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ABSTRACT 

Use of External Representations in Reasoning about Causality 

David L. Mason 

 

This research investigated if diagrams aid in deductive reasoning with formal causal 

models.  Four studies were conducted exploring participants’ ability to discover causal paths, 

identify causes and effects, and create alternative explanations for variable relationships.  In 

Study 1, abstract variables of the causal model were compared to contextually grounded 

variables and causal models presented as text or diagrams were compared.  Participants given 

abstract diagrams did better in most tasks than participants in the other conditions, who all did 

similarly.  Studies 2 and 3 compared causal models expressed in text to diagrammed causal 

models, and compared models using arrows to models using words when connecting variables.  

Participants who had arrowheads replaced with words made more errors than participants in 

other diagram conditions.  Diagrammed causal models led to better performance than did other 

conditions, and there was no difference between different text models.  Studies 4 and 5 tested the 

hypothesis that predictive reasoning (from cause to effect) is easier than diagnostic reasoning 

(from effect to cause).  The two studies did not find any such effect.   
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Chapter 1 – Causality and Diagrams 

Causal inferences affect future behavior.  This is because a causal model can be used to 

explain past events and predict future outcomes.  People assess the strength of the relationship 

between two events, interpret that relationship using implicit or explicit causal models, and then 

use that information to predict future events.  Without this ability to reason causally, 

relationships between events would appear arbitrary, and planning for a future event would be 

impossible.  For this reason, the nature of causality and how people reason about it has been 

addressed for millennia and in diverse fields such as philosophy (Bacon, Campbell, & Reinhardt, 

1993), psychology (Piaget, 1930), physics (Bohm, 1957), economics (Zellner, 1988), medicine 

(Stehbens, 1992), statistics (Freedman, 2007), and computer science (Dean & Kanazawa, 1989).   

 These attempts in different fields and at different historical time periods to understand 

causality and causal reasoning have had similar aims and emphases.  All have sought to address 

how and why events are related and how people perceive those relationships.  Often this is done 

through the use of formal mathematical methods.   

            It is useful to consider causal reasoning as involving two subcategories of 

reasoning.  There is the reasoning that occurs as a person makes efforts to assign causal 

properties to events.  An example would be feeling heat when passing a hand over a flame and 

determining that the fire caused the heat.  This inductive process serves the purpose of creating a 

causal model to use for predictions in the future.  These deductive predictions from a causal 

model comprise the second category of causal reasoning.  Having already determined that fire 

causes heat, if a person wanted to be warm, they could use their causal knowledge to start a fire 

that would satisfy their need.  Causal reasoning often involves a series of interleaving instances 

of inductive and deductive reasoning as one creates a causal model, puts it to the test, and then 
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makes the necessary adjustments to hone the model.  For example, a tutor may reward a pupil 

with a quick video game break during a lesson.  When the student comes back refreshed, the 

tutor may reason that video games cause better performance.  But after observing the same 

results after a snack break, the tutor may revisit the original causal model and modify it so that 

instead of crediting video games with the student’s performance, now the more general concept 

of taking breaks is thought to cause improved performance. 

 The question of how a person actually makes such inductive and deductive causal 

inferences is still a matter of some debate.  The modern conception of causality is often 

attributed to David Hume (1739/2000) who proposed an associative theory of causal induction.  

This idea that people infer causal attributions based on the covariance of two or more events was 

the dominant theory for the next 250 years (Mill, 1843/1974).  More recently, theories have 

begun to recognize other sources people use for causal inference, such as prior knowledge or 

experimentation (Ahn, Kalish, Medin, & Gelman, 1995; Cheng, 1997; Pearl, 2000).   

Diagrams and causality 

 As the theories explaining causal reasoning have become more sophisticated, so have the 

methods used to represent them.  Causal diagrams (e.g. directed acyclic graphs, Bayesian 

networks) are frequently used to express a causal model.  Diagrammatically representing 

complex information has a large literature justifying its use (Larkin & Simon, 1987; Tversky B. , 

2005) but always with the caveat that subtle design choices can lead to systematic errors and 

biases (Tufte, 1983).  And although diagrams are ubiquitously associated with causal models, 

little research has been done on the actual cognitive and performance advantages of using causal 

diagrams, if indeed, any exist.   
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Research on best practices for causal model representation might focus on two scenarios: 

how people employ external representations to construct, modify and use causal models 

themselves, and how they might use external representations to convey a causal model to others.  

One instantiation of the latter scenario involves situations where experts are doing the inductive 

attribution work and then communicating complex findings to an untrained audience.  Examples 

include a climatologist presenting findings regarding climate change to a legislator, an 

organizational psychologist explaining results to a company’s board of directors, a sociologist 

presenting educational research to a superintendent, or a journalist writing to her readers about 

healthcare.  What the recipients of these models do with the findings, through deductive 

reasoning, has the potential for shaping public policy, business practices, or general lifestyle.  It 

is therefore important to prevent any break in communication between what the causal model is 

meant to express and what is actually perceived.   

Features to explore in causal diagrams 

It may be helpful to consider how use of a causal model might be affected by three 

aspects of the model: the content of the model, diagrammatic elements of the external 

representation, and cognitive biases that affect use of the model.   

Content 

Research has shown that people reason about abstract material differently than they do 

about socially grounded material (Cosmides, 1989; James, 1975; Schwanenflugel & Shoben, 

1983) often demonstrating more success with the grounded material.  There is not a consistent 

advantage for contextual material over abstract material, however.  Familiarity may also lead to 

biases that can inhibit correct interpretation of the specified model.  This may occur if the model 

identifies relationships that seem implausible based on the reader’s pre-established mental model 
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(Easterday, Aleven, Scheines, & Carver, 2009; Stroop, 1992) or if the model introduces 

irrelevant information that can distract from the task (Day, Manlove, & Goldstone, 2011; 

Kaminsky, Sloutsky, & Heckler, 2008).   

Because formal causal models are created to represent real-world findings, context is an 

integral component of the model.  Provided the model represents relationships that can be 

deemed plausible, it would seem that a model posed in a specific context would be processed 

more easily than an abstract model.  However, the primary purpose of the causal model is to 

represent the existence and directionality of causal relationships between variables, therefore the 

additional information provided by grounded variables might serve only to obscure those 

relationships, thus detracting from model-based inference tasks.   

Diagrammatic elements 

A causal model is relatively simple in its construction.  It consists of variables and the 

connections between those variables.  A diagram adds the components of symbolic connections 

between variables (arrows) and using space to arrange the variables in a way that a causal model 

presented as text cannot.  Previous research has shown that participants who were presented with 

diagrammed causal models were able to answer questions about the model more successfully 

than participants who received the model in text form (Corter, Mason, Tversky, & Nickerson, 

2011).  Even though the two models are informationally equivalent, they appear not to be 

computationally equivalent.  That is to say, a diagrammed visualization seems to allow for easier 

interpretation compared to a text-based representation.  This advantage in performance for 

diagrammed models likely stems from some combination of the advantage of an explicit spatial 

array to represent causal priority and the use of arrows that both connect variables and indicate 

directionality of specific causal relationships. 
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Arrows are rich with symbolic meaning (Heiser & Tversky, 2006) and may be a 

significant aid in interpreting causal models.  In a diagrammed causal model, arrows represent 

the asymmetrical temporal relationship of a cause and an effect.  However, words share similar 

properties to arrows in that a word is read from left to right and often has asymmetrical 

properties as well.  For example, the word “affects” always means that the noun in the subject 

part of the sentence is the agent acting upon the noun in the predicate part of the sentence.  There 

is no ambiguity that the predicate is actually acting on the subject.   

It would appear that given the similarity between words and arrows, any advantage in 

performance for participants with diagrams over participants with text could be reasonably 

attributed to the spatial organization of diagrams.  However, even though the connections 

between variables (arrows and words) are similar in purpose, there is not yet any evidence that 

they result in similar performance.  The elimination of connection type as a contributing 

explanation for performance differences would bolster the case for spatial array as the primary 

explanation for why diagrammed causal models improve reasoning. 

Cognitive biases and errors 

The final category to explore is the inherent biases that people bring when reasoning 

about causality (Kelley, 1973; Maldonado, Jimenez, Herrera, Perales, & Catena, 2006).  One of 

these potential biases is the idea that there is a difference between reasoning about the effects of 

causes and the causes of effects (Mill, 1843/1974).  There are several reasons to expect an 

asymmetry between the ease or accuracy of reasoning from cause to effect (predictive inference) 

and from effect to cause diagnostic inference).  These reasons include causal features being more 

salient (Ahn, 1998; Ahn, Kim, Lassaline, & Dennis, 2000; Tversky & Kahneman, 1980), 



6 

 

 

 

psychological essentialism (Medin & Ortony, 1989), and temporal consistency (Hume, 

1739/2000; Tversky & Kahneman, 1980).   

There is reason to doubt a universal bias towards predictive inference however.  Research 

has shown that several factors, e.g. the amount of available evidence for causes and effects, are 

more instrumental in determining which inference is easier (Fernbach, Darlow, & Sloman, 

2011).  Research in this area has been conducted by presenting participants with either simple, 

dichotomous text or verbal problems.  Framing the question as a complex model or by using a 

diagram is as of yet, unexplored.    

To summarize, much research in cognitive science and related fields has examined the 

nature of inductive causal reasoning.  In formal methods for causal modeling, diagrams have 

been used almost since the inception of the techniques (Wright S. , 1920).  However, little 

research has been done on whether diagrams are actually useful for causal representation and 

causal reasoning.  Nor has there been much research on how non-experts deductively reason 

from explicit causal models.  Research addressing the type of content of a model, diagrammatic 

elements of the model, and pre-existing biases that affect people’s interpretations of causal 

models, should be useful to achieve better understanding of the utility of using diagrams to 

represent causal models.   
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Chapter 2 – Literature Review 

The concept of causality has been studied in many disciplines.  The nature and definition 

of causality is of great interest to philosophers examining the ontological nature of the 

relationships between events.  Scientists in many sub-disciplines wish to determine the extent to 

which an event causes an effect in order to make predictions with greater accuracy.  

Programmers need to understand how people learn causal relationships so they can replicate that 

learning in machines.  Many cognitive scientists are interested in causal reasoning, to understand 

the thinking that people do in order to simply navigate their lives.   

It is useful to consider causal reasoning as consisting of two categories, or types, of 

reasoning.  The first type, inductive reasoning, is where people take evidence and create (either 

explicitly or implicitly) a causal model.  The second type, deductive reasoning, is the process of 

inference from an already-established causal model.  These terms will be referred back to 

frequently throughout this review. 

The Nature of Causality  

The notion of causality has long been of interest to philosophers and scientists alike.  In 

Western philosophy, the first recorded analytic treatment of causality can be traced back to 

Aristotle (Aristotle, n.d./2004).  His view of causality is more closely aligned with our current 

idea of ontology in that he was searching to explain an object’s existence (its cause for being) 

rather than identify how one event relates to another.  He described the cause of every object as 

being composed of four causal elements: the material cause, formal cause, efficient cause, and 

final cause.  The material cause of an object is that of which it is made.  For example, the 

material cause of a chair is the substance (wood, upholstery, etc.) from which it is constructed.  

The formal cause is the form of the object, i.e. a chair is a chair because it is shaped like a chair.  
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The efficient cause is the process of change that resulted in the object.  That is to say because the 

materials went through a chair-making process; the chair’s efficient cause is that process.  Lastly 

the final cause is the ostensible purpose of the object.  Because one sits on the object, its purpose 

is to be a chair.  The combination of these four causes is what gives an object its explanation of 

being. 

The Stoic philosophers are to be credited with our modern conceptualization of causality 

as a description of a deterministic relationship (that an effect would not have occurred without its 

cause).  They dismissed most of Aristotle’s other causal elements, arguing instead that all 

causation was efficient causation (Frede, 1987), that every event was an effect which 

necessitated having a cause. 

Although the Stoics are responsible for changing the idea of a cause from a description of 

being to a description of a relationship, much of how the study of causality is approached 

currently can be largely attributed to David Hume (1739/2000).  His approach was to focus less 

on the explanation of why something occurred but simply to focus on the explanation of how it 

occurred.  He proposed that we are unable to actually perceive cause and so we inductively draw 

probabilistic conclusions based on observed covariation.  What we call “cause” is merely a way 

of describing the temporal order of covarying events.  It was Hume’s rules about temporal 

contiguity and order that evolved the study of causality to the one that persists today. 

Immanuel Kant (1781/1999) challenged Hume’s assertions about the unknowable nature 

of causality by proposing an alternative explanation.  He argued that Hume was too skeptical 

about causality’s existence because he focused too much on empiricism as being objective truth.  

Contrarily, Kant believed that causality could exist because of his belief in objective truth and 
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that at some level, humans have an a priori concept of how objects and events relate to each 

other which we then use to structure our experience.  

John Stuart Mill (1843/1974) advanced the idea that a singular cause was rare and that 

effects were the result of several partial causes.  He also discussed negative cause, that the 

absence of something can itself be a cause.  Mill developed several rules of causal logic, known 

informally as Mill’s Methods, to explain appropriate causal induction.  These rules were 

predicated on the notion of a cause being necessary and sufficient.  That is to say, he proposed 

that a cause (i.e. the combination of necessary partial causes) would be sufficient to invariably 

produce a particular effect, regardless of other influences.  Mill’s work was instrumental in 

establishing the philosophy of science. 

J. L. Mackie (1965) contributed to the philosophy of causality by proposing that an event 

can have multiple causes (contrast this with Mill’s idea that one cause can be made up of several 

components).  This distinction is important because the work of the aforementioned philosophers 

had supposed that causes were both necessary and sufficient to bring about an effect.  Mackie 

explored this idea using the example of investigating a fire and concluding that an electrical short 

was the cause of the fire.  There are several other crucial components to this scenario such as not 

having a proper sprinkler system and flammable material being near the spark, both of which 

were necessary for the fire to have occurred.  Thus, in many situations, when people refer to the 

cause of something, they are actually referring to an event that by itself is insufficient to bring 

about the effect but nonetheless necessary, but only within the context of a larger condition (the 

causal field) that by itself is unnecessary but sufficient.  This is known as an INUS variable, 

drawing from the acronym created by the previously italicized words.  So because an electric 



10 

 

 

 

short is not the only way to start a fire, the electric short is both not necessary and insufficient 

unless there is a condition where all that is missing to start the fire is the electrical short.  

Formal Computational Models of Causal Reasoning 

 Modern conceptions of causality follow in the tradition of Hume and Mill with the idea 

that causes are made up of material elements which can be studied.  Under this assumption, 

many attempts have been made to move beyond merely logical representations of causality and 

establish a mathematical computational model that can be used to parse the degree of causal 

influence an event has on an effect, and to automatically generate deductive inferences. 

 The first attempts at such a theory were by Yule (1899) who tried to use the regression 

techniques developed by Legendre (1805) and Gauss (1809) to establish a causal link from the 

correlational data regarding the policy decisions of local representatives and the number of 

people on welfare.  Ultimately Yule decided he was not able to make any causal assertions.   

The next step in the evolution of causal representation can be traced to Sewell Wright 

(1918; 1921) a scientist working for the United States Department of Agriculture.  His 

contribution grew from observations about data regarding rabbit growth that correlations might 

be misleading because they used overlapping variance in explanations.  He developed the 

technique known as path analysis, which works by creating an a priori causal model of the given 

variables and then using regression techniques to estimate path coefficients to the proposed 

connecting causal links, thereby allowing a researcher to both measure relationships and 

(indirectly) to posit new ones.   

Structural Equation Modeling is a general framework for fitting causal models, differing 

from path analysis by using maximum-likelihood estimation methods and by allowing for 

modeling of latent (unobserved) variables.  The techniques of SEM were developed through 
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several fields simultaneously during the 1960s and 1970s, thus SEM does not have a single 

inventor although Sewall Wright is often considered to be its progenitor (Bollen & Pearl, 2012).   

It is important to emphasize that any causal claims that stem from these methods are 

assumptions provided by the researcher.  Path analysis techniques do not infer causality so much 

as assess the evidence for a researcher’s claim of causality.  Because the causal model is 

essentially in place in the mind of the researcher, these formal methods of representation are used 

to deductively reason about the variables and do not provide insight into how people inductively 

identify causal relationships.   

Additionally, people do not reason mentally about causality using formal mathematical 

models.  Rather most inductive and deductive causal reasoning, e.g. identifying what foods make 

one sick or finding appropriate retorts to a spouse, is done in an ad hoc, informal manner.  The 

mechanisms for accomplishing such tasks are still unclear although several theories have been 

posited.   

Informal Causal Reasoning  

Hume’s theory of strict associationism was a great influence on early behavioristic 

learning models in psychology and related fields.  One of the most widely-cited of these models 

is the Rescorla-Wagner (R-W) model (Rescorla & Wagner, 1972).  This classical conditioning 

model proposed that learning occurred when expectations were most disparate form outcomes.  

As someone becomes accustomed to observing a co-occurrence relationship between two events, 

the surprise diminishes and the relationship is considered to be learned.  By adding the element 

of expectation, this model can account for unresolved issues (e.g. overshadowing and blocking, 

where a second stimulus is erroneously perceived to be weaker) that occur with a strictly 

associative view of learning (Miller, Barnet, & Grahame, 1995).   
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There remain however, several phenomena that the R-W model cannot account for, such 

as backward blocking (a retroactive reduction in causal strength of a second variable) and how 

the most salient stimulus is not necessarily considered to be causal (Buehner & Cheng, 2005; 

Cheng, Novick, Liljeholm, & Ford, 2007).  These problems stem from the basic assumptions 

inherent in associationism.  One way to resolve these problems is to incorporate the use of an a 

priori causal mechanism (Kant, 1781/1999), known now as a power or rule-based theory.  In 

other words, the reason people do not say that a rooster causes the sun to rise or that Thursday 

causes Friday is because people have to have some reason to believe that the cause generated the 

effect rather than merely coexisted with the effect (Ahn et al., 1995).  Patricia Cheng proposed a 

formal model that combines the associative and the a priori concepts without the flaws that 

plague either theory and called it the power probabilistic contrast model (Cheng, 1997; Cheng & 

Novick, 1990).   

Another recent theory of formal causal inference is Causal Bayesian Networks (Pearl, 

2000).  This is a method that mathematically estimates the effect of confounding variables (by 

computing and reconciling appropriate conditional probabilities), thereby creating an ad hoc 

experimental condition – a simulated intervention as it were – that estimates the degree of 

causality.  Such Bayesian Networks (BNs) have been argued to combine ideas from 

associationism (i.e., the conditional probabilities), rule-based theories (the set of included 

variables), and Mackie’s concept of INUS variables, and returns mathematically justifiable and 

useful results.  One of the benefits of Bayesian analysis is that it bridges the gap between 

inductive and deductive causal reasoning (Lagnado, 2011). 

Although causality at its most basic can be described simply as “A causes B” – and 

science attempts to minimize experimental variables in order to achieve that simplicity – rarely 
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do natural phenomena present such a clear manipulation.  Previous efforts from cognitive 

science, statistics, and philosophy have documented a number of errors that people make in 

causal inference.  These errors can be made both inductively (formulating an incorrect causal 

model on the basis of evidence) or deductively (using a causal model to draw incorrect 

inferences or predictions about events).  An inductive error is one that occurs when trying to 

create a causal model based on evidence, such as an observed (spurious) correlation.  For 

example, observing a correlation between  owning a laptop and doing well on a mathematics 

assessment, and forming a theory that the former causes the latter (not considering other related 

variables such as socio-economic status) is an example of using spurious relationships among 

variables to induce an incorrect  model.  A deductive error is one that occurs when the model is 

in place but erroneously interpreted.  One possible example of a deductive error would be an 

incomplete search for causal factors (a phenomenon known in the computational learning 

literature as “blocking”).  A specific example is if a school administrator—presented with a 

causal model that showed the effect of SES on both use of laptops and math scores—were to 

ignore the effects of SES anyway, inferring the spurious correlation because laptops seemed to 

explain the math scores.   

The Role of Diagrams in Causal Reasoning 

Although causal models have become synonymous with diagrammatic representation 

(e.g. directed acyclic graphs, Bayesian networks), it is interesting to note that initial efforts in 

modeling causality did not use diagrams.  In the paper on poverty and politicians, Yule (1899) 

drew only a table.  In Wright’s first paper where he described path analysis (1918), he simply 

presented a table in which he computed partial correlations.  A follow-up paper (1920) is where 

the familiar diagrammatic path analysis first appears.  In Pearl’s (1985) first paper on the subject, 
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he did not represent Bayesian networks as a diagram.  This observation highlights the fact that 

diagrams are not critical to these techniques.  

However, to the modern user path analysis and Bayesian networks would seem 

incomplete if an accompanying diagram did not appear.  So what is it about diagrams that make 

them ubiquitous in studies on causality?  Is their appeal purely esthetic?  Do they simply create 

an interface that simplifies an otherwise overly complex idea?  Can diagrams contribute to 

reasoning in a way not otherwise easily accomplished?  Or are they merely useful as external 

memory which can free up cognitive processes for reasoning? 

Pearl (2000) stresses the importance of using diagrams to reason about the nature of the 

model.  Diagrams are not bound by the spatial constraints of sentential text.  Diagram designers 

can take advantage of this fact, grouping relevant data together in a way as to minimize 

searching (Larkin & Simon, 1987).  Sometimes perceptual cues are present that can increase the 

amount of information being presented.  For example if a line bisects another line at a 30-degree 

angle, it is perceptually salient that the neighboring angle is (roughly) 150 degrees.  The 

visualization also facilitates a host of other inferences not readily apparent from the equivalent 

text description (Larkin & Simon, 1987; Scaife & Rogers, 1996).  These organization advantages 

mean that diagrams can aid mental computation because a diagram can present equivalent 

information to text but in a format better suited for inference (Larkin & Simon, 1987).  Diagrams 

can help make implicit possibilities explicit.  In one study (Bauer & Johnson-Laird, 1993) 

participants were given a reasoning problem where the diagram version was arranged to look like 

puzzle pieces.  This cue helped participants figure out the problem both faster and more 

accurately than text.  The text articulated the same limitations demonstrated by the puzzle pieces, 

but that did not translate to equivalent success by the problem solvers.  Diagrams can also 
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accentuate relevant features, such as in caricatures or in maps (Mauro & Kubovy, 1992; Tversky 

et al., 2007).  Creating diagrams is a “deep processing” task that can improve understanding: In 

one experiment, students who created their own diagrams performed better on subsequent tasks – 

one being understanding causal relationships – than students who summarized the same content 

through text (Gobert & Clement, 1999).  

Empirical Studies on Diagrams and Causality.  Despite a great interest in improving 

causal reasoning and a large body of literature on the usefulness of diagrams in general, only a 

few studies have been done specifically on use of causal diagrams and their benefits for causal 

reasoning.  One study found no difference in performance between participants who studied 

three pages of text explaining a causal model and participants who were presented with a 

diagrammatic model (McCrudden M. T., Schraw, Lehman, & Poliquin, 2007), when both groups 

were tested on their memory of the relationship.  The absence of a difference in outcomes was 

viewed as a positive because of the increased efficiency of the diagrammatic condition.  

However it was not clear whether causal diagrams were beneficial at the encoding or retrieval 

stage (or both).  In a subsequent experiment the authors studied whether explicit lists worked the 

same as causal diagrams (McCrudden, Schraw, & Lehman, 2009) and found that when providing 

an extra study tool – either in the form of rereading the text, getting a list of causal steps, or a 

diagram of causal steps – the list and the diagram conditions were generally equivalent and both 

were better than rereading the text.  They hypothesized that the findings might differ for 

experiments that were to employ causal models more complex than the simple linear one they 

used (i.e., “A causes B which causes C” and so on).  

Other studies (Easterday, Aleven, & Scheines, 2007; Easterday, Aleven, Scheines, & 

Carver, 2009)  have found that participants who were given a diagram and textual explanation 
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did better in reasoning about a public policy problem than those who had only the text or those 

who had the text and then constructed their own diagram.  However, on a subsequent related task 

where they were again only presented text, those who had previously constructed diagrams did 

better than the other conditions even though the second task did not involve diagram 

construction.  Those who had previously only seen diagrams and text did better than those who 

had only seen text.  

 However, in those studies, the conditions were not entirely equivalent, because people in 

the text condition received less information than in the other conditions.  This confound occurs in 

other studies as well (see McCrudden et al., 2007; Langley & Morecroft, 2004), making 

conclusions difficult to generalize.  

Some previous research has attempted to assess the effects of using diagram with a more 

complex causal model, keeping informational content equivalent between conditions (Corter et 

al., 2011).  In one experiment, participants were given a causal model consisting of five nodes 

that were interconnected in nine ways.  Compared to those who saw a sentential (text) 

representation of the same model, participants were both more accurate and faster at completing 

the task.  Another experiment used an even more complex model (six nodes, ten connections) 

and tested whether the depicted direction of causal flow in the diagram mattered.  Participants 

with diagrams were again faster and more accurate.  But this research also showed that a diagram 

with causal flow depicted as from left-to-right was processed faster than a diagram with causal 

flow reading from right-to-left.  The right-to-left diagram had similar performance outcomes but 

the time for task completion was almost twice as long as the left-to-right diagram condition. 

Based on these findings, it appears that diagrams aid reasoning about causality better than 

text although the reason for that is unclear.  Additionally, it appears that aspects of the diagram 
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itself can be designed to further facilitate reasoning.  The exact components of a diagram that are 

relevant and useful have yet to be categorized. 

Future Avenues of Exploration 

Because of the emerging nature of studying how diagrams affect causal reasoning, there 

are several areas within which to explore these questions.  Lines of research that may prove 

fruitful are to examine the role several factors, specifically the content of the causal model, the 

structure of the causal model, and cognitive biases that can affect how accurately inference 

proceeds. 

Content 

Diagrams used with causal models in real applications are by their very nature grounded 

in a real-world context.  Research has shown that this grounding can be beneficial (Cosmides, 

1989; James, 1975; Schwanenflugel & Shoben, 1983), with people showing better performance 

outcomes when reasoning with concrete material.  One possible explanation for this finding is 

described by the Dual Representation Model (Schwanenflugel & Shoben, 1983), which assumes 

that specific domain content / context encourages both visual and verbal representations, whereas 

abstractions only activate verbal representations.  Another possibility is described by the Context 

Availability Theory (Kieras, 1978), which assumes that familiarity with the context provides 

additional information which is unavailable for abstract concepts, and which may aid inference.  

Therefore it would be informative to include problems in our research that involve socially- and 

pragmatically- grounded relationships, and to examine if reasoning in these types of problems 

differs from those using abstract relationships.  A participant’s previous familiarity with the real-

world domain tapped by the variables in the contextually grounded model may reduce the 
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cognitive effort necessary for keeping track of those variables and their relationships (Ericcson, 

Chase, & Faloon, 1980), and may reinforce causal inferences via experience-based learning.  

However, research has also shown that in some cases context can actually inhibit 

performance.  This seems to happen when the task is poorly understood (Cummins, Kintsch, 

Reusser, & Weimer, 1988; Geary, 1994), when the context is counterintuitive (Easterday, 

Aleven, & Scheines, 2007; Stroop, 1992), or when the context introduces superfluous 

information that distracts from the problem (Day, Manlove, & Goldstone, 2011).  As described 

in the previous section on the nature of causality, causal inference is often treated as a 

contextually grounded logic problem.  Thus, context may complicate deductive reasoning.  This 

may be one of the reasons that the techniques of causal modeling are usually taught using 

abstract variables.   

Structure 

Causal models are interesting in that they convey both structure and function.  The 

structure of the model is defined by its makeup of variables and their relations.  The functional 

aspect of the model is that those relations indicate effects or “operations”, i.e. that one variable 

causes another.  As such, causal models seem to be ideally suited for diagrammatic 

representation.  However, research has shown that diagrams can create misinterpretations if they 

not designed correctly (Tufte, 1983).   

In comparing causal diagrams to causal text, there are few structural differences to 

explore.  They both are made up of variables and both use links to connect those variables.  The 

links are similar in purpose yet different in representation.  Arrows, typically used in causal 

model diagrams, have a rich symbolic history, invoking several hundred possible meanings 
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(Horn, 1998).  Their use may be an important factor in what makes diagrams easier to interpret 

than text. 

The diagrammed model also introduces a component not present in the text-based 

sentential model, the use of space.  Larkin and Simon (1987) make the point that the 

computational cost of searching for information is less when searching in a diagram than then 

when searching text containing equivalent information because of the way information can be 

organized.  Additionally, the cognitive effort for inference can be lessened as well.  In a causal 

model, the information about variables and their interconnectedness is immediately perceptually 

apparent due to its spatial organization, but not when presented in sentential format. 

The cognitive effects of these specific components of diagrams, arrows and the spatial 

layout of causal models are issues in need of further exploration to determine the extent of their 

influence on causal inference and whether manipulation of those elements might lead to errors. 

Cognitive bias 

People develop the notion of causality at an early age (Cohen, Amsel, Redford, & 

Casasola, 1998; Goswami & Brown, 1990; Leslie & Keeble, 1987).  Because even simple forms 

of causal reasoning can be adaptive, there is adaptive value in developing cognitive heuristics 

that aid (but may sometimes hinder) causal reasoning.  People seem to assign causality 

spontaneously to a relationship between co-occurring events (Wong & Weiner, 1981), which 

suggests that the causal mechanism may sometimes go awry (e.g., in the formation of 

superstitions).  There are many causal errors that might be investigated.  We focus on possible 

biases in reasoning deductively from cause to effect versus from effect to cause. 

The idea that reasoning from cause to effect (predictively) and reasoning from effect to 

cause (diagnostically) may not be equally difficult has been around at least since the 1800s (Mill, 
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1843/1974).  Recent research indicates that predictive reasoning is often easier (Ahn, 1998; Ahn 

et al., 2000; Tversky & Kahneman, 1980).  One possible explanation of why causes and effects 

have asymmetrical status involves the temporal position of causes and effects.  As Hume 

(1739/2000) observed, a cause must precede its effect.  Our experience in the world is that time 

proceeds linearly, with effects never occurring before causes.  When reasoning about causes and 

effects, it may be more intuitive to think in chronological order.   

Diagnostic reasoning also has a fundamentally different structure than predictive 

reasoning (Pearl, 1988; Waldmann & Holyoak, 1992).  In predicating and confirming a cause 

and effect relationship, both predictive and diagnostic reasoning must be aware of what effects a 

cause must have.  But in diagnostic reasoning, one must also be aware of competing causes.  For 

example, knowing that an acquaintance was driving drunk, it would be easy to predict a 

subsequent car accident.  However, knowing that an acquaintance was in a car accident offers 

little evidence of previous inebriation as the accident could have been caused by a myriad of 

other factors. 

Another factor to consider is that in a cause-effect relationship, the cause is the agent of 

change.  The effect is the passive result.  This is reflected in the typical order of sentence 

construction, where the subject acts upon the predicate.  Reversing the order and placing the 

acted-upon entity as the subject is considered a special (less effective) case, the passive voice.  In 

general, the actor is awarded a preferred position of primacy in language (Ferreira, 1994).  These 

related ideas may bear on interpreting causal models.  A cause both occurs before and brings 

about its effect.  Thus the mental representation of a cause may reflect both its temporal position 

and its status as agent.  The process of interpreting a causal model, especially a complex one, 

may be aided by framing questions in such a way as to assure the cause-effect relationship is 
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aligned with its most intuitive mental representation.  That is to say, it may be easier to reason 

about X causing Y than to reason about Y being caused by X.   

Another possible explanation for the cause-effect asymmetry is the idea of psychological 

essentialism (Medin & Ortony, 1989).  If I use a hammer as a paperweight, is it not a hammer 

anymore?  The debate revolves around the concept that the hammer contains an essence allowing 

it to retain its “hammer-ness” even when not being used in its traditional sense.  This essence—

whether form, purpose, or intention—is used to produce or limit inferences about the object.  

Cause may serve the same “essence” function when we categorize an event, at least more so than 

an effect does (Ahn et al., 2000).  That is to say, causal features may be more salient (essential) 

because they are used to infer and predict.   

Summary 

Much research has been conducted on the nature of how people reason causally.  

Furthermore, there are visual methods typically used for representing causal relationships, 

primarily directed acyclic graphs or DAGs.  However, little research has been done on how well 

people reason using those visual representations and methods.  Causal model diagrams have 

three categories that should be addressed in order to determine the effect of visualizing the model 

on causal inference.  The first issue to address is the actual content of the model.  Causal models 

are usually posed in terms of real-world variables.  But the effect of specific domain context on 

inference depends on various aspects of the problem in question.  It remains to be seen whether 

causal reasoning is generally helped or hindered by specific domain context.  The second issue is 

that diagrams are generally considered to be useful in easing cognitive burdens for processing 

complex information.  But little empirical evidence exists to support this belief, or that could be 

used to design more effective visualizations.  Careful exploration of the features of a causal 
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diagram can shed light on the efficacy of different visual features of a causal model diagram.  

The third issue is that of cognitive biases.  People typically engage with a causal model using 

their already established heuristics for reasoning about causality.  These heuristics may be innate, 

but more likely arise through extensive informal experience in normal life.  Even with a formal 

causal model intended for reasoning about variables, problem characteristics may trigger use of a 

heuristic that could lead to systematic biases that can interfere with correct reasoning.  It is the 

goal of the following studies to explore these issues not previously addressed in the literature. 
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Study 1: Content 

Study 1 had two goals, the first of which was to compare how well people reason using 

causal models presented as text compared to models presented as diagrams.  Previous work 

(Corter et al., 2011) had shown diagrams to have a positive effect on successful interpretation of 

a causal model.   

The second goal was to compare how the content of a causal model affects successful 

causal inference.  Specifically, Study 1 examined whether content comprised of abstract 

variables leads to more accurate inferences compared to content expressed in terms of variables 

grounded in a real-world context.  Generally, contextually grounding variables benefits 

reasoning when the additional information provided by context contributes to the task at hand 

(Baranes, Perry, & Stigler, 1989).  One reason for this effect is that the burden on working 

memory is decreased (Ericcson, Chase, & Faloon, 1980), which allows more cognitive resources 

to be devoted to reasoning rather than memory.  Additionally, people are thought to develop 

pragmatic reasoning schemas through personal experience which may aid correct reasoning, e.g. 

the “permission” schema (Cheng & Holyoak, 1985; Lehman & Nisbett, 1990).   

Conversely, familiarity with a given context may also lead to biases that can inhibit 

correct interpretations.  This may occur if the context of the relationships seems implausible 

based on the reader’s pre-established mental model (Easterday, Aleven, Scheines, & Carver, 

2009; Stroop, 1992) or if the model introduces irrelevant information that can distract from the 

task (Day, Manlove, & Goldstone, 2011; Kaminsky, Sloutsky, & Heckler, 2008).   

Formal methods for estimating and computing with causal models (e.g., path analysis or 

Bayesian networks) are often taught using abstract contexts, but typically used to represent real-

world (i.e. contextually grounded) variables.  Study 1 presented participants with models 
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containing either abstract or concrete variables for the purpose of ascertaining whether the 

additional information provided by context was an aid or a hindrance to reasoning in a purely 

deductive inference task.   

Methods 

Participants 

A total of 240 participants were recruited from Amazon’s Mechanical Turk (MT).  MT is 

a website that manages a marketplace for employers and workers in Human Intelligence Tasks 

(HITs), typically tasks which present difficulties for artificial intelligence solution.  These tasks 

range from proofreading translations and tagging images to complex psychological experiments 

and may require anywhere from a couple of seconds to several minutes to complete.  Monetary 

compensation varies for these HITs depending on the time investment.   

Because the present study involved interpreting English text, 67 non-native English 

speakers were excluded from the analysis.  Thirteen more participants were excluded due to not 

completing the task.  This left 160 remaining participants across the four conditions.  

The participants were 57% male.  Most participants reported having had some experience 

in higher education with over 90% reporting having attended some college and 37% reporting 

having attended some graduate or professional schooling.  About 42% of participants who 

reported college majors were from mathematical/engineering/computer science programs.  About 

45% of participants indicated having taken only one or two classes on statistics and 50% 

reported never having taken a statistics class.  The average age of participants was 31 years with 

a range from 18 years to 67 years. 
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Stimuli 

Participants were presented with one of the four causal models depicted in Figure 1.  The 

models were identical in structure but varied in how the structure was expressed (either as text or 

a diagram) and whether the variables were abstract or concrete. 

Text-Abstract  Text-Concrete 

C affects R; C affects H; R affects H; R affects 

M; R affects S; H affects M; H affects A; H 

affects S; M affects S; A affects S.  

 

Serving in combat affects receiving an  

injury; serving in combat affects 

psychological distress; receiving an injury 

affects psychological distress; receiving an 

injury affects physical activity; receiving an 

injury affects 5-year mortality; 

psychological distress affects physical 

activity; psychological distress affects 

smoking; psychological distress affects 5-

year mortality; physical activity affects 5-

year mortality; smoking affects 5-year 

mortality 

Diagram-Abstract  Diagram-Concrete 

 

 

 

Figure 1.  The four conditions for displaying the causal model in Study 1.  

Procedure 

This experiment was hosted online in Amazon’s Mechanical Turk (MT).  The experiment-

administration code was written in HTML and JavaScript.  Participants were paid $1.00 to 

complete the task.  Once participants accepted the task, they were randomly assigned to one of 

the four conditions and presented with a short introduction.  They were allowed a maximum of 
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one hour from the time they accepted the task to fully complete and submit it.  Following is the 

introduction for all conditions: 

In causal modeling of a social science problem, researchers try to specify all the 

ways in which variables might influence each other. 

For example, a researcher might assume that variables X, Y, and Z have the 

following causal relationships: X affects Y, X affects Z, and Y affects Z. 

In that case, X has a causal influence on Z in two ways.  First there is a direct effect 

of X on Z (by assumption).  Also there is an indirect effect of X on Z, because X is 

assumed to affect Y and Y is assumed to affect Z. 

To summarize, if you were given the following set of causal assumptions: 

Text example  Diagram example 

X affects Y, X affects Z, and Y affects Z. 

 

 

Figure 2.  The example models for Study 1 

At this point, participants were presented with the causal model example in either text or 

diagram form depending on the condition to which they were assigned (see Figure 2).  The 

instructions continued: 

and you were then asked to write the direct and indirect effects of variable X on 

variable Z, you would write:  

X affects Z.  

X affects Y which affects Z. 

After the introductory example, participants clicked the “proceed” button and saw the 

following task description and the target causal model in the Abstract conditions: 
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Now, assume that a researcher makes the following causal assumptions about a 

particular social science domain where variables C, R, H, M, A, and S are 

measurable aspects of people. 

The researcher makes the following causal assumptions:  

In the Concrete conditions, the introduction to the task replaced the list of abstract 

variables with descriptions of the concrete variables.   

Now, assume that a researcher makes the following causal assumptions about the 

effects of combat on veterans who have returned home using these variables: 

Combat Duration = length of time in a military combat zone 

Received Injury = sustained an injury during combat that required hospitalization 

Psych. Stress = score on a particular psychological assessment for veterans 

Physical Activity = amount of exercise during 2 years after tour of combat 

Smoking = amount of smoking during 2 years after tour of combat 

Premature Death = Died earlier than average life expectancy 

With the preceding text and one of the four models (see Figure 1) visible on the screen, 

participants were presented with the first of four questions.  After they answered it, they pressed 

a button and the first question (along with their answer) disappeared and the second question 

appeared.  Meanwhile, the model remained on the screen.  This was repeated until the final 

question which, upon completion, directed participants to a new page asking for demographic 

information.  From this page they submitted their entire task.  Participants were not permitted to 

go back to a previous screen to view or change answers. 
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Outcome measures 

Participants were asked four questions regarding various aspects of the causal models.  

With the exception of the variable names, the questions and answers were identical across 

conditions.  The first question (Path Query) asked participants to identify all direct and indirect 

effects between two variables.  The second and third questions (Cause Query and Effect Query 

respectively) asked participants to identify causes and effects of certain variables.  The fourth 

question (Explanation Query) asked participants to explain a relationship between two variables 

in terms of links in the causal model.  Table 1 shows the questions from the Abstract condition.  

Table 1 

Questions and answers for the Abstract conditions of Study 1 

Query Question Answer 

Path 
Please list all the ways that variable R 

could affect variable S 

R->S 

R->M->S 

R->H->S 

R->H->A->S 

R->H->M->S 

Cause 
Please list all the variables that affect 

variable A 
H, C, R 

Effect 
Please list all the variables that are 

affected by variable H 
M, S, A 

Explanation 

Assume that variable H and variable S 

are found to be positively correlated.  

Please explain this correlation using the 

causal model. 

- H affects S directly;  

- H affects M & A which both affect S 

- R affects H & S directly;  

- C affects all variables directly or 

indirectly 

 

The data were analyzed in two ways.  If participants listed all of the correct 

paths/variables and did not list any incorrect paths/variables, the question was scored as correct.  

A participant’s Total Score was the sum of all their correct answers.   
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However, because each question was composed of multiple answers, it was possible to 

answer several parts of a question correctly while not answering the entire question correctly.  

Therefore, to allow partial credit, a second dependent measure was created.  This variable was 

created by summing the number of correct paths or variables each participant listed for a 

particular question, subtracting the number of incorrect answers, and then dividing that sum by 

the number of possible correct answers.  This created a variable called Proportion-correct Score 

(PropScore).  The maximum score for this variable is 1 (indicating that the answer is entirely 

correct); the minimum score could be negative.   

Results 

Participants completed the entire task with a mean response time of 17.6 minutes and a 

median response time of approximately 11 minutes.  Because the presence of outliers strongly 

affected the mean, median time may more interpretable.  A 2x2 ANOVA was run for Total Time 

using Visualization and Content.  There was not a significant difference between Text and 

Diagrams, F(1, 156) = 0.34, p = .558 or Abstract and Concrete content F(1, 156) = 0.11, p = 

.741.  Please see Table 2 for a breakdown of median response times for each question by 

condition.   
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Table 2 

Median response time (in seconds) by condition for Study 1 Queries 

Visualization Content Path Cause Effect Expl. Total Time N 

Text 

Abstract 238 91 61 135 785 40 

Concrete 227 86 59 111 655 39 

Marginal 

Median 
231 91 61 123 742 79 

Diagram 

Abstract 116 79 48 113 564 42 

Concrete 233 79 56 105 735 39 

Marginal 

Median 
175 79 50 110 638 81 

Combined 

Abstract 159 85 57 127 657 82 

Concrete 230 83 59 108 703 78 

Median 199 84 58 115 668 160 

 

The Total Score variable was analyzed using a 2x2 ANOVA with the following factors: 

Visualization (Text, Diagram) and Content (Abstract, Concrete).  The interaction of 

Visualization and Content was significant, F(1,223) = 9.89, p = .009, ηp
2
 = .04, and there were 

significant main effects for both factors.  Participants in the Diagram conditions scored higher 

(M = 2.11, SD = 1.2) than participants in the Text conditions (M = 1.67, SD = 1.3), F(1,156) = 

4.95, p = .027, ηp
2
 = .03.  The main effect for Content was in the opposite direction to that 

expected; participants in the Abstract conditions scored higher (M = 2.20, SD = 1.2) than 

participants in the Concrete conditions (M = 1.58, SD = 1.3), F(1,156) = 10.32, p = .002, ηp
2
 = 

.06.  These effects may slightly under-estimate the true difference between conditions as 23 of 

the 79 participants used an external aid such as drawing their own diagram or table (16 of the 23 

drew a diagram).  Only six participants in the two diagram conditions drew external aids.  Please 

see Table 3 and Figure 3 for further details. 
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Table 3.   

Total score: descriptive statistics by condition. 

Visualization Content Mean S.D. N 

Text 

Abstract 1.73 1.13 40 

Concrete 1.62 1.41 39 

Marginal 

Mean 
1.67 1.27 79 

Diagram 

Abstract 2.64 1.01 42 

Concrete 1.54 1.21 39 

Marginal 

Mean 
2.11 1.23 81 

Combined 

Abstract 2.20 1.16 82 

Concrete 1.58 1.30 78 

Mean 1.89 1.27 160 

 

 

Figure 3.  Total Score by condition 

The data for each individual Query were also analyzed.  For these analyses the 

proportion-correct score for each question was used.  Please see Table 4 for a summary of the 

average proportion-correct score for each question by condition.  The data for each of the 

Queries were analyzed with a 2x2 ANOVA. 
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Table 4 

Mean proportion-correct score for each Query by condition 

Visualization Content Path
 

Cause
 

Effect
 

Explanation 

Text 

Abstract .56 .67 .50 .26 

Concrete .55 .55 .48 .31 

Marginal 

Mean 
.55 .61 .49 .28 

Diagram 

Abstract .83 .96 .67 .33 

Concrete .61 .69 .01 .29 

Marginal 

Mean 
.72 .83 .35 .31 

Combined 

Abstract .70 .82 .59 .30 

Concrete .58 .62 .24 .30 

Mean .64 .72 .42 .30 

 

The Path Query asked the participants to list all the pathways by which one variable 

could affect another.  Both Visualization, F(1, 156) = 8.72, p = .004, ηp
2
 = .05 and Content F(1, 

156) = 4.22, p = .042, ηp
2
 = .03, were significant.  The Visualization by Content interaction was 

marginally significant, F(1, 156) = 3.43, p = .066, ηp
2
 = .02. 

The Cause Query asked participants to identify all the variables that affected a certain 

variable.  Both Visualization, F(1, 156) = 7.26, p = .008, ηp
2
 = .04 and Content F(1, 156) = 5.67, 

p = .019, ηp
2
 = .04, were significant.  The Visualization by Content interaction was not 

significant, F(1, 156) = 0.83, p = .364. 

The Effect Query asked participants to identify all the variables that were affected by 

another particular variable.  Visualization, F(1, 156) = 1.64, p = .203, was not significant.  There 

was a main effect for Content however, F(1, 156) = 8.21, p = .005, ηp
2
 = .05.  The Visualization 

by Content interaction was also significant, F(1, 156) = 7.21, p = .008, ηp
2
 = .04.   
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The Explanation Query asked participants to list potential explanations for a correlation 

between two variables.  No significant differences were found for Visualization, F(1, 156) = 

0.95, p = .332, Content, F(1, 156) = 0.01, p = .912, or the interaction F(1, 156) = 2.62, p = .108.  

Despite the similarity between the structure of the Cause and Effect Queries, the Effect 

Query had a lower overall percentage of correct answers.  This is especially salient in the 

Diagram/Concrete condition.  The organization of the Queries may have been a contributing 

factor to this finding.  The Cause and Effect Queries were not counterbalanced in their order of 

appearance for the participants.  Consequently it is possible that participants misunderstood the 

Effect Query (“What variables are affected by…) as asking for the same information as the 

Cause Query (i.e. “What variables affect…).  Evidence that such confusion occurred can be 

obtained by checking if participants who answered incorrectly were answering the Effect Query 

as if it were the Cause Query.  Analyzing the incorrect answers, it appears this may have 

happened as 52% of the incorrect answers would have been completely correct had the question 

been about causes instead of effects.  In fact, in the Abstract/Diagram condition, this answer 

pattern accounted for seven of the eight participants who were incorrect.  However, 

misunderstanding this question was not distributed equally among the conditions.  This answer 

pattern occurred more times in the Concrete/Diagram condition (18) than in all three other 

conditions combined (17). 

Due to the concerns regarding misunderstanding of the Effect Query, the Total Score data 

were rerun in a 2x2 ANOVA, this time excluding data from the Effect Query.  It did not change 

any of the major findings.  The significance of the interaction, F(1, 156) = 4.78, p = .030, ηp
2
 = 

.03 was slightly less significant.  The main effect for Visualization was slightly more significant, 
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F(1, 156) = 5.77, p = .013, ηp
2
 = .04 and the significance for Content, F(1, 156) = 4.92, p = .021,  

ηp
2
 = .was slightly less so.  A graph of this analysis can be seen in Figure 4.   

 

Figure 4.  The results of the 2x2 ANOVA with the data from the Effect Query removed.   

Discussion 

The purpose of this study was twofold: to replicate previous work that showed better 

performance for tasks completed with a diagrammed causal model over a causal model presented 

as text and to examine if task performance would be different when reasoning about a model 

instantiated with real-world content rather than reasoning about a structurally identical model 

comprised of abstract content.   

Previous work on diagrams and causal reasoning has indicated that the use of diagrams 

resulted in participants working faster and more accurately on performance tasks than when 

using an identical text version (Corter et al., 2011).  Participants in this study who were provided 

with a diagrammed model had significantly more correct answers when compared to participants 

who were provided with a text version of the causal model, replicating the previous research. 
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The second purpose of this study was to examine the effects of problem content on 

reasoning from a causal model.  Causal models generally exist as a tool to aid interpretation of 

variables that are already placed in a domain context.  Placing variables in context might 

alleviate some of the cognitive effort necessary to interpret the causal model due to previous 

real-world (or specific domain) experience.  Using stimuli from the experiment as an example, it 

stands to reason that “increased smoking can lead to an increase in premature death” should be 

easier to remember than “an increase in A leads to an increase in S”.  The former is a familiar 

scenario which may be easier to remember, or may provide details helpful for inference 

(Baranes, Perry, & Stigler, 1989; Kieras, 1978; Koedinger & Nathan, 2004; Schwanenflugel & 

Shoben, 1983) while the abstract version holds no inherent significance.   

However, the effect was in the reverse direction.  Participants scored higher when using 

abstract models, especially abstract diagrams, than when using models that were composed of 

real-world variables.  Each question that participants answered was designed to assess some 

particular subskill in interpreting a causal model and each question had several answers.  

Participants could be incorrect by either providing an incorrect answer, or by failing to provide 

all the correct answers.  The superior performance in the Abstract/Diagram condition was due to 

those participants identifying more answers than participants in the other three conditions.  The 

number of incorrect answers was minimal and roughly equivalent across all conditions.   

The idea that situated context impedes performance is not a new finding.  Research finds 

that context can interfere with reasoning when the task is poorly understood (Cummins, Kintsch, 

Reusser, & Weimer, 1988; Geary, 1994), when the context is counterintuitive (Easterday, 

Aleven, & Scheines, 2007; Stroop, 1992), and when the context introduces superfluous 

information that distracts from the problem (Day, Manlove, & Goldstone, 2011).   
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Although it is possible that the task was poorly understood in the Concrete condition, the 

difference in performance was not consistent across conditions, only being found in the Diagram 

condition.  Participants in the Text conditions scored similarly to each other.  Additionally, the 

structure of the questions was identical save for the names of the variables.  This is noteworthy 

because when difficulties arise in using concrete material for mathematical problems, the 

problem is because the context distracted from understanding the underlying equation.  The task 

was straightforward and not written differently between Abstract and Concrete conditions.  It 

seems unlikely for the task instructions to have been concealed because of distracting contextual 

information.  The relationships between all variables were pilot tested for plausibility so the 

impediment was probably not due to participant’s knowledge running counter to the presented 

information (Easterday, Aleven, Scheines, & Carver, 2009).  It is possible the real-world 

variables introduced distracting information, although it is unclear what that could have been or 

how it affected performance. 

  An unexpected pattern of results for the Effect Query resulted from a programming 

error.  Due to this error, the order of the questions was fixed with the Cause Query always 

preceding the Effect Query, rather than counterbalancing their order of presentation.  These 

Queries were similar in structure but required reasoning either predictively (from cause to effect) 

or diagnostically (from effect to cause).  The Cause Query asked about the variables that affected 

a certain variable and the Effect Query asked about the variables that are affected by a certain 

variable.  It seems that some participants may have interpreted and answered the Effect Query as 

if it were asking for the same information as the Cause Query.  As noted in the Results section, 

an exploration of the answer patterns indicated this was the case for a large percentage of 

participants who answered incorrectly.   
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However, eliminating the Effect query from the analysis did not change the pattern or 

significance of the results.   

One possible explanation for this error in understanding the instructions is that because 

the Text conditions were more difficult to answer correctly, additional errors were produced that 

precluded them from being classified in this way.  That is to say, this error was defined as 

participants who would have been correct had the question indeed been reversed.  Perhaps other 

participants were overlooked who made this error but made other errors as well.  Because they 

would not have been correct, even if the question text had been different, they would not have 

been included in the percentage of participants who fit the pattern of error.   

Another possible explanation is that participants in the Diagram conditions had different 

reasoning systems activated, i.e., System I which involves intuitive, heuristic, automatic 

reasoning.  This system contrasted with System II which involves controlled, analytic, deliberate 

reasoning (Alter, Oppenheimer, Epley, & Eyre, 2007; Stanovich & West, 2000).  The Alter et al. 

research in particular showed that external cues indicating a difficult problem led people to 

process information deliberately and analytically whereas cues indicating that a problem is 

simple led to processing information intuitively and heuristically.  Another study showed that 

when diagrams were used, it triggered higher-order mental processes but often diagrams were 

not analyzed but instead glossed over (Cromley, Snyder-Hogan, & Luciw-Dubas, 2010).  

Participants may have considered the Diagram conditions to be simple enough to not activate 

more deliberate reasoning.  Because System I is prone to heuristic judgments, it may be fruitful 

to examine the structure of causal diagrams to investigate whether any features of the model lead 

to systematic biases.   
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Study 2: Connections 

Study 1 examined the content of a causal model.  Study 2 examined whether changing the 

diagrammatic conventions of the causal model would lead to systematic biases in reasoning.  

Specifically, Study 2 examined the type of links between variables and if they change inference 

performance outcomes between a diagrammed causal model and a text version.  Causal models 

presented as text differ from causal models presented as diagrams by using words instead of 

arrows to connect variables and by the spatial organization of the content.  By replacing the 

words with arrows and vice versa, the extent to which the use of symbols contributes to 

participant reasoning can be determined. 

This study also sought to address the possible order effects from the presentation of the 

Cause and Effect Queries in Study 1.  Participants were presented with these Queries in random 

order.   

Methods 

Participants 

A total of 240 participants were recruited from Amazon’s Mechanical Turk (MT).  Three 

participants were excluded because they did not complete the task.  Another four participants 

were excluded because they had previously participated in Study 1.  Lastly, because the task is 

relatively contingent upon educational culture, 56 additional participants were not included in the 

final analysis because they had not completed at least two years of tertiary education.  This 

resulted in 177 remaining participants randomly assigned to four conditions.  

The participants were 46% male.  Approximately 41% of participants reported their 

highest level of education attained was an undergraduate degree and 26% reported having 

attended at least some graduate or professional schooling.  About 18% of participants that 
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reported college majors were from mathematical/engineering/computer science programs.  About 

60% of participants indicated having taken only one or two classes on statistics and 34% 

reported never having taken a statistics class.  The majority of participants listed English as their 

first written language (93%).  The average age of the participants was 34 years with a range from 

18 to 85 years. 

Stimuli 

The causal model in this study was structurally identical to the one from the previous 

study.  In this version, all the variables are abstract and the manipulation is the type of 

connection between variables.  The connections are either displayed as a word (“affects”) or as 

an arrow.  Please see Figure 5 for the stimuli used in this study. 

Figure 5.  The four conditions for displaying the causal model in Study 2. 

Procedure 

Our task was hosted online by MT.  It was written in HTML and JavaScript.  Participants 

were paid $1.00 to complete the task.  Once participants accepted the task, they were randomly 

assigned to one of the four conditions and presented with a short introduction.  They were 

Text/Word Text/Arrow 

C affects R; C affects H; R affects M; R 

affects S; R affects H; H affects M; H affects 

S; H affects A; M affects S; A affects S. 

C→R, C→H, R→M, R→S, R→H, H→M, 

H→S, H→A, M→S, A→S. 

Diagram/Word Diagram/Arrow 
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allowed a maximum of one hour from the time they accepted the task to fully complete and 

submit it.  Following is the introduction for all conditions: 

In causal modeling of a social science problem, researchers try to specify all the ways in 

which variables might influence each other. 

For example, a researcher might assume that variables X, Y, and Z have the following 

causal relationships: X affects Y, X affects Z, and Y affects Z. 

In that case, X has a causal influence on Z in two ways.  First there is a direct effect of X 

on Z (by assumption).  Also there is an indirect effect of X on Z, because X is assumed to 

affect Y and Y is assumed to affect Z. 

To summarize, if you were given the following set of causal assumptions: 

Text/ Word example  Diagram/Word example 

X affects Y, X affects Z, and Y 

affects Z. 

 

 
Text/ Arrow example  Diagram/Arrow example 

X → Y, X → Z, and Y → Z. 

 

 

Figure 6.  The example models for Study 2 

The participant was then presented with the causal model in either text or diagram form 

and using either arrows or words to connect variables (see Figure 6).  The instructions continued: 

and you were then asked to write the direct and indirect effects of variable X on variable 

Z, you would write:  

X affects Z.  

X affects Y which affects Z. 
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After the introductory example, participants clicked the “proceed” button and saw the 

following task description and the target causal model: 

Now, assume that a researcher makes the following causal assumptions about a 

particular social science domain where variables C, R, H, M, A, and S are measurable 

aspects of people. 

The researcher makes the following causal assumptions:  

The causal model, one of the four versions shown in Figure 5, was presented at this point.  

With the preceding text and the model visible on the screen, participants were presented with the 

first of four questions.  After they answered that question, they pressed a button and the first 

question (along with their answer) disappeared and the second question appeared.  Meanwhile, 

the model remained on the screen.  This was repeated until the final question which, upon 

completion, directed participants to a new page asking for demographic information.  From this 

page they submitted their entire task.  Participants were not permitted to go back to a previous 

screen to view or change answers. 

Outcome measures 

 Participants were asked four questions regarding various aspects of the causal models.  

The questions and answers were identical across conditions.  The first question (Path Query) 

asked participants to identify all direct and indirect effects between two variables.  The second 

and third questions (Cause Query and Effect Query respectively) asked participants to identify 

causes and effects of certain variables.  To control for practice and other order effects, the order 

in which these two questions appeared was randomized for each participant.  The fourth question 

(Explanation Query) asked participants to explain a relationship between two variables in terms 
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of links in the causal model.  Please see Table 5 for the specific wording of the questions and 

their respective answers. 

The data were analyzed in two ways.  If participants listed all of the correct 

paths/variables and did not list any incorrect paths/variables, the question was scored as correct.  

A participant’s Total Score was the sum of all their correct answers.   

Table 5 

Study 2 tasks and answers 

Query Question Answer 

Path 
Please list all the ways that variable R 

could affect variable S 

R->S 

R->M->S 

R->H->S 

R->H->A->S 

R->H->M->S 

Cause 

Please list all the VARIABLES that 

AFFECT variable A (just name the 

variables, don't list paths). 

H, C, R 

Effect 

Please list all the VARIABLES that ARE 

AFFECTED BY variable H (just name the 

variables, don't list paths). 

M, S, A 

Explanation 

Assume that variable H and variable S are 

found to be positively correlated.  Please 

explain this correlation using the causal 

model. 

- H affects S directly;  

- H affects M & A which both affect 

S 

- R affects H & S directly;  

- C affects all variables directly or 

indirectly 

 

However, because each question was composed of multiple answers, it was possible to 

answer several parts of a question correctly while not answering the entire question correctly.  

Therefore, to allow partial credit, a second dependent measure was created.  This variable was 

created by summing the number of correct paths or variables each participant listed for a 

particular question, subtracting the number of incorrect answers, and then dividing that sum by 

the number of possible correct answers.  This created a variable called Proportion-correct Score 



43 

 

 

 

(PropScore).  The maximum score for this variable is 1 (indicating that the answer is entirely 

correct); the minimum score could be negative.   

Results 

The mean time participants took to complete the task was 10.5 minutes.  However, this 

included several outliers that took over 45 minutes.  The median time participants took to 

complete the task was 8.5 minutes.  Time to complete the task was analyzed using a 2x2 

ANOVA and found a significant effect for Visualization, F(1,173) = 5.92, p = .016, ηp
2
 = .03.  

There was not a significant effect for Connection, F(1,173) = 1.64, p = .202.  A breakdown of 

median response times for each question by condition can be found in Table 6. 

Table 6 

Median response time (in seconds) by condition for Study 2 Queries 

Visualization Connection Path Cause Effect Expl. Total Time N 

Text 

Word 209 79 64 130 567 47 

Arrow 173 79 63 96 554 41 

Marginal 

Median 
195 79 64 113 566 88 

Diagram 

Word 142 43 26 108 482 43 

Arrow 106 41 30 83 345 46 

Marginal 

Median 
124 42 29 94 414 89 

Combined 

Word 165 61 40 115 552 90 

Arrow 126 52 38 87 448 87 

Median 146 52 38 100 507 177 

 

The Total Score variable was analyzed using a 2x2 ANOVA with the following factors: 

Visualization (Text, Diagram) and Connection (Word, Arrow).  Based on previous studies, a 

significant effect for Visualization was predicted although not in the direction that occurred.  The 
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interaction of Visualization and Connection produced a significant effect, F(1,173) = 65.94, p < 

.001, ηp
2
 = .38.  Participants in the Diagram conditions scored lower (M = 1.51, SD = 1.5) than 

participants in the Text conditions (M = 1.98, SD = 1.1), F(1,173) = 11.47, p < .001, ηp
2
 = .07.  

Participants in the Arrow conditions scored significantly higher (M = 2.28, SD = 1.1) than 

participants in the Word conditions (M = 1.22, SD = 1.3), F(1,173) = 51.57, p < .001, ηp
2
 = .30.  

This is due to very poor performance in the Diagram/Word condition.  Nineteen participants 

drew their own diagram or table in the Text conditions.  Only two participants, both in the 

Diagram/Word condition, drew their own diagrams.  Please see Table 7 and Figure 7 for further 

details. 

Table 7 

Descriptive statistics for all four conditions 

Visualization Connection 
Total Score 

Mean
 S.D. N 

Text 

Word 2.04 1.0 47 

Arrow 1.90 1.1 41 

Marginal 

Mean 
1.98 1.1 88 

Diagram 

Word 0.33 0.8 43 

Arrow 2.61 1.0 46 

Marginal 

Mean 
1.51 1.5 89 

Combined 

Word 1.22 1.3 90 

Arrow 2.28 1.1 87 

Mean 1.74 1.3 177 
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Figure 7.  Total score by condition 

The results indicate that something in the Diagram/Word condition impeded correct task 

completion.  The proportional-correct score was analyzed for each Query using a 2x2 ANOVA.  

The poor performance for participants in the Diagram/Word condition was not limited to any 

particular question but rather was consistent throughout the entire experiment.  Please see Table 

8 for a summary of the answers for each Query broken down by condition. 

Table 8 

Mean proportion-correct score for Query by condition 

Visualization Connection Path
 

Cause
 

Effect
 

Explanation 

Text 

Word .73 .81 .83 .28 

Arrow .68 .78 .85 .29 

Marginal 

Mean 
.71 .80 .84 .28 

Diagram 

Word .27 .19 .33 .16 

Arrow .84 .86 .89 .29 

Marginal 

Mean 
.57 .54 .62 .23 

Combined 

Word .51 .51 .59 .22 

Arrow .77 .82 .87 .29 

Mean .64 .66 .73 .25 
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Path Query asked the participants to list all the pathways by which one variable could 

affect another.  Both Visualization, F(1, 173) = 9.12, p = .003, ηp
2
 = .05 and Connection F(1, 

173) = 28.38, p < .001, ηp
2
 = .14, were significant.  The Visualization by Connection interaction 

was also significant, F(1, 173) = 41.488, p < .001, ηp
2
 = .19. 

The Cause Query asked participants to identify all the variables that affected a certain 

variable.  Both Visualization, F(1, 173) = 19.69, p < .001, ηp
2
 = .10 and Connection F(1, 173) = 

27.06, p < .001, ηp
2
 = .14, were significant.  The Visualization by Connection interaction was 

also significant, F(1, 173) = 32.07, p < .001, ηp
2
 = .16. 

The Effect Query asked participants to identify all the variables that were affected by 

another particular variable.  Visualization, F(1, 173) = 10.59, p = .01, ηp
2
 = .06, was significant.  

There was also a main effect for Connection however, F(1, 173) = 16.92, p < .001, ηp
2
 = .09.  

The Visualization by Connection interaction was significant, F(1, 173) = 14.29, p < .001, ηp
2
 = 

.08.   

The Explanation Query asked participants to offer potential explanations for a correlation 

between two variables.  Both Visualization, F(1, 173) = 4.42, p = .037, ηp
2
 = .03 and Connection 

F(1, 173) = 6.40, p = .012, ηp
2
 = .04, were significant.  The Visualization by Connection 

interaction was also significant, F(1, 173) = 4.65, p = .032, ηp
2
 = .03. 

The results show that the participants in the Diagram/Word condition did worse on every 

component in the task.  As explained in the section on outcome measures, participants received a 

score for each question based on two criteria: number of correct answers and number of incorrect 

answers.  It is possible for someone to have gotten all the correct answers, but have a diminished 
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score because of incorrect answers as well.  As Table 9 shows, participants in the Diagram/Word 

condition did similarly on identifying correct answers but listed more incorrect answers.   

Table 9 

Average of correct and incorrect answers by condition.   

 Path Cause Effect 

 Corr. Incorr. Corr. Incorr. Corr. Incorr. 

Text/Word    4.0 0.4 2.7 0.3 2.8 0.3 

Text/Arrow 3.7 0.3 2.7 0.3 2.8 0.2 

Diagram/Word 4.0 2.6 2.4 1.8 2.9 1.9 

Diagram/Arrow 4.5 0.2 2.8 0.3 2.9 0.2 

Discussion 

The purpose of this study was twofold: to replicate previous work on the presentation of 

causal models and to examine the effect link representation has on one’s ability to interpret a 

causal model.  This study failed to fully replicate previous findings regarding higher performance 

for participants with diagrams.  The diagram using traditional arrows scored higher than the 

other conditions.  However, the diagram using words scored so much lower than the other 

conditions that the analysis returned a main effect that text outperformed diagrams.  As 

suggested in Study 1, perhaps reasoning with a diagram activates the intuitive system of 

reasoning.  Some aspect of the diagram that would not be an obstacle in analytic reasoning might 

create a reasoning bias with intuitive and heuristic reasoning.   

Two important differences exist between a diagrammed representation of a causal model 

and a textual version of the same model—the spatial array and the links between variables.  A 

link in a causal model indicates the direct relationship between variables and the direction of 

their causal relationship and is typically represented as a word or an arrow.  Both arrows and 
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words share asymmetric properties.  An arrow is by nature directional and when comprised with 

only one arrowhead, indicative of an asymmetrical relationship.  In the current study, the word 

“affects” indicated the causal link between variables.  As a word in the English language, it is 

read left-to-right and as a verb, implies that the subject acts upon the predicate, e.g. C affects R.  

The word “affects” would not be read to mean the opposite.  If one were to keep the same 

sentence structure but reverse the causal direction so that R is the agent that acts upon C, the verb 

“affects” would have to be replaced by the verb phrase “is affected by”.  Given the similarity in 

purpose between the word and the arrow, one could reasonably assume that by embedding words 

into the lines of the diagram, a word could be seen as equivalent to an arrow for indicating causal 

direction. 

The primary explanation for the poor performance in the Diagram/Word condition was 

because the participants had a higher number of errors than participants in all other conditions 

combined.  The average number of errors in the other conditions (≈ 0.3) is consistent with the 

average number of errors in Study 1.  The majority of incorrect answers in the Diagram/Word 

condition appeared to stem from misinterpreting the meaning of the link between variables.  The 

participants answered the questions as if the link were correlational rather than causal.  For 

example, when presented with the diagram showing variable C affects variable R, participants 

interpreted the inverse as well, that R affects C.  In the path Query, where the answer was to 

write the five correct paths, participants wrote on average 2.5 incorrect paths that were almost 

exclusively incorrect because they reversed the causal direction of the variables (i.e. the answers 

would have been correct if the arrows had indeed been bidirectional).  In the Cause and Effect 

Queries, if participants continued to interpret the causal direction as bidirectional, then there 
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would have been an answer pattern of three correct variables and 2 incorrect ones.  As shown by 

Table 9, this is indeed what appears to have happened.   

By replacing the arrow with the word “affects”, participants were seem to have been 

influenced to think of the causal relationships as bidirectional.  It impeded their interpretation of 

the model not through complexity but rather because the presence of a word instead of an 

arrowhead activated a bias that ignored the literal definition of the word.   

There are several possible explanations of this effect.  The most apparent is that the word 

was placed in the middle of the arc connecting variables, and not at the end, as it would have 

been if it were still a typical arrow.  Although the arrowheads were also placed in the middle of 

the arc, the asymmetric nature of the arrowhead symbol may be more salient.  Another possible 

explanation is the nature of the word itself.  It is unclear whether this effect would hold if we 

used a different, less ambiguous word e.g. C causes R.  Also, perhaps the effect would be 

mitigated with the addition of more specific instructions.  Our current instructions imply that the 

word “affects’ is unidirectional in its causal implications.  The inclusion of an additional 

instruction explicitly stating its unidirectionality could aid participants, as could a simple test to 

ensure participants were clear on how the model worked.   

Participants in the other conditions did not need such explicit instruction and they did 

roughly the same in the Text condition with either a word link or an arrow link.  In a sentence, an 

arrow seems to be able to replace text with less difficulty than text replacing an arrow in a 

diagram.  This may be another example of the difference between intuitive and analytical 

reasoning.  As the diagram may activate the intuitive reasoning, perhaps text activated analytical 

reasoning.   
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Study 3: Replication of Connections Study 

Study 3 sought to examine whether the results of Study 2 were an actual effect of 

inhibitory performance caused by using words instead of arrowheads, or whether they were due 

to poor task construction.  Two areas that presented alternative explanations were the instructions 

and the location of the words on the arcs connecting variables.  Regarding the instructions, 

participants were required to take a short qualification exam which they had to pass in order to 

be included in this study.  And regarding the placement of the words in the diagram, they were 

moved to the end of the arc to more closely mimic typical arrowheads.  The arrowheads were 

also moved to their normal position. 

Methods 

Participants 

A total of 234 participants were recruited from Amazon’s Mechanical Turk (MT).  Four 

participants were excluded because they did not complete the task.  Another 33 participants were 

excluded because they had previously participated in another study.  As before, because the task 

is relatively contingent upon educational culture, 68 additional participants were not included in 

the final analysis because they had not completed at least two years of tertiary education.  Lastly, 

25 participants were excluded because they did not pass the qualification questions.  This 

resulted in 104 remaining participants randomly assigned to four conditions.  

The participants were 61% male.  Approximately 46% of participants reported their 

highest level of education attained was an undergraduate degree and 22% reported having 

attended at least some graduate or professional schooling.  About 32% of participants that 

reported college majors were from mathematical/engineering/computer science programs.  About 

66% of participants indicated having taken only one or two classes on statistics and 30% 
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reported never having taken a statistics class.  The majority of participants listed English as their 

first written language (94%).  The average age of the participants was 31 years with a range from 

18 to 69 years. 

Stimuli 

 The causal model in this study was the same as the one from the previous study with the 

exception that in the Diagram conditions, the arrowheads and the word-arrowheads were moved 

to the end of the connecting arc.  Please see Figure 8 for the stimuli used in this study. 

Figure 8.  The four conditions for displaying the causal model in Study 3. 

Procedure 

Our task was hosted online by MT.  It was written in HTML and JavaScript.  Participants 

were paid $1.00 to complete the task.  Once participants accepted the task, they were randomly 

assigned to one of the four conditions and presented with a short introduction.  They were 

allowed a maximum of one hour from the time they accepted the task to fully complete and 

submit it.  Following is the introduction for all conditions: 

Text/Word Text/Arrow 

C affects R; C affects H; R affects M; R 

affects S; R affects H; H affects M; H affects 

S; H affects A; M affects S; A affects S. 

C→R, C→H, R→M, R→S, R→H, H→M, 

H→S, H→A, M→S, A→S. 

Diagram/Word Diagram/Arrow 
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In causal modeling of a social science problem, researchers try to specify all the ways in 

which variables might influence each other. 

For example, a researcher might assume that variables X, Y, and Z have the following 

causal relationships: X affects Y, X affects Z, and Y affects Z. 

In that case, X has a causal influence on Z in two ways.  First there is a direct effect of X 

on Z (by assumption).  Also there is an indirect effect of X on Z, because X is assumed to 

affect Y and Y is assumed to affect Z. 

To summarize, if you were given the following set of causal assumptions: 

Text/ Word example  Diagram/Word example 

X affects Y, X affects Z, and Y 

affects Z. 

 

 
Text/ Arrow example  Diagram/Arrow example 

X → Y, X → Z, and Y → Z. 

 

 

Figure 9.  The example models for Study 3 

The participant was then presented with the causal model in either text or diagram form 

and using either arrows or words to connect variables (see Figure 9).  The instructions continued: 

and you were then asked to write the direct and indirect effects of variable X on variable 

Z, you would write:  

X affects Z.  

X affects Y which affects Z. 

Here the new qualification questions were asked.  The first was whether Y affected X and 

they could check either “yes”, “no”, or “can’t tell”.  The correct answer was “no”.  The next 
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question asked whether Y affected Z with the same answer options.  This answer was “yes”.  

After the introductory example and qualification test, participants clicked the “proceed” button 

and saw the following task description and the target causal model: 

Now, assume that a researcher makes the following causal assumptions about a 

particular social science domain where variables C, R, H, M, A, and S are measurable 

aspects of people. 

The researcher makes the following causal assumptions:  

The causal model, one of the four versions shown in Figure 8, was presented at this point.  

With the preceding text and the model visible on the screen, participants were presented with the 

first of four questions.  After they answered that question, they pressed a button and the first 

question (along with their answer) disappeared and the second question appeared.  Meanwhile, 

the model remained on the screen.  This was repeated until the final question which, upon 

completion, directed participants to a new page asking for demographic information.  From this 

page they submitted their entire task.  Participants were not permitted to go back to a previous 

screen to view or change answers. 

Outcome measures  

Participants were asked three questions regarding various aspects of the causal models.  

The questions and answers were identical across conditions.  The first question (Path Query) 

asked participants to identify all direct and indirect effects between two variables.  The second 

and third questions (Cause Query and Effect Query respectively) asked participants to identify 

causes and effects of certain variables.  To control for practice and other order effects, the order 

in which these two questions appeared was randomized for each participant.  Please see Table 10 

for the specific wording of the questions and their respective answers. 
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The data were analyzed in two ways.  If participants listed all of the correct 

paths/variables and did not list any incorrect paths/variables, the question was scored as correct.  

A participant’s Total Score was the sum of all their correct answers.   

Table 10 

Study 3 tasks and answers 

Query Question Answer 

Path 
Please list all the ways that variable R 

could affect variable S 

R->S 

R->M->S 

R->H->S 

R->H->A->S 

R->H->M->S 

Cause 

Please list all the VARIABLES that 

AFFECT variable A (just name the 

variables that are causes of A, don't list 

paths). 

H, C, R 

Effect 

Please list all the VARIABLES that 

variable H AFFECTS (just name the 

variables that are effects of H, don't list 

paths). 

M, S, A 

 

However, because each question was composed of multiple answers, it was possible to 

answer several parts of a question correctly while not answering the entire question correctly.  

Therefore, to allow partial credit, a second dependent measure was created.  This variable was 

created by summing the number of correct paths or variables each participant listed for a 

particular question, subtracting the number of incorrect answers, and then dividing that sum by 

the number of possible correct answers.  This created a variable called Proportion-correct Score 

(PropScore).  The maximum score for this variable is 1 (indicating that the answer is entirely 

correct); the minimum score could be negative.   
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Results 

The mean time participants took to complete the task was 9 minutes.  However, this 

included several outliers that took over 30 minutes.  The median time participants took to 

complete the task was 5.5 minutes.  The time it took to complete the task was analyzed using a 

2x2 ANOVA.  No significant effect was found for Visualization, F(1,100) = 0.002, p = .969, or 

for Connection, F(1,100) = 2.72, p = .102.  A breakdown of median response times for each 

question by condition can be found in Table 11. 

Table 11 

Median response time (in seconds) by condition for Study 3 Queries 

Visualization Connection Path Cause Effect Total Time N 

Text 

Word 145 66 66 397 18 

Arrow 129 51 41 338 33 

Marginal 

Median 
134 60 55 372 51 

Diagram 

Word 118 42 35 310 20 

Arrow 94 39 29 286 32 

Marginal 

Median 
108 40 30 288 52 

Combined 

Word 126 51 50 373 38 

Arrow 113 45 32 307 65 

Median 121 49 36 336 103 

 

The Total Score variable was analyzed using a 2x2 ANOVA with the following factors: 

Visualization (Text, Diagram) and Connection (Word, Arrow).  The interaction of Visualization 

and Connection produced a significant difference, F(1,100) = 3.84, p = .053, ηp
2
 = .04.  

Participants in the Diagram/Arrow condition scored on average a full point higher than the other 

three conditions.  There was also a significant effect for Visualization, F(1,100) = 4.31, p = .041, 
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ηp
2
 = .04, with Diagrams outperforming Text.  There was not a significant difference for 

Connection, F(1,100) = 0.59, p = .444.  The difference between Text and Diagram conditions 

may be under-estimated as 24 participants in the Text conditions drew their own diagrams and 

six drew tables.  Only nine participants over both Diagram conditions drew external aids (seven 

drew tables).  Please see Table 12 and Figure 10 for further details. 

Table 12 

Descriptive statistics for all four conditions 

Visualization Connection 
Total Score 

Mean
 S.D. N 

Text 

Word 1.58 0.7 19 

Arrow 1.36 0.9 33 

Marginal 

Mean 
1.44 0.8 52 

Diagram 

Word 1.60 1.2 20 

Arrow 2.09 0.8 32 

Marginal 

Mean 
1.90 1.0 52 

Combined 

Word 1.59 1.0 39 

Arrow 1.72 0.9 65 

Mean 1.67 0.9 104 

 

 

Figure 10.  Total score by condition 
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The proportional-correct score was analyzed for each individual Query using a 2x2 

ANOVA.  Please see Table 13 for a summary of the answers for each Query broken down by 

condition. 

Table 13 

Mean proportion-correct score for Query by condition 

Visualization Connection Path
 

Cause
 

Effect
 

Text 

Word .72 .74 .88 

Arrow .61 .69 .66 

Marginal 

Mean 
.65 .71 .74 

Diagram 

Word .62 .75 .60 

Arrow .81 .74 .93 

Marginal 

Mean 
.74 .74 .80 

Combined 

Word .67 .74 .74 

Arrow .71 .71 .79 

Mean .69 .72 .77 

 

Path Query asked the participants to list all the pathways by which one variable could 

affect another.  The Visualization by Connection interaction was significant, F(1, 100) = 6.81, p 

= .01, ηp
2
 = .06.  Neither Visualization, F(1, 100) = 0.85, p = .359, nor Connection F(1, 100) = 

0.61, p = .436, was significant.   

The Cause Query asked participants to identify all the variables that affected a certain 

variable.  There was no significance found for Visualization, F(1, 100) = 0.15, p = .697, 

Connection F(1, 100) = 0.13, p = .721, or the Visualization by Connection interaction, F(1, 100) 

= .06, p = .815. 
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The Effect Query asked participants to identify all the variables that were affected by 

another particular variable.  The Visualization by Connection interaction was significant, F(1, 

100) = 7.34, p = .008, ηp
2
 = .07.  Neither Visualization, F(1, 100) = 0.001, p = .974, nor 

Connection were significant, F(1, 100) = 0.28, p = .600.   

Discussion 

Study 3 was designed to control for some of the alternative explanations that arose in 

Study 2.  In Study 2, the results indicated that by replacing arrowheads with words, participants 

were greatly affected by being more prone to error.  The particular error observed in this 

condition was that participants seemed to interpret the word placed in the middle of the arc as 

being bidirectional.  That is to say, A affects B was consistently reported as B also affecting A.  

One possibility for this error was that the instructions were simply unclear as the diagram was by 

no means a typical causal representation.  Another possibility was that by placing the word in the 

middle of the arc connecting variables, the positioning also cued participants to interpret this 

atypical representation as being bidirectional.  Study 3 moved the placement and created a 

qualification test to ensure that participants knew these representations were not bidirectional 

before proceeding with the task.   

 Participants in the Diagram/Word condition did much better this time, scoring on par 

with participants in the Text conditions.  However, the Diagram/Arrow representation still 

outperformed all other conditions.  And as before, the reason appears to be because of errors 

made in the diagram/Word condition.  The most common error was again misreading the links as 

being bidirectional, despite participants having already passed the test indicating they understood 

the links were not bidirectional.  The number of errors was less than in the previous study, 

indicating that perhaps the qualification test did help to decrease the error.   
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 These results lend support to the idea of the last two studies that diagrams may activate 

System I reasoning which causes participants faced with an unfamiliar situation to erroneously 

rely on intuitive interpretations of a causal model.  These two studies indicate that further 

exploration of appropriate model construction is needed in order to prevent other errors that may 

arise in more typical uses of causal models.  It would be interesting to examine whether this 

effect would hold up if participants were not using abstract variables 
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Study 4: Asymmetries in reasoning about causes and effects 

The primary goal of Study 4 was to examine the possibility of asymmetries between the 

ease or accuracy of reasoning from cause to effect (predictive reasoning) and from effect to 

cause (diagnostic reasoning).  Previous work in this area focused on these types of reasoning in 

the context of a mental simulation (Hagmayer & Waldmann, 2000; Hegarty, 1992) or in a word 

problem (Fernbach & Sloman, 2009; Fernbach, Darlow, & Sloman, 2011; Tversky & Kahneman, 

1980).  Although predictive reasoning was often favored in these circumstances, it is unclear 

whether the effect was due to a preference for predictive reasoning or because some aspect of the 

problem itself created the bias.  Participants in this study were given an explicit but abstract 

causal model to control for any context effects brought about by prior knowledge.   

By taking a causal model and asking about the causes of a certain variable, and then 

reversing the model and asking about the effects of the same variable, this experiment examined 

the asymmetry hypothesis.  Two different groups of participants were asked to list either all the 

causes or all the effects of a given variable.  In this situation, the models given to the two groups 

were designed so that the correct answers would be identical, even though the questions would 

be framed either from a cause perspective or an effect perspective.  That is to say, if the causes of 

variable A in the first model were variables X, Y, and Z, then the effects of variable A in the 

second model were also variables X, Y, and Z.   

A secondary purpose for this study was to further examine findings from previous studies 

regarding the circumstances in which diagrams improve reasoning compared to text.  Studies 1 

and 2 offered evidence that diagrammed causal models may activate intuitive reasoning and 

causal models presented as text may activate more analytical reasoning.  Study 4 examined 
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whether this difference in reasoning created a performance difference between predictive and 

diagnostic reasoning.   

The last objective of this study was to examine the ability of people to discover 

alternative explanations for variable relationships.  The previous two studies asked participants 

to explain the relationship between two variables that were related through direct effect, indirect 

effects, and a common cause.  Participants had limited success in this particular task overall, but 

were especially poor at discovering the common cause explanation.  However, the answers to 

those questions were relatively complex, involving three types of explanations.  Thus it may 

have been excessive to expect so much from people without training in causal modeling or 

statistics.  In particular, the presence of more readily identifiable alternative explanations (the 

direct and indirect effect links) may create an effect similar to phonological blocking 

(Woodworth, 1929) where an initial explanation can prevent access to an alternative (in this case, 

the alternative being the common cause leading to a spurious correlation).  Therefore, the 

previous studies were unable to determine whether the idea of spurious correlation was too 

difficult to discover or whether it was simply blocked or obscured.  By reducing the complexity 

of the task, it was a better assessment of whether the concept of a spurious correlation was 

discoverable within the context of a causal model.  Including one alternative explanation (a 

direct effect link) in one of the models allowed for testing the hypothesis that distractor answers 

had previously interfered with the discovery of spurious correlations in previous studies. 

Methods 

Participants  

We recruited 240 participants from Amazon’s Mechanical Turk (MT) for this study.  The 

experiment was only available to participants who had an American IP address.  Four 
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participants were excluded for not completing the task.  Another 21 participants were excluded 

for having completed one of the previous studies.  This resulted in 215 participants randomly 

assigned to four conditions.   

The participants were 60% male.  English was the native language for 99% of 

participants.  The mean age was 31 years old (SD = 11) and ranged from 18 to 87 years.  About 

86% of participants reported having attended at least some college with 17% having attended at 

least some graduate school.  Of those who attended college, 34% (31% overall) majored in 

mathematics, engineering, computer science, or information systems.  However, only 5% of all 

participants reported ever having taken more than two courses in statistics.  Over half (55%) 

reported never having taken a statistics course. 

Stimuli 

 The causal model in this study was structurally identical to the one from the previous 

studies.  While some participants saw this base model (Model A), others saw its inverse (Model 

B).  The inverse model had all causal link directions reversed, and was reflected around the 

vertical axis so that the general direction of causal flow remained from left to right.  The models 

were also presented as either Text or as a Diagram.  Please see Figure 11 for the stimuli used in 

this study. 
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Figure 11.  The four conditions for displaying the causal model in Study 4.  
 

Procedure  

Our task was hosted online by MT.  It was written in HTML and JavaScript.  Participants 

were paid $1.00 to complete the task.  Once participants accepted the task, they were randomly 

assigned to one of the four conditions and presented with a short introduction.  They were 

allowed a maximum of one hour from the time they accepted the task to fully complete and 

submit it.  Following is the introduction for all conditions: 

A primary goal of science is to uncover the causes of the phenomena of interest.  Because 

many phenomena have multiple causes, some direct and some indirect, uncovering 

causal relationships can be complicated.  For example, food consumption is a direct 

cause of obesity.  The number of hours of TV watched per week is an indirect cause 

because greater TV time reduces energy expenditure.  After preliminary research, 

scientists often model the causal relations they have found, and use the model to come to 

conclusions.  

Consider a simple example, represented by the information below: 

Text-Model A Text-Model B 

C affects R; C affects H; R affects M; R 

affects S; R affects H; H affects M; H affects 

S; H affects A; M affects S; A affects S. 

S affects M, S affects R, S affects H, S affects 

A, M affects R, M affects H, A affects H, R 

affects C, H affects R, H affects C. 

Diagram-Model A Diagram-Model B 
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 X affects Y, X affects Z, and Y affects Z. 

In this case, X has a causal influence on Z in two ways.  First there is a direct effect of X 

on Z (by assumption).  Also there is an indirect effect of X on Z, because X is assumed to 

affect Y and Y is assumed to affect Z.  To summarize, if you were given this information 

Text example  Diagram example 

X affects Y, X affects Z, and Y affects Z. 

 

 

Figure 12.  The example models for Study 4 

The participant was then presented with the example causal model.  Depending on the 

condition to which they had been assigned, it was either in text or diagram form (see Figure 12).  

The instructions continued: 

and asked to list all the ways that variable X causally affects variable Z, you would write:  

X affects Z.  

X affects Y which affects Z. 

After the introductory example, participants clicked the “proceed” button and saw the 

following task description and the target causal model: 

Assume that a researcher makes causal assumptions about a particular social science 

domain where variables C, R, H, M, A, and S are measurable aspects of people. 

The researcher makes the following causal assumptions:  

The causal model, in one of the four versions shown in Figure 11, was presented at this 

point.  With the preceding text and the model visible on the screen, participants were presented 

with the first of four questions.  After they answered that question, they pressed a button and the 

first question (along with their answer) disappeared and the second question appeared.  
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Meanwhile, the model remained on the screen.  This was repeated until the final question which, 

upon completion, directed participants to a new page asking for demographic information.  From 

this page they submitted their entire task.  Participants were not permitted to go back to a 

previous screen to view or change answers.  

Outcome measures 

Answers were collected from the four questions presented to the participants.  The first 

question (Path Query) asked participants to identify all direct and indirect effects between two 

variables.  The second and third questions (Cause Query and Effect Query respectively) asked 

participants to identify causes and effects of certain variables.  To control for practice and other 

order effects, the order in which these two questions appeared was randomized for each 

participant.  The fourth question (Explanation Query) asked participants to explain a relationship 

between two variables in terms of links in the causal model.  Please see Table 14 for the specific 

wording of the questions and their respective answers. 

We analyzed the data in two ways for the first three questions.  If participants listed all of 

the correct paths/variables and did not list any incorrect paths/variables, the question was scored 

as correct.  A participant’s Total Score was the sum of all their correct answers.   

However, because each question was composed of multiple answers, it was possible to 

answer several parts of a question correctly while not answering the entire question correctly.  

Therefore, to allow partial credit, a second dependent measure was created.  This variable was 

created by summing the number of correct paths or variables each participant listed for a 

particular question, subtracting the number of incorrect answers, and then dividing that sum by 

the number of possible correct answers.  This created a variable called Proportion-correct Score 
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(PropScore).  The maximum score for this variable is 1 (indicating that the answer is entirely 

correct); the minimum score could be negative.   

Table 14 

Study 4 tasks and answers 

 Model A Model B 

Query Question Text Answer Question Text Answer 

Path 

Please list all the 

ways that variable R 

could affect variable 

S. 

R->S 

R->M->S 

R->H->S 

R->H->A->S 

R->H->M->S 

Please list all the 

ways that variable S 

could affect variable 

R. 

S->R 

S->M->R 

S->H->R 

S->A->H->R 

S->M->H->R 
     

     

Cause 

Please list all the 

VARIABLES that 

AFFECT variable M 

(just name the 

variables, don't list 

paths). 

C, H, R 

Please list all the 

VARIABLES that 

AFFECT variable R 

(just name the 

variables, don't list 

paths). 

H, M, A, S 

     

     

Effect 

Please list all the 

VARIABLES that 

ARE AFFECTED 

BY variable R (just 

name the variables, 

don't list paths). 

H, M, A, S 

Please list all the 

VARIABLES that 

ARE AFFECTED 

BY variable M (just 

name the variables, 

don't list paths). 

C, H, R 

     

     

Explanation 

Assume that variable 

R and variable H are 

found to be 

positively correlated.  

Please explain this 

correlation using the 

causal model. 

Both variables 

affected by C; 

R  H 

Assume that variable 

M and variable A are 

found to be 

positively correlated.  

Please explain this 

correlation using the 

causal model. 

Both 

variables 

affected by S 

     

Answers to the Explanation Query were scored somewhat differently.  Participants were 

scored as correct or incorrect based only on whether they identified the spurious correlation.  
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Results 

 Participants completed the entire task with a mean response time of 10 minutes and a 

median response time of 7.5 minutes.  Because the presence of outliers strongly affected the 

mean, median time may more interpretable.  Time to complete the task was analyzed using a 2x2 

ANOVA and found a significant effect for the interaction between Visualization and Model, 

F(1,210) = 4.52, p = .035, ηp
2
 = .02.  There was also a significant effect for Visualization, 

F(1,210) = 12.55, p < .001, ηp
2
 = .06.  A breakdown of median response times for each question 

by condition can be found in Table 15.   

Table 15 

Median response time (in seconds) by condition for Study 4 Queries 

Visualization Model Path Cause Effect Expl. Total Time N 

Text 

Model A 177 66 44 103 428 57 

Model B 154 54 40 126 460 45 

Marginal 

Median 
164 61 44 112 432 102 

Diagram 

Model A 118 34 25 70 271 60 

Model B 103 30 20 81 254 52 

Marginal 

Median 
104 33 22 76 263 112 

Combined 

Model A 151 51 33 88 386 117 

Model B 115 40 31 96 315 97 

Median 134 45 32 94 339 214 

 

Text vs. Diagram 

The Total Score variable was analyzed using a 2x2 ANOVA with the following factors: 

Visualization (Text, Diagram) and Model (Model A, Model B).  The participants in the Diagram 

conditions scored higher (M = 2.01, SD = 1.0) than in the Text conditions (M = 1.49, SD = 1.1), 
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F(1,211) = 16.988, p < .001, ηp
2
 = .08.  Participants presented with Model A also scored higher 

(M = 1.97, SD = 1.0) than those presented with Model B (M = 1.51, SD = 1.0), F(1,211) = 

12.846, p < .001, ηp
2
 = .06.  The Visualization*Model interaction was marginally significant, 

F(1,211) = 2.722, p = .093, ηp
2
 = .01.  The difference between Diagrams and text may be slight 

under-estimated as six participants drew their own diagrams and nine drew their own tables.  In 

the Diagram conditions, one person drew another diagram and two drew tables.  Please see Table 

16 and Figure 13 for further details. 

Table 16 

Descriptive statistics for all four conditions 

Visualization Model 
Total Score 

Mean
 S.D. N 

Text 

Model A 1.81 1.0 57 

Model B 1.09 1.0 45 

Marginal 

Mean 
1.49 1.1 102 

Diagram 

Model A 2.13 0.9 60 

Model B 1.87 1.0 53 

Marginal 

Mean 
2.01 0.9 113 

Combined 

Model A 1.97 1.0 117 

Model B 1.51 1.1 98 

Mean 1.76 1.0 215 

Total Score is computed as the sum of the proportional correct scores for Path, Cause, and Effect Queries and 

omitting the Explanation Query score. 
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Figure 13.  Total Score by condition 

Table 17 

Mean proportion-correct score for Query by condition 

Visualization Model Path Cause Effect
 

Expl. 

Text 

Model A .77 .91 .87 .32 

Model B .69 .83 .75 .56 

Marginal 

Mean 
.73 .87 .82 .42 

Diagram 

Model A .79 .89 .90 .32 

Model B .77 .89 .89 .60 

Marginal 

Mean 
.78 .89 .89 .45 

Combined 

Model A .78 .90 .89 .32 

Model B .74 .82 .86 .58 

Mean .76 .86 .87 .44 
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Inferences About Causes vs. Inferences About Effects 

The primary goal of this study was to examine whether reasoning from cause to effect 

might result in different performance than reasoning from effect to cause.  Model A and Model B 

were designed so that participants in the Model A conditions were asked about the cause of a 

variable and participants in the Model B conditions were asked about the effects of the same 

variable with the answer being identical for both.  Ostensibly any differences in performance 

could be attributed to the causal direction of the question.  As Table 17 shows, the relevant 

comparisons were the Cause Query from Model A with the Effect Query from Model B (i.e. the 

effects of variable M and the causes of variable M) and the Cause Query from Model B with the 

Effect Query of Model A (i.e. the effects of variable R and the causes of variable R). 

In order to get a single overall test of asymmetries between reasoning from cause to 

effect and from effect to cause (using both nodes M and R), the data from the Path, Cause, and 

Effect queries was analyzed using a 2x2 ANOVA with a within-subjects design.  The within-

subjects factor was Direction of Inference (Cause to Effect, Effect to Cause) and the between-

subjects factors were Visualization (Text, Diagram) and Model (Model A, Model B).  The Path 

Query proportion-correct score was used as a covariate to control for possible group differences 

and model difficulty.  Participants scored significantly higher on the Cause Query—i.e., when 

reasoning from effect to cause (M = .88, SD = .25), compared to reasoning from cause to effect 

in the Effect Query (M = .86, SD = .27), F(1,210) = 7.832, p = .006, ηp
2
 = .04.  That is to say, 

participants did better reasoning diagnostically than predictively.  There was no significant effect 

for Visualization, F(1,210) = 1.952, p = .16, or for Model, F(1,210) = 2.357, p = .13. 



71 

 

 

 

Because of differences between text and diagrammed models in terms of ease and 

accuracy of inferences we also applied this 2x2 within-subjects ANOVA model separately for 

the Text and Diagram conditions.  Table 18 shows the relevant cell means.  In the Text 

conditions, participants scored significantly higher in Cause Query (M = .87, SD = .25) than in 

Effect Query (M = .82, SD = .27), F(1, 99) = 8.034, p = .006, ηp
2
 = .08.  There was also a 

significant effect for Model; participants with Model A (M = .89, SD = .22) scored higher than 

those with Model B (M = .79, SD = .26), F(1, 99) = 4.694, p = .033, ηp
2
 = .05.  There were no 

significant differences in the Diagram conditions between Cause Query (M = .89, S.D. = .29) and 

Effect Query (M = .89, S.D. = .26), F(1,110) = 1.573, p = .21 or between Model A (M = .89, S.D. 

= .31) and Model B (M = .89, S.D. = .23), F(1,110) = .007, p = .933. 

 

 

Table 18 

Mean proportional correct scores for Cause and Effect Queries by condition 

 

Discovery of Spurious Correlation 

For the Explanation Query, 58% of participants viewing Model B (spurious correlation 

only) identified the spurious correlation compared to 32% of participants viewing Model A 

(spurious correlation and direct effect), Wald X
2
 (d.f. = 1) = 9.089, p = .003.  There was no 

 Variable M  Variable R  Combined 

variables 

  

Model A B  B A    

Question Causes  Effects   Causes  Effects   Causes Effects  Mean 

Text .91 .75  .83 .87  .87 .82  .85 

Diagram .89 .89  .89 .90  .89 .89  .89 

Mean .90 .82  .86 .88  .88 .86   



72 

 

 

 

significant difference between Text (42%) and Diagram (45%) conditions, Wald X
2
 (d.f. = 1) = 

.630, p = .82.  

Discussion 

The main purpose of this study was to examine possible asymmetries in reasoning from 

cause to effect (predictive reasoning) and from effect to cause (diagnostic reasoning).  To 

examine this, the experiment utilized a causal model and its inverse (all causal directions 

reversed, still read from left to right).  By asking about all the causes of a variable in one 

condition and all the effects of the same variable in another condition (the answers were 

identical), this study explored the possibility of a predictive or diagnostic bias.  

 This experiment found a significant effect for the interaction; however, it was in the 

opposite direction of the hypothesis.  Participants did better at diagnostic reasoning.  In other 

words, participants did better reasoning about the cause from the effect even though it is in the 

opposite direction of temporal flow and, additionally, required reading the model from right to 

left.  It is important to note that the differences in performance between reasoning from cause to 

effect(s) and from effect to cause(s) were entirely within the Text conditions.  The Diagram 

conditions scored almost identically.  Because this finding was unexpected, prior to further 

discussion, another experiment was run in an attempt to replicate these results.  Further 

discussion about predictive and diagnostic reasoning can be found in Study 4. 

Diagram vs. text.  This study replicated findings from the previous studies that show 

participants answer questions more accurately and in less time when presented with a 

diagrammed version of a causal model.  Participants in the diagram conditions were 40% faster 

and scored 25% higher.  Additionally, the diagram appeared to negate any bias to reasoning that 
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occurred due to predictive or diagnostic reasoning.  There was no difference in the performance 

of participants in the diagram condition.  

Differences between models.  The models were created to be functionally equivalent and 

appeared to be of equal complexity.  Because the models were constructed of abstract variables, 

there was no reason to believe one model would be more difficult than the other.  However, there 

was a significant difference in performance due to the model participants used.  Participants in 

the Text/Model B condition scored the lowest on each of Path, Cause, and Effect Queries.  

Because this difference was consistent across the different types of tasks, it would seem that the 

effect was due to the text version of Model B having a higher inherent difficulty.  It is unclear 

why this effect occurred and why it only manifest in the Text condition. 

One possible explanation for this difference may be found in the nature of the 

relationships in the model.  Taken as a whole, the relationships were fundamentally identical 

between the two models.  The causal chains were identical as well.  However, individual 

variables differed in the complexity of chains leading in the two possible directions.  In Model A, 

the number of effects each variable respectively had was 3, 3, 2, 1, and 1.  In Model B, it was: 4, 

2, 2, 1, and 1.  Although the number of relationships in the model was the same (10 dichotomous 

relationships), the proportion of effects was slightly different, specifically, the first two variables 

in the model.  In Model A, the first two variables have three effects each.  In Model B, the first 

variable has four effects and the second has 2 effects.  It may not seem like a substantial 

difference but when variables are presented as text, small changes can greatly increase 

complexity.  The diagram of the same model may have provided enough of an advantage to 

prevent from affecting participants. 
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Finding alternative explanations.  The Explanation Query asked participants to explain the 

relationship between two variables, with the correct answer being that it is a spurious correlation 

due to a common cause.  In previous studies, participants were asked to explain the relationship 

between two variables, but the answer was much more complex and only a small number of 

participants identified the spurious correlation (roughly 16%).  In Model A of this study, the 

variables had a direct relationship (i.e., one variable affected the other directly) but both 

variables also shared a common cause.  In Model B, there was no direct relationship between the 

variables, but they again shared a common cause.   

It appears the simplification was successful as substantially more participants discovered 

the spurious correlation.  Participants in Model B conditions (the conditions without the direct 

effect) identified the spurious correlation 58% of the time compared to 32% of the time in Model 

A conditions.  It appears that this difference could be explained similarly to the blocking-type 

error discussed in the introduction, i.e., participants discovered the direct affect and may have 

ceased searching for further explanation.  Nevertheless, it is encouraging that people with little 

statistical background were so often able to discover the concept of a spurious correlation 

without instruction.  Diagrams did not appear to help, since participants in both Text and 

Diagram conditions found the spurious correlation at a similar rate.  There was an effect on work 

time, however, as participants with diagrams completed the task about 30 seconds faster. 

 Participants often discovered the spurious correlation while simultaneously 

demonstrating other misconceptions about statistics and causality in general.  This is to be 

expected with a sample that overall did not have much formal education in statistics.  However, 

one error was produced with surprising frequency.  The most common misconception, 

demonstrated by a large portion of participants who identified a spurious correlation, was that a 



75 

 

 

 

positive correlation between variables could be explained by their common cause, but also by 

their common effect.  That is to say, since both variables affect a third variable, that would 

explain the first two variables’ positive correlation.  This “intuitive” understanding of causal 

relationships may provide insight into how people naively reason using causal models.    
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Study 5: Replication of Asymmetry Study 

 The results of the previous experiment indicated a bias towards diagnostic reasoning over 

predictive reasoning.  This seemed to contradict previous findings that predictive reasoning was 

an easier process (Tversky & Kahneman, 1980; Waldmann & Holyoak, 1992).  Study 5 was 

designed as a replication of Study 4 in order to further investigate possible asymmetries in 

reasoning.  A new, more complex causal model was introduced. 

 Another purpose for replicating Study 4 was to address possible bias the phrasing of the 

questions may have introduced.  In Study 4, the Cause Query was phrased in the active voice 

(“What variables affect…”) and the Effect Query was phrased in the passive voice (“What 

variables are affected by…”).  This new study attempts to rectify that possible source of bias by 

phrasing both Queries in the active voice.  The Effect Query was changed to “What variables 

does X affect?” 

Methods 

Participants  

We recruited 240 participants from Amazon’s Mechanical Turk (MT) for this study.  The 

experiment was only available to participants who had an American IP address.  Two 

participants were excluded for not completing the task.  Another 23 participants were excluded 

for having participated in one of the three previous studies.  This resulted in 215 participants 

randomly assigned to four conditions.   

The participants were 60% male.  English was the native language for 96% of 

participants.  The mean age was 32 years old (SD = 11) and ranged from 18 to 84 years.  About 

82% of participants reported having attended at least some college with 18% having attended at 

least some graduate school.  Of those who attended college, 23% (19% overall) majored in 
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mathematics, engineering, computer science, or information systems.  However, only 3% of all 

participants reported ever having taken more than two courses in statistics.  About half (49%) 

reported never having taken a statistics course. 

Stimuli 

 Participants were presented with an abstract causal model that consisted of two more 

nodes than the models in the previous studies (albeit the number of dichotomous causal 

relationships remained the same).  Participants either saw this model (Model A) or its inverse 

(Model B).  The inverse model had all causal link directions reversed, and was reflected around 

the vertical axis so that the general direction of causal flow remained from left to right.  The 

models were also presented as either Text or as a Diagram.  Please see Figure 14 for the stimuli 

used in this study. 

Figure 14.  The four conditions for displaying the causal model in Study 5.  

Text-Model A (Condition 1) Text-Model B (Condition 2) 

K affects H; K affects W; K affects A; W 

affects C; W affects S; W affects A; A affects 

M; S affects M; M affects R; H affects R 

R affects H; R affects M; M affects S; M 

affects A; S affects W; C affects W; W affects  

K; A affects W; A affects K; H affects K 

Diagram-Model A (Condition 3) Diagram-Model B (Condition 4) 
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Procedure  

Our task was hosted online by MT.  It was written in HTML and JavaScript.  Participants 

were paid $1.00 to complete the task.  Once participants accepted the task, they were randomly 

assigned to one of the four conditions and presented with a short introduction.  They were 

allowed a maximum of one hour from the time they accepted the task to fully complete and 

submit it.  Following is the introduction for all conditions: 

A primary goal of science is to uncover the causes of the phenomena of interest.  Because 

many phenomena have multiple causes, some direct and some indirect, uncovering 

causal relationships can be complicated.  For example, food consumption is a direct 

cause of obesity.  The number of hours of TV watched per week is an indirect cause 

because greater TV time reduces energy expenditure.  After preliminary research, 

scientists often model the causal relations they have found, and use the model to come to 

conclusions.  

Consider a simple example, represented by the information below: 

 X affects Y, X affects Z, and Y affects Z. 

In this case, X has a causal influence on Z in two ways.  First there is a direct effect of X 

on Z (by assumption).  Also there is an indirect effect of X on Z, because X is assumed to 

affect Y and Y is assumed to affect Z.  To summarize, if you were given this information 

Text example  Diagram example 

X affects Y, X affects Z, and Y affects Z. 

 

 

Figure 15.  The example models for Study 5 
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The participant was then presented with the example causal model.  Depending on the 

condition to which they had been assigned, it was either in text or diagram form (see Figure 15).  

The instructions continued: 

and asked to list all the ways that variable X causally affects variable Z, you would write:  

X affects Z.  

X affects Y which affects Z. 

After the introductory example, participants clicked the “proceed” button and saw the 

following task description and the target causal model: 

Assume that a researcher makes causal assumptions about a particular social science 

domain where variables C, R, H, M, A, and S are measurable aspects of people. 

The researcher makes the following causal assumptions:  

The causal model, in one of the four versions shown in Figure 14, was presented at this 

point.  With the preceding text and the model visible on the screen, participants were presented 

with the first of four questions.  After they answered that question, they pressed a button and the 

first question (along with their answer) disappeared and the second question appeared.  

Meanwhile, the model remained on the screen.  This was repeated until the final question which, 

upon completion, directed participants to a new page asking for demographic information.  From 

this page they submitted their entire task.  Participants were not permitted to go back to a 

previous screen to view or change answers. 

Outcome measures 

Answers were collected from the four questions presented to the participants.  This study 

differed from the previous studies in that the position of the Path Query was moved from the first 

question to the last.  Also, the Alternative Explanation Query was not included in this study.  The 
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first and second questions (Cause Query and Effect Query respectively) asked participants to 

identify causes and effects of certain variables to examine possible asymmetries in reasoning 

from cause to effect and from effect to cause.  To control for practice and other order effects, the 

order in which these two questions appeared was randomized for each participant.  The third 

question (Path Query) asked participants to identify all direct and indirect effects between two 

variables.  Table 19 has the specific wording of the questions and their respective answers. 

Table 19 

Study 5 tasks and answers 

 Model A Model B 

Query Question Text Answer Question Text Answer 

     

Cause 

Please list all the 

VARIABLES that 

AFFECT variable M 

(just name the 

variables that are 

causes of M, don't list 

paths). 

K, W, A, S 

Please list all the 

VARIABLES that 

AFFECT variable W 

(just name the 

variables that are 

causes of W, don't 

list paths). 

A, C, M, S, R 

     

     

Effect 

Please list all the 

VARIABLES that 

variable W 

AFFECTS (just name 

the variables that are 

effects of W, don't 

list paths). 

A, C, M, S, R 

Please list all the 

VARIABLES that 

variable M 

AFFECTS (just name 

the variables that are 

effects of M, don't 

list paths). 

K, W, A, S 

     

     

Path 

Please list all the 

ways that variable K 

could affect variable 

M. 

K->A->M 

K->W->A->M 

K->W->S->M 

Please list all the 

ways that variable M 

could affect variable 

K. 

M->A->K 

M->A->W->K 

M->S->W->K 

     

We analyzed the data in two ways.  If participants listed all of the correct paths/variables 

and did not list any incorrect paths/variables, the question was scored as correct.  A participant’s 

Total Score was the sum of all their correct answers.   
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However, because each question was composed of multiple answers, it was possible to 

answer several parts of a question correctly yet still not get the entire question correct.  

Therefore, to allow partial credit, a second dependent measure was created.  This variable was 

created by summing the number of correct paths or variables each participant listed for their 

response, subtracting the number of incorrect answers, and then dividing that sum by the number 

of possible correct answers.  This created a variable for each of the first three questions that we 

called Proportion-correct Score (PropScore).  The maximum score for this variable is 1 

(indicating that the answer is entirely correct); the minimum score could be negative.   

Results 

 Participants completed the entire task with a mean response time of 9.7 minutes 

and a median response time of 4.4 minutes.  Because the presence of outliers strongly affected 

the mean, median time may more interpretable.  A 2x2 ANOVA was run for Total Time using 

Visualization and Content.  There was not a significant difference between Text and Diagrams, 

F(1, 157) = 0.41, p = .521 or Model A and Model B, F(1, 157) = 0.54, p = .465.  A breakdown of 

median response times for each question by condition can be found in Table 20.   

Two research questions guided our analyses of accuracy of inferences.  The first question 

was whether the presentation form of the causal model, either text or diagram, would affect 

successful interpretation of the model.  The second is whether participants would show 

asymmetry in how successfully they reasoned from cause to effect compared to from effect to 

cause.   
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Table 20 

Median response time (in seconds) by condition for Study 5 Queries 

Visualization Model Cause Effect Path Total Time N 

Text 

Model A 80 55 94 340 57 

Model B 78 43 101 319 48 

Text Median 80 51 99 324 105 

Diagram 

Model A 69

 28

*
 52 223 56 

Model B 56
*
 24

*
 47 216 54 

Diagram Median 61 27 50 221 110 

Combined 

Model A 76 42 72 281 113 

Model B 70 39 66 265 102 

Median 74 40 70 265 215 

 

Text vs. Diagram 

In order to assess the overall effects on inference performance of using a causal diagram 

versus text, we analyzed the Total Score variable using a 2x2 ANOVA with the following 

factors: Visualization (Text, Diagram); Model (Model A, Model B).  The participants in the 

Diagram conditions scored significantly higher (M = 1.8, SD = 1.0) than in the Text conditions 

(M = 1.1, SD = 1.1), F(1,211) = 20.659, p < .001, ηp
2
 = .10.  There was not a significant score 

difference between Model A (M = 1.5, SD = 1.1) and Model B (M = 1.4, SD = 1.2), F(1,211) = 

1.906, p = .17.  The Visualization*Model interaction was not significant, F(1,211) = 0.004, p = 

.95.  Only six participants (five from the Text conditions) drew their own external aids (e.g. 

diagrams or tables).  Please see Table 21 and Figure 16 for further details. 

                                                 

 A programming bug prevented time data from being collected for the first two questions of participants in the 

Diagram conditions that saw the Effect Query first.  Therefore, these numbers do not accurately reflect the size of 

the time difference.  However, the pattern of the Cause Query taking longer than the Effect Query was exhibited in 

the Text conditions regardless of which Query came first so it may be safe to assume the same for the Diagram 

condition.   



83 

 

 

 

Table 21 

Descriptive statistics for all four conditions 

Visualization Model 
Total Score 

Mean
 S.D. N 

Text 

Model A 1.21 1.0 57 

Model B 1.02 1.1 48 

Marginal 

Mean 
1.12 1.1 105 

Diagram 

Model A 1.88 1.0 56 

Model B 1.67 1.1 54 

Marginal 

Mean 
1.77 1.0 110 

Combined 

Model A 1.54 1.1 113 

Model B 1.36 1.2 102 

Mean 1.46 1.1 215 

 

 

Figure 16.  Total Score by condition 
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Table 22 

Mean proportion-correct score for Query by condition 

Visualization Model Cause Effect Path 

Text 

Model A 0.75 0.75 0.49 

Model B 0.67 0.68 0.53 

Marginal 

Mean 
0.71 0.72 0.51 

Diagram 

Model A 0.76 0.78 0.74 

Model B 0.79 0.76 0.70 

Marginal 

Mean 
0.77 0.77 0.72 

Combined 

Model A 0.75 0.77 0.61 

Model B 0.73 0.72 0.62 

Mean 0.74 0.75 0.62 

 

Inferences About Causes vs. Inferences About Effects 

The primary goal of this study was to replicate the findings from Study 4 that reasoning 

from cause to effect (predictive reasoning) resulted in different performance than reasoning from 

effect to cause (diagnostic reasoning).  As Table 22 shows, the relevant comparisons were the 

Cause Query from Model A with the Effect Query from Model B (i.e. the effects of variable M 

and the causes of variable M) and the Cause Query from Model B with the Effect Query of 

Model A (i.e. the effects of variable W and the causes of variable W). 

In order to get a single overall test of asymmetries between reasoning from cause to 

effect and from effect to cause (using both nodes M and W), the data from the Cause and Effect 

queries were analyzed using a 2x2 within-subjects ANOVA.  The within-subjects factor was 

Direction of Inference (Cause to Effect, Effect to Cause) and the between-subjects factors were 



85 

 

 

 

Visualization (Text, Diagram) and Model (Model A, Model B).  Participants did not score 

significantly higher on the Cause Query—i.e., when reasoning from effect to causes (M = .74, 

SD = .36), compared to reasoning from causes to effects in the Effect Query (M = .75, SD = .35), 

F(1,211) = 0.014, p = .91.  That is to say, participants did no better reasoning predictively than 

diagnostically.  There was not a significant effect for Visualization, Text (M = .72, SD = .33), 

Diagram (M = .77, SD = .37), F(1,211) = 2.142, p = .15 or for Model, Model A (M = .76, SD = 

.35), Model B (M = .71, SD = .34), F(1,211) = 0.904, p = .34. 

Because of differences between text and diagrammed models in terms of ease and 

accuracy of inferences, the Text and Diagram conditions were analyzed separately using a 2x2 

within-subjects ANOVA.  Table 23 shows the relevant cell means.  In the Text conditions, 

participants did not score significantly higher in Cause Query (M = .71, SD = .34) than in Effect 

Query (M = .72, SD = .33), F(1,103) = 0.005, p = .064, ηp
2
 = .80.  There was no significant 

difference between participants with Model A (M = .75, SD = .32) and those with Model B (M = 

.67, SD = .35), F(1,103) = 2.209, p = .14.   

There was no significant difference in the Diagram condition between Cause Query (M = 

.77, S.D. = .37) and Effect Query (M = .77, S.D. = .38), F(1,108) = 0.005, p = .94.  Neither was 

there a significant difference between Model A (M = .77, S.D. = .39) and Model B (M = .78, S.D. 

= .32), F(1,108) = 0.004, p = .95. 
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Table 23 

Mean proportional correct scores for Cause and Effect Queries by condition 

Discussion 

 Study 5 was designed as a replication of Study 4 to examine possible asymmetries in 

reasoning between causes and effects.  Study 4 had shown a tendency for people to do better on 

an inference task when asked to reason about causes from effects as opposed to reasoning about 

effects from causes.  This finding was only demonstrated when the causal model was in text 

form.  With a causal model in diagram form, participants did equally well in either direction.   

 Study 5 did find a similar effect, but only for one of the causal models (Model A).  When 

the causal flow in the model was reversed (creating Model B), the effect reversed itself as well, 

i.e., participants did better reasoning from cause to effect.  The difference in scores was such that 

they effectively cancelled each other out so that there was no main effect of Direction of 

Inference.   

As before, these differences were confined to the Text conditions.  Consistent with the 

results of our previous studies, participants presented with models using diagrams outperformed 

participants with text.  However, it is interesting to note that the scores for the questions in which 

participants did better in the Text conditions (i.e. the cause Query for Model A and the Effect 

Query for Model B) were roughly equivalent to the scores in the Diagram conditions.  One way 

 Variable M  Variable W  Combined 

variables 

  

Model A B  B A    

Question Causes  Effects   Causes  Effects   Causes Effects  Mean 

Text 0.75 0.68  0.67 0.75  0.71 0.72  0.72 

Diagram 0.76 0.76  0.76 0.78  0.77 0.77  0.77 

Mean 0.75 0.72   0.73 0.76   0.74 0.75     
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to interpret this is to conclude that the advantage diagrams offered was not to allow participants 

to outperform the Text conditions, but rather to prevent errors or difficulties prevalent in the Text 

conditions.   

The inability to replicate the previous study’s findings regarding asymmetrical facility in 

reasoning about causes and effects when using a formal causal model suggests that findings in 

which people demonstrate differences when reasoning about causes from effects and vice versa 

may be due more to the specific structure of the model than a cognitive bias.  A consistent 

finding across the two studies was that regardless of the model and the direction of inference, 

participants in the diagram conditions scored almost identically.  Any asymmetries between 

predictive and diagnostic reasoning that might exist may be mitigated by the presence of an 

externally represented causal model.     
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General Discussion 

Many scientific fields make use of formal causal modeling techniques to reason about 

and then communicate findings.  Despite the proliferation of diagrammatic representation of 

causal models, little research has been conducted on whether diagrams even help facilitate 

understanding, and if they do, what the essential features of diagrams are.  The findings from 

studying effective causal model representation may be of use to instructors teaching techniques 

for creating formal models to students and may also be of use to recipients of formal models who 

themselves have little training in formal modeling techniques.  

This set of experiments examined four aspects of the use of diagrams for presenting 

causal models.  Each experiment investigated performance differences in deductive inference 

between causal models presented as diagrams and presented as text.  The first experiment 

examined the impact of specific content on reasoning about causal models.  The second and third 

experiments examined the benefits of specific aspects of diagrams—spatial layout and the use of 

arrows—for diagrammed causal models, in particular the extent to which they facilitate 

successful reasoning.  The fourth and fifth experiments examined the possibility of differences in 

inference performance between predictive and diagnostic reasoning, and whether any such 

differences might be affected by diagram use 

Text vs. diagrams 

Research has shown the benefit of diagrams over text for post-test knowledge and 

inference questions (Ainsworth & Loizou, 2003), training for a future task (Kaminsky, Sloutsky, 

& Heckler, 2008), and strategy selection (Petre & Green, 1993).  This advantage for diagrams 

over text is hardly one that holds across all situations.  The benefits of diagrams are often found 

to be require expertise in a particular field (Hegarty & Sims, 1994; Heiser & Tversky, 2002; 
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Kaminsky, Sloutsky, & Heckler, 2008; Petre & Green, 1993; Suwa & Tversky, 1997) especially 

in functional (vs. structural) diagrams.  Everyone has experience with informal causal models, so 

in a sense, everyone is an expert.  However, constructing a formal causal model is not a familiar 

experience because it requires expertise in statistics, so in a sense, many people are actually 

novices.  Would lack of expertise with formal causal models negate any diagrammatic benefit 

that causal models may provide? 

The major finding from this set of experiments is that presenting a causal model as a 

diagram resulted in better outcomes much more often than did using a text version of the same 

model.  The current results found advantages for diagrams in the speed of task completion, the 

number of results, the thoroughness of responses, and the minimization of errors found in text 

versions. 

 Participants with diagrams completed every task with a faster median work time than 

participants with text models, although the difference was not always significant.  In some cases, 

a Query in the Diagram condition was completed twice as fast as in the Text condition.  The task 

where this finding was most consistent was in the Path Query where the time difference was 

significant in each study.  This is also the Query that took the most time to complete in each 

experiment.   

 Additionally, this was not a case of a speed/accuracy tradeoff as these faster times did not 

result in lower scores.  Participants with diagrams outperformed participants with text in almost 

every task.  The one exception to this was when arrowheads were replaced with words; the effect 

of which will be discussed later in the section on model structure.  The effect sizes were small 

and the difference was not always significant, but the finding was consistent across every other 

Query.   
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   The manner in which participants scored higher is worth noting.  Errors were rarely 

made regardless of the experiment or condition within an experiment.  Rather the advantage for 

the diagram condition came in the form of participants discovering more answers.  Each task had 

several components to it and the diagram conditions seemed to facilitate finding more answers 

and in less time.   

 Diagrams also seem to mediate complexity.  In the experiments on predictive and 

diagnostic reasoning, the type of reasoning was not as influential on performance as was the 

specific composition of the model.  This effect was only present in the Text conditions however.  

Any obstacle to reasoning that arose in the Text conditions was not present in the Diagram 

conditions.   

 There was one area where diagrams did not aid reasoning and two areas where they 

actually impeded reasoning.  The area where diagrams did not aid reasoning was in the discovery 

of alternative explanations for variable relationships.  In the first two studies, participants were 

given two variables and asked to explain how they might be related.  The answer involved 

discovering five possibilities ranging from direct and indirect effects to a common cause.  This 

proved to be a difficult task, with only a small percentage of participants discovering the 

common cause.  In the third study, the task was simplified so that in one condition there were 

only two possibilities: a common cause and a direct effect.  About one third of participants found 

the common cause in this condition.  The other condition had only a common cause; here, almost 

two-thirds of participants found the common cause.  This difference between conditions was 

expected because the models were designed to create a blocking effect where the salience of the 

direct effect discouraged further exploration.  Blocking in this instance is defined as a stimulus 

variable paired with a response and then a second stimulus variable paired with the same 
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response resulting in the second variable not being learned as an alternative stimulus, or in this 

case, cause (Kamin, 1969).  The surprising result was that this error occurred in the Diagram 

condition as frequently as in the Text condition.  The spatial organization in the diagram was 

such that the arcs indicating the direct affect and the common cause were laid out right next to 

each other and required minimal search (compared to the Text condition) to discover both.  It 

seems that in this situation perhaps the blocking effect overrode the benefits of a diagram for a 

statistically inexperienced sample.   

 Blocking is not the only explanation, however.  Mackie’s (1965) assertion that causal 

reasoning is frequently identification of INUS variables (variables that are necessary for an effect 

but only within a condition that itself is unnecessary) may bear on these findings.  An INUS 

variable, by definition, is an attempt to isolate a singular cause amongst a field of other causes, 

all of which are sufficient to bring about the effect.  That is to say, it is the process of assigning 

causal attribution to one event rather than parsing out different weights to the entirety of the 

causal field, as is done in path analysis.  This method of isolating causes with informal causal 

reasoning may conflict with the method of formal causal reasoning which is to identify the entire 

range of causes.  Both blocking and INUS reasoning would produce the same pattern of answers 

where difficult, complex, or redundant answers are overlooked. 

Content of the causal model 

One of the main exceptions to the advantage of diagrams over text was found in the first 

study that examined the effect of causal model content.  While an abstract diagram outperformed 

the text conditions at approximately the same rate as in other studies, the diagram comprised of 

real-world content scored equivalently to the Text condition.  Task time was equivalent between 

all conditions with the exception that participants given abstract diagrams performed the path 
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finding task faster.  This is likely due in large part to the greater amount of writing required for 

the answer.  That is to say, that writing the answer in the Abstract conditions consisted of writing 

“A”, “B”, “C”, etc. and writing the answer in the Concrete conditions consisted of writing 

“combat duration”, “received injury”, “psychological stress”, etc.  All other things being equal, 

writing more will take more time.  It does not appear that the concrete context aids reasoning, 

and may in fact, hinder the sort of deductive inference task (involving mainly paths search) 

examined here.  

The inferior performance for participants with concrete diagrams seemed to stem from 

errors of omission rather than errors of commission.  Incorrect answers were equally rare 

between all conditions, in contrast to other research that indicates performance deficits are due to 

real-world variables (Cummins et al., 1988; Geary, 1994).   

The fundamental difference between formal and informal, specifically INUS reasoning, 

may explain these results.  As previously explained, the search for causes can be categorized into 

identifying one cause or multiple causes.  One of the logical errors discussed in Chapter Two 

was ignoring multiple causes.  INUS reasoning seeks to identify the necessary event within a 

field of sufficient but unnecessary other causes (the causal field).  Although INUS reasoning 

does not seek to ignore multiple causes, it seems feasible, given people’s reputation as being 

“cognitive misers” (Fiske & Taylor, 1984), that identifying the INUS variable could transform 

from identifying the necessary cause to simply identifying the cause.   

Formal methods for causal reasoning differ in that they seek to identify multiple causes 

and to assign weight to each cause based on how much each causal variable contributes to the 

overall effect.  Thinking about what brought about an effect in this way, identifying the causal 
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field, is fundamentally different than thinking in an informal INUS manner, attempting to 

identify a single necessary cause.   

Under the assumptions of dual-process theories, this difference between types of 

reasoning may not normally matter because informal causal reasoning would be handled by 

System I and formal causal reasoning would fall under System II.  There may be some features 

of the causal models used in these experiments however, that place them on the cusp between 

implicit and explicit reasoning.  Research has shown that when diagrams are analytically studied, 

they can facilitate higher-order thinking (Cromley et al., 2010) but often diagrams are 

approached and interpreted using System I  (Alter et al., 2007; Cromley et al. 2010).  The 

abstract content of a diagrammed causal model may be difficult enough in appearance to cue 

System II (Alter et al., 2007) whereas the familiar content in a concrete causal model may not do 

the same, leaving the analysis to System I processing, and subsequently, a less thorough analysis 

of the model.   

If this is indeed the process that resulted in abstract diagrams enabling better 

performance, it may be beneficial to introduce some “desirable difficulty” (Bjork, 1994) to cue 

System II.  The other benefits of diagrams, such as spatial layout, may improve accuracy enough 

to make up for the efficiency lost by not using the intuitive, implicit System I.  

Structure of the causal model 

Two studies replacing arrowheads with words and vice versa indicated that this 

manipulation did not seem to affect reasoning about causal models when they were presented as 

text.  But it did seem to affect reasoning using causal diagrams.  Even by varying the position of 

the words and testing participants to ensure understanding prior to the task, participants given 
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words instead of arrows in a causal diagram often interpreted the words to mean bidirectional 

causality.   

There are several reasons to doubt that participants truly believe that the links are 

bidirectional.  Words are as asymmetrical as arrows.  The words were placed in the same 

position as arrowheads.  And participants had already passed a test acknowledging that the words 

did not indicate bidirectional relationships.  Rather these findings seem to offer evidence that 

diagrams activate intuitive reasoning.  This activation may be one of the reasons diagrams are so 

useful and efficient in conveying information.   

As previously discussed, diagrams consistently outperform text in both speed and 

accuracy.  Diagrams perhaps present information in a way that allows for subconscious processes 

to reason about the information contained therein.  However, this same advantage can be a 

detriment if some feature of the diagram triggers an unconscious response that leads to 

systematic bias, much as was observed within these experiments where participants frequently 

made an irrational error.   

Predictive vs. diagnostic reasoning 

These studies did not produce any evidence for differences in the ease or accuracy of 

predictive or diagnostic reasoning.  No such bias appeared when participants were presented with 

a diagrammed causal model.  In the Text conditions, no consistent bias appeared.  The structure 

of the model seemed to be more of a factor in determining whether predictive or diagnostic 

reasoning was more successful.  Given that previous work in this area was always done using 

grounded, contextual problems, it is reasonable to conclude that any advantage of predictive over 

diagnostic reasoning is due to the content of the problem rather than a cognitive preference or 

differential ease for one type of reasoning. 
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Conclusion 

The findings across these studies suggest that causal models presented as diagrams have 

certain properties that aid in reasoning about causality.  Diagrams are useful because they can 

use space to present information in a manner that facilitates organization and inference.  In a 

variety of tasks, participants with diagrams consistently outperformed counterparts presented 

with text.  The exceptions to this overall effect may provide insight into processes associated 

with using diagrams to reason about causality.   

The pattern of results also seems to indicate that diagrams may activate intuitive and 

heuristic System I reasoning.  Participants presented with Concrete content were not as thorough 

when answering questions and participants presented with words in the place of arrows did much 

poorer than those with traditional arrows.  Although often advantageous, this type of reasoning is 

susceptible to errors that would not appear if people were thinking more analytically.   

Diagrams did not prevent a blocking effect from occurring when participants were tasked 

with providing alternative explanations for variable relationships.  Additionally, diagrams that 

violate traditional construction, in this case the use of words to show directionality instead of 

arrowheads, can dramatically interfere with performance.  Finally, the use of contextually 

grounded variables in a diagrammed causal model may be a hindrance when compared to an 

equivalent abstract model.  The presence of these errors indicates further study is needed in order 

to more fully understand what cognitive processes are occurring when people reason with causal 

models. 
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