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  ABSTRACT  
 

Dissecting Genetic Determinants of Transcription Factor Activity  
 

Eunjee Lee 
 
 

Understanding how phenotype relates to genotype, in terms of the myriad molecular 

processes that govern the behavior of cells and organisms, has been one of the central 

goals of biology for a long time. Transcription factors (TFs) play a mediating role 

connecting genotype with gene expression, which provides high-dimensional information 

about end phenotype. In particular, gene expression levels depend on their cis-regulatory 

sequence bound by TFs and condition-specific regulatory activity of TFs determined by 

its modulators through interaction with cofactors or signaling molecules. This thesis 

consists of two parts that related to the overall goal of dissecting upstream modulators of 

transcription factor activity. The first study is to dissect genetic determinants of 

transcription factor activity in a segregating population. We exploit prior knowledge 

about the in vitro DNA-binding specificity of a TF in order to map the loci (‘aQTLs’) 

whose inheritance modulates its protein-level regulatory activity. The second study is to 

identify regulatory mechanisms underlying tumorigenesis in mice by using genotyping 

and gene expression data across a set of 97 splenic tumors induced by retroviral 

insertional mutagenesis. We identify several instances of sequence-specific TFs whose 

activities are specifically affected by insertions mutations. Our results underscore the 

value of explicitly modeling TF activity and a strategy for finding upstream modulators 

of TF activity.   
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Chapter 1                                                 

Introduction  

Genetic variation perturbs phenotype. Understanding how phenotype relates to genotype, 

in terms of the myriad molecular processes that govern the behavior of cells and 

organisms, is one of the central goals of biology for a long time. The genetic information 

in DNA sequence, along with epigenetic information, controls the gene expression and 

phenotypes. On the road from genotype to phenotype, many layers of regulations, 

including chromatin state [1], transcriptional rate [2], splicing [3], mRNA localization 

[4], mRNA stability [5], translational rate [6], and protein stability [7], are programmed 

to act at the right time. Therefore, it is required to obtain additional functional 

information to elucidate precise regulatory networks underlying phenotypes. 

 Recent technology development greatly facilitated understanding the molecular 

process in a cell. Genome-scale technologies made possible by the emergence of 

microarray technology since the early 1990s [8] have allowed unbiased, genome-wide 

views of genetic networks in different ways. cDNA microarrays have led to analyze gene 

expression patterns globally in various conditions and genetic backgrounds for genome-

wide modeling of transcriptional networks [9, 10]. Additionally, microarray techniques 

were used to determine the large-scale genotype [11, 12]. These days, as many as 

500,000 SNPs can be profiled at the same time for thousands of individuals. High-

throughput SNP genotyping makes it possible to perform genome-wide association 
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(GWA) studies for identifying disease loci. Furthermore, microarrays also have been 

adopted to determine the genomic binding sites of transcription factors in genome scale 

[13]. A more recent high-throughput sequencing technology has been used to sequence 

cDNA in order to get information about RNA contents at a high resolution (i.e. RNA-seq) 

[14], and combined with chromatin immunoprecipitation (ChIP) to identify the binding 

sites of DNA-associated proteins (i.e. ChIP-seq) [15]. 

 TFs play central roles in the regulation of gene expression that further determines 

phenotypes (Figure 1.1). They bind specific DNA sequences and recruit other proteins 

such as chromatin remodeling factors, RNA polymerase, and histone-modifying factors 

to the genome sequence. Furthermore, they regulate gene expression in a condition-

specific manner through interaction with cofactors or signaling molecules.  

 

Figure 1.1: TFs as a crucial layer of regulation. The genomic information in DNA 
regulates gene expression level, and further end phenotypes through condition-specific 
regulatory activity of transcription factors 
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 This thesis consists of two parts that both relate to the overall goal of dissecting 

genetic determinants of transcription factor activity. In the first part, we aim to identify 

genetic modulators of TFs activity. In particular, we propose a method that exploits prior 

knowledge about the in vitro DNA-binding specificity of a TF in order to map the loci 

(‘aQTLs') whose inheritance modulates its protein-level regulatory activity. Genome-

wide regression of differential mRNA expression on predicted promoter affinity is used 

to estimate segregant-specific TF activity, which is subsequently mapped as a 

quantitative phenotype. Furthermore, we have extended this approach to other biological 

contexts, including post-transcriptional regulatory networks and the promiscuous binding 

of TFs to high-occupancy target (HOT) regions. 

 In the second part, we aim to identify regulatory mechanisms underlying 

tumorigenesis in mice using a set of 97 splenic tumors induced by retroviral insertional 

mutagenesis. We present locus expression signature analysis (LESA), a novel approach 

that defines and exploits the gene expression signature associated with each insertion. To 

identify regulatory mechanisms of tumorigenesis, we hypothesized that gene expression 

is affected by the insertional mutations through one of two mechanisms: (i) regulation by 

sequence-specific transcription factors (TFs) or (ii) changes in chromosomal domain 

organization leading to changes in gene expression. We also investigated the relationship 

between drug response and my locus-specific expression signatures. 

 This thesis is organized into six chapters. Chapter 2 provides background to cover 

main concepts required to understand later chapters; background on genetical genomics 

approach, retroviral insertional mutagenesis screens, and key aspects of transcription 
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factors as a crucial layer of regulation. Chapter 3 describes our aQTL approach, a method 

that exploits prior knowledge about the in vitro DNA-binding specificity of a TF in order 

to map the loci (‘aQTLs') whose inheritance modulates its protein-level regulatory 

activity. Chapter 4 describes the extension of the aQTL approach to other biological 

contexts, including the promiscuous binding of TFs to high-occupancy target (HOT) 

regions and post-transcriptional regulatory networks. Chapter 5 describes locus 

expression signature analysis (LESA), a novel approach that defines and exploits the 

gene expression signature associated with each insertion using gene expression levels of 

tumors induced by retroviral insertional mutagenesis screens in mouse. Chapter 6 

summarizes our findings and provides some possible future directions for this work.   
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Chapter 2                                                 

Background and Literature Review  

This chapter is intended to cover the main concepts required to understand later chapters, 

and to examine the relevant literature in the field. First, we give an introduction to 

‘genetical genomics’ approaches [16] that use parallel high-throughput gene expression 

and genotype data to identify expression quantitative trait loci (eQTLs). We continue 

with background on retroviral insertional mutagenesis screens. Finally, we review the key 

aspects of transcription factors, which are crucial players in the regulation of gene 

expression.    

2.1 Natural variations to perturbs expression levels 

How phenotype relates to genotype in terms of the molecular processes that govern the 

behavior of the cell is one of the central questions in biology. After the rediscovery of 

Mendel’s paper in 1900, the genetic variation in populations became a subject of 

scientific inquiry for a long time. Much effort has been devoted to identifying causative 

DNA variants and elucidating the mechanisms underlying diverse phenotype. Gene 

expression levels represent an intermediate molecular phenotype of great utility. They 

provide high-dimensional information about the cellular state. Gene expression also 

provides a universal sub-phenotype for complex and heterogeneous organismal 

phenotypes. Furthermore, the emergence of microarray technology in the early 1990s has 

greatly facilitated quantitative measurements of mRNA abundance, and made it possible 
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to analyze gene expression patterns globally in order to understand the molecular 

pathways underlying the organismal phenotypes.   

 Dissecting natural variations in gene expression improves our understanding of 

the molecular processes underlying phenotypes. In this section, we give an overview of 

the recent strategies used to find the natural variations that perturb gene expression, 

which are called expression quantitative trait loci (eQTLs), and describe the features of 

the two types of regulatory sequence variation underlying differences in gene expression 

as well as methods for identifying master regulators responsible for the large number of 

genes.  

2.1.1 Parallel use of high-throughput genotype and gene expression data 

Building on a long history in small scale studies to understand genetic variation in gene 

expression [17, 18], Jansen and Nap proposed genetic mapping of genome-wide gene 

expression, which is called ‘genetical genomics’ [16] (Figure 2.1).  The use of parallel 

high-throughput genotyping and expression profiling on segregating populations has 

enabled researchers to ask quantitative questions regarding the genetics of genome-wide 

expression in a variety of organisms [16, 19-22]. Genetical genomics has provided 

substantial additional insight into the functional landscape of gene regulation, improved 

our understanding of transcriptional regulation and regulatory variation, and provided a 

new approach for connecting DNA sequence variation with phenotype variation.  

 For any genetic study it is required to demonstrate that the trait in question is 

influenced by inherited factors. Although the exact heritability estimates depends on 

factors such as sample size, tissue type, statistical mode, amount of genetic diversity and 
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environmental variability [23], genetical genomics studies have revealed that hundreds to 

thousands of steady-state mRNA abundance for individual genes are highly heritable. 

Therefore, mRNA abundance can be treated as a quantitative trait in classical genetics 

methods (Figure 2.1), and the expression quantitative trait loci (eQTLs), whose allelic 

variation influences the expression level of individual genes, have successfully been 

mapped in a number of model organisms from yeast to mouse [19-22] using linkage 

analysis or association mapping. 

 

Figure 2.1: Genetical genomics approach. 40 segregants obtained by crossing the parental 
strains are genotyped for a set of markers that cover the genome. Two different parental 
alleles and genome blocks are indicated by green and blue, respectively. The expression 
profiling of each segregant also is obtained. The expression level of each gene is treated 
as a quantitative trait and analyzed across the 40 segregants with to map expression 
quantitative trait loci (eQTLs). This method detects the significant genes whose 
expression levels are explained by the genetic variation between the two parental strains 
through either upregulation (Up) or downregulation (Down) in gene expression (N.S., not 
significant change). Several gene transcripts were found that map to two or more loci. In 
diagram, horizontal line represents locations of eQTL and vertical line represents location 
of genes affected by eQTL. eQTL can be cis-acting (dotted line at an angle) or trans-
acting (dotted vertical lines). Figure taken from [24]  
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 mRNA abundance differs from other phenotypes in many ways, in regards of 

understanding of its genetics. First, the genome-wide gene expression profiles provide a 

large and unbiased set of traits that can be assayed simultaneously. The study of these 

traits can provide a detailed landscape of transcriptional regulation, but statistical 

methods for analysis of eQTL mapping are required to adjust for multiple tests due to 

large number of trait-marker combinations. Efforts have generally involved controlling 

false discovery rate (FDR), and approaches to control FDR have relied on calculations of 

q-values as described in Storey and Tibshirani [25] or on permutations [26]. Each 

transcript whose abundance treated as a trait has a corresponding encoding gene with a 

known position in the genome. This special feature provides mechanisms underlying 

DNA variations on gene expression, and will be discussed in the next section.  

2.1.2 Mapping eQTLs: local versus distal QTLs 

eQTL studies have extended our understanding of the contribution of cis- versus trans-

acting variation to the expression of any given gene. According to the relative genomic 

locations of transcript and its QTL, an expression QTL can be explicitly classified as 

'local' (near the genomic location of the gene encoding the transcript) or 'distal' 

(elsewhere in the genome) [27]. The mode of effect of regulatory variants is further 

investigated to understand the underlying molecular nature of eQTLs (Figure 2.1).   

 Local eQTL linkages frequently act as cis-acting polymorphisms [28]. The 

polymorphisms in the cis-regulatory region alter transcription factor binding sites, and 

consequently may alter transcription levels. They also affect mRNA abundance in a post-

transcriptional way, such as through changes in mRNA stability or processing. Many 
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eQTL studies have reported that the strongest eQTLs are most frequently classified as 

local eQTLs [29-31], suggesting that the transcription factor binding involved in RNA 

polymerase II recruitment or post-transcriptional regulations are key components of 

transcriptional regulation. On the other hand, trans-acting local variation is also likely to 

be partly responsible for the local eQTL linkages. The polymorphisms in the coding 

region might change the mRNA abundance by triggering feedback loops or an auto-

regulatory mechanism [27]. One study experimentally confirmed such a hypothesis that 

the local regulatory variation acts in trans through a feedback loop [28].  

 Distal regulatory variation typically acts in trans. The most obvious hypothesis is 

that trans-acting polymorphisms should be enriched near transcription factor genes, or 

these trans-eQTL genes can mediate the effect of a transcription factor instead of directly 

encoding a transcription factor. Even though distal regulation can occur with many 

degrees of indirectness, consistent with the observation that distal acting elements exert a 

weaker influence than local QTLs [29-31], many researches have explored causal 

relationships underlying trans-eQTLs. It is because trans-acting polymorphisms at distal 

loci can influence the expression of large numbers of genes in countless ways by 

changing the state and/or connectivity of the gene regulatory network of the cell [32]. It is 

therefore expected that such polymorphisms account for much of the genetic variance of 

gene expression.  

2.1.3 Methods for finding master regulators   

In addition to sequence variations that affect single transcript phenotypes in cis or in 

trans, previous eQTL studies have shown that genomic regions containing transcription 
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regulators influence expression levels of hundreds of genes, and seem to be responsible 

for most differences in gene expression [19, 21, 32, 33]. This existence of ‘master 

regulators’ makes it possible to enrich our understanding of regulatory networks, and 

many researchers have tried to identify such regulators.    

 Perhaps the simplest method for finding master regulators is to identify eQTL 

“hotspots” that influence the expression of a disproportionate number of genes [19]. A 

number of such hotspots have been identified in yeast and other organisms [27]. The 

genes that link to a particular hotspot are often enriched for specific biological functions, 

and tend to be controlled through the same regulatory sub-network [19, 34]. A different 

approach has been to map trans-acting loci for sets of co-expressed genes identified using 

hierarchical clustering [32] or more sophisticated module inference algorithms [35]. 

However, methods based on co-expression are most useful when a relatively small 

number of cell state parameters are perturbed and the expression of large subsets of genes 

changes in a coherent way. One expects them to be less naturally suitable for analyzing 

natural gene expression variation, where the segregation of alleles in a genetic cross 

causes a very large number of cell state parameters to be independently perturbed. 

Indeed, with some exceptions, the number of genes in genetic co-expression modules is 

very small [32, 35]. Principal Component Analysis (PCA) [36] of the matrix of genes by 

segregants, and extensions of PCA that incorporate qualitative information about 

regulatory network topology [37-39], have also been applied to map trans-acting loci. 

While these methods all improve upon single-gene based approaches, the lion’s share of 

the heritable variation in gene expression remains to be accounted for.   
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2.2 Mutagenesis using retrovirus to generate tumors  

Cancer arises as a result of the accumulation of genetic and epigenetic changes that 

deregulate a specific aspect of normal cell function. High-throughput technologies for 

mapping genetic and chromosomal aberrations have revealed complex changes in 

genomes of individual tumors [40-43]. However, It is difficult to determine whether such 

mutations are causal “driver” mutation or an incidental “passenger” mutation. Genetic 

screens can greatly facilitate to identify causal genes involved in tumorigenesis in model 

organisms such as the mouse. Retroviral insertional mutagenesis screens in mice are 

efficient tools for identification of oncogenic mutations in an in vivo setting [44, 45]. 

Recent advances in sequencing technology and availability of the mouse genome 

sequence have had a large effect on the potential of insertional mutagenesis screens.  In 

this chapter, we discuss the detailed features of retroviral insertional mutagenesis screens, 

including the mechanisms of mutation and the previous oncogenes discovered from this 

screening method, and identification of common insertions sites.  

2.2.1 Oncogenic retroviruses as a tool for genetic screening 

Oncogenic retroviruses can cause cancer in various species. They generally can be 

divided into two classes according to their mechanisms: acute and slow transforming 

viruses. These two classes have two distinct molecular mechanisms of retroviral 

oncogenesis. The Abelson Murine leukaemia Virus (AML) [46] and avian myoblastosis 

virus (AMV) [47] are acute transforming retroviruses and express viral oncogene v-Abl 

and v-Myb, respectively. This type of retrovirus usually generates tumors within 2-3 
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weeks after infection through expression of virally encoded oncogenic versions of normal 

cellular genes in host cells.  

 Slow transforming retroviruses do not carry viral oncogenes, but can induce 

tumors through mutation of the cellular genes caused by integration of their proviruses 

into the host genome. This type of retrovirus usually induces tumors within 3-12 months. 

Elements in the proviral genome that regulate the viral transcript act in cis on cellular 

gene transcripts. Such oncogenic mutations by these elements may either cause alteration 

of a gene product or influence the expression levels of one or more genes surrounding the 

insertion depending on where the provirus integrate into. Genetic screens using slow 

transforming retrovirus have efficiently been used to discovery cancer genes in various 

model organisms like cats (FeLV), birds (ALV and REV) and mice (murine leukaemia 

virus (MuLV)).  

2.2.2 Proviral insertions drive tumorigenesis  

To initiate murine leukemia virus (MuLV)-mediated insertional mutagenesis, newborn 

mice are infected with MuLV by injection with virus-producing cells (Figure 2.2). The 

virus will infect host cells, and the insertion of proviruses in the genome of the host cell 

can mutate cellular genes in multiple ways. The affected cell will expand in a clonal 

outgrowth given that the mutations caused by provirus insertions have a selective 

advantage. Cells acquiring multiple mutations induced by repeated infections can 

generate the development of a tumor. The proviral insertion site can be easily identified 

by amplification of the genome sequences flanking the retroviral insertion, and mapping 

the resulting sequences on to the genome. 
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 The ability to induce multiple mutations in the same cell makes slow retroviruses 

very suitable for genetic screens for oncogenic mutations [44, 45]. It is not 

straightforward to acquire multiple mutations from retroviral infection. This is because 

after incorporation of the provirus into the genome, cells will start producing viral 

envelope proteins and cell surface receptors become occupied with these proteins, thus 

inhibiting reinfection of the cell. Mutant viruses encoding non-functional envelope 

proteins created by recombination of the viral sequences with endogenous viral 

sequences can utilize different receptors, and re-infect an infected cell [44, 45].  

 The proviral insertions in the genome of the host cell can mutate cellular genes in 

different ways [44]. It results in enhanced transcripts levels, viral-host fusion transcripts 

or truncation of gene transcripts. In particular, mutation of cellular genes by proviral 

insertions is mediated by proviral elements that drive and regulate retroviral transcription. 

These elements are present in the Long Terminal Repeats (LTRs) at the end of the 

provirus and contain an enhancer, promoter region, the start and termination sites of 

transcription. The promoter sequence in the LTR such as a TATA box and GC-rich 

sequences can recruit the basal transcription machinery [48]. On the other hand, the 

enhancer region contains binding sites for various transcription factors [49-51], which is 

required for cell-type specificity of retrovirus.  
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Figure 2.2: Retroviral insertional mutagenesis screens. The infection of mice by MuLV 
induces mutation in multiple ways by integration of the retrovirus into the host genome. 
According to the location of insertions, truncating, inactivation, overexpression or 
misexpression of cellular genes can be induced. Cells can be re-infected by the virus and 
accumulate multiple mutations that induce tumors. Figure taken from [45]. 

2.2.3 Identification of oncogenes and tumor suppressor genes  

Many of the screens published to date identify hundreds of insertions [52-60]. Recent 

advances in sequencing technology and availability of the mouse genome sequence had a 

large effect on the potential of insertional mutagenesis screens. One recent screen yielded 
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an average of 20 insertions per tumor, in total, 10,806 independent insertions for 510 

tumors [61]. To date, more than 10,000 genomic regions where retroviral insertions are 

found in close proximity in multiple tumors (referred as Common Insertion Sites or CISs) 

have been identified in Retroviral Tagged Cancer Gene Database (RTCGD) 

(http://variation.osu.edu/rtcgd) [62].  

 Many regions that are targeted in multiple independent tumors show a significant 

overlap with oncogenes and tumor suppressor genes, validating the use of this screening 

strategy. For example, insertion by retrovirus near the c-Myc proto-oncogene is 

frequently found to induce tumors like erythroleukaemias and T-cell lymphomas [63]. 

The previous studies also detected that the proviral insertions in the 3’UTR region of the 

Pim1 and Nmyc gene induce tumors by removal of regulatory or destabilizing motifs in 

mRNAs [64, 65]. Furthermore, tumor suppressor genes such as neurofibromatosis 1 

(Nf1) have been identified by retroviral tagging [59]. The large-scale mutagenesis also 

detected frequent insertion near tumor suppressor genes such as Ikaros, Zfpn1a3, Nf1l, 

Ovca2 and Wwox [61].  

2.2.4 Method for finding common insertion sites  

A common insertion site (CIS) is defined as a region in the genome that has been hit by 

viral insertions in multiple independent tumors significantly more frequently than 

expected by chance. Not all insertions are causal to tumor development. Non-oncogenic 

insertions can be detected in the tumors when this insertion co-occurs with oncogenic 

insertions early in the tumor development phase. However, it is unlikely to detect this 

non-oncogenic insertion in the other independent tumor. The insertions found at the same 
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locus for multiple independent tumors are likely to be a result of selective expansion of 

tumor cells. Therefore, finding CISs greatly reduce the probability of detecting non-

oncogenic insertion.  

 To identify CISs, researchers have calculated random distribution of insertions 

with fixed windows in the genome assuming a Poisson distribution [56] or using Monte 

Carlo simulation [59]. However, as the number of insertions in a study increases, these 

fixed window size can increase the probability to detect false CISs: the small window 

size can reduce the number of false detections, but biologically this is undesirable 

because some retroviruses can affect gene expression over distances much larger than 30 

kb [66]. On the other hand, the large window size can increase the detection of false 

CISs. Therefore, more sophisticated statistical methods are required.  

  One study proposed a statistical framework based on Gaussian kernel 

convolution (GKC), which estimates a smoothed density distribution of inserts over the 

entire genome [67]. Depending on choice of kernel size and p-value, the total number of 

statistically significant CISs varies. The smaller window size separates CISs that 

influence the same gene, on the other hand, the increasing window size may result in 

merging of independent CISs. This framework can consider CISs and evaluate their 

significance level with varied window width, and connect to biological relevance in the 

behavior of CISs. They also provide the background insertion distribution required for 

analyzing preferential insertions near transcription start sites.  

 It is not straightforward to determine which genetic lesions near a CIS are playing 

a causal role in oncogenesis. The effect of insertions on the nearby targets is dependent 
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on the relative position and orientation of the target transcript as well as the orientation of 

the viral integration. To exploit this information, the previous study has employed a rule-

based mapping (RBM) procedure [68]. RBM distinguishes insertions by their occurrence 

within a transcript, or outside a transcript. Based on the orientation and locus of an 

insertion, RBM assigns one or more target transcripts to an insertion. RBM is based on 

the assumption that the influence of insertions on gene expression of nearby genes is 

dependent on the distance of the insertion to the gene. The unique list of transcripts that 

follows from the procedure is used to generate binary profiles that, for each tumor, 

indicate if a transcript is a putative target. It was observed that the proximal transcripts 

frequently results the same binary profile. These were therefore combined into a single 

profile [68].  

2.3 TFs as a crucial layer of gene regulation   

The genome-wide pattern of steady-state mRNA levels constitute an intermediate 

molecular phenotype, and their condition-specific regulation is mainly mediated by 

transcription factors (TFs). The transcription factors act by sequence-specific binding to 

regulatory DNA elements in the vicinity of their target genes. Additionally, the condition-

specific regulation by TFs is explained by their regulatory activity and involvement of 

other proteins such as cofactors or signaling molecules. In this section, we discuss the key 

aspects of transcription factors as a crucial layer of gene expression regulation.  
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2.3.1 Predicting the sequence specificity of transcription factors   

Transcription factors contain a DNA-binding domain (DBD) that determines sequence-

specific binding to regulatory DNA elements. Microarray techniques used to facilitate the 

measurement of the sequence specific binding of TFs along the genome. Chromatin 

immunoprecipitation followed by microarray hybridization (ChIP-chip) and DNA 

adenine methyltransferase identification (DamID) have allowed genomic mapping of 

transcription factors in various conditions [13, 69, 70]. Nucleosome occupancy and 

covalent modifications to histones have also been assayed [70-72]. Recently, high-

throughput sequencing, ChIP-seq, can profile high-resolution mapping of protein-DNA 

interactions [15].  DIP-chip and protein-binding microarrays (PBMs) have been used to 

determine the in vitro sequence specificity of DNA-binding proteins [73, 74].  

 It is important to model the interaction between protein and DNA sequence to 

have accurate quantitative information about the DNA binding specificity of TFs. Berg 

and Von Hippel [75] developed a theoretical framework to parameterize protein-DNA 

sequence specificity using position weight matrix (PWM), assuming additivity of the 

binding energy for each base pair. However, the position-specific scoring matrix (PSSM), 

whose entries can be related to binding free energies and defined from PWMs, does not 

represent the accurate quantitative information about sequence specificity from a 

biophysical view because binding energies are inferred up to an unknown scaling factor.  

 High-throughput technology has allowed inference of more accurate TF binding 

specificity using biophysical models [76-79]. In particular, Foat et al. [78] represents 

DNA binding specificity of transcription factors (TFs) in the form of position-specific 
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affinity matrices, whose affinities at each position are directly related to the free energy 

of binding. Therefore, these matrices can be used to predict the accurate quantitative 

affinity with which each TF binds to the promoter region of each gene [80]. 

2.3.2 Construction of regulatory network connectivity  

To understand the comprehensive regulation of gene expression by transcription factors, 

the regulatory connectivity, that is, which genes are the targets of TFs, should be solved. 

Many studies have predicted regulatory connectivity based on a genome-wide expression 

levels. The regulatory connectivity has been first analyzed by clustering of expression 

profiles across multiple conditions [81]. The resulting disjoint sets of genes are 

considered co-regulated and their promoter sequences are investigated to find binding of 

regulators [82-84].   

 Another class of approaches explicitly parameterizes the condition-specific 

activity of transcription factors using prior information about the physical interaction 

between TFs and DNA sequence. To construct regulatory network connectivity, some 

studies have relied the mRNA expression levels of the gene encoding the TF as a 

surrogate for the condition-specific regulatory activity of the TF [85]. However, the 

regulatory activity of a TF is usually not well predicted by its mRNA expression level 

[86]. Most TFs are modulated at the post-translational level through non-covalent 

modification by signaling proteins, changes in the subcellular localization of the TF 

protein, and the availability of co-factors. Other methods estimated post-translational 

activity of each TF using cis-regulatory sequence and the expression level of target genes. 

The condition specific TF activity is determined as expression changes in terms of counts 
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of regulatory motifs in its promoter regions using multivariate linear regression [87] or 

elaborated feature selection method [88]. With availability of large-scale data, a more 

recent approach that is motivated by a biophysical description of gene expression 

regulation used prior information about sequence specificity of transcription factors to 

estimate TF activity [89]. 
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Chapter 3                                                    

Identifying the genetic determinants of 

transcription factor activity: aQTL  

This chapter has been adapted from an article by Eunjee Lee and Harmen J. Bussemaker 

that was published in the journal Molecular Systems Biology [90].  

3.1 Abstract  

Analysis of parallel genotyping and expression profiling data has shown that mRNA 

expression levels are highly heritable. Currently, only a tiny fraction of this genetic 

variance can be mechanistically accounted for. The influence of trans-acting 

polymorphisms on gene expression traits is often mediated by transcription factors (TFs). 

We present a method that exploits prior knowledge about the in vitro DNA-binding 

specificity of a TF in order to map the loci (‘aQTLs') whose inheritance modulates its 

protein-level regulatory activity. Genome-wide regression of differential mRNA 

expression on predicted promoter affinity is used to estimate segregant-specific TF 

activity, which is subsequently mapped as a quantitative phenotype. In budding yeast, our 

method identifies six times as many locus-TF associations and more than twice as 

many trans-acting loci as all existing methods combined. Application to mouse data from 

an F2 intercross identified an aQTL on chromosome VII modulating the activity of 

Zscan4 in liver cells. Our method has greatly improved statistical power over existing 
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methods, is mechanism based, strictly causal, computationally efficient, and generally 

applicable. 

3.2 Introduction  

We here present a transcription-factor-centric and sequence-based method for the 

dissection of genetic expression variation. A key feature of our approach is the use of 

quantitative prior information about the DNA-binding specificity of transcription factors 

(TFs) in the form of position-specific affinity matrices [80]. These matrices are used to 

predict the affinity with which each TF binds to the promoter region of each gene. We 

use a linear regression model motivated by a biophysical description of gene expression 

regulation [80, 87] to explain the genome-wide transcriptional response to the genetic 

perturbations in each segregant in terms of changes in ‘hidden' TF activity. Treating the 

latter as a quantitative trait allows us to map the activity quantitative trait loci (‘aQTLs') 

whose allelic status modulates the regulatory activity of specific TFs. 

 As we will demonstrate below, our method has a greatly improved statistical 

power to detect regulatory mechanisms underlying the heritability of genome-wide 

mRNA expression. Specifically, it identified six times as many locus-TF associations 

from a genetic cross between two haploid yeast strains as all existing methods combined. 

This includes novel trans-acting polymorphisms in the TF-encoding gene STB5,RFX1, 

and HAP4. We also identified 20 previously unknown trans-acting loci. Furthermore, for 

many of the 13 known eQTL hotspots in yeast, our method implicated several TFs that 

were not previously known to mediate the effect of inheritance of these loci on gene 

expression levels. We validated our ability to predict locus-TF associations in yeast using 
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gene expression profiles for allele replacement strains. Finally, application to mouse data 

identified an aQTL modulating the activity of a specific TF in liver cells, demonstrating 

that our method also works in higher eukaryotes. 

3.3 Results  

We applied our method in two different organisms: budding yeast and mouse. For yeast, 

the data set we used [91] covers 108 haploid segregants from a cross between two 

haploid strains of Saccharomyces cerevisiae—a lab strain (BY) and a wild isolate from a 

vineyard (RM). It includes two-color DNA microarray measurements for each gene of 

the mRNA abundance in each individual segregant relative to a pooled reference 

consisting of equals amounts of mRNA from both parental strains, and genotyping 

information at 2957 genomic marker locations. The mouse data set consisted of gene 

expression levels in the liver cell lines of an F2 intercross population between C57BL/6J 

and DBA/2J (BXD) consisting of 111 animals [21], and the genotyping at 139 

microsatellite markers uniformly distributed over the mouse genome [92]. 

3.3.1 Inferring segregant-specific TF activities  

Figure 3.1 provides an overview of our computational procedure. As inputs, it requires: 

(i) the nucleotide sequence of the cis-regulatory region associated with each gene; (ii) a 

weight matrix for each TF, used to predict the strength with which the TF binds to 

each cis-regulatory region; (iii) a matrix containing continuous values, whose rows 

correspond to genes and whose columns contain the genome-wide mRNA expression 

profile of a particular segregant; and (iv) a genotype matrix containing binary values, 
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whose rows correspond to genetic markers, and whose columns specify from which 

parent each marker was inherited in a particular segregant. As cis-regulatory sequence, 

we used 600 bp upstream of each open reading frame. We previously demonstrated that 

when the binding specificity of a TF is known, quantitative changes in its regulatory 

activity can be inferred by performing genome-wide linear regression of differential 

mRNA expression on the predicted in vitro binding affinity of cis-regulatory regions 

[93]. The biophysical foundation that underlies this regression approach requires the 

binding specificity of each TF to be represented as a position-specific affinity matrix 

(PSAM)[94]. We used an existing compendium of position weight matrices (PWMs) for 

yeast TFs [95], converting each PWM to an approximate PSAM by assuming base 

frequencies to be proportional to relative binding affinities at each position within the 

binding site [80]. Each PSAM was then used to estimate the segregant-specific promoter 

affinity for all genes (Figure 3.1A). With only a few exceptions, these promoter affinity 

profiles are not correlated between TFs. This allowed us to estimate the segregant-

specific regulatory activity of most TFs in an independent manner. For each segregant, 

genome-wide linear regression of differential mRNA expression on segregant-specific 

promoter affinity for each TF was performed (Figure 3.1B). The coefficients from this fit 

represent protein-level TF activities, which we treat as a quantitative phenotype. 

Whenever the distribution of TF activity depends on the inheritance at a particular 

genomic position, this indicates the presence of an aQTL (Figure 3.1C). Details are 

provided in the Materials and methods section. 
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Figure 3.1: Overview of aQTL approach. (A) We estimated genome-wide promoter 
binding affinity using 600bp upstream sequence of each open reading frame and position-
specific affinity matrix (PSAM). (B) Genome-wide promoter binding affinity was then 
used to infer transcription factor activity. For each segregant, the coefficients from 
genomewide linear regression of differential mRNA expression on promoter affinity for 
each TF represent protein-level TF activities. (C) We treat protein level TF activities as a 
quantitative phenotype in QTL mapping to detect aQTL region. Whenever the 
distribution of TF activity depends on the genotype of the specific markers at a particular 
genomic position, this shows high LOD score at these markers and indicates the presence 
of an aQTL. 
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3.3.2 TF activity is a highly heritable quantitative trait  

To establish that the TF activities inferred by our regression procedure are meaningful, 

we calculated their heritability h2 (see Materials and methods). Encouragingly, we found 

that the activity of 102 of the 123 TFs tested is heritable at a false discovery rate (FDR) 

of 5% corresponding to h2>80.4%. In general, the heritability of the inferred TF activity 

is higher than that of the mRNA expression level of the gene encoding the TF (Figure 

3.3). Figure 3.2 shows differences in TF activity between the BY and RM parental 

strains as estimated by applying the regression procedure of Figure 3.1 to the average 

differential mRNA expression profile between BY and RM [91]. Hap1p is the factor 

whose regulatory activity is the most strongly modulated between the BY and RM 

strains. Indeed, it is known that a Ty1 insertion in the HAP1 coding region occurs in BY 

and other derivatives of the lab strain S288C [96] and that this insertion is absent in RM 

[19]. Overall, 46 TFs are more active in RM, whereas 56 are more active in BY, at a 5% 

FDR. Merely comparing the two parental strains, however, does not reveal which loci are 

responsible for the differences in TF activity. Only genetic mapping to quantitative trait 

loci can provide that information.   
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Figure 3.2: Differences in TF activities between the BY and RM parental strains. Shown 
are the t-values corresponding to the regression coefficients in a multivariate linear model 
that predicts genome-wide differential mRNA expression from predicted binding affinity 
of upstream promoter regions. 
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Figure 3.3: Comparing the heritability of activity and mRNA expression level of TFs. (A) 
Histogram of heritability of TF activity. (B) Histogram of heritability of TF mRNA 
expression. (C) Scatter plot of heritability of TF activity versus TF mRNA expression 

 

Figure 3.4: Comparison of three different methods for mapping aQTLs. Shown are LOD 
score profiles across the HAP1 locus on chromosome XII obtained using (i) Composite 
Interval Mapping and two single markers methods, (ii) the parametric Welch’s t-test, and 
(iii) the non-parametric Wilcoxon-Mann-Whitney test.  
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3.3.3 Identifying aQTLs: genomic loci that modulate TF activity  

The regression procedure of Figure 3.1 takes into account prior information about the 

connectivity of the transcriptional network of the cell in a way that allows us to directly 

treat TF activity as a quantitative trait. To identify aQTLs for each TF, we used 

composite interval mapping (CIM) [97], which accounts for linkage between neighboring 

markers and has significantly better spatial resolution than single-marker methods 

(Figure 3.4). This is important, as even the aQTL regions detected using CIM typically 

encompass 20–30 genes, and our goal is to uncover trans-acting causal mutations in 

individual genes or even nucleotides. Figure 3.5 provides an overview of the TF-locus 

associations identified using our method. To control for multiple testing, we use a log-

odds (LOD) score threshold (red line in Figure 3.1C) corresponding to a 5% FDR (see 

Materials and methods). We identified a single aQTL for 55 and multiple aQTLs for 22 

of the 123 TFs analyzed. Together, the mapped aQTLs cover several dozen distinct 

genomic loci. Note that all aQTLs are by definition trans-acting from the point of view of 

the mRNA expression level of individual genes, as the trait analyzed is the ‘hidden' 

regulatory activity of each TF. 
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Figure 3.5: Overview of the trans-acting genetic modulators of TF activity mapped using 
our method. All transcription factors that have at least one significant aQTL region at a 
5% FDR are shown. Transcription factors are sorted according to the chromosomal 
position of their maximum LOD score. Putative causal gene assignments are indicated in 
green (local aQTL: TF encoded by gene in aQTL) or red (protein-protein interaction 
identified between TF and gene in aQTL). 
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Figure 3.6: The effect of IRA2 allele replacement on TF activities. Comparing the 
average effect of IRA2 allele replacement in a BY or RM background on the activities of 
TFs (x-axis) with the LOD score for linkage to the IRA2 locus obtained using our aQTL 
method (y-axis). The red lines denote the LOD score and p-value thresholds 
corresponding to a 5% FDR 

 

3.3.4 Validation of aQTL-TF linkage using a IRA2 allele swap 

To the extent that aQTLs act independently, the regulatory consequences of allelic 

variation at a particular locus should be independent of the genetic background in which 

it occurs. To validate our method, we therefore analyzed gene expression profiles of 

allele replacement strains from a previous study [91]. According to our analysis, 

chromosome 15 contains an aQTL that influences the activity of several dozen distinct 

TFs (Figure 3.5). Among the 19 genes in this region is IRA2, which encodes a GTPase-
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activating protein that negatively regulates Ras proteins and thereby controls intracellular 

cAMP levels [98]. The coding region of IRA2 is highly polymorphic [91]. We analyzed 

the gene expression profile of a BY strain carrying the RM allele of the IRA2 coding 

region, and vice versa, and found that the activity of Adr1p, Cha4p, and Msn4p was 

significantly affected by the allele replacement (Figure 3.6; P-value 3.3 × 10−16, 1.1 × 

10−10, and 1.6 × 10−5, respectively, see Materials and methods). Each of these TFs was 

indeed predicted by our method to link to the IRA2 locus. Consistently, cAMP-dependent 

protein kinase is known to influence Adr1p activity [99] and regulate subcellular 

localization of Msn4p, which influences its activity [100]. Altogether, there are 30 TFs 

with an aQTL region containing the IRA2 gene. They do not all need to be influenced by 

the polymorphism(s) in its coding region; additional causal polymorphisms in nearby 

genes, modulating other subsets of the 30 TFs, may well exist. It is therefore not 

surprising that the activity of only 3 out of 30 TFs was significantly affected by 

the IRA2 allele replacement. On the other hand, we do not expect any TF whose activity 

doesnot link to the IRA2 locus to be affected by the allele replacement. Indeed, as can be 

seen from Figure 3.6, our method achieved 100% specificity in this regard: none of the 

93 TFs whose aQTL(s) do not contain IRA2 showed a change in regulatory activity. 

3.3.5 Novel trans-acting polymorphisms in transcription factor genes  

Of the aQTL linkages we detected, only four—those of Hap1p, Stb5p, Rfx1p, and 

Hap4p—are local (Figure 3.5, green boxes). The probability that a locus showing aQTL 

linkage encompasses the gene encoding the TF itself by chance is typically <1% (it 

equals the ratio of the number of genes in the aQTL and the total number of genes). 
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Therefore, whenever such local linkage happens, it is highly likely that the causal 

polymorphism resides in the coding region or regulatory region of the TF gene. The 

aQTL profile for Hap1p is shown in Figure 3.1C, and the polymorphism in HAP1 that 

gives rise to it was already discussed above. 

 Stb5p is a C2H2 zinc finger protein that serves as an activator of multidrug 

resistance genes [101]. A significant difference in Stb5p activity exists between the BY 

and RM strains (Figure 3.7A), and this activity is highly heritable (h2=95%). We 

detected highly significant local linkage (LOD score=10.84; Q-value=2.69 × 10−8) 

between Stb5p activity and the allelic status of the STB5 locus (Figure 3.7B). Alignment 

of the BY and RM protein sequences for Stb5p revealed five amino-acid mutations, all of 

which occur outside the DNA-binding domain. We found no nucleotide differences in the 

5′ and 3′ untranslated regions or <1 kb upstream of the transcription start site of STB5. 

Consistently, the mRNA expression level of the STB5 gene is not significantly correlated 

with the activity of Stb5p (r=0.18; P-value>0.05). Furthermore, CIM analysis of the 

mRNA expression level of the STB5 gene did not reveal any local eQTL linkage (Figure 

3.7C). The power of our aQTL approach is further underscored by the fact that no eQTL 

hotspot has been detected at the STB5 locus [19]. It will be interesting to further dissect 

the post-translational mechanism(s) by which the sequence differences between the BY 

and RM alleles of Stb5p cause a difference in its regulatory activity.  
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Figure 3.7: local-aQTL for STB5. (A) Inferred activity of Stb5p in parental strains and 
segregants. The first and second columns show the activity of Stb5 in 6 replicates of a 
BY-reference comparison and 6 replicates of a RM-reference comparison. The third and 
fourth columns show the activity of Stb5p for segregants that inherited the BY and RM at 
the STB5 locus, respectively. (B) LOD score profile for the activity of Stb5p. *Locus 
including STB5 gene. (C) LOD score profiles for the expression level of STB5 gene. 
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 Rfx1p is a major transcriptional repressor of the DNA damage response. The RM 

allele of the RFX1 gene contains a premature stop codon. Consistently, genes whose 

promoter is predicted to be bound by Rfx1p tend to be more highly expressed in the BY 

strain than in the RM strain (Figure 3.2). 

 The last local aQTL we discovered was for Hap4p, a subunit of the heme-

activated, glucose-repressed Hap2p/3p/4p/5p CCAAT binding complex. Consistently, the 

mRNA expression level of the HAP4 gene is highly correlated with the activity of Hap4p 

(r=0.79). 

3.3.6 CDC28 antagonistically modulates Fkh1 and fkh2 

Chromosome II contains an ‘aQTL hotspot' whose allelic status influences the activity of 

no fewer than 15 distinct TFs (Figure 3.5), including Fkh1p and Fkh2p. The locus 

contains the CDC28 gene, which encodes a cyclin-dependent kinase. Phosphorylation by 

Cdc28p is known to regulate the activity of Fkh2 by promoting interaction with a 

coactivator [102]. On the basis of the aQTL mapping to the CDC28 locus in combination 

with high-throughput evidence of their physical interaction [103] with Cdc28p, we 

predict that Fkh1p is also post-translationally modulated by Cdc28p. The sign of the 

aQTL linkage to the CDC28 locus for Fhk2p is the opposite of that for Fkh1p (Figure 

3.8A): whereas the transcriptional targets of Fkp1p are more highly expressed in 

segregants carrying the BY allele at the CDC28 locus, the opposite is true for the targets 

of Fkh2p (Figure 3.8B). The same pattern holds for the inferred difference in TF activity 

between the two parental strains (Figure 3.2). The antagonism between Fkh1p and Fkh2p 

is consistent with previously observed differences in function between the two factors 
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[104, 105]. These two TFs have similar sequence specificity, and consequently their total 

promoter affinity profiles are correlated across genes (r=0.72). Nevertheless, we were 

able to detect the opposite influence of the CDC28 polymorphism on their activity 

because our method uses multivariate regression, which forces TFs with correlated 

promoter affinity profiles to compete for the same differential mRNA expression signal. 

When we analyze each TF separately using a univariate model, the CIM regression 

coefficients for Fkh1p and Fkh2p (incorrectly) have the same sign. This example 

underscores the importance of our affinity-based quantification of the matrix of 

regulatory connectivities between TFs and their target genes. 
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Figure 3.8: CDC28 as a modulator of Fkh1p and Fkh2p. (A) Activity of Fkh1p and 
Fkh2p across all segregants. The activity of Fkh1p is negatively correlated with that of 
Fkh2p. The yellow dots correspond to segregants carrying the BY allele at the CDC28 
locus, the green dots to those carrying the RM allele. (B) Schematic diagram illustrating 
the antagonistic modulation of Fkh1p and Fkh2p by Cdc28p. While the transcriptional 
targets of Fkh1p are more highly expressed in segregants carrying the BY allele at the 
CDC28 locus, the opposite is true for the targets of Fkh1p. 



 

 

38 

3.3.7 An aQTL on chromosome VII controlling Zscan4 activity in mouse liver cells 

To determine whether our method could map aQTLs for mammalian TFs, we applied it 

to parallel genotyping and liver cell expression data for an F2 mouse population [21]. 

Weight matrices derived from protein-binding microarray (PBM) data for 104 mouse TFs 

were used [106]. The model we used to analyze the yeast segregants contains ‘cis' 

coefficients, which explicitly model changes in expression because of allelic variation in 

promoter sequence, in addition to the ‘trans' coefficient that model the changes in TF 

activity. However, we found that a simpler ‘trans-only' model performed equally well in 

terms of mapping aQTLs when applied to the yeast segregant data. This gave us 

confidence to use a ‘trans-only' model in mouse, where the density of markers is too low 

to assign gene-specific promoter sequences. We identified an aQTL for Zscan4, a TF 

containing four zinc finger domains and a SCAN domain, which is also known as the 

leucine-rich region [107] (Figure 3.9). Using a multivariate linear model to analyze the 

homozygous C57BL/6J (BB), homozygous DBA/2J (DD), and heterozygous (BD) 

genotype at the aQTL locus (Figure 3.9A), we found the behavior of the aQTL to be 

additive and show no significant dominant effect (see Materials and methods). A highly 

significant linkage (LOD score=10.8) with Zscan4 activity occurs between 43 and 66 cM 

on mouse chromosome 7 (Figure 3.9B). This region contains >500 genes, which makes 

it difficult to predict the causal polymorphism. Limited information is available about 

protein–protein interaction (PPI) for mouse, and we could not detect any direct 

interaction between genes within this region and Zscan4p. However, our result 

demonstrates that TF activity can also be inferred and mapped in mammalian cells using 
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our method, and provides a starting point for further dissection of trans-acting regulatory 

variation mediated by Zscan4p. 

 

Figure 3.9: aQTL of Zscan4p. (A) Inferred activity of Zscan4p across all F2 mouse 
population. Each column show the activity of Zscan4 in homozygous C57BL/6J (BB), 
heterozygous (BD), and homozygous DBA/2J (DD) mice at aQTL positions, 
respectively. (B) LOD score profile for Zscan4p. 
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3.4 Discussion  

We have presented a transcription-factor-centric method for identifying trans-acting 

genetic modulators of gene expression using parallel genotyping and mRNA expression 

phenotyping data. Our approach is based on the idea of treating the genotype-specific 

regulatory activity of each TF as a quantitative trait. It exploits prior information about 

the network of interactions between TFs and their target genes to infer genotype-specific 

TF activities from genome-wide measurements of mRNA expression. Our method has 

greatly increased statistical power to detect locus-TF associations. It is sensitive even to a 

relatively subtle influence of genotype-specific TF activity on mRNA expression because 

it is based on a statistical analysis across both genes and segregants. The fact that TF 

activity is not a gene-specific phenotype allows us to make the rather crude assumption 

that the strength of the regulatory connectivity between TF and target gene is 

proportional to in vitro promoter affinity. In reality, many of the predicted binding sites in 

promoter regions are not functional, due to complex interactions with nucleosomes and 

other chromatin-associated factors. It is remarkable that our method works in spite of this 

complexity. 

 Application of our aQTL method to a data set for 108 haploid segregants from a 

cross between two yeast strains [91] demonstrated a dramatic increase in statistical power 

to uncover the regulatory mechanisms underlying genetic variation in gene expression 

levels. We identified a total of 103 locus-TF associations, a more than six-fold 

improvement over the 17 locus-TF associations identified by several existing methods 

[19, 32, 34, 35, 91]. The total number of distinct genomic loci identified as an aQTL for 
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one or more TFs equals 31, which includes 11 of the 13 previously identified eQTL 

hotspots [91]. Thus, our method identifies 20 novel trans-acting polymorphisms: almost 

double the number of known such loci in yeast. For many of the eQTL hotspots, it also 

implicated several TFs not previously known to mediate the influence of these loci on 

genome-wide mRNA expression. 

 Our regression procedure fully accounts for post-translational regulation of TF 

activity at the protein level, as we do not use the mRNA expression level of either the 

gene encoding the TF or one its upstream modulators as a surrogate for regulatory 

activity. Indeed, the correlation between the protein-level regulatory activity of a TF and 

its expression at the mRNA level across a large number of experimental conditions in 

yeast was recently found to often be quite poor [86]. The present study confirms this 

observation: Only one third of TFs analyzed show a significant (<5% FDR) correlation 

between mRNA expression and activity. Moreover, only 12 of the 103 TF-locus 

associations could be confirmed when mRNA expression level was used as a proxy 

inferred protein-level TF activity. 

 We also applied our aQTL method to the earlier yeast segregant data set of [26]. 

This confirmed the dramatic increase in statistical power afforded by our approach. We 

detected a total of 79 locus-TF associations, which again is a more than six-fold 

improvement over the 14 locus-TF associations detected from these data by several 

existing methods [34, 35, 37, 38] combined. Furthermore, 28 of these 79 locus-TF 

associations were also detected using the data of [91]. This degree of reproducibility 

strongly validates our method: given that the number of possible such associations equals 
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the number of TFs (123) times the number of markers (~3000) divided by the average 

number of genes per locus (~20), we would expect this overlap to be ~0.4 by random 

chance. There is also no reason to expect complete overlap, as the data sets were similar 

but not identical. Indeed, although 13 eQTL hotspots have been identified in each 

respective data set, only 8 of these are the same [34, 91].  

 Our findings are consistent with previous observations [32] that most trans-acting 

variation in yeast does not map to TF genes, but to upstream modulators of TF activity. 

Indeed, of the total of 103 TF-locus associations shown in Figure 3.5 only four are local. 

We confirmed that HAP1 is directly affected by a sequence polymorphism, and 

discovered novel trans-acting polymorphisms in the TF-encoding geneSTB5, RFX1, 

and HAP4. Unexpectedly, our analysis revealed loci on chromosomes II and XV that are 

informative for a large number of TFs (‘aQTL hotspots'). We stress that this cannot be 

accounted for in terms of correlated profiles of promoter affinity across genes, as we 

found these to be largely independent between TFs. Rather, this phenomenon seems to 

point to one-to-many relationships between signal transduction pathways and TFs. For 

instance, our method predicts that genetic variation at the locus on chromosome II 

encoding the cyclin-dependent kinase CDC28 changes the activity of multiple cell cycle 

associated TFs (Ace2p, Fkh1p, Fkh2p, and Swi5p). At the same time, distinct 

polymorphisms at the same aQTL could be responsible for modulating different subsets 

of linked TFs. Evidence for this is our observation that allele replacement at the IRA2 

locus on chromosome XV only affected a small subset of the TFs whose activity is linked 

to this aQTL (cf. Figure 3.6). 
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 In an effort to uncover further specific molecular mechanisms underlying the 

aQTL linkages summarized in Figure 3.5 we supplemented our genetic analysis with 

knowledge about physical and genetic PPIs; see Materials and methods for details. The 

information provided by PPI and aQTL is highly complementary. On the one hand, aQTL 

linkage can only implicate relatively large genomic regions, not individual genes, as 

genetic modulators of TF activity. On the other hand, although PPI data can connect a TF 

to a putative modulator of its activity, it would be questionable to conclude that the 

interaction corresponds to a functional regulatory network connection without the strict 

causality and directionality associated with aQTL linkage. In all cases, the probability 

that a gene within the aQTL region encodes one of the direct interactors of the TF by 

chance is <3% (see Materials and methods). Therefore, most of these genes (aQTG) are 

expected to encode direct or indirect modulators of the TF's activity. We were able to 

implicate a non-coding polymorphism in the CDC28 gene as a plausible genetic factor 

underlying the major eQTL hotspot on chromosome II (in addition to the experimentally 

validatedtrans-acting polymorphism in the AMN1 gene in the same region [32]) and 

make a strong prediction that the functionally distinct cell cycle regulators Fkh1p and 

Fkh2p are modulated by the cyclin-dependent kinase Cdc28p in an antagonistic manner. 

 Extensive transgressive segregation has been previously identified for the 

expression levels of individual genes [26]. However, when we tested for the same 

phenomenon at the level of TF activity (see Materials and methods), we were only able to 

detect transgressive segregation for Ecm22p and Tec1p; in both cases, the effects of two 

aQTLs for same TF cancel each other in both parental strains, and no differential activity 
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between RM and BY could be observed (Figure 3.2). Presumably, much of the 

transgressive segregation at the level of individual genes is due to the fact that positive 

and negative contributions from different TFs can cancel each other. Our multivariate 

modeling of each individual gene's expression level in terms of the activity of multiple 

TFs accounts for such compensation explicitly, and hence the transgression is much less 

prevalent for aQTLs than for eQTLs. 

 In our approach, ‘phenotype space' is reduced from that of all genes to that of all 

TFs. Rather than mapping the measured mRNA expression level of individual genes to 

eQTLs, we map the inferred activity of each TF to ‘aQTLs.' This enhances statistical 

power in two distinct ways. First, it improves the signal-to-noise ratio for the quantitative 

trait itself, as the activity of each TF is estimated from the mRNA expression levels of its 

many targets. Second, the severity of the multiple-testing problem associated with QTL 

mapping because of the large number of marker/trait combinations is greatly reduced. 

Running in only seconds on a single processor, our algorithm is also computationally 

efficient. 

 It is important to emphasize that in our method the molecular identity of a TF is 

only defined through the PSAM that parameterizes its DNA-binding specificity. The 

sequence-to-affinity model for each TF needs to be specific enough to allow 

differentiation from all other TFs. We found that in the case of the budding yeast S. 

cerevisiae this condition generally holds. Given the rapid pace at which in vitro DNA-

binding data is currently being generated for mammalian TFs [106], together with the 
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demonstrated ability of regression-based models to infer TF activity in human cells [108], 

we expect application of our method also to be feasible in higher eukaryotes. 

 Taken together, our results underscore the value of explicitly treating TF activity 

as a quantitative trait from a systems biology perspective as a promising strategy for 

increasing the statistical power of genome-wide linkage and association studies. More 

generally, our method is applicable whenever a matrix of connection strengths between 

regulators and targets, independent of the phenotype matrix, is available as prior 

information. There are several directions in which this approach can be extended. First, 

the use of more sophisticated methods for causal gene identification [37, 109, 110] is 

likely to uncover additional molecular mechanisms. It will also be interesting to analyze 

to what extent the connectivity between the TF and their genetic modulators depends on 

the nutrient condition in which the yeast cells are grown [91]. Furthermore, aQTLs 

provide a novel vantage point for analyzing locus–locus interactions. Finally, it should be 

interesting to analyze to what extent genetic variation in steady-state gene expression 

levels because of post-transcriptional regulation of mRNA stability [94, 110] is amenable 

to dissection using the method introduced in this paper. 

3.5 Materials and methods  

3.5.1 Gene expression and genotyping data  

We analyzed genome-wide mRNA expression data from a study performed by [91], 

which used two-color cDNA arrays. The data (GEO accession number GSE9376) cover a 

genetic cross between two haploid yeast strains—a laboratory strain (BY4716) and a 
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natural isolate (RM11-1a). The data set includes six biological replicates of the BY 

parental strain, six replicates of the RM parental strain, and one replicate for each of 108 

haploid segregants grown in two different conditions, with glucose and ethanol as the 

carbon source, respectively. For the present study, we only used data for the glucose 

condition. The study used a reference design in which all hybridizations were performed 

using equal amounts of mRNA from both parents (BY and RM) grown in both conditions 

as a reference. Log2-ratios, averaged over a dye swap, were used for all further analysis. 

 For comparison, we also analyzed genome-wide mRNA expression data for yeast 

segregants from a cross between BY and RM strains (GEO accession number GSE1990) 

from an earlier study performed by [26]. Following these authors, we excluded ORFs 

rejected by [111]. The data set covers 6 biological replicates of the BY parental strain, 12 

replicates of the RM parental strain, and 1 replicate for each of 112 haploid segregants. 

The study used the BY material as a reference. Log2-ratios, averaged over the dye swap, 

were used for all further analysis. In addition, we averaged log-ratios for 13 ORFs that 

were spotted twice. Finally, we normalized each array by subtracting the mean log-ratio. 

For each of the segregants whose expression levels were determined, 2957 markers were 

genotyped by [26], who kindly made this data available to us. 

 We also analyzed previously published F2 mouse genome-wide expression data 

[21, 92](GEO accession GSE2008). The data set contains genome-wide oligonucleotide 

microarrays profiled using liver tissue from 111 F2 mice, which were constructed from 

two standard inbred strains, C57BL/6J and DBA/2J. The F2 mice fed an atherogenic diet 

for 4 months beginning at 12 months of age. This study used a common pool created 
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from equal portions of RNA from each of the samples as a reference. Following the 

previous study, expression changes between each sample and a reference were quantified 

as expression log10-ratios between normalized, background-corrected intensity values for 

the two channels. The F2 intercross mice were genotyped at 139 microsatellite markers 

uniformly distributed over the mouse genome. 

3.5.2 Genome sequence of BY and RM strains  

We obtained RM11-1a sequence data from the Broad Institute 

(http://www.broad.mit.edu) and BY4716 sequence data from the Saccharomyces Genome 

Database (SGD; http://www.yeastgenome.org). 

3.5.3 Defining genotype-specific promoter sequences 

To define genotype-specific promoter sequences, we first identified pairs of genes 

orthologous between BY and RM. We aligned coding sequences of RM genes to the BY 

strains using BLAST in Bioperl [112], and chose the best BLAST hits to identify the 

orthologous genes. Then, we obtained 600 bp upstream sequences of each orthologous 

pair to define BY and RM-specific promoter sequence. For segregants, we determined 

whether the promoter sequence of a particular gene was inherited from BY or RM strains. 

To this end, we first identified all genetic markers located within the 600 bp upstream of 

each open reading frame. If no genetic marker within 600 bp could be found, we selected 

the marker closest to the upstream region. The genotype of the selected markers was used 

to assign either the BY or RM promoter sequence to the gene. If multiple markers with 

inconsistent genotypes were selected, we discarded the gene. 
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3.5.4 Inferring segregant-specific TF activities  

We downloaded a collection of 124 position weight matrices (PWMs) from a study by 

MacIsaac et al. [95] (we excluded Hap3, as it has the exact same PWM as Hap5). Next, 

we used the convert2psam utility from the MatrixREDUCE v2.0 software package 

(see http://bussemakerlab.org) to convert each PWM to a position-specific 

affinity matrix (PSAM) [78, 113, 114]. Pseudo-counts equal to one were added to the 

PWM at each position, and the resulting base counts were divided by that of the most 

frequent base at each position to get an estimate for the relative affinity associated with 

each point mutation away from the optimal binding sequence [115]. The resulting PSAM 

collection was used to infer genotype-specific changes in TF activity. 

 The occupancy 

€ 

Nφg  of the upstream region 

€ 

Ug  of gene 

€ 

g  by transcription factor 

€ 

φ  depends on the nuclear concentration 

€ 

[φ] of the TF and on the landscape of binding 

affinity across 

€ 

Ug . Both these quantities are genotype-specific. At non-saturating 

concentrations of the TF, the occupancy in genotype 

€ 

G can be approximated by the 

product of concentration and affinity [78]: 

 

€ 

Ngφ (G) ≈ [φ](G)Kφg (G) 

The total promoter affinity 

€ 

Kφg (G) depends on the segregant-specific upstream sequence 

€ 

Ug (G), and is given by: 

€ 

Kφg = Kgφi
i∈Ug

∑ = wφjbi+ j−1 (Ug )
j=1

Lφ

∏
i∈Ug

∑  



 

 

49 

Here, 

€ 

Kgφi  represents the binding affinity (relative to the optimal DNA sequence) 

between transcription factor 

€ 

φ  and the DNA in a window of length 

€ 

Lφ  starting at position 

€ 

i  within 

€ 

Ug . Assuming independence between nucleotide positions, we approximate 

€ 

Kgφi 

by a product of position-specific relative affinities 

€ 

wφjb . Finally, 

€ 

bi(Ug )  denotes the base 

identity at nucleotide position 

€ 

i  within 

€ 

Ug . 

 We assume that when steady-state mRNA abundances are being compared 

between genotype 

€ 

G and reference genotype 

€ 

Gref , the expression log2-ratio for gene 

€ 

g, 

to linear approximation, is proportional to the difference in promoter occupancy: 

 

€ 

log2 [mRNAg ](G)( ) − log2 [mRNAg ](Gref )( )∝Nφg (G) − Nφg (Gref )

≈ [φ](G)Kφg (G) − [φ](Gref )Kφg (Gref )

= [φ](G) − [φ](Gref )( )Kφg (G) + [φ](Gref ) Kφg (G) −Kφg (Gref )( )
 

All total promoter affinities are known, so we can use the differential mRNA abundances 

to estimate coefficients 

€ 

β cis ≡ [φ](Gref )  and 

€ 

β trans ≡ [φ](G) − [φ](Gref ). This motivated us to 

fit the following multivariate linear model to each segregant: 

 

€ 

ygs = β0s + βφs
transKφg (s) +

φ

∑ βφs
cis

φ

∑ Kφg (s) − Kφg ref( )  

Here 

€ 

ygs represents mRNA expression log-ratios for gene 

€ 

g  in segregant 

€ 

s.  For the 

segregant data of Smith et al. [116], whose used a pool of equals amounts of parental 

strains as their reference sample, 

€ 

Kφg ref
equals the average of BY and RM promoter 

affinities, while for that of Brem et al. [117], who used the BY strain as their reference, 
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€ 

Kφg ref
equals the BY promoter affinity. The intercept 

€ 

β0s absorbs any normalization 

differences that may occur. The genomewide affinity profiles for several PSAMs are 

highly correlated (e.g., Msn2 and Msn4, Ino2 and Ino4). To avoid any problems resulting 

from such multicollinearity, we used ridge regression, which minimizes the residual sum 

of squares subject to a penalty proportional to the L2-norm of the coefficients, and gives a 

slightly biased but more precise estimator of coefficients than ordinary least squares 

[118]. We also fit the above model in “trans-only” mode (

€ 

β cis ≡ 0 ). 

 To infer segregant-specific TF activities in mouse, we downloaded PWMs 

defined by Badis et al. [106] who used protein binding microarray (PBM) technology to 

determine the in vitro DNA binding specificities of 104 different mouse TFs. We 

estimated PSAM and total promoter affinity from PWMs using 1000bp upstream 

sequence of C57BL/6J strain by the same procedure explained above. We obtained 

C57BL/6J mouse genome sequence from UCSC Genome Browser 

(http://genome.ucsc.edu/).  

3.5.5 Heritability  

We calculated the heritability of the activity of each TF as follows: 

€ 

h2 = (σ s
2 − σ p

2 ) /σ s
2 

Here 

€ 

σ s
2  and

€ 

σ p
2  are the variance of the linear regression coefficient from the ridge 

regression across the segregants, and the pooled variance of the parental strains, 

respectively. To determine the statistical significance of the heritability, we performed 

ridge regression after independent random permutation of expression log-ratios (parents 
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and segregants combined) for each gene (1,000 samples) and used the resulting empirical 

null distribution to compute a false discovery rate (FDR). 

3.5.6 aQTL mapping in yeast  

To detect significant genetic contributions to TF activity by specific loci, we performed a 

split of the segregants by each specific marker and tested for a difference between the 

two distributions of ridge regression coefficients using Welch's t-test and the non-

parametric Wilcoxon–Mann–Whitney test. We also used CIM, which uses multivariate 

regression on multiple markers for increased precision of QTL mapping [97], as 

implemented in the R/qtl package [119]. Statistical significance was determined by 

performing independent random permutation of expression log-ratios (segregants only) 

for each gene. The FDR corresponding to a given LOD score threshold was computed as 

the ratio of the number of linkages above threshold averaged over 20 randomized data 

sets, and the number of transcripts with detected linkage. We also estimated the FDR 

using the standard Benjamini-Hochberg procedure [120]. For the CIM method, a 5% 

FDR based on the empirical permutation test corresponded to a LOD score >4.49. 

3.5.7 aQTL mapping in mouse 

In the case of mouse data analysis, aQTL mapping was conducted using a linear model. 

First, we constructed explanatory variables for the additive and dominance terms for each 

marker from the estimated genotype probabilities and used them in the regression 

analysis. Linkages were identified by comparing the likelihood, maximized as a function 

of the regression coefficients, for the following multivariate linear model 
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€ 

βφs
trans= β0 + βφ

addXms
add + βφ

domXms
dom  

to the likelihood for the null model 

€ 

βφs
trans= β0 . Here, the dependent variable

€ 

βφs
trans  

represents the TF activity as estimated using the affinity-based model defined above in 

“trans-only” mode (

€ 

β cis ≡ 0 ). The independent variables

€ 

Xms
add  (taking values 0, 1, and 2, 

for (diploid) genotypes BB, BD, and DD, respectively) and 

€ 

Xms
dom  (taking values 0, 1, and 

1, for the same respective genotypes) represent additive and dominant terms for each 

marker respectively. The LOD score was defined as the log10 of the likelihood ratio 

between the two models. The FDR was computed using the same procedure described 

above; an FDR <5% based on empirical permutation test corresponded to a LOD score 

>4.21. 

3.5.8 Protein-protein interaction data 

To identify putative causal genes from the aQTL regions of each specific TF, we used 

three different types of protein-protein interaction data: (i) physical and genetic 

interactions in the BioGRID database [121], (ii) interactions between chromatin 

modifiers and associated TFs [122], and (iii) kinase-TF interactions [123]. We computed 

the expected number of direct interactors among the genes in the aQTL region for a 

specific TF based on the total number of interactors of the TF genomewide, the number 

of genes in the aQTL, and the total number of genes. Statistical significance was 

computed using Fisher's exact test. 
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3.5.9 Validation of predicted locus-TF association  

We downloaded gene expression profiles obtained by Smith et al. [116] for a strain 

carrying the RM allele of IRA2 in the BY4742 background (RM@IRA2), a strain 

carrying the BY allele of IRA2 in the RM11-1a background (BY@IRA2), and six 

replicates each of the BY and RM parental strains (GEO accession number GSE9376). 

We only used the date for cells grown in glucose as the carbon source. The reference 

sample used in all cases was pooled parental mRNA (see above). Therefore, to obtain an 

estimate for the differential expression between RM@IRA2 and BY, we subtracted the 

mean log-ratio of the BY replicates from the RM@IRA2 log-ratios, 

€ 

yg
BY→RM@IRA2 = log2

[mRNAg ](RM@IRA2,glucose)
[mRNAg ](pool)

# 

$ 
% % 

& 

' 
( ( − log2

[mRNAg ](BY,glucose)
[mRNAg ](pool)
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and performed multivariate (ridge) regression of these values on the BY promoter 

affinities for all TFs. We also performed the equivalent analysis where the roles of RM 

and BY were reversed. Finally, to average over strain background, we took the difference 

between the two regression coefficients for each TF to be our statistic for differential 

activity. To determine statistical significance, we performed 1,000 random permutations 

of all genes to determine the standard error of an empirical null distribution, and used it 

to compute a p-value. A FDR of 5% corresponded to a p-value of 10-4.20.  
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Chapter 4                                                         

Applications of the aQTL method   

Our aQTL approach [90] is generally applicable whenever a matrix of connection 

strength between regulators and targets, independent of the phenotype matrix, is available 

as prior information. In collaboration with other Bussemaker lab members, I have 

extended this approach to other biological contexts: (i) the promiscuous binding of TFs to 

high-occupancy target (HOT) regions and (ii) post-transcriptional regulatory networks.  

4.1 Transcriptional factors dynamically congregate at non-coding RNA 

gene in Saccharomyces cerevisiae 

This section has been adapted from a manuscript co-authored by Lucas D. Ward, Junbai 

Wang, Eunjee Lee, and Harmen J. Bussemaker, which is currently in revision. My 

contribution to this work was to perform QTL mapping of the amplitude of the hotspot 

phenomenon for Ste12p for yeast segregants data (Figure 4.5). 

4.1.1 Introduction  

A canonical description of transcriptional regulation involves the binding of transcription 

factors (TFs) to cis-regulatory promoter and enhancer elements, resulting in recruitment 

of the RNA polymerase complex. However, whole-genome studies of TF binding have 

revealed that affinity of DNA for a TF is not sufficient for occupancy by TFs [124-126]. 

A number of mechanisms constrain the binding of TFs to only a subset of the sites that 
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genomic affinity alone would predict, such as chromatin state [127] and variability in 

local TF concentration [128]. 

 Perhaps more surprising has been the recent discovery of genomic loci at which 

many TFs congregate despite the underlying DNA sequence having affinity for only a 

small subset of them.  The evidence of such TF colocalization hotspots, or High-

Occupancy Target (HOT) regions, was seen in Drosophila melanogaster TFs [129]., C. 

elegans genome [130], and mouse embryonic stem cells [131]. A number of previously-

proposed mechanisms are consistent with TF colocalization, including multifunctional 

“transcription factories” or enhanceosomes [132] cross-linked by chromatin loops, a 

locally permissive chromatin structure [133, 134]. A feature shared by both organisms is 

that hotspots are associated with increased expression at neighboring genes, but are often 

located far from traditionally-defined proximal promoters. 

 The present study was motivated by the fact that, although much more extensive 

genome-wide protein location data has been collected in yeast than in higher eukaryotes 

[135-137] no analogous colocalization of sequence-specific regulators has been observed. 

Significantly, however, in the large-scale compendia by Lee et al. and Harbison et al., the 

authors normalized across arrays for each probe to account for biases in the 

immunoprecipitation reaction. Clearly, this normalization would have effectively 

removed the evidence for any true genomic hotspot pattern shared by many TFs. We 

therefore performed a detailed re-analysis of the original microarray data in which we 

have omitted the probe-specific normalization step. A pattern of ubiquitous TF binding at 

many probed regions was immediately apparent. Remarkably, unlike in fly and mouse, 
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these yeast hotspots are not associated with sequence-predicted affinity for any of the TFs 

involved. Rather, sequence and functional analysis reveals that the most significant 

features of co-occupied probed regions are: (i) the extent of nucleosome depletion and (ii) 

the proximity to noncoding RNA genes, the majority of which encode tRNAs and 

snoRNAs. Additionally, the TF colocalization hotspots are occupied chiefly in rich-media 

(YPD) conditions. The phenomenon is abrogated in the majority of environmental 

perturbation and stress conditions, indicating that the hotspots are a regulated biological 

entity. Supporting this hypothesis, we show that genetic variation at the locus encoding 

the regulatory gene RIM15 is associated with the amplitude of the hotspot effect.  

4.1.2 Results 

4.1.2.1 A majority of TFs preferentially immnuprecipitate with ncRNA genes, not at 

their target genes  

Because we were interested in finding loci that were bound by many TFs, we first 

considered the ChIP fold-enrichment (FE) of the 195 TFs profiled in rich media (YPD) 

for each probed region, using the median log2 fold-enrichment (MFE) as a measure of co-

occupancy. Surprisingly, the distribution of co-occupancy across probes was skewed 

heavily to the right (Figure 4.1A), suggesting that a subset of the probed regions was 

occupied by many factors. To systematically determine whether specific genomic 

features were associated with co-occupancy, we tested whether the distribution of MFE 

for probes corresponding to each annotated genomic feature was different from that 

corresponding to the rest of the genome. The most significantly co-occupied were the 514 
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probes corresponding to ncRNA genes (difference of means 

€ 

ΔM  = 0.27; p = 6.9 x 10-161, 

Student’s t-test; p < 2.2 x 10-16, Wilcoxon-Mann-Whitney test). The more specific 

ncRNA categories of tRNAs, snoRNAs, and snRNAs were all significantly co-occupied 

as well. 

 MacIsaac et al. [95] combined ChIP data with motif analysis and comparative 

genomics to define which promoter regions correspond to direct target genes for each 

yeast TF. We were interested in the extent to which these targeted regions were occupied 

according to our reanalysis of the data, and how this occupancy compared in magnitude 

to the occupancy we discovered at ncRNA genes (see Methods). We found that 

occupancy at ncRNA genes was typically on the same order of magnitude as the 

occupancy at annotated targets (Figure 4.1B).  Of all TFs, 47 significantly occupied both 

the ncRNA loci and their annotated targets, while 28 significantly occupied ncRNA 

genes but not their annotated targets, and only three significantly occupied their 

annotated targets but not ncRNA genes. 

4.1.2.2 Co-occupied loci are nucleosome-depleted 

To explore other relationships between genome annotation and TF co-occupancy, we 

looked for Gene Ontology (GO) enrichment. For every GO category, we compared the 

distribution of MFE within probes corresponding to promoters of genes in that category 

with the rest of the probes using both a t-test and a Wilcoxon-Mann-Whitney test. The 

most enriched GO category is genes encoding components of the cytosolic ribosome (t = 

12.3, p = 5.5 x 10-20). Because ribosomal protein (RP) promoters are known to be 

particularly active [138], we were interested in whether nucleosome depletion at these 
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promoters was making them more susceptible to nonspecific binding by TFs. Indeed, we 

found that MFE is strongly anticorrelated with nucleosome occupancy (Pearson r = –

0.31, p = 1.3 x 10-128; Figure 4.1C). 

 

 

 

 

Figure 4.1: Detection of TF co-occupancy. (A) Distribution of TF co-occupancy at 
probes, defined as median log2 fold enrichment (MFE) across all analyzed rich media 
experiments from Harbison et al. [135].  (B) Occupancy of TFs at their annotated target 
regions and at ncRNA genes. The occupancy at both is expressed as , the difference 
between the mean log2 fold enrichment of the probes in question and the mean log2 fold 
enrichment of all other probes. Significant occupancy is defined as described in Methods. 
(C) TF co-occupancy vs. nucleosome occupancy. Plotted as a black line is a fit of all the 
data to a linear model y = ax + b, where a = -0.16 and b = 0.003 (r = -0.31). RP promoter 
probes are colored blue and ncRNA gene probes colored red. Note that both RP 
promoters and ncRNA genes are significantly co-occupied as well as nucleosome 
depleted. Residuals corresponding to ncRNA gene probes are higher than residuals 
corresponding to RP promoter probes (t = 11.8, p = 1.2 x 10-25). 
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4.1.2.3 Co-occupancy at ncRNA genes is largely eliminated in stress conditions 

So far, our analysis has been restricted to rich media (YPD) conditions. It is known that 

the nuclear localization of many TFs is altered in stress conditions [139]. Examining 

ncRNA loci in stress conditions reveals dramatically reduced co-occupancy (Figure 4.2). 

Using the median TF occupancy across all non-YPD conditions, the elevation in co-

occupancy at ncRNA genes drops from 

€ 

ΔM  = 0.25 to 

€ 

ΔM  = 0.03. To further investigate 

this general observation by focusing on occupancy of individual TFs in their rich media 

and stress conditions. For each particular stress-TF combination, we calculated the 

occupancy at ncRNA genes relative to all other probes (Figure 4.3). As expected from 

our pooled analysis, in the majority of stress conditions the occupancy at ncRNA genes is 

greatly reduced. The most notable example of this is Ste12p, which occupies ncRNA 

genes upon exposure to alpha mating factor, but not in the absence of alpha factor or in 

the presence of 1-butanol. Dig1p, which is also associated with the mating response, 

behaves differently: it does not occupy ncRNA genes in rich media, and avoids them in 

the presence of alpha mating factor and 1-butanol.  

 

Figure 4.2: condition specific co-occupancy at ncRNA genes. TF co-occupancy, defined 
as the median log2 ChIP-chip fold enrichment (MFE), as a function of distance to the 
nearest ncRNA gene. (A) MFE across YPD experiments from Harbison et al. [135] (B) 
MFE across non-YPD experiments from Harbison et al. [135] 
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Figure 4.3: Condition specificity of occupancy at ncRNA gene. (A) Each row is a TF, and 
experimental conditions for that TF are plotted on the same row with letters indicating the 
condition. Conditions are: “Y”, rich media; “S”, sulfometuron methyl; “R”, rapamycin; 
“H”, hydrogen peroxide; “1”, 1-butanol; “A”, succinic acid; “G”, galactose; “V”, vitamin 
deprived medium; “M”, alpha mating factor; “F”, raffinose; and “P”, phosphate deprived 
medium. Occupancy is expressed as ΔMˉ , the difference between the mean log2 fold 
enrichment of ncRNA gene probes and the mean log2 fold enrichment of all other probes. 
(B) Leu3p, Kss1p, Ste12p, and Mot3p occupancy at ncRNA genes in rich media vs. 
sulfometuron methyl treatment. For each factor and conditions, an empirical cumulative 
distribution function is shown contrasting the distribution in log2 fold enrichment (FE) 
for ncRNA gene probes and all other probes. 
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Figure 4.4: ChIP-Seq validation. Density of Ste12p ChIP-seq reads relative to the 
genome-wide coverage for the two parents tested under exposure to alpha mating factor 
in Zheng et al [140] and the strain tested under pseudohyphal growth conditions in 
Lefrancois et al. [141]. 

 

4.1.2.4 The RIM15 locus genetically modulates the degree of Ste12p targeting to 

ncRNA genes 

In spite of the fact that ChIP-Seq is currently the state of the art in genomic protein 

mapping, only a handful of factors have been assayed in yeast. For validation purposes, 

we compared three Ste12p ChIP-Seq datasets, one of which was performed in 

pseudohyphal conditions and two in exposure to alpha mating factor [140, 141]. Both 

showed enrichment near ncRNA genes, although the magnitude was greater during 
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exposure to alpha mating factor, consistent with the experiments of Harbison et al. 

(Figure 4.4). Zheng and colleagues profiled Ste12p occupancy in two diverged yeast 

strains, S96 and HS959, as well 43 genotyped segregants derived from a cross between 

these strains, in order to infer cis- and trans-regulatory polymorphisms affecting binding 

of the factor. To quantify the amplitude of the hotspot phenomenon for Ste12p in each 

segregant, we determined the fraction of ChIP-Seq reads mapping to within 100 bp of a 

ncRNA gene. Mapping this fraction as a quantitative trait, we found that highly 

significant linkage (LOD score = 6.08) with the hotspot effect for Ste12p occurs on 

chromosome VI (Figure 4.5). This locus contains three genes, one of which is RIM15. 

The regulatory kinase Rim15p is known to integrate signals from several distinct 

nutrient-sensing pathways (PKA, TORC1, Sch9, and Pho85-Pho80) and be required for 

entry into the stationary (G0) phase mediated by transcription factors Msn2/4 and Gis1 

upon nutrient deprivation [142, 143]. This is consistent with our observation that the 

hotspot effect for Ste12p is condition-dependent, and suggests that genetic variation in 

the RIM15 gene is a plausible modulator of hotspot behavior for Ste12p. Alignment of 

the S96 and HS959 protein sequences for Rim15p reveals that the RIM15 allele from 

strain HS959 encoded five amino-acid changes, four of which are non-conservative when 

compared to the S96 sequence, as well as one amino-acid deletion. 
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Figure 4.5: QTL profile. Manhattan plot of genome-wide association between genotype 
and hotspot behavior identifying the RIM15-containing locus.  

4.1.3 Discussion  

4.1.3.1 Possible mechanisms underlying the dynamic targeting of ncRNA gene by 

TFs 

Several lines of cytological evidence from mammalian cells suggest that transcription by 

polymerase II occurs at nuclear foci comprising many polymerase molecules and 

transcription factors, termed “transcription factories” [132]. If such factories exist in 

yeast, it is conceivable that nucleosome-free regions and ncRNA genes – which are 

associated with high levels of transcription (by polymerase II and I/III, respectively) – are 

in close proximity to multiple TFs as a result of transcription factories. Consistently, it 

was recently discovered that Pol II-associated transcription factors tightly associate with 

Pol III-transcribed genes in human cells [144].  
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4.1.3.2 Yeast as a platform to genetically dissect TF colocalization  

Although hotspot behavior is familiar to investigators performing ChIP in metazoans, it 

had not been previously recognized in yeast, which is the most genetically tractable 

model eukaryote. Our analysis of the Ste12p data by Zheng and colleagues [140] reveals 

an association between polymorphisms in the RIM15 gene and localization of Ste12p to 

ncRNA genes during exposure to alpha mating factor. Multiple nutrient-sensing 

pathways converge on the Rim15p regulatory kinase, which regulates entry into the G0 

phase and mediates calorie restriction-dependent life span extension [142, 143, 145]. 

Based on this previously observed function of Rim15p in combination of our analysis of 

the Ste12p ChIP-seq data [140], we were able to implicate polymorphisms in the RIM15 

gene as a plausible genetic factor underlying the hotspot behavior for Ste12p. Whether 

RIM15 is uniquely associated with Ste12p localization or is a general regulator of TF 

colocalization remains to be determined. The ability of yeast ncRNA genes to serve as a 

model for the hotspot behavior of TFs opens the door for further genetic screens and 

biochemical validation. 

4.1.4 Methods and Materials  

4.1.4.1 Processing of raw ChIP-chip data  

The original raw ChIP-chip data [135, 136] were obtained from ArrayExpress 

(http://www.ebi.ac.uk/microarray-as/ae/) using accession numbers E-WMIT-1 and E-

WMIT-10, respectively. Protocol information for each array (which dye was IP vs. WCE, 

experimental conditions, etc.) was extracted from the files E-WMIT-1.sdrf.txt and E-
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WMIT-10.sdrf.txt, available in the directory http://www.ebi.ac.uk/microarray-

as/ae/download/. Raw intensity information was downloaded from the tab-delimited text 

files in E-WMIT-1.raw.zip and E-WMIT-10.raw.zip available in the FTP directory 

specified within the aforementioned text files. The column headers in all of these text 

files were found to be corrupted. Therefore, they were split between nine different 

formats. Each format was manually curated to locate the correct median foreground and 

background red and green intensity columns, using the presence of a background-

subtracted log ratio column as a validation. Raw intensities were loaded into R and Loess 

normalization was performed on each array (to account for dye-specific response 

functions) using the normalizeWithinArrays function of the limma package [146], 

resulting in an M (relative intensity) and A (absolute intensity) value for each spot on 

each array. A number of the arrays were found to have very low variance in their log 

ratios; arrays with a variance in M after Loess normalization less than 0.05 were 

discarded. Four summary values were calculated for each probe: a median log ratio (M) 

and intensity (A) signal across all rich-media (YPD) arrays, and a median log ratio (M) 

and intensity (A) across all stress arrays. Additionally, for every experimental condition 

for which multiple replicates were available, a median M and A value across replicates 

was calculated. The same processing was applied to ArrayExpress data from assaying 

rabbit IgG control, no-antibody control, and kinase occupancy by tiling array [72, 147], 

which we used for validation. 
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4.1.4.2 Comparison of occupancy at annotated targets and at ncRNA genes 

Annotated targets for each TF were defined as probes that overlapped or were 

neighboring (within 100 bp of) regions reported by MacIsaac et al. [95] within their p-

value threshold of 0.005. After discarding probes that were annotated both as ncRNA 

probes (according to the criterion described above) and as TF targets, we compared the 

mean log2 fold enrichment among ncRNA probes and among annotated targets with that 

of all other probes. A significant difference in means was defined as a t-test passing a p-

value threshold of 0.05, Bonferroni corrected for the number of tests. 

4.1.4.3 Gene Ontology analysis  

Functional enrichment of probes by Gene Ontology (GO) categories [148] was 

determined using the T-profiler algorithm [149], implemented using the YEAST package 

from the BioConductor platform within the R programming environment [150]. 

4.1.4.4 Regression analysis of gene annotation, nucleosome depletion, and co-

occupancy 

A linear regression was performed between nucleosome occupancy [151] and MFE 

across all probes. Residuals corresponding to ncRNA probes and all other probes were 

then compared using a t-test. Residuals were also analyzed for correlation with predicted 

affinity for TFs as described above. 

4.1.4.5 ChIP-seq analysis 

ChIP-seq data from Lefrancois et al. [141] and Zheng et al. [140] were downloaded from 

Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo). These data include 
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mapped peaks, but not genome-wide mapping of reads; therefore, read alignment results 

from ELAND were downloaded and processed using MACS [152] as described by the 

authors in order to obtain a genome-wide landscape of binding, in 10-bp bins. Distances 

from these bins to ncRNA genes were measured using the SGD genome annotation 

described above and BEDTools [153]. Bins not overlapping an ncRNA gene with a 

distance between 1 and 100 bp of an ncRNA gene were considered hotspots, and a 

quantitative trait for Ste12p localization to hotspots was defined as the ratio of reads 

mapping to this region to the total number of reads. This quantitative trait was calculated 

for both parents and each of the segregants for linkage analysis. 

4.1.4.6 QTL analysis 

To detect genetic contributions to the variation in hotspot behavior for Ste12p by specific 

loci, we used 55958 markers genotyped for 43 segregants from previous studies [140, 

154]. Following these authors, we removed 2498 markers with fewer than five 

occurrences of either parental genotype and grouped the neighboring markers with the 

same genotype distribution across segregants, which resulted in 2592 non-redundant 

markers. We performed Composite Interval Mapping (CIM) of Quantitative Trait Loci 

(QTLs) as implemented in the R/qtl package [119], which uses multivariate regression on 

multiple markers for increased precision [97]. Statistical significance was determined by 

performing 50 independent random permutations for each segregant. The FDR 

corresponding to a given LOD score threshold was computed as the ratio of the average 

number of markers above threshold and the number of markers for which linkage was 
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detected. A 5% FDR based on the empirical permutation test corresponded to a LOD 

score greater than 4.70. 

4.2 Harnessing natural sequence variation to dissect post-transcriptional 

networks in yeast  

This section has been adapted from a manuscript co-authored by Mina Fazlollahi, 

Eunjee Lee, Xiang-Jun Lu, Maria Pilar Gomez-Alcala and Harmen J Bussemaker. It will 

be submitted for publication in the near future. For this work, Mina Fazlollahi applied 

the aQTL software that I developed to the regulation of mRNA stability by RNA-binding 

proteins. 

4.2.1 Introduction 

Regulation through post-transcriptional activities of RNA binding proteins (RBPs) is 

critical mechanism for a living cell to control the mRNA levels. It includes assembly, 

edition, localization and stability of RNAs. However there have been more studies, which 

focus on DNA biding factors and their interaction network. Detecting binding motifs 

associated with RBPs are challenging due to more complicated structure of RNAs. 

 In this study, we searched for potential regulatory elements in mRNA sequences 

that are recognized by diverse RNA-binding proteins. We used a similar approach by [78] 

which searches for binding sites in the form of sequence-specific affinity matrices 

(PSAMs). We use REDUCESuite package (more specifically MatrixREDUCE software) 

to discover binding motifs. We then used these obtained PSAMs to score mRNA 

sequences. These score act as prior information for our QTL analysis. Together with the 
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mRNA differential expression levels for the every member of the population, we can 

infer the activity levels of the RBPs for every individual. We treated these activity levels 

as quantitative trait to discover loci modulating them as used in [90]. 

 With our PSAM finding analysis we were able to obtain known binding motifs for 

15 various RBPs and novel motifs for Scp160p, Sik1p and Tdh3. For the activity QTL 

(aQTL) analysis we recovered a known locus that contains MKT1 gene, which is shown 

to modulate Puf3p interaction with its targets [110]. Interestingly, we found that 

depending on Puf3p interaction with 5ʹ′ or 3ʹ′ UTRs of its target, there are different loci 

regulating its activity. For 5ʹ′ UTRs, we found a locus on chromosome 2 that contains 

POP7 gene. 

4.2.2 Results 

For the PSAM search, we used RNA imunoaffinity purification [155] including total of 

132 IP experiments for 45 different RBPs and for the aQTL search we used [91] 

including mRNA expression levels for 108 segregants obtained by a genetic cross 

between two haploid Saccharomyces cerevisiae strains: BY (laboratory strain) and RM (a 

wild isolate form a vineyard in California).  

4.2.2.1 PSAM search  

We used MatrixREDUCE software form REDUCESuite package that takes as inputs the 

nucleotide sequences and RBP binding data. To reduce the effect of outliers, we 

transformed the binding data into the quantiles of the ranks for each IP experiment, thus 

transforming it into a normally distributed data. As for sequences, we used the 
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annotations from [156] and extracted 5ʹ′ and 3ʹ′ untranslated regions (UTRs), open reading 

frames (ORFs) and whole mRNA nucleotide sequences in yeast. For every RBP, we 

performed our genome-wide motif search on whole mRNAs, ORFs, 5ʹ′ and 3ʹ′ UTRs 

separately due to different binding sites for the cases that the protein prefers to bind 

directly or indirectly.   

 We optimized these PSAMs by adding flanking sides (maximum of one 

nucleotide added to either sides at every optimization iteration) to capture any low 

specificity sites that were not captured during our training step. Out of 45 proteins, As a 

results, we were able to obtain PSAMs for 20 different RBPs. 

 We checked the correlation between 132 IP experiment and affinity of each 

mRNA segment separately and only accepted the RBP- mRNA region combination that 

is exclusively correlated to its own RBP binding experiments (specificity test). Figure 

4.6A shows the PSAM logos for 15 out of 20 PSAMs that passed the specificity test. 

Figure 4.6B shows all the 25 RBP-mRNA region combination that passed the specificity 

test. There was an exception with Scp160p-ORF where the affinity is slightly more 

correlated to Bfr1p IP experiment (green dots) However Bfr1p is reported to associate 

with cytoplasmic mRNP complexes containing Scp160p [157]. We observe that there is a 

large gap between the relevant IP experiments (red dots) and the rest of the IP 

experiments (blue dots) for the affinity of 3ʹ′ UTR of Pub1p, Puf2p, Puf3p, Puf4p and 

Puf5p. This indicates that these PSAM are highly specific to the binding data for their 

RBPs.  
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Figure 4.6: RBP PSAMs. (A) Recovered and discovered RBP PSAMs logos. These 15 
PSAMs passed cross-validation and specificity tests. (B) Scatter plot for the factors 
specificity test where the Pearson t-values of univariate linear fit coefficients between 
132 RBP binding experiments and 25 selected PSAM-sequence combinations are 
presented. Only the factors with at least one self RBP IP experiment t-value (red dots) 
appearing at the top are shown. The only exception is for Scp160 (ORF) where we have a 
higher correlation to Bfr1p binding data (green dots). We accepted this PSAM, since 
Scp160p and Bfr1p are know to interact and are co-imunopercipitated in IP 
measurements. 
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4.2.2.2 Inferring RBP activity and linkage analysis  

We used segregant-specific genomewide mRNA expression levels to predict RBP 

activity variation among 108 yeast segregants. For each of 25 RBP-mRNA regions, we 

first scored all of the genes by calculating the affinity of the PSAM using the chosen 

sequence (whole mRNA, UTRs or ORFs). Then we performed multivariate regression 

between all 25 factors affinities and each segregant mRNA expression data. We 

considered the coefficients of the regression as the quantitative representation of the RBP 

activities. We used composite interval mapping (CIM) [97] to find aQTL for each factor. 

To correct for multiple testing, we calculated the lod-odds (LOD) score threshold for 1% 

false discovery rate (FDR) level by 200 permutations. 

4.2.2.3 aQTL discovery  

Using mRNA expression levels data to infer the RBPs activity levels, we were able to 

detect significant aQTLs for 7 different RBPs (9 factors) where 1 of them has been 

previously reported (Figure 4.7) and the rest are new.  

Recovered aQTL for Puf3p 

Our method was able to recover a locus on chromosome 14 linked to MKT1 for Puf3p 

when we calculated its activity using 3ʹ′ UTRs sequences (Figure 4.7C). This locus was 

previously discovered computationally and experimentally by [110].  They have 

suggested that MKT1 regulates p-body abundance, which consequently regulates Puf3p 

target abundance.  
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Figure 4.7: aQTL profile of RBPs. A-F) Results of the trans-acting genetic modulators of 
RBP activity of Puf3p and Puf4p mapped using our aQTL method. Significant aQTL 
regions at a 1% FDR level are marked calculated using 200 independent permutations of 
expression data. For each factor, these regions survived after filtering out for the 3 groups 
of genes mentioned earlier. The red line represents the LOD score threshold for the 1% 
FDR level. Sections A-C show aQTL profile for Puf3p activity and D-F for Puf4p 
activity on 5′ UTRs, ORF and 3’ UTRs respectively. We were able to detect 2 novel 
trans-acting loci (chr2 and chr11) and a previously reported one (chr14) For Puf3p. Puf4 
activity showed a significant linkage to a locus on chr15 irrespective of which mRNA 
region we used for activity calculation. This locus includes IRA2. 
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Puf3p activity modulated differently depending on binding to 5ʹ′  UTRs and 3ʹ′  UTRs 

Previously it was mostly known that Puf3p interact with the 3ʹ′ UTRs of its targets and no 

evidence of functional interaction with the mRNAs 5ʹ′ UTRs has been reported. As 

mention above, Puf3p activity is modulated through a locus on Chr14 when considering 

its binding to 3ʹ′ UTRs of its targets. However considering Puf3p binding to 5ʹ′ UTRs, we 

were able to link its activity level variation to a locus on Chr2 (Figure 4.7A). This region 

contains POP7, which is reported to have positive genetic interaction with Puf3p [158]. 

These findings indicate that the activity modulation of Puf3p is linked to different 

genomic locations and networks depending on where it binds to the mRNA.  

Puf4p activity modulation is independent of where on target mRNA it binds 

Puf4p aQTL profile is shown in Figure 4.7D-F. Whether Puf4p binds to 5ʹ′ UTRs, ORFs 

or 3ʹ′ UTRs of its targets, its activity regulation is controlled by a locus on chr15. This 

locus contains REX4 and BRX1. Both of them are involved in pre-rRNA possessing and 

ribosome assembly. It is known that Puf4 interacts with mRNAs encoding nucleolar 

rRNA-prossessing factors. 

4.2.3 Methods and Materials    

4.2.3.1 Experiment data sets 

For our RBP PSAM search, we analyzed genome-wide RNA imunoaffinity purification 

data, which was performed for 45 different RNA binding proteins by [155] (GEO 

accession number GSE13135). The mRNA levels bound to each RBP were measured 

using the C-terminal tandem affinity purification (TAP)-tagged proteins and were affinity 
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purified from whole cells grown in YPD. The data includes 2 to 6 replicated for each 

factor total among cDNA and oligonucleotide microarray thus having total of 132 IP 

experiments. 

 For aQTL analysis, we used the genome-wide mRNA expression data (GEO 

accession GSE9376) using a similar approach done by [90]. 108 haploid segregants 

mRNA expression levels from a genetic cross between two parental strains BY and RM 

were measured. The log2 ratios are between segregants and the BY mRNA differential 

levels. The pre-processing on the expression data is the same as done by [90]. As for 

genotype data, we used [19] data for the same segregants for total of 2956 markers.  

4.2.3.2 PSAM search 

We used the normalized log2 ratios between the mRNA level bound to a protein and the 

control from the RBP binding data set. To correct for the effect of outliers, we applied a 

rank-quantile transformation. For each IP experiment, we first ranked the normalized log2 

values among all genes and then assign the quantile values to the ranked values. This 

way, we diminish the values points located in the long tails of the distribution.  

 We used the MatrixREDUCE program from the REDUCE Suite 

(http://bussemakerlab.org/software/REDUCE) to perform a genomewide fit of a position-

specific affinity matrix (PSAM) to the rank-quantiled normalized log2 ratios of IP 

experiments. For every RBP, we searched for binding motifs on the whole mRNAs, 5ʹ′ 

UTRs, ORFs and 3ʹ′ UTRs sequences separately. We obtained the Saccharomyces 

cerevisiae UTR sequences from a study using RNA-seq method to obtain the 

transcriptional landscape of the yeast genome by [156]. ORF sequences were downloaded 
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from Saccharomyces Genome Database (SGD; http://www.yeastgenome.org). The final 

set of PSAMs was obtained from the PSAMs that pass the test for specificity to their own 

IP experiment among all the experiment and If the affinity of a specific PSAM on UTRs 

and/or ORFs had the highest correlation to at least one of the relevant IP experiments 

among the 132 experiments, that RBP-mRNA region combination would pass our test.  

4.2.3.3 Inferring segregant-specific RBP activities 

From our RBP PSAM search we obtained 25 independent RBP-region factors. As for the 

previous work by [90], we used the total sequence affinity of the PSAMs as a predictor 

for mRNA differential expression levels in the low protein concentration region 

established by [78]. Thus we considered the RBP sequence occupancy to be proportional 

to the total affinity of a desired PSAM for a sliding window along the whole mRNA, 

UTRs or ORF sequences. We performed a genome-wide multivariate regression between 

the 25 factors we had obtained from the RBP PSAM search and specificity test step and 

every segregant mRNA expression log2-ratios. For the case of protein level, we 

performed the regression between the affinities and every segregant protein levels. 

4.2.3.4 aQTL mapping 

Significant aQTL region were discovered by splitting the multivariate regression 

coefficient between BY and RM at every marker and testing for the significance of the 

difference between the distributions of the two groups of coefficients using composite 

interval mapping (CIM) method for maximum resolution. Thus LOD score was 

calculated to check for the effect of each locus on the activity of the RBPs. We performed 
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200 independent random permutations on the expression data for each gene among the 

segregants (preserving the genotype data) to get LOD score threshold at 1% FDR level. 

We obtained this threshold for each factor separately. 

 To ensure that the detected aQTL regions for the RBPs are modulated by trans-

acting factors and also not dominated by a single gene eQTL, once we obtained the 

significant regions we re-did the analysis after eliminating 3 groups of genes: gene that 

encode the RBPs, genes fully or partly located within about 10 kb up- and down-stream 

of obtained aQTL regions and genes with significant eQTL peak located 20 kbp window 

around detected aQTL marker and have affinity higher than 50% of max affinity score for 

the RBP under study. To find the last group, we did our QTL analysis using the 

expression of each gene as trait and calculated LOD score for every marker using CIM 

method. We combined these 3 groups of genes and eliminated them for each RBP 

separately, thus not affecting the activity calculation of each factor by eliminating 

unrelated genes for it. Same procedure was performed for calculating aQTL profile using 

the protein levels.  
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Chapter 5                                                     

Identifying regulatory mechanisms underlying 

tumorigenesis 

This chapter has been adapted from a manuscript co-authored by Eunjee Lee, Jeroen de 

Ridder, Lodewyk Wessels and Harmen J. Bussemaker. It is in preparation to be submitted 

for publication in the near future.  

5.1 Abstract  

Retroviral insertional mutagenesis (RIM) is a powerful tool for identifying putative 

cancer genes in mice. To uncover the regulatory mechanisms by which common insertion 

loci affect downstream processes, we supplemented genotyping data with genomewide 

mRNA expression profiling data for 97 tumors induced by RIM [68]. We developed 

LESA: locus expression signature analysis, an algorithm to construct and interpret the 

differential gene expression signature associated with each common insertion locus. 

Comparing locus expression signatures to promoter affinity profiles allowed us to build a 

detailed map of transcription factors whose protein-level regulatory activity is modulated 

by a particular locus. Surprisingly, we found that the transcriptional response to insertion 

at the MYC locus is dominated by Myc binding events downstream of transcription start 

sites. Our analysis also revealed the induction of a large multi-gene chromosomal domain 

in response to insertions near the PVT1 gene. Taken together, our results demonstrate the 
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potential of a locus-specific signature approach for identifying mammalian regulatory 

mechanisms in a cancer context. 

5.2 Introduction 

Cancer arises as a result of the accumulation of genetic and epigenetic changes, which 

each deregulate a specific aspect of normal cell function. High-throughput technologies 

for mapping genetic and chromosomal aberrations have revealed complex changes in 

genomes of individual tumors [40-43]. Mouse retroviral insertional mutagenesis has been 

used as an efficient tool for identification of causal mutations in cancer [44, 45]. Such 

oncogenic mutations may either cause alteration of a gene product or influence the 

expression levels of one or more genes surrounding the insertion.  

 A high-throughput screen in mice for mutations collaborating with either p19ARF 

or p53 deficiency was performed yielding over 10,000 independent insertion sites for 

more than 500 tumors [61]. To date, more than 10,000 genomic regions where retroviral 

insertions have been found in close proximity in multiple tumors (referred as Common 

Insertion Sites or CIS) have been identified in previous studies (Retroviral Tagged 

Cancer Gene Database (RTCGD), http://variation.osu.edu/rtcgd [62]). However, 

insertional mutagenesis screens have an important limitation. It is not straightforward to 

determine which genetic lesion near the CIS is playing a causal role in oncogenesis. 

Methods to predict target genes affected by insertions based on information about 

insertions such as orientation have been developed [68]. However, these are based on 

gene annotation and do not use or provide functional evidence, i.e. whether the mRNA 

expression level of the predicted target genes is affected by insertions. Analyzing the 
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mRNA expression level of the genes near the insertion site is often not sufficient, as the 

lesion may exert its effect only at the post-translational level. Furthermore, retroviral 

insertional mutagenesis screens alone rarely elucidate the regulatory mechanisms that 

drive tumorigenesis. These limitations highlight the need for new approaches that can 

integrate the genetic data with functional genomics data and other information in order to 

identify causal genes and regulatory mechanisms underlying cancer. 

 For these reasons we carried out genomewide expression profiling in a set of 

tumors induced by retroviral insertional mutagenesis. We furthermore describe a novel 

approach that first defines and then analyzes the genomewide mRNA expression 

response that is induced by the putative causal gene near the insertion locus. We refer to 

our method as Locus Expression Signature Analysis (LESA). We analyzed genome-wide 

expression profiles for a panel of splenic tumors induced by retroviral insertional 

mutagenesis [68]. To identify regulatory mechanisms underlying tumorigenesis, we 

hypothesized that gene expression is affected by insertional mutations through one of two 

regulatory mechanisms: (i) regulation by sequence specific transcription factors (TFs) or 

(ii) changes in chromosomal domain organization leading to changes in gene expression. 

We construct a map that connects each insertion locus with the TFs whose regulatory 

activity is affected by it. This map contains both know and new associations. LESA also 

provides an opportunity to analyze transcriptional regulation mechanisms in great detail. 

In particular, we show that the MYC expression signature is mainly driven by promoter-

proximal downstream binding of the c-Myc transcription factor to the transcription start 

site (TSS) of its target genes. LESA also identified a large chromosomal domain on 
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chromosome 15 in which most genes are induced by viral insertions at the PVT1 locus. 

Together, our results demonstrate the ability of LESA to identify candidate regulatory 

mechanisms in cancer. 

5.3 Results  

5.3.1 Identifying common insertion sites  

Many insertion regions are tagged in multiple independent tumors. To identify common 

insertion sites (CISs), i.e., regions in the genome that are significantly more frequently 

mutated by insertions than would be expected by chance, we used a statistical framework 

based on Gaussian kernel convolution (GKC), which estimates a smoothed density 

distribution of inserts over the entire genome [67] Next, we applied rule-based mapping 

(RBM), which maps individual insertions to target genes based on orientation-dependent 

windows and information regarding repetitive occurrence of insertions at a given locus 

across tumors [68]. We identified 87 insertion sites, and assigned a potential modulator 

gene that generates the tumors in collaboration with the loss of p53 and p19ARF. For 

further analysis, we selected 13 insertion loci that occur in more than 10 tumors. The loci 

include known oncogenes such as NOTCH1, c-MYC and n-MYC.   

5.3.2 Locus Expression Signature Analysis (LESA) 

Our hypothesis is that an insertional mutation perturbs the function or expression level of 

the proximal causal gene contributing tumorigenesis in collaboration with loss of p53 or 

p19ARF, and the perturbed causal gene in turn influences the function or expression level 

of downstream target genes in the signaling pathway (Figure 5.1A). Therefore, the 
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contribution to tumorigenesis by a causal mutation might have a characteristic gene 

expression signature associated with it. Based on this assumption, we inferred locus 

expression signatures (LES) representing the average difference in mRNA expression 

between the tumors carrying insertions at a particular locus and all other tumors (Figure 

5.1B).  

 

 
Figure 5.1: The overview of LESA. (A) The proviral insertion in to host genome perturbs 
the function or expression level of the proximal causal gene contributing tumorigenesis in 
collaboration with loss of p53 or p19ARF, and the perturbed causal gene in turn influences 
the function or expression level of downstream target genes in the signaling pathway (B) 
The contribution to tumorigenesis by a causal mutation might have a characteristic gene 
expression signature associated with it. Based on this assumption, we inferred locus 
expression signatures (LES) representing the average difference in mRNA expression 
between the tumors carrying insertions at a particular locus and all other tumors using 
common insertion sites data and gene expression data for each tumor. These LES are 
used for further analyses including finding significant GO category, differential TF 
activities, chromosomal domain and drug responses to identify regulatory mechanisms 
underlying tumors.  
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In a previous analysis of the insertion data per se [61], insertion loci and genetic 

background (e.g.p19ARF-/-, p53-/-, and wild-type) were found to co-occur across tumors, 

which is an indication for collaboration between these lesions in driving tumorigenesis. 

To deal with this dependency, we used a multivariate linear model to explain the 

variation in mRNA expression level for each gene in terms of the pattern of insertions in 

a given tumor (Figure 5.1B). The coefficients from this fit, aggregated across all genes, 

constitute our collection of locus expression signatures. For each insertion locus, we 

compared the variance of the signature value across all genes with its null distribution 

(see Methods). We found that for most loci the information contained in their signature is 

highly statistically significant (Figure 5.2B). This encouraged us to dissect the regulatory 

mechanisms that give rise to these signatures.  

5.3.3 Regulation of individual genes as identified by LESA.  

The absolute value of the locus expression signature is highest for genes whose 

expression level is most strongly affected by the associated genetic mutation. As 

expected for the signatures we inferred for the contribution of the p53-/- and p19ARF-/- 

deletion backgrounds, respectively, Trp53 had the most negative value in the p53 

signature, while the p19ARF isoform Cdkn2a showed one of the most negative p19ARF 

signature values (Table 5.1). We also found an association between the loss of p53 and 

the increase of Cdkn2a expression, suggesting a feedback mechanism compensating for 

the loss of p53. Among the remaining signatures, i.e., those associated with common 

insertion loci, we detected strong cis-association for NOTCH1, RASGRP1, GFI1, and 

RRAS2, with retroviral insertions either increasing or decreasing the mRNA expression 
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level of the gene designated as their primary target (Table 5.1). To analyze the extent to 

which an insertion could have a wider local effect, we inspected the expression signature 

values near the insertion locus. The expression of multiple genes proximal to CCND3 and 

RUNX1 was highly induced by retroviral insertion (Figure 5.2A). In other cases, 

insertions may affect genes at the protein level rather with no apparent change at the 

mRNA level (as exemplified by the MYC expression signature in Figure 5.2A), resulting 

in the change in the transcription level of functionally related or known direct target 

genes. Examples in Table 1 include the CCND3 locus influencing the mRNA of its know 

target Ccnd2 [159], and the MYC locus that of Ccnd2 [160]. We found that the gene 

Adam19 has a high NOTCH1 signature value, suggesting a positive feedback loop: 

Adam19 is a metalloprotease known to activate Notch1 by cleaving it [161].    

p19 p53 Notch1 Myc Med20/Ccnd3 

Slpi 0.77 Cdkn2a 1.66 Gm12253 2.05 Myl1 0.94 Emb 0.66 
RP23-395H4.4 0.62 Cdkn2a 1.45 Notch1 1.92 Gimap7 0.64 Lysmd2 0.51 

NM_027222 0.61 Butr1 1.27 Dtx1 1.86 Grb7 0.57 Ly6k 0.50 
Reg1 0.58 Ifi27l2a 1.03 Aldh1b1 1.65 Chst2 0.56 Itgb7 0.49 
Try10 0.58 Isg15 1.03 NR_002860 1.45 Tns4 0.53 Gimap7 0.48 
Amy2 0.57 Sparc 0.90 Adam19 1.42 Ccnd2 0.52 Il18r1 0.47 

Vpreb3 0.56 Vpreb3 0.82 Spsb4 1.35 Cd160 0.51 Thy1 0.45 
Pnlip 0.56 Usp18 0.77 Rag1 1.35 Bmp7 0.47 Kcnf1 0.44 

Il4i1 0.55 Retnlg 0.65 Cd163l1 1.28 Rapsn 0.46 Gimap3 0.44 
Pnliprp1 0.55 NM_027222 0.64 Ctla4 1.25 Gfi1 0.44 Rapsn 0.43 

…
 

 …
 

 …
 

 …
 

 …
 

 

Treml1 -0.23 NM_175332 -0.55 S100a10 -1.09 Prg2 -0.43 NM_027222 -0.46 
Cdr2 -0.23 Xist -0.55 Try10 -1.11 Rras2 -0.43 H2-T22 -0.47 

Cdkn2a -0.24 Lck -0.56 Prss2 -1.11 Ddc -0.46 Ccnd2 -0.48 

Serpine2 -0.24 Sh2d2a -0.58 Myl1 -1.17 S100a9 -0.46 Irf4 -0.49 
Ednra -0.25 Hdc -0.62 Amy2 -1.18 Pp11r -0.47 Plac8 -0.49 
Ddc -0.25 Thy1 -0.64 Clps -1.20 Gpc1 -0.50 Adam19 -0.50 
Ppbp -0.28 Cd3d -0.68 Zg16 -1.22 Cd163l1 -0.62 Notch1 -0.54 
Mpp4 -0.31 NM_009831 -0.69 Pnlip -1.27 Ly6d -0.64 Gm12253 -0.57 
Rsad2 -0.36 Cd3g -0.71 Pnliprp1 -1.46 Ccnd1 -0.68 Myl4 -0.57 

Gfi1 -0.39 Trp53 -1.77 RP23-395H4.4 -1.50 Satb1 -0.80 Myl1 -0.61 

Table 5.1: The genes with the highest absolute value of the locus expression signature. 
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Figure 5.2: Single-gene expression changes identified by LESA. (A) Box plot of locus-
expression signatures for each genotype (blue) and each insertion locus (black). Red spot 
represents the LES value of the near target gene. (B) Sum of squares of t-value 
corresponding to each LES (blue) and permuted values (pink) (C) LES values for genes 
in the surrounding regions of insertions for NOTCH1 and MYC insertions. 
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Figure 5.3: Functional annotation using GO category. (A) Heatmap of significant GO 
categories for each LES at FDR 1%. (B) CDF plot of p19 and p53 LES for genes in M 
phase mitotic cell cycle  
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5.3.4 Expression signatures can elucidate the biological functions affected by 

insertions at specific loci. 

To explore the functional significance of the locus expression signatures, we used gene 

ontology (GO) terms to identify the biological process, molecular function, and cellular 

component categories enriched in each locus expression signature. We compared the 

distribution of the locus expression signature values in each particular GO category with 

that of the remaining genes using the Wilcoxon-Mann-Whitney (WMW) test. Since the 

GO categories are hierarchically organized, with overlapping gene sets that are mutually 

redundant, we used a forward selection scheme [149] to select a non-redundant set of 

significantly associated GO categories.  

 The resulting functional map provides several useful insights (Figure 3A). First, 

the GO categories associated with the p53-/- effect on expression are a subset of those 

associated with the p19ARF-/- background. For example, the “DNA repair” genes are 

suppressed in tumors lacking either p19ARF or p53, consistent with the known role of 

these genes as activators of DNA repair [162]. By contrast, the “M phase of mitotic cell 

cycle” genes are enriched only in the p19ARF expression signature (Figure 5.3B). This 

agrees with the fact that while p19ARF acts upstream of p53 by enhancing p53 activity 

[163], it may also suppress tumorigenesis independently of p53 [164, 165].  

 “Lysosome” genes are significantly associated with the p19ARF, MYCN, 

AC153556, and MED20/CCND3 signatures. The lysosome controls cell death and 

lysosomal alterations are common in cancer cells [166]. The mechanism mediating the 

effect of these insertions on the expression level of lysosomal genes is not clear. In 
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addition, we detected association with “mitochondrion” genes for several loci (p19ARF, 

NOTCH1, MYB, MYCN, and MYC). Interestingly, p19ARF and Myc are both known to 

regulate apoptosis via the release of cytochrome c from mitochondria [167, 168]. Several 

genes related to mitochondria-dependent apoptosis, including Hspd1 [169], Bnip3l[170], 

and cytochrome c oxidase genes Cox7a2 and Cox6c have among the lowest MYB 

expression signature values among genes within this category, suggesting an unknown 

role for Myb as a mitochondria-dependent apoptosis regulator. Furthermore, we found 

locus specific GO categories such as “T cell differentiation” for RASGRP1, consistent 

with the role of Rasgrp1 in T cell signaling [171], and “microtubule-based process” for 

RRAS2, supporting its role in the regulation of cytoskeleton and its participation in 

related function such as adhesion, migration, and invasion [172-174].  

 Our functional analysis revealed that, by and large, the insertion loci fall into two 

major groups, with opposite characteristics and opposite effects on expression across 

multiple pathways: MYCN-like (e.g., MYCN, RRAS2 and MED20/CCND3) and p19ARF-

like (e.g., p19ARF, p53 and GFI1). This observation implies that insertions either help or 

oppose each other in enhancing or abrogating tumorigenesis. The downstream 

consequences of loss of the tumor suppressor gene p53 or p19ARF are worsened by 

insertions near loci such as MYCN, RRAS2 and MED20/CCND3, but mitigated by 

insertion near GFI1. Indeed, we found a strong negative correlation between insertion 

near MYCN and mRNA expression of the MYC gene (t-value=19.94, p-value=8.9×10-

24), whose enhanced protein expression contributes to almost every aspect of tumor cell 

biology [175].    
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Using the functional map in Figure 5.3, we can predict whether the effect of a 

particular insertion effect is tumor-suppressive or oncogenic. This is especially useful for 

loci without any apparent cis-association at the mRNA level. For example, it is unclear 

whether insertion near MYB, RUNX1, and MED20/CCND3 up-regulates or down-

regulates the associated proximal gene. We found that the RUNX1 and MED20/CCND3 

signatures were similar to that of MYCN. This confirms that insertion near RUNX1 up-

regulates Runx1 mRNA expression (Figure 5.2A), which may act to abrogate the 

tumorigenesis; the reduced expression of Ccnd2 (Table 5.1) and induced expression of 

Ccnd3 (Figure 5.2A) predicted by LESA is consistent with a previous observation that 

over-expression of Ccnd3 results in reduced tumor development and strong reduction in 

Ccnd2 [159]. Conversely, the MYB signature is similar to that of p19ARF, suggesting a 

role in tumorigenesis. Myb protein activity, while subtle at the mRNA level (Figure 

5.2A), may be enhanced by the retroviral insertion. Indeed, MYB has been found to be 

oncogenically altered in human leukemia [176]. 

5.3.5 Detecting changes in protein-level TF activity associated with mutations. 

Having surveyed the gene function landscape associated with each insertion locus based 

on its genomewide expression signature, we next wanted to identify the specific trans-

acting regulatory mechanisms underlying their influence on the formation of tumors. We 

previously demonstrated that when the binding specificity of a TF is known (in the form 

of a weight matrix), quantitative changes in its regulatory activity can be inferred by 

performing genome-wide linear regression of a single genomewide differential mRNA 

expression profile on the predicted total in vitro binding affinity of cis-regulatory regions 
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[115], the regression coefficients corresponding to changes in TF activity. Here, we used 

a compendium of position weight matrices (PWMs) for 130 vertebrate TFs from the 

JASPAR database [177], and 11 family-level PWMs for well-characterized structural TF 

families [178].  We converted each PWM to an approximate position specific affinity 

matrix (PSAM) by assuming base frequencies to be proportional to relative binding 

affinities at each position within the binding site [114].  

 
Figure 5.4: Effect of DNA base composition on LES. R2 from a linear regression model 
between each LES and the frequency of DNA base composition including each DNA 
composition and CpG composition. Red represents downstream and blue represents 
upstream from transcription start sites (TSS). The DNA base composition for each gene 
and each window is calculated based on 1kb window sequence from TSS, then used as 
independent variables in linear model with LES to calculated R2. 
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Using a sequence window from 200kb upstream to 200kb downstream of 

transcription start site (TSS) as the potential cis-regulatory region, we assumed the 

contribution to the transcription rate by any particular binding site to be proportional both 

to its binding affinity and to a positional weight decaying exponentially with the distance 

from the transcriptional start site (TSS); the corresponding length scale parameter was 

inferred from the data (see Materials and Methods for details). We found a relatively 

strong correlation between the locus expression signature value for each gene and the 

percentage of A, C, G, and T in its regulatory region (Figure 5.4). To avoid confounding 

due to these low-complexity signals, we inferred TF activities from the residuals of a 

linear regression of the signature on base composition (see Materials and Methods).  

5.3.6 A map of cancer-related TFs specifically regulated by viral insertions.  

Despite the fact that using a weight matrix to represent the target specificity of a 

transcription factor has some limitations, especially when it comes to distinguishing 

between TFs with closely similar sequence specificity, our method allowed us to make a 

number of interesting observations. Controlling for multiple testing – using stringent p-

value thresholds of 1.0×10-6 and 7.9×10-10 for familial and individual TF-locus 

associations, respectively, corresponding to a false discovery rate of 0.1% – we identified 

a total of 22 TF-locus associations (Figure 5.5B). These include known relationships, 

such as that of insertions at the p19ARF and MYCN loci activating REL family members 

NFKB1, NF-κB, RELA, and REL (p-value=9.2×10-13 and 2.5×10-11, respectively), which 

are known to promote the oncogenic phenotype such as angiogenesis, proliferation and 

invasion/metagenesis [179]; Mycn is also known to suppress the mRNA expression level 
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of p50 subunit of NF-κB [180]. Our algorithm also detected that one or more members of 

the Trp family of transcription factors (which includes Myb) are responsible for the 

transcriptional response to insertion at the MYB locus. Furthermore, the activity of the 

basic helix-loop-helix zipper (bHLH-zip) family is significantly affected by the loss of 

p53 as well as viral insertion near the MYC, MYCN, or PVT1 locus (Figure 5.5B). Some 

TFs are modulated by multiple mutations, such as E2F1, which mediates the 

transcriptional response to both the p19ARF background and to insertion at the CCND3 

locus (p-value = 1.8×10-18 and 1.2×10-10, respectively), consistent with the previous 

observation that human ARF binds to E2F1 to inhibit its transcriptional activity [181]. 

Other TFs only respond to insertion at one of the loci in our panel, such as the factor 

Pou5f1 to the NOTCH1 locus. Furthermore, an association found between the Myc locus 

and the factor SP1 supports their known cooperative interaction to activate transcriptions 

[182, 183].  
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Figure 5.5: TF-locus associations. (A) Detecting TF-locus associations (B) Overview of 
significant familial and individual TF-locus associations at FDR 0.1%. (C) TFs that is 
included in each TF family. 
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Figure 5.6: Spatial style of regulation (A) Heatmap of t-value from a linear model 
between TF affinity and LES (B) Optimal parameter selected for each upstream and 
downstream sequence, showing that both the distance (proximal vs. distal) and direction 
(upstream vs. downstream) of regulation differs greatly among between TFs (C) 
Examples of regulation model: proximal upstream as well as downstream regulation, 
downstream dependent regulation, and distal regulation.  

5.3.7 TFs differ dramatically in their spatial style of regulation.  

We have shown above that using prior information about the network of interactions 

between TFs and their target genes (in the form of cis-regulatory sequence and weight 

matrices) can reveal the contributions of each common insertion locus to the differential 

activity of specific TFs or TF families (Figure 5.6A). As part of this procedure we 

(exponentially) weighted the strength of individual binding sites surrounding the 

transcription start site (TSS) in such a way that those closer to the TSS contributed more 
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heavily. Two parameters corresponding to the distance over which the contribution 

decreased to half the maximum value, one for sites upstream of the TSS and one for 

downstream sites, were fit to the data (see details in Materials and Methods). We were 

interested in exploring the detailed information provided by these parameters about the 

range over which cis-regulatory logic acts, as there is ongoing controversy about the size 

and orientation of the window around the TSS that is optimal to use when looking for TF 

binding sites. 

 Surprisingly, both the distance (proximal vs. distal) and direction (upstream vs. 

downstream) of regulation differs greatly among between TFs, in a way that is largely, 

but not entirely, dependent on the identity of the locus driving the TF activity change 

(Figure 5.6B). For example, the p19ARF expression signature is best explained in terms of 

E2F1 binding sites when proximal occurrences upstream as well as downstream of the 

TSS are counted as functional (Figure 5.6C). By contrast, we uncover a striking 

asymmetry in the contribution from REL family binding sites, with only predicted 

binding sites upstream of the TSS (both proximal and distal) being useful for predicting 

the genomewide differences in expression due to the p19ARF background (Figure 5.6C).   

5.3.8 Myc as a regulator of transcriptional elongation.  

Of particular interest among our findings was that the association between predicted 

binding affinity for Myc and the expression response to insertions at the MYC locus is 

limited to the proximal, downstream cis-regulatory region, with only binding sites within 

~300 bp downstream of the TSS contributing, and not binding sites upstream, not even 

close to the TSS (Figure 5.6C). A plausible mechanistic explanation for this observation 
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is that Myc acts as a transcriptional elongation control factor. Indeed, it was recently 

found that Myc can bind to positive transcription elongation factor b (P-TEFb) and 

thereby stimulate elongation at specific genes in tumor cells [184]. Since there is no 

significant correlation between Myc mRNA expression level and the presence of an 

insertion at the MYC locus, insertions near MYC are likely to act post-transcriptionally, 

possibly through disruption of a protein domain mediating the interaction with P-TEFb. 

 According to our analysis, viral insertions near MYC change the protein-level of 

the Myc transcription factor, which in turns modulates genomewide mRNA expression 

level, but only via binding downstream of, and proximal to, the TSS. To validate our 

findings, we analyzed gene expression profiles obtained after Myc inactivation using 

doxycycline treatment [185]. Analyzing the genomewide profile of differential mRNA 

expression between Myc-inactivated and mock-treated cells in exactly the same way as 

the MYC locus expression signature (Figure 5.7A), we found significant differential 

activity both for bHLH factors at the family level and for the bHLH factor Myc at the 

single-TF level. Since again our analysis indicated that the response to Myc inactivation 

is caused by Myc binding sites downstream of the TSS (Figure 5.7B), we conclude that it 

points to an intrinsic aspect of how Myc interacts with the transcriptional machinery in 

the cell. 
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Figure 5.7: Validation of regulation under MYC expression signature. (A) Scatter plot of 
–log(p-value) for each TF.  The significance levels of differential TF activities in 
response to MYC inactivation (x-axis) and in response to MYC insertion (y-axis) are 
shown. (B) R2 plot from a linear model between each window affinity of Myc and the 
differential gene expressions in response to Myc inactivation, showing detected 
differential gene expressions in response to Myc inactivation are also mainly determined 
through binding of the Myc transcription factor on promoter-proximal downstream of its 
target genes. 
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5.3.9 Pvt1 regulates a multi-gene chromosomal domain on chromosome 15.  

So far, we have analyzed TF-mediated changes in mRNA expression in a manner that is 

oblivious to how genes are distributed over the chromosomes. However, regional 

regulation of multiple neighboring genes through locus control regions has been 

documented [186, 187], and the rich array of locus-locus interactions observed in a 

typical mammalian cell [188] suggests that local modulation subnuclear organization 

might provide a mechanisms for coordinately controlling adjacent genes. We reasoned 

that are our locus expression signatures provide a natural opportunity to investigate this. 

Therefore, we adopted a “domainogram” approach from a previous study [189] to detect 

chromosomal domains within which the distribution of a given locus expression signature 

was non-random (Figure 5.8). For each window of n consecutive genes, we tested 

whether the distribution of signature values differed from the distribution of genes in the 

rest of the whole genome using a Wilcoxon-Mann-Whitney test. This allowed us to 

visualize the statistical significance of the local enrichment of signature values for all 

possible combinations of window position and window size (see Materials and Methods 

for details). 
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Figure 5.8: Detection of chromosomal domain organization. For each LES and each 
window of n consecutive genes, we tested whether the distribution of LES values differs 
from the distribution of genes in the whole genome using Wilcoxon-Mann-Whitney test, 
resulting in domainogram. It shows domainogram of PVT1 expression signature on 
chromosome 15. 

For each insertion locus, we generated domainograms across all chromosomes. 

Several insertion loci show domain behavior. For the PVT1 locus, this identified a region 

on chromosome 15 within which genes are collectively induced (Figure 5.8). 

Significantly, the PVT1 locus is also located on the chromosome 15, suggesting a locus-

control-region type of regulatory mechanism. We observed a significant bias in DNA 

base composition and CpG content on chromosome 15 (results are not shown). However, 

these low-complexity features were not found to be predictive of the PVT1 signature (p-

value > 0.1). Moreover, the PVT1 domain structure remained unchanged after we 

explicitly removed low-complexity signals (results are not shown). We conclude that the 

domain structure of the transcriptional response to viral insertion at PVT1 is not driven 

by low-complexity signals per se, and therefore may result from a local reorganization of 

the nucleus.  
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5.3.10 Relating drug response to locus expression signatures. 

There is a close analogy between how a viral insertion and a drug affect the cell state at 

various levels, including that of the transcriptome. In fact, our study could be viewed as 

an attempt to uncover the “mode-of-action" of viral insertion at a specific locus. To 

systematically search for drugs that might move the cell state in a direction opposite to 

the change in cell state caused by to a specific mutation, we analyzed data from the 

Connectivity Map, encompassing 7,000 genomewide expression responses to 1309 

different compounds [190]. We performed genome-wide linear regression between locus 

expression signatures and drug response profiles to identify drug-locus associations and 

predict the drug response of tumors with specific viral insertions (Figure 5.9).   

 We found a total of 281 significant drug-locus relationships at a false discovery 

rate of 1% (Figure 5.10A). A negative correlation between locus signature and drug 

response indicates that the drug might mitigate the effect of the insertion on 

tumorigenesis; a positive correlation indicates that the drug might exacerbate it. We 

found that 10 out of 15 loci were significantly associated with at least one significant 

candidate therapeutic drug. Interestingly, even though the overall patterns of drug 

association are similar for MYC and MYCN, these loci each had specific drug 

associations. The MYC signature has significant negative correlation with the response to 

PI3K inhibitors (i.e. wortmannin and LY-294002), while the response to histone 

deacetylases (i.e. valproic acid, trichostatin A, vorinostat, MS-275 and HC toxin) 

significantly antagonizes the MYCN signature (Figure 5.9A). Furthermore, our analysis 

predicts tumors with insertions at mmu-mir-106a to be responsive to topoisomerase 
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inhibitors (i.e. camptothecin, mitoxantrone, doxorubicin, daunorubicin and irinotecan), a 

well-known class of anti-cancer drugs. Taken together, our results suggest a strategy for 

predicting drug responsiveness from knowledge of the genotype of an individual tumor. 

We found most drug-locus associations to be independent of the cell-type in which the 

drug response was measured. Some notable exceptions to this trend are shown in Figure 

5.10B.  In HL60 cells, the response to genistein, which acts as a tyrosine kinase inhibitor 

and was identified as an angiogenesis inhibitor [191], shows a significant negative 

correlation with both the MYCN and MYC expression signatures. By contrast, the 

response to genistein in MCF7 cells correlates with the p19ARF-/- signature. 

 

Figure 5.9: Overview of our strategy for relating drug response to locus expression 
signatures. There is a close analogy between how a viral insertion and a drug affect the 
cell state at the level of transcriptome. We perform genome-wide linear regression 
between locus expression signatures and drug response profiles to identify drug-locus 
associations. The negative association represents cases where the effect of drugs is 
opposite to that of insertion, and therefore may have a therapeutic effect. 
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Figure 5.10: Heatmap of t-value showing drug-locus associations. (A) Significant Drug-
locus associations at FDR 1%. It is based on expression profiles averaged over the cell 
types in response to the same drug  (B) Cell type specific drug-locus associations 
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5.4 Discussion  

We have demonstrated here that using parallel genotyping data and genomewide mRNA 

expression data from mouse tumors generated by retroviral insertional mutagenesis 

greatly increases our ability to identify the regulatory mechanisms underlying 

tumorigenesis and the biological pathways affected by them. We use a mechanistic 

framework that allows us to attribute function to causal mechanisms in a way that would 

not be possible using retroviral insertional mutagenesis data alone. The information 

provided by the insertion loci and the gene expression data is highly complementary and 

synergistic. On the one hand, the insertional mutagenesis screen benefits from the 

selective pressure that is present during tumor growth. On the other hand, the genome-

wide expression profiles provide a high-dimensional downstream readout of the cell state.  

The locus expression signature analysis (LESA) approach presented in this paper 

allows us to exploit the genomewide transcriptional response to a change in the structure 

and/or expression level of the causal gene near the insertion locus, even if the latter is 

initially unknown. First, by integrating the locus expression signature with gene function 

annotation, we could map the influence of insertion at each common locus on various 

biological processes relevant to tumorigenesis. Second, systematic application of LESA 

uncovered a large number of connections between common insertion loci and their 

downstream gene regulatory mechanisms – some of which were known, and many of 

which were novel. 

In the first place, our results include many locus-TF associations, in which the 

regulatory activity of a particular TFs or TF family is modulated by viral insertion at a 
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particular locus. By construction, these associations are causal as well as functional. It 

should be noted that our method fully accounts for post-translational regulation of TF 

activity at the protein level. For example, we found Myc activity at the protein level to 

change in response insertions near the MYC locus, even though the mRNA expression 

level of the MYC gene does not change. Perhaps more surprisingly, in a different type of 

analysis, application of LESA helped reveal changes in chromosomal domain 

organization affected by viral insertions. For instance, we found that viral insertion near 

the PVT1 gene affects a large number of neighboring genes also located on chromosome 

15. This suggests viral insertion near PVT1 could locally change nuclear organization. 

This observation could be the consequence of genomic instability, which is a 

characteristic of almost all human cancers [192]. However, it is unlikely because our 

expression signature represents a consensus across many tumors. Furthermore, by 

relating our locus signatures directly to drug response profiles from the Connectivity 

Map, we were able to identify drugs that might specifically counteract the deregulatory 

effect of mutations at particular loci. A previous study [193] performed a large-scale 

integration of expression signatures of human disease from public data with drug 

response profiles from Connectivity map, and confirmed the usefulness of drug responses 

profiles to predict novel therapeutic indication.    

The mammalian genome is a complex landscape: some regions are very gene-

rich, whereas others are devoid of genes [194-196]. This variation in gene density is 

linked to large-scale variation in DNA base composition [195, 196]. GC content in turn is 

positively correlated with expression level [197]. To capture any such effects of low 
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sequence complexity, we considered DNA base composition as well as CpG content. We 

detected a high correlation between sequence composition and signature value for several 

loci including MYB, AC153556.2, and mmu-mir-106a~363. For most loci, the region 

downstream of the transcription start site (TSS) showed higher correlations than that 

upstream of the TSS. At the same time, loci such as MYCN, MYC and MED20/CCND3 

do not show any correlation with low-complexity sequence signals (Figure 5.4). The 

mechanism underlying these observations is not clear, and it would be interesting to 

further investigate them. To avoid confounding in our TF-centric analysis, we removed 

the low-complexity sequence effect in our analysis. 

Many of functional regulatory sites occur outside the proximal promoter for 

mammalian [198], and distal binding events up to 1Mb away from the TSS have been 

shown to contribute to p300 occupancy [199]. How the contribution of binding sites to 

transcriptional control depends on its proximity to the TSS has been previously quantified 

[200]. We considered 200kb upstream and downstream sequence from transcription start 

site (TSS) as the cis-regulatory region. However, to allow for variable relationships 

between binding positions and transcriptional control, we employed TF-specific length 

scale parameters and fit these by maximizing the correlation between the weighted TF 

affinity profiling and the locus expression signature. Surprisingly, we found that for 

various TFs including Myc, the transcriptional response to insertion at the locus is almost 

exclusively mediated by binding events downstream of the TSS, implying a role in 

transcriptional elongation or post-transcriptional regulation. Taken together, our analyses 
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have yielded a more comprehensive and detailed view of the oncogenic signaling 

networks and cis-regulatory mechanisms underlying tumorigenesis.   

5.5 Materials and Methods 

5.5.1 Retroviral Insertional mutation data 

Retroviral insertional mutagenesis screens have been performed previously [61]. Mice 

were infected with Murine leukemia virus (MuLV) at postnatal day 1 and monitored for 

tumor growth. MuLV infection accelerated lymphomagenesis in these mice. Mice 

developed tumors almost exclusively in spleen, thymus and lymph nodes. The gene 

expression levels of a subset of 97 retrovirally induced splenic lymphomas in p19ARF-/- 

(n=31), p53-/- (n=19) and wild-type (n=53) mice were measured and analyzed.   

5.5.2 Gene expression data  

Gene expression data were collected using Illumina MouseWG6-V2 beadchips, and 

normalized using variance-stabilizing transformation (VST) and robust spline 

normalization (RSN) [201]. Illumina probes with no corresponding RefSeq ID were 

discarded, leaving 45,281 measurements. Averaging over probes mapping to the same 

RefSeq ID resulted in expression values for 19,010 genes. 

5.5.3 Common insertion loci 

The effect of viral insertions on their nearby targets is dependent on the relative position 

and orientation of the target transcript as well as the orientation of the viral integration. 

To exploit this context information, we employed a rule-based mapping (RBM) 

procedure [68]. RBM assigns each insertion to one or more putative target transcripts 
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based on a set of rules that were distilled from literature. The unique list of transcripts 

that results from this procedure is used to generate a binary profile that, for each tumor, 

indicates if a transcript is a putative target or not. We observed that for proximal 

transcripts the same binary profile frequently results. These were therefore treated as a 

single profile. Only those transcript-insertion associations found in at least three tumors 

were considered in our analysis.   

5.5.4 Genome sequence and gene annotation  

We obtained mouse genome sequence from UCSC via the 

BSgenome.Mmusculus.UCSC.mm9 package in BioConductor [150]. We downloaded the 

corresponding genome annotation coordinates directly from genome.ucsc.edu (version 

mm9). 

5.5.5 Locus expression signature analysis (LESA)  

The variation in relative mRNA expression level across all tumors (represented as the 

log2-ratio relative to the mean across all tumors) was analyzed independently for each 

gene. To obtain locus expression signature values across all loci for a given gene, we 

performed analysis of variance (ANOVA) for the mRNA expression in terms of 

background genotype and insertion status at all loci considered, by fitting the following 

multivariate linear model: 

𝐴!" = 𝛽!,!!"!"#𝐵!,!!"!"# + 𝛽!,!!"𝐵!,!!" + 𝛽!"𝐼!"
!∈!

 

Here,  Ag,t represents the relative mRNA expression level for tumor t and gene g. 

𝐵!,!!"!"# and 𝐵!,!!" (taking values 0 or 1) indicate whether the genetic background of 
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tumor t is p19ARF-/- and p53-/-, respectively, while Imt indicates whether an insertion was 

present at locus m in tumor t. After this analysis had been completed for all genes, the 

expression signature for each background and for each viral insertion locus was 

constructed by combining the values of the pertinent regression coefficient β as a vector 

across all genes.   

5.5.6 Information content of locus expression signatures 

To assess how much information about downstream transcriptional regulation was 

contained in a given signature, without the need to specify a particular regulatory 

mechanism, we summed the squares of the t-values tgm corresponding to the regression 

coefficients βgm: 

𝜒!! = 𝑡!"!
!

 

To determine the statistical significance of the χ2-statistic, we constructed a null 

distribution by performing 100 independent random permutations of all tumors, in a way 

that preserved the correlation structure between insertion loci.  

5.5.7 Forward selection of GO categories 

Functional annotation of genes in terms of Gene Ontology (GO) categories was 

performed using a variation of the T-profiler algorithm [149], including an iterative 

procedure to select a non-redundant set of gene sets from those that have a significantly 

different expression distribution from the other genes. For each GO category, we applied 

the Wilcoxon-Mann-Whitney (WMW) test to detect differences in distribution between 
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the locus expression signature value of genes within the GO category and that of the 

other genes. At each step, we subtracted the mean signature value of the genes in the gene 

set with the lowest p-value from all genes in that gene set. The p-values were then 

recalculated and the procedure repeated until even the most significantly regulated gene 

group had a p-value > 10-5, which corresponds to a false discovery rate (FDR)  <0.1%. 

Statistical significance was determined by performing independent random permutation 

of the signature values for each gene. The FDR corresponding to a given p-value 

threshold was computed as the ratio of the number of GO categories with a p-value below 

threshold, averaged over 50 randomized data sets, and the number of GO categories with 

p-value below threshold. A 1% FDR based on the empirical permutation test corresponds 

to a WMW test p-value <10-4. 

5.5.8 Low-complexity sequence features  

To eliminate the potential confounding contribution from low-complexity sequence 

features to locus expression signatures (LES), we calculated the frequency of each base 

and the CpG dinucleotide across the transcribed region for each gene. Next, we computed 

the residuals from a multiple linear regression of each LES on these five frequencies 

(without an intercept). We used these in further TF-locus association analyses.  

5.5.9 Weight matrices 

TFs from the same structural family tend to bind to similar DNA target sequences [202]. 

Our analysis explicitly recognizes that it is often not possible to implicate a specific TF 

based on its binding specificity alone. The JASPAR database [203] contains models at 



 

 

110 

the level of structural families with the shared DNA binding structures[178]. We 

downloaded 11 PWMs representing a distinct TF family from the JASPAR FAM 

database as well as 130 PWMs that are supposed to represent individual TFs from 

JASPAR CORE database. 

5.5.10 TF binding affinity   

We used the convert2psam utility from REDUCE Suite version 2.0 software package 

(bussemakerlab.org) to convert each PWM from JASPAR to a position-specific affinity 

matrix or PSAM [114]; pseudo-counts equal to one were added to the PWM at each 

position, and the resulting base counts were divided by that of the most frequent base at 

each position to get an estimate for the relative affinity associated with each point 

mutation away from the optimal binding sequence. The resulting PSAM collection was 

used to compute a weighted promoter affinity for each gene. All putative individual 

binding sites in the genomic region from 200kb upstream to 200kb downstream of the 

TSS of each gene with a predicted relative affinity of at least 0.1 were identified and 

scored using the AffinityProfile utility in the REDUCE Suite. To obtain a total weighted 

upstream affinity for a given value of the regulatory scale parameter λ, we summed the 

affinity of all upstream binding sites using a weight exp(-d/λ), where d is the (absolute) 

distance of a given binding site from the TSS. A total downstream affinity was computed 

in an analogous manner.    
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5.5.11 Mapping locus-to-TF network connectivity  

To treat the attribution of a regulatory role to TFs with similar sequence specificity in a 

conservative manner, we applied a two-step procedure. First, we performed multivariate 

linear regression of low-complexity-signal-corrected LES values (see above) on the 

weighted binding affinities for each TF family. Next, the residuals from this fit were 

regression on affinity profiles for individual TF. We computed p-values using ordinary 

linear regression. Statistical significance was determined by performing 1000 

independent random permutation of for each gene. A 0.1% false discovery rate (FDR) 

based on the empirical permutation test for family-level and individual PSAMs 

corresponded to a p-value <1.0×10-6 and <7.9×10-10, respectively. 

5.5.12 Validation of MYC result   

We downloaded gene expression profiles obtained by [185] for transgenic mice that 

conditionally express the human MYC cDNA in T-cell lymphocytes (GEO accession 

number GSE10200). In this transgenic mouse, doxycycline treatment suppresses MYC 

expression. The authors measured gene expression at different doxycycline 

concentrations, and found that a doxycycline threshold level of 0.05ng/ml was required to 

maintain the tumor phenotype. We only used the two most extreme doxycycline 

concentrations of 0ng/ml and 20ng/ml. To obtain an estimate for the differential 

expression level in response to inactivation of Myc, we subtracted the treatment/reference 

log2-ratio at 0ng/ml from that at 20ng/ml. These values served as the dependent variable 

in the regression on TF affinity profiles.   
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5.5.13 Identifying regulation at the level of multi-gene chromosomal domains 

To test whether the distribution of locus expression signature values across any given 

number of adjacent genes differed from that of genes in the whole genome, we adapted a 

procedure used by [189]. Within each chromosome, we first sorted genes by their TSS. 

For every possible set of n adjacent genes, we performed a WMW test. The resulting p-

values were visualized as triangular graph, with window position indicated on the 

horizontal and window size on the vertical axis. 

5.5.14 Mapping drug-locus associations 

Genomewide mRNA expression data for cultured human cells treated with bioactive 

small molecules were downloaded from the Connectivity Map website 

(www.broadinstitute.org/cmap/). This collection contains 7056 expression profiles for 

1309 distinct compounds. The experiments were carried out on two different Affymetrix 

GeneChip designs (HG-U133A and HT-HG_U133A), and in four different cell lines (the 

breast cancer epithelial cell line MCF7, the prostate cancer epithelial cell line PC3, 

nonepithelial leukemica cell line HL60, and nonepithelial melanoma cell line SKMEL5). 

We followed the preprocessing and normalization steps described in [190] to obtain the 

expression log2-ratio between drug treatment and control. To combine the human drug 

response expression data with our mouse-based locus expression signatures, we needed to 

map human Affymetrix probe IDs to mouse RefSeq IDs. For this, we used human-mouse 

orthology tables downloaded from UCSC (genome.ucsc.edu/). We averaged over the 

Affymetrix probes mapping to the same mouse RefSeq ID, resulting in 9757 genes shared 

between both data sets. 
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 To obtain robust results, we filtered out non-informative genes using two criteria. 

First, only mouse genes showing a high variance across tumors (upper 50 percentile) 

were retained. Second, we deleted human genes whose expression was detected in neither 

treatment nor control. Next, we calculated averages of gene expression levels across 

profiles for the same drug in different cell types, resulting in 1309 drug signatures. 

Multivariate linear regression of each of these on the locus expression signatures was 

performed. To determine the statistical significance of each putative drug-locus 

association, we performed 100 random permutations of drug signatures and repeated the 

analysis. A 1% false discovery rate (FDR) corresponded to a regression coefficients 

whose t-value has an absolute value >7. To explore the impact of physiological context 

on drug-locus associations, we calculated cell-type-specific drug responses by averaging 

only over replicate profiles for the same cell type, resulting 3587 cell-type-specific drug 

response signatures.   
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Chapter 6                                                    

Concluding Remarks  

In this dissertation, I have presented two approaches to dissect the mechanisms 

underlying genetic variants in gene expression through a TF-centric point of view. The 

following concluding remarks address future directions for this research and potential 

applications of our approaches.  

6.1 Hypotheses to be experimentally validated  

Both studies in this dissertation led to hypotheses that may be tested experimentally, and 

for which some supporting evidence has come to light.  

6.1.1 Genetic modulators of transcription factor activity  

In Section 3.3.6, we predicted that the region on chromosome 2 contains a genetic 

modulator of several transcription factors including Fkh1, Fkh2, Swi5, Ace2 and Stb1 

based on protein-protein interaction. The locus contains the CDC28 gene, which encodes 

a cyclin-dependent kinase. In particular, we predicted that the sign of the aQTL linkage to 

the CDC28 locus for Fhk2p is the opposite of that for Fkh1p (Figure 3.8A): whereas the 

transcriptional targets of Fkp1p are more highly expressed in segregants carrying the BY 

allele at the CDC28 locus, the opposite is true for the targets of Fkh2p (Figure 

3.8B). Even though no amino-acid change is detected by alignment of the BY and RM 

protein sequences for Cdc28p, alignment of BY and RM coding regions for CDC28 gene 
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reveals each point mutation in 3’UTR and 5’UTR. While the locus coincides with a 

previously identified eQTL hotspot and AMN1 in this region was experimentally 

validated to control transcriptional rates [32], CDC28 has not previously been identified 

as a trans-acting genetic modulator, and none of the TFs we identified except Ace2 has 

been previously implicated with the hotspot. Therefore, the effect of CDC28 

polymorphisms on TF activities could be tested by measurement of expression changes of 

allele replacement strains at CDC28, and one would expect the target genes of these TFs 

are differentially expressed in response to allele swap of CDC28. Additionally, we 

detected novel trans-acting polymorphisms in the TF-encoding gene STB5, RFX1, 

and HAP4 in Section 3.3.5.  To test this observation, one could measure the expression 

levels of genes in allele replacement strains at these TFs genes, and expect their target 

genes are affected by it.  

6.1.2 Regulatory mechanisms underlying tumorigenesis    

In Section 5.3, we predicted several regulatory mechanisms underlying tumorigenesis. 

One of our findings is the existence of a large region on chromosome 15 in which most 

genes are induced by insertions near PVT1 (see Section 5.3.9). Indeed, PVT1 is located 

on chromosome 15, suggesting a regional effect of viral insertion on the expression of 

multiple genes. Interestingly, PVT1 whose full name is plasmacytoma variant 

translocation 1 is the site of reciprocal translocations to immunoglobulin loci, resulting in 

'variant' translocations, T(2:8) or T(8:22) in Burkitt’s lymphoma [204]. In most murine 

plasmacytomas, t(15:12) translocations, analogous to the T(8:14) translocations in 

Burkitt's lymphoma, t(6:15) translocations are observed [205, 206]. These previous 
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studies suggest one possible mechanism by which a retroviral insertion near PVT1 locus 

can induce translocation and changes chromosomal territories, resulting in induced 

expression levels for the large number of genes on chromosome 15. The experiment 

visualizing locations around PVT1 locus by fluorescence in situ hybridization (FISH) for 

the tumors with PVT1 insertion could be performed, and compared to other tumors to see 

whether the chromosomal domains are changed for these tumors. Furthermore, we 

detected the chromosomal domain on chromosome 15 in which many genes are repressed 

in response to PIM1 insertion (Figure 6.1). Interestingly, genome-wide translocation 

sequencing reveals that double-strand breaks (DSBs) at c-myc oncogene on chromosome 

15 were preferentially targeted some chromosomal regions, including PIM1 on 

chromosome 17 [207]. Chromatin interaction profiling using Hi-C experiment [188] or 

FISH experiment could be performed to validate this observation.     

 

Figure 6.1: Domainogram of each chromosome for PIM1 expression signature. 



 

 

117 

 In Section 5.3.11, we investigated the relationship between drug responses and 

locus-specific expression signatures, and detected several insertional mutation-specific 

drug responses. Interestingly, even though the overall patterns of drug association are 

similar for MYC and MYCN, these loci each had specific drug associations. The MYC 

signature has significant negative correlation with the response to PI3K inhibitors (i.e. 

wortmannin and LY-294002), while the response to histone deacetylases (i.e. valproic 

acid, trichostatin A and HC toxin) significantly antagonizes the MYCN signature. 

Furthermore, our analysis predicts tumors with insertions at mmu-mir-106a to be 

responsive to topoisomerase inhibitors (i.e. camptothecin, mitoxantrone, doxorubicin, 

daunorubicin and irinotecan), a well-known class of anti-cancer drugs. The response of 

tumor carrying these insertions to each drug could be observed to validate our 

observation.  

6.2 Applying to other data sets 

6.2.1 Application of aQTL approach 

Our aQTL approach in Chapter 3 is generally applicable whenever a matrix of connection 

strength between regulators and targets, independent of the phenotype matrix, is available 

as prior information. In collaboration with other Bussemaker lab members, I have 

extended this approach to other biological contexts, including the promiscuous binding of 

TFs to high-occupancy target (HOT) regions and post-transcriptional regulatory networks 

(see Chapter 4). Furthermore, an obvious extension of the analysis in Chapter 3 would be 

to apply the approach to other organisms’ eQTL datasets, for example, human. The 270 
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individuals in the four HapMap populations were previously genotyped [208] from 

International HapMap project. The gene expression measurements from genes spanning 

the genome of EBV-transformed lymphoblastoid cell lines were obtained from the same 

individuals used in the phase 1 and phase II of the project [31]. Additionally, RNA-seq 

data that enable the analysis of transcript variation at unprecedented resolution from 

unrelated Nigerian individuals are available [209]. Furthermore, recent high-resolution, 

and high-throughput protein binding microarray (PBM) [210, 211] array data for defining 

the in vitro sequence specificity of a substantial subset of mammalian transcription 

factors could be used. Application of our aQTL approach would provide insights about 

transcriptional regulation of human.  

6.2.2 Application of LESA  

Recently, large-scale projects to map chromosomal aberrations, mutations and gene 

expression of cancer were launched by several groups. Genomic data has been collected 

for thousands of tumors at high-resolution using array comparative genomic 

hybridization (aCGH) [40], high density single nucleotide polymorphism (SNP) 

microarrays [41], and massively parallel sequencing [43]. Measurements of gene 

expression levels in parallel with these genomic data could be used to identify drivers of 

tumorigenesis and connected them to many of their targets and biological functions by 

applying our analysis. The genomic data could be treated in a way analogous to what we 

did for common insertion sites data in our analysis. Then, we would calculate expression 

signatures modulated by each genomic mutation in cancer. The resulting expression 

signatures could be used for further analyses such as GO analysis, identifying differential 
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TF activities and chromosomal domains. This application would facilitate identification 

of regulatory mechanisms underlying tumorigenesis.   

6.3 Integrating other layers of regulation  

The human genome is a store of information. The three billion bases encode, either 

directly or indirectly, the instructions for synthesizing all the molecules that form each 

human cell, tissue and organ. The genomic elements within the DNA sequence 

orchestrate the development and function of a human through multiple layers of 

regulations, including chromatin state [1], transcriptional rate [2], splicing [3], mRNA 

localization [4], mRNA stability [5], translational rate [6], and protein stability [7]. The 

Encyclopedia of DNA Elements (ENCODE) Project [212, 213] aims to provide a more 

biologically informative representation of the human genome by using high-throughput 

methods, including data about the degree of DNA methylation and chemical 

modifications to histones that can influence the rate of transcription. ENCODE also 

examines long-range chromatin interactions, such as looping, that alter the relative 

proximities of different chromosomal regions in three dimensions and also affect 

transcription. An obvious extension of the analysis described in Chapter 3 and Chapter 5 

would be the modification of algorithms to consider the additional layer of regulation 

using data now available from ENCODE project.  
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