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ABSTRACT
Aggregator websites typically present documents in the form of
representative clusters. In order for users to get a broader perspec-
tive, it is important to deliver a diversified set of representative doc-
uments in those clusters. One approach to diversification is to max-
imize the average dissimilarity among documents. Another way to
capture diversity is to avoid showing several documents from the
same category (e.g. from the same news channel). We model the
latter approach as a (partition) matroid constraint, and study diver-
sity maximization problems under matroid constraints. We present
the first constant-factor approximation algorithm for this problem,
using a new technique. Our local search 0.5-approximation algo-
rithm is also the first constant-factor approximation for the max-
dispersion problem under matroid constraints. Our combinatorial
proof technique for maximizing diversity under matroid constraints
uses the existence of a family of Latin squares which may also be
of independent interest.

In order to apply these diversity maximization algorithms in the
context of aggregator websites and as a preprocessing step for our
diversity maximization tool, we develop greedy clustering algo-
rithms that maximize weighted coverage of a predefined set of top-
ics. Our algorithms are based on computing a set of cluster centers,
where clusters are formed around them. We show the better perfor-
mance of our algorithms for diversity and coverage maximization
by running experiments on real (Twitter) and synthetic data in the
context of real-time search over micro-posts. Finally we perform a
user study validating our algorithms and diversity metrics.

1. INTRODUCTION
Aggregator websites such as news aggregators have become in-

creasingly common during the past decade. These websites (e.g.,
Google News) typically present snippets of documents (e.g., news
articles) in the form of clusters. In these clusters, related documents
are aggregated and a few of the representative items in that cluster
are highlighted to give a glimpse of the documents in that cluster.
In order for users to get a broader perspective on different topics, it
is important to deliver a diversified set of representative documents
in those clusters. Presenting a diversified set of documents is also
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important in the context of commerce search [2]. There are two
ways to capture diversity among documents:

• In the first approach, after defining a distance function ` among
documents based on some implicit metrics (e.g. their con-
tent), we aim to to maximize the average pairwise distance
among these documents [9]. This measure has been moti-
vated and studied in the context of diversity maximization in
recommender systems and commerce search [9, 2]. In partic-
ular, Bhattacharya, Gollapudi, and Munagala [2] argue that
maximizing this diversity measure is desirable in the context
of commerce (or product) search. They validate this claim
through a user study. From an algorithmic point of view, this
problem is known as the maximum dispersion problem and
approximation algorithms are known for it [10, 9, 2].

• Another approach to diversification is based on considering
explicitly defined categories of documents such as news chan-
nels or product brands. This approach enforces a constraint
that no more than one (or two) of the documents from the
same category may appear in the output. This more explicit
diversity constraint can be modeled using a (partition) ma-
troid constraint, i.e., we can define a (partition) matroid over
the set of documents and aim to find a subset of representa-
tive documents that form an independent set of that matroid.

In order to model the above ways to capture diversity, we define the
diversity maximization problem under matroid constraints: assum-
ing that we can show a limited number of representative documents
in the output, the goal of the diversity maximization problem under
matroid constraints is to choose a subset of a small number of rep-
resentative documents with the maximum diversity such that they
form an independent set of a matroid constraint (e.g., not more than
1 (or 2) of the documents belong to the same category). 1 We study
this problem from an algorithmic perspective as well as experimen-
tally using simulations and a user study.

1.1 Our Contributions
Diversity maximization under matroid constraints. As our main
technical contribution, we present the first constant-factor approx-
imation algorithm for the diversity maximization problem under
matroid constraints using a new local search technique. Previ-
ous approximation algorithms for diversity maximization (or max-
imum dispersion) are based on a greedy approach that does not

1More generally, we consider the problem of choosing a set of di-
versified representative documents inside a given set of (possibly
overlapping) clusters, and study the clustered diversity maximiza-
tion problem under matroid constraints (See Section 2 for more
details).
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handle the matroid constraints [10, 2]. On the other hand, the lo-
cal search technique is appropriate for handling such matroid con-
straints. Moreover, our algorithm can handle an extra constraint to
find representative documents inside a given set of (possibly over-
lapping) clusters. Our local search 0.5-approximation algorithm is
also the first constant-factor approximation for the max-dispersion
problem under matroid constraints [10, 9, 2]. Our combinatorial
proof technique for maximizing diversity under matroid constraints
uses the existence of a family of Latin squares which may find other
theoretical applications.
Preprocessing for Clustering. As part of the input to the diversity
maximization problem discussed above, we need to pre-compute a
set of clusters (C1, . . . , Ck). Such a set of clusters can be found
using many different techniques. While this is not the focus of this
paper, we discuss two simple algorithms to produce these clusters.
These algorithms will be used as the preprocessing step of the di-
versity maximization problem and they will be evaluated in the ex-
perimental evaluation section. Both of these algorithms follow the
following framework: first compute a subset S = {d1, . . . , dk} of
top k center documents, and then build a cluster Ci around each
center di. In other words, we think of each document in this set as
a center document for a cluster around it. In order to find these cen-
ters, we associate a set of topics to each document, and in comput-
ing the set of centers, we aim to cover a large range of topics. To do
so, we define a weighted coverage function, and aim to maximize
a weighted coverage of the documents in S. The weighted cover-
age of a subset S is defined as the sum of the weighted coverage of
this set for each topic, where the weighted-coverage of S for each
topic t is the maximum extent to which any document in S cov-
ers topic t. Although this weighted coverage problem is different
from the previously studied max k-coverage problems [8], we show
that it is a submodular set function and thus a simple greedy algo-
rithm gives a 1− 1

e
-approximation to maximize this function. This

greedy algorithm generates k documents d1, d2, . . . , dk by itera-
tively picking a new document that covers the maximum marginal
weighted-coverage. After identifying these k documents, we can
generate k clusters C1, C2, . . . , Ck by putting documents that are
similar to center di in clusterCi. In the next part, we aim to identify
representative documents in each cluster Ci by solving a diversity
maximization problem.
Experimental Evaluation. We show the effectiveness of our al-
gorithms in practice through experiments and a user study. We
perform experiments on both real and randomly generated data to
confirm the performance of our algorithms for maximizing diver-
sity and weighted-coverage.
Data. The algorithms developed in this paper can be applied to dif-
ferent applications of aggregator websites such as news aggregators
(like Google News), commerce search [2], and real-time search for
online social networks. As for the real dataset, we focus on the
application of developing an aggregator website in the context of
real-time search for the stream of Twitter micro-posts. This ap-
plication is motivated by fast data generation on online social me-
dia sites such as Twitter, Facebook, and Google+ which calls for
a quick way of summarizing hot real-time trends in a collection of
micro-posts. We extract candidate documents and important topics
through careful mining of recent popular queries and their topics.
We compute a hotness score for each topic, and also a relevance
measure for each micro-post covering a topic (See Section 5 for
details). This information can be used to produce a clustering of
important micro-posts covering hot topics in a micro-blog environ-
ment, and then compute a small number of diversified micro-posts
to represent those clusters. We compare the performance of the
local search algorithm, a greedy algorithm, and a naive sorting al-

gorithm on these datasets.
Observations. For several of the randomly generated datasets, the
diversity of the local search algorithm is more than 300% higher
than that of the greedy or the naive sorting algorithm. For the real
data set, we observe that the greedy algorithm and the local search
algorithm consistently outperform the sorting algorithm for maxi-
mizing weighted-coverage and diversity respectively: For example,
we observe that on average, weighted-coverage of the greedy algo-
rithm is 78% higher than that of the sorting algorithm, and the local
search algorithm achieves 28% higher diversity than the sorting al-
gorithm.
User Study. Finally, we conduct a user study through Amazon Me-
chanical Turk validating our algorithms and our metrics. This user
study shows that most users prefer to see a diversified set of docu-
ments across clusters in an aggregator website, however, most users
prefer a less diversified set of representatives inside the clusters.
Organization. The rest of this paper is organized as follows. Af-
ter discussing related work, in Section 2, we define our model, and
present formal definitions of the (clustered) diversity maximization
problems under matroid constraints. In Section 3, we present our
main technical contribution, i.e., a local search 0.5-approximation
algorithm to maximize diversity subject to matroid constraints. In
Section 3.1, we define a variant of the problem generalizing the
maximum dispersion problem and observe the first constant-factor
approximation algorithm for the max-dispersion problem under ma-
troid constraints. Then in Section 4, we present the preprocessing
step of computing a set of clusters by choosing a number of cluster
centers maximizing their weighted-coverage. In particular, in sub-
section 4.1, we present a greedy algorithm to compute the cluster
centers maximizing the weighted-coverage, and and show that this
objective function is submodular, implying a constant approxima-
tion factor of the greedy algorithm for the coverage maximization
problem. In Section 5, we present our experimental results, show-
ing the performance of our algorithms on real and randomly gener-
ated data. Finally, we present our user study validating our metrics
and algorithms in Section 6.

1.2 More Related Work.
Diversity Maximization Problem. The diversity maximization
problem studied in this paper generalizes the maximum dispersion
problem [10, 9, 2]. This problem has been explored in the con-
text of diversity maximization for recommender systems [9], and
commerce search [2]. A 1/2-approximation greedy algorithm has
been developed for the unconstrained variant of this problem [10],
and the variant with knapsack constraints [2]. None of these greedy
algorithms gives a constant-factor approximation for this problem
under matroid constraints. By developing a local search algorithm
and a different proof technique, we get the first 1/2-approximation
algorithms for the maximum dispersion problem under matroid con-
straints. Such matroid constraints are also natural in the context of
product search and can be directly applied to similar problems stud-
ied in [2].
Diversity in Recommender Systems and Web Search Ranking
and relevance maximization along with diversification have been
extensively studied in recommender systems, web search, and database
systems. While these results differ from our work in various as-
pects, we point out some related work in this extensive literature
which implies the importance of diversification in these applica-
tions.

In the context of web search, maximizing diversity has been ex-
plored as a post-processing step [3, 24]. Other papers explore rank-
ing while taking into account diversity by a query reformulation
for re-ranking the top searches [19] or by sampling the search re-



sults by reducing homogeneity [1]. Other methods are based on
clustering results into groups of related topics [15], or expectation
maximization for estimating the model parameters and reaching an
equilibrium [20]. Moreover, in the context of recommender sys-
tems, diversification has been explored in various recent papers
[26, 17, 13, 25]. For example, topical diversity maximization is
disscused in [26], and explanation-based diversity maximization is
explored in [25]. From the information retrieval perspective, more
realtime diversification ranking methods have been developed ex-
ploiting user browsing behaviors [7] or exploiting query reformula-
tions for web search results [21]. This topic has been also explored
in database systems [6, 14]. For example, notions of diversity has
been suggested based on presenting decision trees to users [6]. Also
computing diverse query results for online shopping has been stud-
ied in [23]. Most of the above work consider other types of diversity
metrics, and to the best of our knowledge, our diversity maximiza-
tion problem subject to matroid constraints has not been explored
formally prior to our results.

2. PRELIMINARIES

2.1 Diversity Maximization Problems
Documents and Distance Function. Our model consists of a set
of documents D and pairwise distance function ` : D × D → R
capturing the dissimilarity among documents. Throughout this pa-
per, we assume that the distance function ` is a metric satisfying
the triangle inequality, i.e., for any three documents, `(d1, d3) ≤
`(d1, d2) + `(d2, d3). In our main application, we will use the
weighted Jaccard Distance as the pairwise dissimilarity between
documents which is a metric. For more details on this, see Sec-
tion 2.2. The documents di ∈ D may correspond to various ob-
jects in different applications: in the context of a news aggregator,
these documents correspond to news articles; for product search,
the documents represent descriptions of a product, and for real-time
search, they correspond to online (micro-)posts by users.
Diversity Function. Our main focus in this paper is to find a small
set of representative documents maximizing diversity. Given a set
of documents S ⊆ D, the diversity of documents in S is defined as
the sum of pairwise distances between documents in S, i.e.,

diversity(S) =
∑
i∈S

∑
j∈S

`(i, j).

This diversity measure has been motivated and studied in the
context of recommender systems and commerce search [9, 2]. For
example, Bhattacharya, Gollapudi, and Munagala [2] argue that
maximizing this diversity measure is desirable in the context to
commerce search, and validate this claim through a user study. The
simplest version of the diversity maximization problem is to choose
a set S of k documents with maximum diversity. Below, we discuss
more general variants of this problem in the presence of a (possibly
overlapping) clustering of document and also under matroid con-
straints.
Clustered Diversity Maximization. Given a set of clusters
C = (C1, C2, . . . , Ck), find a set S of p representative documents
ri1, r

i
2, . . . , r

i
p in each cluster Ci maximizing diversity(S).

Note that in the definition of the problem above, clustersC1, . . . , Ck
need not to be disjoint, and can be arbitrary overlapping subsets
of nodes. In particular, each cluster may include the whole set of
documents, i.e, Ci = D. For this special case, the diversity max-
imization algorithm is to choose a set of pk nodes in the graph to
maximize diversity (independent of their coverage). Since the dis-
tance function ` satisfies triangle inequality [4], this special case of

the clustered diversity maximization problem is equivalent to the
maximum dispersion problem [10].
Motivation for Matroids. In order to identify diversified represen-
tative documents, a natural requirement is to retrieve documents
from different categories. In settings that such categories are ex-
plicitly given, this constraint might be enforced in addition to max-
imizing the diversity function defined above. One example of such
constraints is as follows: Consider a partitioning of documents D
into q subcategories D1, D2, . . . , Dq , where D = ∪1≤i≤qDi and
Dis are disjoint sub-categories of documents. For example, in the
context of news aggregators, each category Di may correspond to
a news domain; for product search, the subcategory Di may cor-
respond to a specific brand, and in the context of real-time search,
a subcategory may correspond to online posts from the same user.
We would like to find a subset of documents maximizing total di-
versity such that at most one document from each category Di is
present in the whole set (or each given cluster Ci). The constraint
of not having more than one document from each subcategory can
be captured as a special matroid constraint, called the partition ma-
troid constraint. Here, we first define a matroid constraint, then
define the diversity problem under a general set of matroid con-
straints.
Matroid Constraints. A matroidM is defined as a family of sub-
sets of the ground set of documents E(M) = D, called indepen-
dent sets. The set of independent sets S of a matroidM is denoted
by I(M). For a given matroid M, the associated matroid con-
straint is S ∈ I(M). As is standard,M is a uniform matroid of
rank r if I(M) := {X ⊆ E(M) : |X| ≤ r}. A partition matroid
is the direct sum of uniform matroids. Note that uniform matroid
constraints are equivalent to cardinality constraints, i.e, |S| ≤ k.
For more details about matroids, see [22].

Now, we formally define the problem:
Clustered Diversity Maximization Under Matroid Constraints.
LetM be a matroid over the set of documents D with a family of
independent sets I(M). Given a set of clusters C = (C1, C2, . . . , Ck),
our goal is to find an independent set Ri ∈ I(M) of p represen-
tative documents Ri = {ri1, ri2, . . . , rip} ⊆ Ci (1 ≤ i ≤ k) while
maximizing diversity(∪1≤i≤kRi).

A special class of matroids is a partition matroid M: Given a
partitioning of documentsD to q subsets (D1, D2, . . . , Dq), a sub-
set S ⊂ D is an independent set of partition matroidM iff S has
at most one document from each subset Dj for each 1 ≤ j ≤ q.
As discussed earlier, our main motivation for studying matroid con-
straints is partition matroids.

2.2 Topics and Distance Function
As discussed earlier, the distance function ` between documents

for our main application is defined based on the generalized Jaccard
distance function. In this section, we define the Jaccard distance
function and other preliminaries related to the distance function.
Topics. In order to define the distance function between docu-
ments, we consider a set of topics T . The topics t ∈ T correspond
to important themes or subjects of those documents, e.g. they may
correspond to hot news or micro-post topics for news aggregators
or micropost real-time search; or to their brand and their features
for the product search application.
Pairwise relevance and edge weights w(d, t). For each document
d ∈ D and any topic t ∈ T , the weight w(d, t) models the rele-
vance of a topic t to a document d, i.e., it represents the extent to
which a document is related to a topic t ∈ T . The larger the weight
w(d, t) is, the more relevant document d is to topic t. Throughout
the this paper, we assume that the weights are given and computed



in advance 2 For the theoretical part we assume that the weights are
given.

We construct an edge-weighted bipartite topic-document bipar-
tite graph G(D,T,E) between documents and topics with edge
weights w(d, t). Our goal is find a set of clusters with a set of rep-
resentative documents in each cluster covering a large portion of
topics while maintaining diversity. A central property that we need
to satisfy in this paper is matroid constraints.
Generalized Jaccard Distance. To further investigate the diver-
sity of a set of documents, we define the following generalized Jac-
card distance between documents: Given an edge-weighted bipar-
tite graph G(D,T,E), for two documents d1 and d2, the general-
ized Jaccard distance between d1 and d2 is defined as:

`(d1, d2) = 1−
∑
t∈T min(w(d1, t), w(d2, t))∑
t∈T max(w(d1, t), w(d2, t))

.

This distance function is a natural generalization of the Jaccard
distance functions over sets with weighted elements. This gen-
eralized Jaccard distance has been studied already and it has been
shown that it satisfies the triangle inequality [4], i.e, for any three
documents, `(d1, d3) ≤ `(d1, d2) + `(d2, d3).

3. DIVERSITY MAXIMIZATION UNDER
MATROID CONSTRAINTS

Here, we present a local search algorithm to choose a set of di-
versified representatives in each cluster under a (partition) matroid
constraint M. We prove that it achieves an approximation ratio
of 1

2
in the worst case. Roughly speaking, the algorithm starts

from an arbitrary set Ri of representative documents in each clus-
ter, and at each step, it considers all pairs (d, d′) ∈ Ri × Ci\Ri
of documents inside and outside of the representatives such that
Ri\{d} ∪ {d′} ∈ I(M), and examines swapping these two doc-
uments, i.e, removing document d and adding document d′ to the
set of representatives. If this swap increases the total diversity of
the documents by a factor of 1 + ε

n
, i.e, if it increases the sum of

pairwise distances of representatives by that factor, we make this
swap, i.e, we let Ri = Ri\{d} ∪ {d′}.

Local search algorithm to choose diversified representatives
Input: A set of clusters C = (C1, C2, . . . , Ck) over
a set of documents D, a matroidM over documents, and
and a distance function ` among documents.
Output: For each cluster Ci (1 ≤ i ≤ k), a set of p documents
Ri = {ri1, ri2, · · · , rip} ∈ I(M) where Ri ⊆ Ci.
Goal: Find a set of representatives maximizing total
diversity, i.e.,

∑
1≤i≤k,1≤j≤p

∑
1≤i′≤k,1≤j′≤p `(r

i
j , r

i′
j′).

1. Initialize: Let Ri be a set of top documents in Ci.
2. While there exists a local improvement do
3. For any pair of documents (d, d′) ∈ Ri × Ci\Ri

such that Ri\{d} ∪ {d′} ∈ I(M) do
4. If removing d from Ri and adding d′ to Ri increases

the total diversity by a factor of 1 + ε
n

, i.e.,
if g(S\{d} ∪ {d′}) > (1 + ε

n
)g(S) then

5. Let Ri := Ri\{d} ∪ {d′}.

One desirable property of this local search algorithm is its flexi-
bility to optimize other objective functions in the case where there
2These weights can be computed in different ways for different
applications. In Section 5, we describe one specific way to compute
those weights for the real-time application.

are more than one choice for local improvements. Examples of
these objective functions are quality or coverage of the documents
or the popularity of the news channels. To optimize a different ob-
jective function, one can try the sequence of local operations in the
order of that objective, for example, we initialize the representa-
tives to the set of documents with the highest quality score, and
consider swapping other documents with these documents in the
order of their quality score. This quality score may take into ac-
count the reliability and coverage of each document, or the popu-
larity of owner of the micro-post. We first prove that the algorithm
achieves a good guaranteed approximation ratio, and then we study
its computational time complexity.
Approximation Factor. Here, we show that the exact local search
algorithm achieves a guaranteed approximation ratio of 1/2. Such
a proof for the exact local search algorithm simply implies a guar-
anteed approximation of 0.5 − ε

n
for the approximate local search

algorithm above. This proof is based on the existence a class of
diagonal Latin squares, and thus this technique may find other the-
oretical applications.

THEOREM 3.1. Given a set of clusters C = (C1, C2, . . . , Ck),
the above local search algorithm is a 1/2-approximation algorithm
for the problem of choosing a set of p representatives Ri ∈ I(M)
for each cluster Ci, maximizing the total diversity of the represen-
tatives.

PROOF. Consider an optimum solution O = {O1, . . . , Ok}
where Oi = {Oi1, . . . , Oip} ∈ I(M). Let the output of the lo-
cal search algorithm be L = {L1, L2, . . . , Lk} where
Li = {Li1, . . . , Lip} ∈ I(M). Our goal is to show that

L =
∑

1≤i≤k,1≤j≤p

∑
1≤i′≤k,1≤j′≤p

`(Lij , L
i′

j′) ≥

1

2

∑
1≤i≤k,1≤j≤p

∑
1≤i′≤k,1≤j′≤p

`(Oij , O
i′

j′) = 1
2

OPT

To prove this, we need to employ a useful exchange property of
matroids (see [22]). Intuitively, this property states that for any two
independent sets I and J , we can add any element of J to the set
I , and kick out at most one element from I while keeping the set
independent. Moreover, each element of I is allowed to be kicked
out by at most one element of J .

PROPOSITION 3.2. [[22]] Let M be a matroid and I, J ∈
I(M) be two independent sets. Then there is a mapping π :
J \ I → (I \ J) ∪ {φ} such that:

1. (I \ π(b)) ∪ {b} ∈ I(M) for all b ∈ J \ I .

2. |π−1(e)| ≤ 1 for all e ∈ I \ J .

Applying Proposition 3.2, we may consider a mapping πi be-
tween each subset Li and Oi such that Li\Lij ∪ Oiπi(j) ∈ I(M).
Without loss of generality, we may assume πi(Lij) = Oij , and thus
from Proposition 3.2, Li\Lij ∪Oij ∈ I(M). Now consider remov-
ing Lij from Lj and adding Oij to Lj . Using the local optimality of
L and since Li\Lij∪Oij ∈ I(M), we know that for any 1 ≤ i ≤ k
and 1 ≤ j ≤ p:∑

1≤i′≤k,1≤j′≤p

`(Lij , L
i′

j′) ≥
∑

1≤i′≤k,1≤j′≤p

`(Oij , L
i′

j′)

Now, adding the above inequality for all 1 ≤ i ≤ k and 1 ≤ j ≤



p, we get:

L =
∑

1≤i≤k,1≤j≤p

∑
1≤i′≤k,1≤j′≤p

`(Lij , L
i′
j′) ≥∑

1≤i≤k,1≤j≤p

∑
1≤i′≤k,1≤j′≤p

`(Oij , L
i′
j′)

For ease of notation, let oi = O
b i
k
c+1

(i−kb i
k
c)+1

, i.e, for n = kp, and

let o0, o2, . . . , on−1 correspond to the set of all representatives in
the optimal solution Oij’s for 1 ≤ i ≤ k and 1 ≤ j ≤ p. Similarly,
let l0, l2, . . . , ln−1 correspond to the set of representatives in the
local optimal solution Lij . In this new notation, we can re-write the
above inequalities as:

L =
∑

0≤i≤n−1

∑
0≤j≤n−1

`(li, lj) ≥∑
0≤i≤n−1

∑
0≤j≤n−1

`(oi, lj)

In order rewrite the above inequalities, we use a pattern similar to
a family of Latin squares. Consider an n×n diagonal Latin square,
with elements aij for 0 ≤ i ≤ n−1 and 0 ≤ j ≤ n−1. This Latin
square has the following properties (that are useful later to finish
the proof): In each row and column of Latin square, each number
0, 1, 2, . . . , n− 1 appears exactly once, and aii = i. The existence
of such Latin squares have been already proved [12]. Therefore, the
summation

∑
0≤i≤n−1

∑
0≤j≤n−1 `(oi, lj) appeared in the above

formula may be rewritten as

1

2

∑
0≤i≤n−1

∑
0≤j≤n−1

`(oi, laij ) + `(oj , laij ).

Now consider the following set of triangle inequalities among the
documents: `(oi, laij ) + `(oj , laij ) ≥ `(oi, oj). Using the struc-
ture of the Latin square, and by putting it all together, we get:

L =
∑

1≤i≤k,1≤j≤p

∑
1≤i′≤k,1≤j′≤p

`(Lij , L
i′

j′) ≥

∑
1≤i≤k,1≤j≤p

∑
1≤i′≤k,1≤j′≤p

`(Oij , L
i′

j′) =

1

2

∑
0≤i≤n−1

∑
0≤j≤n−1

`(oi, laij ) + `(oj , laij ) ≥

1

2

∑
0≤i≤n−1

∑
0≤j≤n−1

`(oi, oj) =

1

2

∑
1≤i≤k,1≤j≤p

∑
1≤i′≤k,1≤j′≤p

`(Oij , O
i′
j′) =

1
2

OPT

This completes the proof.

Running time of the local search algorithm. It can be seen that
this algorithm converges as the value of the metric increases at each
step. In fact, this algorithm has a polynomial running time, since a
swap only is done if the metric increases by a factor of 1+ ε

n
for an

appropriately small constant ε > 0. To show this, first we observe
that by starting from a set S including two furthest documents, we
have g(S) ≥ OPT

k2
for the initial set S. Starting from such a set,

and using the approximate local improvements, it follows that if
the algorithm performs t local improvements, then (1 + ε

n
)t ≤ k2

since at each step, the metric increases by 1 + ε
n

factor and the
value of the metric is upper bounded by k2 times the initial value
of the metric. It follows that t ≤ O(log1+ ε

n
(k2)) = O(n

ε
log(k)).

Therefore the algorithm finishes at most after O(n
ε
log(k)) local

improvements, and thus it runs in polynomial time.

3.1 Diversity Maximization Under
Global Matroid Constraints

As another variant of the diversity maximization problem, one
can consider the matroid constraint over all representatives (instead
of having the matroid constraint for the representatives in each clus-
ter). In this variant, we find a set of p representatives Ri ⊆ Ci
such that the whole set ∪1≤i≤kRi is an independent set in the ma-
troid. For example, we may enforce the constraint that at most
one representative in ∪1≤i≤kRi can be chosen from each Dj for
1 ≤ j ≤ q. The significance of this variant is that it generalizes
the max-dispersion problem under matroid constraints. To see this,
consider this problem with all equal clusters Ci = D and p = 1.
Therefore, a 1

2
-approximation algorithm for this problem implies

a 1
2

-approximation algorithm for the max-dispersion problem with
matroid constraints. In the following, we formally define this vari-
ant.
Clustered Diversity Maximization Under Global Matroid Con-
straints. LetM be a matroid over the set of documentsD and fam-
ily of independent sets I(M). Our goal is to find an independent
set Ri ⊂ Ci of p representative documents Ri = {ri1, ri2, . . . , rip}
for each cluster Ci (1 ≤ i ≤ k) such that ∪1≤i≤kRi ∈ I(M), and
maximize diversity(∪1≤i≤kRi).

The local search algorithm can be easily modified to solve this
new variant. To see this, consider a local search algorithm in which
at each step, we only allow swap operations that keep the whole
set of representatives an independent set of the matroid. One can
easily check that the above proof can be adapted to show that such
a local search algorithm gives a 1

2
− ε-approximation algorithm.

This, in turn, implies the first constant-factor approximation for the
maximum dispersion problem under matroid constraints.

4. PREPROCESSING FOR CLUSTERING
As part of the input to the diversity maximization problem dis-

cussed above, we need to pre-compute a set of clusters (C1, . . . , Ck).
Such a set of clusters can be found using many different techniques.
While this is not the focus of this paper, for the sake of complete-
ness, we discuss two simple algorithms to produce these clusters.
We will also evaluate these algorithms in the experimental evalua-
tion section. The ideas behind both of these algorithms are based
on finding a subset S = {d1, . . . , dk} of top k center documents,
and then building a cluster around each center di. In other words,
we think of each document in this set as a center document for
a cluster around it, i.e., after computing these center documents,
we construct a clustering C = (C1, C2, . . . , Ck) of documents
where di ∈ Ci by associating each document d ∈ D to one or
more close center documents in S. In computing the set of cen-
ters S, we aim to cover a large range of topics, and we take two
approaches: maximize a weighted-coverage function of the docu-
ments in S, and maximize the diversity(S) while taking into ac-
count their weighted-coverage. We will first define the weighted-
coverage function, and then algorithms aiming to optimize it.

4.1 Greedy Algorithm for Coverage Maximiza-
tion

In this section, we define the weighted-coverage function and
present an algorithm for the maximum weighted-coverage problem.
Weighted-coverage. Given a set of documents D and topics T ,
and an edge-weighted bipartite graph
G(D,T,E) with edge weights w(d, t), the weighted-coverage of



subset S ⊆ D is the sum of the weighted coverage of topics cov-
ered by documents in S, where the weighted coverage of each topic
t is maxd∈S w(d, t) i.e., the extent to which this item t is covered.
More formally, the weighted-coverage of documents in S is equal
to:

coverage(S) =
∑
t∈T

max
d∈S

w(d, t).

Maximum weighted-coverage problem. Given a parameter k
(i.e., the number of documents) and an edge-weighted bipartite
graph G(D,T,E), the goal of the maximum weighted-coverage
problem is to choose a subset S of k center documents maximizing
the weighted-coverage coverage(S).

Note that this problem is different from the well-studied set cover
or the maximum k-coverage problem [8], but it is still NP-hard,
since the same problem with 0/1 as edge weights is equivalent with
an unweighted version of maximum k-coverage problem [8] which
is NP-Hard.
Greedy Algorithm for Coverage Maximization. Given the def-
inition of the coverage function, the greedy algorithm to choose
the top k documents is as follows: start from an empty set S of
documents, at each step choose a document d with the maximum
marginal increase in function coverage (i.e, max coverage(S∪{d})−
coverage(S), and add this document to set S. Repeat this greedy
selection procedure until k elements are picked.

By proving the submodularity of the weighted-coverage function
defined above, we can prove that greedy algorithm above achieves
at least 1− 1

e
of the optimum of the maximum weighted-coverage

problem [18]. A proof of this fact can be found in appendix.

4.2 Combined Heuristic for Center Selection
One way of choosing the set of centers in the clusters is to find

k center documents with maximum diversity. However, other than
the diversity metric, one may care about other objective functions
such as relevance, weighted-coverage, and popularity of the micro-
posts in the set of centers to form the clusters. A desirable property
of the local search algorithm for maximizing diversity is its flexi-
bility in choosing the order of local improvements, and the initial
set of documents to start with. For example, if we want to simul-
taneously maximize the weighted coverage and diversity metrics,
we can start with a set of documents with high weighted coverage,
and then run the local search algorithm as a post-processing step.
Also in running the local search algorithm, we should try to swap
documents with higher weighted-coverage at each step. We use
this guideline in the implementation of the local search algorithm.
As an alternative approach to find the clusters, we also study the
following heuristic for choosing the initial k centers by combin-
ing ideas for maximizing coverage and diversity. The algorithm is
described in Figure 4.2.

Note that the algorithm in Figure 4.2 is a simple heuristic algo-
rithm combing the ideas behind the greedy and the local search al-
gorithms for maximizing weighted-coverage and diversity. While
we do not prove a worst-case approximation factor for this com-
bined heuristic, we will show its reasonable performance on real
and random data in our experimental evaluations.

5. EXPERIMENTAL EVALUATION
In order to evaluate our algorithms in practice, in this section,

we perform experiments on real world data (from Twitter) and on
randomly generated data. More specifically, we examine the practi-
cal performance of our algorithms and their variants by comparing
them with each other and a with baseline algorithm. We begin by
describing the data and our metrics.

Combined Heuristic (for Coverage and Diversity of Centers)
Input: The edge-weighted bipartite graph G(D,T,E)
with edge weights w(d, t) for each d ∈ D and t ∈ T .
Output: A set S of k documents S = {d1, d2, · · · , dk}.
Goal: Find a set S of cardinality k.
1. Initialize: S = ∅
2. Sort documents D in the non-increasing order of

weighted-coverage, i.e., in order of
∑
t∈T w(d, t)

3. Let the sorted documents be (d1, d2, . . . , d|D|)

4. For i from 1 to |D| do
5. if |S| < k then
6. Let S := S ∪ {di}.
7. elseif swapping di with any dj for j < i increases diversity, then
8. Let S := S\{dj} ∪ {di}.

Figure 1: Combined Heuristic for Cluster Center Selection

Real Data from Twitter. We run our experiments on 61 families of
twitter posts, each of which is constructed as follows: We consider
10,000 to 25,000 top queries for Google real-time search, and for
each query, we consider 30 top micro-posts returned for that query.
This ranking is done based on various criteria such as the relevance
of those twitter posts as well as their popularity and importance for
the topic of the query. For each dataset, this process results in tens
of thousands of documents, and a mapping of those top queries
to thousands of topics. We construct the edge-weighted bipartite
graph between these documents and topics using the algorithm de-
scribed in Section 5. As a result, we get 61 edge-weighted bipartite
graphs with an average of 1,277 topics and average of 12,500 doc-
uments. For this data set, the categories Di forming the (partition)
matroid constraints are sets of micro-posts from the same Twitter
user. We consider identifying 10 or 20 centers and clusters with
three representatives in each cluster.
Processing Twitter data. An important source of identifying hot

topics in the online micro-blogging environment is the set of popu-
lar queries by users. As a first step of identifying important micro-
posts, we identify popular queries that have been searched more
often recently by users, and use these queries to retrieve a set of
micro-posts matching those queries. In this setting, since tweets
do not contain many terms, there is less need to discount term fre-
quency by inverse document frequency (as in TF-IDF). We assume
that a real-time search engine is available and one can identify the
most relevant documents for those queries.

LetQ be the set of top queries on a real-time search engine. Each
query has a query score query_score(q), representing the popular-
ity of this query, e.g., the number of users who searched for this
query. For each q in Q, let Dq be a ranked list of top l micro-posts
or documents for q, and for each document d ∈ Dq , we also have
a relevance_score(q, d).

For each q in Q, let Tq ⊂ T be the set of topics corresponding
to q. We transform each query q to a set of topics Tq , and construct
an edge-weighted bipartite graph G(D,T,E) between documents
D = ∪q∈QDq and all topics T = ∪q∈QTq . The weight of the
edge between a topic t ∈ T and and a document d ∈ D is denoted
by w(d, t) and is computed as follows: for each query q ∈ Q and
each topic t ∈ Tq , we associate a weight weight(q, t) which is
proportional to the score of the query normalized by the number of
topics associated with this query q, e.g,

weight(q, t) =
query_score(q)

|Tq|
.



Now the weight w(d, t) in the topic-document bipartite graph is

w(d, t) =
∑
q:t∈Tq

weight(q, t)relevance_score(q, d).

This weight captures the extent to which online entry d covers topic
tmodeling the relevance of this topic to the micro-post. Intuitively,
these topics represent the main topics of hot trends over the on-
line environment. After forming the above edge-weighted topic-
document bipartite graph, our goal is find a set of top documents
covering the maximum amount of topics.
Randomly generated data. We generate the underlying bipartite
graph between documents and topics at random. In particular, we
generate families of random bipartite graphs each with 20000 doc-
uments and 2000 topics. We examine random bipartite graphs in
which each edge is present with probability p independent of all
other edges. We consider six values for the probability p, i.e.,
p = 0.1%, 0.5%, 1%, 2%, 5%, 10% for having each edge in the
bipartite graphs. The categories Di for the partition matroid con-
straint are generated at random among 100 categories. We consider
identifying 10 or 100 centers and clusters with three representatives
in each cluster.
Metrics. We divide the practical evaluation of our algorithms into
two main parts: 1) evaluation of the center selection algorithm for
clustering, 2) evaluation of diversity maximization for representa-
tive selection given a set of clusters. For each part of the evaluation,
we use an appropriate set of metrics. The main metrics are related
to diversity and weighted-coverage as defined in this paper, and
other metrics are inspired by the k-median and k-means problems
with and without outliers [5]. Some of the metrics for evaluating
both first and second parts are as follows:

• Weighted-coverage (W-COVERAGE): For a subset S of doc-
uments, the weighted-coverage of S is

∑
t∈T maxd∈S w(d, t).

• Diversity (DIVERSITY): For a subset S of documents, the
diversity of S is

∑
d∈S

∑
d′∈S `(d, d

′).

• Average distance to the centers (DIST-ALL): For a set S =
{c1, c2, . . . , ck) of centers, the DIST-ALL objective function
is the sum of distances of each document to the closest center,
i.e., ∑

d∈D

min
1≤i≤k

`(d, ci).

A smaller DIST-ALL implies better coverage of the set of
centers.

• Percentage of documents covered in clustering (PERC): For
a family of clusters C = (C1, C2, . . . , Ck), this metric is
simply the percentage of documents covered in this cluster-
ing, i.e.,

|∪1≤i≤kCi|
|D|. A larger PERC indicates a larger cover-

age for the set of clusters.

• Average distance of covered documents to the centers (DIST-
COVERED): For a set of clusters C = (C1, C2, . . . , Ck) and
a center ci ∈ Ci for each 1 ≤ i ≤ k, we define the mean-
distance DIST-COVERED to centers as∑

1≤i≤k

∑
d∈Ci

`(d, ci).

A smaller DIST-COVERED implies better coherence for these
clusters.

W-COVERAGE and DIVERSITY can be defined for any set of
documents, e.g. a set of centers for clusters, or union of sets of
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Figure 2: Vectors of the W-COVERAGE metric for all the in-
stances. X-axis corresponds to instances, and Y axis corre-
sponds to the coverage metric. From top to bottom, curves
correspond to GREEDY, COMB-H, and SORT algorithms. In-
stances are ordered based on the coverage value of the output
for SORT algorithm.

Table 1: Percent-coverage (PERC) of documents vs. the av-
erage distance of covered documents to the centers (DIST-
COVERED) for three algorithms. The X axis represents PERC
and Y axis corresponds to DIST-COVERED.

Algorithm Diversity N-Diversity Coverage N-Coverage
Comb-H 189.99 99% 86130 125%

GREEDY 189.90 99% 122981 178%
SORT 145.82 77% 68755 100%

representatives from each cluster. We say a document d is covered
by a subset of documents S, if at least for one document d′ ∈ S,
the distance `(d, d′) is less than 1. The PERC function is an un-
weighted variant of the W-COVERAGE, and the DIST-ALL and
DIST-COVERED metrics correspond to the coherence of clusters,
i.e, the closer the documents are to the centers (in terms of their `
distance), the smaller the DIST-ALL and DIST-COVERED func-
tions are, and thus we have more coherent clusters. While DIST-
ALL captures the average distance of all documents, the DIST-
COVERED captures the average distance of documents covered by
the centers.

One other metric for evaluating the second part (i.e, diversity
maximization for choosing representative documents inside each
given cluster) is as follows:

• Intra-cluster diversity (INTRA-DIVERSITY): For a family
of clusters C = (C1, C2, . . . , Ck) and a subset Ri ⊆ Ci of
representatives inside each cluster, we define the intra-cluster
diversity as follows:∑

1≤i≤k

∑
d,d′∈Ri

`(d, d′).

Experiments. In the first part, we explore the following three algo-
rithms and compare them in terms of diversity, weighted-coverage,
and other metrics:
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Figure 3: Average of DIVERSITY, normalized DIVERSITY,
W-COVERAGE, and normalized W-COVERAGE of the initial
set of centers various algorithms. DIVERSITY is normalize
compared to the maximum possible diversity, i.e.,

(
m
2

)
, where

m is the number of documents. W-COVERAGE is normalized
based on the coverage of the SORT algorithm.

Table 2: Average percentage of documents covered by each al-
gorithm (PERC), average of average GJD distance of covered
documents to the centers(DIST-COVERED), and average of av-
erage GJD distance of all documents to the centers(DIST-ALL).

Algorithm PERC DIST-COVERED DIST-ALL
Comb-H 0.152 0.82 0.97

GREEDY 0.160 0.85 0.98
SORT 0.06 0.82 0.99

• Sort-based Algorithm [SORT]: Sort documents based on the
total weight of topics connected to them in the edge-weighted
bipartite graph.

• Greedy algorithm [GREEDY]: The greedy algorithm described
in Section 4.1.

• The combined heuristic [COMB-H]: The combined heuris-
tic algorithm, combining the local search and greedy algo-
rithms, described in Section 4.2.

In the second part, we compare different algorithms for diver-
sity maximization for representative selection in each cluster. We
assume that given a set of center documents, clusters have been
formed by putting each document in the cluster associated with the
closest center. Documents that are not overlapping their set of top-
ics with the any of the centers are thrown away, i.e., if the minimum
generalized Jaccard distance (`) of a document to centers is 1, then
this document is not in any cluster. In particular, we compare the
performance of the following three algorithms in terms of diversity,
weighted-coverage, intra-cluster diversity, clustering coverage.

• A baseline sort heuristic [BASE]: In this algorithm, we choose
the representatives as follows: In each cluster, the first repre-
sentative is the center of the cluster from which this cluster
was made. The rest of the p − 1 representatives are p − 1
documents with the maximum total weight of covering top-
ics.

• The local search algorithm maximizing diversity of represen-
tatives [LOCAL] described in Section 3.

Table 3: Average of W-COVERAGE, DIVERSITY, and
INTRA-DIVERSITY of the set of representatives for six algo-
rithms on real data sets.

Algorithm Diversity Intra-Divers. Coverage
Comb-H BASE 1732 24.62 131870

Comb-H INTRA-L 1755 47.17 124803
Comb-H LOCAL 1756 46.59 124195
Max-Cov. BASE 1730 22.58 136462

Max-Cov. INTRA-L 1755 47.03 124699
Max-Cov. LOCAL 1756 46.61 126107

• A modified local search algorithm maximizing the intra-cluster
diversity [INTRA-L]: In this algorithm, we slightly modify
the local search algorithm to optimize the intra-cluster diver-
sity as opposed to total diversity of all representatives. In
particular, we swap a document outside of the set with a doc-
ument inside only if it increases the distance of this document
to the set of documents in the same cluster.

Observations. Our experiments on both real and randomly gener-
ated data confirm the better performance of our algorithms for max-
imizing diversity and weighted-coverage. The better performance
of the local search algorithm for diversity maximization compared
to the greedy algorithm is more clear for randomly generated data
sets.

For the real data, we report statistics for the set of 20 centers, or
the 20 clusters based on these 20 centers, and the set of 60 represen-
tative documents in these clusters. First we observe that GREEDY
and Comb-H algorithms consistently outperform the SORT algo-
rithm for maximizing the weighted-coverage and diversity met-
rics respectively. For example, Figure 2 shows that the weighted-
coverage of these two algorithms outperform that of SORT for each
of the instances. Moreover, Table 1 shows that on average, cover-
age of GREEDY is 78% higher than that of SORT, and coverage of
Comb-H is 25% higher than the coverage of SORT. Also the cover-
age of GREEDY is 42% higher than that of Comb-H. In addition,
Figure 1 shows that on average, diversity of both GREEDY and
Comb-H is 28% higher than diversity of SORT. Although we ex-
pect the diversity of Comb-H to be better than that of GREEDY, our
real datasets do not show a significant difference between the di-
versity of GREEDY and Comb-H. However, we will observe such
a difference on the random datasets (See Figure 4).

Other than the coverage and diversity metrics for the 20 centers,
we also construct 20 clusters out of these centers by assigning each
document to the closest center and report clustering metrics like
PERC and DIST-COVERED, as well as the DIST-All metrics for
these centers and clusters (See Figures 5 and 2). Intuitively, we
expect algorithms with good coverage and diversity to have high
percentage of covered documents, and small average distance of
other documents to clusters, i.e., smaller DIST-ALL. We observe
that GREEDY and Comb-H achieve comparable PERC and DIST-
ALL. They both have larger PERC and smaller DIST-All compared
to SORT. On the other hand, GREEDY has a slightly larger DIST-
COVERED, implying that since GREEDY covers more topics, the
resulting clusters may end up being less coherent, and thus there
seem to be tradeoff between the coverage of the centers of the clus-
ters and the coherency (DIST-COVERED) of the clusters. Figure 5
depicts this tradeoff. Finally, we report the average of Diversity,
Intra-Diversity, and Coverage for the set of 60 representatives for
the six algorithms combining Comb-H. and GREEDY (or Max-
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Figure 4: Average diversity metric for four algorithms on six
random family of networks. On the X axis, from left to right,
the bars correspond to random networks with probabilities
p = 0.1%, 0.5%, 1%, 2%, 5%, 10% on the edges of the bipartite
graph.

Table 4: Average of W-COVERAGE, and DIVERSITY of two
algorithms for six families of random graphs.

Algorithm Diversity Intra-Diversity Coverage
Comb-H. LOCALp = 1% 44769 290 1470
Max-Cov. LOCAL p = 1% 44747 298 1558
Comb-H. LOCALp = 2% 44641 291 1712
Max-Cov. LOCAL p = 2% 39410 279 1749
Comb-H. LOCALp = 5% 44222 290 1879
Max-Cov. LOCAL p = 5% 10150 141 1929
Comb-H. LOCALp = 10% 43498 285 1938
Max-Cov. LOCAL p = 10% 3378 81 1999

Cov.) to find the centers and BASE, LOCAL, and INTRA-L to find
the representative inside clusters (See Figure 3). The results from
this part are similar to previous part, i.e., the coverage of Max-Cov.
algorithm is larger, but the diversity of all the algorithms are com-
parable. The Intra-diversity of representatives for the algorithms
using Intra-L is larger than the other algorithms.

The results for randomly data sets are similar in most aspects.
Here, we discuss the main difference: while, for real data sets, the
diversity metric for the output of GREEDY (or Max-Cov.) algo-
rithm was comparable to that of Comb-H, we have observed fami-
lies of instances of random data sets in which the average diversity
of the output of Comb-H which is aiming to maximize the diversity
is much higher. This is particularly significant for dense instances
in which the probability of an edge in the document-topic bipartite
graph is large, e.g. p = 5% or p = 10%. For instance, for p = 5%,
the Diversity of the output of Comb-H. is more than 300% higher
than that of GREEDY (See Figure 4). For brevity, we report the
details of these metrics for a subset of algorithms (See Figure 5),
but the results for other algorithms follow the same pattern.

6. USER STUDY
We conducted a user study with the goal to validate our metrics

and algorithms. In this section, we describe the user study along
with the results and observations.

The user study was designed in the form of a survey on Ama-
zon’s Mechanical Turk simulating a trends’ aggregator website.
Amazon’s Mechanical Turk (MTurk) is a crowdsourcing online
marketplace where requesters use human intelligence of workers

to perform certain tasks, also known as HITs (Human Intelligence
Tasks). Workers browse among existing tasks and complete them
for a monetary payment set by the requester [16]. Once a worker
completes the task, the requester can decide whether to approve it.
In particular, if the requester believes that the worker completed
the task randomly, she can reject her work. In that case, the worker
does not get paid for the particular task and her approval rate is de-
creased. For our studies, we only hired workers that had approval
rates of over 95%, that is, workers who had performed well in the
past.

Our survey contains two categories of questions: The first ques-
tion is how much people prefer seeing a diversified set of clusters,
and the second question is to validate inter-cluster versus intra-
cluster diversity, i.e, while showing a diversified set of clusters, do
people want to see a diversified set of representatives inside each
cluster or not.

For each category, we present four questions each with two op-
tions where each option is a set of clusters. The user is then asked
which option she liked to see if she visited a realtime trends aggre-
gator website. For the first category , the two options differed in the
degree of diversity in them, e.g., one is generated by the diversity
maximization algorithm and the other one is generated by the base-
line sorting algorithm. In the second category, both options consist
of clusters with a high diversity, but in one of them each cluster
consists of a diversified set of representatives and in the other one,
each cluster consists of a less diversified set of representatives. In
each survey, we repeated two of the questions with the answers
in reverse order for validity check. If the answers to those ques-
tions were inconsistent, we discarded the survey answers from that
user. Overall, 130 out of 300 respondents had answered these two
questions inconsistently. Therefore, we analyzed the remaining 170
valid responses.

Each question consists of two main parts: 1) “Which one do you
prefer?" and 2) “Which one do you think others prefer?" The an-
swer to the first question provides information on how a particular
user likes diversity, and the answer to the second question shows
how users expect an aggregator to look like. Moreover, we in-
cluded the second question in the survey for two reasons. First, by
asking the second question the subjects felt that the survey’s goal
was to study how people think their decisions are similar to the oth-
ers, weakening the reactivity effect [11]. Second, we offered three
bonus payments ($5 each, which is 50 times the amount we paid
for each HIT) to the three workers whose answers to the second
question was closest to the others’ answers to the first question in
order to deter workers from answering randomly.
Observations. We report the answers to questions 1 and 2 in each
of the two categories as follows:

• For the first category, on average (over 4 questions) 65%
of the respondents preferred to see a more diversified see
of clusters. Moreover, 69% of the respondents thought that
most people would like to see a diversified set of clusters.

• For the second category of questions, on average (over 4
questions) 72% of the respondents preferred to see less di-
versified representatives inside each cluster (intra diversity),
while seeing a set of diversified clusters. Moreover, 76% of
the respondents thought that most people would like to see
lower intra diversity representatives.

Overall, we conclude that while most users would prefer to see
a more diversified set of clusters in the aggregator website, many
users prefer to see a less diversified set of items inside each cluster.
This implies that the most appropriate metric and algorithm from



the users’ point of view is to maximize diversity among representa-
tives of different clusters, but present more coherent representatives
inside clusters.

7. CONCLUSION
In this paper, we study the diversity maximization problem un-

der matroid constraints which is useful in a range of applications
– in news aggregators, for aggregating trending topics in a micro-
blogging environment, and in commerce search [2]. On the theo-
retical side, we present the first constant-factor approximation al-
gorithm for this problem applying a new local search technique
which implies the first constant-factor approximation algorithm for
the maximum dispersion problem subject to matroid constraints.
From the practical perspective, we show reasonable performance
of these algorithms by running a user study validating our metrics,
and by running experiments on synthetic and real data. From an
algorithmic perspective, it would be interesting to design approxi-
mation algorithms that simultaneously maximize the diversity and
weighted-coverage functions discussed in this paper. From a prac-
tical standpoint, it would be nice to apply these ideas in the context
of commerce search [2] where matroid constraints are also relevant.
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APPENDIX
A. SUBMODULARITY OF THE WEIGHTED-

COVERAGE FUNCTION

THEOREM A.1. The weighted-coverage function coverage is
a submodular set function, and thus the greedy algorithm is a 1− 1

e
-

approximation for the maximum weighted-coverage problem.

PROOF. A set function g is submodular if and only if for any
two subset A ⊆ B and any element i 6∈ B,
g(B ∪ {i}) − g(B) ≤ g(A ∪ {i}) − g(A). Consider two subsets
A ⊆ B of documents and a document h 6∈ B. For the weighted
coverage function coverage, the difference in the value before and
after adding h to sets A and B is equal to∑
t∈T max(0, w(h, t)− (maxd∈A w(d, t))), and∑
t∈T max(0, w(h, t)− (maxd∈B w(d, t))), respectively. There-

fore, in order to show

coverage(B∪{h}−coverage(B) ≤ coverage(A∪{h}−coverage(A),

we may prove the inequality for each corresponding term t, i.e, it
is sufficient to prove that for each term t ∈ T ,

max(0, w(h, t)−(max
d∈A

w(d, t))) ≥ max(0, w(h, t)−(max
d∈B

w(d, t)))

To see the above inequality, first note that since A ⊆ B, we
have (maxd∈A w(d, t)) ≤ (maxd∈B w(d, t)). Also, by a simple
case analysis we can see that if x ≤ y, then max(0,M − x) ≥
max(0,M − y). Thus, the above inequality follows from that
fact.


