Dr. Belinda Sturm, Marie-Odile Fortier, Griffin Roberts University of Kansas KU Dept. of Environmental Engineering BIOFUELS Lawrence, Kansas 66045 Feedstock to Tailpipe 785-864-2907 Initiative

Algae is promising as a source of

Consumes CO2 during growth

Current harvesting methods

are too energy intensive

effluent

tank

water

• Easy to grow, purifies water

lipids for "green" fuels

• High yield per acre

0.01% algae

Microalgae Preconcentration by Sedimentation and by Addition of Montmorillonite Clay Coagulant

Elizabeth Murray • Dept. of Chemical Engineering, Columbia University, New York, NY • etm2116@columbia.edu

In the continuous process, testing flow rates	Increasing Flow Rate Decreases Algae Extraction Efficiency	Increasing Flow Rate Increa Algae Sludge Concentratio
of 50-680 mL/min reveals a trade-off between efficiency and sludge	Contraction (Contraction) (Con	C DATE THE PART OF
concentration.	د من	0 100 200 300 400 500 600 Flow Rate [mL/min]

Examine the batch process on a small scale, with and without clay coagulant

10-15% algae

•	Montmorillonite
algae sludge	day
Sedimentation	Clay
can also occur in	
a batch process	A coagulant can
	be used to
r i i i i i i i i i i i i i i i i i i i	neutralize surface
	charge on algae
	barticles

Examine continuous and batch process & coagulant to maximize: Efficiency (% algae harvested from water)

Algae concentration in "sludge"

Mixing makes a difference! 150 mg/L is selected as the optimum coagulant dosage

Neutralizing negative surface charge allows particles to clump together and settle more effectively

Scaling up the batch process with 150 mg/L coagulant gives good results

0 mg/L clay

100 mg/L c

Large-scale batch coagulation at this dose produces 2% concentrated sludge, although measurements vary

•Even the highest flow rate processes only 65% of the volume that can be processed in a large scale batch during the same time frame.

No mixing costs

 Higher efficiency and sludge density

 Energy cost of dissolving, dosing, mixing clay

•Easier to collect sludge

Future work: add Montmorillonite to continuous process at high flow rate

Effects of Montmorillonite on fuel properties? What to do with settled clay waste product?

References

- Davis, Mackenzie L. and David A. Cornwell."Water Treatment." Introduction to Environmental Engineering, 4th ed. St. Louis: McGraw-Hill Companies, 2008. 187-352. Print.
- Salim, S., M. H.Vermuë, and R. H.Wijffels. "Ratio between Autoflocculating and Target Microalgae Affects the Energy-efficient Harvesting by Bio-flocculation." *Bioresource Technology* 118 (2012): 49-55. neyer, Brandon."A Comparison of Dewatering Techniques for Algae

Cultivated at a Wastewater Treatment Plant," Unpublished, 2010