpose, either explanatory or

predictive, the ‘best’ models found may not coincide. The estimated PLpeopt
, BPIC

and PAIC values for every candidate model are quite close to each other, when cross-

validation estimators are noisy due to the simulation error and tend to over-estimate.

It is worth to mention that the estimators of LOO-CV, K-fold-CV and PLpeopt
are
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relatively unstable even with 15000 posterior draws, as though those methods have

been much more computationally intensive than BPIC and PAIC.



Chapter 4

Predictive Bayes factor

If we consider model selection as a problem of statistical decision, a natural way to

formulate it within the Bayesian framework is Bayes factor.

4.1 Bayes Factors

Suppose we are considering a group of K candidate models, each specified by the

density distribution gk(·|θk) with parameter prior distribution πk(θ
k), k = 1, 2, ..., K.

Given the prior probabilities P (Mk) for each model, the posterior probabilities of Mk,

k = 1, 2, ..., K, are given by

P (Mk|y) =
p(y|Mk)P (Mk)

p(y)
=

p(y|Mk)P (Mk)∑K
j=1 p(y|Mj)P (Mj)

,

where p(y|Mk) =
∫
πk(θ

k)
∏

i gk(yi|θk)dθk is usually called the (vector) prior posterior

distribution (Gelman et al. 2003) or integrated likelihood (Madigan and Raftery,

1994).

When the candidate models are compared pairwisely, the denominator pk(y) can-

cels out, and the odds of posterior probabilities in favor of model Mk over alternative

47
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model Mj is

P (Mk|y)
P (Mj|y)

=
p(y|Mk)

p(y|Mj)

P (Mk)

P (Mj)
. (4.1)

It reveals the key role of the ratio of integrated likelihood, defined as the (standard)

Bayes factor (Kass and Raftery 1995),

Bkj =
p(y|Mk)

p(y|Mj)
=

∫
πk(θ

k)
∏

i gk(yi|θk)dθk∫
πj(θj)

∏
i gj(yi|θj)dθj

, (4.2)

in the mechanism of changing the posterior odds of model Mk from its priors. It is

one of the most widely used Bayesian model selection measure, which can be dated

to Jeffreys (1939) in the name of ‘tests of significance’, with respect to comparative

support for the two models from the data y.

Laplace’s method (Tierney and Kadane, 1986; Tierney et al., 1989) is tradition-

ally employed in the approximation of marginal distribution. However, it may be

challenging or even impossible when parameter spaces are high-dimensional, and the

same difficulty also applies to Markov chain Monte Carlo (MCMC) algorithms. Han

and Carlin (2001) review and compare five different simulation methods for comput-

ing Bayes factors under proper parameter priors and suggested using the marginal

likelihood methods (Chibs, 1995) for its accuracy.

In the literature, the strength and weakness of Bayes factor have been actively

debated (for instance, see Jeffreys, 1961; Kass, 1993; Gilks et al., 1996; Berger and

Pericchi, 2001, on its attractive features and difficulties). Generally speaking, stan-

dard Bayes factor is intuitive in a Bayesian nature and easy to interpret, but has

drawbacks such as Lindley’s paradox, a case that the nested models may result in

support of the reduced model in spite of the data when the prior is proper and suffi-

ciently diffuse (Lindley, 1957; Shafer, 1982).

The values of Bayes factors may strongly depend on the choices of diffuse prior in-

formation on the model parameters. Especially, the improper non-informative priors,

which are commonly used in Bayesian analysis for an objective purpose, will make
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Bayes factor non-interpretable since the denominator of the Bayes factor becomes

zero. Hill (1982) addresses this problem with a review of interesting historical com-

ments. Some efforts has been made to resolve this difficulty such as intrinsic Bayes

factors (Berger and Pericchi, 1996) and fractional Bayes factors (O’Hagan, 1995).

Their general idea is to set aside part of the data or information (the likelihood func-

tion) to update the prior distribution to avoid the weak prior distribution and use

the remainder of the data for model discrimination.

4.2 Predictive Bayes factor

‘Surely we do not require that the experimenters return to their prior densities for θj,

given their information about the particular value of θj that actually applied in this

experiment, nor that they generate independent data from a new experiment, to settle

the issue of which model is better supported by the previous experiment.’

Aitkin (1991) p.141.

4.2.1 Models under comparison: Original or Fitted?

As we can tell from its definition in (4.2), the standard Bayes factor evaluates the

goodness of the candidate models when model fitting is not in need. That property

is considered as a significant advantage. However, it also indicates that the model

comparison with respect to standard Bayes factor would be made among the original

models, rather than the fitted models whose parameter distribution has been updated

to the posterior.

A review of the general class of various Bayes factors (Gelfand and Dey, 1994)
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may help us understand this difference. The formal conditional distribution

p(yS1
|yS2

,Mk) =

∫
p(yS1

|θk,Mk)p(θ
k|yS2

)dθk

=

∫
p(yS1

|θk,Mk)p(yS2
|θk,Mk)πk(θ

k)dθk∫
p(yS2

|θk,Mk)πk(θk)dθk
(4.3)

is defined as a predictive density which averages the joint density of yS1
against

the prior for θk updated by yS2
, where S1, S2 are arbitrary subsets of the universe

Un = {1, . . . , n} and y = yUn
. From a cross-validation perspective, yS1

can be viewed

as the testing sample whereas yS2
as the training sample.

When S1 = Un and S2 = ∅, (4.3) yields the prior predictive density of the data

used in the standard Bayes factor

BFk,k′ =
p(y|Mk)

p(y|Mk′)
,

explaining the prediction power implied in the model Mk:

ỹ ∼ gk(ỹ|θk)

θk ∼ πk(θ
k). (4.4)

The state of knowledge within the models subject to comparison only rely on the

prior; all of the observations y are retained to test the adequacy of the candidate

models. Subsequently, standard Bayes factor demonstrates the relative evidence in

probability to support model Mk against Mk′ when describing the observed data y.

In contrast to considering prior predictive density in model assessment, Aitkin

(1991) proposes the posterior Bayes factor

PoBFk,k′ =
p(y|y,Mk)

p(y|y,Mk′)

in terms of posterior predictive density where S2 = Un to replace S2 = ∅ in the

standard Bayes factor when S1 = Un is unchanged. Given both the model and the
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full data have been seen, here the fitted models in light of the current data y are

compared.

Because the entire dataset is used twice (first to convert the prior into the pos-

terior, and then to compute the realized discrepancy), posterior predictive density

in tradition is merely employed as a conservative tool in Bayesian model monitoring

and checking (Rubin, 1984; Robins et al., 2000). Without any penalty for data over-

usage, the application of posterior predictive density for model evaluation may lead to

some counterintuitive results. This and some other criticisms have been pointed out

by Dawid, Fearn, Goldstern, Lindley, and Whittakerthe in the discussion of Aitkin

(1991).

4.2.2 Predictive Bayes factor

Given the observed data y, it is of general interest for Bayesian researchers to make

the comparison among the fitted models other than original models.

In order to illustrate the relationship between a candidate model under comparison

and data y, we first change the notation of the original modelMk toMk(∅) hereinafter,

and let Mk(y) denote the fitted model in light of data y:

ỹ ∼ gk(ỹ|θk)

θk ∼ pk(θ
k|y) ∝ πk(θ

k)
∏

i

gk(yi|θk). (4.5)

From a predictive perspective, next we pay major attention to model selection ap-

proaches in terms of model probabilities to compare models Mk(y), k = 1, 2, ..., K

against a future observable ỹ.

In the class of Gelfand and Dey (1994), if we expand the universe to Un+1 =

{1, . . . , n+1} where yn+1 = ỹ denoting a future independent observation, S1 = {n+1}
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and S2 = Un yields the posterior predictive distribution of the testing sample ỹ,

p(ỹ|Mk(y)) =

∫
gk(ỹ|θk)pk(θk|y)dθk, (4.6)

when all of the observations y are employed as the training sample to update the

knowledge of the parameters. The unobserved quantity ỹ is presumed to be generated

from f , the underlying true distribution. Taking that into account, we evaluate the

goodness of a model Mk(y) through the similarity of the distribution (4.6) to f .

The posterior predictive distribution of ỹ can be empirically assessed on behalf of

the observable y. In order to avoid the double use of the data, a numerical solution is

to employ the cross-validation method. For each single observation j ∈ Un, S1 = {j}

and S2 = Un/{j} for (4.3) yields the observation-i-deleted cross-validative predictive

density (Geisser, 1975); their product
∏n

i=1 p(yi|Mk(y−i)) is suggested as the pseudo-

predictive distribution to replace p(Mk(∅), y) for model selection, on which the pseudo-

Bayes factor (Geisser and Eddy, 1979) is defined as

PsBFk,k′ =

∏
i p(yi|Mk(y−i))∏
i p(yi|Mk′(y−i))

.

Mathematically, the logarithm of pseudo-predictive distribution is exactly the first-

order leave-one-out cross-validation estimator for Eỹ log p(ỹ|Mk(y)). Note that even

with numerical approximation, it is computationally challenging to apply leave-one-

out cross-validation method for Bayesian modeling.

One alternative approach is to approximate Eỹ log p(ỹ|Mk(y)) directly with penal-

ized empirical posterior predictive density 1
n

∑
i log p(yi|Mk(y)) + bk, where bk is the

bias of over-estimation of the empirical log posterior predictive for the ‘double use’

of y. Subsequently, we can define the predictive Bayes factor (PrBF):

PrBFk,k′ =

∏
i p(yi|Mk(y))∏
i p(yi|Mk′(y))

· exp(n · bk)
exp(n · bk′)

as a measure of the weight of sample evidence in favor ofMk(y) compared withMk′(y).
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An asymptotic unbiased estimator of the bias bk is − 1
n
tr{J−1

n,k(θ̂
k)In,k(θ̂

k)}. The

details of the derivation are given in the Theorem 4.1 of next section. Hence, empir-

ically we present PrBF as

PrBFk,k′ =

∏
i pk(yi|y)∏
i pk′(yi|y)

·
exp(−tr{J−1

n,k(θ̂
k)In,k(θ̂

k)})
exp(−tr{J−1

n,k′(θ̂
k′)In,k′(θ̂k

′)})

The posterior predictive density of ỹ indicates what a future observation would

look like, given the updated model fully refined by the entire data. By employing

the posterior predictive distribution rather than the prior predictive distribution, it

reduces the sensitivity to variations in the prior distribution and avoids the degener-

ation of the integrated likelihood as well as the Lindley paradox. Compared with the

cross-validative predictive densities in pseudo Bayes factor, the natural estimator of

the posterior predictive distribution Eỹ log p(ỹ|Mk(y))

1

n

∑

i

log pk(yi|y)

is fast to compute and steady in estimation. Unlike posterior Bayes factor, predictive

Bayes factor penalizes the over-estimation asymptotically unbiasedly. In addition,

the predictive Bayes factor inherits the property of coherence, i.e. the Bayes factor

between, say, models A and C equal the Bayes factor between models A and B

multiplied by the Bayes factor between models B and C. Coherence is important for

result interpretation when more than 2 candidate models are under comparison.

4.3 Posterior Predictive Information Criterion

In this section we derive an asymptotically unbiased estimator for the expected out-of-

sample log posterior predictive density Eỹ log p(ỹ|y), on which the theoretical foun-

dation of the predictive Bayes factor is built. The quantity, Eỹ log p(ỹ|y), can be

considered as a special K-L discrepancy function, a distance measure to compare the
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posterior predictive density of a future observation with the underlying true model,

where the true model is only referred to a model as the best projection unto the

statistical modeling space once we try to understand the real but unknown dynam-

ics/mechanism of interest. Based on the bias correction from an asymptotic estimator

of Eỹ log p(ỹ|y), we also propose an ad hoc information criterion in terms of the pos-

terior predictive density for Bayesian evaluation.

4.3.1 Asymptotic estimation for K-L discrepancy

Theorem 4.1. Let y = (y1, y2, · · · , yn) be n independent observations drawn from

the probability cumulative distribution F (ỹ) with density function f(ỹ). Consider

G = {g(ỹ|θ); θ ∈ Θ ⊆ Rp} as a family of candidate statistical models not necessarily

containing the true distribution f , where θ = (θ1, ..., θp)
′ is the p-dimensional vector

of unknown parameters, with prior distribution π(θ). The asymptotic bias of η̂ =

1
n

∑
i log p(yi|y) for η = Eỹ log p(ỹ|y) is estimated by

Ey(η̂ − η) = bθ ≈
1

n
tr{J−1(θ0)I(θ0)}, (4.7)

where

J(θ) = −Eỹ(
∂2 log{g(ỹ|θ)π 1

n (θ)}
∂θ∂θ′

),

I(θ) = Eỹ(
∂ log{g(ỹ|θ)π 1

n (θ)

∂θ

∂ log{g(ỹ|θ)π 1

n (θ)}
∂θ′

)

under the following regularity conditions:

C1: Both the log density function log g(ỹ|θ) and the log unnormalized posterior density

log{L(θ|y)π(θ)} are twice continuously differentiable in the compact parameter space

Θ, where L(θ|y) = ∏
i g(yi|θ);

C2: The expected posterior mode θ0 = argmaxθ Eỹ[log{g(ỹ|θ)π0(θ)}] is unique in Θ;

C3: The Hessian matrix of Eỹ[log{g(ỹ|θ)π0(θ)}] is non-singular at θ0.
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Accordingly, we propose the posterior predictive information criterion (PPIC)

−2
∑

i

log p(yi|y) + 2 · tr{J−1
n (θ̂)In(θ̂)}, (4.8)

where θ̂ = argmaxθ L(θ|y)π(θ) is the posterior mode and

Jn(θ) = − 1

n

n∑

i=1

(
∂2 log{g(yi|θ)π

1

n (θ)}
∂θ∂θ′

),

In(θ) =
1

n− 1

n∑

i=1

(
∂ log{g(yi|θ)π

1

n (θ)

∂θ

∂ log{g(yi|θ)π
1

n (θ)}
∂θ′

).

Models with small PPIC values are favored when various candidate Bayesian models

are under comparison. Actually, the difference of PPICs can be interpreted by Table

4.3, through the equation

PPIC1 − PPIC2 = 2 loge PrBF12.

The proposed criterion has many attractive properties. As an objective model

selection criterion consistent with Bayesian philosophy, PPIC is developed by unbi-

asedly correcting the asymptotic bias of the log posterior against the ad hoc K-L

discrepancy, which measures the similarity of the predictive distribution and the un-

derlying true distribution. Without presuming that the approximating distributions

contains the truth, our criterion is generally applicable for Bayesian model compari-

son. From a predictive perspective, the direct estimation penalized for ‘double use of

the data’ makes PPIC much easier to adopt computationally than other numerically

methods such as cross-validation, especially when the model structure is complicated.

Note that all of those properties are also possessed by predictive Bayes factor.

In the literature, Konishi and Kitagawa (1996) propose a similar-looking criterion

to PPIC in their section 3.4. From a frequentist’s perspective, their attempt is to

build up the asymptotic link between the log-likelihood, which was estimated at the

MLE other than the posterior mode, and the predictive distribution. By neglecting
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the information contained within the prior distribution π(θ), that kind of approach

may cause significant bias even for large samples; for instance, see arguments in

Appendix 2 of Ando (2007). What’s more, the error correction term and its estimator

is also affected through the incomplete definition of the matrices J(θ) and I(θ). It

invariably induces to biased results when evaluating most Bayesian models, which

partially explains why the error correction of their proposed criterion is only in the

order of Op(n
−1), against op(n

−1) in our proposal when we consider the posterior

mode θ̂ in the evaluation of the predictive density.

To prove the Theorem 4.1, we note that the posterior predictive density can be

expanded as

p(ỹ|y) =

∫
g(ỹ|θ)p(θ|y)dθ =

∫
g(ỹ|θ)L(θ|y)π(θ)dθ∫

L(θ|y)π(θ)dθ (4.9)

=
g(ỹ|θ̂(ỹ))L(θ̂(ỹ)|y)π(θ̂(ỹ))

L(θ̂|y)π(θ̂)





∣∣∣Jn(θ̂)
∣∣∣

∣∣∣Hn(ỹ, θ̂(ỹ))
∣∣∣





1

2

+Op(n
−2) (4.10)

by Laplace transformation (Bernardo and Smith, 1994 §5.5.1), where (θ̂(ỹ), Hn(ỹ, θ))

and (θ̂, Jn(θ)) are pairs of posterior modes and second derivative matrices of

− 1
n
log{g(ỹ|θ)L(θ|y)π(θ)} and − 1

n
log{L(θ|y)π(θ)}, respectively. For notational pur-

pose, letting

h(ỹ, θ; y) = log{g(ỹ|θ)L(θ|y)π(θ)},

then we have

Hn(ỹ, θ) = − 1

n

∂2h(ỹ, θ)

∂θ∂θ′
.

With the definition of

K(θ) = Eỹ(
∂ log g(ỹ|θ)

∂θ

∂ log g(ỹ|θ)
∂θ′

),

we start with the proofs of a few lemmas to support the proof of Theorem 4.1.
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LEMMA 1. Under the same regularity conditions of Theorem 4.1,

θ0 − θ̂(ỹ) = Op(n
−1/2); θ0 − θ̂(yi) = Op(n

−1/2).

Proof. Expand ∂h(ỹ,θ)
∂θ

|θ=θ̂(ỹ) at θ0

∂h(ỹ, θ)

∂θ
|θ=θ̂(ỹ) ≃ ∂h(ỹ, θ)

∂θ
|θ=θ0 +

∂2h(ỹ, θ)

∂θ∂θ′
|θ=θ0(θ̂(ỹ)− θ0)

=
∂h(ỹ, θ)

∂θ
|θ=θ0 − nHn(ỹ, θ0)(θ̂(ỹ)− θ0).

The left-hand-side is 0 since θ̂(ỹ) is the mode of h(ỹ, θ), and ∂h(ỹ,θ)
∂θ

|θ=θ0 on the

right-hand-side converges to N(0, nI(θ0) +K(θ0)). Therefore, we obtain

√
n(θ̂(ỹ)− θ0) ∼ N(0, H−1

n (ỹ, θ0)(I(θ0) +
1

n
K(θ0))H

−1
n (ỹ, θ0)),

or θ0 − θ̂(ỹ) = Op(n
−1/2).

Following the same procedure, we derive θ0 − θ̂(yi) = Op(n
−1/2).

LEMMA 2. Under the same regularity conditions of Theorem 4.1, both n(θ̂(ỹ)−

θ̂) and n(θ̂(yi)− θ̂) are approximately distributed as N(0, J−1
n (θ̂)K(θ0)J

−1
n (θ̂)).

Proof. Expand ∂ log{L(y|θ)π(θ)}
∂θ

|θ=θ̂(ỹ) at θ̂

∂ log{L(y|θ)π(θ)}
∂θ

|θ=θ̂(ỹ) ≃ ∂ log{L(θ|y)π(θ)}
∂θ

|θ=θ̂

+
∂2 log{L(θ|y)π(θ)}

∂θ∂θ′
|θ=θ̂(θ̂(ỹ)− θ̂)

= −nJn(θ̂)(θ̂(ỹ)− θ̂).

The left-hand-side ∂ log{L(y|θ)π(θ)}
∂θ

|θ=θ̂(ỹ) = −∂ log g(ỹ|θ)
∂θ

|θ=θ̂(ỹ) is approximately dis-

tributed as N(0, K(θ0)). Therefore we obtain

n(θ̂(ỹ)− θ̂) ∼ N(0, J−1
n (θ̂)K(θ0)J

−1
n (θ̂)).
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Similarly, we can prove that the asymptotic distribution of n(θ̂(yi)− θ̂) is

N(0, J−1
n (θ̂)K(θ0)J

−1
n (θ̂))

.

LEMMA 3. Under the same regularity conditions of Theorem 4.1,

θ̂(ỹ)− θ̂(yi) = op(n
−1).

Proof. Expand ∂h(ỹ,θ)
∂θ

|θ=θ̂(ỹ) at θ̂(yi)

∂h(ỹ, θ)

∂θ
|θ=θ̂(yi)

≃ ∂h(ỹ, θ)

∂θ
|θ=θ̂(ỹ) +

∂2h(ỹ, θ)

∂θ∂θ′
|θ=θ̂(ỹ)(θ̂(yi)− θ̂(ỹ))

= −nHn(ỹ, θ̂(ỹ))(θ̂(yi)− θ̂(ỹ)). (4.11)

The left-hand-side

∂h(ỹ, θ)

∂θ
|θ=θ̂(yi)

=
∂h(yi, θ)

∂θ
|θ=θ̂(yi)

+
∂ log g(ỹ|θ)

∂θ
|θ=θ̂(yi)

− ∂ log g(yi|θ)
∂θ

|θ=θ̂(yi)

=
∂[log g(ỹ|θ)− log g(yi|θ)]

∂θ
|θ=θ̂(yi)

converges to 0 as n → ∞, and the right-hand-side of 4.11

θ̂(ỹ)− θ̂(yi) = op(n
−1).

LEMMA 4. Under the same regularity conditions of Theorem 4.1,

EỹEy[Hn(yi, θ̂(yi))−Hn(ỹ, θ̂(ỹ))] = op(n
−1).
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Proof.

−EyHn(yi, θ̂(yi)) =
1

n
Ey

∂2 log g(yi|θ)
∂θ∂θ′

|θ̂(yi) +
1

n
Ey

∂2 logL(θ|y)π(θ)
∂θ∂θ′

|θ̂(yi)

=
1

n
Ey

∂2 log g(yi|θ)
∂θ∂θ′

|θ0 +
1

n
Ey

∂2 logL(θ|y)π(θ)
∂θ∂θ′

|θ̂(yi) + op(n
−1)

(4.12)

=
1

n
Eỹ

∂2 log g(ỹ|θ)
∂θ∂θ′

|θ0 +
1

n
Ey

∂2 logL(θ|y)π(θ)
∂θ∂θ′

|θ̂(yi) + op(n
−1)

(4.13)

=
1

n
Eỹ

∂2 log g(ỹ|θ)
∂θ∂θ′

|θ̂(ỹ) +
1

n
EỹEy

∂2 logL(θ|y)π(θ)
∂θ∂θ′

|θ̂(ỹ) + op(n
−1)

(4.14)

= − EỹEyHn(ỹ, θ̂(ỹ)) + op(n
−1).

Lemma 1 is used in (4.12) and (4.14), whereas (4.13) uses Lemma 3.

LEMMA 5. Under the same regularity conditions of Theorem 4.1,

EỹEy[Jn(θ0)−Hn(ỹ, θ0)] = op(1); EỹEy[Jn(θ0)−Hn(yi, θ0)] = op(1).

Proof. Compare the definition of Jn(θ), Hn(ỹ, θ) and Hn(yi, θ) directly, we obtained

the desired result.

LEMMA 6. Under the same regularity conditions of Theorem 4.1, asymptotically

Ey[
1

n

∑

i

log g(yi|θ̂)− Eỹ log g(ỹ|θ̂)] =
1

n
tr{J−1(θ0)I(θ0)}.

Proof. Essentially, it is a Bayesian adaption of TIC (Takeuchi, 1976). The proof can

be derived directly from Theorem 3.1 of Zhou (2011a) by applying the posterior mode

as the functional estimator T (F̂ ).
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With all the above results, here we give a proof of Theorem 4.1.

Proof of Theorem 4.1. The log transformed predictive distributions are given as

log p(ỹ|y) = h(ỹ, θ̂(ỹ))− 1

2
log

∣∣∣Hn(ỹ, θ̂(ỹ))
∣∣∣

− logL(θ̂|y)π(θ̂) + 1

2
log

∣∣∣Jn(θ̂)
∣∣∣+ op(n

−1); (4.15)

1

n

∑

i

log p(yi|y) =
1

n

∑

i

h(yi, θ̂(yi))−
1

2n

∑

i

log
∣∣∣Hn(yi, θ̂(yi))

∣∣∣

− logL(θ̂|y)π(θ̂) + 1

2
log

∣∣∣Jn(θ̂)
∣∣∣+ op(n

−1). (4.16)

Expanding h(ỹ, θ̂) in Taylor series around θ̂(ỹ), and using Lemma 2, Lemma 1

and Lemma 5 in steps, we have

h(ỹ, θ̂) = h(ỹ, θ̂(ỹ)) +
∂h(ỹ, θ)

∂θ′
|θ=θ̂(ỹ)(θ̂ − θ̂(ỹ))

−1

2
(θ̂ − θ̂(ỹ))′nHn(ỹ, θ̂(ỹ))(θ̂ − θ̂(ỹ)) + op(n

−1)

= h(ỹ, θ̂(ỹ))− 1

2n
tr{Hn(ỹ, θ̂(ỹ))J

−1
n (θ̂)K(θ0)J

−1
n (θ̂)}+ op(n

−1)

= h(ỹ, θ̂(ỹ))− 1

2n
tr{Hn(ỹ, θ0)J

−1
n (θ̂)K(θ0)J

−1
n (θ̂)}+ op(n

−1)

= h(ỹ, θ̂(ỹ))− 1

2n
tr{Jn(θ0)J−1

n (θ̂)K(θ0)J
−1
n (θ̂)}+ op(n

−1). (4.17)

Using a very similar argument as above,

h(yi, θ̂) = h(yi, θ̂(yi)) +
∂h(yi, θ)

∂θ′
|θ=θ̂(yi)

(θ̂ − θ̂(yi))

−1

2
(θ̂ − θ̂(yi))

′nHn(yi, θ̂(yi))(θ̂ − θ̂(yi)) + op(n
−1)

= h(yi, θ̂(yi))−
1

2n
tr{Hn(yi, θ̂(yi))J

−1
n (θ̂)K(θ0)J

−1
n (θ̂)}+ op(n

−1)

= h(yi, θ̂(yi))−
1

2n
tr{Hn(yi, θ0)J

−1
n (θ̂)K(θ0)J

−1
n (θ̂)}+ op(n

−1)

= h(yi, θ̂(yi))−
1

2n
tr{Jn(θ0)J−1

n (θ̂)K(θ0)J
−1
n (θ̂)}+ op(n

−1), (4.18)
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Substitute (4.17) and (4.18) into (4.15) and (4.16) respectively,

log p(ỹ|y) = h(ỹ, θ̂) +
1

2n
tr{Jn(θ0)J−1

n (θ̂)K(θ0)J
−1
n (θ̂)} − 1

2
log

∣∣∣Hn(ỹ, θ̂(ỹ))
∣∣∣

− logL(θ̂|y)π(θ̂) + 1

2
log

∣∣∣Jn(θ̂)
∣∣∣+ op(n

−1)

1

n

∑

i

log p(yi|y) =
1

n

∑

i

{h(yi, θ̂) +
1

2n
tr{Jn(θ0)J−1

n (θ̂)K(θ0)J
−1
n (θ̂)}}

− 1

2n

∑

i

log
∣∣∣Hn+1(yi, θ̂(yi))

∣∣∣− logL(θ̂|y)π(θ̂) + 1

2
log

∣∣∣Jn(θ̂)
∣∣∣

+op(n
−1)

Taking expectations with respect to the underlying true distribution and using

Lemma 4 and 6, we complete the proof.

4.3.2 A simple simulation study

To give insight into PPIC, we first apply it to a simple simulation study of normal

model with known variance.

Suppose observations y = (y1, y2, ..., yn) are a vector of iid samples generated

from N(µT , σ
2
T ), with unknown true mean µT and variance σ2

T = 1. Assume the

data is analyzed by the approximating model g(yi|µ) = N(µ, σ2
A) with prior π(µ) =

N(µ0, τ
2
0 ), where σ2

A is fixed, but not necessarily equal to the true variance σ2
T .

It is easy to derive the posterior distribution of µ which is normally distributed

with mean µ̂ and variance σ̂2, where

µ̂ = (µ0/τ
2
0 +

n∑

i=1

yi/σ
2
A)/(1/τ

2
0 + n/σ2

A)

σ̂2 = 1/(1/τ 20 + n/σ2
A).

Therefore, we have

η = Eỹ log p(ỹ|y) = −1

2
log(2π(σ2

A + σ2
T ))−

σ2
T + (µT − µ̂)2

2(σ2
A + σ2

T )

η̂ =
1

n

n∑

i=1

log g(yi|y) = −1

2
log(2π(σ2

A + σ2
T ))−

1

n

n∑

i=1

(yi − µ̂)2

2(σ2
A + σ2

T )
.
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Figure 4.1: Comparison of the expected true bias nbµ( ) and the bias estimated

by PPIC nb̂PPIC
µ ( ) when σ2

A = σ2
T = 1. The left plot is under a relatively non-

informative prior with τ0 = 100; the right plot is under a relatively informative prior with

τ0 = 0.5.

To eliminate the estimation error caused by the sampling of the observations y,

we average the bias b̂µ = η̂ − η over y with its true density N(µT , σ
2
T ),

bµ = Ey(η̂ − η) = Ey{
σ2
T

2(σ2
A + σ2

T )
+

(µT − µ̂)2

2(σ2
A + σ2

T )
− 1

n

n∑

i=1

(yi − µ̂)2

2(σ2
A + σ2

T )
}

=
σ2
T

2(σ2
A + σ2

T )
+

−σ2
T/τ

4
0 − 2(n− 1)σ2

T/τ
2
0σ

2
A + n(2− n)σ2

T/σ
4
A

2(σ2
A + σ2

T )(1/τ
2
0 + n/σ2

A)
2

=
σ2
T σ̂

2

σ2
A(σ

2
A + σ2

T )
,

whereas the asymptotic bias estimator (4.7) is

b̂PPIC
µ =

1

n− 1
σ̂2

n∑

i=1

((µ0 − µ̂)/(nτ 20 ) + (yi − µ̂)/σ2
A)

2.

The true mean and variance are arbitrarily set to be µT = 0 and σT = 1, re-

spectively, and the prior variances are set to be either the informative τ 20 = (.5)2 or
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Figure 4.2: Comparison of the expected true bias nbµ( ) and the bias estimated

by PPIC nb̂PPIC
µ ( ) when σ2

A 6= σ2
T . The left two plots are under a relatively non-

informative prior with τ0 = 100; the right ones are under a relatively informative prior with

τ0 = 0.5.
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almost non-informative τ 20 = (100)2 with prior mean µ0 = 0. After a Monte Carlo

simulation with 25,000 repetitions for each pre-specified n, curves of expected true

bias bµ against the bias estimates b̂PPIC
µ are plotted in either Figure 4.1 for the case

σ2
A = σ2

T , or Figure 4.2 when the equality between σ2
A and σ2

T does not hold.

The results are in accordance with theory. Regardless of whether or not the prior

of the model is informative, the estimated asymptotic bias of b̂PPIC
µ is close to the true

bias-correction values when σ2
A = σ2

T = 1, and that result is essentially unchanged

when investigated under model misspecification.

4.4 Interpretation of predictive Bayes factor

Statistically, model probability itself represents a substantial measure to evaluate

one statistical model against another. Bayes factor is a practical device to assign

each candidate model with a conditional probability for model comparison. Table 4.1

presents the Jeffreys’ proposal (pp.432, Jeffreys, 1961) to interpret the strength of

evidence for standard Bayes factors in half units on the log10 scale, while Kass and

Raftery (1995) considers the guideline by twice the natural logarithm, as shown in

Table 4.2. Based on the evidence how the expected posterior probability of the model

is supported by the data, here we propose a slightly modified calibration in Table 4.3

as the scale of evidence for interpretation of Bayes factors.

The difference of Table 4.3 from other proposals is not significant, however, we may

use it to interpret the difference of PPICs. Generally, an individual K-L based crite-

rion value, by itself, is not interpretable without knowing the constant Eỹ[log f(ỹ)] in

equation (2.1). In practice, only the difference between the model selection criterion

values is meaningful, which theoretically estimates the relative difference of the ex-

pected Kullback-Leibler divergences, a discrepancy measure of the similarity between

the candidate model and the true distribution of the data. An important question for
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Table 4.1: Jeffreys’ scale of evidence in favor of model M1. (Jeffreys, 1961)

B12 log10B12 P (M1|y) Evidence

1 to 3.2 0 to 1/2 50% to 76% Not worth more than a bare mention

3.2 to 10 1/2 to 1 76% to 90.9% Substantial

10 to 31.6 1 to 1.5 90.9% to 96.9% Strong

31.6 to 100 1.5 to 2 96.9% to 99% Very Strong

> 100 > 2 > 99% Decisive

Table 4.2: Scale of evidence in favor of model M1 by Kass and Raftery (1995).

B12 2 loge B12 P (M1|y) Evidence

1 to 3 0 to 2 50% to 75% Not worth more than a bare mention

3 to 20 2 to 6 75% to 95.2% Positive

20 to 150 6 to 10 95.2% to 99.3% Strong

> 150 > 10 > 99.3% Very Strong

model selection is naturally raise: how big of a difference would be statistically mean-

ingful, in the sense of when one model should no longer be considered competitive

with the other?

Following

PrBF12 =
exp{1

2
· PPIC1}

exp{1
2
· PPIC2}

= exp{1
2
· (PPIC1 − PPIC2)} (4.19)

and

P (Mk(y)|ỹ) =
p(ỹ|Mk(y))P (Mk(y))

p(ỹ|M1(y))P (M1(y)) + p(ỹ|M2(y))P (M2(y))
, k = 1, 2. (4.20)

approximately we have the equation for the difference of the posterior predictive
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Table 4.3: The interpretation of both predictive Bayes factor and difference of PPIC

values with respect to the posterior probability in favor of model M1(y), where

PPIC1 − PPIC2 = 2 loge PrBF12.

PrBF12 2 loge PrBF12 P (M1(y)|y) Evidence

1 to 3 −2.2 to 0 50% to 75% Not worth more than a bare mention

3 to 19 −5.9 to −2.2 75% to 95% Substantial

19 to 99 −9.2 to −5.9 95% to 99% Strong

> 99 < −9.2 > 99% Decisive

information criterion values with

PPIC1 − PPIC2 ≈ −2 log{E(P (M1(y)|ỹ))
E(P (M2(y)|ỹ))

} = −2 log{ E(P (M1(y)|ỹ))
1− E(P (M1(y)|ỹ))

} (4.21)

when assuming that the prior probability P (Mk(y)) for each of the fitted modelMk(y)

satisfies P (M1(y)) = P (M2(y)) = 1/2, k = 1, 2. Or equivalently, for the expected

probability of fitted model M1(y),

E(P (M1(y)|ỹ)) ≈ logit−1{−1

2
(PPIC1 − PPIC2)}.

Equation (4.21) demonstrates that the PPIC difference can be used as a summary

of the evidence provided by the data for model preference in model comparison.

Together with the Table 4.3, the level of model preference is quantified. What’s

more, we can make consistent model selection conclusion either in terms of Bayes

factor or Kullback-Leibler discrepancy.

4.5 Simulation Study

Bliss (1935) reports the proportion of beetles killed after 5 hours of exposure at

various concentrations of gaseous carbon disulphide in an experimental study. Here
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we reprint the data in Table 4.4. After comparing the fitted probability of killed

beetles as well as G2 goodness-of-fit statistic of three generalized linear models each

with a logit link, a probit link and a cloglog link, Agresti (2002) recommends the

GLM with the cloglog link in an explanatory point of view.

Log Dose 1.691 1.724 1.755 1.784 1.811 1.837 1.861 1.884

Number of Beetles 59 60 62 56 63 59 62 60

Number Killed 6 13 18 28 52 53 61 60

Table 4.4: Beetles Killed after Exposure to Carbon Disulfide (Bliss 1935)

In this section we consider the same problem in the Bayesian settings, i.e., assum-

ing a prior distribution N(0, τ 2) for each parameter of the generalized models. To

predict the probability of beetles been killed, a weakly-informative prior is introduced

with τ = 100 so that the standard Bayes factor is well-defined and free from Lindley’s

paradox, as well as a strongly informative but partially mis-specified prior τ = 10 since

it gently deviates from what the data supports. For model comparison purpose, pos-

terior predictive information criterion (PPIC), posterior average information criterion

(PAIC, in Chapter 3), Bayesian Takeuchi information criterion (BTIC in Chaptor 2),

standard Bayes factors (BF, Jeffreys 1939), posterior Bayes factors (PoBF, Aitkin

1991), pseudo Bayes factors (PsBF, Geisser and Eddy, 1979) and predictive Bayes

factors (PrBF) are computed based on a very large amount of valid posterior samples

(> 100, 000) from Bugs (Spiegelhalter et al., 1994, 2003). Note that the posterior

samples for pseudo Bayes factor are iteratively and independently generated for each

cross-validative predictive distribution, rather than employing the importance sam-

pling technique in which the unbounded weights may make the importance-weighted

estimate unstable.

For each candidate model, we present the estimated information criteria values in

Table 4.5. The result is consistent across the three Bayesian predictive criteria for
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τ = 100 τ = 10

cloglog probit logit cloglog probit logit

PPIC 31.56 37.79 39.68 33.00 38.08 45.20

PAIC 32.32 39.52 41.12 32.27 39.31 41.08

BTIC 30.12 37.32 38.83 30.04 37.09 38.83

Table 4.5: Various Bayes factors under either weakly informative prior τ = 100 or

strongly informative but partially mis-specified prior τ = 10.

τ = 100 BF PoBF PsBF PrBF

cloglog/probit 13.74 (93.2%) 12.91 (92.8%) 24.70 (96.1%) 22.56 (95.8%)

cloglog/logit 16.91 (94.4%) 30.77 (96.9%) 58.06 (98.3%) 58.11 (98.3%)

τ = 10 BF PoBF PsBF PrBF

cloglog/probit 11.84 (92.2%) 11.17 (91.8%) 14.15 (93.4%) 12.69 (92.7%)

cloglog/logit 2.3e11 (100.0%) 97.65 (99.0%) 986.5 (99.9%) 447.6 (99.8%)

Table 4.6: Various Bayes factors under either weakly informative prior τ = 100 or

strongly informative but partially mis-specified prior τ = 10, as well as the corre-

sponding probabilities that model 1 is preferred (in parentheses).

each selection of prior variance, while the GLM with cloglog link are significantly the

best among all of three models.

Table 4.6 provides the comparison of various Bayes factors. All of the results

indicate that the GLM with cloglog link are the best with quite confidence when con-

ducting pairwise comparison. The pseudo Bayes factors and predictive Bayes factors

are quite similar to each other, while posterior Bayes factors mildly underestimate

the evidence to support the fitted model M1 in this example. Different from the other

three, the standard Bayes factors evaluate the original model specified with the prior

distribution and disfavors the logit link extremely when prior variance τ = 10.
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Conclusion and Discussion

5.1 Conclusion

In contrast to frequentist modeling, it is inevitable to include a prior distribution for

parameters in each Bayesian model, either informative or non-informative, represent-

ing the antecedent believing on the parameters independent of the observed set of

data. Subsequently, the ad hoc statistical inference depends on the posterior distribu-

tion p(θ|y) ∝ L(θ|y)π(θ) rather than the likelihood function L(θ|y) alone; the choice

of the prior distribution may cause a strong impact for models under consideration.

In terms of model selection based on Kullback-Leilber divergence, it is reflected to

the extent how precisely the error of in-sample estimator against out-of-sample tar-

get is corrected. Without incorporating the prior information into bias estimation,

the usage of the frequentist criteria to compare Bayesian statistical models is risky,

resulting in support for new Bayesian model selection proposals.

We have so far considered the evaluation of Bayesian statistical models estimated

by the plug-in parameters, averaged over the posterior distributions and evaluated

with respect to predictive distributions, for which BGIC, BAIC and PPIC are useful

tools for model assessment. All of the new model selection criteria are proposed in

69
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a predictive perspective for Bayesian models to asymptotically unbiasedly estimate

the ad hoc Kullback-Leibler discrepancy for distinct purposes. Given some standard

regularity conditions, those criteria can be widely implemented if the observations

are independent and identically distributed, and generally applicable even in the

case of model misspecification, i.e. f(ỹ) does not come from the parametric family

{g(ỹ|θ); θ ∈ Θ}. It is also worth to mention that the computational cost for those

criteria is pretty low.

Through re-visiting the philosophy of Bayes factors, we illustrate an explanation

for the cause of the AIC-type efficiency and BIC-type consistency. We also build

up the link between the Kullback-Leibler discrepancy and predictive Bayes factor,

by which to interpret the scale of significance for the information criterion relative

values.

In our point of view, the information criteria values are good to use for reference

of model performance. Unlike Akaike’s minimum AIC procedure to select the ‘best’

model, it makes more sense to employ the proposed criteria to deselect models that

are obviously poor, maintaining a subset for further consideration.

5.2 Discussion

What follows are a few related topics which are of interest to discuss for Bayesian

modeling.

Bayesian Model Averaging

When the decision is not restricted to select a single model but to create a large

mixture of models, Bayesian model averaging (BMA) (Draper, 1995; Raftery et al.,

1997) is an approach by using individual model prior probabilities to describe model
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uncertainty, weighting each single model prediction by the corresponding posterior

model probability, which would be higher if the candidate model obtained the stronger

support from the data.

To achieve the principle of parsimony, Madigan and Raftery (1994) propose a

search strategy to exclude both the models with much smaller weights than the largest

posterior probability and the complex models receiving less support from the data

than their simpler counterparts. Usually only top 5%−10% of the models are selected.

Alternatively, the proposal of the predictive Bayes factors provides a set of natural

weights may be used in the Bayesian model averaging, when the candidate models to

consist of the final mixture have been updated by the data.

Missing Data

In the setting of missing data model, Celeux et al. (2006a) compare the perfor-

mance of 8 distinct DICs, depending on various focuses of the hierarchical models

and treatments on the missing variables. However, no conclusions have been drawn

with respect to which of the DIC should be adopted for model selection.

In a Bayesian point of view, missing data is a special kind of unknown quantity,

similar to parameters. Therefore, one solution is to conduct model selection based

on the ‘generalized parameters’, i.e., the set containing both the missing data and

parameters of interest, but treat the missing data as the ancillary.

The largest challenge of evaluating such a complicated structure is to properly

measure the model complexity for bias correction when the missingness of data in-

creases the . This problem can be properly solved by imposing our criteria.
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Computation

In addition to the refinement of the theoretical methodology, it is also important to

balance the efficiency and accuracy of computation in need for practical statistical

analysis. Given a specific dataset and the corresponding candidate Bayesian model,

the key components to apply our proposed criteria in computation consist of

1. the simulation of posterior distribution, for the posterior mean of the in-sample

log-likelihood in PAIC or the log predictive posterior density in PPIC;

2. the mode of the posterior density, θ̂, which can be done by using methods such

as conditional maximization or Newton-Raphson method;

3. the matrices Jn(θ) and In(θ) evaluated at the posterior mode.

The first two components are quite standard for Bayesian inference, as numerical

methods played an important role in the development of Bayesian statistics. For

instance, in spite of some simple non-hierarchical cases when the prior distributions

are conjugate to the likelihood, it is difficult to draw the posterior distribution di-

rectly. Therefore, Markov chain Monte Carlo (MCMC) algorithms, especially those

iterative simulation methods such as the Metropolis-Hasting algorithm and the Gibbs

sampler (Metropolis and Ulam, 1949; Metropolis et al., 1953; Hastings, 1970; Geman

and Geman, 1984; and Gelfand and Smith, 1990) are employed as important tools

for simulation purpose. The advent of electronic computational equipment in the

last a few decades has enhanced our ability to apply those computationally intensive

techniques. Rather than writing specific codes to draw posterior samples with proper

algorithm, some Bayesian computing software packages using MCMC algorithms are

available for posterior simulation, including BUGS (Bayesian inference Using Gibbs

Sampling) by Spiegelhalter et al. (1994, 2003) and JAGS (Just Another Gibbs Sam-

pler) by Plummer (2009), both of which can be called from statistical software R after
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installing corresponding libraries.

It is interesting to observe that the error correction term tr{J−1(θ0)I(θ0)} of

the BGIC, PAIC and PPIC are the same, though deducted independently. In our

proposals, we simply adopt the empirical tr{J−1
n (θ̂)In(θ̂)} as the estimator for the

bias correction term tr{J−1(θ0)I(θ0)}.

When in practice matrices Jn(θ̂) and In(θ̂) are difficult or tedious to determine

analytically, a feasible approach is the numerical approximation using finite differ-

ences. §12.1 of Gelman et al. (2003) provides a detailed instruction to estimate the

first and second derivatives of the log joint density of (y, θ). In addition, Jn(θ̂) is the

Bayesian Hessian matrix in the optimization problem when seeking the θ̂ maximiz-

ing the log-posterior, a problem that there are many well-written software functions

or packages are available to deal with. Furthermore, when the derivation of second

derivative matrix is relatively simple, the matrix In(θ̂) can also be estimated by using

the equation

∂

∂θ
log p

∂

∂θ′
log p =

1

p

∂2

∂θ∂θ′
p− ∂2

∂θ∂θ′
log p. (5.1)

Usually matrix Jn(θ) is fairly robust. However, the empirical Bayesian Fisher

information matrix In(θ̂) might not be always computationally stable in practice,

especially when the models are complex or the number of observations are small.

The employment of robust estimators, for instance, proposed in Royall (1986), is

valuable.
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