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Abstract

The procyclicality of inventory investment is a central feature of US business cycles. As such, it provides

a test for the recent literature on news shocks, which argues that anticipated changes in fundamentals are

important sources of aggregate fluctuations. We show that, in a range of inventory models, anticipated

shocks to fundamentals generate booms of a peculiar kind: consumption and investment increase, but

inventories fall persistently. During these booms, production and inventory investment are dominated by

intertemporal substitution, as firms satisfy sales out of inventory stock and delay production until the

realization of the anticipated shock. This mechanism is surprisingly difficult to overturn. We derive analytical

parameter restrictions which guarantee procyclical inventory dynamics in response to news shocks, and

show that standard calibrations considered in the literature do not come close to satisfying the restrictions.

Furthermore, the introduction of the frictions studied by the news literature, such as variable capacity

utilization and adjustment costs, is not sufficient to restore the procyclicality of inventories. We use the

models’ restrictions on the comovement of sales and inventories to identify news shocks in postwar US data.

We find that the identified shock leads to a diffusion in TFP, but has a short implementation lag and accounts

for a small fraction of long-run movements in TFP, inventories and sales.
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1 Introduction

The sources of business cycles are an enduring subject of debate among macroeconomists. Recently,

the literature has focused on news shocks — shocks that change agents’ expectations about future economic

fundamentals, without affecting current fundamentals — as a potential driving force of aggregate fluctuations.

Starting with Beaudry and Portier (2006), this literature has argued that news shocks may provide a good

account of expansions and recessions, stressing episodes such as the US and Asian investment booms and

busts of the late 1990’s as examples. Schmitt-Grohé and Uribe (2012) estimate that in the US economy,

news shocks account for about half of all business-cycle fluctuations.

Of particular importance to theories of the business cycle based on news shocks is the behavior of invest-

ment. At the business cycle frequency, aggregate investment is procyclical and highly volatile. Moreover, the

empirical literature on investment has documented its sensitivity to asset price changes that forecast future

growth in cash flows (Fazzari, Hubbard, and Petersen, 1988). Jaimovich and Rebelo (2009) show that, in a

neoclassical growth model with investment adjustment costs, variable capacity utilization, and weak wealth

effects on hours worked, an expected rise in the marginal product of capital leads to a boom in investment

today. Adding variable capacity and weak wealth effects on labor supply allows output to rise on impact

and satisfy current demand, while adjustment costs lead firms to smooth the desired increase in the stock of

capital over time and start investing today. Their suggestions carry through to other forms of investment,

such as investment in material or work-in-progress inventories. So long as the corresponding stock enters

the production function, as in the work of Christiano (1988), these will behave similarly as investment in

productive capital.

In this paper, we study the behavior of an altogether different type of investment in response to news

shocks: investment in finished-good inventories. Finished-good inventories do not affect the future marginal

productivity of capital, and thus do not fall under the category described above. However, there is abun-

dant evidence that finished-good inventories are a forward-looking variable that responds to changes in

expectations about future economic conditions. For instance, Kesavan, Gaur, and Raman (2010) find that

finished-good inventory data are valuable for forecasting sales.

Over the business cycle, two salient features of inventories have been extensively documented in the

literature, and hold for all categories of inventories (see for example Ramey and West (1999)). First, both the

stock of inventory and inventory investment are procyclical.1 The left panel of figure 1 shows the movement

of the stock of inventories during the 5 most recent NBER recessions. In all 5 recessions, inventories declined.

The quarterly US postwar unconditional correlation of the cyclical component of inventory investment and

1By an accounting identity, output equals sales plus the change in the stock of inventory, net of inventory depreciation. We
will refer the stock of inventory as “inventories”, and the flow into this stock as “inventory investment”.
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output is 0.632. Second, the ratio of the stock of inventory to sales, the IS ratio, is countercyclical. Although

inventory investment is well-known to be volatile, it constitutes only a small fraction of the overall inventory

stock. Thus, movements in the stock of inventories are typically slower than movements in final sales. The

right panel of figure 1 shows the IS ratio during the most recent 5 NBER recessions. In all 5 except the 2001

recession, the IS ratio increased. The quarterly US postwar unconditional correlation between the cyclical

component of the IS ratio and output is −0.35.3

In what follows, we ask whether, in response to news shocks, business cycle models can generate inventory

fluctuations characterized by (i) procyclical inventory investment, and (ii) a countercyclical IS ratio. Our

answer is a stark no.

In section 2, we start our analysis by embedding the stock-elastic demand model of Bils and Kahn

(2000) into an otherwise standard Real Business Cycle model. In section 3, we use this model to show that

good news about the future lead to a boom during which consumption and investment rise, but inventories

fall. The intuition at the heart of our result is that news shocks lead to intertemporal substitution in

production. As future marginal cost is expected to be lower than current marginal cost, firms face a downward

sloping marginal cost profile. Optimal inventory investment behavior then dictates that they should delay

production, and satisfy current demand by drawing down on existing inventories. Thus, news booms lead to

inventory disinvestment. As we will discuss in detail, this is not the only force affecting inventories during a

news boom. Absent movements in the growth rate of marginal cost, firms typically follow a target inventory

to sales behavior, maintaining the ratio of inventories to sales at a constant value. Increases in sales thus lead

to increases in inventories. However, we show that in response to a news shock, this force is quantitatively

unlikely to be sufficient to overcome the effects of intertemporal substitution in production. We also establish

that our results holds in an alternative model of inventories, the stockout-avoidance model of Kahn (1992)

and Kryvtsov and Midrigan (2012).

In section 4, we show that this result extends strongly to the dynamic response of the two classes of models.

In the period leading up to the realization of the anticipated increase in fundamentals (the “news” period),

low expected future marginal cost generates substantial inventory disinvestment. The fall in inventories after

the news shock is thus deep and protracted. In section 5, we introduce various forms of dynamic rigidities to

the two classes of models, such as inventory adjustment costs and habit formation. We show that even the

combination of all the rigidities we consider is insufficient to generate a procyclical response of inventories

2The cycle-trend decomposition is done using a Hodrick-Prescott filter with smoothing parameter set at 1, 600. Output is
in logs. However, inventory investment cannot be expressed in logs, since it occasionally takes negative values. Instead, we
divide inventory investment by the level of the trend output and filter the series. Details on the data used are consigned to
appendix A.

3Other studies that report a stronger negative correlation focus on the manufacturing or retail sector, whereas we use the
broader category of private sales of final goods to compute the ratio.
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to news shocks.

Having established that the negative comovement of inventories and sales is specific to news shocks, we

propose to use this structural prediction as a means to identify news shocks. In section 6, we describe an

empirical strategy based on this idea, and we show that the shock identified in this fashion in postwar US

data leads to a future increase in TFP and an immediate and persistent increase in sales. However, the

decline in inventories in response to the shock is very short, at most 2 quarters, implying that the “news”

period is short. Furthermore, forecast error variance decompositions suggest that the shock accounts for at

most 26% of long-run movements in TFP and inventories, and up to 39% in sales. This contrasts with the

empirical literature on news shocks, which finds that they account for a substantial fraction of the movements

in TFP, especially in the long run. Section 7 concludes.

2 The stock-elastic demand model

In this section, we lay out a general equilibrium model of inventory dynamics based on the work of

Pindyck (1994), Bils and Kahn (2000), and Jung and Yun (2006).

The key feature of these models is the assumption that sales of a firm are elastic to the amount of

goods available for sale, which we term “on-shelf goods.” This assumption finds empirical support for many

categories of goods, as documented by Pindyck (1994) or Copeland, Dunn, and Hall (2011). The positive

elasticity of sales to on-shelf goods captures the idea that with more on-shelf goods, customers are more

likely to find a good match and purchase the product. This may arise either because of greater availability of

goods, or because more on-shelf goods may provide a wider variety within the same product. For example,

a shoe store with more colors and size of all kinds are likely to attract more customers and sell more goods.

Cachon and Olivares (2009) find empirical evidence supporting the view that greater product variety leads

to higher sales at the industry level.

2.1 Description of the model

The economy consists of a representative household and monopolistically competitive firms. The output

of the firms are storable goods, of which they keep a positive inventory. We start with the household problem.

Household problem A representative household maximizes the following expected sum of discounted

utility,

E0

[ ∞∑
t=0

βtU(ct, nt;ψt)

]
, (1)
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where ct is the consumption of the final good, nt denotes the supply of labor services, and ψt is a exogenous

variable that introduces a wedge between the marginal rate of substitution between consumption and leisure,

and the real wage, and which we call a “labor wedge” shock. We assume that the household’s period utility

function takes the form proposed by Greenwood, Hercowitz, and Huffman (1988, henceforth GHH):

U(c, n;ψ) =
1

1− σ

(
c− ψ n

1+ξ−1

1 + ξ−1

)1−σ

,

where ξ is the Frisch elasticity of labor supply and σ denotes the inverse of the elasticity of intertemporal

substitution in consumption. This preference specification has been widely used in the literature on news

shocks, and it implies zero wealth effects on labor supply. None of our results depend crucially on the choice

of preferences, and in fact we view the GHH specification as a best-case scenario for the procyclicality of

inventory investment, since it limits any fall in output due to negative wealth effects of the news shock on

the household labor supply curve.

The household’s maximization problem is subject to the follow constraints:

∫ 1

0

pt(j)st(j)dj + Et [Qt,t+1Bt+1] ≤Wtnt +Rtkt +

∫ 1

0

πt(j)dj +Bt, (2)

kt+1 = it

[
1− φ

(
it
it−1

)]
+ (1− δk)kt, (3)

ct + it ≤ xt. (4)

Equation (2) is the household budget constraint. The household earns income each period by providing

labor nt at a given wage Wt, renting capital kt at a rate Rt, claiming the profit πt(j) from each firm

j ∈ [0, 1], and receiving nominal bond payments Bt. It spends its income in purchases of each variety in the

amount st(j) at a price pt(j), and in purchases of the state-contingent one-period nominal bonds Bt+1. The

probability-adjusted price of each of these bonds is Qt,t+1, for each state in period t+ 1.

Equation (3) is the accumulation rule of capital in the presence adjustment costs to investment. The

adjustment cost function φ(·) is twice-differentiable with φ(1) = φ′(1) = 0, and φ′′(1) > 0. Following

Jaimovich and Rebelo (2009), adjustment costs of this form guarantee that firms start accumulating capital

ahead of the implementation period of the news shock, so that investment increases when good news about

the future are announced.

Equation (4) states that the household’s consumption and investment cannot exceed its total absorption

of final goods, xt, which is constructed by aggregating their purchase of intermediate goods {st(j)}j∈[0,1].

The aggregation of the intermediate goods {st(j)}j∈[0,1] into xt is given by a Dixit-Stiglitz type aggregator
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of the form:

xt =

(∫ 1

0

vt(j)
1
θ st(j)

θ−1
θ dj

) θ
θ−1

, (5)

where vt(j) is the taste-shifter for each product j and θ is the elasticity of substitution across goods. It

follows from expenditure minimization that the demand function for each good and the aggregate price level

take the following forms:

st(j) = vt(j)

(
pt(j)

Pt

)−θ
xt, Pt =

(∫ 1

0

vt(j)pt(j)
1−θdj

) 1
1−θ

.

In stock-elastic demand models, the taste-shifter for variety j is assumed to depend on the amounts of goods

on shelf proposed by the firm producing variety j, at(j), in the following fashion:

vt(j) =

(
at(j)

at

)ζ
, (6)

where the normalization by at, defined as the the economy-wide average of on-shelf goods, ensures that the

mean of νt(j) across goods is equal to 1. The parameter ζ > 0 controls the degree of the shift in taste due

to the relative amount of goods on-shelf.

Finally, the household is given an initial level of capital k0 and bonds B0, and its optimization problem

is subject to a no-Ponzi condition for both capital and stage-contingent nominal bond holdings.

Firm problem Each monopolistically competitive firm j ∈ [0, 1] maximizes the following expected dis-

counted sum of profits

E0

[ ∞∑
t=0

Q0,tπt(j)

]
, (7)

where

πt(j) = pt(j)st(j)−Wtnt(j)−Rtkt(j). (8)

Note that profit in each period is the revenue from sales net of the cost from hiring labor nt(j) and renting

capital kt(j) at their respective prices Wt and Rt. The term Q0,t is the discount factor of nominal bonds

between period 0 and t, so that Q0,t =
∏t−1
T=0QT,T+1. This discount factor is consistent with households
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being the final owners of firms. The firm faces the following constraints:

at(j) = (1− δi)invt−1(j) + yt(j), (9)

invt(j) = at(j)− st(j), (10)

yt(j) = ztk
1−α
t (j)nαt (j), (11)

st(j) =

(
at(j)

at

)ζ (
pt(j)

Pt

)−θ
xt. (12)

Equation (9) is the stock accumulation equation. The stock (on-shelf goods) of the firm, at(j), consists

of the undepreciated stock of inventories from the previous period (1− δi)invt−1(j) and current production

yt(j). The parameter δi denotes the depreciation rate of inventories. Equation (10) states that on-shelf goods

that is unsold is accounted as inventories. Equation (11) is the production function. Firms use a constant

returns to scale production function, with capital and labor as inputs. The parameter α governs the degree

of short-run decreasing returns to scale in labor. The variable zt represents total factor productivity and is

exogenous. Finally, monopolistically competitive firms face the demand function (12) stemming from solving

the household problem.

Market clearing Labor and capital markets clear, and the net transaction of nominal bond is zero:

nt =

∫ 1

0

nt(j)dj, (13)

kt =

∫ 1

0

kt(j)dj, (14)

Bt+1 = 0. (15)

Sales of goods for each variety j also clears by the demand function described above. The average on-shelf

goods in the economy at is defined by

at =

∫ 1

0

at(j)dj. (16)

2.2 Equilibrium

A market equilibrium of this economy is defined as follows.

Definition 1 (Market equilibrium of the stock-elastic model) A market equilibrium of the stock-
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elastic model is a set of stochastic processes:

ct, nt, kt+1, it, Bt+1, xt, at, {at(j)}, {nt(j)}, {kt(j)}, {vt(j)}, {st(j)}, {yt(j)}, {invt(j)}, {pt(j)},Wt, Rt, Pt, Qt,t+1

such that, given the exogenous stochastic processes zt, ψt, as well as initial conditions k0, B0 and {inv−1(j)}:

• households maximize (1) subject to (2) - (6) and no-Ponzi conditions,

• each firm j ∈ [0, 1] maximizes (7) subject to (8) - (12),

• markets clear according to (13) - (16).

Note that the two exogenous processes in our economy are total factor productivity zt and labor wedge ψt.

We limit ourselves to these shocks following the results of Schmitt-Grohé and Uribe (2012). They find that

among all anticipated shocks, it is anticipated shocks to these variables that are the primary contributors to

aggregate fluctuations. It will nevertheless be clear that at least on impact, our results hold for anticipated

innovations to all other exogenous variables studied in Schmitt-Grohé and Uribe (2012) (investment-specific

shocks, government spending shocks and preference shocks).

2.3 The optimal choice of inventories

The full set of equilibrium conditions are provided in appendix B. As we show there, a market equilibrium

of the stock-elastic model is symmetric, so that at(j) = at, st(j) = st, invt(j) = invt, yt(j) = yt, and

pt(j) = pt for all j. Here, we discuss the optimal stock choice of firms.

In the market equilibrium, marginal cost is real wage divided by the marginal product of labor:

mct =
Wt/Pt

αzt(kt/nt)1−α
. (17)

Using this, the optimal stock choice of firms is governed by the equation:4

mct =
∂st
∂at

+

(
1− ∂st

∂at

)
Et[qt,t+1(1− δi)mct+1]. (18)

The left hand side of this equation represents the cost of adding an extra unit of goods to the stock of

goods on sale, at, which equals the current marginal cost of production. The right hand side represents the

benefits of adding this extra unit. First, there is a convenience yield: by producing and stocking an extra

unit, the firm is able generate an additional fraction ∂st
∂at

of sales. Second, the remainder of the extra unit,

4Here, qt,t+1 = Qt,t+1Pt+1/Pt denotes the real stochastic discount factor of the household.
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1 − ∂st
∂at

, is not sold and instead kept as inventory until the next period, when it contributes to reducing

future production costs.5

Rearranging, (18) can be expressed as:

∂st
∂at

=
γ−1t − 1

µt − 1
, (19)

where:

µt ≡
1

(1− δi)Et[qt,t+1mct+1]
, γt ≡ (1− δi)Et

[
qt,t+1mct+1

mct

]
.

The variable µt is the markup of price over expected discounted marginal cost. This is the relevant markup

concept in an economy where firms produce to stock: indeed, the true cost of sales is not current but future

marginal cost, since selling an extra unit reduces tomorrow’s stock of goods. The variable γt is the expected

discounted growth rate of marginal cost, which summarizes the firm’s opportunity cost of producing today.

The optimal stocking behavior of a firm balances these 3 margins: markup, discounted growth rate of

marginal cost, and the convenience yield of inventories.

3 The impact effect of news shocks

We now turn to studying the effect of news shocks in this model economy. In this section, we focus on

impact responses. We derive analytical conditions under which news shocks result in positive comovement

on impact between sales and inventories, assess whether those conditions are likely to hold in reasonable

calibrations of the model, and inspect the mechanisms underpinning them.

3.1 A reduced-form framework

We analyze a first-order log-linear approximation of the model around its steady-state. The log-deviation

of a variable xt from its steady-state value is denoted by x̂t.

Proposition 1 (Stock-elastic model) On impact and with only news shocks, so that ẑt = 0 and ψ̂t = 0,

5Because the shadow value of the stock of inventories, the Lagrange multiplier on equation (9), is equal to the marginal
cost of production, inventories are never zero in this economy. This will not be the case with idiosyncratic production costs in
the stockout avoidance model.
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the following reduced-form equations represent the log-linearized market equilibrium of definition 1:

m̂ct = ωŷt, (20)

κŷt = ŝt +
κ− 1

δi
[ ˆinvt − (1− δi) ˆinvt−1], (21)

ˆinvt = ŝt + τ µ̂t + ηγ̂t, (22)

µ̂t = 0, (23)

µ̂t + γ̂t + m̂ct = 0. (24)

The mapping from the structural model parameters to the parameters of the reduced-form equations is given

by:

ω =
1 + (1− α)ξ

αξ
, (25)

κ = 1 + δiIS, (26)

η =
1 + IS

IS

1

1− β(1− δi)
, (27)

τ = θ
1 + IS

IS
,

where IS is the steady-state inventory-sales ratio, given by

IS =
(θ − 1)(1− β(1− δi))

ζβ(1− δi)− (θ − 1)(1− β(1− δi))
.

This framework will allow us to derive restrictions on reduced-form parameters that guarantee a positive

response of inventories to news shocks. We first discuss briefly the reduced-form equations (20)-(24), in order

to gain intuition about the meaning of the reduced-form parameters.

Equation (20) relates marginal cost to output. With ω > 0, this equation states that real marginal

cost increases with output. The parameter ω is the elasticity of marginal cost with respect to output,

keeping constant total factor productivity. The literature often refers to this parameter as the degree of

real flexibilities (or the inverse of the degree of real rigidities). Woodford (2003) contrasts two values of ω:

1.25, from Chari, Kehoe, and McGrattan (2000), and 0.47, from Rotemberg and Woodford (1997). Moreover,

Dotsey and King (2006) suggest a lower bound of 0.33 for ω. A conservative range of values for the parameter

ω is thus:

ω ∈ [0.3, 3] .
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Equation (21) is the law of motion for the stock of inventories, obtained from combining equations (9) and

(10). This law of motion states that output should equal sales plus inventory investment. In its log-linearized

form, κ in (21) denotes the steady-state output to sales ratio. In NIPA, the time series average of inventory

investment over total output is around 0.5 percent, so that a reasonable range of values for κ is:

κ ∈ [1, 1.01] .

Equation (22) is the log-linearized form of the first-order optimality condition for inventories in (19).

It first states that, holding other factors fixed, inventories ˆinvt and sales ŝt move one to one. That is,

firms follow a target inventory to sales ratio behavior, absent movements in prices and costs. Second, when

markups µ̂t fall, sales increases, so that given a production level, inventories fall. The parameter τ > 0

controls the intensity of this markup channel. Third, inventories respond to changes in the discounted

growth rate of marginal cost γ̂t. When γ̂t > 0, future production is expensive relative to current production,

firms bunch their production today, and inventories increase. The parameter η > 0 controls the intensity

of this intertemporal substitution channel. Its value depends closely on the intertemporal costs of holding

inventories: (i) the opportunity cost, governed by the discount rate β, and (ii) the storage cost, governed by

the depreciation rate δi. Equation (27) indeed indicates that, since IS > 0:

η >
1

1− β(1− δi)
.

With a quarterly discount factor β = 0.99 and depreciation rate δi = 0.02, this suggests a lower bound of:

η > 33,

irrespective of the value of the IS ratio. That is, a 1 percent increase in the present value of future marginal

cost will lead firms to accumulate more than 33 percent of inventories relative to sales, as expressed in (23).

Since we do not assume nominal rigidities, the firms set a constant markup of price over future marginal

cost, as in (23). Consequently, the value of τ > 0 is irrelevant to our analysis. Lastly, equation (24) is a

consequence of the definition of µt and γt in section 2.

3.2 The impact response of inventories to good news about the future

Given sales ŝt, equations (20) - (24) relate the following four variables: output ŷt, inventories ˆinvt,

the discounted growth rate of marginal cost γ̂t, and markups µ̂t. We adopt the following definition of a
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news shock in the context of this reduced-form framework: a positive news shock has no impact on current

fundamentals (ψ̂t = 0 and ẑt = 0), but it increases sales (ŝt > 0).

Proposition 2 (The impact response of inventories to a good news about the future) After a

positive news shock,

1. the IS ratio falls;

2. inventories increase, if and only if:

η <
κ

ω
.

The first part of this proposition is encouraging, since the inventory stock to sales ratio is countercyclical at

business cycle frequencies. The second part of this proposition indicates that inventories respond positively

to a news shock when ω is small and κ and η are large. Following our discussion on numerical values, a

conservative upper bound on κ/ω is 3.36, which corresponds to a large degree of real rigidities (ω = 0.3)

along with a large output to sales ratio (κ = 1.01). On the other hand, our lower bound for η is 33, so that:

η > 33� 3.36 ≥ κ

ω
.

Therefore, the condition of the second part of proposition 2 is not met, and in fact, fails by an order

of magnitude. Thus, our framework indicates that following the arrival of good news about the future, the

boom in sales associated to a news shock is accompanied by a fall in inventories.

3.3 Discussion

Proposition 2 indicates that even under conservative calibrations of our reduced-form framework, inven-

tories should fall in response to good news about future fundamentals. In order to understand this result, it

is useful to separate the positive and negative effects that news shocks have on inventory investment.

On the one hand, a news shock leads to a boom in output and sales, which is partly channelled into

positive inventory investment. Two separate mechanisms contribute to this. First, if sales were unchanged,

an increase in output will increase inventory investment by the accounting identity linking output, sales and

inventory investment. Second, since firms follow a target inventory-sales ratio behavior in the absence of

price movements, an increase in sales will lead to a build-up of inventories. Because of these two mechanisms,

the shock partially works to increase the stock of inventories.

On the other hand, the shock generates a downward sloping profile for the marginal cost. This is because

either a future improvement in TFP, or a future fall in the labor wedge reduces future marginal cost relative
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to current marginal cost. This induces intertemporal substitution in production: firms postpone production,

lower their desired inventory-sales ratio, and satisfy current demand by drawing down on their inventories.

Figure 2 spells this argument in further detail. The left panel plots the inventory law of motion (LOM)

and inventory optimality (IO) schedules, when ˆinvt−1 = 0:

ˆinvt = δi
1

κ− 1
(κŷt − ŝt) , (LOM)

ˆinvt = −ηωŷt + ŝt, (IO)

which are obtained from (20) and (21)-(24) respectively. The right panel plots similar schedules for the

inventory stock to sales ratio. Shifts in those schedules are proportional to the increase in sales ŝt > 0

resulting from the news shock. Note that the slope of (IO) increase in absolute value with η, the elasticity

of intertemporal substitution in production, and ω, the inverse of the degree of real rigidities. On the one

hand, the increase in sales results in an upward shift of (IO), as, all other things equal, firms increase

inventories proportionately to their sales. This shift captures the expansionary effects of the boom on

inventory investment: absent any shifts in (LOM), this would lead to an increase in inventories. Moreover,

the increase in inventories would be larger, the flatter the schedule. However, the rise in sales also shifts

(LOM) downward - inventories cannot increase more than the net increase in output minus the net increase

in sales. The shift is in general larger than the shift in the (IO) schedule, since δi
κ−1 = 1

IS ≥ 1 when IS ≤ 1.

Thus, typically - and especially so if the schedule (IO) is steep, as suggested by our discussion - inventories

fall after the shock.

When could inventories potentially respond positively to news shocks? The previous discussion suggests

that the slope of the schedule (IO) would have to be small, so that one or both of the following conditions have

to be met: (i) the degree of real rigidities is large, or equivalently, ω is small; (ii) the elasticity of intertemporal

substitution in production is small, which occurs when intertemporal costs of holding inventories are large.

The advantage of our proposition is that it quantifies how large real rigidities and intertemporal costs of

holding inventories should be. We now turn to discussing these analytical bounds.

How large should real rigidities be? Substituting the structural relation given in proposition 2 for

the reduced-form parameters η and κ, the following inequality must be satisfied for inventories to behave

procyclically:

ω ≤ ω ≡ IS

1 + IS
(1− β(1− δi))(1 + δiIS).
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In other words, real rigidities must be higher than 1/ω for inventories to comove with sales. This has an

intuitive interpretation: real rigidities tend to dampen movements in marginal cost; for a given elasticity of

intertemporal of inventories to the growth rate of marginal cost, smaller movements in relative marginal cost

imply a smaller degree of intertemporal substitution. Hence large real rigidities are needed to weaken the

intertemporal substitution in production and avoid the fall in inventories after the news shock. How large?

Assuming a standard value of β = 0.99 at quarterly frequency, ω is a function of IS and δi. In figure 3, we

plot ω as a function of δi for three values of the inventory-sales ratio: IS = 0.25, IS = 0.50, and IS = 0.75.

The message from figure 3 is that, regardless of the value of the IS ratio, even with a very large depreciation

rate of inventories, the degree of real rigidities needed to achieve the positive response of inventories is very

large. For example, for IS = 0.75, when we assume that 10 percent of inventories depreciates each quarter,

the upper bound on ω is still as low as ω = 0.05, roughly a sixth of the value of 0.33 suggested by Dotsey

and King (2006).

How large should intertemporal costs be? The reason why inventories are not procyclical with news

shocks is that firms that produce to stock have a large intertemporal elasticity of substitution in production

η. The elasticity of intertemporal substitution in production in turn depends importantly on the intert-

ertemporal costs of holding inventories, summarized by the opportunity cost 1/β − 1 and storage cost δi.

The steady-state growth rate of marginal cost, γ = β(1− δi), is thus inversely related to this intertemporal

cost. When both the opportunity cost and the storage cost are set to 0, γ attains its maximum value at

1. When γ = 1, the value η goes to infinity. The right panel of figure 2 shows the value of η as a function

of γ. Even with large intertemporal costs of holding inventories (γ = 0.9, corresponding to δi = 0.1 and

β = 0.99), η is above 5. To reach the bound of κ
ω = 3.3 suggested by our conservative calibration, the rate

of depreciation of inventories would have to be at least δ = 0.15 at the quarterly frequency, which in turn

would give rise to counterfactually high steady-state IS ratios.

We thus conclude that parametrizations of this model based on a wide range of targets for the inventory-

sales ratio lead to negative responses of inventories to a news shock, unless one is willing to commit to

very large intertemporal costs of holding inventories along with a degree of real rigidities above the range

commonly discussed in the literature.

3.4 News shocks in the stockout-avoidance model

A natural question is whether our results are specific to the particular inventory model we have chosen

to analyze. Another branch of the literature on finished-good inventories motivates the existence of positive
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output inventory stocks by the presence of uncertainty in demand, and the implied possibility of stocking

out. In these models, firms are assumed to have imperfect information on the demand schedule for their

variety at the time they make production and pricing decisions. When demand for their product is unusually

high, firms may run out of available product — a “stockout” — and lose potential sales. This motivates firms

to put, on average, more on-shelf goods than they expect to sell, and carry over excess goods as inventory

into the next period.6

In an appendix separate from the paper, we study the effects of news shocks in this class of models

in detail. We show that a reduced-form framework similar to that of proposition 1 obtains, and moreover

that our main result carries through: in response to good news about future fundamentals, under standard

calibrations of the model, the IS ratio falls but inventories fall as well. We again obtain analytical restrictions

on reduced-form parameters to precisely quantify the conditions under which this result holds. Additionally,

we argue that, as in the stock-elastic demand model, the main mechanism dominating the response of

inventories to anticipated shocks is intertemporal substitution in production. In both classes of models, a first

order condition of the form of (19) holds, so that inventory decisions balance convenience yields, markups

and intertemporal substitution motives. Our results thus indicate that the fact that the intertemporal

substitution motive is quantitatively the stronger one for news shocks is a feature common to a range of

inventory models, and does not depend on the precise micro-foundation for the convenience yields.

4 Dynamic responses

The analysis of the previous section focused on the impact responses to news shocks, in an effort to

understand forces underlying the joint response of output, sales and inventories. We now turn to the

dynamic response to the anticipated shock. We show that the negative response of inventories is persistent:

it extends throughout the anticipation period, and even after the implementation of the shock.

4.1 Calibration

We calibrate the stock-elastic and stockout avoidance models at the quarterly frequency. The numerical

values for the parameters are summarized in table 1. Standard model parameters are calibrated using

estimates from the business cycle literature. Parameters specific to the inventory blocks of the models

are calibrated to match sample averages of the IS ratio and the output to sales ratio. In particular, our

6This mechanism is consistent with existing evidence that stockouts occur relatively frequently at the firm level. Bils (2004)
uses data from the BLS survey underlying the CPI and estimates that stockout probabilities in this dataset are roughly 5
percent. More recently, using supermarket-level data for a large retailer, Matsa (2011) suggests that stockout probabilities are
in the range of 5 − 10 percent. See Kahn (1987, 1992), Kryvtsov and Midrigan (2010, 2012), and Wen (2011) for detailed
analysis of the properties of this class of models.

15



calibration results in an annual rate of depreciation of inventories of 4.17%. Details on the calibration are

given in appendix C.

For the stock-elastic demand model, our calibration implies that η = 146, ω = 0.562 and κ = 1.0053,

so that applying proposition 2, inventories respond negatively to news shocks on impact. For the stockout

avoidance model, our calibration likewise implies a negative inventory response given by the proposition in

the online appendix.

4.2 Impulse responses to news shocks

We first study the impulse responses of output, sales, inventories and the IS ratio to 4-period news shocks

to TFP and labor wedge. The realized TFP process is AR(1) with the persistence ρz = 0.99. For the labor

wedge process, the realized process is AR(1) with persistence ρψ = 0.95.7

Figure 9 reports the impulse responses for the stock-elastic demand model. Note first that sales rise

continuously, from the impact period to the materialization of the anticipated shock. This increase is due to

a combined increase in consumption and investment, the former because of the wealth effect associated and

the latter because of the presence of investment adjustment costs.

In line with our discussion of the previous sections, inventories fall. The fall is large and persistent,

and reaches its through in the period preceding the materialization of the anticipated shock. At the same

time, output remains mostly unchanged until period 5, when the anticipated shock materializes, so that the

increase in sales associated to the shock is almost entirely met by inventory disinvestment. To build further

intuition for the responses of inventories, note that the optimal labor supply and demand schedules in an

economy with inventories is:

ψtn
1
ξ

t = αmctztk
1−α
t nα−1t , (28)

so that marginal cost is given by:

m̂ct = ωŷt + ψ̂t − ẑt − (ω + 1) (1− α)k̂t. (29)

News about an increase in future productivity (ẑt+T ) or a future decrease in the labor wedge (ψ̂t+T ) lead to a

decline in future marginal cost. This is reflected in the negative impulse response of the expected discounted

marginal cost, which we report in figure 6. Through equation 22, this fall in expected discounted marginal

cost leads to a fall in inventories which is sufficient to overcome the effect of the increase in sales. Thus, the

7These estimates of persistence are close to the empirical findings in the literature.
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qualitative impulse responses to both types of shocks are similar.

Note that there still is a very small increase in output during the first four periods, which might seem

somewhat puzzling, given that capital is fixed in the short run, and productivity is unchanged, so that the

labor demand schedule of firms should not shift. While this logic holds in a flexible price model without

inventories, it does not hold in a model with inventories. Indeed, in contrast to models without inventories,

the optimal pricing policy of firms does not imply that marginal cost is fixed — instead, it is expected

discounted marginal cost that is constant, and equal to the inverse markup. Through equation (28), the

increase in demand is associated to a rise in marginal cost which shifts out the labor demand curve, resulting

in a small increase in hours worked. The mechanism is somewhat similar to the effects of variable capacity

utilization in a flexible price model without variable capacity utilization of the type studied by Jaimovich and

Rebelo (2009). The effects, though, are smaller, because the current increase in marginal cost in response

to the shock has more limited effects on labor demand than increases in capacity utilization brought about

by a fall in the interest rate. We consider in the next section the effects of introducing variable capacity

utilization into our models.

Figure 5 reports the impulse responses for the stockout-avoidance model. They are qualitatively similar

to the impulse response of the stockout-avoidance model, with sales increasing gradually, inventories falling

and output remaining almost constant until the materialization of the shock. There are three noticeable

differences from the stock-elastic demand model. First, the fall in inventories is delayed and less persistent, as

inventories return to their steady-state value ten periods after the shock. Second, output falls slightly in the

periods between the announcement and the materialization of the shock. Third, the increase in sales is more

gradual. Thus, the effects of intertemporal substitution in production on inventories are somewhat mitigated

– though far from enough to generate a positive response of inventories to the shock. The differences between

the models are due to the procyclical markup movements in the stockout avoidance model.8 The markup

increases, and marginal cost falls on impact, albeit by a small magnitude. This has the effect of shifting

labor demand curve inwards, thus reducing hours worked and output. The increase in markup also limits

the increase in consumption and investment, which results in a more gradual increase in sales.

4.3 Do suprise shocks generate comovement?

While anticipated shocks generate persistent negative comovement between inventories and sales, one

may wonder whether this also occurs after surprise innovations to fundamentals. The impulse responses

reported in figures 7 and 8 show that this is not the case. Inventories, sales and output all increase in

8In the stock-elastic demand model, under flexibles prices, markups are constant. In the stockout avoidance model, markups
are not constant even under flexible prices; see our separate appendix on the stockout avoidance model for details.
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response to suprise innovations to TFP and the labor wedge. The short-run response of the IS ratio is also

consistent with its observed countercyclicality at business cycle frequencies, in line with the findings of Khan

and Thomas (2007) and Wen (2011).9 The models’ predictions are thus broadly consistent with the observed

behavior of inventories and sales over the business cycle. Thus, in the two models, the negative comovement

of inventories and sales is an identifying feature of anticipated shocks to fundamentals.

5 Resolving the comovement problem

The dynamic responses in section 4 show that the additional sales generated from news shocks are

satisfied by inventory depletion rather than more production. The key channel to this result is the strong

intertemporal substitution motive induced by anticipations of low marginal costs in the future. In this section,

we investigate whether this mechanism may be offset by allowing through variable capacity utilization, or

forcing through adjustment costs, inventories, sales and output to increase in the short-run. We focus on

news to TFP for clear exposition although similar results hold with news to the labor wedge.

5.1 Variable capacity utilization

Since capital is fixed in the short run, current production can only increase with a news shock by an

increase in labor. The small response of output in figure 9 indicates that labor barely moves on impact.

To overcome this problem, Jaimovich and Rebelo (2009) assume that the production function depends on

capacity utilization, but that higher utilization bears higher depreciation of capital. Denoting ut as the

utilization of capital at period t, the production function and the law of motion for capital are modified

respectively as follows:

yt = zt(utkt)
1−αnαt ,

kt+1 = (1− δ(ut))kt +

[
1− φ

(
it
it−1

)]
it,

where δ′(·) > 0 and δ′′(·) > 0. With adjustment costs, investment increases on impact to smooth the future

increase in investment due to the higher level of future productivity. In a model without inventories as in

Jaimovich and Rebelo (2009), this leads to a fall in the marginal value of installed capital relative to the

marginal value of income, since with a higher level of investment, it is less costly to replace existing capital.

9The countercyclicality of the IS ratio is not completely robust to the calibration of the shock, as it depends partly on the
magnitude of the initial increase in sales. For a smaller persistence of demand shocks of ρz = 0.8, for example, the response of
sales is more muted, and the IS ratio becomes procyclical. This behavior of the IS ratio has motivated Kryvtsov and Midrigan
(2012) to investigate the ability of countercyclical markup movements to mute inventory increases in response to demand-side
shocks. However, in response to both TFP and demand shocks, the key business-cycle feature of inventories which news shocks
fail to generate — their procylicality — is robust: it holds regardless of the values of the persistence parameters ρχ and ρz .
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Due to this fall in value, it becomes efficient to increase capital utilization today. By the same logic, one

would expect capacity utilization to also increase in a model with inventories, thus allowing for a larger

increase in output and a smaller fall in inventories.

In figures 9 and 10, we plot the impulse responses for the models with and without variable capacity uti-

lization. Impulse responses are mostly unchanged: output stays the same and inventories still fall. Capacity

utilization barely responds to the anticipated shock.

This puzzling neutrality of capacity utilization to anticipated shocks comes directly from the role of

inventories in the economy. Note that both the marginal value of installed capital and the marginal value

of income fall with the shock. In a model without inventories, the household cannot absorb more than what

is currently produced. Thus, the fall in the marginal value of income is small, relative to the fall in the

marginal value of installed capital, leading to a large increase of utilization. On the other hand, in a model

with inventories, current sales increase more than current production, through the depletion of inventories.

This implies a larger fall in the marginal value of income. In turn, the relative fall in the marginal value of

installed capital is smaller, and utilization rises by less. Quantitatively, the effect on the marginal value of

income is sufficient to essentially eliminate any significant rise in capacity utilization.

5.2 Adjustment costs to output and inventories

To increase current production and reduce the fall in inventories, we next introduce adjustment costs. We

consider three possible types of adjustment costs: adjustment costs to inventories, output and on-shelf goods.

Adjustment cost to inventories penalizes immediate inventory depletion and thus weakens the intertemporal

substitution motive. Adjustment cost to output force firms to smooth out the response of output to the

shock, and in turn reduce the incentive to deplete inventories to satisfy sales. Finally, adjustment cost to

goods on shelf are the sum of output and past inventories. Making adjustment costs bear on this variable

might have effects that combine both types of adjustment costs described above.

These adjustment costs are introduced by assuming that the law of motion for inventories are modified

as follows:

invt = (1− δi)invt−1 + yt − st −ADJt,

where ADJt is the adjustment cost of each type. We assume the following form:

ADJt = φx

(
xt
xt−1

)
xt, x ∈ {inv, y, a},
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where φx(1) = φ′x(1) = 0 and φ′′x(1) > 0. In figures 11 and 12, we show the responses of each model with and

without adjustment costs, where output adjustment cost is assumed for the stock-elastic demand model and

on-shelf good adjustment cost is assumed for the stockout-avoidance model.10 We experiment with different

levels of adjustment costs, and for all values, we observe that the initial fall in inventories are smaller in

both models with adjustment costs, but not close to being positive. We conclude that adjustment costs to

inventories and output are not sufficient to generate a procyclical response of inventories.

As discussed in detail by Jaimovich and Rebelo (2009), adjustment costs to investment are essential in

order to generate a positive response of investment in capital goods in response to news shocks. With this

form of adjustment cost, investment decisions depend solely on the discounted sum of future marginal values

of capital, or future Tobin’s Q. Anticipated shocks affect the marginal productivity of future capital, and

thus raise future Tobin’s Q, which directly translates into an increase in current investment.

This is not so for inventory investment decisions. The marginal value of inventory stock, the “inventory”

Q depends on two factors: the sales yield of inventories, and the growth rate of marginal cost. Importantly,

lower future marginal cost makes the inventory stock less, not more valuable in the future. Therefore, while

adjustment costs to have some frontloading effects on the stock of inventories because of anticipations of

high future sales, they are more limited than in the case of investment in capital goods. The intertemporal

substitution channel remains strong, and inventories fall, although to a lesser extent than in the absence of

adjustment costs.

5.3 Habits to consumption

Since the intertemporal substitution channel is hard to overcome from the production side, we next turn

to reducing the initial response of current sales with respect to news shocks. Following Schmitt-Grohé and

Uribe (2012), we assume that there is internal habit persistence in the period utility function, so that period

utility is given by:

U(Vt) =
V 1−σ
t − 1

1− σ
,

Vt = ct − bct−1 − ψt
n1+ξ

−1

t

1 + ξ−1
,

where b is the habit persistence parameter. By setting b > 0, households refer to their previous consumption

level when setting their current consumption. This implies that with regards to a news shock, consumers

will not abruptly change their consumption to a higher level. Figures 13 and 14 depict the obtained impulse

10Note that in the stockout-avoidance model, the specified form of adjustment cost for inventories cannot be imposed due
to inventories occasionally becoming 0 at the firm-level.
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responses for b ∈ {0, 0.4, 0.8}. We observe that the initial consumption and sales responses are smaller

with higher degrees of habit persistence. However, output remains similar in all three cases. Therefore,

in the presence of habit persistence, the fall in inventories is muted, but not sufficiently so to overcome

intertemporal substitution in production.

5.4 Combining all the elements

We have shown that the above three resolutions do not work separately. However, there is still hope that

combining the three elements will generate the positive comovement of inventories. By adding a production

smoothing motive on the firm side, firms will start producing more today. At the same time, by reducing the

initial consumption response through habit persistence, the fall in the marginal value of consumption will

be smaller. In that case, the value of installed capital relative to the value of consumption will now decline,

leading to a higher utilization of capital and hence even more production.

Figures 15 and 16 show the response with all three elements considered above included. There is no

improvement in the stockout-avoidance model, while inventories are close to not moving in the stock-elastic

demand model. Hence the three elements combined together still do not generate a significant positive

comovement of inventories. Moreover, in the stock-elastic demand model, adding all these elements leads

to inventories becoming a barely moving variable over the business cycle, counter to the high volatility of

inventory investment documented in the literature.

6 What do inventories tell us about news shocks? An empirical

investigation

Our analysis of inventory models suggests that the negative comovement of inventories and sales is

a defining feature of anticipated shocks to fundamentals, be it TFP or the labor wedge. Indeed, as we

have discussed at length, it holds for all plausible calibrations of the models, and moreover, under those

calibrations, suprise shocks to fundamentals generate positive comovement between sales and inventories.

In this section, we use this structural restriction to identify anticipated shocks to fundamentals in VAR

framework.

6.1 Empirical strategy

Our empirical strategy identifies anticipated shocks from restrictions on impact matrices, obtained from

the estimation of a reduced-form VAR in levels. Our VAR includes three observables: TFP, inventories and
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sales. Formal tests for cointegration indicate that these series are integrated of order 1, at least. However,

a specification of the VAR in levels produces estimates of impulse response functions that are robust to

cointegration of an unknown form, and moreover since we focus on impact restrictions, a VECM specification

is not necessary to identify structural impulse responses.11 Formally, we estimate:

yt = d+B(L)yt−1 + vt, vt ∼ N(0,Ω),

where B(L) is a matrix polynomial, yt = [log(TFPt), log(Invt), log(St)]
′
, d is a 3 × 1 vector, Ω is a 3 × 3

positive definite matrix, and the errors vt are independent and identically distributed. Given an estimate

of Ω, denoted Ω̂, all the possible impact matrices identifying structural shocks are the invertible matrices A

which satisfy:

Ω̂ = AA′.

Our empirical strategy is based on the results of the previous sections. Namely, news shocks are the only

shock to satisfy the following three restrictions:

(i) they are orthogonal to contemporaneous unforecastable innovations to TFP;

(ii) they generate an increase in sales on impact;

(iii) they generate a fall in inventories on impact.

Restriction (i) is a zero impact restriction, while restrictions (ii)-(iii) are sign restrictions. As described in

Moon et al. (2011), these sign restrictions do not point-identify the impact matrix A, and therefore the

impulse responses. Instead, they identify a set of impact matrices, each of which satisfies (i)-(iii). However,

for our three-variable system, the set of impact matrices satisfying our combination of impact and sign

restrictions can be characterized analytically, and is given in the lemma below, whichs follows from the work

of Moon et al. (2011).

Lemma 2 (The set of identified impact matrices.) Let C denote the unique Cholesky decomposition

of Ω̂, and let e and f > 0 denote its (3, 2) and (3, 3) elements, respectively. For θ ∈ [0, 2π], define the proper

rotation matrix U(θ) by:

U(θ) =


1 0 0

0 cos(θ) − sin(θ)

0 sin(θ) cos(θ)



11See chapter 9 of Lutkepohl (2007).
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When e > 0, the set of impact matrices satisfying restrictions (i)− (iii) is given by:

J +
(

Ω̂
)

=

{
A(θ) = CU(θ)

∣∣∣ θ ∈
[
0, θ
]
, θ = cot−1

(
e

f

)
∈
[
0,
π

2

]}
.

When e < 0, the set of impact matrices satisfying restrictions (i)− (iii) is given by:

J−
(

Ω̂
)

=

{
A(θ) = CU(θ)

∣∣∣ θ ∈
[
θ,
π

2

]
, θ = cot−1

(
−f
e

)
∈
[
0,
π

2

]}
.

In this result, we have adopted the convention that the column number 3 of the impact matrix corresponds to

the impact effect of the identified news shock.

The proof of this lemma is in appendix D. Intuitively, this lemma indicates that we exclude the possibility

that the remaining shock shares the same feature as our identified shock (zero impact on TFP and negative

impact comovement of inventories and sales) which may happen for a range of estimates of C. This ensures

that our scheme identifies a unique shock, which we call a news shock.

An important feature of our identification strategy is that it will identify a combination of anticipated

changes in fundamentals not restricted to TFP. Indeed, in our model, an anticipated change in the labor

wedge satisfies the restrictions (i)-(iii) and should therefore be recovered by the procedure. This is in contrast

to other strategies proposed to identified anticipated shocks, such as Beaudry and Portier (2006), Beaudry

and Lucke (2010) and Barsky and Sims (2011), that focus exclusively on anticipated shocks to TFP. The

recent evidence in Schmitt-Grohé and Uribe (2012) suggests that a broader class of news shocks could play

a role in the business cycle, and our method allows for this possibility.

Since our impact and dynamic model results suggest that anticipated shocks have qualitatively the same

effects on sales and inventories, we view the results of our identification scheme as an upper bound on the

joint contributions of all anticipated shocks on these variables. We now turn to providing Monte-Carlo

evidence to support this claim.

6.2 Monte-Carlo evaluation

We test our identification strategy by Monte-Carlo simulation. We use data simulated the stock-elastic

demand model of section 2, using the baseline calibration described in table 2. We simulate 10 blocks of

10000 time-series observations from the model, and keep the last 9000 observations from each block. In

line with the empirical specification explored below, we estimate a VAR(3) in levels on each block of data,

including a constant term. We construct the set of identified responses for the simulated data as the union of

the (exactly identified) set obtained for each block. We construct the set of Forecast Error Variances (FEV)
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in a similar fashion.

In figure 17, we report the results of our exercise when our model economy is hit by three shocks: surprise

shocks to TFP, surprise shocks to the labor wedge, and anticipated shocks to TFP. We attribute a standard

deviation of σz = σψ = σz,N = 1 to all three shocks.12 The model’s true impulse responses mostly lie within

the set of impulse responses identified by impact restrictions (the shaded blue area of figure 17). In table 2,

we report the set of FEV identified using our sign restrictions. With the exception of short-run movements

in inventories, the model’s FEV are all within the identified sets.

We then conduct a second Monte-Carlo exercise, by adding anticipated shocks to the labor wedge. In

this case, the set of identified impulse responses and FEV we identify should reflect the effects of both news

shocks to TFP and to the labor wedge. We set the standard deviation of the additional news shock to

σψ,N = 1. The set of identified impulse responses are reported in figure 18. The set of identified TFP

responses shifts down, reflecting the fact that some of the identified shocks have no effect on TFP. Likewise,

the identified impulse response set for sales shifts up, reflecting the combined impact of the two types of

news shocks. For this reason, the model impulse response with respect to labor wedge news is not included

in the identified set. Table 3 reports the set of identified FEV. While the model FEV for each news shock

separately do not always fall within the identified set of FEV, the sum of the FEV of both types of news

shocks does. This Monte-Carlo experiment thus suggests that if there are several types of anticipated shocks

generating the data we observe, then our procedure should provide an upper bound on the combined effect

of the contribution of these shocks to the business-cycle movements of observables.

6.3 Empirical evidence

We now apply our identification scheme to quarterly postwar US data.

6.3.1 Data

We use three observables in our exercise: TFP, inventories and sales. For TFP, we use the Solow residual

series constructed in Fernald (2012). Our baseline sample period is 1960Q1–2010Q4. It is well known that

the Solow residual may overstate the volatility of TFP because it does not correct for cyclical variation in

capacity utilization and labor hoarding. We come back to this issue in the robustness section below. The

data for inventories and sales is described in appendix A.

12As in our baseline calibration, the persistence of the TFP shock is ρz = 0.99, and the persistence of the labor wedge shock
is ρψ = 0.95.
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6.3.2 Specification and estimation

We estimate a specification of our system with four lags, obtained using the Schwartz information cri-

terion. We estimate the model using Bayesian methods. We use a diffuse prior for both the coefficients of

the autoregressive structure and the variance-covariance matrix of errors terms; we consider the robustness

of our results to other prior specifications below. Each draw from the posterior identifies a set of possible

impulse responses satisfying our impulse restrictions, and we use a uniform conditional prior on the identified

set to draw from the posterior of the impulse responses, following Moon et al. (2011). We follow the same

method for the posterior distribution of FEV.

6.3.3 Results

Figure 19 reports the estimated impulse responses for the baseline specification.

The first result is that, in this specification, the estimated impulse responses are qualitatively consistent

with model predictions. In particular, the identified shock generates a diffusion in TFP, much as the identified

shocks of Beaudry and Portier (2006) and Barsky and Sims (2011). Unlike these papers, we obtain these

results without imposing any restrictions on the medium or long-run behavior of TFP. Quantitatively, the

shock generates a persistent fall in inventories, and a near-permanent increase in sales. In response to a 0.2%

increase in TFP in the long-run, sales initially jump by about 0.7%, roughly in line with the magnitudes of the

model, where a 1% near-permanent increase in TFP generates a 2.5% increase in sales. However, the response

of inventories, which falls by at most 0.5%, is much smaller than that predicted by the baseline calibration

of the model, where the near-permanent increase in TFP generates a fall of roughly 5% of inventories in the

quarter preceding the realization of the anticipated shock.

The second result is that the anticipation period of the news shock is small. In fact, TFP has already

increased substantially, by 0.2% percent, two quarters after the shock. The shock identified by our restric-

tions is thus not a slow diffusion in TFP, but rather an almost-immediate, and near-permanent increase.

Accordingly, the increase in sales is almost immediate. From the standpoint of the model, the fact that

the anticipation horizon is short may also account for the small magnitude of the (negative) response of

inventories. Note that inventory investment picks up after two quarters in the estimated response, in accor-

dance with the model’s prediction, whereby inventory investment becomes positive when the TFP increase

is realized.

The FEV attributable to this shock are reported in table 4. First, the identified shock explains a relatively

small fraction of TFP movements, even in the long-run: 40 quarters out, the median FEV attributable to

the shock is only 11%. This is in contrast to results obtained by other identification schemes, such as Barsky
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and Sims (2011), where, by construction, the forecastable increase in TFP accounts for a large fraction of

long-run TFP movements. Second, for horizons of 5 quarters and more, this shock also accounts for less

than 20% of the FEV of inventories and 18% of the FEV of sales. Thus, shocks causing a persistent negative

comovement between sales and inventories seem to be of little relevance in accounting for the observed

times series for TFP, inventories and sales in the long run. However, the shock does seem to account for a

substantial fraction of short-run fluctuation in inventories (61% on impact in the baseline calibration), and

sales (33%). These large contributions vanish after 2 quarters. This finding is consistent with the results of

Wen (2005), who documents that inventories are countercyclical at very high frequencies, between 2 and 3

months per cycle, although unconditional correlations are dominated by the procyclicality of inventories in

the medium to long run. Our identification scheme attributes a large portion of these short-run movements

to our identified shock.

We summarize the key points of our baseline results as follows: (i) our identified shock generates a

behavior qualitatively consistent with model impulse responses to anticipated shocks; (ii) the identified

impulse response suggests that the horizon of implementation is possibly as short as 2 quarters; (iii) the

contribution of the shock to movements in TFP, inventories and sales is substantial in the short run, but

not in the long run, contrary to the model’s predictions, where FEV are similar at all horizons. Thus, our

conclusion is that while news shocks with short anticipation horizons may offer a rationale for the very high-

frequency behavior of sales and inventories, the 4 to 8 quarter anticipation periods studied in the literature

on news shocks is hard to justify. Moreover, the news shocks we identify do not account for the majority

of long-run movements in TFP, inventories or sales. In this sense, the empirical behavior of inventories is a

challenge for anticipated shocks to fundamentals.

6.4 Robustness

To check the robustness of our results, we conduct our empirical exercise using different measures of TFP,

splitting samples, and assuming a different prior distribution.

First, in order to account for the fact that procyclical variation in capacity utilization may be driving

TFP movements, we use an alternative TFP series, proposed by Fernald (2012) and which adjusts for

capital utilization and labor hoarding. Figure 20 shows the impulse response of TFP, inventories and sales

to identified news shocks using this measure of TFP. The initial response is muted but in the long-run,

we observe that TFP increases. Moreover, sales also show a permanent increase. However, inventories

decline only for the initial period, indicating again that the anticipation period is short. Additionally, since

inventories are mostly held by investment and durable goods producing sectors, we use a third TFP series,
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utilization adjusted and specific to the equipment and consumer durable sector. This series is also constructed

by Fernald (2012). Figure 21 shows that our results also remain when using this series.

Second, as studied in detail by McCarthy and Zakraǰsek (2007), inventory dynamics have substantially

changed since the 1980’s: while the procyclicality of inventories and the counteryclicality of IS ratios re-

mains, the volatility of total inventory investment has fallen, possibly because of improvements in inventory

management, contributing to the fall in output volatility. We take into account the possibility of different

“inventory regimes” in the data by creating two separate samples, before and after 1984, and conduct our

empirical exercise on each of the sub-samples. The results are reported in figures 22 and 23. After 1984,

we observe that our results mostly remain in terms of the dynamics of the posterior median, although the

credible region is wider than before. However, before 1984, our identification strategy recovers a long-run

decline in TFP, inventories and sales. In the pre-1984 sample, it is likely that the shocks recovered with our

identification strategy may not be limited to anticipated shocks. In particular, oil shocks in the 70’s may

play an important role in shaping the dynamics of inventories and sales.

Third, we conducted our exercise using different prior specifications: the Minnesota prior, and a Normal-

Wishart prior. The results obtained with both types of prior are similar, and we do not report them here.

In table 4, we also report forecast error variance decompositions obtained in these alternative specifica-

tions. The same message emerges as in the baseline specification: while identified news shocks may account

for very short-run fluctuations our observables, they are minor contributors to their medium and long-run

movements.

We thus conclude that the key features of the news shock identified in our baseline specification – the

qualitative shape of impulse responses, the short “news period”, and the small contribution to medium and

long-run forecast error variances – are robust to alternative measures of TFP, alternative prior specifications,

and that they survive in the post-1984 sample.

7 Conclusion

In this paper, we studied the response of inventories to anticipated improvements in fundamentals. We

established restrictions on structural and reduced-form model parameters under which the response of inven-

tories and sales to these shocks will be characterized by (i) inventory procyclicality and (ii) countercyclicality

of the IS ratio. We showed that these restrictions are violated by standard calibrations of the two classes of

models we study, resulting, in particular, in a fall in inventories after the shock. Our analysis highlighted

the key mechanism behind this result: inventory disinvestment occurs because anticipated improvements in

fundamentals generate a strong motive for intertemporal substitution in production. Moreover, we showed

27



that this mechanism persists during the “news period”, even after introducing various frictions analyzed by

the news literature, such as variable capacity utilization, adjustment costs, and habit formation. Lastly, we

used the negative comovement between inventories and sales to identify news shocks in postwar US data. We

showed that the dynamic responses of inventories, sales, and TFP to the identified shocks are qualitatively

consistent with structural impulse responses, but also suggest that news shocks play a small role in aggregate

fluctuations, for two reasons: the identified “news period” is very short, at most 2 quarters; and the shock

contributes little to medium and long-run movements of TFP and inventories. Given the procyclicality of

inventories at business-cycle frequencies, this result may have been expected. However, it emphasizes that

this procyclicality is hard to square with the effect of news shocks standard models of inventories, in which

small movements in future marginal costs lead to large inventory adjustments.

Our work suggests two future directions for progress. First, one contribution of our analysis was to

highlight that a key parameter governing the response of inventories to news shocks is the elasticity of

inventories to relative marginal cost. The approach we have taken in this paper is to compute the elasticity

implied by existing models of output inventories. An alternative approach is to obtain empirical estimates

of this elasticity, and explore modifications of existing models that may match those estimates. Second,

we proposed a new way of identifying news shocks, using aggregate data on inventories and sales. An

interesting question is whether our theoretical and empirical results could be modified if we were to take

a more disaggregated view of inventories, with different sectors having different inventory intensities, or

using an altogether different type of inventories.13 Theoretically, anticipated shocks to fundamentals in one

particular sector may lead to negative comovement of inventories and sales in that sector, but this need not

be so in the aggregate. Empirically, differences in the comovement of sales and inventories across sectors,

using industry-level data, could be used to identify these sectoral news shocks. We leave this to future

research.

13See Chang, Hornstein, and Sarte (2009) for example.
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A Appendix to section 1

A.1 Data Sources

The postwar quarterly data (1947Q1 – 2012Q1) used in section 1 to produce the unconditional moments

as well as figure 1 come from the following sources:

• Output: Gross Domestic Product, NIPA Table 1.1.6 (Real Gross Domestic Product, Chained 2005

Dollars, Seasonally Adjusted).

• Inventory investment: Change in private inventories, NIPA Table 1.1.6 (Real Gross Domestic Prod-

uct, Chained 2005 Dollars, Seasonally Adjusted).

• Inventory-Sales ratio: Nonfarm inventories to final sales of goods and structures, NIPA Table

5.7.6A (Real Private Inventories and Real Domestic Final Sales of Business by Industry, Chained 2005

Dollars, Seasonally Adjusted) and Table 5.7.6B (Real Private Inventories and Real Domestic Final

Sales by Industry, Chained 2005 Dollars, Seasonally Adjusted). The series from the two tables have

been ratio spliced at the value in 1996Q4.

All moments are computed by detrending the log series by HP-filtering.

A.2 Cyclicality of output inventories

The procyclical behavior of inventories is also true when focusing on a narrower type of inventories that

are in the form of finished goods. Using the postwar quarterly data (1947Q1 – 2012Q1) for retail and

wholesale trade inventories from from NIPA Table 5.7.6A and 5.7.6B and ratio spliced as discussed above,

the correlation between the log-detrended retail trade inventories and output is 0.68, while that of wholesale

trade inventories is 0.49. Since these type of inventories are mainly in finished goods, the positive correlation

suggests that output inventories are also procyclical. For reference, the correlation of the overall private

inventories and output is 0.59, where the overall private inventories are also taken from Table 5.7.6A and

5.7.6B.

B Appendix to section 2

B.1 List of equilibrium conditions

A market equilibrium of the stock-elastic demand model is characterized by the following set of equations:
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Conditions (30)-(35) characterize the optimum of the household’s problem, conditions (36)-(43) charac-

terize that of the firm, and condition (45) reflects market clearing for goods. Condition (43) characterizes

its optimal choice of inventory holdings, while conditions (42) and (44) characterize optimal pricing by mo-

nopolistic firms in this environment. Conditions (39) and (40) are the law of motion for inventories, and the

definition of goods on shelf, respectively.

B.2 Equilibrium symmetry

In the formulation of the first order conditions above, we dropped the subscript j, since a market equi-

librium of the stock-elastic demand model is symmetric. One can see this as follows. First, combining the
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labor and capital demand schedules of firms, one sees that the capital-labor ratio is identical across firms.

This in turn implies (using either the capital demand or labor demand schedule) that marginal cost is con-

stant across firms. Using equation (43), the first order condition governing the optimal choice of inventories,

the inventory to sales ratio, or equivalently the stock-to-sales ratio, is constant across firms. Furthermore,

using the optimal pricing condition (44), price is constant across firms. Thus, substituting out price and the

stock-to-sales ratio in the demand schedule for variety j, we have:

st(j) =

(
at(j)

at

)ζ
st =

(
Ξtst(j)

at

)ζ
st,

which in turn implies that sales are constant across firms, st(j) = st.

C Appendix to section 4

Table 1 summarizes our baseline calibrations of the stock-elastic and stockout avoidance models. In this

appendix, we explain in more detail our calibrations and in particular the targets we match for inventory-

related parameters. As discussed in detail in section 3, our results on the negative comovement between

inventories and sales hold for a large range of parameters; the precise calibration pursued in this appendix

of course falls within this range.

In each model, we choose the value of the elasticity of output to labor in order to match a steady-state

labor share of income of 68.5 percent, the sample average of the labor income share in the data we use in our

empirical estimates of section 6.14 In both models, we choose the elasticity of substitution across varieties θ

so that the steady-state markup of price over marginal cost is 25 percent. This is in the range of 24 to 30

percent computed by Nekarda and Ramey (2010) using a panel of industries.15 We choose the steady-state

labor disutility shifter ψ to match a fraction of hours worked in steady-state of 0.2. Under our preference

specification, the parameter ξ is the Frisch elasticity of labor supply. We follow the bulk of the real business

cycle literature and choose a relatively high Frisch elasticity of ξ = 2.5. This is the value used by Jaimovich

and Rebelo (2009), and it is also in the range of the values considered by Cho and Cooley (1995) and King,

Plosser, and Rebelo (1988).16 Finally, we use the median estimate of 9.11 reported by Schmitt-Grohé and

14The steady-state labor share in our model is defined as sn = wn/py, with w and p the relative prices of labor and output,
respectively. In our setup, because of monopolistic competition, the steady-state labor share does not equal the elasticity of
output to labor.

15It is also close to the median estimates of 21 percent in Smets and Wouters (2007) and 23 percent in Justiniano, Primiceri,
and Tambalotti (2010), and consistent with the value used in Kryvtsov and Midrigan (2010, 2012). Broda and Weinstein (2006)
use import data and estimate an elasticity of substitution across varieties of 3.0 to 3.7 for the lowest level of good disaggregation,
which would imply a higher steady-state markup of 50 percent. Using their higher estimates of the elasticity of substitution
across varieties would not affect our results.

16As emphasized by Chetty, Guren, Manoli, and Weber (2011), the large Frisch elasticity which the real business cycle
literature has found to be necessary to fit the business-cycle dynamics of aggregate hours is at odds with micro estimates of the
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Uribe (2012) for the calibration of the curvature of the adjustment cost function.17

We choose the remaining structural parameters of our calibrations to match data moments directly

related to inventories. In the two models we consider, we choose to match the average quarterly IS and

output-to-sales ratios in NIPA data, which are IS = 0.5 and κ = 1.0053, respectively.

To our knowledge, there are no existing empirical estimates of the quarterly rate of depreciation of

inventories, δi. The macroeconomic literature has used annualized values ranging from 0 (Kahn, 1987) to 10

percent (Kryvtsov and Midrigan, 2012). A commonly cited source for these values is Richardson (1995), who

suggests that inventory carrying costs are smaller than 1 percent per month. However, carrying costs do not

directly map into the geometric depreciation rate of our model, since they only reflect storage and financial

costs, and not the costs associated to product decay. Given the uncertainty on this parameter, we proceed

by noting that in the steady-state of our model, the rate of depreciation of inventories is related to our two

targets, the IS and output to sales ratios, by δi = (κ− 1)/IS. This implies an annualized depreciation rate

of 4.17 percent, in the range used in the macroeconomic literature.

Finally, given other structural parameters (and, in particular, δi), the IS ratio depends on the elasticity

of sales to stock ζ (in the stock-elastic demand model) and on the variance of the demand shock σd (in

the stockout avoidance model). In the stock-elastic demand model, our baseline calibration targeting an

IS ratio of 0.5 implies an elasticity of sales to stock of ζ = 0.126. Bils and Kahn (2000) report estimates

of this elasticity for six production to stock industries. Their estimates range from 0.011 (for the tobacco

industry) to 0.494 (for the petroleum industry). Our calibration thus implies an elasticity in the range

of their estimates. To compute impulse responses for the stockout avoidance model, we use a log-normal

demand shock distribution, with a mean normalized to 1. Our calibration results in a standard deviation

of σd = 0.32. In turn, this standard deviation yields a steady-state stockout probability of 8.4 percent.

Bils (2004) studies CPI data comprising 63 categories of consumer durables and finds a weighted stockout

probability of 5.2 percent after eliminating non-temporary stockouts. On the other hand, Gruen, Corsten,

and Bharadwaj (2002) survey existing empirical evidence on the frequency of stockouts for retailers. They

combine results covering 661 outlets and 71000 consumers, and estimate the stockout probability to be 7.9

percent in the US. Our calibration thus delivers a stockout probability that is slightly above direct empirical

estimates.18

intensive margin Frisch elasticity. Their survey of existing micro evidence on the intensive margin Frisch elasticity points to a
lower value of 0.5. However, our choice of a high Frisch elasticity is in fact conservative, from the standpoint of the behavior
of inventories. Indeed, a lower Frisch elasticity would result in a smaller degree of real rigidities in our model, amplifying the
response of wages to the shock. In turn, the negative response of inventories would also be magnified.

17Smets and Wouters (2007) report a mean estimate of 5.74 for this parameter, while the estimate of Justiniano, Primiceri,
and Tambalotti (2010) is 3.14. A lower value of 4 for the curvature of the adjustment cost function would not change our results
for sales, output and investment, but it would somewhat weaken the initial response of investment.

18Calibrations of the stockout-avoidance model resulting in lower stockout probabilities would deliver almost similar impulse
responses, while not allowing us to match the NIPA IS and output to sales ratios simultaneously.
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D Appendix to section 6

Proof of lemma 2.

Let C denote the unique Cholesky decomposition of Ω̂. Then, for any impact matrix A, it is easy to

show that

U = C−1A

is an orthogonal real matrix, that is, UTU = UUT = I. Thus, given the Cholesky decomposition of

the variance-covariance matrix, one can obtain all impact matrices through a rotation of the Cholesky

decomposition; that is, the set of impact matrices I(Ω̂) is given by:

I(Ω̂) = {A ∈M3(R)|∃U ∈ O3(R) s.t. A = CU} ,

where C denotes the Cholesky decomposition of Ω̂. As detailed in Moon et al. (2011), sign restriction

identification schemes, whether through simualtion or analytically, typically exploit this construction of the

set of impact matrices.

We now turn to the characterization of the subset of I(Ω̂) that satisfies restrictions (i)-(iii). First, letting:

C =


a 0 0

b d 0

c e f


where by definition of the Cholesky decomposition, a > 0, d > 0 and f > 0, and letting U = (Ui,j), the first

line of A is given by [aU11, aU12, aU13], so that restriction (i) implies that U12 = U13 = 0. Furthermore, if we

impose that the (1, 1) element of A is strictly postive, then U11 > 0. In turn, the equalities UTU = I then

impose that U21 = U31 = 0 and U2
11 = 1, so that U11 = 1. The equalities also imply that U32U22+U23U33 = 0

and U2
22 + U2

23 = U2
32 + U2

33 = 1. This in turn means that the orthogonal matrix U must take the form:

U(θ) =


1 0 0

0 cos(θ) − sin(θ)

0 sin(θ) cos(θ)

 or U(θ) =


1 0 0

0 − cos(θ) sin(θ)

0 sin(θ) cos(θ)

 , θ ∈ [0, 2π[ ,

where the former matrix is a proper rotation (det(U)(θ) = 1), and the latter matrix is an improper rotation

(det(U)(θ) = −1). The orthogonal matrices associated to the impact matrices satisfying our first restriction

are thus rotation matrices, either proper or improper.
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We now turn to applying our second restriction to the subset of I(θ) composed of proper rotation matrices

U (θ). The impact matrix A(θ) corresponding to a particular U(θ) is given by:

A(θ) =


a 0 0

b d cos(θ) −d sin(θ)

c e cos(θ) + f sin(θ) −e sin(θ) + f cos(θ)

 .

We label the third shock the news shock. In order to ensure that this shock generates negative comovement

between inventories and sales, we impose that inventories respond positively and sales respond negatively,

that is:

−d sin(θ) < 0 and − e sin(θ) + f cos(θ) > 0.

Moreover, in order to ensure that it is the only shock orthogonal to own TFP innovations with those

properties, we impose that θ is such that:

d cos(θ) > 0 and e cos(θ) + f sin(θ) > 0,

so that the shock generates an increase in sales and positive comovement between inventories and sales.

Depending on the sign of e
f (which is the sign of e, since f is strictly positive), these restrictions define

different sets of matrices. When e > 0, restrictions on elements of the third column are verified when

θ ∈ [0, π] and cot(θ) > e
f , that is, for:

θ ∈
[
0, θ
]
, θ = cot−1

(
e

f

)
∈
[
0,
π

2

]
. (46)

The restrictions on the elements of the second column are always satisfied (as θ ∈
[
0, π2

]
).

Things are slightly more complicated when e < 0. The set of values of θ satisfying our restrictions on

the third column is still θ ∈
[
0, θ
]
, θ = cot−1

(
e
f

)
, but now θ ∈

[
π
2 , π

]
. But in this range, our restrictions on

the second column may not always hold. For example, in the range
[
π
2 , θ
]
, we have that:

d cos(θ) < 0, e cos(θ) + f sin(θ) > 0,

so that our restrictions on the second column are violated; in effect, our restrictions on the third column alone

are not sufficient to identify news shocks in this range. In is straightforward to check that the restrictions
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on the second column are only satisfied when:

θ ∈
[
θ,
π

2

]
, θ = cot−1

(
−f
e

)
.

Thus, since:

0 < θ <
π

2
< θ < π,

the set of θ satisfying our restrictions on the second and third column is given by:

θ ∈
[
θ,
π

2

]
, θ = cot−1

(
−f
e

)
∈
[
0,
π

2

]
. (47)

Equation (46) characterizes the subset of impact matrices statisfying our sign restrictions obtained using

proper rotations when e > 0, and equation (47) characterizes this subset when e < 0.

What about improper rotation matrices? It turns out that none can satisfy our impact restrictions. To

see this, first note that the impact matrix associated to an improper rotation U(θ) is given by:

A(θ) =


a 0 0

b −d cos(θ) d sin(θ)

c −e cos(θ) + f sin(θ) e sin(θ) + f cos(θ)

 .

First, it must be the case that θ ∈
[
π, 3π2

]
in order to guarantee that d sin(θ) < 0 and −d cos(θ) > 0. When

e < 0, this immediately implies that −e cos(θ) + f sin(θ) < 0, so that no value of θ satisfies our restrictions.

When e > 0, our restriction on the response of sales to the news shock is satisfied if and only if:

θ > θ = cot−1
(
− e
f

)
∈
[

3π

2
, 2π

]
.

But given that we must have θ ∈
[
π, 3π2

]
, again no value of θ can satisfy our restrictions.

Thus, no improper rotation matrix can generate an impact matrix satisfying our restrictions. Therefore,

the set of impact matrices satisfying our restrictions is fully characterized by equations (46) and (47).
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Tables and figures for section 1
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Figure 1: Inventories after NBER peaks (quarterly). See data apendix for data sources.
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Tables and figures for section 3

Figure 2: The impact response of inventories (left panel) and the IS ratio (right panel) to a news shock.
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Figure 3: Stock-elastic demand model. The left panel provides the upper bound on ω for procyclical inventories,
derived from targeting the steady-state IS ratio. The right panel provides the value of η as a function of γ(= β(1−δi)),
holding fixed all the other structural parameters.
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Parameter Value Description

Parameters common to both models
β 0.99 Subjective discount factor
σ 1 Elasticity of intertemporal substitution in consumption
δk 0.025 Rate of depreciation of capital
ξ 2.5 Frisch elasticity of labor supply
φ′′(1) 9.1 Curvature of investment adjustment costs
δi 0.011 Rate of depreciation of inventories
ρz 0.99 Persistence of TFP process
ρψ 0.95 Persistence of labor wedge process

Stock-elastic demand model
α 0.896 Labor elasticity of production function
θ 5 Elasticity of substitution across varieties
ψ 7.457 Steady-state labor shifter
ζ 0.126 Elasticity of sales to on-shelf goods

Stockout avoidance model
α 0.893
θ 5.718
ψ 7.419
σd 0.315 Standard deviation of idiosyncratic demand shock

Table 1: Calibration of the stock-elastic demand and stockout avoidance models.
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Figure 4: Impulse responses to 4-period news shocks in the stock-elastic demand model. Solid line: TFP
news; dashed line: labor wedge news. The time unit is a quarter. Impulse responses are reported in terms of percent
deviation from steady-state values.
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Figure 5: Impulse responses to 4-period news shocks in the stockout avoidance model. Solid line: TFP
news; dashed line: labor wedge news. The time unit is a quarter. Impulse responses are reported in terms of percent
deviation from steady-state values.
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elastic demand model. Solid line: TFP news; dashed line: labor wedge news. The time unit is a quarter. Impulse
responses are reported in terms of percent deviation from steady-state values.
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Figure 7: Impulse responses to suprise shocks in the stock-elastic demand model. Solid line: 1% suprise
increase in TFP; dashed line: 1% surprise fall in the labor wedge. The time unit is a quarter. Impulse responses are
reported in terms of percent deviation from steady-state values.
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Figure 8: Impulse responses to suprise shocks in the stockout avoidance model. Solid line: 1% suprise
increase in TFP; dashed line: 1% surprise fall in the labor wedge. The time unit is a quarter. Impulse responses are
reported in terms of percent deviation from steady-state values.
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Figure 9: Impulse responses to 4-period TFP news shock with capacity utilization in the stock-elastic
demand model. Solid line: δ′′(1) = 0; dashed line: δ′′(1) = 0.34.
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Figure 10: Impulse responses to 4-period TFP news shock with capacity utilization in the stockout
avoidance model. Solid line: δ′′(1) = 0; dashed line: δ′′(1) = 0.34.
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Figure 11: Impulse responses to 4-period TFP news shock with output adjustment cost in the stock-
elastic demand model. Solid line: φy = 0; dashed line: φy = 3; circled line: φy = 6.
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Figure 12: Impulse responses to 4-period TFP news shock with stock adjustment cost in the stockout
avoidance model. Solid line: φa = 0; dashed line: φa = 3; circled line: φa = 6.
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Figure 13: Impulse responses to 4-period TFP news shock with habit persistence in the stock-elastic
demand model. Solid line: b = 0; dashed line: b = 0.4; circled line: b = 0.8.
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Figure 14: Impulse responses to 4-period TFP news shock with habit persistence in the stockout
avoidance model. Solid line: b = 0; dashed line: b = 0.4; circled line: b = 0.8.
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Figure 15: Impulse responses to 4-period TFP news shock with all frictions in the stock-elastic demand
model. Solid line: baseline, no frictions; dashed line: δ′′(1) = 0.34, φy = 6, b = 0.8.
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Figure 16: Impulse responses to 4-period TFP news shock with all frictions in the stockout avoidance
model. Solid line: baseline, no frictions; dashed line: δ′′(1) = 0.34, φa = 6, b = 0.8.
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Figure 17: Monte-Carlo experiment with news shock to TFP only. TFP, inventories and sales, from left to
right. The shaded blue area is the set of identified impulse responses using impact zero and sign restrictions. The
solid line is the model impulse response to the TFP news shock.
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Figure 18: Monte-Carlo experiment with news shock to TFP and the labor wedge. TFP, inventories
and sales, from left to right. The shaded blue area is the set of identified impulse responses using impact and sign
restrictions. The solid line is the model impulse response to the TFP news shock, and the dashed line is the model
impulse response to the labor wedge news shock.
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Figure 19: Estimated impulse responses in the baseline specification. The shaded blue area is the 10-90%
coverage interval of the posterior distribution of identified impulse responses. The dashed line is the median of the
posterior distribution of impulse reponses. Posterior intervals are constructed using 10000 draws from the posterior
distribution.

Impulse response of TFP

qtr.

%

0 5 10 15 20
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Impulse response of INV

qtr.

%

0 5 10 15 20
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Impulse response of S

qtr.

%

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 20: Estimated impulse responses with TFP adjusted for capacity utilization.
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Figure 21: Estimated impulse responses with equipment and consumer durable TFP adjusted for
capacity utilization.
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Figure 22: Estimated impulse responses for the post-1984 sample.
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Figure 23: Estimated impulse responses for the pre-1984 sample.

Horizon 1 5 10 20 40

TFP Simulated [0;0] [0.04;0.25] [0.13;0.57] [0.17;0.68] [0.17;0.73]
Model 0 0.17 0.38 0.45 0.48

Inventories Simulated [0.02;0.59] [0.03;0.71] [0.02;0.72] [0.11;0.55] [0.28;0.50]
Model 0.68 0.77 0.61 0.42 0.33

Sales Simulated [0.01;0.30] [0.15;0.50] [0.30;0.66] [0.38;0.73] [0.37;0.77]
Model 0.07 0.18 0.34 0.40 0.45

Table 2: Monte-Carlo experiment with news shock to TFP only. The numbers in brackets in the “Simulated”
lines are the set of identified FEV at different horizons; horizon 1 is the date of impact of the shock. The numbers
in the “Model” lines are the model’s FEV. Numbers are fractions of total forecast error variance.

Horizon 1 5 10 20 40

TFP Simulated [0;0] [0.01;0.22] [0.05;0.49] [0.08;0.59] [0.08;0.64]
Model (TFP) 0 0.17 0.38 0.45 0.48
Model (LW) 0 0 0 0 0

Inventories Simulated [0.00;0.71] [0.01;0.81] [0.02;0.81] [0.17;0.60] [0.28;0.61]
Model (TFP) 0.60 0.68 0.57 0.37 0.26
Model (LW) 0.11 0.12 0.07 0.12 0.19

Sales Simulated [0.00;0.38] [0.13;0.55] [0.27;0.70] [0.34;0.75] [0.38;0.76]
Model (TFP) 0.07 0.17 0.31 0.38 0.42
Model (LW) 0.01 0.05 0.08 0.08 0.06

Table 3: Monte-Carlo experiment with news shock to TFP and labor wedge. The numbers in brackets in
the “Simulated” lines are the set of identified FEV at different horizons; horizon 1 is the date of impact of the shock.
The numbers in the “Model (TFP)” lines are the model’s FEV with respect to TFP news shocks. The numbers in
the “Model (LW)” lines are the model’s FEV with respect to labor wedge shocks. Numbers are fractions of total
forecast error variance.
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Horizon 1 5 10 20 40

TFP Baseline 0 0.04 0.07 0.09 0.11
[0;0] [0.01;0.09] [0.01;0.15] [0.02;0.18] [0.02;0.24]

(1960Q1–1983Q4) 0 0.07 0.22 0.38 0.43
[0;0] [0.02;0.13] [0.07;0.42] [0.13;0.63] [0.14;0.71]

(1984Q1–2010Q4) 0 0.04 0.08 0.09 0.11
[0;0] [0.00;0.11] [0.01;0.19] [0.01;0.23] [0.01;0.28]

TFP adjusted 0 0.02 0.03 0.18 0.19
[0;0] [0.00;0.04] [0.01;0.06] [0.01;0.23] [0.02;0.42]

Equip-TFP adjusted 0 0.02 0.05 0.17 0.26
[0;0] [0.00;0.04] [0.01;0.12] [0.02;0.36] [0.04;0.53]

Inventories Baseline 0.61 0.20 0.11 0.09 0.09
[0.22;0.94] [0.03;0.43] [0.02;0.26] [0.01;0.20] [0.01;0.21]

(1960Q1–1983Q4) 0.66 0.26 0.14 0.26 0.38
[0.31;0.94] [0.08;0.47] [0.05;0.26] [0.08;0.51] [0.10;0.70]

(1984Q1–2010Q4) 0.56 0.13 0.12 0.14 0.15
[0.12;0.95] [0.04;0.28] [0.03;0.26] [0.02;0.34] [0.02;0.36]

TFP adjusted 0.58 0.20 0.15 0.14 0.15
[0.16;0.94] [0.06;0.43] [0.04;0.32] [0.03;0.30] [0.04;0.32]

Equip-TFP adjusted 0.57 0.20 0.18 0.18 0.20
[0.13;0.96] [0.06;0.42] [0.05;0.37] [0.04;0.41] [0.03;0.47]

Sales Baseline 0.33 0.18 0.16 0.16 0.16
[0.11;0.51] [0.04;0.32] [0.04;0.31] [0.03;0.32] [0.03;0.34]

(1960Q1–1983Q4) 0.36 0.31 0.28 0.33 0.37
[0.16;0.54] [0.16;0.48] [0.14;0.45] [0.16;0.52] [0.17;0.59]

(1984Q1–2010Q4) 0.33 0.12 0.12 0.13 0.14
[0.07;0.56] [0.02;0.28] [0.01;0.29] [0.01;0.33] [0.01;0.35]

TFP adjusted 0.45 0.38 0.38 0.36 0.36
[0.12;0.74] [0.04;0.75] [0.04;0.73] [0.05;0.70] [0.06;0.69]

Equip-TFP adjusted 0.46 0.39 0.39 0.39 0.37
[0.10;0.77] [0.03;0.78] [0.03;0.79] [0.03;0.78] [0.04;0.74]

Table 4: Estimated forecast error variance attributable to the identified news shock. For each specification
of the estimated model, the first line presents the median of the posterior distribution of the forecast error variance.
The numbers in brackets are the 10-90% coverage interval of the posterior distribution of the forecast error variance.
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