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ABSTRACT

Large-Scale Pattern Discovery in Music

Thierry Bertin-Mahieux

This work focuses on extracting patterns in musical data from very large collections. The problem

is split in two parts. First, we build such a large collection, the Million Song Dataset, to provide

researchers access to commercial-size datasets. Second, we use this collection to study cover song

recognition which involves finding harmonic patterns from audio features.

Regarding the Million Song Dataset, we detail how we built the original collection from an

online API, and how we encouraged other organizations to participate in the project. The result

is the largest research dataset with heterogeneous sources of data available to music technology

researchers. We demonstrate some of its potential and discuss the impact it already has on the

field.

On cover song recognition, we must revisit the existing literature since there are no publicly

available results on a dataset of more than a few thousand entries. We present two solutions to

tackle the problem, one using a hashing method, and one using a higher-level feature computed from

the chromagram (dubbed the 2DFTM). We further investigate the 2DFTM since it has potential

to be a relevant representation for any task involving audio harmonic content.

Finally, we discuss the future of the dataset and the hope of seeing more work making use of

the different sources of data that are linked in the Million Song Dataset. Regarding cover songs,

we explain how this might be a first step towards defining a harmonic manifold of music, a space

where harmonic similarities between songs would be more apparent.
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at the LISA (Université de Montréal) and the CIRMMT, in particular Douglas Eck, my Master

adviser.

Two internship opportunities made these last few years more exciting and forced me to learn

what coding actually means. To Ron Weiss at Google who had to review endlessly my commits,

I promise, I now put a comma at the end of my comments! To Paul Lamere at The Echo Nest

(and Sun Microsystems when I first met him), thank you for all those times you supported me and

offered me both opportunities and advice, I would not be here today without you.

I had the chance to be supported by a NSERC Postgraduate scholarship during my PhD years;

I wish this great program will keep on supporting Canadian students at home and abroad.

It has been ten years since I started college, and the one constant source of support that got

me through it is my family. I will never thank them enough for their support and the trust they

have had in me. To my parents: I made it! And it is because of you.

And of course, for encouraging me no matter what, to Caitlin, with all my love.

viii



To Graham G.

ix



1

Part I

Introduction



CHAPTER 1. INTRODUCTION 2

Chapter 1

Introduction

The need for methods to manage and organize music has never been greater. Streaming services

such as Spotify1 claim a collection of more than 16 million songs available to listeners. Such amounts

require commercial systems to be able to search, group, and recommend music without humans

in the loop. These abilities are part of what is called “music data mining”, or “music information

retrieval” as it is often referred to by practitioners.

While text data mining has made tremendous progress because of the popularity of search en-

gines such as Google2, the exploration of audio data remains challenging. This is particularly true

for music; as machines can transcribe speech and identify a speaker, no system can really claim to

“understand music” the way humans do. Such an understanding would include recognizing instru-

ments and individual notes, grouping songs in categories based on genre and style, commenting on

a particular performance and the underlying emotions, and identifying common motifs in the score.

In this work we focus on the latter, finding motifs in the score, in the case where we have

access to the audio but not said score. We believe this problem to be the one where humans will

outperform machines the most easily. Reasons include:

• motifs can have variations;

• motifs can span any length in time;

• motifs can be expressed with any instrument or sound effect;

1http://www.spotify.com

2http://www.google.com

http://www.spotify.com
http://www.google.com
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thus the problem can not be expressed as a straightforward supervised machine learning task (see

Chapter 3 if machine learning is an unfamiliar concept).

We approach the problem of finding motifs through the task of identifying cover songs, i.e. a

musical work with different recorded interpretations. Such focus is not very restrictive as we are

looking for motifs that define a song, therefore that are constant across versions of a song even if

the instrumentation, tempo, and style change. The upside is that we gain a measurable goal for

our experiments.

Cover song identification has been studied for a few years. The additional constraint we give

ourselves is that our system must work on a commercial-size database. This is necessary if we

want our research to have any practical impact. Furthermore, it is possible that leveraging more

data is the only way for machines to come close to solving the task, as common motifs will repeat

themselves across a large number of songs and standout from the rest of the data.

Given the state of the music information retrieval research field, working on a collection com-

parable in size to that of a commercial system implies building this collection ourselves. As a

consequence, we present in the first part of this thesis the Million Song Dataset, a freely-available

collection of audio features and metadata for a million contemporary popular music tracks.

The hope is that, by creating this research collection and providing scalable cover song recog-

nition systems, we pave the way for more intelligent systems in music data mining. Discovering

complex patterns in recorded music gets us closer to handling songs the same way humans do.

1.1 Scaling

We will talk often in this work about the need to tackle problems on a larger scale, in terms of data

size. The main reasons to justify that need are summarized below.

• For a system to have an impact, it needs to be adopted by users. As we mentioned, commer-

cial systems require algorithms that can deal with millions of songs, often in a few seconds.

Working with small datasets encourages the development of computationally expensive algo-

rithms that cannot be adapted to work with those commercial systems. Therefore, it limits

the possibility of technology transfer between academic research and the industry.

• In music technology (and other fields), we deal with extremely complex data. In terms of
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features, a song can be related to audio descriptors, symbolic data such as a score or lyrics,

cultural data regarding its popularity, its era, the region of its artist, its influence on other

song, etc. The list can go on almost endlessly. One consequence is that there are subtle but

real trends in the data that are difficult to see. As an example, in the Million Song Dataset,

only five songs are tagged as “world beat”3. If we were working with a thousand songs, the

chance of seeing that tag would be close to zero. Certain trends can only be seen at a large

scale.

• There have been a set of recent successes with new algorithms, often dubbed “deep learning

methods”. It usually leverages layers of algorithms, a lot of unsupervised learning, and large

quantities of data. For instance, to obtain a 70% improvement in object visual recognition,

[Le et al., 2011] trained their algorithm using 16K computer processors and 10M images.

Having larger collections of music data opens up the possibility of solving existing problems

with new methods that require such large resources to train.

In general, there have been many successes in different fields using larger collections, which has

fueled a “big data” craze. This term has been so widely used that it difficult to define what it

means, but a good starting point is reading [Cohen et al., 2009]. The work by [Le et al., 2011]

mentioned before is an example of success in vision. We can not predict whether more data will

help resolve issues in music technology, but we need at least to have the possibility to try. Thus,

we need larger datasets.

1.2 Music information retrieval

Music information retrieval (MIR) is an interdisciplinary research field focused on the analysis

of music data using rigorous scientific tools. This work can be broadly categorized as machine

learning applied to audio problems, which encompasses modern statistical tools and digital signal

processing. However, MIR also links to musicology, psychology, ethnology and library studies. This

explains the very heterogeneous sources of data in the Million Song Dataset (Part II).

3Tag count based on the Last.fm dataset which includes a list of tags applied to songs in the Million Song

Dataset. Tags and their respective song count can be found at http://labrosa.ee.columbia.edu/millionsong/

sites/default/files/lastfm/lastfm_unique_tags.txt.

http://labrosa.ee.columbia.edu/millionsong/sites/default/files/lastfm/lastfm_unique_tags.txt
http://labrosa.ee.columbia.edu/millionsong/sites/default/files/lastfm/lastfm_unique_tags.txt
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1.3 Contributions

The contributions of this thesis are twofold. First, (Part II) the creation of the Million Song

Dataset. As part of that project, we:

• created the largest research collection in MIR;

• provided code and demos to encourage its adoption;

• maintained a website to centralize all efforts surrounding the data;

• organized a successful music recommendation contest.

Then (Part III), we used the Million Song Dataset to develop two methods for large-scale cover

song recognition. Contributions include:

• driving the scaling of the cover song recognition task in MIR;

• developing a hashing-based solution;

• developing and understanding a fixed-dimensional representation for cover songs.

The experiments in Part III are reproducible (code and data is available) and represent the current

published state-of-the-art.

1.4 Thesis overview

The next two chapters give an overview of digital signal processing and music audio features, then

machine learning. Chapters 4 and 5 explain why and how we created the Million Song Dataset,

while Chapter 6 focus on its impact on the research community. We introduce the cover song

recognition task in Chapter 7. Our two methods are described in Chapters 8 and 9. Finally, we

conclude in Chapter 10.



CHAPTER 2. MUSIC AUDIO FEATURES 6

Chapter 2

Music audio features

This chapter is a minimalist introduction to digital signal processing. Most of the content is

assumed to be known and we present only what is required to introduce the music audio features

used in this work. To the reader who wishes to learn more about this topic, here are a few reading

suggestions. A great resource for digital signal processing is [Mitra, 2006]. For audio processing with

a good overview of music applications, please refer to [Gold et al., 2011]. A description of typical

features used for classification in the MIR field can be found in [Aucouturier and Pachet, 2003;

Pohle et al., 2005].

2.1 Fourier analysis

For most practical applications, an audio signal (Figure 2.1) is considered encoded using linear

pulse code modulation (LPCM) ([Oliver et al., 1948]) which is the basis of the Windows WAVE

format1. It means that a continuous audio signal has been sampled every T seconds. The value

1/T is the sampling frequency, the most common value for commercial music is 44.1kHz. At every

sample the amplitude (i.e. the change of atmospheric pressure) of the signal is recorded (Figure

2.2). The higher the amplitude, the louder the audio sounds.

The discrete fourier transform (DFT) is a way to express a time series in the frequency domain

(Figure 2.3). It is essential since, loosely speaking, it is the active frequencies that get recognized

by the human brain. Given a finite duration sequence x(n), 0 <= n <= N − 1, the DFT is defined

1http://www.digitalpreservation.gov/formats/fdd/fdd000011.shtml

http://www.digitalpreservation.gov/formats/fdd/fdd000011.shtml
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Figure 2.1: Example of an audio signal.

as

X(k) =

N−1∑
n=0

xnW
nk

with W = e−j2π/N . It can be interpreted as the projection of a N -dimensional vector into a

sinusoidal basis set. The DFT can be efficiently computed using the Fast Fourier Transform (FFT)

algorithm ([Cooley and Tukey, 1965]).

A spectrogram (Figure 2.4) shows the spectral variations of a signal over time. Typically it is a

2D graph where the horizontal axis represents time and the vertical axis represents the frequencies.

The energy of a particular frequency at a particular time is represented by the intensity (on a gray

scale) or the color at that particular 2D point.

Given a discrete signal x(n), a spectrogram for a particular point in time t is computed through

the FFT of the xi inside a time window centered around t. Aside from the sampling rate of the

signal x(n), typical spectrogram parameters include:

• resolution of the spectrogram, which can be parametrized by the size of the time windows

and the overlap of adjacent time windows;

• the use of a log scaling of the display of intensity (e.g. dB mapping);

• the use of a log scaling of the frequency axis (usually to come closer to human sensitivity);
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Figure 2.2: Sample audio signal: close-up and individual samples.

• the use of a window function to attenuate the border effects of the Fourier transform (e.g.

Hann window or Hamming window, described in [Mitra, 2006]).

We present two broad categories of music audio features: pitch-related features and timbre-

related features. Both are derived from a spectrogram, but they capture different aspect of the

music. Pitch-related features give an indication of what notes are being played. Timbre deals with

the way a “sound sounds”. This definition is explicitly vague as timbre has been described as “the

multidimensional waste-basket category psychoacoustician’s for everything that cannot be labeled

pitch or loudness” by [McAdams and Bregman, 1979]. Trying to be more specific, timbre-related

features attempt to describe characteristics such as the relative position of the harmonics or the

amount of distortion in the signal over a short period of time.

2.2 Pitch-related features

The spectrogram gives us the energy associated with pitches at different point in time. Since

in music every note is a given pitch (e.g. the reference A4 is often 440Hz, see Table 2.1), the

spectrogram is sufficient to build a simple score extraction algorithm as in [Piszczalski and Galler,

1977].

In music, an octave is the interval between a give note and the one with double its frequency.

For instance, the interval A4 (440Hz) and A5 (880Hz) is an octave. An octave is split into 12
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Figure 2.3: Audio signal and corresponding frequency analysis.

For the frequencies, v in dB is defined as 20 ∗ log10(v).

semitones as shown in Table 2.1. If one imagines that the table extends both right and left, each

row would be a pitch class. Notes in the same pitch class (e.g. all As) share a similar quality which

is beyond the scope of the thesis but is the basis of western music theory. Thus, chords are defined

by specific pitch classes, not specific notes.

Chroma features were introduced as pitch-class profiles (PCP) by [Fujishima, 1999]. He de-

scribes a PCP as a 12 dimension vector which represents the intensities of the 12 semitone pitch

classes. Thus the chromagram is similar in spirit to a spectrogram except that pitch content is

folded into a single octave of 12 discrete bins, each corresponding to a particular semitone (Figure

2.5).

Many variants have been derived, including HPCP ([Gómez, 2006]), EPCP ([Lee, 2006]) and

CENS ([Müller et al., 2005]); an overview can be found in [Jiang et al., 2011]. There is even evidence

that chromas can be learned from a simple similarity task [İzmirli and Dannenberg, 2010]. The

tuning (i.e. the exact note frequencies) do not have to be known in advance; [Harte, 2005] uses a

36-bin chromagram to first define the note boundaries, then compute the usual 12-bin chromagram.
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Figure 2.4: Spectrogram.

Computed from signal in Figure 2.1.

We use a Hanning window of size 1024 with an 512 overlap.

Chroma was rapidly seen as a suitable feature to describe the structure of music, for instance

Bartsch and Wakefield use it for thumbnailing [Bartsch and Wakefield, 2001]. Other applications

include music classification [Ellis, 2007], cover song recognition [Serrà, 2011], audio alignment [Hu

et al., 2003], chord recognition [Oudre et al., 2011; Sheh and Ellis, 2003] and segmentation [Weiss

and Bello, 2010].

The Echo Nest API ([EchoNest, ]) provides an implementation of the chroma feature. The

values are normalized between 0 and 1 by dividing by the maximum value at each time sample.

Other implementations normalize by the total energy at each time sample, or even do not normalize

at all.

2.3 Timbre-related features

We present two features whose goal is to describe the timbre of music, something that is not

captured by the pitch-related features.
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note frequency note frequency

C4 261.63 C5 523.25

C#4 277.18 C#5 554.37

D4 293.66 D5 587.33

D#4 311.13 D#5 622.25

E4 329.63 E5 659.26

F4 349.23 F5 698.46

F#4 369.99 F#5 739.99

G4 392.00 G5 783.99

G#4 415.30 G#5 830.61

A4 440.00 A5 880.00

A#4 466.16 A#5 932.33

B4 493.88 B5 987.77

Table 2.1: 4th and 5th octaves with the note frequencies.

Frequencies in Hz. We assume a tuning with A4 = 440Hz.

2.3.1 The Echo Nest timbre features

The Echo Nest API ([EchoNest, ]) offers a timbre feature which describes spectrogram patches.

It uses an auditory-model-based spectrogram: the frequency axis is scaled to approach the audi-

tory system, the magnitude is mapped to approximate perceived loudness, and an auditory-based

smoothing across time is applied. The Echo Nest algorithm discovers the presence of musical events

through an onset detector ([Jehan, 2005]). The time interval surrounding an event is called a seg-

ment. The spectrogram patch of a segment is normalized and the coefficients of the first 12 principal

components are computed ([Jehan and DesRoches, 2011]). Principal component analysis will be

discussed in Section 3.1.2.2, but in this case it explains the spectrogram patch as a combination

of the basis in Figure 2.6. As described in [Jehan and DesRoches, 2011], “the first [dimension of

the 12-dimension timbre vector] represents the average loudness of the segment; second emphasizes

brightness; third is more closely correlated to the flatness of a sound;” etc.
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Figure 2.5: Chromagram.

The chromagram (bottom image) computed from the signal in Figure 2.1. The spectrogram is

displayed for comparison (e.g., see how the musical event starting around 0.75 seconds is visible in

both images).

2.3.2 Mel-frequency cepstrum coefficients

Heavily used for speech recognition, Mel-frequency cepstrum coefficients (MFCC) have been intro-

duced for MIR tasks in [Logan, 2000]. MFCC are used to create a compact representation of a

spectral envelope, hence describing timbre with a few values. Given a discrete signal, the MFCC

are computed with the following steps over a short window:

1. apply the discrete Fourier transform;

2. compute the magnitude;

3. scale the frequency axis using the Mel scale;
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Figure 2.6: Timbre basis from The Echo Nest analyzer.

Those basis are obtained by PCA on a collection of normalized spectrogram patches. Image taken

from [Jehan and DesRoches, 2011].

4. take the logs of the values for each Mel frequency;

5. apply the inverse discrete Fourier transform.

The Mel scale ([Stevens and Volkmann, 1940]) is based on a mapping between actual frequency

and perceived pitch as apparently the human auditory system does not perceive pitch in a linear

manner. The mapping is approximately linear below 1kHz and logarithmic above ([Logan, 2000]).

As for the spectrogram, we can compute successive MFCCs and stack them horizontally (Figure

2.7). This feature is powerful as it describes the relationship between the frequencies without

knowing about the actual pitches. It is compact because, through the inverse DFT, it describes

the spectral envelope as a sum of orthogonal sinusoidal basis (the inverse DFT is very similar to

the DFT itself).

2.4 Beat-alignment

We will often mention beat-aligned features in this work. This implies that we:

• ran a beat tracking algorithm;

• performed a linear scaling of the features to get one value (or vector) per beat.

Consider a chromagram computed for every 50 ms starting at 0, and a particular beat b ranging

from 200 to 400 ms. The chroma vector for this beat will be the average chroma vector from

intervals 200 − 250 ms, ..., 350 − 400 ms. When working with non-linear time frames, we use a

weighted average. An example is shown later in this work, in Figure 8.2.

Beat-alignment often adds robustness as it is a natural time frame for music. Think about the

same song played twice, but with different tempos. Computing features using a fixed time window
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Figure 2.7: Mel-frequency cepstrum coefficients.

Computed from the signal in Figure 2.1.

We use a window size of length 32 ms with an overlap of 16 ms. We subtracted the average level

of the first coefficient (c0) (equivalent to scaling the waveform) to get cepstra with a more equal

range of values between c0 and the rest.

(e.g., 50 ms) will give two very different feature sets. However, once beat-aligned, the features from

the two performances should be virtually the same.

2.5 Features derived from The Echo Nest features

We briefly mention the recent work by [Schindler and Rauber, 2012]. Working with the features

provided by The Echo Nest is difficult because of the varying timescale (based on “musical event”).

The authors provide methods to aggregate those event-level features over time. The newly derived

features seem to be useful for different music classification tasks, e.g. genre recognition. This work

on The Echo Nest features is a result of the growing popularity of the Million Song Dataset (Part

II).
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Chapter 3

Machine learning

This chapter is intended to briefly cover aspects of machine learning that will be used throughout

this thesis. It is expected to be a reminder, the reader who needs a more complete introduction

is referred to books such as [Bishop, 2006; Duda et al., 2000; Mitchell, 1997; Russell and Norvig,

2009].

Machine learning tries to uncover patterns in data and use them in some meaningful way, which

can be described as learning. As T. Mitchell [Mitchell, 1997] puts it: “a computer program is said

to learn from experience E with respect to some class of tasks T and performance measure P , if

its performance at tasks in T , as measured by P , improves with experience E”. A specific example

from [Duda et al., 2000] is classifying two types of fish based on their length and skin lightness.

A number of correctly classified examples are provided. The task T is (without loss of generality)

to assign to each fish xi ∈ X a label in {0, 1}. Each xi is a two-dimensional vector containing the

values for length and lightness of one particular fish. The performance measure P can simply be

the number of misclassified fish. Finding a proper function F : X → {0, 1} is the core machine

learning problem. The experience E is to present an algorithm with some pairs of (fish, label),

called the “ground truth”, in order to create F .

In the previous examples, the vectors xi contains the features, the descriptors of the studied

object (the fish). Here those features are length and lightness. Most often we deal with numerical

features, but it could be anything in theory, for instance a label naming the lake where the fish

were found. Some common music-related features were described in Chapter 2.

Modeling the problem through statistics, we assume that all xi in the population X come from
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a given, fixed distribution. Understanding this distribution can be used to make predictions. For

instance, discovering that the first type of fish tends to be smaller than some threshold t, while the

other type tends to be longer, is useful since yet unseen fish should have the same property. Note

that as learning is different than remembering, the goal is to create a function F that works for

previously unseen examples. This concept is called generalization and is fundamental in machine

learning. It also explains why F is often called a predictor.

The chapter is organized as follows, first we present some general techniques to process features.

Then, we present the category of supervised learning tasks, to which the fish example above belongs.

This sections includes basic algorithms and methods to measure the generalization of a predictor.

Finally, we discuss unsupervised tasks, mostly clustering.

3.1 Feature representation

We assume that we have a population X = {xi}, each xi being the d-dimensional vector of features

for the ith element of X. Furthermore, we assume that these features are real numbers, which is

the case for all data throughout this work.

We present two general techniques that have proven useful in various settings: vector quantiza-

tion and dimensionality reduction. Usually, those methods are used to reduce the noise in the data

and reduce the size of high-dimensional feature vectors (e.g. d > 100). The latter is of particular

interest in this work.

3.1.1 Vector quantization

Shannon defines source coding as the mapping of symbols from an information source to a sequence

of alphabet [Shannon, 1948]. If the source symbols can not be recovered exactly, it is called lossy

source coding.

In our case, we have a dataset of feature vectors xi, each of dimension d, that would be the

symbols in Shannon’s definition. We also assume we have a codebook of M d-dimensional vectors,

the alphabet. Vector quantization [Gersho and Gray, 1991] replaces each feature vector by its

closest codeword in the codebook. The distance between a feature vector and a codeword is often

the Euclidean distance between the two vectors, but it could be any other measure, e.g. Kullback-
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Leibler divergence [Kullback and Leibler, 1951] if the features come from a distribution. One

method to build the codebook is to use the centroids of the clusters found through k-means, see

Subsection 3.3.1 below.

We skip the information theory analysis of the method, such as the trade-offs between level of

compression and codebook size. In our work, the interest in vector quantization is twofold. First,

codewords can be seen as templates, and replacing a feature vector by a template removes variations

that might be irrelevant to the task at hand. Second, note that we could use the codeword index as

a feature instead of the original feature vector, replacing d values by one. Therefore, in the example

above, we could discover that all fish whose features are mapped onto the first codeword are of the

first type.

3.1.2 Dimensionality reduction

Having additional features to describe items should never hurt performance, as one can always

ignore those additional features. Unfortunately, the reality is a little more tricky. A lot of algorithms

depend on measuring a distance between feature vectors (Euclidean distance for instance), and these

measure often behave in surprising ways when the dimension d is large. This phenomenon has been

dubbed the curse of dimensionality and we try to illustrate it below.

A solution is to apply a linear transformation to the original feature space where the new

space is of a lesser dimension. For instance, in Chapter 9, we project the original 900-dimensional

features into a 50-dimensional space. We present methods on how to do this while preserving

the information in the data. These are essential tools for anyone working with large-scale highly-

dimensional datasets.

3.1.2.1 Curse of dimensionality

The curse of dimensionality [Bellman, 1961] refers to the severe difficulty that can arise in spaces

of many dimensions [Bishop, 2006]. For instance, neighbooring data points tend to get “arbitrarily

far” from one another.
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One way to gain some understanding about the problems of multiple dimensions is to consider

a unit sphere in a hypercube1.
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Largest sphere inside a cube in 2D and 3D

Figure 3.1: Volume of an hypercube and its largest contained sphere in 2D and 3D.

The volume of a unit sphere when the dimension d is even (similar formula for d odd) is

Vs
d =

πd/2

(d/2)!

For any dimension, the unit sphere contains all points within a radius 1 of the center. The volume

of the smallest hypercube containing that sphere (in 2 dimensions, a square with sides of length 2)

is Vc
d = 2d. The ratio Vs

d/Vc
d tends to 0 as d → ∞, meaning that less and less of the volume of

the cube is inside the sphere as d increases. In our case, assume that the center of the sphere (and

the cube) is a feature vector, and all other data points are inside the cube. If they are uniformly

distributed, the chance to have a data point inside the sphere tends to 0. If we consider the nearest

neighbor algorithm and a sample centered at the origin, what tends to 0 is the chance of having a

neighbor whose distance is less than 1. Thus, with large d, all data points tend to be far from each

other, and comparing two points based on their feature distance loses meaning.

1Unable to find the origin of this example, we mention this blog post that presents it http://yaroslavvb.

blogspot.com/2006/05/curse-of-dimensionality-and-intuition.html

http://yaroslavvb.blogspot.com/2006/05/curse-of-dimensionality-and-intuition.html
http://yaroslavvb.blogspot.com/2006/05/curse-of-dimensionality-and-intuition.html
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3.1.2.2 Principal component analysis

Principal component analysis [Pearson, 1901], or PCA, is an algorithm that applies an orthogonal

transformation to a set of data points. Thus, the points are then expressed as a combination of

linearly uncorrelated variables called principal components. The orthogonal transformation, i.e.

the list of principal components, is chosen such as the first K components account for the largest

possible variance in the data. Put another way, there exists no orthogonal transformation of K

components that yields a lower reconstruction error than the top K principal components of PCA.
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Figure 3.2: Principal components of a 2D Gaussian distribution.

The PCA algorithm works as follow. We have a set of N data points forming X, a N × d real

matrix, each row being a d-dimensional feature vector.

1. Center the data: compute the empirical mean u (d-dimensional vector) and remove it from

all rows of X, thus building X0.

2. Compute the covariance matrix: C = E[X0.X0
T ] = 1/N [X0.X0

T ].

3. Compute eigenvectors and eigenvalues: V −1CV = D. The columns of V are the eigenvectors.

4. Rearrange eigenvectors in order of decreasing eigenvalues, V becomes W .
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5. Project the data: Y = W T .X0. To reduce the dimension of Y to K < d, use only the first K

columns of W .

The method above find linearly uncorrelated components that maximize the variance (steps 2− 3).

For the proof that this method also minimizes the reconstruction error, please refer to [Bishop,

2006].

Note that we skipped preprocessing of the values. For instance, values in the columns of X

could be replaced by their z-score, or linearly transformed so that the values fall in (−1,+1).

3.1.2.3 Random projections

There have been many developments related to the previous method, for example the introduction

of non-linearities in PCA through the use of kernels [Mika et al., 1999]. At the same time, in the

direction of less complexity, random projection methods have received a lot of attention lately.

The Johnson-Lindenstrauss lemma [Johnson and Lindenstrauss, 1984] shows that a set of N

points in high dimensional Euclidean space can be mapped down into an O(logN/σ2) dimensional

Euclidean space such that the distance between any two points changes by only a factor of O(1±σ).

A proof can be found in [Dasgupta and Gupta, 1999]. This means that we can perform approximate

nearest neighbor search in a space of smaller dimension.

The random projection matrix can be extremely simple, for instance this one from [Achlioptas,

2001]:

rij =
√

3×


+1 with probability 1/6

0 .. 2/3

−1 .. 1/6

Random projections are the backbone of the locality-sensitive hashing (LSH) algorithm [Indyk and

Motwani, 1998].

3.2 Supervised learning

We are in a supervised learning setting when we have access to a set of objects with their features

xi and a corresponding set of labels yi. The goal is to learn a predictor F (xi) = ŷi that minimizes

some error measure between yi and ŷi for previously unseen xi data ponts. This setting is opposed
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to unsupervised learning where the labels are not known in advance and the goal is to organize the

data in a suitable manner, see Section 3.3.

The two most common tasks are classification, where the labels are a finite discrete set, and

regression, where the labels are continuous values. Note that there are some tasks that do not fall

naturally in those two categories, for instance learning to rank (e.g. for recommendations, more

on this in Section 6.2.3) or to organize objects in a sequence (e.g. creating a playlist as in [Maillet

et al., 2009]). Also, some data points can belong to many classes, possibly with different level of

membership. Such an example is the task of applying tags (i.e. keywords) to songs [Bertin-Mahieux

et al., 2010a].

In this section we mention two very simple and often used classification algorithms: decision

trees and k-nearest neighbors. The goal is to illustrate a typical machine learning approach and

to explain how we measure generalization using held-out data. The decision trees are not actually

used in this work, but it is important to present a model-based classifier, i.e. a classifier that does

not remember samples once the training is done. This is the opposite of a memory-based classifier

such as k-nearest neighbors.

3.2.1 Decision trees

In Figure 3.3 we see an extremely simple decision mechanism for the fish example: if the length of

a fish is less than some threshold t, it is a fish of type A. Otherwise, it is of type B. This structured

is often called a decision stump. It looks at only one feature, and in the binary case, it can assign

up to two classes.

It is easy to imagine a deeper structure. If the length is greater than t, instead of assigning

a class, we could ask an additional question. For instance, is the length smaller or greater than

a second threshold t2, or is the luminosity smaller or greater than t3. Such a structure is called

a decision tree. The decision stump in Figure 3.3 is the simplest version of it. The procedure to

find the “best” questions to ask based on some data is not trivial, but many solutions have been

proposed, for instance the C4.5 algorithm [Quinlan, 1993].

The important part is that, given a built decision tree, it is easy to classify a new data point.

One simply asks the questions starting at the top of the tree (the root node), follow the path

downward based on the answers, and the class is given by the last node reached (a leaf node).
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Fish A Fish B

Length

l > t  l≤t

Figure 3.3: Simple tree structure (decision stump).

If the length is larger than a given threshold t, we believe it is fish A.

Otherwise, it is fish B.

Decision trees are one of the oldest machine learning algorithms, and are still widely popular today.

3.2.2 Nearest neighbors

The k-nearest neighbors (k-NN) algorithm relies on the assumption that “nearby” data points are

similar. Given a set of known data points (features and labels), we can classify a new data point

based on the labels of its k nearest neighbors. In Figure 3.4, we use a 1-NN algorithm, meaning we

look only at the closest neighbor. In the illustration, the unknown data point would be label as a

red circle instead of a blue square.

?

Figure 3.4: 1-NN example with two classes in a 2D space.

Note that we skip the discussion about finding a proper space where neighbors do share the

same label. What is important is that k-NN is simple to implement and to understand. It is a

good candidate as the first algorithm to try on any new problem. It does require a certain amount
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of memory as we need to keep track of all the known data points and their labels. Finding the

nearest neighbors can also be expensive if the dimension is high or if the dataset is large.

3.2.3 Unbiased estimates

As we mentioned earlier, the goal of machine learning is to make predictions about unseen data.

Therefore, we can not evaluate a predictor on data that was used to create this predictor. To

illustrate this, think of the 1-NN algorithm in Figure 3.4. Every known point would be the closest

neighbor to itself, thus the algorithm would assign the right label every time. Of course, that does

not tell us anything about how often we would classify unseen data correctly. In general, if an

algorithm performs better on data it was trained on, it is biased towards it. This effect is called

overfitting.

In order not to be overestimate the performance of an algorithm, we set aside data that we only

use to test the algorithm. For example, if we have 1, 000 data points with labels, we can use 800

of them to train the algorithm, and 200 to test its generalization performance. Unsurprisingly, we

call these two collections the train set and test set.

Most algorithms have meta-parameters that are often set by humans. For instance, the k in

k-NN, or the learning mechanism and the maximum depth of decision trees. The best performing

one on the training set might only be the most biased. The same problem arises if we use the test

set. Therefore, we usually keep a third subset of the data called the validation set. The typical

machine learning work flow would be:

1. train predictors on the training set with different meta-parameters;

2. choose the best performing predictor on the validation set;

3. measure its generalization error on the test set.

3.3 Unsupervised learning

Sometimes we have to make sense of data without any labels, hence the term unsupervised. There

is no ground truth to tell the algorithm if it is mistaken. The most common task is clustering, i.e.

grouping items that appear similar. Another application is manifold learning, where we find and
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characterize the subspace where (most of) the data actually lie. An example taken from [Weinberger

and Saul, 2004] is the “Swiss roll” shown in Figure 3.5. The data in the 3D space actually lies on

a 2D surface.
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Figure 3.5: Swiss roll manifold.

Reproduced from [Weinberger and Saul, 2004] using code from

http://scikit-learn.github.com/scikit-learn.org/0.9/auto_examples/cluster/plot_

ward_structured_vs_unstructured.html.

3.3.1 Clustering

“Cluster Analysis could be considered a field all its own, part art form, part scientific undertaking.

One seeks to arrange an unordered collection of objects in a fashion so that nearby objects are

similar. There are many ways to do this, serving many distinct purposes, and so no unique best

way” [Donoho, 2000].

Since summarizing such a field is beyond the scope of this chapter, we will focus on K-means

[MacQueen, 1967], the most famous clustering algorithm. Most of what follows is derived from

[Bishop, 2006]. Given a data set of N points {xi}, each a d-dimensional vector, we want a set of K

vectors µk that represent cluster centroids. K-means is looking for µk that minimize the distance

http://scikit-learn.github.com/scikit-learn.org/0.9/auto_examples/cluster/plot_ward_structured_vs_unstructured.html
http://scikit-learn.github.com/scikit-learn.org/0.9/auto_examples/cluster/plot_ward_structured_vs_unstructured.html
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J between each data points and its closest centroid:

J =
N∑
n1

k∑
k=1

rnk‖xn − µk‖2

where

rnk =

 1 if k = arg minj ‖xn − µj‖2

0 otherwise

To this end, after initializing the µk, we repeat the following two steps until convergence.

1. Assign each data point to its closest centroid.

2. Update µk as the mean of all data points assigned to them.

This is a simple example of an expectation maximization (EM) algorithm. In the first step, we fix

µk and minimize J by finding the optimal rkn. In the second step, we fix rkn and minimize J by

finding the optimal µk. J can only improve at each step so it has to converge to a local minimum.

We ignored the question of initializing the centroids. One can chose random points from the

dataset or sample the space covered by the xi. Some initialization methods has been developed to

try to speed up K-means, most notably [Arthur and Vassilvitskii, 2007].

Finally, cluster centroids can form a codebook for vector quantization, described in Section

3.1.1.



26

Part II

The Million Song Dataset
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Chapter 4

Introduction to the MSD

The Million Song Dataset (MSD) is a resource for researchers that we released in collaboration with

The Echo Nest1, a company from Massachusetts. This chapter explains the difficulty of sharing

music data among researchers and presents some existing datasets. Chapter 5 details the creation

of the dataset and its content. Finally, Chapter 6 gives some insight into the possible uses of the

dataset. It includes work from other MIR laboratories that have already taken advantage of the

MSD in their publications.

4.1 Problem statement

Preparing and releasing a research dataset requires a surprising amount of work and time, and the

MSD is no exception. The details of the dataset will be presented in Chapter 5, but let’s first

explain what was missing to MIR researchers to justify a new resource. In particular, we focus on

the problem of distributing large-scale music content.

Two characteristics of the music copyright laws are their vagueness and their local differences.

For instance, the concept of fair use in the United States versus fair dealing in Canada, or the length

of the protection awarded to the copyright holders [Berti, 2009]. From an academic viewpoint, it

means that no one can share copyrighted audio to fellow researchers worldwide without incurring

some risk. This is a major problem when considering the reproducibility of an experiment. One

can run an algorithm on one’s own personal music collection and share the code, but not the data.

1http://the.echonest.com

http://the.echonest.com
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Therefore, any dataset of interest has to be freely available.

One could object that an easy workaround for the copyright issues is simply to buy the music.

Assuming the price of $1 per song, we can imagine an academic laboratory buying a few hundred or

thousand songs. Would such an amount of audio be enough? For many applications, we argue that

it is not. Commercial application such as Spotify2 report a listenable collection of 16 million songs.

Other companies such as Rdio3 and Last.fm4 have a catalog size of the same order of magnitude,

although the exact number is not disclosed. Thus an algorithm coming out of academia and working

on a few thousand songs might simply not work on a commercial-size database. Of course, buying

a million songs is not likely an option for any non-profit organization.

The goal is to have access to a large collection of music data that can be distributed and that is

comparable to commercial catalogs in size. In the next section, we present existing resources and

explain why they do not fulfill these requirements.

4.2 Other resources

The most famous MIR collection might be the GTZAN genre dataset [Tzanetakis and Cook, 2002].

It contains 1, 000 audio excerpts equally divided into 10 genres. This dataset has been used nu-

merous times for evaluating genre recognition algorithms. The audio is relatively easy to access as

researchers have been sharing it privately. Due to the small size and the sources of audio (a mixture

including radio recorded through a microphone and CDs from a university library), this data most

likely falls into the fair use category and the risk of sharing it is low. The problems with GTZAN

are its small size, the restrictive nature of genre recognition as a task (e.g. a song can only belong

to one genre), and the errors in its creation, for instance duplicate songs5.

The Real World Computing (RWC) Music Database [Goto et al., 2002; Goto et al., 2003]

contains six original components: the Popular Music Database (100 pieces), the Royalty-Free Music

Database (15 pieces), the Classical Music Database (50 pieces), the Jazz Music Database (50

2http://www.spotify.com

3http://www.rdio.com

4http://www.last.fm

5http://media.aau.dk/null_space_pursuits/2012/01/faults-in-the-tzanetakis-music-genre-dataset.

html

http://www.spotify.com
http://www.rdio.com
http://www.last.fm
http://media.aau.dk/null_space_pursuits/2012/01/faults-in-the-tzanetakis-music-genre-dataset.html
http://media.aau.dk/null_space_pursuits/2012/01/faults-in-the-tzanetakis-music-genre-dataset.html
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pieces), the Music Genre Database (100 pieces), and the Musical Instrument Sound Database (50

instruments) [Goto, 2004]. It is distributed via a set of CDs and DVDs, the cost to researchers is

approximately $5006. While this database provides access to a wide range of music-related audio

and royalty-free music, it remains small in size.

The USPOP dataset [Berenzweig et al., 2004] contains audio features for 8, 752 pop songs chosen

from popular artists on a file sharing network. Audio features (MFCCs) are freely distributed7.

The argument is that, since MFCCs are not sufficient to reconstruct the audio in any meaningful

way, they fall into the fair use category and can be used for research. The USPOP is a great

resource to study “recent” (as of 2002) popular western music.

The CAL-500 dataset [Turnbull et al., 2007; Turnbull et al., 2008] is a collections of 500 songs

accompanied by 1, 700 human annotations. This is mostly used for the task of music tagging

[Bertin-Mahieux et al., 2010a] and the features are distributed for free8 in a similar way to USPOP.

The same group from San Diego later released CAL-10K [Tingle et al., 2010], a collection of 10, 870

songs with 475 acoustic tags and 153 genre tags from Pandora’s Music Genome Project. The

features from The Echo Nest [EchoNest, ] are provided as well. These two datasets had a major

impact in shifting the community’s attention from genre recognition to automatic tagging, a more

realistic task. Unfortunately, for simplicity and comparison purposes, most published work use the

rather small CAL-500 instead of CAL-10K. The annotations in CAL-500 are also problematic, as

some songs were only tagged by 3 humans who can greatly disagree [Bertin-Mahieux et al., 2008].

Magnatagatune [Law and von Ahn, 2009] is one of the most complete MIR research datasets

available. It contains9: 1) 25, 863 sound clips from Magnatune10, freely shareable because of their

license, 2) human annotations from the online game TagATune [Law et al., 2007], and 3) precom-

puted features from The Echo Nest [EchoNest, ]. Unfortunately, this dataset has been less used

than CAL-500, maybe because the songs from Magnatune are mostly unknown. Size could be

another deterrent.

6http://staff.aist.go.jp/m.goto/RWC-MDB/

7http://labrosa.ee.columbia.edu/projects/musicsim/uspop2002.html

8http://cosmal.ucsd.edu/cal/projects/AnnRet/

9http://tagatune.org/Magnatagatune.html

10http://magnatune.com/

http://staff.aist.go.jp/m.goto/RWC-MDB/
http://labrosa.ee.columbia.edu/projects/musicsim/uspop2002.html
http://cosmal.ucsd.edu/cal/projects/AnnRet/
http://tagatune.org/Magnatagatune.html
http://magnatune.com/
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The Music Information Retrieval Evaluation eXchange (MIREX) is an annual evaluation cam-

paign for MIR algorithms [Downie, 2008]. Tasks vary every year depending on the interest from the

community, but they usually include genre classification, onset detection, audio tag classification,

and cover song identification among others11. MIREX is an excellent way to compare an algorithm

with the state-of-the-art from other MIR laboratories. Unfortunately, these evaluations usually

deal with a few hundred or a few thousand songs.

MusiCLEF [Orio et al., 2011] is a benchmark activity resembling MIREX. The 2012 edition

focus on music tagging, participants have a remote access to 975 songs with metadata, audio and

precomputed audio features, related web pages, collaborative tags from Last.fm, and ground truth

tags from human annotators12. Annotations and precomputed features are usually released after

the end of the evaluation.

Some other recent resources (some discovered through Mark Levy’s blog13) include:

1. 45, 000 classical scores scanned using optical mark recognition [Viro, 2011];

2. the Billboard project14, it contains chord annotations for 1, 000 pop songs [Burgoyne et al.,

2011];

3. the structural annotation for 500 songs from the RWC collection, the Quaero project15, and

the Eurovision contest [Bimbot et al., 2011];

4. the SALAMI project16, it provides 2400 structural annotations of nearly 1400 musical record-

ings [Smith et al., 2011].

5. 56, 000 crowd-source mood annotations for TV theme tunes by the BBC17;

11http://www.music-ir.org/mirex/wiki/MIREX_HOME

12http://www.multimediaeval.org/mediaeval2012/newtasks/music2012/

13http://mir-in-action.blogspot.com/2011/11/ismir-2011-data-data-and-more-data.html

14http://ddmal.music.mcgill.ca/billboard

15http://www.quaero.org

16http://ddmal.music.mcgill.ca/salami

17http://www.musicalmoods.org/

http://www.music-ir.org/mirex/wiki/MIREX_HOME
http://www.multimediaeval.org/mediaeval2012/newtasks/music2012/
http://mir-in-action.blogspot.com/2011/11/ismir-2011-data-data-and-more-data.html
http://ddmal.music.mcgill.ca/billboard
http://www.quaero.org
http://ddmal.music.mcgill.ca/salami
http://www.musicalmoods.org/
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6. 40, 000 tempo labels and bpm estimates crowd-sourced from 2, 000 Last.fm listeners [Levy,

2011].

Table 4.1 summarizes most of these resources based on their size. The comparison is often

difficult to make, for instance between a music genre collection and a set of structural annotations.

Nevertheless, it should give an idea of the order of magnitude in size of the datasets that are actively

investigated.

dataset # songs / samples audio available

RWC 465 Yes

Bimbot et al. 500 No

CAL-500 502 No

GZTAN genre 1, 000 Yes

Billboard 1, 000 No

MusiCLEF 1, 355 Yes

SALAMI 1, 400 No

USPOP 8, 752 No

CAL-10K 10, 870 No

Magnatagatune 25, 863 Yes

MSD 1,000,000 No

Table 4.1: Size comparison between some other datasets.

The datasets are described in Section 4.2, except the MSD which is the subject of the next

Chapter. Remember that the comparison is often difficult to make, for instance between a music

genre collection and a set of structural annotations.

Finally, the OMRAS2 project [Fazekas et al., 2010] aims at bridging the gap between MIR and

the semantic web. The core resource, DBtune18 “hosts a number of servers, providing access to

music-related structured data, in a Linked Data fashion”. The project is a collection of resources

that are varied and difficult to describe, ranging from Musicbrainz [Musicbrainz, 2012] metadata

to play counts on Last.fm. OMRAS2 provides tools to extract, share and organize audio features,

18http://dbtune.org/

http://dbtune.org/
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but not to share the actual audio. OMRAS2 is an interesting platform for researchers to work on

large scale data without the audio, but note that the content can change at any point in time.

4.3 Goals for the MSD

The review of the datasets available to the MIR community helps us highlight the goals we set

ourselves for the MSD:

• large-scale, comparable to commercial databases;

• freely available to any researcher, no fee attached;

• fixed, so experiments can be reproduced;

• easy to get started to encourage its adoption.

In the following chapters we explain how the MSD was built and what tasks can be performed

with it. The goals we set ourselves are an answer to a lack of large-scale applications developed by

the MIR community.

4.4 Audio

In order to provide a commercial-scale database that is freely available, we basically could not,

under the current legal climate, provide the actual audio. Providing derived features was the only

choice. Additionally, the audio for the whole MSD would correspond to an additional 30 TB of

data19, which would be quite impractical to distribute and difficult to process.

However, it has to be recognized that since the original audio is not available, a large amount of

research - the development of novel front-end signal representations - is not possible with the MSD.

This issue can be circumvented in a few cases using data we present in Section 5.2.7. A group of

researchers has downloaded snippets for all the million song and can provide some access to the

audio.

19Counting 30 MB per song in FLAC format times one million.
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Chapter 5

Creation of the dataset

We start with a brief history of the Million Song Dataset and present how the collaboration between

LabROSA1 at Columbia University and The Echo Nest2 came to existence. Then, we introduce

the data sources for the MSD and how we selected a million tracks. The starting point is The Echo

Nest API [EchoNest, ] which we used to select the tracks, obtain their metadata, audio features,

and more. Based on that core collection, we added data from other sources. Those include cover

songs, lyrics, tags, song similarities and user data.

5.1 History

The idea for the Million Song Dataset arose a couple of years ago in the minds of D. Ellis and B.

Whitman while they were discussing ideas for a proposal to the US National Science Foundation’s

GOALI (Grant Opportunities for Academic Liaison with Industry) program. They wanted an idea

that would not be possible without academic-industrial collaboration, and that would appeal to

the NSF as contributing to scientific progress [Bertin-Mahieux et al., 2011a].

One of the long-standing criticisms of academic music information research from colleagues

in the commercial sphere is that the ideas and techniques developed in academia are simply not

practical for real services, which must offer hundreds of thousands of tracks at a minimum. But,

as academics, how can we develop scalable algorithms without the large-scale datasets to try them

1http://labrosa.ee.columbia.edu/

2http://the.echonest.com/

http://labrosa.ee.columbia.edu/
http://the.echonest.com/
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on? The idea of a “million song dataset” started as a flippant suggestion of what it would take to

solve this problem. But the idea stuck – not only in the form of developing a very large, common

dataset, but even in the specific scale of one million tracks.

5.2 Creation and datasets

5.2.1 The Echo Nest API

The Echo Nest3 is a “music intelligence” company that enables developers to create music-related

applications. They crawl the web and get data from different partners to provide information such

as artist biographies, similar artists, discographies, etc. They also have access to audio in order

to compute features that they can use for content-based similarity. Their most common business

model is to release their data via their API [EchoNest, ] to the creator of an app in exchange of a

percentage of the profits.

The Echo Nest API can be queried for free by researchers and developers (with usage limits).

Below A typical API JSON response from The Echo Nest about a particular track by Weezer with

a duration of 243 seconds.

{

"response": {

"status": {

"code": 0,

"message": "Success",

"version": "4.2"

},

"track": {

"artist": "Weezer",

"audio_md5": "e16bde82eaecd13bde9261b2710aa991",

"audio_summary": {

"analysis_url": "https://echonest-analysis.s3.amazo...

"danceability": 0.5164314670162907,

3http://the.echonest.com

http://the.echonest.com
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"duration": 243.64363,

...

The core of the MSD is extracted from that API. Most fields listed in Appendix A originate

from it. The notable exceptions are year and artist mbtags from Musicbrainz4. The Echo Nest API

was used to obtain artist, album and track names. For all tracks we gathered audio features (see

Chapter 2 and The Echo Nest’s co-founder thesis: [Jehan, 2005]) and a popularity measure. We

added similar artists, artist tags, and artist location information. Finally, we queried for identifiers

from additional sources, e.g. we have the 7digital5 identifiers for all tracks.

This represents the core of the MSD because it is the reference point for what songs are included

in the collection. Complementary datasets were all created using the meta data (usually artist name

and song title) from The Echo Nest API. Section 5.2.2 explains how we actually selected a million

tracks from this API.

5.2.2 Song selection

Choosing a million songs is surprisingly challenging. Our selection was made by:

1. getting the most “familiar” artists according to The Echo Nest, then downloading as many

songs as possible from each of them;

2. getting the 200 top terms6 from The Echo Nest, then using each term as a descriptor to find

100 artists, then downloading as many of their songs as possible;

3. getting the songs and artists from the CAL500 dataset;

4. getting “extreme” songs from The Echo Nest search parameters, e.g. songs with highest

energy, lowest energy, tempo, etc;

5. having a random walk along the similar artists links starting from the 100 most familiar

artists.

4http://musicbrainz.org/

5http://www.7digital.com/

6a term is a tag in The Echo Nest world.

http://musicbrainz.org/
http://www.7digital.com/
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The number of songs was approximately 8, 950 after step 1), step 3) added around 15, 000 songs,

and we had around 500, 000 songs before starting step 5). The code used for creating the dataset

is freely available7. The MSD contains 44, 745 unique artists, meaning each artist has an average

of 22 songs.

5.2.3 Cover songs

We partnered with Second Hand Songs8, a community-driven database of cover songs (Figure

5.1), to provide the SecondHandSong dataset9 (SHS). It identifies 18, 196 cover songs in the MSD

grouped into 854 works (or cliques). For comparison, the MIREX 2010 Cover Song evaluation used

869 cover songs10. Since most of the work on cover recognition has used variants of the chroma

features which are included in the MSD (pitches), it is now the largest evaluation set for this task.

We provide a train / test split so the results are easily comparable between publications, the train

set contains 18, 196 covers and the test set 5, 854 (the sets are disjointed). We will talk more about

cover song in Part III.

5.2.4 Lyrics

In partnership with musiXmatch11, we have released the musiXmatch dataset12, a collection of

lyrics from 237, 662 tracks of the MSD. The lyrics come in a bag-of-words format and are stemmed,

partly for copyright reasons. As a possible application, mood prediction from lyrics (a recently-

popular topic) could be investigated with this data. Another example will be shown in Section

6.1.1.

7https://github.com/tb2332/MSongsDB/tree/master/PythonSrc/DatasetCreation

8http://www.secondhandsongs.com/

9http://labrosa.ee.columbia.edu/millionsong/secondhand

10 MIREX used two collections: the first one contains 330 cover songs out of 1, 000 audio files, and the second

collection contains 539 cover songs (with no additional files). Since the collections were not merged, it gives a total

of 869 queries, each query done on a collection of at most 1, 000 songs.

11http://musixmatch.com/

12http://labrosa.ee.columbia.edu/millionsong/musixmatch

https://github.com/tb2332/MSongsDB/tree/master/PythonSrc/DatasetCreation
http://www.secondhandsongs.com/
http://labrosa.ee.columbia.edu/millionsong/secondhand
http://musixmatch.com/
http://labrosa.ee.columbia.edu/millionsong/musixmatch
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Figure 5.1: Screen shot of the Second Hand Songs website.

Taken on November 29th, 2012.

5.2.5 Tags and song similarity

Through an association with Last.fm13, we obtained song-level tags and song-to-song similarity

measures. This is known as the Last.fm dataset14. Last.fm matched 943, 347 MSD tracks to their

collection. They gave us 8, 598, 630 unique (track, tag) pairs and 56, 506, 688 unique track-to-track

similarity values. Put another way, 505, 216 MSD tracks have at least one tag, and 584, 897 MSD

tracks have at least one other known similar track.

The Last.fm dataset is a tremendous addition. The MSD contains artist-level tags and similarity

from The Echo Nest, but most applications require song-level data, for example, automatic tagging

of music (Section 6.1.3). The amount of tagging data easily available is also radically different, the

next largest tagging collection is Magnatagatune (Section 4.2) with only 25, 863 tagged samples.

Finally, the similarity values that are in part derived from collaborative filtering15 provide the

opportunity to develop content-based predictors to do similarity and recommendation.

13https://www.last.fm/

14http://labrosa.ee.columbia.edu/millionsong/lastfm

15For an introduction to collaborative filtering, see [Jannach et al., 2010].

https://www.last.fm/
http://labrosa.ee.columbia.edu/millionsong/lastfm
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5.2.6 Taste profiles

Contributed once again by The Echo Nest but at a later date, the Taste Profile Subset16 is a

collection of user data from an undisclosed source. It tells us which songs were listened to by

actual users. The data comes in triplets: user identifier, track identifier, and play count. This

dataset is essential in order to perform collaborative filtering with the MSD, and it is at the core

of the Million Song Dataset Challenge presented in Section 6.2.3. The Taste Profile Subset gives

information about 1, 019, 318 unique users that have collectively listened to 384, 546 unique MSD

songs, for a total of 48, 373, 586 (user, track, play count) triplets.

5.2.7 Audio collection

Independent of us or anyone involved in creating the MSD, a research group in Austria recently

downloaded audio snippets for almost all tracks in the MSD [Schindler et al., 2012]. Even if those

snippets are probably copyrighted themselves, the researchers can compute new features (such as

MFCCs, Section 2.3.2) and release them to the community17. This external source opens up the

MSD data to researchers that absolutely need to compute their own audio features.

5.3 Distribution

A challenge for a research laboratory that does not own large servers is to distribute a large data

collection. The MSD takes about 280GB to download, not something people would do every day.

In this section we discuss the solutions we found to this problem.

The core of the MSD, the data coming from The Echo Nest, is the largest by far because of

the audio features. Data for an average song contains two matrices of 12 × 450 elements for the

pitches and timbre features, and these numbers add up. We decided to distribute the data for each

song as an independent file. The main reason is that it makes it easy to break up the MSD into

standalone subsets. Each file needs to contain various type of information: strings, integers, floats,

some as size-varying arrays or matrices. We settled on the HDF5 file format18, a format developed

16http://labrosa.ee.columbia.edu/millionsong/tasteprofile

17http://www.ifs.tuwien.ac.at/mir/msd/

18http://www.hdfgroup.org/HDF5/

http://labrosa.ee.columbia.edu/millionsong/tasteprofile
http://www.ifs.tuwien.ac.at/mir/msd/
http://www.hdfgroup.org/HDF5/
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in part by NASA to handle complex collections of astronomical data. It has also been ported to

many languages, including C++, Matlab, and our language of choice, Python.

To host the MSD and handle the downloads, we partnered with Infochimps19, a “big data

platform for the cloud”. They host datasets for free or for a fee (to the person downloading it)

and they provide an API to query some of the sources. The download remains a somewhat painful

manual task. Since most download tools do not handle more than a few gigabytes at a time, the

dataset was broken into 26 independent downloads. Based on personal experience, we estimate that

a researcher with a good internet connection can get the data in about 8 hours of non-intensive

work.

Releasing the data for each song in an independent file has some drawbacks. For instance,

to build the list of all artists in the MSD, one has to iterate over 1M files. To alleviate this,

we prepared additional files with certain kinds of information. For instance, we provide a list of

all the artist and song titles as a text file. We also prepared SQLite databases20 with all the

metadata. SQLite datasets are contained in a single file, and are thus easy to distribute. A sample

SQLite query is shown in Figure 5.2. Finally, we dumped the whole dataset into a few large text

files, comma-separated, on Amazon Web Services (AWS). This makes it easy to use a MapReduce

system such as Hadoop21 to work on the MSD. The AWS part of the work was done with the help

of P. Lamere22.

The one decision we would reconsider is the use of the HDF5 format. It is a great format

for medium-sized collections since it can perform efficient SQL-like queries. However, this search

feature is of a little use when we save the data of only one song in a HDF5 file. Also, since it is not

a well-known format, some users have described it as a barrier of entry to using the dataset. There

is an argument to be made for releasing the MSD in plain text files. It would be ugly: matrices

would have to be flattened out, a line would takes thousands of characters, and string sanitizing

could be challenging for artist names and song titles. However, users would have a better grasp of

what they are dealing with.

19http://www.infochimps.com/

20http://www.sqlite.org/

21http://hadoop.apache.org/

22http://musicmachinery.com/2011/09/04/how-to-process-a-million-songs-in-20-minutes/

http://www.infochimps.com/
http://www.sqlite.org/
http://hadoop.apache.org/
http://musicmachinery.com/2011/09/04/how-to-process-a-million-songs-in-20-minutes/
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5.4 Problems and lessons learned

Building the largest research collection of your field is not something you do everyday. Thus, a lot

of decisions turned out to be suboptimal, and some errors got through that we could have caught.

In this section we mention the most common errors we found in the dataset after its creation.

Errors in a million-entry collection are to be expected, but the more we prevent in the future the

better.

5.4.1 Duplicate songs

The first common error we mention is to have multiple copies of the same song in the MSD, but

with different tracks. In The Echo Nest world, a song is a musical work, but it can be recorded

by different tracks, each track being a very specific recording. Recordings of a given song should

be considered identical by humans, e.g. the audio quality or the codec used might have changed,

but no major difference can be heard. Therefore, it should be useless to have different tracks for

the same song in the MSD. Unfortunately, we found 53, 471 of them for a total 78, 190 undesired

tracks (some songs have more than one duplicate).

The main reason for those duplicates is the way we built the dataset (see Section 5.2.2):

• find an artist (e.g. by popularity);

• find its songs;

• for each song, download one track (first one returned).

We made sure we never downloaded the same track twice, but if we reached a given song twice,

and each time it gave us a different track, we ended up with duplicates. A way to spot those tracks

is simply to refuse duplicate song ID, not just track ID. This simple trick would have been useful

during the creation of the MSD.

5.4.2 Duplicate tracks

Another duplication problem, this time more difficult to spot, is when the same song possesses two

song identifiers in The Echo Nest world. The Echo Nest handles a collection of over 25 million

songs through human and automated processes. Unfortunately, no such system is perfect. For
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instance, the following two tracks from Soda Stereo have the same title and the same duration

within a second.

track: TRTZIEN128F934048F song: SOSCQAM12AB01893B0

artist: Soda Stereo title: Tele-Ka

duration: 144.53506 7digital ID: 5668949

track: TRVBTFD128F9333BC0 song: SONDCUK12AB018596E

artist: Soda Stereo title: Tele-Ka

duration: 145.3971 7digital ID: 5617503

However, they have a different track ID and song ID from The Echo Nest and different 7digital

track IDs. The two track IDs could be justified by the slight different in duration, but how to

justify a different song ID?

Figure 5.2: Duplicates of a Lady GaGa song.

Duplicates found in the MSD through an SQLite query based on the artist name and title. We

also report the track ID and duration in seconds.

We found many of these in the dataset, and received confirmation that some are indeed issues

in The Echo Nest database. Some errors seem to come from The Echo Nest and some from their

partner 7digital. It is unclear if those are mostly human errors, fingerprinting errors, database

merging errors, etc. On our side, we probably should have kept a list of existing artist names and

titles, and prevented duplicates. However, often the artist names or titles can vary slightly. It is

also unclear if two tracks with different durations should be consider the same or not. Another
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example is shown in Figure 5.2 where we have 5 problematic cases with greatly varying durations

(Figure 5.2 is also an example on how to use SQLite databases to query the MSD metadata).

One lesson learned is that dealing with a music collection of that size will inevitably bring its

share of duplication problems. Moreover, some can only be fixed by a human actually listening to

the songs, and even then some cases might be non trivial.

5.4.3 Song - track mismatches

The trickiest problem we encountered was mismatches between songs and tracks. In a perfect

world, songs have tracks, and a track belongs to that parent song. Thus, we can query for tracks

given a song, and for a song given a track. To handle this, The Echo Nest must maintain “forward

links”: a list of tracks associated with each song, and “backward links”: a song associated with

each track. Those links do not appear in the MSD since we usually have only one track per song,

and we built the dataset using only the forward links.

A mismatch happens when those two links have lost synchronicity: a song has a track, but the

track thinks it belongs to another song (an example is provided in Figure 5.3). In short, we can

get a track that is completely unrelated to the song we had selected. Remember that we built the

MSD using a top-down approach (Section 5.2.2) from artist to song to track.

U2
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Figure 5.3: Visualization of a mismatch error in the MSD.

Reasons for such de-synchronization between songs and tracks in The Echo Nest database are

unclear, and probably are a result of bugs or human manipulations. One thing is certain, the data

were not saved in relational database at the time of the MSD creation. A database such MySQL

would not allow mismatches to be saved.
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The problem became apparent after building the Taste Profile Subset (Section 5.2.6). Data

from the undisclosed source were matched to songs using The Echo Nest API. To get the info

about a song, one would simply have to look at one of its tracks in the MSD. The problem was

that mismatches made some of those tracks wrong for the song.

We found most of these mismatches using artist name and title matching, and the details were

posted online23. However, given the difficulty of matching music metadata among other things,

this issue will never be completely fixed in the MSD. It is yet another reminder not to blindly trust

professional sources.

23http://labrosa.ee.columbia.edu/millionsong/blog/12-2-12-fixing-matching-errors

http://labrosa.ee.columbia.edu/millionsong/blog/12-2-12-fixing-matching-errors
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Chapter 6

Applications and impact

Dropping more data into the world is rather meaningless unless it comes with some demonstrable

uses and starting points. Therefore, we give a quick overview of tasks that can be performed with

the MSD. Note that we were not involved with all the work presented in this chapter. The goal is to

provide some insight of what is possible with this collection, and how the MIR research community

might use it.

6.1 Applications

In this section we present straightforward ways to perform traditional MIR tasks on the MSD.

These examples can be considered as demonstrations, and many were released as part of the initial

announcement of the MSD [Bertin-Mahieux et al., 2011a].

6.1.1 Meta data analysis

To start our exploration of the MSD, a good first step is analyzing the meta data: number of artists,

number of songs per artist, number of tags, etc. We can turn those questions into something more

playful, for instance does the average length of artist names increase or diminish over time? By

plotting artist name length by the average release date of their songs, (Figure 6.1) a simple linear

regression would suggest that they are getting shorter. The least squared regression has parameters:

gradient = −0.022 characters/year and intercept = 55.4 characters at year 0 AD. That being said,

we should be careful before attaching too much importance to such a simple analysis.
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Figure 6.1: Artist name length by average release date of their song.

Regarding lyrics, Andrew Clegg made word clouds for different music genres using the musiX-

match dataset1. The result for electronic can be seen in Figure 6.2. At the time, Andrew used

Last.fm data that was not publicly available, but the Last.fm dataset (Section 5.2.5) has been

released since then.

Figure 6.2: Word cloud for lyrics of electronic songs.

Finally, in [Macrae and Dixon, 2012], the authors quantify the quality of search engine results

for lyrics by using the musiXmatch dataset as ground truth.

1http://blog.last.fm/2011/06/22/lyric-clouds-genre-maps-and-distinctive-words

http://blog.last.fm/2011/06/22/lyric-clouds-genre-maps-and-distinctive-words
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6.1.2 Year prediction

As a first task using audio features, we introduced year prediction in [Bertin-Mahieux et al., 2011a].

The goal is to predict the release year based solely on audio features. As features, we use the average

and covariance of the timbre vectors for each song. Using only the nonredundant values from the

covariance matrix gives us a feature vector of 90 elements (12 means plus 78 unique covariances) per

track. We compare two algorithms: k-NN and Vowpal Wabbit (VW, [Langford et al., 2007]), both

chosen because of their applicability to large-scale problems. We also report the error obtained by

the best constant predictor. Results are presented in table 6.1. We report the average absolute

year difference and the average squared difference between the release year and the predicted one.

method diff sq. diff

constant pred. 8.13 10.80

1-NN 9.81 13.99

50-NN 7.58 10.20

VW 6.14 8.76

Table 6.1: Year prediction results.

Taken from [Bertin-Mahieux et al., 2011a].

This is only a proof of concept, the features we use are too simplistic and we only compare

two widely different algorithms. What is interesting it that year recognition had never really been

studied before due to the lack of a proper dataset. We will return to this problem in Section 6.2.2.

6.1.3 Automatic tagging of music

One of the most-studied machine learning tasks in MIR is automatic tagging of music. Traditionally,

the goal is to apply tags, or keywords, to a song solely based on the audio. Numerous teams have

tackled this problem, early work includes [Lamere, 2008; Eck et al., 2008; Bertin-Mahieux et al.,

2008; Bertin-Mahieux et al., 2010a; Mandel and Ellis, 2008; Turnbull et al., 2008].

Using artist terms from The Echo Nest, we provide a train and test set of artists in the MSD.

As a preliminary analysis, restricting ourselves to the 300 most popular terms, we know that each

artist is tagged with 19 terms on average. If we tag all artists with the same top 19 terms (i.e.
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no learning involved), we obtain a precision of 2.3% and a recall of 6.3%. One can now extract

features, run an algorithm such as k-NN, and make the results fully reproducible. At the time of

this writing, no such result has been reported in the literature.

The later addition of the Last.fm dataset (Section 5.2.5) made the task even more interesting

since researchers can merge artist-level and song-level tags. Researchers from Vienna also released

tags extracted from All Music Guide2, available online3.

6.2 Impact

In this section we focus on more ambitious projects built on top of the MSD, mostly led by other

MIR researchers. The goal is to highlight progress on tasks that were very difficult to study before

the MSD was available.

6.2.1 Playlisting

McFee and Lanckriet [McFee and Lanckriet, 2011; McFee and Lanckriet, 2012] crawled playlists

from the website The Art of the Mix4. Using the playlists as training data, they built a generative

model of playlists based on features from the Million Song Dataset: audio features, user data, tags,

years, and lyrics.

The advantage of the MSD in their work is that they can quickly measure the influence of

different features on their generative model. For instance, tags seem to be more relevant than lyrics

while making a playlist. Finding each of these distinct feature types for a common, large set of

songs would have been been quite a challenge.

6.2.2 Evolution of pop songs

Serrà et al. took on the ambitious task to characterize music evolution over time, especially through

its harmonic structure [Serrà et al., 2012]. The idea is to create a network of chroma transitions for

different time periods (e.g., the 1950s, the 1960s, etc) based on the MSD audio features and track

2http://allmusic.com

3http://www.ifs.tuwien.ac.at/mir/msd/download.html

4http://www.artofthemix.org

http://allmusic.com
http://www.ifs.tuwien.ac.at/mir/msd/download.html
http://www.artofthemix.org
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release years. By describing these networks, the authors found trends that they associate with a

simplification of the harmonic structure over time.

The originality of the work and its scope are exciting. The MSD provides enough data that

someone can reasonably try to measure the evolution of western pop music over the last 50 years.

We can only hope that this work will spawn more studies on the subject, and that “music evolution”

will become a typical MIR task.

6.2.3 The Million Song Dataset Challenge

Using the user data from the Taste Profile subset (Section 5.2.6), we set up a music recommendation

contest in 2012 [McFee et al., 2012]. The contest was hosted by Kaggle5 and everyone could

participate. It attracted 193 participants spread across 153 teams for a total of over 990 submissions.

The winning spot was highly contested, as shown in Table 6.2. Note the increase in score from the

simple benchmark we provided at the beginning of the contest.

We are still drawing conclusions from the results, but a first result is that collaborative filtering

is the obvious method of choice and outperforms attempts at content-based recommendation. The

winner of the first edition is [Aiolli, 2012] and a summary of his method has been written by Mark

Levy6. Aiolli used an item-based recommender, and tweaking the distance function between items

provided the most improvement.

As there might be a second iteration of the contest, it is worthwhile to state its goals:

• to raise awareness of MIR problems outside the MIR community;

• to encourage the use of diverse data for music recommendation;

• to drive the scaling of academic music recommender systems.

Obviously, there is a great overlap with the goals of the MSD (Section 4.3).

A major criticism raised by participants was the lack of context in the data, a hot topic in

recommender systems (e.g. see [Su et al., 2010]). Context information could be details about the

user, his activity while listening, or the time stamps of the plays. Time stamps are expected to

5http://www.kaggle.com/c/msdchallenge

6http://mir-in-action.blogspot.com/2012/09/collaborative-filtering-still-rules.html

http://www.kaggle.com/c/msdchallenge
http://mir-in-action.blogspot.com/2012/09/collaborative-filtering-still-rules.html
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Team Score (mAP) # of entries

aio 0.179 27

learner 0.171 26

nohair 0.159 18

Team ubuntu 0.157 44

TheMiner 0.156 17

Cygnus 0.155 15

KXEN 0.151 49

kosmos 0.150 21

spring 0.146 13

werewolf 0.143 2

benchmark 0.021 -

random 0.000 -

Table 6.2: Top contestants in the MSD Challenge.

Team name, score (mAP, see Section 9.3) on the test set, and number of entries for the top 10

participants in the MSD Challenge. The “benchmark” submissions consist of submitting the same

500 most popular songs for every users. Full data available at

http://www.kaggle.com/c/msdchallenge/leaderboard.

be of particular importance in music recommendation: users do not listen to the same song on a

Monday morning and on a Saturday night. Also, researchers believe music should be recommended

based on what was recently played, making the problem closer to playlist generation (Section 6.2.1).

Unfortunately, no open, large-scale music dataset exists with this information. Also, companies that

do possess such data might be worried about releasing it because of privacy concerns. If someone

manages to de-anonymize the data based on the listening behaviors (i.e., finding the identity of

users, similar to what [Narayanan and Shmatikov, 2008] did with the Neflix data), public backlash

and lawsuits could be envisioned.

http://www.kaggle.com/c/msdchallenge/leaderboard
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6.2.4 Discussion on MIR evaluations

The creation of the MSD and the organization of a contest like the MSD Challenge (Section 6.2.3)

brings us to a discussion of the way common evaluations are performed in MIR. The reference

for the last few years has been MIREX7, a yearly contest organized in parallel with the ISMIR

conference8. A more recent but similar evaluation campaign is MusiClef9. Headed by Stephen

Downie10, MIREX is a set of challenges (or tasks) proposed by the community. A MIREX task

include at least one dataset and one or more error measures. For instance, for the “Audio Tag

Classification” task, one dataset used is called MajorMinor, and one error measure is the area

under the receiver operating characteristic curve (AUC-ROC). In most tasks, data is private, and

participants upload their code to a platform that runs it on the data. The upside is that it protects

the data: a team cannot easily overfit on the test set, and it overcomes the copyright issue for

data that cannot be distributed. The downside is, maintaining a platform that runs code uploaded

by external contributors in many different languages is difficult: it requires a lot of person-hours,

which in academia implies money for grad students.

Recently, there has been a lot of informal discussion regarding the future of MIREX, in part

because of the difficulty of financing such an endeavor. Resources like the MSD and platforms such

as Kaggle and TunedIT11 offer an alternative. A team that wants to sponsor a competition can

gather the data, decide which error measure to use, and set up the online platform to do so. All

that is left is advertising the contest and analyzing the results. It has been a successful recipe in

the case of the MSD Challenge. It would enable the creation of a decentralized MIREX where the

top organizers only need to keep track of the different contests.

To be fair, not all MIREX competitions can be set up as a Kaggle task. At the moment,

the training data has to be downloaded, which brings us back to the copyright issues. Therefore,

most tasks that require the actual audio would be problematic (this includes the tasks of Audio

Beat Tracking and Audio Melody Extraction for example). However, when it is possible to move

7http://www.music-ir.org/mirex/wiki/MIREX_HOME

8http://www.ismir.net/

9http://www.multimediaeval.org/mediaeval2012/newtasks/music2012/

10http://www.lis.illinois.edu/people/faculty/jdownie

11http://tunedit.org/

http://www.music-ir.org/mirex/wiki/MIREX_HOME
http://www.ismir.net/
http://www.multimediaeval.org/mediaeval2012/newtasks/music2012/
http://www.lis.illinois.edu/people/faculty/jdownie
http://tunedit.org/
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a task onto a platform such as Kaggle, we strongly recommend it. The MIR community simply

cannot sustain the use of paid graduate students to run (and debug) everyone else’s code for every

imaginable task.
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Part III

Cover song recognition
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Chapter 7

Introduction to cover song recognition

Music videos are abundant on the web, and tracing the dissemination of a given work is a challenging

task. Audio fingerprinting [Wang, 2003] can be used to find an almost exact copy of a given music

track1 , but the same technology will not work for finding novel versions of the original work, i.e.

“cover songs”. We use the term “cover song” to include both new or live versions of a song by the

original artists, as well as a new recording by different musicians.

Cover song recognition is of interest for many reasons, both commercial and academic. Com-

mercial reasons include the correct handling of songwriting royalties and detection of copyright

infringement. For instance, on YouTube, the copyright holder of the musical work can have the

covers of her work removed, or she can receive part of the advertising revenue from the video2.

Figure 7.1 shows how easy it is to find thousands of covers online from the metadata alone, but

many more are not identified as covers. Cover song recognition can also be used as a discovering

tool, e.g. to find live versions of a given song.

From an academic viewpoint, cover song recognition involves finding and understanding trans-

formations of a musical piece that retain its essential identity. This can help us develop intelligent

audio algorithms that recognize common patterns among musical excerpts. This vision can be

found in [Downie et al., 2008] where the authors describe cover song recognition as the starting

1Fingerprinters have to be robust to encoding, sound quality, and additional noise, but the original song is expected

to remain untouched.

2From http://www.youtube.com/t/faq: “content owners are given choices with Content ID to block, track, or

leave up and make money from the videos uploaded to YouTube”.

http://www.youtube.com/t/faq
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Figure 7.1: Lady Gaga covers on YouTube.

Search result for self-identified cover songs of Lady Gaga on YouTube on November 22nd, 2011.

This simple query produces about 35, 900 results.

point in the quest for higher-level music descriptors.

This interpretation is the motivation of this work. We are looking for representations and

methods that can efficiently describe a large amount of music data in a “meaningful way”. An

example of what we would call meaningful is an audio feature space where cover songs would be

neighbors. Thus, by finding cover songs, we implicitly describe a tonal manifold of music (possibly

reminiscent of the “Swiss roll” manifold in Figure 3.5).

7.1 Problem definition

We dive into the definition of cover songs and cover song recognition before going any further. A

song is a cover of another if they are two different performances of the same musical work. Serrà lists

10 labels used to characterize different versions (what we are calling covers) in [Serrà et al., 2010;

Serrà, 2011]:

• remaster;
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• instrumental;

• mashup;

• live performance;

• acoustic;

• demo;

• standard;

• medley;

• remix;

• quotation.

In short, we consider any song that can be described with one of these labels to be a cover.

Note that we also consider this a symmetric property, i.e. if a song A is a cover of a song B, B is

also a cover of A.

This definition is far from perfect. For instance, remix is a rather ambiguous term as Serrà

points out [Serrà, 2011]. A remix might or might not include substantial changes to a song, and it

could very well consist only of improvements to the audio quality. Such a modification would not

confuse a music fingerprinter, and should probably not be considered a cover. Another example is

the quotation, “the incorporation of a relatively brief segment of existing music in another work”

[Serrà, 2011]. If the length of this segment tends to zero, it might not be long enough to create a

cover.

Our definition is loose, and we could argue endlessly on what makes a cover. In practice, these

extreme cases seldom arise. One reason is the way the SHS dataset is built since it only includes

items manually submitted by users. Users do not bother with uninteresting covers, e.g. a slightly

modified recording that would sound identical to most listeners. The other reason to include a

maximum number of songs in the definition of a cover is to simplify the task description and the

possible inclusion of new data, even if it is at the expense of increased accuracy.

Using the definition of a cover song, the task is: given a query a song and a database of music

(usually not containing the query), identify the cover songs of the query.
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Since making a binary decision is still difficult given the state of the art, an easier question is:

given a query, rank all songs from most likely to being a cover to least likely. In this work, we will

try to solve the latter question.

7.2 Difficulty of comparing chroma features

Cover song recognition is almost always reduced to the problem of comparing chroma represen-

tations (where chroma features were introduced in Section 2.2). Since the instrumentation and

the style can vary widely between two covers, the common information is related to the score. As

we saw in Section 2.2, such information would be encoded through chroma features or one of its

variant.

Unfortunately, comparing chroma in a “musical way” is a particularly difficult task. We per-

formed a set of experiments in [Bertin-Mahieux et al., 2010b; Bertin-Mahieux et al., 2011b] to show

that comparing a patch of chroma vectors bin by bin using the most obvious methods does not give

satisfactory results. Figure 7.2 provides some intuition. To a human, the second patch would be

the closest to the original one (top one). It is indeed the same patch with an offset of one step in

time. However, according to the Euclidean distance, it is the least similar patch among the four.

The reason is that Euclidean distance (and most common distances, see [Bertin-Mahieux et al.,

2011b]) compares each bin individually and does not look at the overall structure.

With more details, the first experiment [Bertin-Mahieux et al., 2010b] was to build a codebook

using k-means and Euclidean distance. Figure 7.3 shows the most common codes from such a

codebook. The main result is how boring these k-means centroids look. Using the Euclidean

distance has a huge averaging effect, and the best centroids are those that represent one note, or

maybe one transition. It could be the start of a chord recognition system, but it is not powerful

enough to compare melodies.

Experiments from [Bertin-Mahieux et al., 2011b] confirm this conclusion. In this work, we

masked out an arbitrary block of 12 successive chroma values, and compared a number of schemes

for inferring these missing values from what remained. Figure 7.4 summarizes the results. Taking

many algorithms (e.g. a row-wise average, k-NN, a linear transform, ...), we compare error measures

and see which ones favor reconstructions that do not look like actual music.
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Figure 7.2: Comparison of chroma patches.

Horizontal axis is time. The figures contain a) the original chroma patch, 12× 24, b) the original

patch with an time offset of 1, c) the original patch with added random noise, d) the patch with

the average of the original values, e) the patch binarized to two values. Patches b) to e) are

ordered in decreasing Euclidean distance to the original one.

In Figure 7.4, the third figure is the worst reconstruction according to the Euclidean distance,

and the sixth figure is the best one. This is similar to the experiment in Figure 7.2 and most

humans would disagree. Another result shows that this is not a problem exclusive to the Euclidean

distance. Out of 14 distance measures we tried3, most agree with Euclidean distance, including

Kullback-Leibler and the Jensen difference. “delta diff.” and “D-ent” are attempts at building

more structure-based measures, but they can not be used on their own.

For cover songs, what matters is the structure and not the localized variations. The rest of

3http://www.columbia.edu/~tb2332/proj/imputation.html

http://www.columbia.edu/~tb2332/proj/imputation.html
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Code 0 (1.28%) Code 1 (1.18%) Code 2 (1.07%) Code 3 (1.01%) Code 4 (0.97%)

Code 5 (0.96%) Code 6 (0.93%) Code 7 (0.89%) Code 8 (0.87%) Code 9 (0.87%)

Code 10 (0.85%) Code 11 (0.85%) Code 12 (0.84%) Code 13 (0.82%) Code 14 (0.81%)

Code 15 (0.80%) Code 16 (0.79%) Code 17 (0.78%) Code 18 (0.78%) Code 19 (0.77%)

Code 20 (0.77%) Code 21 (0.77%) Code 22 (0.76%) Code 23 (0.75%) Code 24 (0.74%)

Figure 7.3: Centroids from clustering chroma patches.

Taken from [Bertin-Mahieux et al., 2010b], represents the 25 codes that were the most commonly

used in our dataset. Codes are from a 200-entry codebook trained on 2 bars resampled to 12× 8

patches. The proportion of patches accounted for by each pattern is shown in parentheses.

this work describes representations that can encode and summarize these structures so they can be

compared between covers. Thus, we do not have to compare chroma patches directly bin by bin.

7.3 Cover song recognition systems

Cover song recognition has been widely studied in recent years, including a specific task within

MIREX since 2007 [Downie, 2008]. An early system is Ellis and Poliner [Ellis and Poliner, 2007]

and a good overview is in Serrà’s thesis [Serrà, 2011]. A significant amount of work has been done

with classical music [Kim and Narayanan, 2008; Miotto et al., 2010; Miotto and Orio, 2008; Müller

et al., 2005] but popular music can present a richer range of variation in style and instrumentation.

Most cover song works were tested on a few hundred or thousand songs, a size not comparable
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to commercial collections (Spotify4 claims more than 16M tracks). However, some of the work was

made to scale and could be extended to larger sets. Kurth and Müller [Kurth and Müller, 2008]

use a codebook of CENS features to encode songs, thus creating an index that can be searched

efficiently. Casey and Slaney [Casey and Slaney, 2007] use locally-sensitive hashing (LSH) to quickly

compare chroma patches, or shingles. Yu et al. [Yu et al., 2009] also use LSH to compare different

statistics about a song, and [Marolt, 2008] experiment with LSH using different representations,

one of which is highly similar to the one in Chapter 9. Kim and Narayanan [Kim and Narayanan,

2008] look at chroma changes over time and suggest using these changes as hash codes. Another

hash code-based method is from [Martin et al., 2012]. The authors transform chroma vectors into

simple chords and match chord sequences using a very fast algorithm.

The idea of using a mid-level representation that is invariant to key changes has been explored

in [Jensen et al., 2008; Marolt, 2008]. In [Jensen et al., 2008], the authors use an 2-dimensional

cross-correlation function, thus it finds the best offset in time and the best rotation along the

semitone axis of the chromagram in order to match two songs.

Similarly, [Marolt, 2008] computes the two-dimensional power spectrum of a chromagram in

order to get a representation that is invariant to both axes, time and semitone. This is the core of

our method in Chapter 9, where we use the 2D magnitude of the Fourier transform, i.e. the square

root of the 2D power spectrum.

7.4 Why scale cover song recognition

As we saw in Part II, many experiments can be performed on a large scale using the MSD. In this

section, we further justify our choice of investigating cover song recognition instead of any other

task.

First, as we saw in this chapter, the difference between cover songs can be extremely varied.

This implies that a system that performs well on this task understands many music-specific trans-

formations: change of instrumentation, change of tempo, change of key, etc. Thus, a solution to

this problem is likely to be useful for other MIR tasks. For example, music similarity and music

segmentation, two problems dealing in part with the tonal content of a song, could benefit from

4http://www.spotify.com

http://www.spotify.com
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lessons learned on cover song recognition.

Second, this task needs to “find its second wind”. In the past few years, it had been developed

almost entirely with MIREX in mind. This has led to solutions optimized for the dataset used in

that evaluation. Such solutions do not have to scale past a few thousand examples, for which DTW-

like algorithms are fast enough. Some contestants also overspecialized their system. For instance,

in their submission to MIREX 2009, [Serrà et al., 2009] improved their system by clustering songs

based on the pairwise distance between all entries in the dataset. This method works because each

song possesses many covers in the MIREX evaluation. That extra knowledge (and the use of a full

distance matrix) would likely not generalize to a real, large-scale dataset.

Those two reasons make cover song recognition a perfect task to further study on a large scale.

It has the potential to provide insight for many MIR tasks, and current systems are constrained

because they are developed with a certain artificial dataset in mind.

7.5 Conclusion

In this chapter we explained the difficulty of comparing chroma or chroma-like features, and ex-

plored different methods to overcome this. They usually fall in one of these categories:

1. correlation-based methods with varying offsets and rotations (e.g. [Ellis and Poliner, 2007]);

2. dynamic-time warping methods or similar time-adjusting comparison (e.g. [Serrà et al., 2008];

3. model-based methods (e.g. [Serrà, 2011, Chap. 5]);

4. hashing-based methods (e.g. [Casey and Slaney, 2007]);

5. methods with higher level features (e.g. [Marolt, 2008]).

The first category is limited in complexity and accuracy, and the second and third are difficult to

scale, i.e. a query has to be compared with every instance in a database. Therefore, in the rest

of this work, we present an hashing-based method (Chapter 8) and a more promising higher level

feature computed from chroma (Chapter 9). We will be particularly interested in the higher level

feature since it might be useful to understand the music harmonic space in general, and not just

for improving cover song recognition.
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7.5.1 Working from audio

In this chapter and the subsequent ones, we always assume we have access to precomputed chroma

features, usually on the beat level (as described in Section 2.4). This is the case when working

with the MSD. However, we explain in Appendix B how to obtain these from audio data. The

method closest to what we do here is to use The Echo Nest API [EchoNest, ] but other code freely

available online can compute similar features. In particular, we explain how to start from a video

on YouTube as the query song.
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ORIGINAL

MASKED

1NN, eucl. = 0.0928, delta diff. = 0.0409, D-ENT = 0.0820

SIPLCA, eucl. = 0.0717, delta diff. = 0.1181, D-ENT = 0.4272

AVERAGE, eucl. = 0.0604, delta diff. = 0.1790, D-ENT = 0.4513

0 20 39

LIN. TRANS., eucl. = 0.0579, delta diff. = 0.1718, D-ENT = 0.5565

Figure 7.4: Reconstruction and some error measures.

Taken from [Bertin-Mahieux et al., 2011b], four algorithms are used to create reconstruction.

These are evaluated with three measures, including Euclidean.
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Chapter 8

Hashing methods

Given the size of the dataset we are working with, a natural starting point is hashing methods

([Knuth, 1973]). The idea behind hashing is to create a code that two identical items would share.

Comparing the codes must be fast. Finding whether a given item is in a database only requires an

examination of the items that are associated with its code. If designed correctly, there should be

few such items.

Music fingerprinting methods (e.g. [Wang, 2003]) use a similar idea that we broadly simplify

here. Small sections of the song are attributed a (hash) code that should be constant across

encodings of a song (different audio quality, some added noise, etc). Given a query piece of audio

and its associated codes, we can find all songs in a database that share those codes. If all goes

well, the correct song should stand out as having most hash codes in common. The advantage of

this method is the querying time. Once all the hash codes are entered in a database system (e.g.

MySQL1), retrieving particular codes can be extremely fast. Thus, audio fingerprinting methods

can scale to millions of songs.

The problem with cover songs is designing hash codes that would be constant across covers. A

lot can change between an original song and its cover, including:

• instruments;

• style;

1http://www.mysql.com/

http://www.mysql.com/
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• tempo;

• key.

In particular, the hash codes used in [Wang, 2003] would be useless. The authors use the relative

position between local landmarks, a local landmark being a given frequency and point in time that

contains more energy than anywhere else in its spectrogram neighborhood. Those landmarks would

vary greatly between covers for the reasons mentioned above.

In this chapter we present our attempt at building hash codes that are better suited to cover

songs. Our system also served as a proof of concept, as it was the first result reported on such a

large collection. Our method was presented in [Bertin-Mahieux and Ellis, 2011].

8.1 Fingerprint features

In this Section we present the core of the algorithm, i.e. how to pass from a chroma matrix to a

few dozen integers for each song, then how to query a database using those codes. We always start

from a beat-aligned chroma matrix as illustrated at the bottom of Figure 8.2.

8.1.1 Example

First, let’s look at two covers that are quite similar to one another. In Figure 8.1, at the top, we

see two chromagram patches from two songs: “Yellow” by Coldplay, and “Yellow” by G4. Coldplay

does not need any introduction and they wrote the original song; G4 is a vocal group from England.

The chromagram patches presented here were chosen to ensure that they represent the same section

of the song. They are indeed quite similar. The darker bins represent a pitch played with higher

energy (e.g., at position (3, 4) in the top left image). Most of the time, the “darkest line” represents

the melody line. The melody line often does not change much (modulo key changes, which is not

the case here) from one cover to another, although there is no guarantee.

The idea of our hashing method is to find salient points in the chromagram. They are represented

in red in the bottom row of Figure 8.1. As explained above, these salient points will most likely be

part of the melody line. We can then encode how to “pass from one point to another”, the blue

lines, which we also call “jumps”. We can use these jumps to compare two songs: if they have a lot
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in common, the two songs are likely to be covers. This is the intuition behind our method, which

will be reexplained in detail in the following section.
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Figure 8.1: Two beat-aligned chromagrams and their jumpcodes.

The two songs are covers (the original one is on the left). The chromagram was shortened in time

for visualization purposes.

8.1.2 Hash code

We explain how to get a set of hash codes from the beat-aligned chroma representation as in Figure

8.2. As previously mentioned, we can average the chroma values over beats. In our experiments,

we saw that averaging over two beats yielded similar results while reducing the dimensionality. By

analogy with the technique proposed in [Wang, 2003], we identify landmarks, i.e. “prominent” bins

in the resulting chroma matrix. We use an adaptive threshold as follow:
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Figure 8.2: Segments, beats, loudness, and beat-aligned chromas.

The top figure contains chroma values for each segments, the beats (red vertical line) and

loudness (blue curve). The bottom figure is a scaling of those values in order to get one

12-dimensional chroma vector per beat.

• Initialize T , the threshold vector of size 12 as the max energy for each semi-tone over the first

10 time frames (one time frame = two beats).

• At time t, we accept a bin as a landmark if its value is above the threshold. Let v be the

value of this landmark and Tv the threshold value for that semi-tone, we set Tv = v and

Ti 6=v = max(Tvψ, Ti), ψ being the decay factor. We also limit the number of landmarks per

time frame to 2.

• Moving from t to t+ 1, we use the decay factor ψ, we get Tt+1 = Tt ∗ ψ.

We get landmarks through a forward and a backward phase and we keep the intersection, i.e.

landmarks identified in both phases. Once these landmarks are identified, we look at all possible

combinations, i.e. set of jumps from landmarks to landmarks, over a window of size W . To avoid

non-informative duplicates, we only consider jumps forward, or in one direction if within the same

time frame. The simplest set of hash codes consists of all pairs of landmarks that fall within the
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window length W . Such a pair can already provide information about musical objects like chords,

or changes in the melody line.

A specific example is shown in from Figure 8.3. The red dots are the landmarks, for instance

at positions (1, 1) and (2, 7). The blue lines are “jumps” between those landmarks.

A

B

Figure 8.3: Closeup of landmarks and associated jumps.

These sets of jumps are hash codes characteristic of the song, and hopefully also characteristic of

its covers. For sake of clarity, we refer to them as “jumpcodes”. A jumpcode is a list of difference in

time and semi-tone between landmarks plus an initial semi-tone (the initial time frame is always 0).

Taking the example A of Figure 8.3, we have three landmarks at positions (1, 1), (2, 7) and (3, 1) in

the beat-aligned chroma representation (and a window length W of at least 3), the jumpcode would

be {((1, 6), (1, 6)), 1}. Note that for convenience, we take the jump between semi-tones modulo 12.

The example B would give a jumpcode of {((1, 1), (1, 0), 1}.

Figure 8.4 shows the larger picture, with jumpcodes represented for four cover songs. In this

example, as it is often the case, the jumpcodes seem to mostly follow the melody.

In this work, we do not consider the position of the jumpcodes in the song. It might be useful to

consider ordered sets of jumpcodes to identify cover songs, but this additional level of complexity
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Figure 8.4: Landmarks and jumpcodes for 4 cover songs.

Covers of the work %4173 from the SHS dataset.

would be computationally expensive. Also, covers might use only parts of the original song, or mix

the order of the song sections.

8.1.3 Encoding and Retrieval

The jumpcodes are entered in a database so we can use them to compare songs. We use SQLite,

and like any other database, it is more efficient to encode jumpcodes as one integer. Many schemes

can be devised, we use the following one that lets us easily compute a “rotated jumpcode”, i.e.

the jumpcode we get if we rotate the song along its semi-tone axis. Such a rotation is important,

remembering that many cover songs are not performed in the same key.

We have a set of k landmarks within a time window of size W . The landmarks are pairs of

(chroma bin, time frame): (b1, t1), (b2, t2), (bk, tk). The integer representation of the jumpcode can
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be computed along these lines:

b1 + (t1 − 0 + 1)× 12

+ [(b2 − b1) + (t2 − t1 + 1)× 12 + 1]× 12× (W + 1)

+ ...

The initial semi-tone value can be retrieved using a modulo 12, this is the most important feature

of this particular scheme. This lets us rotate a jumpcode, i.e. infer the jumpcode we would get

if the song was performed in another key, by removing the initial semi-tone, and adding back a

rotation value between 0 and 11.

Experiments showed that some songs generate more jumpcodes than others (counting dupli-

cates). In order to diminish that effect, we assign a weight to the jumpcodes. The weight is the

number of times a particular jumpcode appears in the song divided by the logarithm (base 10) of

the total number of jumpcodes in that song. Taking the logarithm is an empirical decision, but the

idea is that it diminishes the importance of jumpcodes that appear often, and put emphasis on the

ones that appear only a few times.

For the retrieval phase, we have all jumpcodes (with positive weights) for all songs in the

database. Given a query song, we get all pairs (song, jumpcode) for which 1) the jumpcode also

belongs to the query song, and 2) the weight of that jumpcode falls within a margin around the

weight of that jumpcode in the query song. The margin is computed given a percentage α as

weightquery × (1 − α) ≤ weight ≤ weightquery × (1 + α). Once all the pairs from all jumpcodes

in the query song has been retrieved, the frequency of each song is computed. The higher the

frequency, the more likely a song is a cover of the original.

One peculiarity of cover song recognition is that the target might be in another key. Thus,

for each query, we actually do 12 independent queries, one per rotation. As explained above, the

encoding scheme of the jumpcodes lets us find their rotated values in a computationally efficient

way.

8.1.4 Training

Due to the many parameters which are probably interdependent and consequently difficult to set,

we created a set of 500 binary tasks out of the 12, 960 songs from the training set. Given a query,
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our hashing algorithm had to choose the correct cover between two possibilities. The exact list

of triplets we used are available on the project’s website2. We tuned to this 500-queries subset

through many quick experiments in order to come up with a proper setting of the parameters. We

do not claim we tried every combination, and it is possible that we missed a setting that would

have greatly improved results. Parameters include the normalization of beat-chroma (including

loudness or not), the window length W , the maximum number of landmarks per beat, the length

(in number of landmarks) of the jumpcodes, the weighting scheme of the hash codes, the allowed

margin α around a jumpcode weight, the decay ψ of the threshold envelope, etc. We present the

best settings we found to serve as a reference point for future researchers.

8.2 Results

We first present our results on the 500-queries subset. To be thorough, we present two settings

for the jumpcodes, the first setting leading to our best result on this subset. This first one, called

“jumpcodes 1” used the following parameters: ψ = 0.96, W = 6, α = 0.5, number of landmarks

per jumpcode: 1 and 4, chroma vectors aligned to each beat. Unfortunately, it gave too many

jumpcodes per song to be practical. The parameters for “jumpcodes 2” were: ψ = 0.995, W = 3,

α = 0.6, number of landmarks per jumpcode: 3, chroma aligned to every 2 beats. The results can

be seen in Table 8.1 where accuracy is simply the number of times we selected the right cover song.

Note the drop from 11, 794 to 176 jumpcodes on average per song.

As a comparison, we also report the accuracy from the published algorithm in [Ellis and Poliner,

2007], called “correlation” in the Table. This method is very intuitive, we compute the correla-

tion between beat-aligned chroma representations, including rotations and time offsets. First we

conclude that our method performs similarly. The subset is too small to claim more than that.

Secondly, since this test appears easier than the one in [Ellis and Poliner, 2007], we wonder whether

the cover songs are rather difficult in this subset, or maybe the chroma representation from The

Echo Nest is less suited for cover recognition than the one use in [Ellis and Poliner, 2007] (e.g. the

normalization is different).

Then, we confirm that the result we obtained on the 500 binary queries translate relatively well

2http://www.columbia.edu/~tb2332/proj/coversongs.html

http://www.columbia.edu/~tb2332/proj/coversongs.html
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accuracy #hashes

random 50.0% -

jumpcodes 1 79.8% 11, 794

jumpcodes 2 77.4% 176

correlation 76.6% -

Table 8.1: Results on 500 binary tasks.

The #hashes fields represents, on average, the number of jumpcodes we get per track.

to a larger set, i.e. the 12, 960 training cover songs. From now on we report the average position

of the covers for each queries. On the subset, using the settings from “jumpcode 2”, the average

position was 4, 361. If we think of a query as doing 12, 960 binary decisions (comparing the correct

answer to every one of the decoys), this gives us an accuracy of 66.3%. We have 2, 280, 031 (song,

jumpcode) pairs in the database for the train songs, this gives us an average of 176 jumpcodes per

track.

Finally, over the whole million song dataset using the test set of the SecondHandSongs dataset,

we get an average position of 308,369 with a standard deviation of 277,697. To our knowledge, it

is the first reported result on this dataset, and the first on any data set of such large scale. We note

that the standard deviation is quite large, probably meaning that some covers are really faithful

while others are totally different.

We take a closer look at the successful queries by looking at query pairs, i.e. a pair formed

by a query song and a target song. A query pair’s ranking is the ranking of the target song when

the dataset is queried using the query song. 120 tracks (0.68% of query pairs) ranked at 100th

or better (top 0.01%); a random baseline would be expected to place fewer than 2 of the 17, 771

queries at this level. In fact, 12 query tracks ranked their matches at #1 in a million tracks. Some

of these turned out to be unfortunate duplicates, an existing problem of the MSD3. But some are

actual success, e.g. the query pair “Wuthering Heights” by (Kate Bush, Hayley Westenra) or “I

don’t like Mondays” by (The Boomtown Rats, Bon Jovi / Bob Geldof ). This last pair is made of

two different versions, both including Bob Geldof.

3http://labrosa.ee.columbia.edu/millionsong/blog/11-3-15-921810-song-dataset-duplicates

http://labrosa.ee.columbia.edu/millionsong/blog/11-3-15-921810-song-dataset-duplicates
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8.3 Conclusion

We presented a hashing-based method to efficiently index and retrieve cover songs. Its execution

speed allows us to work with the Million Song Dataset, and the algorithm is relatively intuitive as

a first benchmark. Unfortunately, the results, though better than random, leave considerable room

for improvement. It is also unclear how our jumpcodes can be used for other applications, such as

understanding the music harmonic space.

The next chapter presents a different approach, based on a higher level feature instead of the

chromagram. As we will see, the execution time is similar, the results are better, and the feature

is promising for other tasks.
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Chapter 9

Fourier transform methods

In Chapter 8, we presented a hash-based method for cover song recognition. Another approach

would be to project the entire song into a small fixed dimension space in which nearest neighbors are

our candidate covers. Nearest neighbor methods are easy to parallelize and scale, and working with

a fixed-dimensional representation (instead of a variable-length audio signal) is a great convenience.

Dissatisfied by the results presented in the previous chapter, we now focus on this new option.

Beat-synchronous chroma representations form a relatively compact description that retains infor-

mation relevant to covers, and may be cropped to a constant size. Unfortunately, direct comparison

of chroma patterns using common metrics is poorly behaved (Section 7.2). Summarizing a song

by extracting a few chroma patches1 and comparing them with Euclidean distance gives unusable

results for several reasons, including the acute sensitivity of direct comparison to temporal align-

ment. In order to obtain an efficient nearest-neighbor algorithm, we need a representation for the

chroma patches with the following properties:

• representation vectors can be compared using a simple metric, e.g. Euclidean distance;

• representation vectors are compact, i.e. low-dimensional;

• representation must be robust to semitone rotations (musical transpositions);

• representation should be robust to different pattern offsets (time alignments).

1 Unless stated otherwise, chromas now refer to beat-aligned chromas, and a patch is a 12×N matrix representing

the chromas over a N -beat section. An example was given in Figure 8.2 (bottom figure).
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The last condition would allow us to match patches without having to identify a universal time

alignment which would be very difficult in a large set. Our candidate representation is the two-

dimensional Fourier transform magnitude (2DFTM), a representation very similar to the one used

in [Marolt, 2008]. The Fourier transform separates patterns into different levels of detail, which is

useful for compacting energy (as in image compression schemes such as JPEG) and for matching

in Euclidean space. Discarding the phase component provides invariance both to transposition

(rotation) in the pitch axes and skew (misalignment) on the beat (time) axis. Thus, taking the

2DFTM of a chroma patch, we obtain a transformation of chroma features that makes Euclidean

distance quite useful, even after dimensionality reduction through PCA. Our method encodes each

track as a 50-dimensional vector and provides a large improvement over the hash code-based method

[Bertin-Mahieux and Ellis, 2011]. On the SHS, this approach gives the best result reported so far.

The starting point of this chapter can be found in our paper [Bertin-Mahieux and Ellis, 2012].

9.1 Features

Taking the two-dimensional Fourier transform is a common task in digital image processing where

it is useful for denoising and compression, among other things [González and Woods, 2008]. As

illustrated in the examples of Figure 9.1, a single point in the 2D Fourier transform corresponds

to a sinusoidal grid of a particular period and orientation in the image (transform) domain; more

complex images are built up out of multiple sinusoid grids.

For an NxN image, the 2D Fourier transform is given by:

F (u, v) =
∑
x,y

f(x, y)e−2jπ×(ux+vy)/N (9.1)

with f(x, y) the value of the original image at the coordinates (x, y). The magnitude at every

position (u, v) is defined as:

mag(u, v) =
√
<(F (u, v))2 + =(F (u, v))2 (9.2)

with < returning the real part of a complex number, and = the imaginary part. Note that for

visualization purposes, the bins are shifted so that the center of the axis system is in the middle

of the image2. In that representation, the transformed image is symmetrical around the origin.

2fftshift in MATLAB, scipy.fftpack.fftshift in Python
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Figure 9.1: Examples of 2-dimensional Fourier transforms.

Figure 9.2 gives an example of the transform applied to a chroma patch.

9.2 Method

We will represent each song by a vector of fixed-length, defining a point in Euclidean space. The

closer two feature vectors lie in this space, the more likely the songs are covers. The steps to

compute this feature vector for a song are summarized as follows:

1. obtain chroma from the MSD;

2. resample onto beat grid;

3. apply power-law expansion;

4. extract FFT patches and keep magnitude;

5. take the median;
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Figure 9.2: Beat-aligned chroma patch and corresponding 2DFTM.

6. apply PCA.

The first step is done using the code provided with the MSD. Beat estimation is also provided

in the MSD, and the second step is mostly a linear scaling. The third step, in which we enhance the

contrast between strong and weak chroma bins by raising the values to an exponent, was determined

to be useful in our experiments. In the fourth step, we take the 2DFTM as shown in Figure 9.2

for every 75-beat long chroma patch. In the fifth step we keep the median, within each bin, across

all the transformed patches. Finally, in the sixth step, we use PCA to reduce the dimensionality.

PCA is done without normalization, the data are simply centered to zero and rotated. In our

experiments PCA was computed on 250K songs that were not identified as covers (i.e., in neither

the SHS train set nor the test set).

The fifth step is necessary because we want to represent all the many possible patches within

a song with a single value; averaging was one possibility, but median appeared to give better

robustness against extremes.
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Many of the parameters above were chosen empirically. Presenting all of them would bear little

interest. Simply note that the following parameters were chosen based on their ability to identify

500 train covers (see Subsection 8.1.4):

• patches of size 75 beats, we tried number of beats ranging from 8 to 100;

• median as opposed to average;

• raising to the power 1.96, we tried values between 0.25 and 3.0.

Note that working with a 75-beat long music segment is unusual; in previous work, a patch

length of 8 or 12 beats is more common. Marolt mentions the risk that large time shifts can create

fragments that are not musically similar [Marolt, 2008]. We believe this problem is alleviated by

the long segments we consider.

The number of principal components (PC) we keep after PCA is also a parameter, but choosing

the best one is more difficult. The number of PCs is a trade-off between accuracy and feature

vector size (and hence speed). We believe 50 is the “best” trade-off, but we report results for

other numbers of PCs. Still regarding PCA, since we use chroma patches of 75 beats, we have

12× 75 = 900 principal components. Note that half of the components (450) are redundant due to

the symmetry in the 2DFTM, and have a variance of zero associated with them.

Figure 9.2 illustrates an interesting fact; there is a lot of energy in column 9. It corresponds

to a strong 8-beat period, since 8 beats are approximately one ninth of a 75-beat long patch. In

western music, a strong beat every 4 (or some multiple of 4) beats is extremely common.

9.3 Results

As in Chapter 8, the parameters are first tuned on a subset of 500 binary tasks created within

the SHS training set (we use the same 500 queries). The goal is: given a query song A and two

songs B and C, find which of B or C is a cover of A. The result is the percentage of trials where

the algorithm succeeds. We then present the results testing on the training set, mostly as a sanity

check. Finally, we report result on the SHS test set using the full MSD.

In our previous Chapter, the main reported result was the average rank of a known cover

given a query. For instance, on 1M songs, picking at random would give 500K. We again report
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Method accuracy

random 50.0%

pitch hist. 73.6%

correlation 76.6%

DTW 80.0%

jcodes 1 79.8%

jcodes 2 77.4%

2DFTM (full) 82.0%

2DFTM (200 PC) 82.2%

2DFTM (50 PC) 82.2%

2DFTM (10 PC) 79.6%

2DFTM (1 PC) 66.2%

Table 9.1: Results on 500 binary tasks.

PC is the number of principal components we retain after PCA. Empirically, 50 PC appears to be the best

trade-off between accuracy and size.

this measure to permit comparison, but we also present mean average precision (mAP) due to a

performance increase. Average rank can be misleading since it is dominated by the most difficult

covers, of which there will always be a number, and hides differences in performance near the top

of the ranking. mAP puts emphasis on results that rank high, i.e., the covers that are in the top k

results. We also present the recall curves for a few algorithms (see Figure 9.3).

We introduce a new reference method: comparing pitch histograms. A pitch histogram is

computed over a chromagram by summing the rows (semi-tones) and making the norm 1. This

creates one 12-dimensional descriptor per song. This feature is very intuitive, it gives the importance

of each semi-tone inside a song. If two songs (modulo a semi-tone rotation) have similar semi-tone

content, they are likely covers.

We also compare with a DTW-based method using code from S. Ravuri3. This is our best

attempt at comparing our methods with the state of the art as defined by MIREX. The 500 binary

tasks and the 12, 960-song training set are similar in size to what has been previously published.

However, results are also very dependent on the features used. For instance, in [Serrà et al., 2008],

3http://infiniteseriousness.weebly.com/cover-song-detection.html

http://infiniteseriousness.weebly.com/ cover-song-detection.html
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the authors use a chromagram with up to 36 semi-tones instead of the 12 we possess. We also did

not re-estimate the DTW parameters. Finally, results published based on MIREX results probably

suffer from overfitting as explained in Section 7.4. Therefore, the comparison with DTW presented

in Table 9.1 only tells us that we get a performance in the same ballpark. Furthermore, there is

still a need for fast algorithms even if their performance is lower, as we explain below. The output

of a first, fast algorithm can be the input of a second, slower algorithm.

Method average rank mAP

pitch hist. 4, 032.9 0.0185

2DFTM (full) 3, 096.7 0.0891

2DFTM (200 PC) 3, 005.1 0.0948

2DFTM (50 PC) 2,939.8 0.0776

2DFTM (10 PC) 3, 229.3 0.0265

2DFTM (1 PC) 4, 499.1 0.0019

Table 9.2: Results on the training set (12, 960 songs).

For average rank, lower is better. For mAP, higher is better.

Method average rank mAP

random 500, 000 0.0000

pitch hist. 268, 063 0.0016

jcodes 2 308, 370 0.0021

2DFTM (200 PC) 180, 304 0.0295

2DFTM (50 PC) 173,117 0.0200

2DFTM (10 PC) 190, 023 0.0029

2DFTM (1 PC) 289, 853 0.0000

Table 9.3: Results on 1M songs.

For average rank, lower is better. For mAP, higher is better.

As we see in Tables 9.2 and 9.3, the method based on our 2DFTM representation provides a

significant improvement over the method in [Bertin-Mahieux and Ellis, 2011] for both measures.

In particular, based on mAP, many more covers are ranked in the first few hundred results, which

makes it much more valuable in a commercial system. Note that a second, slower step could be

applied to the top k results, k being 1K or 10k. This is similar to the progressive refinement
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described in [Yu et al., 2009]. A good candidate for this second step would be the full system of

[Serrà et al., 2008].
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Figure 9.3: Recall using the 2DFTM method on the MSD.

Recall computed using (query, cover) pairs on the full million songs for different systems. Legend

is in order from best (upper left corner) to worst.

Using the system with 50 principal components, Figure 9.3 shows us that more than half of

the covers are ranked in the top 100k and more than a quarter of them are in the top 10k. For

112 queries, the first song returned was a known cover. This includes the pairs (Hayley Westenra,

Kate Bush) performing “Wuthering Heights”, a match considered easy in Chapter 8. Note that

this number could be greater since we do not count covers that are ranked second after another

cover of the same clique, i.e. both are correct answers.

In terms of speed, with a 50-dimensional vector per song, ranking all one million tracks for

all 1, 726 test covers in Python took 1h 46min on a machine with plenty of RAM. This is around

3-4 seconds per query without any optimization or parallelization. Compared to the 2.7 hours per

query of the DTW method, that is a ∼ 2, 500x speedup.

9.4 A note on error measures

The first error measure we use in this work is the average rank of cover songs. It gives a global idea

of how well the system performs, and the value moves quickly for algorithms whose performance is

not that far off random. Thus, it is a good metric to get started and for proofs of concept.
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As performance increases, the way we measure the quality of our ranking can be refined. As

for most ranking systems, what matters is how many true positives are returned in the first few

items. The exact number of top items we should consider is application-dependent. If the output

of a ranking system is shown to a human user, only the first ten or twenty items really matter. In

another setting, the output of our algorithm can be passed on to a second algorithm. This is the

progressive refinement we suggest above. In such a case, the mAP measure is more appropriate.

It is important to understand that the error measure is part of the task definition. As the

performance of algorithms will increase, methods will be tuned in respect to specific measures.

We believe that average rank and mAP are appropriate metrics for academic settings, since they

represent an overall performance on cover song recognition. However, for a commercial system that

displays its result to users, a metric such as precision at k (sometimes called “top-k”) makes more

sense.

For future reference, in Table 9.4 we provide the results, measured with top-k, for the systems

in Figure 9.3. We compute top-k as follow. Given k, queries numbered from 1 to N , and tpq(k)

the number of true positives ranked in the top k for query q, we have:

top-k =

∑N
q=1 tpq(k)

Nk

One problem with top-k occurs when we have fewer true positives than k. For instance, if for a

given query we know only of 5 covers and we measure top-50, we cannot obtain a result above 10%.

This upper bound is dataset-dependent, and is also reported in Table 9.4.

Method k = 1 k = 10 k = 50 k = 100

upper bound 100.00% 31.31% 6.76% 3.38%

pitch hist. 0.17% 0.05% 0.03% 0.02%

jcodes 2 0.23% 0.07% 0.03% 0.02%

2DFTM (200 PC) 3.25% 1.05% 0.34% 0.20%

2DFTM (50 PC) 2.15% 0.74% 0.26% 0.17%

Table 9.4: Top-k results on 1M songs.

Algorithms are the same as in Figure 9.3. Upper bound is the maximum theoretical value we can get given

our dataset, details in Section 9.4. For top-k, higher is better.
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9.5 Understanding the 2DFTM feature

We provided some insight on why the 2DFTM features, derived from the chroma features, can be

used to identify cover songs. In this section, we try to explain the properties of the feature further.

Questions we try to answer include:

• why is the 2DFTM space seem better behaved?

• can we aggregate the feature over a whole song?

• can we do better than comparing 2DFTM patches using Euclidean distance?

9.5.1 Clustering features

One reason why comparing chroma was difficult is that adding a small time offset creates a large

difference between two patterns. With the 2DFTM, adding a time offset of one would only create

a “border effect”: since each bin corresponds to a frequency computed over the whole 2D image,

changing the edges has limited results.

We try to demonstrate that effect using the idea of clustering stability, inspired by [Lange et al.,

2004]. Given N samples from a common distribution, we can split them in half, cluster each half

using k-means, and see how the clustering from the first half predicts the second half. To present

this with more details:

1. split the samples in two equal size sets;

2. cluster each sets of N/2 samples into M clusters, each cluster receives a unique label 1, ...,

M for its set;

3. using vector quantization, associate the samples from the second set to the clusters in the

first set;

4. for a given permutation of the labels in the second set, a sample is misclassified if its label

from the first and second set are different;

5. find E, the minimum number of misclassifications over all permutations;

6. the proportion of misclassifications is defined as E/N and is inversely proportional to stability.
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In short, samples that come from a very stable distribution should create very similar clusters

in any subset of the samples. In our case, we cluster all the frames in a song. Our experiment

is performed over the whole SHS training set and is summarized in figure 9.4. We cluster beat-

aligned chromas patches, 2DFTM patches and 2DFTM patches projected onto 50 dimensions via

PCA (patches are 75 beats long). As expected, we have better stability (fewer misclassifications)

for 2DFTM features. This demonstrates that two similar patches with different offsets will be more

different according to Euclidean distance if they are represented by beat-aligned chroma than by

2DFTM.

3 4 5 6
# centroids

0.20

0.25

0.30

0.35

0.40

0.45

0.50

pr
op

or
tio

n 
of

 m
is

cl
as

si
fic

at
io

ns

Clustering stability

btchroma
2DFTM
2DFTM PCA

Figure 9.4: Cluster stability for three features.

Compare clustering stability through k-means with 3 to 6 centroids. Features are beat-aligned

chroma, 2DFTM, and 2DFTM after PCA with 50 principal components. Lower is better.

9.5.2 Comparing distributions of 2DFTM features

In our experiments on the MSD, we take the median of the 2DFTM patches across a song. The

intuition behind this is that it represents the typical amount of a certain 2D sinusoid in this song.

That said, it might be an oversimplification. When looking at an animation visualization the

evolution of 2DFTM patches during a song, we see significant variations and taking the median

might lose a lot of information.
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Thus, we can consider the distribution of the 2DFTM in a song by keeping the mean and variance

of every bin. To compare two distributions (two songs), we use the symmetric Kullback-Leibler

divergence (i is the bin index):

DKL(P ‖ Q) =
1

2
×

[∑
i

ln

(
P (i)

Q(i)

)
P (i)

]
+

1

2
×

[∑
i

ln

(
Q(i)

P (i)

)
Q(i)

]

The goal is to see if taking a more complex representation than the median can improve cover song

recognition results.

The numbers in Table 9.5 seem to show that looking at the 2DFTM distribution does not

improve results. The difference is small (∼ 5%), but taking the median gives the best performance

in our preliminary test.

Method accuracy

random 50.0%

median + Euclidean 82.0%

mean/var + KL 77.0%

mean/var + KL (50 PC) 77.4%

mean/var + KL (10 PC) 76.2%

Table 9.5: Results on using mean and variance.

Results on 500 binary tasks. PC is the number of principal components we retain after PCA.

Note that we also looked at the distribution in the PCA space, with 50 and 10 principal

components. The distribution of individual bins in that space could have been more meaningful,

since each bin is a linear aggregation of many bins in the original 2DFTM feature. However, this

does not yield any significant difference in our experiment.

9.5.3 Importance of the phase

So far in this work, we used the magnitude of the 2D Fourier transform of the chroma patches.

Removing the phase is an easy way to become invariant to time and semitone offsets. However, we

lose more than just those two invariance since the relative positions of the 2D sinusoids are also

embedded in the phase. In this section, we try to retain some of that information to see if it can

improve cover song recognition results.
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The idea is to normalize the phase so it is invariant to time and semitone offset by taking the

second derivative. One problem is the modulo 2π of the phase. To simplify the issue, we divide by

2π so the values are the same modulo 1. Then, by applying the following derivation kernel (second

derivative in both direction):
1

−2

1

 . [ 1 −2 1
]

=


1 −2 1

−2 4 −2

1 −2 1


and keeping the decimal part, we obtain a second derivative and sidestep the modulo issue.

The idea is similar for integration, we accumulate from left to right and right to left, followed

by top down than bottom up. This procedure inverse the derivation above4

Once we have derived and reintegrated the phase, we obtain a normalized phase patch that

would be the same for a chroma patch and its rolled version. However, not all phase values are

created equal: the phase of a sinusoid that has a very low magnitude is likely irrelevant. Thus, we

only consider half5 of the phase values, the ones associated with the highest magnitudes.

To compare a normalized phase patch, we use the Euclidean distance. We take into account

the modulo 1 (values are still divided by 2π), distance being:

d1,2 =

√∑
i

dx2i

with dxi = min(|xi,1 − xi,2|, 1− |xi,1 − xi,2|)

If a phase value is discarded in one patch (because of a low magnitude) and not in the other patch,

we consider it equivalent to a distance of 0.5. In our experiment, we obtain a distance for the phase,

one for the magnitude as before, and we sum them to compute a distance between two patches.

The results can be seen in Table 9.6. Although the difference is small (5%), we conclude that using

the phase on top of the magnitude is cumbersome for no apparent gain.

4 Proof in 1D: for the second derivative, we applied an FIR filter with transfer function (z − 1)2/z (thus with 2

zeros at 1). To integrate, we take an IIR function with two poles at 1, its transfer function is z/(z − 1). We apply it

twice (with reverse indexes the second time), the new transfer function is (z/(z− 1))(z−1/(z−1− 1)) = −z/(1− z)2.

This is the inverse of the transfer function for the second derivative.

5We did try other proportions, 50% seemed to yield the best results.
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Method accuracy

random 50.0%

only magnitude 82.0%

phase and magnitude 77.0%

Table 9.6: Results on using phase.

Results on 500 binary tasks with and without using a normalized phase.

9.5.4 Beat-alignment for 2DFTM features

We have explained in Section 2.4 that for music features, it makes sense to have one frame per

beat. However, the beat of a given song is not a perfectly defined concept. For instance, on a given

song, one listener might tap his foot on every note while another listener might tap every half note.

Neither of them are wrong a priori. This kind of variation, tapping at a fraction or a multiple of

the reference beat, is common for automatic beat trackers too.

Beat-aligned chromagrams depend on the output of an automatic beat tracker, thus they suffer

from this kind of problem. For a given song, if the beats are identified at every 4 notes, and for

one very similar cover, at every 2 notes, the chromagram of the cover will look like an expanded

version of the first chromagram. One easy way to see this is that the chromagram will be twice as

long since it has twice as many beats.

To ameliorate this, we can compute more than one chromagram per song (a similar approach

was used in [Ellis and Poliner, 2007]). For example, we could have a chromagram with one beat per

frame (the usual one), one with 2 beats per frame, and one with half a beat per frame. Although

this gives more chances for a cover version to match the original, it does add to the amount of

features and the complexity of computing the distance between 2 songs. Since each song is now

represented by a set of 2DFTM features from a set of chromagrams, we will define the distance

between two songs as the minimum distance between 2DFTM features from each of these songs.

For example, we could match a song using features computed with one beat per frame to another

song with features computed with two beats per frame.

We perform a preliminary experiment with this idea, the result can be seen in Table 9.7. It

does appear that computing multiple 2DFTM features, from multiple chromagrams with different

numbers of beat per frame, improves our results. We leave for future work the task of scaling this
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method, including implementing the more complex distance function between sets efficiently. It is

important, however, to be aware of the influence of the underlying beat tracker on the 2DFTM

features.

Method [beat per frame] accuracy

random 50.0%

2DFTM [1] 82.0%

2DFTM [1, 2] 83.4%

2DFTM [0.5, 1, 2] 82.2%

2DFTM [1, 2, 4] 83.4%

Table 9.7: Results for multiple beat-alignments.

Computed using the 500 binary tasks. The numbers in bracket are the beat per frame we use to compute

chromagrams, i.e., for 2DFTM [1,2], it means we have two feature vectors from two chromagrams. 2DFTM

[1] is the usual 2DFTM method (without PCA).

9.5.5 Value normalization

We evaluated the 2DFTM feature as a whole, through cover song recognition, but it is rather

difficult to evaluate the importance of each value of the feature. Our typical patch has 12×75 = 900

dimensions, each value (or bin) representing a particular sinusoid6. In Section 9.2, we apply PCA

with no value normalization (e.g. taking the z-score). In practice, it puts emphasis on the “central

2DFTM values”, the bins corresponding to low-frequency sinusoids, because those values tend to

be greater.

We can try to understand the value of this decision. MLR code [McFee and Lanckriet, 2010] can

learn a linear transformation that creates a better space for ranking. Given classes like cover song

cliques, it learns a transformation that tries to make covers closer to one another, while pushing

away non covers. This is an example of metric learning.

We apply MLR to the full 900-dimensions patches from Section 9.2, but we restrict the transfor-

mation to a diagonal matrix. In effect, we learn a weight on the 900 bins, a higher weight meaning

more discrimination power to find covers. For our experiments on the training set, we use the 5, 854

6Given the symmetry about the origin, there are actually only 451 independent values in a 2DFTM patch.
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test cover songs to train. The result is shown in Figure 9.5. We can see that “corner values” are

underrepresented.
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Figure 9.5: Learned weights for 2DFTM features.

Weights learned through MLR [McFee and Lanckriet, 2010] on the test cover cliques. Parameters

were C = 1000, loss is AUC, the learned projection is diagonal.

The conclusion is that the patches could use some normalization before we apply PCA. We

experiment with z-scoring, i.e. removing the sample mean and dividing by the sample standard

deviation. The new weights learned through MLR can be seen in Figure 9.6. The difference between

low and high weights is greatly reduced, and there is no clear pattern (e.g. in the corners, or in

the center). Note that for both Figure 9.5 and 9.6, we ran the MLR algorithm 10 times over

random subsamples of the data and took the average. This avoids high values that could come

from overfitting.

Everything else in our method described in Section 9.2 remains identical. On the 500 binary

queries, using z-score improves the result from 82.2% to 83.0%. Results on the training set are

shown in Table 9.8. We observe a small improvement overall.

Now that we have improved on the normalization, it can also be of interest to show the principal

components learned through PCA. Figure 9.7 shows the first 3 ones. The main content seems to
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Figure 9.6: Learned weights for 2DFTM features after z-scoring.

Weights learned through MLR [McFee and Lanckriet, 2010] on the test cover cliques. Parameters

were C = 1000, loss is AUC, the learned projection is diagonal.

be rhythmic, with the second principal component emphasizing columns ±19 (corresponding to

4-beat periodicity), and the third component balancing the intensity around column 9 (for 8-beat

periodicity).

Method average rank mAP

2DFTM (200 PC) 3, 005.1 0.0948

2DFTM (50 PC) 2, 939.8 0.0776

2DFTM (200 PC) z-scoring 2, 976.1 0.0909

2DFTM (50 PC) z-scoring 2, 911.1 0.0812

Table 9.8: Results on the training set with z-scoring.

z-scoring applied before computing PCA. For average rank, lower is better. For mAP, higher is better.
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Figure 9.7: Principal components.

PCA trained on 2DFTM patches with z-scoring.
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Chapter 10

Conclusions

We have discussed the creation of a very large collection of music-related data (Part II) and we

investigated two methods to perform cover song recognition on such a collection (Part III). The

MSD, with its wide diversity of data ranging from lyrics to user feedback, can be used to study

many MIR questions. We see this as our contribution to the field to help it embrace this new era

of big data. Cover song recognition is a perfect case study to illustrate the interesting questions,

and practical challenges posed by large-scale music problems. The two methods we showed, one

relying on hashing and the other on fixed-dimensional representation, are typical solutions for

data-intensive problems.

Using this as a starting point, we now mention different directions of research we would like

to investigate in the near future. Some are extensions of our work on cover songs. Others simply

rely on data available in the MSD. We do however believe that more and more applications will

rely on heterogeneous sources of data, and many MIR problems should slowly merge as larger

collections become available. Thus, features that were good for cover song recognition could be

used for tagging, recommendation, etc.

10.1 Cover songs and manifolds

Regarding our cover song recognition work, there are several experiments on which we would like

to follow up. On hashing, researchers at Google have developed the intervalgram [Lyon et al., 2012;

Walters et al., 2012], a chroma-like feature derived from a stabilized auditory image. This feature is
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designed to support locality-sensitive hashing, thus making it a good candidate for large databases.

We do not have access to this feature in the MSD or elsewhere in large quantities, but we would

like to understand how different the feature is. If an intervalgram can be derived from chromas, we

could leverage a lot of research developed by the Google Music team.

Regarding the 2DFTM features in Chapter 9, we believe they are sufficiently general to be useful

for tasks other than cover song recognition. In particular, they could help identify similar patterns

that are not covers, but rather influences. Music is not reinvented at every song, especially in terms

of harmony. We should be able to identify trends that might be associated with music eras or certain

musicians. We believe that defining those trends should amount to finding a harmonic manifold of

music, a subspace where neighbors are song section with similar melodies and harmonies.

Leveraging the large collection of covers in the SHS, we would like to investigate methods that

specifically learn the relationship between covers. It could take the form of learning a metric that

pushes covers closer to one another while pushing away other songs1 At another level of complexity,

it could focus on some aspect of the audio based on the song genre. After all, what matters most

for pop covers is probably the melody, while the chord sequence is more important than the solo

for jazz sessions.

10.2 Using the Million Song Dataset

The Million Song Dataset is the largest, heterogeneous collection of MIR data available to re-

searchers. Most tasks that have been studied in the past (automatic tagging of music, similarity,

etc) should be re-investigated in the context of a million data points. What really interests us are

tasks that could not be studied before because of the lack of data.

1MLR code [McFee and Lanckriet, 2010] from Section 9.5.5 is a good starting point.
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First, we hope to see more work about managing large music collections. Metadata matching

has been largely ignored by the research community, but it is an extremely difficult problem in

practice. As an example, the metadata below applies to the same song, first in the Musicbrainz

(BRZ) database, then in the MSD. The first “-” represents the separation between artist and song

title.

BRZ: Edu K - Sex-O-Matic (feat. Deize Tigrona) (DJ Mavi & DJ Sany mix)

MSD: EDU K feat. Deize Tigrona - Sex-O-Matic (DJ Mavi+DJ Sany Baile Funk Mix)

There is enough overlap that a human could be confident about the match. However, this is not

something that can be solved by a string edit distance and a few rules. Another example involving

classical music and multiple languages is below. For non-Russian readers, the Musicbrainz artist is

“Pyotr Ilyich Tchaikovsky”.

BRZ: Пётр Ильич Чайковский - Piano Concerto No. 1 in B-flat

minor, Op. 23: II. Andantino semplice - Prestissimo

- Tempo I (feat. conductor: Pietro Argento,

piano: Van Cliburn)

MSD: Van Cliburn - Concerto No 1 In B Flat Minor_ Op23:

Second Movement - Andante Semplice; Prestissimo;

Tempo Primo

We strongly believe that these matching issues should be discussed in research publications. At the

moment, each organization or researcher reinvents the wheel and hacks a frequently-unsatisfying

solution.

Second, we should use this collection to perform recommendation and understand which features

matter. [McFee and Lanckriet, 2012] do something similar for playlist generation where they show

that tags are more useful than release year, which is more useful than lyrics.

Finally, we have mentioned in the previous section the idea of discovering harmonic trends in the

MSD. By introducing information about the release year of songs, we can consider studying music

evolution. We have seen year prediction in [Bertin-Mahieux et al., 2011a], and [Serrà et al., 2012]

claim to have shown that music is becoming more dull. We believe both are baby steps, albeit in the

right direction. Understanding music evolution from a data-driven point of view, without cultural

inputs from musicologists, would be a tremendous achievement in music technology. Computers

could finally claim to understand music on a level similar to that of a human.
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Appendix A

Content of the Million Song Dataset

In Table A.1 we list each field provided by each of the million HDF5 files contained in the Million

Song Dataset.

Most are self-explanatory, but more details can be found online1. It can be sufficient to note

there are metadata fields (e.g. artist name or title), identifier fields (e.g. track id or artist 7digitalid)

and audio features (e.g. segments pitches or beats start).

1http://labrosa.ee.columbia.edu/millionsong/faq

http://labrosa.ee.columbia.edu/millionsong/faq
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analysis sample rate artist 7digitalid

artist familiarity artist hotttnesss

artist id artist latitude

artist location artist longitude

artist mbid artist mbtags

artist mbtags count artist name

artist playmeid artist terms

artist terms freq artist terms weight

audio md5 bars confidence

bars start beats confidence

beats start danceability

duration end of fade in

energy key

key confidence loudness

mode mode confidence

num songs release

release 7digitalid sections confidence

sections start segments confidence

segments loudness max segments loudness max time

segments loudness start segments pitches

segments start segments timbre

similar artists song hotttnesss

song id start of fade out

tatums confidence tatums start

tempo time signature

time signature confidence title

track 7digitalid track id

year

Table A.1: List of the 55 fields provided in each per-song HDF5 file in the MSD.
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Appendix B

Cover song experiment with audio

data

Using audio as the input for cover song matching is a challenge, specifically because beat-synchronous

features rely on a consistent beat tracker. Fortunately, The Echo Nest provides an open API which

will convert any uploaded audio into the format provided in the Million Song Dataset.

We experimented with this using cover songs found on YouTube. Results below are obtained

through the 2DFTM method. For instance, the song “Summertime” by Ella Fitzgerald and Louis

Armstrong1 was correctly associated with a cover version by Joshua Redman (first match). The

Ella Fitzgerald and Louis Armstrong version present in the SHS was found at rank 9. The fact

that this was not the first match might be explained by the lower audio quality on YouTube, or it

could be a different version. Also, the features returned by The Echo Nest have slightly changed

from the version in the MSD (version 4 versus 3). Considering the two interchangeable might be a

mistake.

A few notes on extracting audio from Youtube: we use youtube-dl.py2 to download the video,

and ffmpeg3 to extract the audio to a wavfile. The command is:

ffmpeg -i <youtube file> -vn -ar 44100 -ac 2 -ab 192 -f wav output.wav

1http://www.youtube.com/watch?v=MIDOEsQL7lA

2http://rg3.github.com/youtube-dl/

3http://ffmpeg.org/

http://www.youtube.com/watch?v=MIDOEsQL7lA
http://rg3.github.com/youtube-dl/
http://ffmpeg.org/
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If one does not want to rely on The Echo Nest API and has a large music collection to analyze,

many feature extractors provide chroma features and beat estimation. We mention a few that are

widely used. This is not an endorsement, nor is it an exhaustive list.

• Dan Ellis’ chroma feature analysis and synthesis Matlab code (http://labrosa.ee.columbia.

edu/matlab/chroma-ansyn/);

• Dan Ellis’ beat tracking Matlab code (http://labrosa.ee.columbia.edu/projects/beattrack/);

• The MIR Toolbox contains both chroma computation and beat tracking code in Matlab

(https://www.jyu.fi/hum/laitokset/musiikki/en/research/coe/materials/mirtoolbox);

• Vamp Plugins exist for both chroma computation and beat tracking code (http://www.

vamp-plugins.org/download.html).

http://labrosa.ee.columbia.edu/matlab/chroma-ansyn/
http://labrosa.ee.columbia.edu/matlab/chroma-ansyn/
http://labrosa.ee.columbia.edu/projects/beattrack/
https://www.jyu.fi/hum/laitokset/musiikki/en/research/coe/materials/mirtoolbox
http://www.vamp-plugins.org/download.html
http://www.vamp-plugins.org/download.html
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