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Abstract

Representations of relative value coding in thetoffontal cortex and
amygdala

Rebecca Allyson Saez

In order to guide behavior, humans and animals nflegibly evaluate the
motivational significance of stimuli in the enviroent. We sought to determine if, in
different contexts, neurons in the amygdala andafrbntal cortex (OFC) indeed rescale
their calculation of the motivational significancestimuli that predict rewards. We used
a “contrast revaluation” task in which the rewas$aciated with one stimulus is held
constant while other rewards within a particulanteat (or block of trials) change. This
manipulation modulates the relative significancetloé reward associated with one
stimulus without changing its absolute amount.

We recorded the activity of individual neurons e tamygdala and OFC of two
monkeys while they performed the contrast revatumatask. On every trial, a monkey
viewed one of two conditioned stimuli (CSs; distifractal patterns), each predictive of a
different reward amount. CSs were novel for eveqgeeiment. Unconditioned stimulus
(US, liquid reward) delivery followed CS presematiand a brief temporal gap (trace
interval). The task consisted of three trial blgokgh switches between blocks occurring
without warning. The presentation of £ edicted either a small (first and third blocks)
or large US (second block). The presentation of @8dicted delivery of a medium US

in all blocks. Thus C&orresponded to the “better” trial type in blockarid 3, but not 2.



Anticipatory licking behavior indicated that the nkey adapted its behavior
depending upon the relative amount of expected neewalthough the reward amount
associated with GSremained constant throughout the experiment, ipatiary licking
decreased in block 2 and increased in block 3 —btbeks in which CS§ trials had
become relatively less (block 2) and more (block&yable. Strikingly, many individual
amygdala and OFC neurons also modulated their neggoto CSdepending upon the
block. Because this CS predicts the exact samerdewaeach block, these neurons
cannot simply represent the sensory propertieslfs associated with a CS. This finding
demonstrates that amygdala and OFC neurons ar@ chesitive to the relative
motivational significance of a CS, and not justhe sensory properties of its associated
US or to the absolute value of the specific rewaMéurons in both the OFC and
amygdala encode the relative value of @8t OFC neurons significantly encode relative
value earlier than amygdala neurons.

Cells in the amygdala and OFC code different priogerduring different time
intervals during the trial and are consistent ilemae when they code multiple properties.
This implies that neurons are tracking state vathe:overall motivational value of an
organism’s internal and external environment actose and sensory stimuli. Neurons
that code relative value during the CS-trace irgkand during reinforcement are also
consistent in the valence that they code furthgmpsetting that these cells track state
value. The neurons code with the same sign andgtrewhether the neuron is
representing the relative value of the reward withsensory input of the reward during

CS or trace interval, or actually experiencingré@ard during the US interval.



Further, amygdala and OFC neural activity was tated with the animal’'s
behavioral performance, suggesting that these nswould form the basis for animal’'s
behavioral adaptation during contrast revaluatidrese neural representations could also
support behavior in other situations requiring itbdx and adaptive evaluation of the

motivational significance of stimuli.
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Chapter I. Introduction

“Because it's all relative. You're pinned down inome filthy hellhole of a paddy,

getting your ass delivered to kingdom come, butrttier a few seconds everything goes
quiet and you look up and see the sun and a fewfpwfhite clouds, and the immense
serenity flashes against your eyeballs - the whulerld gets rearranged - and even

though you're pinned down by a war you've never tfemore at peace.”

— Tim O'Brien, The Things They Carried (O'Brien 1990

O’Brien is describing the mental process of relmtixaluation. This is a neural
computation that computes an emotional/affectiieesaf a recent event in comparison
to a reference point, as frame of reference sbiftsvalues of things shift along with it. In
daily life this mental process happens so oftenfandly we might not even realize it.
This mental process of relative valuation coulderhid leaving your current spouse for
someone else, or becoming a restaurant snob. HEnishappen because a stimulus is
given a certain positive value and then later shingtbetter than that stimulus enters the
environment and the original stimulus now diminsirevalue in comparison.

To understand how the mental process of relativeatian might happen, we
have to start with the steps the brain could takeetich that value judgment. First the

brain must have the ability to recognize that enstus is behaviorally significant; this



requires a process through which the visual reptaien of a stimulus becomes
associated with its affective value. The primarfeetive value of a stimulus varies
depending on the current motivational state of ¢dlhganism. The motivational state
reflects the combination of internal needs and resiepossibilities and as the internal
needs and external possibilities change or areaheated, the motivational state may
change at any time. Cells which represent the ntuaffective value are coding for the
current reinforcement value of a specific stimujigen the current motivational state. A
neuron encoding relative value cannot solely represhe sensory properties of the
reward because those properties remain constate i@ relative value of that reward

compared to other rewards in the environment chainge

Types of value coding

The term “value” is used in neuroscience, econoraitd philosophy, and each
field uses the term slightly differently; even witmeuroscience, a different experimental
task or parameters can adjust the meaning of the feam going to define below some
different types of value and then later give exasapf where and how those types of

value are encoded in the brain.

Subjective value

Subjective value is an internal property that isirdel by an individual. The
subject gives a particular value to a stimulus Base its desirability given the
circumstances. The value can be determined usingy ndifferent factors such as

usefulness, risk (or probability of delivery), effomeeded to obtain it, amount of time



until receiving it. Subjective value integratessbdactors listed above to assign value to
a particular stimulus. The subjective value isititernal value a stimulus has to motivate
behavior. Subjective value integrates informatibowd internal state such as hunger or
thirst with external factors such as reward amotmtdetermine updates of value

(Minamimoto, La Camera and Richmond 2009).

“Action value” vs. “stimulus value”

When neurons code “action value” of the availabj¢ioms they are encoding
signals reflecting the predicted value of perforgnian action. When neurons code
“stimulus value” they are encoding signals thategtain stimulus predicts a particular
outcome. To differentiate between these two tydesoding, the “value of action” and
“value of the stimulus” have to be separated indgkgerimental paradigm. One example
is that the monkey has a choice between two stiondi with reward and the other with
no reward, one presented on the left hand sidéeofstreen and one on the right hand
side respectively. The monkey must signal its ahevith an eye movement. If a neuron
increases firing when the monkey makes saccadésetaght, it would be impossible to
separate if it is coding rightward saccades or wakie of the stimulus on the right.
However, if the experiment is counterbalanced dmditages alternate sides from trial-
to-trial, then the two types of coding can be deered. A neuron that codes “action
value” would differentiate between the two stimolit only on one side. Alternatively, if
the neuron increases its firing whenever the mordteyoses a specific stimulus, then it
would be classified as coding “stimulus value”, lswas firing higher for the rewarded

stimulus regardless of which side it is presented o



However there can be interactions between valueamtidn such as when the
monkey has a choice between two stimuli A (low eqland B (high value). If the neuron
increases firing when the monkey makes a rightveactcade to stimulus B, it can be
coding a rightward saccade and increasing firinght high value predicted outcome.
However if it fires less when it makes a rightwaatcade to stimulus A, and even less
when it makes a leftward saccade to stimulus A.fdweon is coding rightward saccades
and firing is increased for higher value outcomes.

An example of the distinction between “action valaed “stimulus value” is in a
study of humans with focal frontal lobe damage (@lamTsuchida and Fellows 2011).
Orbitofrontal damage disrupted the ability to sirsthe correct choice of stimulus, but
not of action, after positive feedback, while damagntered on dorsal anterior cingulate
cortex led to the opposite deficit. These findiraggue that there are distinct, domain-
specific mechanisms by which outcome value is applo guide subsequent decisions,
depending on whether the choice is between stianldetween actions.

This same result was also found in monkeys with @#ns and ACC lesions
(Rudebeck et al. 2008). Both lesions disrupted si@ei making, but their effects were
differentially modulated by the dependence on aetimr stimulus-value contingencies.
OFC lesions caused a deficit in stimulus but néacselection, whereas ACC lesions

had the opposite effect, disrupting action butstimhulus selection.

Operationally defining value

We think it is important to define value operatithypan the current work, as well

as in previous studies from our group. We defingitpe value as those stimuli that elicit



approach or acquisitive behavior, and negativeerakithose stimuli that elicit defensive
or withdrawal behavior. In the absence of choicdsclv give an exact readout of

stimulus value, we define positive stimuli as thdsat elicit approach behavior with a

greater probability, intensity, duration or rapydiand we define negative stimuli as those
that elicit defensive/withdrawal behavior with agter probability, intensity, duration or

rapidity. In the work discussed in Chapter Il | Mohly be using stimuli with positive

value.

Relative value

In order to guide motivated behavior, humans andhals need to be able to
flexibly evaluate the affective values of stimuli the environment. To decide on an
appropriate behavior, the nervous system couldnesti the value of each potential
action, convert it to a common scale, and usesteéde to compare the different options
and determine a course of action (Padoa-Schiopfa)20Vithout an internal currency
computed by the nervous system, an organism woeldirtable to assess the relative
value of different events.

The relative value of a reward can change depengag context. For example,
an ice cream cone can be appealing in hot weatlief ibis freezing outside it might not
be, or if you just ate a bunch of ice cream thei@alould decrease as well. There are two
different types of situations that can change nedavalue. One is the comparison of
stimuli or actions with a fixed value to each ottefacilitate choices (a choice between a
vanilla or chocolate ice cream) and the other ésdiinamic adjustment of the subjective

value of a single stimulus or action in differemntexts (ex. the presence of a larger



reward in the environment). In the work discusse@lhapter Il | will use the second type
of relative value modulation which we termed “rexatlon” during a contrast revaluation

task.
An economic framework of relative value

The branch of economics called prospect theory $la@wn that humans’
decisions are altered by contextual factors suciaasing effects €.g., the presentation
of a problem as losses or gains) and referencetgei@n internal zero point where
everything above is considered a gain and evemythielow a loss (Tversky and
Kahneman 1981). Human decision making does notrglydollow a utility function,
which uses multiplication between known probal@tand magnitude to calculate value.
A perfectly rational decision-maker would make desi that obtain the maximum value
as defined by the utility function. Humans and meys have access to the necessary
parameters for rational decision-making.g., probability and magnitude of reward — in
various brain areas at the level of single neu(@emwell and Schultz 2003, Leon and
Shadlen 1999, Platt and Glimcher 1999, Dorris afich€her 2004, Lau and Glimcher
2008). However, it is clear that they make valuggjuents using other factors, because
humans and monkeys do not obtain maximum rewardsvgiven the opportunity in a

laboratory setting (La Camera and Richmond 2008).

Conditioning and reinforcement learning

Reinforcement learning is the process of learningué stimuli or actions solely
on the basis of the rewards and punishments as$sdciaith them. To study

reinforcement learning, researchers often use iclssor Pavlovian, conditioning



procedures (Pavlov 1927) or instrumental, also knoas operant, conditioning
procedures (Skinner 1938, Thorndike 1911). Claksioaditioning differs from the
operant conditioning in that the former does nattam an instrumental componeng.,,
the subject is not required to make a choice og &ky action. In classical conditioning,
the reinforcers (rewarding or aversive stimuli) dedivered independently of any actions
taken by the animal. In instrumental conditionibg,contrast, the actions of the animal
determine which reinforcement will be delivered.

During a classical conditioning procedure, subjéetsn that an initially neutral
conditioned stimulus (CS), such as a tone or atistraage, is followed by the
presentation of an unconditioned stimulus (US),clvhs biologically relevant and has
inherent positive or negative meaning, such asaa feward or an aversive shock.
Through repeated presentations of a CS-US paijestsidearn to predict a US based on a
CS and generate a conditioned response (CR) t€#esuch as salivating or blinking.
Several types of associations between a CS and B\ bbe formed, such as those
between the CS and the motor response elicitechéyJS, or between the CS and the
sensory properties of the US.

Theories of reinforcement learning describe rewaased decision-making and
adaptive choice of actions by the following thréeps: (i) The organism estimates the
value of a stimulus, defined as how much rewardiergprobability times volume) it is
associated with. (ii) It selects an action by cormmgathe action values of multiple
alternatives. (iii) It updates the new value of #otion based on the expected or predicted
value compared to the actual received value. I§¢htwvo values are different the brain

signals an error in those value representations wptthtes them to more accurately



predict future reinforcements. The magnitude ofrieway that occurs on each trial
decreases as the reward becomes fully expectedprpsantation of the stimulus.

The seminal Rescorla-Wagner (Rescorla and Wagnég,18utton and Barto
1998, Schultz, Dayan and Montague 1997) model pdkdt the value representation
should be updated on a trial-by-trial basis bydesgignals” —i.e., signals reflecting the
difference between expected and received reinfoeoénThe function of the model is
listed below.

AV=a(\-V)

V is the associative strength of a CS on a giviat tkV is the change in strength
of the association for a particular tridl; is the maximum strength that the CS-US
association can achieve (determined by the magnivfithe US); and is a learning rate
that takes on values between 0 and 1 (influenceithéyntensity of the CS). At the start
of learning, V is equal to O; if learning is allosvé& proceed towards its endpoint, V will
asymptote ak, andAV will trend towards 0.

Recent theories, such as temporal difference (Mbjlels, have extended this
model so that reinforcement learning may be desdriquantitatively in real-time
(Rescorla and Wagner 1972, Sutton and Barto 19&8)l& et al. 1997). The function of

the model is listed below.

V(t+1) = V(t) + o * 3(t)
V is the value functiong is a learning rate; andlis the error signal, defined jt) =

R(t) — V(t), where R(t) is reinforcement as a fuotof time. Thus, in this type of model,



the value signal V(t) is reciprocally connectedHe error signaly(t); i.e., an error signal
is generated when the derivative of the value signaon-zero, and the error signal feeds
back onto the value signal to render it more adeura

The experiments discussed in Chapter Il are ofiquéat theoretical interest
because of the neural calculations that must tédeedor the process of “revaluation” to
occur. In this paradigm the contrast revaluatiosktahe reward associated with one
stimulus is always the same size; therefore, egpeceinforcement and received
reinforcement remain the same upon block transti@nd this should not update the
value function. Instead, the mechanism respondineupdating the representation of
value must integrate information from other trighés to compute the “relative” value of
the CS. Thus, the neural computation that takeseplduring this task needs to be
modeled using a TD paradigm that incorporates anadhvreinforcement rate term.

A paper by Hikosaka and colleagues revised the Tidah creating a contextual
version of the model in which the value term isuaction of the current sensory input
and the context (Nakahara et al. 2004). In the task these authors modeled, the
probability of reward was conditional on the preseof reward in the previous trial. It
was not a local context that could be maintaindg within a trial, but a global context
that had to be maintained in memory over manystridlcontext term like the one used in
their model incorporates reward information from\pous trials, and might hold promise
for modeling the type of learning mechanism needegerform the contrast revaluation

task.

Encoding of value
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Encoding reward magnitude

Processing reward information is a function neags$ar the survival of any
animal foraging in a dynamic environment. In nunusr@reas of the brain, extending
from the limbic system to the motor system, neuractyvity varies according to the size
of the reward (usually liquid reward) for which aonkey is working (Cromwell and
Schultz 2003, Hassani, Cromwell and Schultz 20(Kedd and Hikosaka 2003,
Lauwereyns et al. 2002, Leon and Shadlen 1999t &tat Glimcher 1999, Roesch and
Olson 2003, Schultz 2002, Shidara and Richmond 2082uphorn, Taylor and Schall
2000, Thorpe, Rolls and Maddison 1983, Tremblay &otiultz 1999). The easiest
guantifiable measure of reward for animals is tb&ume of juice, which animals can
discriminate in sub-milliliter quantities (Tobldfjorillo and Schultz 2005). In a number
of brain areas, neurons show increasing resporse®nditioned stimuli (CSs) that
predict higher volumes of reward than those thatligt smaller volumes; these include
the striatum (Cromwell and Schultz 2003) dorsokdtand orbital prefrontal cortex (Leon
and Shadlen 1999, Roesch and Olson 2004, Wallis Mitldr 2003a), parietal and
posterior cingulate cortex (McCoy et al. 2003, Miaga et al. 2004, Platt and Glimcher
1999, Dorris and Glimcher 2004) amygdala (Patoralet2006b, Belova et al. 2007,
Belova, Paton and Salzman 2008) and mid-brain dopgameurons (Satoh et al. 2003,
Tobler et al. 2005). Behaviorally, monkeys also vghincreased responses to large
rewards, compared to small rewards, by decreasechda latency (Takikawa et al.
2002), decreased error rates (Leon and Shadlen),1839@ increased anticipatory licking

(Hassani et al. 2001).
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Encoding of subjective value

A rewarding stimulus can decrease in subjectivaievaWhen a better reward
enters the environment; in psychology, this processtermed “contrast” (Flaherty,
Turovsky and Krauss 1994). In rats, intake of aetvgelution is suppressed when the rat
knows that an even sweeter solution will soon bexawailable (Flaherty et al. 1994).
Lesions of the amygdala eliminate this behaviordaérmmenon (Gilbert and Kesner
2002). Most studies using this paradigm, howevely examined behavioral outcomes,
and did not investigate the neurophysiological psses and circuitry involved.

Roesch and Olson previously found that neuronshen grimate orbitofrontal
cortex OFC are modulated both by the quantity afgudelivered to the animal and by
the delay intervening before juice delivery (Roesamd Olson 2005). Wallis and
colleagues found that the activity of neurons | @FC depends not only on the quantity
of juice delivered to a monkey, but also on thebpimlity and on the physical effort
exerted by the animal to obtain the juice (KenngrlBehrens and Wallis 2011,
Kennerley and Wallis 2009a). Another example o&gnation came from a study by
Platt: in this experiment, monkeys chose betweankihg a given amount of juice and
drinking a different amount of juice while watchitige image of a conspecific (Deaner,
Khera and Platt 2005). Male macaques were willmdotgo some amount of juice for
the opportunity to observe female perinea. Impdigathe activity of neurons in OFC
encoded subjective value as defined by this behavi@ade-off.

Another form of subjective value is illustrated two studies that use price to

determine value. In the first study, they foundt thabjects reported analgesics relieved
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pain more, if they were thought to be more expensilespite the fact that the products
was a placebo (Waber et al. 2008). In the secoandystsubjects were given several
wines, and provided with information regarding tk&il price of each (Plassmann et al.
2008). Subjects tasting wine they believed to bgeagive found it significantly more
pleasant than the same wine labeled as being cHéepral responses in medial
orbitofrontal cortex correlated with the experiethgdeasantness, rather than the identity
of the wine.

Sometimes just framing and expectation can alter ghbjective value of a
stimulus. Rolls and colleagugave subjects isovaleric acid, which has an odoilai to
cheese, to subjects in an fMRI scanner, and accoegbat with the words ‘cheddar
cheese’ or ‘body odor’ (de Araujo et al. 2005). ¥Heund that not only did subjects
greatly prefer the scent when labeled ‘cheddar s#igebut that activity in medial

orbitofrontal cortex coded this subjective experen

The amygdala and orbitofrontal cortex

Considerable evidence now indicates that individglrons in the amygdala and
OFC often encode information about the overallai® or motivational significance of
USs associated with CSs (reviewed below in thei@eantitled “Role of OFC and
amygdala in value and reward coding”), as well las rielative value of USs in OFC
(reviewed in the section entitled “Relative valueabsolute value representations in the
OFC”). This is why we chose to focus our studiedlmse two brain areas during a task
in which the relative value of a stimulus is altkreut its sensory properties remain

constant: to look for neural representations ddtre¢ value, as discussed in Chapter II.
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Anatomy

The OFC and the amygdala are prime candidatesrfooding relative value.
These brain areas are involved in a major neuraliitithat assigns values to stimuli and
uses those values to guide emotional responseslesision-making (Nishijo, Ono and
Nishino 1988b, Davidson 2002, Nakamura, Mikami &udbota 1992, Nishijo, Ono and
Nishino 1988a, Rolls et al. 1996, Hikosaka and \Walt@ 2000, Rolls and Baylis 1994).
Moreover, the OFC is reciprocally connected to #meygdala (Carmichael and Price
1995a, Ongur, Ferry and Price 2003, Ghashghael, ZB8@shghaei, Hilgetag and Barbas
2007, Barbas 2007) facilitating interactions thadld play an important role in encoding
relative value.

The amygdala is located in the anteromedial partheftemporal lobe. It lies
ventromedial to the striatum and anterior to thetrs portion of the hippocampal
formation. The primate amygdala may be divided fite major nuclei: the lateral (LA),
basal, accessory basal, medial, and central nuCeils in the lateral, basal, and
accessory basal nuclei comprise the basolaterafjdaty (BLA), and are made up of two
types of neurons, projection neurons and intermeu(dicDonald 1998).

The orbitofrontal cortex is defined as Walkersamell, 12, 13, and 14: the
anterior, lateral, central, and medial orbital areapectively (Walker 1940). More
recently, Price and colleagues refined the def@ingiof the orbitofrontal cortex to include
further subdivisions, such as areas 11a, 13m,leeed on cytoarchitectural features and

anatomical connections (Carmichael and Price 108gur and Price 2000, Price 2007).
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The amygdala sends projections most densely tadbdal regions of the OFC
area 13. The OFC sends projections to numerou®inotkhe amygdala including the
basal, accessory basal, and lateral nuclei, andntkecalated masses. The amygdala,
meanwhile, receives projections from multiple stuwes that might modulate value
representations depending upon context:, prefrontal cortex and hippocampus (Penick
and Solomon 1991, Ghashghaei and Barbas 2002)OHt receives innervation from
polysensory cortices and higher sensory areas efyanodality (Carmichael and Price
1995c, Cavada et al. 2000, Romanski, Bates andntwieRakic 1999), with prominent
inputs from adjacent gustatory and olfactory cedicThe OFC also has direct and
indirect connections with limbic structures and thwiatum (Haber et al. 1995,
Carmichael and Price 1995b, Kondo, Saleem and P60, Barbas and Blatt 1995).

Despite the tight anatomical interaction betweea @FC and amygdala, the
nature of the functional interaction between thgiages remains unclear. In many
respects, the OFC and amygdala resemble each iathkeir patterns of connections:
both areas receive visual information from the radsinterior temporal cortex, and
somatosensory information and gustatory informatiarthe insula (Penick and Solomon
1991, Ghashghaei and Barbas 2002). Also, they betid outputs to several sites
regulating autonomic and motor responses to stjnsulch as the lateral hypothalamus
and nucleus accumbens. This could mean to a cexxséamt that the OFC and amygdala
have potential for parallel processing, meaning tte:n simultaneously process the same
stimulus either dissecting different elements aribbtaining the same information from

it and then combining this information for a vajudgment of the stimulus.
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Role in value and reward coding

Through lesion studies, the amygdala and OFC heaga bhown to be involved in
incentive value: the positive motivational drivetanulus has on behavior. Animals with
lesions of either OFC (Baxter et al. 2000, GallagMcMahan and Schoenbaum 1999)
or amygdala (Baxter et al. 2000, Gallagher et 2991 Hatfield et al. 1996) can no longer
modify their behavior towards a reward-predictinge avhen the outcome predicted by
the cue changes in value. The similarities in tifeces of OFC and amygdala lesions on
behavior in certain tasks suggest that these twactstes form a functional system
involved in the acquisition and use of incentivéormation to guide goal-directed
behavior.

The work that has contributed to this conclusiorgdty relies on one task in
which the value of a stimulus is updated, knownrasforcer devaluation. In the
Pavlovian version of the devaluation task, via ¢oeing, a cue comes to predict food.
Then, the normally rewarding food is devalued [iae &bsence of the cue) by pairing the
food with illness or satiation. After devaluatiomprmal animals spontaneously reduce
responding in the presence of the cue that preaietgability of the “devalued” food.

There is evidence from both rats and monkeys tteaimygdala and orbitofrontal
cortex play a role in reinforcer devaluation. Raith basolateral amygdala lesions are
insensitive to post-conditioning changes in theugadf the reinforcer, whereas rats with
central nucleus lesions, like normal rats, are ataespontaneously adjust their
conditioned responses to the current value of #iafarcer (Hatfield et al. 1996).
Subsequently, Schoenbaum and colleagues foundthlkabasolateral amygdala was

critical for forming representations linking cu@sthe incentive properties of outcomes,
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but not for maintaining these representations imorg (Pickens et al. 2003). Holland
and colleagues clarified that when multiple reintss were used, but not under single-
outcome conditions, post-training basolateral amalaydesions disrupted the expression
of devaluation performance in rats (Johnson, Gh#agnd Holland 2009).

In monkeys the amygdala has also been shown toebessary for reinforcer
devaluation. Excitotoxic amygdala damage interfevéh reinforcer devaluation effects
(Malkova, Gaffan and Murray 1997). When the basoltamygdala was inactivated
using muscimol during selective satiation, devatimtwas blocked; in contrast,
muscimol infusion after satiation, so that it wasgent only during the testing period, did
not impair devaluation (Wellman, Gale and Malkov@02). Unilateral OFC- and
amygdala-lesioned animals had attenuated reinfateealuation effects (lzquierdo and
Murray 2004). Monkeys with excitotoxic amygdalai¢es (Murray and lzquierdo 2007,
Izquierdo and Murray 2007) are unable to refraomfrchoosing objects associated with
the devalued reward. Thus, it seems thjadating the value signal in the amygdala is
required for reinforcer devaluation, but an actstenulus value representation in the
amygdala is not necessary for expression of thategdpreferences; these might instead
be guided by expected outcome signals in the OF@Ilsewhere in the absence of
amygdala activity.

The OFC has also been shown to be essential focessitl reinforcer
devaluation. Monkeys with bilateral OFC lesions wld a significant attenuation of
reinforcer devaluation (Izquierdo, Suda and Mur2894). It was also shown in rats that

OFC is critical for the maintenance of informatiabout the current incentive value of
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reinforcers, or the use of that information to guigehavior, in reinforcer devaluation
tasks (Pickens et al. 2003, Pickens et al. 2005) .

Turning to the human brain, Dolan and colleaguesgmted two arbitrary visual
stimuli, both before and after devaluation, in aadagm of appetitive conditioning
(Gottfried, O'Doherty and Dolan 2003). In the hunaamygdala and orbitofrontal cortex,
responses evoked by the conditioned stimulus, assuned by fMRI, were decreased
after devaluation, whereas responses to the noahaesy stimulus were maintained. The
BOLD signal in amygdala and orbitofrontal cortexceded the current value of reward
representations. In another fMRI study, the authimend a significant correlation
between the activation of a region of the orbitofed cortex and the decrease in
subjective pleasantness when a liquid food is eateatiety (Kringelbach et al. 2003).

The data discussed above provide powerful eviddmethe amygdala and OFC
are both critical for reinforcer devaluation. Thehhvioral evidence from these studies
indicates that the amygdala and OFC are both imebla a circuit that assigns value to
stimuli and allows for updating of that value thgbuexperience.

The devaluation paradigm is a powerful techniqusttaly the updating of reward
value; however, in a set-up like the one used enetkperiments discussed in Chapter Il —
in which only a single reward type (water) is usede cannot use satiation to devalue
the reward because the monkey simply will not penfonstead we use the availability
of other, larger rewards in the environment to eghtally “devalue” the current reward.
This form of devaluation is very different in theperimental design, but the principles
and neural substrates could be similar based orm\lteence presented in this section.

The studies strongly suggest that when a CS-US&déem has a specific value and then
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the value of the US is changed by something, ines@ases satiation or illness the

amygdala and OFC are involved in the updating efassociation so that the CS, and the
US, is devalued. These same mechanisms could br@dvwhen a CS-US association is

formed for a specific reward magnitude, and thémgger reward enters the environment,

requiring an integration of information about thewreward and the current one, as well
as a updating of value, which, may take place @@k C and the amygdala.

Further evidence that these signals exist in thggdala and OFC come from
previous work performed in the Salzman laboratd¥e find neurons in the amygdala
and OFC that respond more strongly to a CS thatbesn associated with reward
(positive value-coding neurons), and other neuttbias respond more strongly to a CS
that has been associated with air-puff (negatieeraoding neurons). Moreover, this
value representation in the amygdala and OFC islimited to recently learned CSs;
rather, value-coding neurons respond in a congi¢sshion to all events during a trial,
including the rewards and air-puffs themselvesr(gli that are primary reinforcers) and
a fixation point (a mildly positive stimulus condmed over a long time period). These
findings have led to the idea that neurons in thggdala and OFC track “state value” —
loosely defined as the overall value of an orgatsssituation — which may be modulated
as different stimuli appear in the environment ®el et al. 2007, Belova et al. 2008,
Salzman et al. 2007, Paton et al. 2006a, Morriswh $alzman 2009, Morrison et al.
2011, Morrison and Salzman 2011). Finally, our grduas shown that individual
amygdala and OFC neurons often integrate informadioout impending reinforcement
of both valences, and therefore do not simply regmethe sensory properties of a US

associated with a CS.
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In all of these studies, value signals in the amaj@@nd OFC change as fast as or
faster than monkeys learn new associations, as m&nated by their behavior. The
signals are available to the monkey before havindgick or blink, meaning the brain
could be reading out these signals and using treesentations to then drive behavior
which most likely takes place in another brain oagi

Another study performed in the lab investigated thaamics of OFC and
amygdala during learning (Morrison et al. 2011).r @Qwup found that negative value
coding neurons in amygdala update more quickly thegative value coding neurons in
OFC, and positive value coding neurons in OFC updatre quickly than positive value
coding neurons in the amygdala. After learning @€C always preceded the amygdala,
and analysis of local field potentials (LFPs) atdmwed that the OFC was influencing
the amygdala after learning.

This result implies that different populations efls in the two brain areas signal
the information on different time scales duringrieéag. These results motivated the idea
to record from OFC and amygdala during the contrastaluation task to see if
information from that task was represented by twe brain areas on different time
scales. The contrast revaluation task has no aeersinforcement, no reversals and
might be more cognitively demanding, so it was aknown what dynamics would occur
between the OFC and amygdala.

Evidence of relative value is also found in a stiiyyanother group. In this
experiment one block consists of two CSs one paigd juice and one with water. In
another block there are another two CSs one pauigd water and one paired with

electric shock (Hosokawa et al. 2007) . Orbitofabmteurons respond to the water in the
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water, electric shock block, precisely as theyaqice reward in the juice, water block,
tracking the relative value. The water is the samigoth blocks but in one block it is the
better of the two rewards and in the other blook Worse of the two rewards. The
neurons are not coding the sensory propertiesfoted value of water but instead are
representing the relative value of water which gesnbased on the context and other

rewards in the environment that it is compared to.

Relative value or absolute value representations itihe OFC

It is currently a debated issue in the field whetheurons in OFC encode value
on an absolute or relative scale. Two key papedsesding this issue, discussed below,
have reached different conclusions that are diffimureconcile.

Tremblay and Schultz (Tremblay and Schultz 199@) ars operant task in which
the monkey has been over-trained on several vaiswed. Each cue predicts one of several
possible rewarding outcomes: one of either thréerdnt foods or three different liquids
that are of known preference order (as determinedrbinterleaved choice task). Two
cues are presented together and the monkey isi¢testk which cue to choose to obtain a
reward. In this task, the activity of orbitofrontaéurons does not appear to encode the
fixed physical properties of the predicted rewardrsas the sensory properties or a fixed
reward value, but rather reflects the motivatioradlie of one reward relative to the other
available reward on that trial, as expressed bybileavioral preference. Just as each
reward can have a higher or lower motivational gahehaviorally, relative to the reward
with which it is compared, orbitofrontal neuronsndae more or less activated by one

reward, depending upon which alternative rewaelable.
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Meanwhile, Padoa-Schioppad Assad (Padoa-Schioppa and Assad 2008a) take a
different approach using a choice task: monkeyosbdetween two beverages offered
in variable amounts. Monkeys’ choices provided gerational measure of the values
that the monkeys assigned to the two juices. Thmynd three types of neuronal
responses in OFC: “offer value” responses, whidodad the quantity or value of one of
the two offered juices; “chosen value” responsdsciwvencoded the value of the chosen
juice independently of the juice type; and “tasteSponses, which were binary responses
reflecting which one of the two juices was chosewlependent of the amount.
Interestingly, they found that neuronal responsethe OFC are typically invariant for
“changes of menu.” For example, if a monkey cho@saeng juices A, B and C offered
pair-wise, the activity of neurons encoding theueabf juice B does not depend on
whether juice B is offered against juice A or agaijpiice C. Thus, Padoa-Schioppa and
Assad argue that Juice B is represented in the saapén OFC regardless of the context.
In contrast, the results of Tremblay and Schultzdmmt that juice B would be coded
differently depending on whether it was offerediaggjuice A or juice C, as the monkey
had a different preference for the three juices smdhe representation in OFC should
reflect that relative value.

Using the theoretical approach of efficient staisstit seems hard to imagine that
having each neuron code one thing — for exampfiexed reward value associated with
Juice B, regardless of the context — is biologycafficient. This is the case in terms of
both 1) number of neurons available, a fixed nunthat is not large compared to the
number of stimuli in the environment; and 2) thmited amount of information that can

be encoded using spikes: only a certain amountaofability in firing rate can be
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achieved, with fixed minimum and maximum pointspgucing a finite capacity for
information that can be read out from changesnndirate. One way the brain might
deal with this limited capacity is to have cellsledifferent information during different
time intervals.

There were differences between the study of Treynblad Schultz and that of
Padoa-Schioppa and Assad that might account foresoirthe discrepancies in their
results. First, the two groups recorded in pastialverlapping areas of OFC, but
Tremblay and Schultz were more lateral and anterecording in area 11 and 13L,
whereas Padoa-Schioppa and Assad concentratefttladliorecordings to the medial part
of OFC, area 13m. Moreover, Padoa-Schioppa anddAfssand a larger percentage of
task-related neurons (35%) than Tremblay and Sclfi@%). It is unclear whether this
would be the case if the two groups were recorthoig exactly the same area. Secondly,
Tremblay and Schultz use a block design, compaseRadoa-Schioppa and Assad’s
interleaved choice task trials. In a block desigaurons might adapt to the context of
each block, such that A: B blocks might be congddrigh-value blocks, whereas B: C
blocks might be considered low-value blocks.

The work discussed in Chapter 1l is more similartask design to that of
Tremblay and Schultz than that of Padoa-Schioppé Assad: like Tremblay and
Schultz, | use a task, in which the monkey doeshaste a choice of reward outcome
(although, unlike the prior study, it does not rieguany action on the part of the
monkey). | also use a block design in which theeeaverall low-value and high-value
blocks. However, the areas of OFC in which | reedrd mainly area 13m — are more

similar to Padoa-Schioppa and Assad. Thus, thiskwaight help reconcile some
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differences between the two studies: specificdlgcause | find relative value coding
cells in area 13m (see Chapter Il), | can rulediffiering sub-regions of OFC as a reason
why Padoa-Schioppa and Assad found “absolute” valoéing, but Tremblay and
Schultz did not. However, like Tremblay and Schultgtill have a block design, which
would allow monkeys to learn new contexts adapyivel

Finally, note that a human analogue of the paradigreloped by Tremblay and
Schulz was used with subjects during an fMRI sdahoft, Agnew and Deakin 2008).
The analysis compared BOLD responses to two idanéeents, which differed only by
the previous context. Medial OFC response to tmeesstimulus was greater when the
stimulus predicted the more valuable of two rewardsilable in a given trial than when
it predicted the less valuable. The central findimgonsistent with the primate results

and suggests that OFC neurons code relative rdtherabsolute reward value.

Neural mechanisms of encoding relative value

Normalization

One way the brain could encode relative value rsufh normalization. This
process is found in the visual system. The thetates that there is normalization stage,
where a given cell's response is divided by a diyampresenting the pooled activity of a
large number of other similar neurons (Heeger 1998js was tested in the lateral
intraparietal cortex (LIP) using three targets wotie target in the receptive field (Louie,

Grattan and Glimcher 2011). The results imply thetirons integrate information about
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the surrounding regions of visual space and thea de¢re best explained by a
normalization model. This mechanism could be a g#néechnique of cortical

computation and could be a way for the brain toodeaelative value.

Ratio vs. difference models

It is unknown how the brain compares two optiond determines the relative
value. It could be by taking the ratio or the difflece between the two. Several models
compute the probability of selecting a given optimn comparing the expected value
(EV) of each option. However, a subtle but importdifiference between two common
rules used to compute the probability is often rgdo Specifically, one common rule
type, theexponential rule, compares EVs viadifference operation, whereas another rule
type, thepower rule, uses aatio operation. To test the validity of each rule typeiltiple
laboratories performed a choice tasks in whicheeithe difference or the ratio between
the reward values was altered relative to a coctndition.

One study by Corrado and colleagues (Corrado et2@05) proposed a
mechanistic model of choice that describes the \behaof primates in a dynamic
foraging environment. They found that a model basediifferential value describes the
choice behavior of both animals in their study éethan the fractional valué&nother
study suggests that human participants are abt®ngpare expected rewards by either
operation — ratio or difference — but that alterthg ratio between rewards leads to the
most drastic changes in behavior (Worthy, Maddodk Blarkman 2008). This notion is
consistent with the work of Dorris and Glimchei® (Dorris and Glimcher 2004), who

found that when reward amounts were doubled, beitréthative ratio relationship was
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kept constant, neurons in LIP did not change thesponses for all trial epochs.
Meanwhile, Lau and Glimcher (Lau and Glimcher 200%)ated a response-by-response
model that treats as separable processes the sefleet to past reinforcers and past

choices. They found that decision rules use diffees in values.

Range adaption

Values computed in different behavioral contextsy czary by orders of
magnitude. For example, the same individual midatose sometimes between different
sodas and other times between different housesdier If neurons encode values in a
linear way, this could pose a serious challenge tdua limitation in firing rate range.
When reward is likely to occur within a specifimge, focusing the sensitivity on the
predicted range would optimize the discriminatibsmall reward differences.

One way to overcome the trade-off between thetglih code largely different
rewards and still be able to discriminate themroptly is to adapt reward sensitivity
dynamically to the available rewards, through gadaptation. Two studies have
demonstrated the existence of such mechanisms #Raactwoppa 2009, Kobayashi, Pinto
de Carvalho and Schultz 2010). In the study by Bzhand colleagues, animals
performed a task in which a fixation cue predictb@ standard deviation of the
probability distribution of juice volumes, while dhexpected mean volume was kept
constant. A subsequent cue specified the exace juaume obtained for a correct
saccade response. Population responses of orimtafrmeurons that reflected the
predicted juice volume showed adaptation to theardwdistribution. In the study by

Padoa-Schioppa, monkeys chose between differeneguand their choice patterns
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provided a measure of subjective value. Value ranggre varied from session to session
and, in each session, OFC neurons encoded valwebrniear way. The neuronal activity
range did not depend on the value range. Thus,d&8dbioppa argued, the activity of
each neuron adapts to the range values it encbdedpes not depend on other available
goods (Padoa-Schioppa and Assad 2008b). In bothestuthe authors found that the
encoding of value undergoes range adaptation sumhat given range of firing rates

represents different ranges of values in diffebettavioral contexts.

Chapter Summary

The current work hopes to clarify three issues #hast in the field. First, as
discussed above, most previous studies using arasih paradigm have examined only
behavioral outcomes, and did not investigate tharophysiological processes and
circuitry involved. Second, it is a currently urmkgd issue in the field whether neurons
in OFC encode value on an absolute or relativees@ald it remains unknown whether
the amygdala tracks relative value when the USaasal with a CS changes in relative
value, but absolute reward value remains constmtd, the similarities in effects of
OFC and amygdala lesions in certain tasks sugdestthese two structures form a
functional system involved in the acquisition arse® wf incentive information to guide
goal-directed behavior; therefore, the proposedeempents may shed light on the
workings of this neural circuit by obtaining neuratordings simultaneously from both
brain areas during an incentive task.

In Chapter II, | present a body of data demonstrating that idd& neurons in

the primate OFC and amygdala track the relativelevalf a US associated with a CS
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(CS1) that predicts the exact same reward in ebmtkbl further show that the rates at
which this representation occurs varies with beaga. OFC neurons encode the relative
value of CS1 significantly faster than amygdalaroes. These neurons also fit with
theories of state value defined as the value ofotrexall situation of an organism at a
given moment, evidenced by neurons that are cemsish valence when they code
multiple properties, and by neurons representiegréfative value of the reward with no
sensory input of the reward during CS or traceruate or actually experiencing the
reward during the US interval.

Further, amygdala and OFC neural activity was tated with the animal’'s
behavioral performance, suggesting that these nswould form the basis for animal’'s
behavioral adaptation during contrast revaluatidrese neural representations could also
support behavior in other situations requiring itbdx and adaptive evaluation of the

motivational significance of stimuli.
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Chapter Il. Neural representations during the contrast
revaluation task

Introduction

Relative valuation allows the brain to flexibly @ddgo changing environments
where rewards can be more or less valuable depgratinthe situation. In a situation
where one could win either $10 or $100, $10 migens to be a disappointing outcome.
On the other hand, if in a different situation tmy two possible outcomes were $10 and
$1, $10 might seem rewarding. The $10 did not changactual fixed monetary value
but its subjective value in comparison to otherepttl rewards changed. The plasticity
of the subjective value of a particular reward tlueelative valuation allows the current
representation of the reward to be subjectivelyieate and useful under the specific state

of the environment.

The orbitofrontal cortex (OFC) and the amygdala prame candidates for
encoding the signals underlying relative valuehia Ibrain. These brain areas are involved
in a major neural circuit that assigns values tomi and uses those values to guide
emotional responses and decision-making (Nishijoakt 1988b, Davidson 2002,
Nakamura et al. 1992, Nishijo et al. 1988a, Rotlsle 1996, Hikosaka and Watanabe
2000, Rolls and Baylis 1994, Padoa-Schioppa an@&d®26€08b, Kennerley et al. 2011,
Padoa-Schioppa and Assad 2006, Cardinal et al., Z@fase-Miyamoto and Richmond
2005). Moreover, the OFC is reciprocally connediedhe amygdala (Carmichael and

Price 1995a, Ongur et al. 2003, Ghashghaei 2003si@fnaei et al. 2007, Barbas 2007)
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facilitating interactions that could play an im@ont role in encoding relative value. The
amygdala sends projections most densely to theataegions of the OFC known as area
13. The OFC sends projections to numerous nucltnetmygdala (including the basal,
accessory basal and lateral nuclei and the intgezhlmasses). It remains unknown
whether the amygdala tracks relative value whendlaive value of a stimulus changes,
but its absolute reward value remains constant.dymamics of encoding relative value

in the OFC and amygdala is an area that has notdsqeored.

To investigate these two questions, we recordadigdn the amygdala and OFC
in two awake, behaving monkeys while they perforraecbntrast revaluation task that
manipulates the relative value of a stimulus, whitdding its absolute value constant
(Figure 1A). During each trial, the monkey was preged with one of two visual stimuli
(or conditioned stimuli, CS) consisting of noveistthct fractals. Following the visual
stimulus and a delay, a liquid reward was deliverBde task consists of three trial
blocks. In the first block, CS2 is followed by a amreward and CS1 by a medium
reward. In the second block, CS2 is followed bgirgé reward while CS1 continues to be
followed by the same medium reward. In the firsickl the medium reward was the
larger of the two rewards whereas in the secondkblid is the smaller reward. In the
third block, the initial reinforcement contingersifom block 1 are reinstated. Thus, in
this task, the relative value of CS1 (as computgaddmparing its associated reward to

the other available reward) is manipulated whaeaibsolute value is held constant.
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Materials and methods:

General Methods

For these experiments, two rhesus monk&jac@ca mulatta) weighing 10-11 kg
were used. During experiments, monkeys sat in idtes primate chair (Crist
Instruments), facing a computer screen on whicluatistimuli was displayed. The
monkey's head was restrained so that eye positald de monitored using an infrared
eye tracking system (ASL/Eyelink). Licking was maa&sl by passing an infrared beam
between the monkey's mouth and the reward delivebge; during each lick, the
monkey's tongue interrupts the beam. The TEMPOwso& package (Reflective
Computing) was used for experimental control. Tlemkeys did not work for all of their
daily water during the task (remaining water wasegi in the cage) to ensure that
experiments took place in a water-deprived and vatd state and to minimize the

effects of satiation.

Prior to the start of experiments, magnetic resoeamaging (MRI) was used to
locate the amygdala and OFC. A surgery was peddrto install an MRI-compatible
head-holder and recording chamber. After recovemnfsurgery, MRI was again used to
verify chamber placement, and measure distances the bottom of the chamber to
brain landmarks in order to guide electrode placegmEinally, a scan was performed
with an electrode inserted in the brain in ordechieck distances and verify that we reach

the amygdala and OFC.
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Figure 1: Contrast revaluation task and behavior.

(A) Sequence of events for the three blocks. Fatigwfixation, one of the two stimuli is
presented. After a trace period delay, reward oegefiment is delivered according to the block
and stimulus presented. CS2 is associated withal seward in blocks 1 and 3 and a large
reward in block 2. CS1 is associated with a medremard in all three blocks. Blocks are
switched at a time unsignaled to the monkey aftermonkey’s behavior reflects learning of the
new CS-reward associations in effect.

(B) Licking behavior from a representative sessibime proportion of time spent licking during
the CS and trace intervals is plotted as a funaibtrial number for CS1 and CS2 separately.
Block switches are indicated by vertical dasheddinThe licking rate was smoothed using a 5-
trial sliding window. The decrease in licking folSC in block 2 reflects the monkey’s relative
valuation of this stimulus when a more valuable, @82, enters the environment.

(C) Average licking rate across all experimentstf@ two stimuli in each block. The monkeys’
learning of the reward associated with CS2 is ia#id by a significant increase in licking for
CS2 in block 2 relative to blocks 1 and 3. Relatratuation is shown by a significant decrease in
licking for CS1 in block 2 relative to blocks 1 aBdstars : p<0.01, one-way ANOVA).
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Behavioral task

Two monkeys were trained on a contrast revaluatiomditioning paradigm; a
schematic diagram of the proposed task is showkigare 1A. In trace conditioning, a
short interval — the trace period — is insertedvieen the presentation of the CS and the
delivery of the US (reward). The trace period ipariant in this experimental design for
the following reasons: a) it allows time for thevdlmpment of anticipatory licking
behavior indicative of learning and b) it facilgéat separate analysis of neural signals

related to US expectation/prediction, and signelisted to delivery of the reward itself.

During each experimental session, the monkey leathe values of two novel
visual stimuli. For visual stimuli, we used abstré@ctal patterns to ensure that the
stimuli did not initially hold any emotional meagirior the monkey. At the beginning of
the session, each stimulus in a pair is assigneallee — one a small reward and one a
medium reward. A reward consists of drops of watee: bigger the reward, the longer
the reward system takes to deliver it (100 =80 pl). The size of the rewards is as
follows for monkey T, small reward (50 pl of rewgramedium reward (250 pl of
reward), and large reward (1250 ul of reward). $le of the rewards for monkey P,
was small reward (20 ul of reward), medium rewd@D(ul of reward), and large reward
(500 ul of reward). On a typical trial, the monkesnters its gaze at a fixation point in
the center of the screen, and is required to mainfixation for 900 ms before
presentation of the image. The monkey must alsatdixduring stimulus presentation,

which is kept short (300 ms) so that the monkeysdu# have a chance to break fixation
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for a less desirable trial. After presentation loé CS, a trace interval lasting 1500 ms
ensues (no fixation required), followed by delivefythe US: a liquid reward of small,

medium, or large size (defined above) dependinghipe association with the stimulus.

During each experimental session, we monitoredinglkbehavior in order to
gauge the monkey's learning of the stimulus valddé®r the monkey had learned the
small and medium values of the image (usually aii@-5rials of each type) and stably
maintained behavioral learning (~20-30 trials ofhre&gpe), we changed the assigned
values of CS2 from small to large reward and thdiom reward kept constant. After the
monkey learned these new values of the image, waggd the assigned values of each
stimulus back to small and the medium. The blockcha&s occurred in an unsignaled,
unpredictable manner, such that the monkey mush |dae new task contingencies

through experience.

Data collection

We recorded neural activity from 96 neurons inrigat OFC and 166 neurons in
the right amygdala of two rhesus monkefsa¢aca mulatta): 62 OFC cells and 100
amygdala cells from a 11 kg male (monkey T); 34 @E{s and 66 amygdala cells from
a 10 kg male (monkey P). In each recording sessierindividually advanced up to four
tungsten microelectrodes (impedance: approxim&eif2; FHC Instruments) into each
brain area using a motorized multielectrode drNAN). We used the Plexon system for
signal amplification, filtering, digitizing of spé&waveforms, and spike sorting using a

principal component analysis platform (online watifline verification). We analyzed all
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well isolated neurons; monkeys performed a fixatesk or no task during the search for

well-isolated neurons.

Data Analysis

Construction of behavioral curves

To construct licking curves we calculated the amairime spent licking during
the CS-trace interval and divided by the intervatation (1800ms). The licking curves
were smoothed using a 5 trial sliding window. Totantb population licking, we
calculated the mean licking for each CS and blaalng each experiment and averaged

across experiments.

Classifying Cell Coding Properties

To characterize the coding properties of each mabrded, we performed a
regression analysis with the following factors: geaidentity, block, an interaction
between image identity and block, and a constanh,tewith the corresponding
coefficientsPi, BsL, Bint @nda, respectively. The image factor vector consistedisofor
CSL1 trials and Os for CS2 trials. The block fastector consisted of Os for blocks 1 and 3
and 1s for block 2 trials. The interaction betwe@aage identity and block factor was the

product of the image and block factors. The equdtio the model is as follows:

FR =a + Bm*Im + g *Block + Bint*ImxBlock + Err

“Reward magnitude coding” is defined &si = Bint (#0), coefficients3g. and

Bint are both non-zero (significant block and intem@ttfactors), equal and opposite in
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sign. Wheng. andpnt are equal and opposite, there is no change forf@&1 block 1

to 2 (see Fig. 4).

“Block coding” is defined asg. # O , Bint = O BgL iS NON-zero to account for a
change from block 1 to block 2 for both CSs dng is zero so that the change from

block 1 to 2 is equal for CS1 and CS2 (see Fig. 4).

“Relative value coding” is defined gt # 0, andBeL # -BinT. PinT IS NON-ZETO tO
account for a change in firing for CS1 in blockhattis different from the change in
firing to CS2, and therefore not merely a bloclkeeff whilefg. # -Bint €nsures that the
difference in firing between CS1 and CS2 in bloclks 2ot due to an unchanged firing
rate to CS1 across the experiment. An additionatlitmn, fe.*(BeL+PinT) < O, requires
that the change in firing to CS1 in block 2 occurshe opposite direction from the one
for CS2 (as one stimulus becomes more valuablegttier one becomes less so), which

simply translates consistency in the coding oftrnetavalue (see Fig. 4).

Sliding regression and optimal window of coding

Unless stated otherwise, we characterized thegfipatterns of all recorded cells
by using a sliding regression with the factors dbsd above. We used a sliding window
of 200ms stepped every 10ms throughout the tria.ifiéntified an optimal window of
coding (relative-value, reward magnitude etc...) fas fongest stretch within the trial
where 70% of 30 consecutive bins satisfy the datédefined above) for that specific
type of coding. Figure 2 is an illustration of whisignal the optimal window selects.
Figure 2 shows the optimal window outlined in redtbe firing rate plots and a plot of

the significance of the criteria for that speci&ll property. Of note, it is apparent in the
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PSTHSs of Figure 2C that this cell also encodesivelavalue at a later time during the
trial (optimal window of coding not shown here).iJlsell was then classified as relative
value coding in addition to block coding. This typkedual encoding within the same

cells will be addressed later in this work.

Dynamics of the OFC and amygdala

For each cell identified as “relative value coding/e collected the firing rate
within the optimal window of coding for CS1 triadsly. The firing rates were z-scored
and aligned to the transition from block 1 to Zrhsign-flipped, according to the cell’'s
valence, to go from low to high. All the cells iaah brain area were averaged together
and normalized by subtracting the average firintg m@f the last 10 trials before the
transition and dividing that by the average firirage of trials 15-25 after the transition
minus the average firing rate on the last 10 tri@fore the transition. This procedure,
analogous to a max-normalization, ensured thabtéan firing rate values started at O at
the time of the transition and asymptoted at 1 deaming has taken place, usually after
15 trials of each CS. CS1 trials after the traasitivere ranked according to the number
of CS2 trials experienced so far (rather than tb&ltnumber of trials since the

transition), since only CS2 trials can be usedhterithat block 2 is in effect.

In order to compare how quickly cells in the OFQ an the amygdala update

their coding after the transition between blocksd 2, we fit the mean, normalized
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Figure 2: Optimal window of coding

An optimal window of coding was defined as the lestgstretch within the trial where 70% of 30
consecutive bins satisfy the criteria for a spedifpe of coding.

(A) Example relative value coding cell and its itiéed optimal window of coding. Top three
panels: PSTHs for each of the three blocks for €&l (orange) and for CS2 trials (purple). The
optimal window of coding is represented by the oedbarea between red dashed lines. Bottom
panel: schematic plot representing when the caitieni relative value coding reached significance
during the trial: 1 significant, 0 not significant.

(B) Example reward magnitude coding cell and ientified optimal window of coding. Same
conventions as in A.

(C) Example block coding cell and its identifiedtiopal window of coding. Same conventions as

in A.
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firing rate with a cumulative Weibull distributidanction given by:

f(x) =1- e_(x/a)b,

where the scale parameteis informative of how quick the transition happemslb is a

shape parameter. The derived scale parameterscomm@ared by permutation test.

The permutation test used in this analysis randaasbigned each cell to either
the OFC or amygdala population and then perforntezl game operations as just
described. This was done 1000 times and the twle pesiameters found at each iteration
were compared. The p-value returned by the tesegsponds to the proportion of times
that a difference in the scale parameters at l@asarge as the true one was found by

randomly shuffling cells between the two populasion
Fisher Method

We combined the p-values associated to the ctioelaoefficients between
firing rates and licking rates using Fisher’s condal probability test. This method
consists in adding the logarithms of tkeindependent p-valueg, according to the

formula:

k
x:= —ZZ log. (i)
i=1

When all the null hypotheses are triie,, when thep; are not significanty® has a chi-
squared distribution withk2degrees of freedom. This is used to test the faignice of

the population of p-values as a whole. Indeed, winerp; tend to be smallig., the
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correlation coefficients are significangf, will be large and deviate from a chi-squared

distribution.

Results:

Behavior

In order to assess the monkeys’ subjective valnatiothe stimuli, we measured
their anticipatory licking — an approach behavimattindicates expectation of reward — in
response to each visual stimulus, during the CSeptation period (300ms) and the trace
period (1500ms). We had a lick tube in front of thenkey’s mouth to deliver rewards
and between the monkey’s mouth and lick tube wegalaan infrared beam such that
when the monkey would stick its tongue out in apstion of a reward the beam is
interrupted allowing us to calculate the proportmntime spent licking for the CS and
trace periods combined (1800ms). Figure 1B showsatfticipatory licking behavior
during a representative experiment for each CSpedegently. In order to determine
whether the licking behavior reflects learning bk tCS-reward associations in each
block, we averaged the licking rate for each CS eaxth block and combined these rates
across experiments (Figure 1C). The first 15 tredilsach block were excluded to restrict
analysis to post-learning trials. The monkeys syatecally licked more in response to
the CS that predicted the larger of the two rewandsach block (Wilcoxon rank-sum
test, p<0.01). We then performed, for each imagmeaway ANOVA with a main effect
of block and post-hoc tests (Tukey) to test forpdidia licking to a given CS according to
the situation, or block. We found a significanteetf of block, thus showing a modulation

of the subjective valuation of each image in eamfitext (p< 0.01) Indeed, the monkeys’
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learning of the association of CS2 with changinganel size is indicated by lower licking
in block 1 and 3 and higher licking in block 2. Neaile, learning of the relative value
of CS1 is indicated by higher licking in block 1daB and lower licking in block 2.
Licking decreases for CS1 in block 2 despite thet that the absolute reward amount
associated with CS1 remains constant (FigurelGs)stahis result implies that the
monkey’s anticipatory licking is not just a respen® the sensory properties or the
volume amount of reward, but instead a responsertdative value modulated by other

rewards in the environmeritd, by the context within the block of trials).

Recording Sites

We used magnetic resonance imaging (MRI) to guiderecording electrodes to
the targeted structures: the amygdala and OFC. Aalggrecording sites were in the
central, basal, accessory basal, or lateral nudleC recording sites were mainly in area
13m. We obtained data during the monkey’s perfoneaf the contrast revaluation task
for 166 amygdala neurons. (Monkey T, 100 neuronsnkéy P, 66 neurons), and 96

OFC neurons (Monkey T, 62 neurons, Monkey P 34ore)r(Figure 3)
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Figure 3: Reconstruction of the recording sites

The recording location for each cell of this stuslyepresented on the corresponding MRI slice,
with its category indicated by different colors asynbols. The amygdala and area 13 of OFC
were identified according to standard conventiond are outlined in white for clarity. The
coordinate of each plane along the anterior-pastatirection is indicated relative to the inter-
aural plane (l1A).
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Characterizing cell properties

There are multiple aspects of the task that neucansbe selective to. In order to
characterize the neural responses we recordedeviermed a regression analysis with
the following factors: image identity, block, artéraction between image identity and
block and a constant term, with the correspondiagffcients B, PsL, Pint and a,
respectively. Because of how the factor vectorghef regression were designed (see
methods), and if we ignore the constant term, ittegfrate in response to CS1 in blocks
1 and 3 is modeled bf (Figure 4). Similarly, the firing rate for CS1 bilock 2 is
modeled byBu+BsL+PBint and that of CS2 in block 2 simply By, . Of particular interest
is the difference in firing rate between blocks &f8 block 2 for CS1, since it can be
seen as a measure of relative value coding inlaleeur regression model, this quantity
is modeled byBg +BinT (Figure 4). In a similar wayig. can be used as a measure of the
difference in firing rate for CS2 between block @dablocks 1/3, when the absolute
amount of associated reward with the CS changegi(&i4). We define positive and
negative cells as cells that increase or decreaspectively, their firing rate in response

to a larger reward.

Cells were classified according to the trial proiesrthat where encoded in their
firing rate. This was done by defining, for eacpdyof coding, a set of criteria of the
three parameter$is, Ps. and pint) Of the regression model (see methods for details)
Because the regression was performed on a sligdimgywindow stepped across the trial,

the different types of coding could be specifiedadime-bin basis. This allowed us to
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Figure 4: Schematic diagram of regression model ancriteria for cell classification

(A) Schematic firing rate from a fictive relativealue coding cell for CS1 trials and CS2 trials
separately. We show how the different parametershefregression model fit the different
portions of the firing rate.

(B) Schematic firing rate for CS1 and CS2 for etyge of coding as well as the corresponding
criteria for the parameters of the regression model
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define an optimal window of coding as the longdsetsh during the trial where the

criteria for a given type of coding were satisfisde methods and Figure 2).

Neurons were categorized as “relative value codihtjieir firing rate tracked the
relative value of CS1, that is, if the firing raie CS1 trials changed in block 2 compared

to blocks 1 and 3. even though the reward assaliwith CS1 has remained constant.

Here we present two examples of relative valuergpdells in the amygdala and
in OFC (Figure 5). The amygdala cell (Fig. 5A am) & a positive relative value coding
neuron, increasing its firing for larger rewardsngared to smaller rewards. If we focus
on the optimal window of coding, this is demon&daby the increased response to CS2
in block 2, when it is associated with a large mslyaompared to blocks 1 and 3, when it
is associated with a small reward. Relative valoéirg is illustrated by the response to
CS1, which decreases in block 2 when it is the lemaf the two rewards available in
that block, in accordance with its relative valued anot its reward magnitude, which
remains constant in all three blocks. Conversély,@FC cell presented in Figure 5C and
5D is a negative relative value coding neuron:nitréases its firing rate for smaller
rewards compared to larger rewards. This cell nredpon the opposite direction of the
positive cell. The cell decreases its firing for Z&hen it is associated with a large
reward in block 2 and increases its firing for 8block 2 when it is the smaller of the
two rewards available. During the CS and/or traatervals, we found 49 (29%) of such
cells in the amygdala (24 positive, 25 negativay 85 (36%) in OFC (13 positive, 22
negative). The fact that responses change in hboébr CS1 even though the reward
value has not changed suggests that knowledgeedbthl reward available within this

block modulates estimation of value. This findiregribnstrates that the amygdala and
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Figure 5: Example relative value coding cells

(A) Positive relative value coding cell from the yagdala. Top row: raster plots for CS1 trials
(orange) and CS2 trials (purple) for each of thedtdifferent blocks of the experiment. Bottom
row: PSTHs with optimal window of coding indicatled red shading between red dashed lines.
(B) Firing rate during the optimal window of codiag a function of trial number for the same
amygdala cell. Orange line, CS1 trials; purple:li@&2 trials. Block switches are indicated by
vertical dashed lines. Firing rate was smoothedgugi5-trial sliding window.

(C,D) Negative relative value coding cell from OFSame conventions as in A and B.
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OFC respond to relative value (an abstract, subgetlue) and not just to the sensory
properties of its associated US or the absoluteuaiaf the specific reward. Information
about rewards in the task is integrated acrosistymes and updated to modify the value

of the medium reward in block 2.

Neurons were categorized as “reward magnitude gbdih their firing rate
tracked the absolute amount of reward associatéld the CS and not the changes in
relative value. This means that the firing rate wadfected by the change in reward
associated with CS2 in block 2 (going from smallaxge) but remained unchanged for

CS1, whose associated US stayed constant (mediamedaum).

Figure 6 shows two example reward magnitude codaily from the OFC and
the amygdala. The OFC cell (Fig. 6A and 6B) is sitpe reward magnitude coding cell:
it increases its firing rate in response to CSBlack 2, relative to blocks 1 and 3,. while
its response to CS1 is not modulated. The amygualson (Fig. 6C and 6D), on the
other hand, is a negative reward magnitude codiegramn and shows the opposite
response to CS2 . We identified a number of pasiind negative reward magnitude
coding cells in each brain area during the CS anléaze intervals: 47 cells (28%) in
amygdala (27 positive cells, 20 negative cellsy] &b cells (16%) in OFC (11 positive,

and 4 negative).

Finally, we categorized neurons as “block codingthiey did not differentiate
between CSs but still modified their firing ratecaing to which block was in effect,

increasing or decreasing their activity in blockdmpared to blocks 1 and 3. These cells
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Figure 6: Example reward magnitude coding cells

(A) Positive reward magnitude coding cell from OFp row: raster plots for CS1 trials
(orange) and CS2 trials (purple) for each of thedtdifferent blocks of the experiment. Bottom
row: PSTHs with optimal window of coding indicatied red shading between red dashed lines.
(B) Firing rate during the optimal window of codiag a function of trial number for the same
amygdala cell. Orange line, CS1 trials; purple:li@&2 trials. Block switches are indicated by
vertical dashed lines. Firing rate was smoothedgugi5-trial sliding window.

(C,D) Negative reward magnitude coding cell frora #mygdala. Same conventions as in A and
B.
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can be seen as responding the overall environraetd,the expected value (as defined in

statistics) of a trial in a given context.

We show in Figure 7 two example cells from the Qp@sitive block coding, 7A
and 7B) and amygdala (negative block coding, 7C7dp)d Both cells modify their firing

rate during block 2, relative to blocks 1 and $arelless of which CS was presented.

Because, unlike the two other types of coding, ¢klacan be encoded as soon as
the trial starts (before CS presentation), we adddrthe search for block coding cells to
the fixation interval. We identified substantialguations of positive and negative block
coding cells in each brain area during the fixati@$ and/or trace intervals: 80 cells
(48%) in the amygdala (34 positive, 46 negative)d 85 cells (36%) in OFC (12

positive, 23 negative).

Figure 8 summarizes, for each brain area, the nisrdiecells that we categorized
according to each type of coding as well as thalence (positive or negative). We did
not find any evidence as to whether cells tenddoktanatomically clustered in the brain

according to their type of coding and/or valense¢can be seen in Figure 3.

For some of the analyses presented below, it igegroup the three identified
cell populations into two larger groups: 1) ceknsitive to relative changes (“relative
value coding”) and 2) cells sensitive to absolutanges only, whether between reward
amounts from trial to trial (“reward magnitude aogll), or between average reward

amounts from block to block (“block coding”).
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Figure 7: Example block coding cells

(A) Positive block coding cell from OFC. Top rovaster plots for CS1 trials (orange)
and CS2 trials (purple) for each of the three d#ife blocks of the experiment. Bottom
row: PSTHs with optimal window of coding indicatieyl red shading between red dashed
lines.

(B) Firing rate during the optimal window of codiag a function of trial number for the
same amygdala cell. Orange line, CS1 trials; pulipke CS2 trials. Block switches are
indicated by vertical dashed lines. Firing rate veasoothed using a 5-trial sliding
window.

(C,D) Negative block coding cell from the amygdag&ame conventions as in A and B.
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OFC Amygdala
Positive Negative Positive Negative
13 22 24 25
Relative Value Coding cells:
35 (36%) 49 (29%)
11 4 27 20
Reward Magnitude Coding cells:
15 (16%) 47 (28%)
12 23 34 46
Block Coding cells
35 (36%) 80(48%)

Figure 8: Cell counts for each category
Table summarizing the number and percentage of mhtified in each of the three categories

and for each valence
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We next asked when during the trial each type dlirep was more likely to be
represented in the firing rate. Figures 9 and l@asifor the OFC and the amygdala
respectively, the location within the trial of tbptimal window of coding for each cell
that was classified as relative value-, reward ntada- or block-coding. Here, we
searched for these three types of coding anywhere frial start to US delivery. These
plots show that several cells that encode relatalee and reward magnitude seem to
reach significance before the onset of the CS, vmght seem contradictory. In fact, in
most instances, this is merely an artifact of theey whe sliding regression analysis is
performed (200ms sliding window, stepped every J)0asswell as the criterion for the
optimal window of coding (70% of 30 consecutivesmust be significant). This leads
to effects being displayed up to 280ms before thetual occurrence. However, two
reward magnitude coding cells, one in OFC and andhe amygdala, truly reach
significance before CS-onset. This represents 04008all cells and could be simply due
to chance. Most block coding cells tend to do senduthe fixation interval, with a clear
decrease in the number of cells encoding blockatitme of CS presentation (Figs. 9 and
10, bottom panels). One possible explanation isah@mber of cells encode the overall
“value” of the trial at trial start and then move  encoding the actual reward amount
or relative value of that specific trial once timformation about the trial type becomes
available. This would result in such a cell beirajegorized as block coding during

fixation an as something else later in the trial.

Cells cannot exhibit more than one type of codinthiw the same time window
because the criteria are mutually exclusive. Howewe found a considerable number of

cells that encode different properties in differern-overlapping time periods. Figure
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Figure 9: Time of coding of relative value, rewardnagnitude, and block for each OFC cell
Top: for each relative value, reward magnitude blotk coding cell in OFC, we plotted the
extent of the optimal window of coding within théat. All cells for which a window of coding
was found anywhere between the fixation interval tre end of the trace interval were plotted.
Bottom: histogram with the number of cells encodeagh category at any given time during the
trial.
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Amygdala Block Coding

49

Cells

Figure 10: Time of coding of relative value, rewardnagnitude, and block for each

amygdala cell

Top: for each relative value, reward magnitude lalodk coding cell in the amygdala, we plotted
the extent of the optimal window of coding withimettrial. All cells for which a window of
coding was found anywhere between the fixationriaeand the end of the trace interval were

plotted.
Bottom: histogram with the number of cells encodeagh category at any given time during the

trial.
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11 shows, for OFC and the amygdala separatelyyéma diagrams for cells that present

one, two or three types of coding.

Correlation between firing rate and behavior

As we saw earlier in this work, the licking behavad monkeys performing this
task shows relative valuation of CS1 accordinghtotalue associated with the other CS
(Figure 1B and 1C). In addition, we identified apptation of cells, the relative value
coding cells, that reflect the relative value ofl@ttheir firing rate. The firing pattern of
these cells resembles the licking pattern in thekag's behavior in that the response to
CS1 is modulated during block 2 although the assedi US remains constant. This
resemblance can be seen clearly by comparing FigBréo Figure 1B. We therefore
wondered whether relative value coding neuronsccamderlie the animal’'s behavior
during the performance of this task. In order tdrads this question, we performed a
trial-by-trial correlation analysis between theng rate of the identified relative value
coding cells and the licking rate. For each reathalue coding cell, we collected the
firing rates on CS1 trials in blocks 1 and 3. Inndpso, our goal was to collect the firing
rate from as many identical trials as possible fre@ch experiment. Although,
technically, all CS1 trials in a given experimeng &entical, including CS1 trials from
block 2 would inevitably lead to a significant aalation between the firing rate and the
behavior since, they both present similar pattagrisss the experiment. Firing rates were
taken during the optimal window of relative valuedmg defined previously (see

methods). They were then normalized by z-scoresggrdflipped according to the cell's
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OFC Amygdala

@ Relative value coding
O Reward magnitude coding

Block coding

Figure 11: Overlap between cell populations for thehree categories of coding
Venn diagrams showing the numbers of cells prasgmtne, two or three types of coding in their
firing rate.
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valence so that high firing rates would always espond to more valuable trials. Licking
rates were taken during the whole CS + trace iateiWe combined the firing rates of all
relative value coding cells into one single vectainere each element is a CS1 trial from
blocks 1 or 3, and we correlated it with a vectamtaining the licking rates from the very
same trials. For the populations of relative vatoding cells in both the OFC and the
amygdala, we obtained positive, significant cotieta coefficients: OFC: r = 0.065,
p<10® Amygdala: r = 0.053, p<Id This result did not hold true for the other two
populations of cells identified in this study: Red@anagnitude coding cells, OFC: r =
0.007, p=0.79; Amygdala: r = 0.022, p=0.12. Blookliag cells, OFC: r = 0.012, p=0.52;
Amygdala: r = -0.010, p=0.45. This finding sugg#sit the identified populations of
relative value coding cells in the OFC and the adaj@ might underlie the flexible
representation of value needed to produce an apatefehavioral response on a trial-

by-trial basis.

The trial-by-trial correlation we found between thetivity of relative value
coding cells and the monkeys’ licking behaviorhaligh significant, might seem weak.
Reports of significant correlations between trigitbhal single neuron activity and
behavior are relatively few in the literature. Gbations between single neuron activity
and saccadic reaction time in LIP (Janssen and|&n2@05), and caudate nucleus (Itoh
et al. 2003) report effects that are of the santeroof magnitude as the effects we see
here. Nevertheless, in other to test the robustokdise correlation between firing rate
and behavior, we carried out a separate correlaiabysis. We computed a correlation
coefficient for each relative value coding cell épeéndently and we analyzed the

distributions of correlation coefficients. Figur2 ¢hows these distributions for the OFC
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Figure 12: Distributions of correlation coefficients between firing rate and licking behavior

for relative value coding cells

For each relative value coding cell, we calculatied trial-by-trial correlation coefficient
between its firing rate and the licking rate on @&dls during blocks 1 and 3. The distribution of
these correlations coefficient is shown for OFC amygdala cells separately. The mean of each
distribution is indicated on the x-axis by a blaamkow. Both distributions were significantly
shifted towards the positive valuesrdiign-rank test).
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and the amygdala populations separately. The tvstrilglitions appear significantly
shifted towards the positive values (Sign-rank: t&$iC p<0.01; Amygdala p<0.05), thus
showing that the firing rate of each relative vatoeling cell tends to be, after correcting
for the cell’'s valence, positively correlated witte licking rate. Moreover, when we
combined the p-values associated to each positisrelation coefficient using the Fisher
method (see methods), we obtained a significarteFip-value for both populations:
OFC  [rshe(r>0)<10% Amygdala pishe(r>0)<10°. This means that the positive
correlation coefficients have a significant trendoe associated with low p-values. This
was not the case for cells whose correlation ccefits fell in the negative side,

presumably by chance: OFGig(r<0)=0.70; Amygdala gsne{r<0)=0.17.

One possible explanation for the observed coraelabetween firing rate and
behavior is that relative value coding cells, iagtef underlying the representation of
value used to drive behavior, are simply involvadhe motor planning of the licking
action. In order to rule out this possibility, weneputed lick-triggered averages of the
neural activity. If relative value coding cells veemerely signaling motor plans, there
should be a pattern of activity time-locked to efick. Such a pattern was not observed

in the present data set.

Relative dynamics of coding between the OFC and treamygdala

A previous study in the Salzman lab investigatesl dignamics of value coding
between the OFC and the amygdala during learningriisbn et al. 2011). The study,

using a trace conditioning task, found that, foilogv a reversal of the CS-reward
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associations, negative value coding neurons inathggdala update their activity to
reflect the new contingencies more quickly thanatieg value coding neurons in the
OFC, while positive value coding neurons in the QfCso more quickly than positive
value coding neurons in the amygdala. This resytilies that populations of cells in the
two brain areas signal the information on differéime scales during learning. The
contrast revaluation task used in this work hagheeiaversive reinforcement nor
reversals, and might be more cognitively demanfgpuse it requires the integration of
information across trial types in order to comptite relative value of CS1. Due to the
higher level of processing and integration thateiguired for this task, we hypothesized
that a prefrontal structure such as OFC might emdbe information faster than, and

possibly transmit it to, a limbic structure suchlas amygdala.

We were interested, in particular, in how fast dedls from each brain area
encode the relative value associated with CS1 inmtedgl after the transition between
block 1 and block 2 (Figure 13). Because only teward associated with CS2 is
informative as to whether this transition has hagpoe we used the number of CS2 trials
that had been experienced as a metric for timesdine transition, rather than the total
number of trials since the transition. The norneliZiring rates (see methods) of each
relative value coding cell were aligned to the $iian in this way and averaged together
across OFC cells and amygdala cells separatelyprégously, firing rates were taken
during the optimal window of relative value codivge assessed the relative dynamics of
the two populations of neurons by fitting a Weibdistribution to these averages and
comparing the scale parameters of the fitted cufses methods). We found a significant

difference between OFC and amygdala population8.Qds permutation test), revealing
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Figure 13: Dynamics of relative value coding in themygdala and OFC

The firing rates during the optimal window of cogliduring CS1 trials from all relative value
coding cells were normalized, sign-flipped accogdio the cell's valence to go from low to high,
then aligned to the transition from block 1 to & CS1 trials were ranked according to how
many CS2 had been experienced previously sincé&rdhsition. All the cells in each brain area
were then averaged together and normalized. Thrageaormalized firing rate was fitted with a
Weibull distribution (solid line). OFC cells (bluencode the relative value of CS1 sooner after
the transition than amygdala cells (red)
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that relative value coding cells in OFC encodertiative value of CS1 faster than the
ones in the amygdala. This result is consistent wie idea that prefrontal signals, in
particular from OFC, flexibly integrate informatidrom a changing environment and
update the representation of value in the amygula top-down manner (Rolls and
Grabenhorst 2008, Miller and Cohen 2001, Kenneréeyg Wallis 2009b, Sugrue,

Corrado and Newsome 2005, Simmons and Richmond)2008

We then asked whether such a difference in therdigsaof coding between brain
areas was specific to relative value signals aedptipulation of cells that encode them.
We performed an analogous analysis on the two ptipuns of cells that are only
sensitive to absolute changes in reward amouniselyareward magnitude coding cells
and block coding cells (Figure 14). These cells,deyinition, do not modulate their
activity on CS1 trials throughout the whole expenmh Reward magnitude coding cells
only track the reward associated with CS2, whileckl coding cells track the mean
expected reward of a trial across blocks regarddéghe CS. We therefore carried out
this analysis only on CS2 trials for the reward magle coding population and on all
trials for the block coding one. We did not fincignificant difference in the dynamics
between brain areas in either population of cedl&/ard magnitude coding cells, p=0.26;
block coding cells, p=0.39, permutation test (Fegid). One interpretation is that cells
that are merely tracking direct changes in rewambunt do not need to integrate
information across trial types; they are performandpw level computation that might

well be executed just as quickly in the amygdalandke prefrontal cortex.
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Figure 14: Dynamics of reward magnitude coding and block codig in the amygdala and
OFC

Same analysis as in Figure 13 for reward magnitatbng cells (left) and block coding cells
(right). Reward magnitude coding was assessed giW€iB2 trials whereas block coding was
assessed on all trials. In both cases, the codingpt updated faster after the transition in one
brain area than in another.
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State Value

Our group has previously identified, in both tmeygdala and OFC, neurons that
respond more strongly to a CS that has been assdaidth reward (classified as positive
value coding neurons) as well neurons that respooict strongly to a CS that has been
associated with an aversive air-puff (negative @atoding neurons). Using these
classifications, our laboratory had previously stddthe responses to the rewards and
air-puffs themselves (stimuli that are primary feroers) and a fixation point (a mildly
positive stimulus conditioned over a long time pd)i The neurons coded these other
events in a way consistent with their classificatiBositive value coding cells increased
their response from baseline to the fixation paimtl reward, and negative value coding
cells decreased their response from baseline. Thediegs have led to the idea that
neurons in the amygdala and OFC track the “stateeVa loosely defined as the overall
value of an organism’s situation — which may be olakd as different stimuli appear in
the environment (Belova et al. 2007, Belova e2@0D8, Salzman et al. 2007, Paton et al.
2006a, Morrison and Salzman 2009, Morrison et @1.12 Morrison and Salzman 2011,

Bromberg-Martin, Hikosaka and Nakamura 2010).

In the present work, we have shown that cells emamygdala and in OFC can
encode value in different ways during different ginmtervals throughout the trial. For
instance, a cell can encode block, or overall vallweing the fixation point interval and
reward magnitude during the trace interval. To adsliwhether such cells encode value
in a consistent manner throughout the trial, wentified all cells that encode block
during the fixation interval (block coding cells)aare, in addition, sensitive to changes

in reward amounts during CS or trace intervals @rel\magnitude coding cells or block
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coding cells). Because, for this analysis, we néette compute unique regression
coefficients for a given time interval (fixation,SCor trace), we fitted our regression
model on the firing rate taken from the whole iagdrrather than using a sliding
regression. We found that, overall, the valenceetis that encode block during fixation
and cells that encode reward amount during CSaceiras reported by the signpgf, is
preserved (Figure 15). This is true in both amygdeald OFC cells. This means that cells
that “prefer” block 2 trials (where the overall ualis higher) during the fixation interval
also tend to prefer trials with a larger rewardingirthe CS or trace intervals. The
strength of coding also remains consistent: if tieeiron encodes by block strongly
during fixation, it is likely to encode value stgin during CS or trace. This implies that

neurons are tracking state value across time ambsgstimuli.

In a similar way, relative value can also be coitedifferent ways throughout the
trial. A cell can encode the relative value of a k&3ed on the size of the reward it
predicts (this type of coding has been the maimdoaf the current work), but also the
relative value of a US based on its actual sengmgerties (such as water amount). Our
task gives us access to this latter type of codimgvell: we simply have to apply the
same criteria for relative value coding to thenfirirate recorded during the US interval,
defined as a 500-ms period starting at the endet¥aty of the medium reward. We
found that neurons which code relative value dutivgCS-trace interval (CS and trace
intervals combined) are significantly more likebydode relative value in the US interval
as well. This is true for both OFC and amygdaldscahd is shown in the contingency
tables in Figure 16A and 16C, respectively, witkitlassociated chi squared tests (OFC

p=0.014; Amygdala p=4.6x1}). Moreover, cells that encode relative value ithbo
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Figure 15: Neurons encode value properties in a ceistent manner throughout the trial.

We identified all cells that encode block during thixation interval and block or reward
magnitude during CS or trace intervals. Both thpeaperties can be quantified by tifg
parameter of the regression model. We plottedeémh cell, thgdg. found during the CS (A,C)
or the trace (B,D) interval againft_ during the fixation interval for OFC cells (A,Bnha
amygdala cells (C,D) separtaely. We found, overthdit the valence of these cells is preserved,
as indicated by the percentage of sign agreemegt. ) reflecting the proportion of cells that fall
in the bottom-left and top-right quadrants. Themgth of coding remains consistent as well: if a
neuron encodes block strongly during fixationsitikely to encode block and reward magnitude
more strongly during CS or trace. This is showntlig correlation coefficients (‘r’) found for
each scatter plot and their associated p-valuds (‘p
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Figure 16: Neurons encode the relative value of theS and of the US in a consistent manner
We identified all cells that encode relative vatheing the CS and trace intervals combined and
during the US interval and examined the consistémtween the two.

(A,C) Contingency tables with the number of cetlattencode relative value during CS-trace and
during US in OFC (A) and the amygdala (C). Whenelh encodes relative value during one
interval, it is significantly more likely to do so the other interval, as indicated by the Peaison’
chi-squared test associated with each table.

(B,D) We plottedBs. + Bint (@ measure of relative value coding) during theitt8rval versus
BeL + Pint during the CS-trace interval for OFC cells (B) aamdygdala cells (D). The correlation
coefficients (‘r) and their associated p-valuep’)(‘indicate that the sign and strength of the
relative value coding remain consistent whethemiingron is representing the relative value of a

CS with no sensory input during the CS-trace irgkor actually experiencing the reward during
the US interval.
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intervals (14 in the amygdala and 9 in the OFCYl tenmaintain a consistent coding, in
both their valence and magnitude, as quantifie@dypint from the regression model

(Figures 16B, 16D). These neurons code relativaevalith the same sign and strength
whether they are representing the meaning of ae@féd through experience or actual
reward amounts detected by direct sensory inputC(OE 0.84, p<10¥; Amygdala:

r=0.91, p<10G).

Discussion:

We wanted to investigate the type of reward infdramacoded by the amygdala
and the OFC, and found a cell population that rsis@e to relative changes (“relative
value coding”) as well as cell populations sensitie two kinds of absolute changes:
between US amounts (“reward magnitude coding”) lagtsveen blocks (“block coding”).
We were also interested in how this information waslated during learning and
whether it differed based on the whether an integreof information across trial types
was requiredComparing the dynamics of simultaneous recordedahegnals in the
OFC and amygdala, we found thells in the OFC encoded the relative value of a CS
significantly more quickly than cells in the amytdaFigure 12). There was no
significant difference in dynamics between OFC and/gdala when considering reward
magnitude coding cells or block coding cells, (gpased to limiting our sample to
relative value coding cells; Figure 13). Relativalue requires the integration of
information across trial types to adjust value.sTimight be a more complicated type of

value coding than reward magnitude or block codwligich does not need information
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from other trial types to determine value. Thish@gorder processing might originate in

the OFC before being transmitted to the amygdala.

What type of information is coded in the OFC and arggdala during the contrast

revaluation task?

Several types of associations can be formed beta&es and a US (Everitt et al.
2003, Delamater 2007, Delamater and Oakeshott 2@t, the CS may become
directly associated with an unconditioned resposseh as licking at a reward spout.
Second, the CS may become associated with thectwijesalue of the expected US:
e.g., positive in the case of a reward, negative endase of an aversive event. Third, the
CS can become associated with the specific sensaperties of the US, including
sound, feel, smell or taste. We examined the availdata to determine which of these

types of associations was present in the currerk.wo

To see if the neural signals were related to stiswesponse learning (in this
case, the CS becoming associated with the unconddiresponse of licking), we looked
for correlations between neuronal signals and higkbehavior using a lick-triggered
peristimulus histogram; we did not find any signlat could be attributed to driving the
motor behavior. We conclude from this analysis ttiet motor plans for licking are
derived from another “downstream” brain area thaspmably could use these signals
from OFC and amygdala to correctly guide motor attphis is consistent with the idea
that OFC neurons do not simply represent CS-maso@ations (Tremblay and Schultz

2000, Wallis and Miller 2003b, Padoa-Schioppa asdatl 2006).
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Once CS-motor responses were ruled out, we wartethviestigate whether
neural signals were associated with subjective @l8evor the sensory properties of the
associated US (water). We therefore compared regsam the same CS in block 1 and
block 2, in which the subjective value of the Camlped but the sensory properties of the
reward remained constant. We found that many anggdad OFC neurons encoded the
relative value of a CS even when the US associatddit had not changed; this implies
that these neurons are coding an abstract, sulgeaiue and not the sensory properties
of the US or the absolute amount of the specificare (Figure 4A). This is consistent
with previous studies that found that neurons m @~C and amygdala did not merely
represent the sensory properties of a reward agedcwith a US (Belova et al. 2008,
Morrison and Salzman 2009). Therefore, of the thrgees of associations outlined
above, we found that the second — the associagtween a CS and the subjective value
of a US — was most representative for the pomnadf cells we termed “relative value

coding.”

How is information updated during learning? Does itdiffer based on whether an

integration of information across trial types is required?

Another study performed previously in the Salzmalpolatory investigated the
dynamics of neural signals in the OFC and amygdalang learning (Morrison et al.
2011). The study found that negative value codiagrons in the amygdala update more
quickly than negative value coding neurons in tHeCOwhile positive value coding

neurons in the OFC update more quickly than pasitralue coding neurons in the
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amygdala. After learning, on the other hand, th&C@€enerally signaled the value of a

CS earlier than the amygdala.

In contrast to these earlier findings, in the pnéstudy we found that cells in the
OFC encoded the relative value of a CS signifigantbre quickly than cells in the
amygdala (Figure 12). There was no significantedéhce in dynamics between OFC and
amygdala when considering reward magnitude codields and block coding cells
(Figure 13). Relative value requires the integratod information across trial types to
adjust value. This might be a more complicated tgbevalue coding than reward
magnitude or block coding, which does not needriéiion from other trial types to
determine value. This higher order processing maglginate in the OFC before being

transmitted to the amygdala.

There are some differences in the paradigms usétkicurrent study (discussed
in Chapter Il) and this other study by our groupickihmight contribute to the different
findings. First, the contrast revaluation task madaversive reinforcement, which may
explain why we did not see the amygdala leading:ane not engaging the aversive
network, which might update more quickly in the gugla than in OFC. Second, the
contrast revaluation task does not have reversal$he updating of relative value must
integrate information across trial types. This camgion might be more complicated
than a simple CS-to-value association, which migké place faster in the amygdala.The
cells that are only sensitive to changes in US arheureward magnitude coding” cells
— do not need to integrate information across tyjaés, as they are simply responding to
a change in the US amount associated with a stend@ells sensitive to relative value

changes, on the other hand, are integrating infoomacross trial types to track changes
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in relative value. If they were only respondingl®& amounts they would not change
their responses to a CS that changes its subjedive, but not the actual magnitude of
the US associated with it. By comparing these chanmg response across brain areas, we
conclude that the relative value cells in the OF€ wpdating information more quickly

than those in the amygdala.

From this result, we can infer that the prefrontalitex leads the neural
computation of relative value compared to the amladThis task might engage the
OFC'’s role in executive function and emotional dagjon, in which case the OFC might
update the relative value of a CS before passiisgriformation to the amygdala. This is
consistent with the finding that patients with tes of the OFC are impaired on tasks
that require flexible learning which also requingeigration of feedback from other trials

(Tsuchida, Doll and Fellows 2010).

What other brain areas are involved in providing ard using this information?

The OFC and the amygdala do not work in isolatiorsignal value and guide
behavior; rather, they work within an entire netkvoof brain areas that are
interconnected. For example, the OFC and amygdedacannected to the anterior
cingulate cortex (ACC), which has been shown toodacsimilar information about
value, reward amount, reward proximity, motivati®hidara and Richmond 2002b,
Toda et al. 2012). Meanwhile, internal factors sashsatiety could be sent from the
ventromedial prefrontal cortex to the OFC and theygdala (Bouret and Richmond

2010). The OFC is reciprocally connected with tineygdala, hippocampus, striatum,
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hypothalamus, and other parts of the prefrontalegofCavada et al. 2000, Haber et al.
1995, Carmichael and Price 1995b) The OFC recénfesmation relevant to motivation

and emotion, and has outputs to the hypothalamdsoéimer subcortical structures to
participate in regulating autonomic responses edlé emotion and motivation (Ongur,
An and Price 1998, Rempel-Clower and Barbas 1988.amygdala has connections to
the PFC and higher sensory cortices, the hippocamipasal ganglia, perirhinal and
entorhinal cortices, the basal forebrain, and sulwad structures such as the
hypothalamus (Davis 2000). The information aboldtiee value could be passed from

the OFC and the amygdala to the ventral striatugutde actions (Simmons et al. 2007).

Could relative value be explained by range adaptatn?

One theory that has been proposed to explain velatlue is “range adaption”,
where the neurons use the current range of rewardstermine a specific range of firing
rate. Two studies have demonstrated the existeinsech mechanisms (Padoa-Schioppa
2009, Kobayashi et al. 2010). In the study by Sehahd colleagues, animals performed
a task in which a fixation cue predicted the statddeviation of the probability
distribution of juice volumes, while the expecte@an volume was kept constant. A
subsequent cue specified the exact juice volumairodd for a correct saccade response.
Population responses of orbitofrontal neurons th#iected the predicted juice volume
showed adaptation of their firing rate to the redvdrstribution. In the study by Padoa-
Schioppa, monkeys chose between different juiced,tleir choice patterns provided a

measure of subjective value. Value ranges wereeddrom session to session and, in
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each session, OFC neurons encoded values in a Wasa The neuronal activity range
did not depend on the value range. Thus, Padoafghiargued, the activity of each
neuron adapts to the range values it encodes, dag dot depend on other, previously
available goods (Padoa-Schioppa and Assad 2008tjoth studies, the authors found
that the encoding of value undergoes range adaptatich that a given range of firing

rates represents different ranges of values iemifft behavioral contexts.

Neurons can be selective to multiple aspects «f thsk: value, CS identity,
block, etc. Testing the range adaptation hypothesigiires being able to manipulate
value independently from other parameters. The tiaskl in this work was not designed
for testing this hypothesis and is not well suifedit. Indeed, the range of firing rates
in each of our blocks is determined by only twoditians, or trial types. Each of these
conditions corresponds to one level of value (gibgrihe associated reward amount) but
also to one CS, and cells in the amygdala and i@ €dn be selective to one or the other
as well as both. In addition, cells can be selectte the block itself and the
contribution of the block factor to the firing rateight not add linearly with the other
factors. This makes the investigation of how thegeaof firing rates varies exclusively

with respect to the range of values challenging.

What are possible uses of the neural signals in OF&hd amygdala?

During the contrast revaluation task, the monkegsld have used a neural
representation of relative value coding to guideirtbbehavior (licking patterns). The

firing rate of relative value coding cells in th&O and amygdala cells was significantly
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correlated with the licking behaviorgger< 0.05). Consistent with this finding, we noted
that the monkeys’ licking corresponded to the re¢avalue and not the absolute reward
magnitude of a CS. The fact that behavior trackséhative value of the stimulus implies
that there must be signals in the brain also trarkine relative value of that stimulus to
be part of the circuit for driving behavior. As ntiened above, there might be multiple
brain areas — in addition to amygdala and OFC elued in this process. For example,
one brain area could store the current value dfirautus in a specific environmental

condition and another could be involved in the motatput pathways that are driving the

licking behavior.

In addition to cells that encode the relative vattia CS, we found cells that only
encode the absolute magnitude of the reward agsdorth the CS (Figure 4B). These
cells might be important for multiple functions: Kgeping track of recent rewards on an
absolute scale, 2) computing the total value ofareMavailable, and 3) setting the range
of rewards available on an absolute scale. Thegmlsi are sometimes found in the same

cells that code relative value, or can sometimef®ibed in separate cells.

It is important to note that relative value canbetcalculated without a reference.
This means that reward history, an integration efards in all trial types, must be
computed and compared to the current reward. Wedfaeurons in the amygdala and
OFC that encode the total, or overall, availablgarel in a given block of trials (Figure
4C). This neural representation, which we refetreds “block coding”, can be used to
compute relative value by comparing the overall aevto the current reward — the

output of that computation being relative valueingd
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The central finding of the current study — the ®ase of cells that encode
relative value in amygdala and OFC — could helprigi® a neurobiological basis for the
results from many previous experiments in rodemisnkeys, and humans. For example,
in economics, they have shown that humans’ degsare altered by contextual factors
such as framing effect&.¢., the presentation of a problem in terms of loggegains)
and reference points — an internal zero point wiegegything above is considered a gain
and everything below a loss (Tversky and Kahnen@81)L This decision process could
be guided by cells that are sensitive to relati@ei® and that integrate information about

the context to determine the value of a stimulus.

Turning to rodents, relative value coding cells |dooe useful during a contrast
task in which a rewarding stimulus decreases inestile value when a better reward
enters the environment (Flaherty et al. 1994). dts,rintake of a sweet solution is
suppressed when the rat knows that an even swsstgion will soon become available
(Flaherty et al. 1994). This task requires thatiscekocess information about other
rewards in the environment and adjust the valuatioime current reward in comparison.

The relative value cells identified in the curretudy could guide this process.

These cells could also be involved in devaluatispeasments. In the Pavlovian
version of the classic reinforcer devaluation tagk,conditioning, a cue comes to predict
food. Then, the normally rewarding food is devalyedthe absence of the cue) by
pairing the food with illness or satiation. Afterevéluation, normal animals
spontaneously reduce responding in the presenteeatue that predictavailability of
the “devalued” foodThe amygdala and OFC are both critical for reindordevaluation

(Hatfield et al. 1996, Pickens et al. 2003, Johnebral. 2009, Malkova et al. 1997,
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Izquierdo and Murray 2004) (Murray and lzquierdd20lzquierdo and Murray 2007)
(Izquierdo et al. 2004), (Pickens et al. 2003, Enket al. 2005). These studies strongly
suggest that when a CS-US association has a spealtie and then the value of the US
is changed, the amygdala and OFC are involved datiupy the association so that the
CS, as well as the US, is devalued. The same mischaurtould be involved as in the
contrast revaluation task, in which a CS-US assiocias formed for a specific reward
magnitude, and then a bigger reward enters the@ment, requiring an integration of
information about the new reward and the curreng;an each case, the requisite
updating of CS value may take place in the OFC thimdamygdala using the relative

value cells.

The amygdala and OFC encoding relative value duhiggparadigm agrees with
theories of efficient statistics: it is biologicakfficient to re-scale because only a limited
capacity of information can be inferred from change firing rate. In contrast, the
number of possible reward values has no absolnotisli If a neuron’s limited output
were allocated evenly to represent the large —gparhinfinite — number of possible
reward values, then that neuron’s activity woulbbwalfor little, if any, discrimination
between rewards. Moreover, these results suggastithdifferent contexts, the system
rescales its calculation of reinforcement value ebda®n its relationship to the
environment. This neural rescaling could underhie psychological phenomenon of
“normalized happiness,” which can be describedhasfollowing: we predict that our
lives would improve if given X (a new job, more nayy power, etc.); when we actually
obtain X, our overall happiness remains unchangdter(a possible brief burst of

increased happiness), because now our whole vpeetram has rescaled to include X.
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We are constantly shifting our value ranges dependn life experiences. For
example, if someone takes a trip to an island aed tvorst recent experience is sitting
in traffic, they would assign sitting in traffic tbe bottom of the value scale and a trip to
an island as the top of value scale. If they asa tiagnosed with cancer, they would
assign being diagnosed with cancer to the bottorth@fvalue scale, with a trip to an
island still at the top of the value scale. Nowirsif in traffic would be viewed as much
less negative than in the previous situation. Tinesstretch out along a value scale all
events in recent history and we are constantly ngnw a new baseline. This explains
why we are able to rise to the occasion during hasipations while at other times losing
our car keys can make us extremely upset. Thisdcalglb underlie why lottery winners
are not happier than controls (Brickman, Coates Jambff-Bulman 1978); or why the
blind, the cognitively disabled, and the physicallgabled are not less happy than other
people (Cameron et al. 1973). There are also fg&lithat sex, race, age, income,
education, family life-cycle stage, and other derapbic classification variables
accounted for relatively little variance in genehnappiness in two independent national

surveys (Andrews and Withey 1976).

A framework for understanding these phenomena egprtvided by “adaptation
level theory” (Helson and Bevan 1964). This themrgposes that the effect of the current
level of stimulation depends on whether it is geeatr less than the level of stimulation
to which a subject’s previous history has accustbriieem. If something very good
happens it will lessen the pleasure of mundanets\ard then habituation will decrease

the pleasure of the very good thing that happembd.reverse is also true for extremely
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bad events: mundane events now increase the pdeamsgociated with them and

habituation erodes the negative value associatttdtie bad event.

The current work helps expand our knowledge of hbwe brain represents
relative changes and absolute changes of rewaraitable in the environment: either
between US amounts or between blocks. It alsoddibes the dynamics of neural signals
in the OFC and amygdalproviding evidence that cells in the OFC encoderéiative
value of a CS significantly more quickly than cetishe amygdala (Figure 12). This task
might utilize the OFC'’s role in executive functiamd emotional regulation because of
the need to integrate information across trial $yfgedetermine relative value. There was
no significant difference in dynamics between OR@ @amygdala when considering
reward magnitude coding cell and block coding dei¢gire 13). These non-relative value
coding cells are only sensitive to changes in USuwrh and do not need to integrate
information across trial types; thus, this typenetral signal does not engage the OFC
earlier than the amygdala. Overall, these neugalads could underlie decision processes

in adapting contexts where value rescaling is rszogs
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Chapter Ill. Future Directions

The work described in Chapter Il leaves open matated questions that could
provide avenues for future research. It also opgna number of new questions that

could serve as a basis for follow-up experiments.

The two main areas | will address below are 1)ith&ations of single unit
electrophysiology in awake behaving monkeys ana?)ack of understanding of the
underlying neural mechanism of relative value emopdrhe first set of questions can
start to be addressed with some technological asaand the second through

experimental rather than technological means.

Limitations of single unit electrophysiology in aw&e behaving monkeys

There are many powerful elements to the experirheataup of awake-behaving
electrophysiology. It can be very informative tovban animal performing a task, and to
be able to record moment-to-moment changes ingfirate from single neuron, but there
are many limitations with this technique as wellttmust be addressed especially in

areas like the OFC and amygdala.

In electrophysiology, we can only record the firiage of a neuron that we have
an electrode next to. This comes with a numbeinutdtions addressed below. First, we
do not know what type of cell we are recording fr@mce no columnar or laminar

organization according to cell type has been faarglther area, and all classic types of
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analysis to identify cell type, such as inter-spiterval and waveform analysis, have not
brought about fruitful answers to these questi@sxond, we only record a few neurons
on a given day and verify the responses to a gpeagk. We try to adjust for day-to-day
noise and fluctuations by recording over many sessand averaging them together.
However, a more advantageous solution would bedord from a very large number of
neurons at a time to infer what a given brain aeading overall. Could there be a read-
out system where the number of cells coding pasiisiue or negative value determines
the overall value? Or could it be about which papoh produces a stronger signal?
Third, we don’t know how downstream areas use itpeats that we recorded. Are they
able to separate multiple signals from one firiaggemmuch like we do with a regression
analysis? Fourth, we don’t know the circuitry afhcells are wired together in the OFC

and the amygdala.

One way to address the first and fourth of thesgtditions is through utilizing
optogenetics to activate neuronal firing using tigbtivated ion channels (Boyden et al.
2005, Arenkiel et al. 2007, Miesenbock 2009). la thture we will have the ability to
genetically target through cell type specific praems the expression of light-activated
channels to different classes of cells. We canrterom neurons during a task and then
at the end light activate and be able to class$ig/dell types depending on whether it is
activated. The manipulation will be done at the ehthe experiment, so that firing rate
is not affected during the experiment. This willghaddress which cell we are recording
from, and can help us understand the underlyirayitg.

The second limitation can be addressed by to sametiusly recording from

many more neurons, across multiple brain areastdar to gain an understanding of the



81

neural circuitry underlying a behavior, and nottjtise activity of single neurons in

isolation.

Underlying neural mechanism of relative value encadg

Although we found that neurons in OFC and amygttedatrack the relative
value of a stimulus, we do not know how the braimputes this value. There are many
theories for how this relative valuation occursjeih will discuss below, but we have

no conclusive evidence for confirming any of thedtes.

A theory proposed to explain this phenomenonngeaadaption, where neurons
use the current range of rewards to determine @fgpeange of firing rate. In order to
use this model to explain these results, the rammédd have to be computed on a block-
by-block basis. In the contrast revaluation talsk,range of rewards in block 1 goes from
small to medium. In this case, for example, the iomadeward could be coded with a 30
Hz firing rate and the small reward with a 10 Hmfj rate. In block 2, the range of
rewards goes from medium to large; in this exantple Jarge reward could be coded
with a 30 Hz firing rate and the medium reward vathO Hz firing rate. This would
appear as though the neuron was devaluing the mediward even though, instead, it is

simply adapting its firing range to the current aedrange.

Testing the range adaptation hypothesis requiregylsble to manipulate value
independently from other parameters. The task useélis work was not designed for
testing this hypothesis and is not well suited itorindeed, the range of firing rates

in each of our blocks is determined by only twoditons, or trial types. Each of these
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conditions corresponds to one level of value (gibgrnhe associated reward amount) but
also to one CS, and cells in the amygdala and i@ &&n be selective to one or the other
as well as both. In addition, cells can be selectte the block itself and the
contribution of the block factor to the firing rateight not add linearly with the other
factors. This makes the investigation of how thegeaof firing rates varies exclusively

with respect to the range of values challenging.

Another theory to explain relative value is thatimoms are taking either a ratio or
a difference between the two rewards and computetve value from that measure.
A fractional rule would predict that neural respem$o reward will remain unaffected as
long as theatio between the reward values remains unchangedpimast, a difference
rule would predict that responses to the rewardlscvange if thedifference between the
reward values changes. The ratio of the rewardd three of our blocks is equal but the
difference is not. If neurons were coding the ragdween the rewards the range of firing
rates should remain constant throughout the blasksas proposed by the range
adaptation theory but this was not found to bectige. One way the firing rate range
expansion of block 2 could be explained is thatromsi could be tracking the difference

between rewards which increases in block 2.

It may be that the full range of values can béecbon an absolute scale despite
the limited number of neurons and firing rate comats. This idea could be tested by
giving extremely large and small rewards, or byihgymany differently sized rewards to
test the limits of the system to see if the absolu#lue scale can be maintained. On the
other hand, it remains true that the number of ipssgseward values has no absolute

limits. If a neuron’s limited output were allocatedenly to represent the large — perhaps



83

infinite — number of possible reward values, thieat ineuron’s activity would allow for

little if any discrimination between rewards.
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