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Abstract

Essays on Prices and Variety Across Cities

Jessie Handbury

Urban economists are fundamentally concerned with the distribution of economic ac-

tivity across cities and the resulting variation in urban welfare. The central equilibrium

concept is that mobile individuals choose their locations optimally. If equivalent individu-

als choose two different locations, they must be spatially indifferent. For a system of cities

to be at a spatial equilibrium, real income must be equalized across space. The purchas-

ing power residents enjoy in different cities is, therefore, central to urban economics. It

is key to determining both the distribution of economic activity, through the indifference

condition, and consumer welfare at this equilibrium.

The New Economic Geography (NEG) literature initiated by Krugman (1991) high-

lights the role of pecuniary externalities in urban economics. Net of housing and other

congestion costs, consumers prefer larger cities because they have lower average prices

and more varieties. These price and variety differences impact real incomes directly, by

lowering the consumer price index or indirectly, by lowering the producer price index,

improving firm productivity, and nominal wages. My dissertation focuses on the direct

consumer channel. Specifically, I study the differences in consumer prices and variety

across U.S. cities, with a view towards measuring the consumption externalities that drive

the agglomeration that determines the relative sizes and demographics of these urban

centers.

In Krugman (1991), agglomeration is driven by consumption externalities related to

differences in the average price across locations. Variety plays a central role here: the price

index is lower in larger cities because more varieties are produced there, but all products

are available everywhere, so there are no direct consumption gains from variety. Chapter

1 extends this model to allow for these variety differences across cities via an extensive

margin of intercity trade. In this model, scale economies yield more production variety

in larger cities so that, with positive trade costs, consumers in these locations can benefit

from two consumption advantages - lower average prices and more varieties of products.

This model sets the stage for the empirical chapters that measure the impact of these

consumption benefits on consumer utility.



The urban economics literature has paid relatively little attention to these consumption

externalities for two reasons. First, the fact that wages are higher in larger cities indicates,

in the context of a spatial equilibrium model, that purchasing power must be lower in these

locations, which is inconsistent with the NEG theoretical predictions that price indexes

are lower in larger cities. Second, there are reasons to believe that intranational trade

frictions are much smaller than those across international borders. While there is a large

body of work documenting that these frictions yield significant variation in the prices

charged and varieties offered across different countries, we know relatively little about the

spatial variation of price and variety in a domestic context. Chapter 2, co-authored with

David E. Weinstein, addresses both of these issues. We first show that, controlling for

purchaser demographics and store amenities, the prices of tradable products do, in fact,

vary across cities as predicted by Krugman (1991). Additionally, we find that there are

significant differences in the variety of products offered in large as opposed to small cities.

We finally measure the extent to which this variation in prices and variety lowers price

indexes for tradable products in large cities relative to small cities. This low price index

over tradables in large cities is consistent with nominal wages being higher there, as long

as there are congestion costs that equalize real income across locations.

A major assumption in the work described above is that the consumption benefits of

cities do not vary systematically across consumer types. The final chapter of my disserta-

tion considers how systematic differences in prices and variety across space might impact

different individuals differently. Previous research has tested whether firms vary prices

and product offerings in order to cater local tastes in a market. I extend this analysis to

structurally estimate how this behavior of individual firms differentially affects the price

indexes faced by consumers with systematically heterogeneous tastes. I allow for tastes to

vary with income and find that poor consumers face lower costs in low-income cities, while

the opposite holds for wealthy consumers, whose tastes are better-suited to the variety of

products available in high-income cities.

In conclusion, this dissertation finds that there is significant variation in prices and

variety across U.S. cities. In particular, the spatial distributions of prices, variety, and

consumers in the U.S. are correlated in a manner consistent with there being consumption

externalities. Consumers in larger cities have access to more varieties of products at a



lower average price and, conditional on city size, consumers have access to varieties better-

suited to the tastes of they share with their income group in cities with per capita incomes

closer to their own. These patterns are reflected in the variation in the tradables price

indexes that consumers face across large and small and across wealthy and poor cities. This

evidence on the existence of the pecuniary consumption externalities hypothesized in early

NEG papers supports a growing literature exploring the role of consmption externalities

in generating the aggregate and skill-biased agglomeration patterns that the more recent

NEG literature associates with production externalities.
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Chapter 1

Prices and Variety in a New

Economic Geography Model

Jessie Handbury

1.1 Introduction

Consumption externalities are the central agglomerating force in Krugman (1991) and

continue to play a key role in the New Economic Geography (NEG) literature that has

followed. These externalities arise from a very simple structure based on trade costs and

scale economies. Trade costs are positive between cities, so locally-produced goods must

be cheaper in the local market than they are elsewhere. Fixed costs of production generate

scale economies under which larger cities will produce more varieties than smaller ones.

Consumers in large cities, therefore, purchase more locally-produced goods and, therefore,

face a lower average price.

This paper studies a complementary and related source of consumption externalities:

differences in variety across space. It has been widely documented that not all varieties

of products are traded between countries,1 limiting the access consumers have to varieties

that are not produced locally. If domestic trade flows are also characterized by this

extensive margin variation, cross-city differences in the variety produced will be reflected

in cross-city differences in the variety available for consumption. When not all products

1See, for example, Hummels and Klenow (2005) and Bernard, Jensen, Redding, and Schott (2007).

1



2 CHAPTER 1. PRICES AND VARIETY ACROSS CITIES: THEORY

are traded, consumers in large cities will have access to more varieties of goods than

consumers in small cities. These consumption variety differences will tend to lower the

price index in large cities relative to small cities, yielding an agglomeration mechanism

that is complementary to the average price mechanism described above. The tradables

price index will be lower in large cities because consumers there have access to more

locally-produced products and more products in general.

I present a two-city model that yields asymmetric spatial equilibria in which some, but

not all, of the firms in each location export their products. I show that, when some but

not all products are traded, price and variety mechanisms work simultanously to yield a

lower price level in the larger city. This model extends the traditional Krugman (1991)

model in a number of dimensions that have been explored to some extent in other papers.

First, I require consumers to purchase housing in the city where they reside. The starting

point for this assumption is Helpman (1998), a variant of the Krugman (1991) model in

which housing costs, rather than an agricultural sector, act as the dispersion force causing

the real wages to equilibrate across locations. Helpman’s model is similar to Krugman

(1991), however, in that it can only produce the equilibrium result that larger cities have

more varieties under infinite trade costs. To overcome this limitation, I also allow for

firm-specific fixed costs of exporting between cities. When only a subset of firms can earn

profits from exporting, the number of varieties varies across locations, much in the spirit of

Melitz (2003). As in the original Krugman (1991) model, more locally-produced varieties

are available in the larger city, so the average price is lower there also. These variety and

price effects combine to yield a lower non-housing price index in the large city relative to

the small city.

Models featuring quadratic linear demand generate similar predictions on the variation

of price and variety across markets. In Ottaviano, Tabuchi, and Thisse (2002), for exam-

ple, more varieties are produced in larger markets and, under positive trade costs, this

results in more intense competition and lower mark-ups in these locations. Prices are, on

average, lower in larger cities both because consumers pay (a fraction of) transport costs

on fewer varieties and because mark-ups are lower on all varieties. Behrens and Robert-

Nicoud (2011) introduce firm heterogeneity to a quadratic linear demand-based model

generating the additional prediction that more varieties are both produced and consumed
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in larger cities. These authors show that larger cities will have both lower prices and

more varieties of traded goods products available, but the role of price and variety as an

agglomeration force is limited in their framework because consumers are not free to move

between differentiated production centers.2

By contrast, price and variety are both central to agglomeration in the model presented

below. In this heterogeneous-firms extension of Helpman’s CES-based geography model,

consumers are attracted to the larger city because of the lower traded goods prices and

greater variety availability there. However, as the population of one city grows, its rental

rate also rises. I show below that this can result in an asymmetric spatial equilibrium in

which both cities are populated and the large city has a lower price index for tradable

goods but higher rental prices. At these long-run equilibria, the lower cost of tradable

goods is exactly offset by higher rents, such that real wages are equalized across the two

locations and consumers have no incentive to move.

The simple model presented below is designed to highlight the agglomerating role of

consumption externalities. There are two cities with identical and fixed stocks of hous-

ing. In the short-run, identical consumers reside in one of the two cities, working in the

production of a freely-traded intermediate good and earning rents from their share of

the economy-wide stock of housing. These assumptions imply that a consumer’s nominal

income is the same regardless of where they live; their utility, or standard of living, in

a city depends only the purchasing power they have there. Consumers spend their in-

come on housing and the differentiated products available where they live, including both

locally-produced and, if available, imported varieties. People in more populated regions

face higher housing costs, but lower price indexes over differentiated products. The high

housing costs in large cities is due to inelastic housing supply and drives down the local

standard of living in these locations. The differentiated price index is lower in large cities

because there are more varieties available in these cities at a lower average price. The

cost of housing and the differentiated product price index work in opposite directions in

determining the relative standard of living across the two locations.

I solve the model to generate predictions for the relative cost of housing and differ-

2In Behrens and Robert-Nicoud (2011), people can move between the agricultural and urban economies
within each region, but not between regions.
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entiated product price index across two cities as a function of their relative size. The

relative cost of housing can be solved for analytically and is proportionate to city size.

The differentiated product price indexes in the two locations only vary due to the number

and export decisions of final goods producers.3 Specifically, the differentiated product

price index is decreasing in both the number of varieties available in a location and the

share of these varieties that are produced locally. I will refer to the first of these effects

as the “variety effect” and the second as the “price effect,” since the larger the share of

varieties consumed locally that are also produced locally, the lower the average price of

differentiated products in the city. The variety effect is generated on the extensive margin

of variety in that it works to lower the relative price index faced in cities that have a

greater total number of varieties available. The price effect is generated on the intensive

margin in that it works to lower the relative price index faced in cities where a greater

share of those varieties available are produced locally.

The existence of the price and variety effects depend on the number and the export

decisions of final goods producers. The number of final goods producers in each location,

all of which sell on the local market, is increasing in city size when there are positive

marginal trade costs. These costs take the “iceberg” form, such that a certain proportion

of the quantity exported by the producer arrives in the export market for sale to the

consumer. These costs lower the potential profits firms can earn per consumer in the

export market relative to the domestic market. Holding the number of firms equal across

the two cities, total firm profits will be higher in the larger city, generating more firm entry

into (or less firm exit from) the larger city until profits are equal zero in both locations.

More populated cities will therefore be able to sustain production of a larger number of

differentiated products. The difference in the mass of firms locating in the large relative

to the small city is the main driver behind the price effect. It turns out that, at the

interior equilibria, the share of firms that export from each city is identical across the two

cities. This implies that the share of consumption varieties that are produced locally is

increasing in the total number of varieties produced locally. Thus, the economics of scale

3The differentiated product price index is determined by the prices charged by, and the number and
export decisions of, final goods producers in each city. These producers face identical marginal production
and trade costs and demand curves across locations and, therefore, charge an identical price for all domestic
varieties and another, higher, identical price for all imported varieties of differentiated products.
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that yield more varieties are produced in the larger city, also yield the intensive margin

price effects that lower the average differentiated product price, and also tend to lower

the differentiated price index, in the larger city when there are transpost costs on these

products.

Where these transport costs impact the prices that firms set in export markets, their

decisions over whether to export or not are governed by a firm-specific fixed cost of export.

Firms will export if their ex-post export profits are sufficient to cover this cost, drawn from

a random distribution.4 Firms face greater demand for differentiated products in the larger

cities, so will be more likely to cover their fixed export cost with export sales to a large

city than to a small city. Larger cities will always import all of the varieties that smaller

cities do and, as such, more products will be available in larger cities than in smaller cities.

This difference in total product availability generates the variety effect.

Since larger cities have a greater total number of varieties are available as well as

a greater share of the available varieties is locally-produced implies that both the price

and variety effects work to lower the relative price index there when some, but not all,

firms are exporting from both locations. Although these “interior” equilibria are the focus

of this paper, the model presented here also nests the Krugman (1991) model in the

sense that there exist two types of “corner” equilibria in which all and no firms export,

respectively. If, for example, the profits that firms earn from exporting are lower than the

lower bound of the cost distribution then no firms will export. In this type of equilibrium,

as in Krugman (1991), there will be no “price” effect: only local varieties will be available

in each location, making the share of local varieties in consumption equal to one in both

locations. If, alternatively the profits that firms earn from exporting are greater than the

upper bound of the cost distribution then all firms will export. In this case, there will be

no “variety” effect: all varieties will be available in both locations. If, however, export

4An alternative way to achieve selection into exporting is with a fixed export cost and heterogeneity
in firm productivity and, therefore, ex-post export profits, as in Melitz (2003). I find that heterogeneous
fixed export costs is the simplest way to generate an extensive margin of trade in keeping with the original
Krugman (1991) model in that variation in the differentiated-product price indexes between two locations
is driven by asymmetries in the number of firms located in each and the share of these firms that export.
Heterogeneous firm productivities would instead introduce additional sources of variation in the consumer
price index. For example, imported product prices will tend to be lower in the smaller city because the
productivity cutoff for big-city firms to export to the small city will be lower than the productivity cutoff
for small-city firms to export to the large city. Exploring these additional asymmetries is beyond the scope
of this paper.



6 CHAPTER 1. PRICES AND VARIETY ACROSS CITIES: THEORY

profits are within the cost distribution, then an intermediate number of firms will make

their varieties available in both cities and both the price and variety effects will impact

how the differentiated price index varies with city size.

In the next section, I present the key features of the model. Section 3 defines the

equilibrium conditions for the economy, and shows that both in the short-run, where prices

and variety are determined taking the allocation of people between cities as given, and

in the long-run, where consumers are free to move between locations. Section 4 presents

the main results of the model showing that the price index over differentiated products is

lower in the larger city due to both variety and price effects for any short-run equilibrium

in which these products are produced and exported from both cities. Section 5 concludes.

1.2 Basic Model

I begin by assuming that there are L total consumers allocated across a set of two cities

denoted I = {1, 2}, such that Li people live in each city i, and L1+L2 = L. There are three

sectors: housing, intermediate good production, and final good production. A fixed and

equal endowment of land in each location is rented to consumers for housing. Revenues

from land rentals are shared equally across all consumers. Consumers also get income

from working in the intermediate goods sector. Intermediate goods are freely-traded and

sold to final goods producers in a competitive market. Firms in the final goods sector

purchase technologies that enable them to convert intermediate goods into differentiated

varieties. Producers can trade their final goods by paying a firm-specific fixed export cost

as well as iceberg transport costs.

The starting point for this model is Helpman (1998). Before going into the details of

the model, I will highlight three major departures I take from this model. The first are

the heterogeneous fixed costs of exporting from one city to another. These costs generate

the central result that more varieties of goods are available in the larger city. The second

is that differentiated goods producers use a freely-traded intermediate input in place of

labor. This implies that wages and the mill price of differentiated products are equal across

the two cities, even when the prices of differentiated products are not. This assumption is
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very helpful in producing analytic, as opposed to numeric solutions to the model.5 Finally,

I add a minimum housing requirement which serves as an anti-agglomeration force that

prevents the entire population from ending up in one city when the symmetric equilibrium

is unstable.

1.2.1 Consumption

I assume that consumers in each city consume non-tradable housing services and tradable

final goods. Preferences are Cobb-Douglas over any housing, H, consumed above and

beyond a minimum housing requirement, β, and an aggregate final good bundle, X. The

aggregate final good, X, represents the constant elasticity of substitution (CES) utility

that consumers attain from consumption of the final good varieties. Each final good variety

is denoted by u, and residents of city i can purchase any of the set of varieties sold in city

i, denoted Ui. A city i resident facing rents ri and final goods prices, pi(u), allocates their

income I over housing and final good varieties to maximize utility as follows:

max{
H>0,{x(u)}u∈Ui

}Xα(H−β)1−α subject to

∫
u∈Ui

pi(u)x(u)du+riH ≤ I where X =

 ∫
u∈Ui

x(u)ρdu


1/ρ

where σ = 1/(1−ρ) is the elasticity of substitution across final good varieties. The solution

to the above problem implies the following individual consumer demand curves for housing

and final goods in city i:

Hi =
(1− α)(I − βri)

ri
+ β (1.1)

Xi =
α(I − βri)

Pi
(1.2)

xi(u) = Xi

(
pi(u)

Pi

)−σ
∀u ∈ Ui (1.3)

5Both Krugman (1991) and Helpman (1998) allow for wages to vary with city size. When relative wages
increase in relative city size, equilibrium housing rents increase non-linearly with city size providing the
extra anti-agglomeration force necessary to yield asymmetric equilibria in which both cities are populated.
When fixed export costs are added to the original Helpman (1998) model without any further adjustments,
we are able to show the existence of stable asymmetric equilibria in which both cities are populated and
there are more varieties available at a lower average price in the larger city, but the variation in relative
wages makes it impossible to prove this result generally.
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where Pi =

 ∫
u∈Ui

pi(u)1−σdu


1

1−σ

Consumers are perfectly mobile across cities, so their locational choices maximize their

location-specific indirect utility:

V (I, Pi, ri) =
k(I − βri)
Pαi r

1−α
i

(1.4)

where k is equal to a constant function of parameter values and (I − βri) is the income in

excess of that needed to meet the minimum housing requirement.6 Holding income fixed,

equation (1.4) tells us how the price index for differentiated goods, Pi, and housing rents,

ri, affect utility in each city. The next task is to put some more structure on the model

so that we can understand how these price indices move with city size.

1.2.2 Income-generating Activities

I assume that each consumer is endowed with one unit of labor and an even share of the

land in each location. The income, I, generated from these endowments is equal to the

sum of the wage, w, and rental income, denoted r̃:

I = w + r̃ (1.5)

Wages are earned in the production of tradable intermediate goods. Labor is the single

input in the production of the homogeneous intermediate good. The intermediate good

can be produced in every location using the same constant returns technology, with a unit

labor requirement normalized to equal one. It is freely traded across locations and sold to

final goods producers on a competitive market at a price, p0, which we also normalize to

one. This implies that the competitive wage rate equals one in all locations:

w = 1 (1.6)

6It is possible to show that, in equilibrium, (I − βri) > 0.
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Rental income is earned in the housing market. Each city has a common fixed allocation

of land, H̄, rented by consumers for housing at a city-specific rental rate, ri.

The rental rate ri in city i is determined in equilibrium to clear the city’s land market,

equalizing the supply of the available land, H̄, with the demand of the city’s Li residents:

H̄ = HiLi

Using the demand curve for Hi provided in equation (1.1), the land-clearing condition

above implies that the market-clearing rental rate is

ri = (1− α)ILiΦ
−1
i (1.7)

where Φi = H̄ − αβLi.

The total rental income in city i is equal to riH̄. The sum of this rental income across

all cities is evenly distributed across consumers who each receive

r̃ =
H̄(r1 + r2)

L
=
H̄I(1− α)(L1/Φ1 + L2/Φ2)

L
(1.8)

I can now use (1.6), and (1.8) to solve for consumer income:

I = w + r̃ =

[
1− H̄(1− α)(L1/Φ1 + L2/Φ2)

L

]−1

(1.9)

Equations (1.7) and (1.9) together characterize a fixed point for consumer income and for

rents in each city i ∈ I.

1.2.3 Final Good Production

The final goods market is monopolistically competitive. Any consumer in a location can

decide to start a firm by paying a fixed cost of f units of the intermediate good.7 This

fixed cost can be thought of as the intermediate input required to develop a technology

7There is free entry into final goods production so, in equilibrium, expected profits from entry into
production in a given city are zero. Some consumers will make positive profits and others will make losses
such that entrepreneurial activity is not a source of consumer income at the city level. I allow consumers
to start more than one firm so that the number of firms that can be started in a location is not limited by
the number of consumers residing there. However, I assume that firms owned by the same consumer do
not collude in their pricing strategy and act as two separate firms making independent pricing decisions.
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that the entrepreneur can in turn use in final goods production. This technology costlessly

transforms further units of the intermediate good into differentiated final good on a one-

to-one basis. Once the firm has developed this technology, its marginal cost of production

is therefore equal to the price of the intermediate input, p0 = 1.

Equations (1.2) and (1.3) together define the quantity, xi(u), that each of the Li

consumers facing an aggregate price level of Pi in a city i will demand of a final good

variety u sold at a price p(u). I assume that differentiated product firms ignore the impact

of their pricing behavior on the aggregate price index. Firms, therefore, face a constant

price elasticity, 1− σ. Since each firm is a monopolist in the production of its variety, u,

firms follow an inverse elasticity pricing rule, charging a fixed mark-up, σ/(σ − 1) = 1/ρ,

on their marginal costs.

All firms that produce final goods sell these goods on their local retail market. A city

i firm’s marginal costs for domestic sales consist of the cost of one unit of the intermediate

good, p0 = 1:

cii = 1

Firms can also export their products to other cities for a product-specific fixed export cost,

fx(u). Firms export decisions will be discussed in more detail below. Firms that decide

to export their product pay “iceberg” transport costs in that they must ship τ units of

their final good in order to sell a single unit in the exporting market. The marginal cost

of producing and shipping one unit of a product in city j is therefore equal to the cost of

τ units of the intermediate input, τp0 = τ :

cij = τ

Denote the price that city i firms charge in city j as pij . This optimal price can be

summarized as

pij =
cij
ρ

where cij =


1 if i = j

τ otherwise

(1.10)

Since all domestically-produced final goods are sold at an identical price and all im-

ported final goods are sold at the same location-specific price, we can write the final goods
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price index in city j as

Pj =

(∑
i∈I

nijp
1−σ
ij

) 1
1−σ

=
1

ρ

(∑
i∈I

nijc
1−σ
ij

) 1
1−σ

(1.11)

where nij is the number of varieties that are imported to city i from city j and njj is the

number of firms producing locally in city j. I can now use (1.2) and (1.3) to calculate the

sales of a city i firm makes to each consumer in city j:

xij =
α(I − βri)ρ

cσij

(∑
k∈I

nkjc
1−σ
kj

) (1.12)

The ex-post profits for a firm in city i from sales in city j are, therefore,

πij =
Ljxijcij
σ − 1

(1.13)

1.2.4 Zero-Cutoff Profit Condition

While all firms will produce for their local market, only firms whose ex-post profits are

greater than their fixed export cost draw, fx(u), will export to a given city j. Assuming

that the fixed costs of export are drawn with replacement from a uniform distribution on

[fX , fX ], the share of city i firms whose fixed export costs are low enough to yield ex-ante

profits from exporting to location j will be

nij
nii

= Pr [πij ≥ fx(u)] = Pr
[
fx(u) ≤ f∗ij

]
=
f∗ij − fX
fX − fX

(1.14)

where f∗ij = max
(
fX ,min

(
fX , πij

))
denotes the amount of fixed export costs that could

be potentially offset by ex-post export profits.

1.2.5 Free Entry Condition

Free entry in production requires that, in equilibrium, expected profits are zero. Expected

profits are equal to the sum of local profits and the expected value of positive export

profits, less the fixed cost of entry, f . The free entry condition for firms in city i is,
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therefore,

πii + Pr [fx(u) ≤ πij ] (πij − E [fx(u)|fx(u) ≤ πij ]) = f

where j 6= i. The second term in this equation is the expected profits from exporting.

By Bayes’s rule, the expected export profits are equal to the probability of exporting,

Pr [fx(u) ≤ πij ], multiplied by the expected profits from exporting conditional on export-

ing. Since the ex-post profits from exporting are identical across firms, the export profits

vary only with the random fixed costs of export and the conditional expected export profits

are equal to the ex-post profits from exporting, πij , less the expected fixed cost of export

conditional on exporting, E [fx(u)|fx(u) ≤ πij ]. The unconditional expected export profits

term can be simplified using the zero-cutoff profit condition as follows:

Pr [fx(u) ≤ πij ] (πij − E [fx(u)|fx(u) ≤ πij ]) = Pr
[
fx(u) ≤ f∗ij

] (
πij − E

[
fx(u)|fx(u) ≤ f∗ij

])
=

(
f∗ij − fX
fX − fX

)(
πij −

fX + f∗ij
2

)

The free entry condition in city i is, therefore,

f = πii +

(
f∗ij − fX
fX − fX

)(
πij −

fX + f∗ij
2

)
(1.15)

where j 6= i.

1.3 Equilibrium

This section develops the conditions for equilibrium in our spatial economy. In the long

run, consumers optimally choose their city. In the short run, consumers choose their

consumption of housing and final goods varieties. Consumers can also act as entrepreneurs.

In this role, they choose whether to start one or more firms in a city. All firms sell their

product locally, but each chooses whether to export their variety to other cities. Firms

also set prices for their variety in each market where it is sold.
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1.3.1 Short-Run Equilibrium

I first define a short-run equilibrium for a system of cities in which a population L is

distributed across two cities, I = {1, 2}, which with a land endowment H̄, such that∑
i∈I Li = L. This short run equilibrium is defined as a set of differentiated product prices

P = {pij}i,j∈I, quantities X = {xij}i,j∈I, and product counts N = {nij}i,j∈I, as well as,

housing rents R = {ri}i∈I and quantities H = {Hi}i∈I such that consumers and firms

optimize and markets clear.

The conditions under which the housing market clears were derived in Section 1.2.2.

Equations (1.7) and (1.9) together characterize a fixed point for consumer income and for

rents in each city i ∈ I that clear the housing market in each city. At this income and

these rents, residents in each city optimally choose their consumption of housing according

to (1.1).

The conditions for equilibrium in the final goods market were derived in Section 1.2.3.

Equation (1.10) summarizes the profit-maximizing prices set by differentiated product

firms. The quantities that equalize demand and supply of differentiated products in each

location are defined, conditional on income, rents, and the number of locally-produced

and imported products sold in each market, in equation (1.12). There is free entry into

final good production, so entrepreneurs will optimally purchase the technology required

to start producing a differentiated product as long as profits are positive. The free entry

condition, defined in equation (1.15) for each city i, implicitly defines the number of firms

that exist when expected profits from entry are zero. Similarly, the zero profit cutoff,

defined in equation (1.14), implicitly defines the share of firms that export from each city

i to the other city j 6= i such that the marginal exporting firm earns zero profit from

export sales after paying their fixed cost of export.

The intermediate goods and labor markets clear by Walras’s Law and at equilibrium,

inter-city markets are balanced by international transfers of housing rents.

1.3.2 Long-Run Equilibrium

The previous section characterized the short-run equilibrium for the system of cities, in

which I assume that consumers’ do not make locational choices and, therefore, the pop-
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ulation of each city, L = {Li}i∈I, is fixed. In the long-run, consumers are mobile and

optimally choose their location in order to maximize their indirect utility from housing

and final goods consumption, V (I, Pi, ri), defined in equation (1.4). The system of cities

will be in long-run equilibrium when the short-run equilibrium conditions hold and either:

utility is equalized across locations, such that no consumer can make utility gains from

moving between cities, or utility is higher in one location and all consumers live in this

location.

1.4 Existence of Long-Run Equilibrium

There are three classes of long-run equilibria: symmetric equilibria with identical city sizes,

asymmetric equilibria in which one location is not populated, and asymmetric equilibria

in which both are populated to differing degrees. The goal of this theory is to bring

Krugman (1991)’s model closer to reality for the purpose of empirical testing. Since this

empirical work will be based on data from non-empty cities with varying populations, we

will focus on the predictions of the model for the third class of long-run equilibria. In

particular, our focus will be on the subset of long-run asymmetric equilibria for which

there is differentiated production in both cities and some, but not all, products are traded

in both directions.

The existence of these equilibria is stated in the following proposition:

Proposition 1. For certain parameter values, stable, asymmetric equilibria exist in which

the two cities have positive populations; differentiated products are produced in both cities;

and some, but not all, of these products are exported from each city.

Proof. The system of cities will be in long-run equilibrium when utility is equalized across

the two locations, such that no consumer can make utility gains from moving between

cities, or when utility is higher in one location and all consumers live in this location.

The dynamics of the system of cities, and its long-run equilibria, will be characterized

by how the relative utility across two locations varies with allocation of consumers across

those populations. Without loss of generality, we will consider the utility of consumers

in city i relative to city j, where i ∈ I = {1, 2} and j denotes the other city in the pair.

We will measure the allocation of consumers across the two locations using the share
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of the population in city i, λ = Li/L. The short-run equilibrium conditions in Section

1.3.1 and equation (1.4) together define this relative utility as a function of population

allocation, λ, and model parameters, Θ. Below we will characterize how the equilibrium

relative utility varies across short-run equilibria with different population allocations, λ,

differently for different sets of parameter values Θ. This analysis reveals a set of parameter

values under which the empirically-relevant asymmetric population allocation is a stable,

long-run equilibrium for the system.

First, let Vi(λ,Θ) denote the indirect utility of a consumer in city i at the short-run

equilibrium defined for population allocation λ and parameters Θ. Equation 1.4 implies

that this indirect utility can be written as

Vi(λ,Θ) =
k(I(λ,Θ)− βri(λ,Θ))

Pi(λ,Θ)αri(λ,Θ)1−α

where I(λ,Θ), ri(λ,Θ), and Pi(λ,Θ) also each take their short-run equilibrium values,

conditional on population allocation, λ, and parameters, Θ. We can now write the log of

the utility in city i relative to city j as

V̂ (λ,Θ) = D̂(λ,Θ)− αP̂ (λ,Θ)− (1− α)r̂(λ,Θ)

where Di(λ,Θ) = I(λ,Θ) − βri(λ,Θ) denotes a city i consumer’s disposable income af-

ter paying for their minimum housing requirement at the (λ,Θ)-short run equilibrium.

Positive values of V̂ (λ,Θ) imply that consumers utility is greater in city i than in city j

yielding agglomeration when city i is already larger than city j, or λ > 0.5, and dispersion

when city i is smaller than city j, or λ < 0.5.

An equilibrium will exist at a population allocation λ if V̂ (λ,Θ) = 0, or αP̂ (λ,Θ) =

D̂(λ,Θ) − (1 − α)r̂(λ,Θ). The population allocations for which this is the case depends

crucially on parameters Θ. Our object here is to show the existence of parameter values,

Θ, under which the system yields long-run equilibrium for some λ ∈ (0, 1) that is not equal

to 0.5, i.e. a long-run equilibrium in which both cities are populated, but not equally. We

first show that such an asymmetric long-run equilibrium exists for one set of parameter

values.
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Figure 1.1 presents the relative utility in city i relative to city j as the share of con-

sumers living in city i, λ, increases from 0.25 to 0.75, when α = 0.9, σ = 2, τ = 1.5,

fX = 0, fX = 1, and β = 0.01175. This chart shows that, for these parameter values,

the relative utility is equalized across locations at three population allocations: λ = 0.5,

λ ≈ 0.33 and λ ≈ 0.66. There exists, therefore, three equilibria for the system of cities at

these parameter values, one symmetric and two asymmetric. While our primary focus is on

showing the existence of the asymmetric long-run equilibria, it is interesting to note that

these equilibria are both stable, while the symmetric equilibrium is unstable. Suppose that

an exogenous shock moved ∆λ of the total population from city j to city i, increasing the

population allocation from 0.5 to 0.5 + 2∆λ. Since relative utility is increasing in λ at the

symmetric equilibrium, i.e. ∂V̂ (0.5,Θ)/∂λ > 0, the new population allocation will yield

higher indirect utility to consumers in city i than in city j, encouraging further migration

from city j to city i. Similarly, an exogenous shock that moved ∆λ of the total population

from city i to city j would increase the utility in city j relative to city i encouraging further

consumers follow. Conversely, the asymmetric equilibria are stable because relative utility

is decreasing in λ at these points. If λ was at one of these points and an exogenous shock

were to move consumers from city j to city i, the indirect utility of consumers living city

j would decrease relative to city i, encouraging consumers to move from city i to city j

whereby reversing the original migration.

We now show that, at the asymmetric equilibria described above, differentiated prod-

ucts are produced in both cities; and some, but not all, of these products are traded in

both directions. The upper left panel in Figure 1.2 shows that there are approximately 30

varieties produced in city i at the asymmetric equilibrium when it is the larger city - over

three times the number of varieties produced in the smaller city j. The lower panels show

that a little over half of the varieties produced in each city are distributed to the other

city. This share is independent of city size, as shown below in the proof of Lemma 2 in

Appendix 1.6.

Figure 1.3 demonstrates Proposition 2: there are more varieties available in the larger

city; differentiated product varieties are sold at a lower average price in the larger city,

and these variety and price effects yield a lower differentiated product price index in the

larger city. As noted in Appendix ?? below, each of these results depends on the fact that
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more varieties are produced in the larger location.

Finally, note that the minimum housing requirement parameter, β, yields the non-

linearity in the relative utility across the two cities and is, therefore, responsible for the

existence of asymmetric equilibria. To see this, let us first look at the long-run equilibria

where β = 0. Under this assumption, the indirect utility in city i relative to city j can be

expressed as the sum of just two terms:

V̂ (λ,Θ(β = 0)) = −αP̂ (λ,Θ)− (1− α)r̂(λ,Θ)

Equation (1.23), derived in the proof of Proposition 2 below, provides a simple expression

for the relative differentiated product price index between the two cities when some, but

not all, differentiated products are exported from each location:

Pi
Pj

=

(
Li
Lj

) 1
1−σ

(
I − βri
I − βrj

) 1
1−σ

Equations (1.7) implies that the relative rent in city i to city j is equal to:

ri
rj

=
(1− α)ILi(H̄ − αβri)−1

(1− α)ILj(H̄ − αβrj)−1

When when β = 0, both of the relative price index and relative rent terms above simplify

such that:

P̂ (λ,Θ) = log

(
Pi
Pj

)
=

1

1− σ
log

(
Li
Lj

)
and r̂(λ,Θ) = log

(
ri
rj

)
= log

(
Li
Lj

)

The relative indirect utility is, therefore, proportional to the log relative population:

V̂ (λ,Θ(β = 0)) = −
(

1− (1− α)σ

1− σ

)
log

(
Li
Lj

)
= −

(
1− (1− α)σ

1− σ

)
log

(
λ

1− λ

)
(1.16)

Under these assumptions, there can never exist any asymmetric equilibria. The relative

utility is either constantly increasing or decreasing in relative population and, therefore,

can only intersect the horizontal axis once, at the symmetric equilibrium. This is demon-

strated in Figure (1.4). The red dotted line shows that, for β = 0, there exists one unstable

symmetric equilibrium.
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When β = 0, this model closely resembles Helpman (1998) who finds three different

sets of dynamics. The first two have a single symmetric long-run equilibria, either stable or

unstable, and are equivalent to the symmetric equilibria when the coefficient in equation

(1.16), −(1 − (1 − α)σ)/(1 − σ), is negative and positive, respectively. Helpman (1998)

also discusses a third set of dynamics that arises for some intermediate level of transport

costs when (1− α)σ < 1. This set of dynamics also permits stable asymmetric equilibria

in which both locations are populated. This set of dynamics cannot arise in this model

when β = 0, production occurs in both locations, and there is bilateral trade. This is due

to the fact that we have allowed for the intermediate input in final goods production to be

freely traded, which means that in this case the small city can produce and export only

the intermediate good while the large city will be the sole source of the final good.

Figure 1.4 shows that, as you increase β, the pattern of relative utility changes in two

respects. First, the slope of relative utility becomes lower at each value of λ. Second, the

slope is now non-linear and decreasing as the distribution of population becomes more

asymmetric away from λ = 0.5. This is due to the fact that, for β > 0, rents increase

non-linearly with city size. The minimum housing requirement is an inelastic component

of individual housing demand. As the population increases in a location, the inelastic

component of aggregate city-wide housing demand increases relative to the inelastic supply

of housing in the city. This causes rents to increase more than proportionately with

relative city size for any positive minimum housing requirement, and increasingly so as the

minimum housing requirement increases. This non-linearity yields asymmetric equilibria

in which consumers have not fully agglomerated.

With a positive minimum housing requirement, rents act as a congestion cost for both

consumers and final goods producers. Consumers in the smaller city pay lower rents and,

therefore, have more disposable income to spend on differentiated products after they

have covered their minimum housing requirement. The disposable income of each small

city resident is growing even as its total population decreases. This stems the flow of

manufacturing production out of the small city into the large city and increases the range

of λ for which the small city can maintain a large enough total expenditure to warrant

some manufacturing production to occurring there. The minimum housing requirement,

therefore, also plays a role in ensuring that firms do not fully agglomerate, such that
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differentiated products are produced in both locations and traded in both directions.

1.5 Prices and Variety in Equilibrium

In this section, I examine the short-run equilibria for the above system of cities to study

how and why differentiated product price index varies with city size.

The aggregate price level of differentiated products can be lower in the larger location

either because there are more varieties available there, because these varieties are available

at lower prices, or for both of these reasons. To see this, note that the relative price index

for differentiated goods between two cities can be written as

Pi
Pj

=

(
sii + (1− sii)τ1−σ

sjj + (1− sjj)τ1−σ

) 1
1−σ (

ñi
ñj

) 1
1−σ

(1.17)

where ñi = nii+nji is the total number of varieties available in city i and sii = nii/(nii+nji)

is the share of those varieties that are produced locally.8

Equation (1.17) provides a decomposition of the price of differentiated goods into

two terms: a variety effect capturing the fact that consumers prefer cities with more

goods available and the Krugman price effect capturing the fact that the prices of locally-

produced varieties are lower than imported ones. When all goods are traded there is an

equal number of varieties available in each location, so ñi = ñj = nii +njj and the second

term of the relative price index defined in (1.17) drops out. In this case, the relative price

index depends only on the shares of local products in consumption via the first “price

effect” term. If no goods are traded, sii = sjj = 1, so the first term of drops out and

the relative price index depends only on the relative number of varieties available (and, in

this case, produced) in each city via the second “variety effect” term. What is new in this

model, relative to Krugman (1991), is that it is possible that some, but not all goods are

traded, and the relative price index is decreasing in both the relative number of varieties

available in each city and the shares of these varieties that are produced locally. That

is, the price and variety effects both work simultaneously to lower the price index in the

8This decomposition is derived in Appendix 1.A.
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larger location.

Before showing that these price, variety, and price index results, I first present two

intermediate results on which these results depend. In what follows, I show that, under

certain conditions, consumers in the larger city face lower average differentiated product

prices, more differentiated product varieties, and, therefore, a lower differentiated product

price index. These conditions are that differentiated products are produced in both cities

and that some, but not all, of these products are traded in both directions. These three

main results rely on the fact that, under these same conditions, an identical share of

differentiated product firms export from each city and more products will be produced in

the larger city. I prove each of these intermediate results in turn below.

Lemma 1. When differentiated products are produced in both cities and some, but not all,

of these products are traded in both directions, an identical share of differentiated product

firms export their products from each city to the other city and, furthermore, these firms

earn identical ex-post export profits.

Proof. The most interesting case and empirically-relevant case, for the purposes of this

paper, is that in which some, but not all, firms export from each city such that f∗ij = πij

and f∗ji = πji. We refer to these short-run equilibria as “interior” equilibria. In this case,

the zero profit cutoff conditions implied by (1.14) define the share of firms exporting from

each city in terms of ex-post export profits:

nij
ni

=
πij − fX
fX − fX

and
nji
nj

=
πji − fX
fX − fX

(1.18)

To solve for these export shares, we substitute these interior zero profit conditions, (1.18),

into each of the free entry conditions implied by (1.15), using the fact that, by (1.12),

and (1.13), πij = πjjτ
1−σ and πji = πiiτ

1−σ9. This substitution yields two symmetric

9By definition, we have that cij = cji = τ and cii = cjj = 1. Substituting these values into (1.12) and
(1.13) yields

πij =
α(I − βrj)Ljτ1−σ

σ (njj + nijτ1−σ)
= πjjτ

1−σ and πji =
α(I − βri)Liτ1−σ

σ (nii + njiτ1−σ)
= πiiτ

1−σ.
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equations in the two unknown export shares, mi and mj :

f = τσ−1

[
nji
nj

(fX − fX) + fX

]
+

1

2

(
nij
ni

)2

(fX − fX)

f = τσ−1

[
nij
ni

(fX − fX) + fX

]
+

1

2

(
nji
nj

)2

(fX − fX)

This indicates that export shares depend only on the fixed cost of entry, f , the bounds

of the fixed export cost distribution, [fX , fX ], and the iceberg transport cost, τ . More

importantly, however, it indicates that the share of firms exporting is equal across the two

cities. By the interior zero profit conditions, (1.18), this implies that export profits are

also equal

πX = πij = πji = m(fX − fX) + fX (1.19)

where πX denotes firm-level export profits and m =
nij
ni

=
nji
nj

denotes the share of firms

in each city that export.

Proposition. When differentiated products are produced in both cities and some, but not

all, of these products are traded in both directions:

1. A higher number of differentiated product varieties are available in the larger city;

2. Differentiated products are sold at a lower price, on average, in the larger city; and

3. The differentiated product price index, Pi, is lower in the larger city.

Before presenting the proof of each part of this proposition, we first prove two inter-

mediate results that will be useful below.

Lemma 2. When differentiated products are produced in both cities and some, but not all,

of these products are traded in both directions, more differentiated products are produced

in the larger city.

Proof. To show that more products are produced in the larger city, we first derive an

expression for ex-post export profits using equations (1.11), (1.12), and (1.13):

πX = πij =
α(I − βrj)Ljτ1−σ

(σ − 1) (njj + nijτ1−σ)
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πX = πji =
α(I − βri)Liτ1−σ

(σ − 1) (nii + njiτ1−σ)

We have assumed that some, but not all firms, export, so we can substitute these ex-

pressions for ex-post export profits into the interior zero profit cutoff conditions defined

in equation (1.18), and assume that the same share of firms export from each location

and substitute for nji = mnjj and nij = mnii. These substitutions yield two equations

that jointly define the number of products produced in each location, as a function of

parameter values and the size of and rents in each location:

njj + niimτ
1−σ = α(I − βrj)Ljτ1−σ/((σ − 1)πX)

nii + njjmτ
1−σ = α(I − βri)Liτ1−σ/((σ − 1)πX)

The solution to this system of equations is as follows:

nii =
ατ1−σ ((I − βri)Li − (I − βrj)Ljmτ1−σ)

(σ − 1)πX

(
1− (mτ1−σ)2

)
njj =

ατ1−σ ((I − βrj)Lj − (I − βri)Limτ1−σ)
(σ − 1)πX

(
1− (mτ1−σ)2

)
The number of varieties produced in city i relative to city j is, therefore,

nii
njj

=

(
(I − βri)Li − (I − βrj)Ljmτ1−σ)

((I − βrj)Lj − (I − βri)Limτ1−σ)

Note that the relative number of varieties produced depends on three factors: (i)

the relative population between the two cities, which we will denote using Λ ≡ Li/Lj ,

(ii) the relative level of disposable income consumer’s enjoy in city i relative to city j,

D ≡ (I − βri)/(I − βrj), and (iii) the extent of the trade frictions between the two cities,

mτ1−σ = τ1−σ(πX − fX)/(fX − fX). The relative number of varieties between the two

cities, denoted by N ≡ nii/njj , is equal to

N =

(
ΛD −mτ1−σ)

(1− ΛDmτ1−σ)
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In the symmetric equilibrium, populations and rents are equal across the cities so Λ = 1

and D = 1, and, therefore, N = 1 such that the same number of products is produced

in each location. Outside the symmetric equilibrium, we know that however, relative

populations and rents play a role in determining relative production variety. Our aim here

is to show that, outside the symmetric equilibrium, there are more varieties produced in

the larger city, such that N > 1 where Λ > 1 and N < 1 where Λ < 1. This will be the

case if N is increasing in Λ, or

∂N

∂Λ
=

D(1− (mτ1−σ)2)

(1− ΛDmτ1−σ)2 > 0

We have assumed that rents and the minimum housing requirement are low enough in

both cities such that consumers have positive disposable incomes and D > 0. Therefore,

this inequality holds as long as (1− (mτ1−σ)2) > 0, which is true for all feasible transport

costs, τ ≥ 1, by the assumption that some, but not all firms export, or m < 1.

It follows directly from Lemmas 1 and 2 that, under the same conditions, more varieties

will be available to consumers in the large city than in the small city:

Proposition 2. When differentiated products are produced in both cities and some, but

not all, of these products are traded in both directions, a higher number of differentiated

product varieties are available in the larger city.

Proof. Here we need to show that:

nii + nji > njj + nij (1.20)

for Li > Lj .

Lemma 1 implies that nji = mnjj and nij = mnii, so the above inequality can be

expressed as:

nii +mnjj > njj +mnii

nii(1−m) > njj(1−m)

nii > njj
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We have shown that this inequality holds for Li > Lj in Lemma (2). Therefore, equation

1.20 holds when Li > Lj , i.e. there are more differentiated product varieties available in

the larger of the two cities.

Krugman (1991) showed that, when trade costs are positive, but non-infinite, the

average price of differentiated products is lower in the larger city and, since all goods

are traded, this implies that the differentiated product price index is also lower there.

Proposition 3 and 4 below show that these results are robust in a model in which some

but not all goods are traded.

Proposition 3. When differentiated products are produced in both cities and some, but

not all, of these products are traded in both directions, differentiated products are sold at

a lower price, on average, in the larger city.

Proof. Equation (1.10) implies that the average price of differentiated products in city i,

p̃i is equal to:

p̃i =
nii + njiτ

ρ(nii + nji)

We need to show that p̃i < p̃j or alternatively that:

nii + njiτ

nii + nji
<
njj + nijτ

njj + nij
(1.21)

for Li > Lj .

Lemma 1 implies that nji = mnjj and nij = mnii, so the above inequality can be

simplified as follows:

nii +mnjjτ

nii +mnjj
<

njj +mniiτ

njj +mnii

(nii +mnjjτ) (njj +mnii) < (njj +mniiτ) (nii +mnjj)

niinjj +mn2
ii +mn2

jjτ +m2niinjjτ < niinjj +mn2
jj +mn2

iiτ +m2niinjjτ

n2
jj(1− τ) < n2

ii(1− τ)

njj < nii

We have shown that this inequality holds for Li > Lj in Lemma (2). Therefore, equation

1.21 holds when Li > Lj , i.e. differentiated product varieties are sold at a lower average
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price in the larger of the two cities.

The final result below states that the differences in variety and average prices outlined

above combine to yield the key agglomerative force in the model, the lower differentiated

product price index:

Proposition 4. When differentiated products are produced in both cities and some, but

not all, of these products are traded in both directions, the differentiated product price

index, Pi, is lower in the larger city.

Proof. Here we need to show that Pi < Pj or, alternatively, that

Pi
Pj

< 1

when when Li > Lj .

We first use equations (1.10) to (1.13) to express ex-post export profits in terms of

city-specific price indices as follows:

πij =
α(I − βrj)Ljτ1−σ

σP 1−σ
j

and πji =
α(I − βri)Liτ1−σ

σP 1−σ
i

(1.22)

Since these profits are equal by Lemma (1) under the conditions outlined in this propo-

sition, we can use equation (1.22) to write the relative differentiated product price index

between the two cities as the product of two terms:

Pi
Pj

=

(
Li
Lj

) 1
1−σ

(
I − βri
I − βrj

) 1
1−σ

(1.23)

The first term directly relates the relative price index to relative city size. Since σ >

1, this term tends to make the differentiated price index lower in the larger city. The

second term relates the relative price index to city size through city rents. Specifically,

this term indicates that the relative price index is decreasing in the amount of income

that consumers have for discretionary spending, after they have purchased the minimum

housing requirement, β, in city i relative to city j.10

10Appendix Section 1 discussed why the minimum housing requirement is necessary for the empirically
relevant heterogeneous cities equilibrium to exist .
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The higher the rents in a city, the more expensive the minimum housing requirement

and the lower the amount of income consumers have for discretionary spending. Since

supply of housing is fixed in each location, rents are increasing in city size.11 This indicates

that the second term in the relative price index equation above puts upward pressure on

the relative price index in the larger city. To see this, we take the difference between

discretionary spending in city i relative to city j and substitute for equilibrium rents using

equation (1.7) and then for income using equation (1.9):

(I − βri)− (I − βrj) = β(rj − ri)

= (1− α)βI

[
Lj

H̄ − αβLj
− Li
H̄ − αβLi

]
= (1− α)βI

[
Lj(H̄ − αβLi)− Li(H̄ − αβLj)

(H̄ − αβLi)(H̄ − αβLj)

]
=

(1− α)βIH̄(Lj − Li)
(H̄ − αβLi)(H̄ − αβLj)

The denominator of this term is positive as long as consumers in each city buy their

minimum housing requirement, such that H̄ > βLi > αβLi and H̄ > βLj > αβLj . The

numerator is negative for Li > Lj . Consumers’ discretionary spending is, therefore, lower

in the larger city. This tends to make the relative price index higher in this location.

To determine whether the price index is lower in the larger location, despite this

discretionary spending effect, we now look at the first or second terms in the price index

equation (1.23) together. Let λ equal the share of total population living in city i, such

that Li = λL and Lj = (1 − λ)L, and denote the per capita housing endowment as

h̄ = H̄/L. Using this notation and re-arranging terms, we can rewrite the relative price

index as:

Pi
Pj

=

[
λ
(
h̄− αβ(1− λ)

) (
h̄− βλ

)
(1− λ)

(
h̄− β(1− λ)

) (
h̄− αβλ

)] 1
1−σ

In order to show that the price index is lower in the larger city, we need to show that the

11To see this mathematically, note that the derivative of rents, defined in equation (1.7), with respect
to city size is

∂ri
∂Li

=
(1− α)IH̄

(H̄ − αβLi)2

Since the Cobb-Douglas expenditure share on differentiated products, α, is between zero and one, this
derivative is positive.
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relative price index is less than one for λ > 0.5 or, alternatively, that the numerator of the

term in the square brackets is greater than the denominator for λ > 0.5:

P 1−σ
i − P 1−σ

j = λ
(
h̄− αβ(1− λ)

) (
h̄− βλ

)
− (1− λ)

(
h̄− β(1− λ)

) (
h̄− αβλ

)
= β

(
α(1− λ)λ+ (1− λ)2 − αλ(1− λ) + λ2

)
= β

(
(1− λ)2 − λ2

)
> 0

1.6 Conclusion

This paper has presented a simple NEG model that generates asymmetric equilibria where

residents of large cities benefit not only from the lower prices, but also from the greater

variety available to them relative to residents of small cities. The basic intuition is that

agglomeration will result in lower goods prices but also yield congestion costs, with the

added twist along the lines of Melitz (2003) that not all goods will be consumed everywhere.

Here, as in Helpman (1998)’s variant of the seminal Krugman (1991) framework, congestion

costs are due to the fact that the price of a fixed supply of land, or housing, increases

with a city’s population. Just as Krugman (1991) and Helpman (1998) showed that there

can be asymmetric urban equilibria characterized by larger cities having lower prices, this

paper showed that adding heterogeneous fixed costs of exporting to these models yields

asymmetric equilibria in which larger cities have both lower prices and more varieties of

traded goods.
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1.A Derivation of Price Index Decomposition

Proposition. The relative price index for differentiated goods between two cities can be

written as:

Pi
Pj

=
(
ñi
ñj

) 1
1−σ

(
sii + (1− sii)τ1−σ

sjj + (1− sjj)τ1−σ

) 1
1−σ

(1.24)

where ñi = nii +nji is the total number of varieties available in city i and sii = nii/(nii +

nji) is the share of those varieties that are produced locally.

Proof. The price index for a city j ∈ I is defined in equation (1.11) rewritten below:

Pj =

(∑
i∈I

nijp
1−σ
ij

) 1
1−σ

=
1

ρ

(∑
i∈I

nijc
1−σ
ij

) 1
1−σ

Using the definition of marginal costs, cij , from equation (1.10) and defining the set of

two cities to be I = {i, j}, we can re-write the price index as:

Pj =
1

ρ

(
njj + nijτ

1−σ) 1
1−σ

=
1

ρ
(njj + nij)

1
1−σ

(
njj

njj + nij
+

nijτ
1−σ

njj + nij

) 1
1−σ

=
1

ρ
(ñj)

1
1−σ

(
sjj + (1− sjj)τ1−σ) 1

1−σ

where we use ñj = njj + nij to denote the number of varieties available in city j and

sjj = njj/(njj + nij) to denote the share of those varieties that are produced locally in

city j. The relative price index between two cities i and j can, therefore be written as:

Pi
Pj

=
(
ñi
ñj

) 1
1−σ

(
sii + (1− sii)τ1−σ

sjj + (1− sjj)τ1−σ

) 1
1−σ
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Figure 1.1: Utility in City i Relative to City j (log(Ui/Uj)) vs. Proportion of Population
in City i (λ)
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Figure 1.2: Number of Varieties Produced in Each City and Share Exported vs. Proportion
of Population in City i (λ)
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Figure 1.3: Variety, Prices, and Price Indices in City i Relative to City j (log(Ui/Uj)) vs.
Proportion of Population in City i (λ)
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Figure 1.4: Utility in City i Relative to City j (log(Ui/Uj)) vs. Proportion of Population
in City i (λ) for Different Minimum Housing Requirements (β)
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Chapter 2

Is New Economic Geography

Right? Evidence from Price Data

Jessie Handbury and David E. Weinstein1

2.1 Introduction

In awarding Paul R. Krugman the Nobel Prize in economics for his work for international

trade and economic geography, the committee characterized his contribution to economic

geography as follows: “The new economic geography initiated by Krugman broke with . . .

tradition by assuming internal economies of scale and imperfect competition. Agglomer-

ation is then driven by pecuniary externalities mediated through market prices as a large

market allows greater product variety and lower costs [emphasis in original].”2 Despite

this award, there have been no tests of whether larger markets actually do have greater

product variety and whether differences in the number of available varieties are sufficient

to lower costs. This paper is the first to fill this gap by testing empirically whether large

markets are actually characterized by lower prices of traded goods, and more importantly,

whether this, in conjunction with greater product variety, lowers costs for consumers. In

other words, is the fundamental mechanism underlying new economic geography models

correct?

1We wish to thank Donald Davis, Jonathan Dingel, Zheli He, Joan Monras, Mine Senses, and Jonathan
Vogel for excellent comments. Molly Schnell provided us with outstanding research assistance.

2Prize Committee of the Royal Swedish Academy of Sciences (2008).
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Over the last two decades, there has been a burgeoning literature that has aimed to

test the implications of New Economic Geography (NEG) models (see the recent excel-

lent surveys by Brakman, Garretsen, and van Marrewijk (2009); Fujita and Mori (2005);

Combes, Mayer, and Thisse (2008)) as well as the costs of remoteness such as Redding

and Sturm (2008). Similarly, Combes, Duranton, Gobillon, Puga, and Roux (2009) have

developed models and empirical tests that underscore the importance of agglomeration

economies relative to firm selection. These tests have examined predictions of the theory

– e.g., home market effects, multiple equilibria, patterns of spatial agglomeration, and wage

distribution – but they left untouched the question of whether the precise agglomeration

mechanism Krugman postulated to be important was at work.

This paper deviates from prior work by using highly disaggregated barcode data cover-

ing hundreds of thousands of goods purchased by 33,000 households in 49 cities in the US

to measure product variety and the variety-adjusted costs faced by consumers in different

locations. This permits the precise estimation of the pecuniary externalities hypothesized

by Krugman.

NEG models generate externalities from a very simple structure. Trade costs are

positive between cities, so locally-produced goods must be cheaper in the local market

than they are elsewhere. Larger cities will produce more varieties than smaller ones, so

consumers in these locations will purchase more locally-produced goods and, therefore,

face a lower average price. When not all products are traded, consumers will also have

access to more varieties of goods in larger cities. These two forces combine to generate

a lower price index in larger cities.3 This lower price index induces people to move into

cities enhancing the scale economy.

The notion that prices are lower in larger cities has not been supported by data exam-

ined in previous work. In a seminal paper estimating a general equilibrium model of city

size, Roback (1982) identified a cost-of-living premium using U.S. housing prices and, more

recently, DuMond, Hirsch, and Macpherson (1999) confirmed this result using aggregate

U.S. cost-of-living indices. Similarly, Tabuchi (2001) finds that aggregate consumer price

3In the original Krugman (1991) paper more varieties are produced in a large market but with non-
infinite trade costs all varieties are available to consumers in both large and small markets. We will
specifically refer to the fact that more varieties are available to consumers in large markets as “the variety
effect.” The previous chapter shows that this can arise in Helpman (1998) ’s variant of the Krugman (1991)
model when there is a heterogeneous fixed cost associated with trading goods between cities.
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indices, land values, and housing costs are all higher in larger Japanese cities. One reason

that these studies have not been deemed fatal for the theory is that it is easy to mod-

ify NEG models to generate higher housing prices in cities, as demonstrated in Helpman

(1998) and in the theory section below, or higher non-traded goods prices, as in Suedekum

(2006).

Prior empirical studies also suffer from biases because they do not compare the prices

of identical goods. Broda, Liebtag, and Weinstein (2009), for example, find that wealthier

households purchase substantially more expensive varieties of the same narrowly defined

good – e.g., milk, eggs, water – than poorer households, even in the same store. Similarly,

Broda and Weinstein (2008) find that most of the variation in average prices paid by

wealthy and poor households for goods like milk, eggs, and water is due to differences in

the varieties consumed not the prices of the underlying varieties. The remaining variation

is due to differences in shopping behavior; wealthy households are more likely to shop

at high-amenity stores and respond less to sales. To the extent that stores in wealthier

neighborhoods offer more amenities and different ranges of products to cater more to local

clientele, this is likely to bias studies based on non-identical samples of goods purchased

in non-identical stores to find higher prices in wealthier locations. The Bureau of Labor

Statistics accounts for these effects by computing the Consumer Price Index (CPI) using

price changes of a precisely-defined bundle of goods within a given store reported by a

field agent following instructions to control for shopping differences across consumers.

Similarly, in this paper, we compare prices across cities using indices of the prices of

identical products sold in the same store chain by the same type of shopper.

Our paper makes a number of contributions. Consistent with earlier analyses, we

show that a simple price index for identical goods rises with city size. However, we also

demonstrate that this result is not robust to controls for the household making the purchase

(i.e., shopping characteristics) and the type of store in which the purchase is made (i.e.,

store amenities). In other words, most of the reason prices of identical goods appear to be

more expensive in large cities is that residents of those cities tend to buy more expensive

varieties and they purchase them more frequently in “nice” stores that are expensive in

all locations. We find that prices for the same good purchased are actually lower in larger

cities once we control for these forces. This is the first empirical confirmation of Krugman’s
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conjecture about how the prices of traded goods vary with city size. Moreover, if we control

for the fact that prices in larger cities embody land prices, we find that prices net of land

costs fall even more sharply with city size. In the strictest sense, the results on the prices

of traded goods available in more than one city are a precise structural estimation of the

Krugman (1991) agglomeration force, and one need not think about what the prices are

for non-traded goods.

However, our study also is the first to document that the variety of traded goods avail-

able for consumption is substantially higher in larger cities and, as we show theoretically,

this result is very much in line with the NEG approach. The elasticity of the number of

products with respect to city size is a whopping 0.2-0.3 (depending on the specification)

which means that there is enormous variation in the number of available varieties across

cities. For example, we estimate residents of New York (population 9.3 million) can choose

between 97,000 different types of groceries, whereas residents of Des Moines (population

456,000) only have access to 32,000 varieties. This greater availability of varieties in larger

cities means that variety-adjusted costs are likely to be substantially lower in large cities,

as NEG models predict, setting the stage for our econometric exercise seeking to quantify

the importance of the availability of varieties for welfare.

To estimate these welfare effects, we construct a variety-adjusted exact price index for

each city in our sample. Our results show that while identical goods are purchased at

higher prices in larger cities, the variety effect offsets this price effect resulting in similar

variety-adjusted costs across cities. Since the prices of identical goods are actually lower in

larger cities when we control for purchaser characteristics and store amenities, the variety-

adjusted costs are substantially lower for a consumer in a large city than for a consumer

sharing the same characteristics shopping in the same stores in a small city. These effects

are not small. Our estimates indicate that a household that moved from Des Moines to

New York and purchased goods from the same type of stores in the two cities would realize

a 10 percent drop in the overall cost of its grocery purchases. This suggests that the price

effects hypothesized by Krugman are economically significant.

The rest of the paper is structured as follows. Section 2.2 describes the data we

use and develops some stylized facts about purchasing behavior and variety availability

that motivates our modeling choices. Section 2.3 develops the price index theory and
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econometrics underlying our estimation strategy. We present our results in Section 2.4,

and Section 2.5 concludes.

2.2 Data

The primary dataset that we use is taken from the Nielsen HomeScan database. This data

was collected by Nielsen from a demographically representative sample of approximately

33,000 households in 52 markets across the U.S. in 2005. Households were provided with

Universal Product Code (UPC) scanners to scan in every purchase they made including

online purchases and regardless of whether purchases were made in a store with scanner

technology.4 We have the purchase records for grocery items, which include purchase

quantity, price, date, store name, product “module” (i.e., a detailed description of the

type of good, e.g. diet carbonated beverages), as well as demographic information for

each household making the purchase. For much of the analysis, we will be working with

“brand-modules” that correspond to all the UPCs within a module that are marketed

under a particular brand, e.g., “Fanta-diet carbonated beverages.” We will also use product

“groups,” a more aggregate product categorization provided by Nielsen. Each product

“module” fits within a unique product “group” (i.e., the “diet carbonated beverages”

and the “regular carbonated beverages” product modules both fit within the “carbonated

beverages” product group). Detailed descriptions of these data and the sampling methods

used can be found in Broda and Weinstein (2010).

A major advantage of these data relative to the data used in previous studies comparing

cost-of-living indices across cities is that we can compare prices of identical goods to

directly test the prediction that traded goods are on average cheaper in agglomeration

locations. We can further use the household level demographic data and store names

to separate how much of the inter-city price differential arises from factors that are not

considered in the NEG models, such as differences in demographics, shopping behavior,

and/or store amenities.

Although the Nielsen dataset contains data for 52 markets, we classify cities at the

4In cases where panelists shop at stores without scanner technology, they report the price paid manually.
Since errors can be made in this reporting process, we discard any purchase records for which the price
paid was greater than twice or less than half the median price paid for the same UPC, approximately
250,000 out of 16 million observations.
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level of Consolidated Metropolitan Statistical Area (CMSA) where available, and the

Metropolitan Statistical Area (MSA) otherwise. For example, where Nielsen classifies

urban, suburban, and ex-urban New York separately, we group them all as New York-

Northern New Jersey-Long Island CMSA. There are two cases in which Nielsen groups

two MSAs into one market. In these cases, we count the two MSAs as one city, using

the sum of the population and manufacturing output and the population-weighted mean

land value. We use population, income distribution, and racial and birthplace diversity

data from the 2000 U.S. Census5 and 2000 land values from Davis and Palumbo (2007).

Matching the Nielsen data with the Davis and Palumbo data reduces the number of cities

in our analysis to 37.

Before turning to the theory and estimation, we characterize two stylized facts of the

raw data that motivate our approach:

Stylized Fact 1: Grocery Unit Value Indices Indicate Large Cities are More

Expensive A common method to compare price levels across cities within countries

relies on unit value indices such as those published by the Council for Community and

Economic Research (formerly the American Chamber of Commerce Research Association

(ACCRA)). The ACCRA Cost of Living Index (COLI) is a unit value index calculated

using prices for similar products collected in different cities. The product categories are

narrowly defined, e.g. “price per pound of ground beef, lowest price, min 80% lean,” “12

oz. plain regular potato chips,” or a “two bedroom, unfurnished apartment, excluding all

utilities except water, 1 or 2 baths, 950 sq. ft.” These indices have often been used to argue

that prices are higher in larger cities. While we will deal with a host of problems arising

from comparing prices of similar, as opposed to identical, products later, it is important

to establish that the result that prices are higher in larger cities is not just driven by the

housing component of these indices but is also true when looking at the grocery component

alone.

In order to establish this stylized fact, we obtained the ACCRA COLI data for 2005

and used it to build a food index based on their unit values and weights. We also matched

every food category used in the ACCRA COLI index with the same category of UPCs in

5The Nielsen sample is demographically representative within each market.
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the Nielsen data and built a food index based on the average unit values of these UPCs

and the ACCRA weights. We refer to these two constructed indices as the ACCRA food

index and Nielsen food index.

Table 2.1 presents cross-city correlations between these various unit value indices and

city size. The first column demonstrates that it is not just the aggregate COLI index

that is highly and positively correlated with city size, but grocery sub-indices are also

highly correlated with city size. The correlation between the aggregate COLI and log city

population is 0.68 overall and 0.55 for food items. Similarly, the correlation between log

population and the Nielsen food index is 0.56 – almost identical to that for the ACCRA

food index. If we look at the correlations between the different indices in columns 2 and

3, we see that that correlation coefficient tends to hover around 0.8, indicating that food

prices tend to be high whenever aggregate prices are high. In other words, it is not just

indices containing land unit values that indicate large cities are more expensive, grocery

unit values are also higher.

Table 2.1: Correlation Coefficients

Nielsen ACCRA ACCRA

Log(Populationc) Food Index Food Index Composite Index

Log(Populationc) 1

Nielsen Food Index 0.56 1

ACCRA Food Index 0.55 0.77 1

ACCRA Composite Index 0.68 0.81 0.85 1

Stylized Fact 2: Consumers in Larger Cities Consume More Varieties One

simple way to see if households in larger cities have access to more varieties is to count

them. Because Nielsen tends to sample more households in larger cities, we need to make

sure that the sample size is constant across cities. We therefore restrict ourselves to only

looking at cities in which Nielsen sampled at least 450 households and compare the number

of varieties purchased by a random sample of 450 households in each of these cities. We

plot the aggregate number of different UPCs purchased by all of these households against

the size of the city in which the households live in Figure 2.1. The results show a clear

positive relationship between the variety of UPCs purchased in a city and the population

of the city. This is certainly suggestive of the notion at the center of NEG models that
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the number of varieties available in a location rises with number of inhabitants in that

location. However, it leaves open the question of whether these differences are likely to

matter for consumers; that is, does the city size variety effect drive down the consumer

price index in larger cities relative to small? We now turn to assessing this question.

Figure 2.1

2.3 Empirical Strategy

In Section 2.4 we will examine the relationship between city size and consumer costs

by answering three separate, but related questions: 1) Are traded goods prices lower in

larger cities as predicted in Krugman (1991)?; 2) Are more varieties available in larger

cities as predicted by the Krugman (1991) extension presented above?; and 3) What is

the combined effect of the lower prices and greater variety on the aggregate price index

faced in large, relative to small, cities; that is, what is the size of the price index effect

that drives agglomeration in both Krugman (1991) and the model presented above?6 To

answer each of these question we need to measure traded goods prices, variety, and the

effects of each component on the aggregate price index. We present the methods we use

for these measurements here before presenting our empirical results below.

6Note that these questions directly test the main results of the previous chapter and, in doing so, also
test the original Krugman (1991) predictions that traded goods prices are lower in larger cities and that
the aggregate price index is lower in these locations, even without there being greater variety there.
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2.3.1 Adjusting Prices for Amenities and Buyer Characteristics

Our first challenge in identifying the “price index effect” is to measure the prices of goods

consumed in more than one city – i.e., “common goods.” One of the complicating factors

associated with measuring these prices is that store amenities and shopping behavior vary

systematically across locations. If, for example, bigger cities feature nicer stores, we might

systematically bias our results against the NEG model. Similarly, wealthier households

often pay more for the same goods in the same stores (presumably because the opportunity

cost of time spent shopping is higher) and per capita income is increasing in city size.

Finally, since urban population is positively correlated with land prices in most spatial

models, the non-traded, land price component of grocery prices might drive a positive

correlation between population and prices and one may want to strip this component out

to evaluate the pure impact of population on tradable goods prices. This suggests that we

should purge the data of these effects, but in the interests of understanding which effects

are critical, we will neutralize these confounding factors one at a time.

We begin by letting Puzcrh be the price of UPC u, purchased in zip code z, in store r,

by household h in city c. We will refer Puzcrh as the “unadjusted price” and define puzcrh

as ln(Puzcrh). The simplest way to purge the price data of amenities and other effects that

are not in the model is in a two step process, the first of which is to run a regression of

the form:

puzcrh = αu + γ ln(Popc) + Zhβ + δr + φ1 ln(Incomez) + φ2 ln(Landc) + εuzcrh (2.1)

where Zh denotes a series of household characteristics; Popc denotes the population of the

city in which the UPC was purchased; Incomez is the per capita income in the zip code

where the UPC was purchased; Landc is the price of land in the city where the UPC was

purchased; and Greek symbols denote parameters to be estimated.

Equation (2.1) enables us to make a number of adjustments to the prices to control

for various characteristics that can affect prices but are outside of the canonical Krugman

model. We construct the log demographic-adjusted price as

p̃Duzcrh = puzcrh − Zhβ̂ (2.2)



40 CHAPTER 2. PRICES AND VARIETY ACROSS CITIES: EVIDENCE

p̃Duzcrh corresponds to log prices purged of effects of demographic characteristics of the

buyers. This will be useful when we want to control for the fact that wealthier people

tend to locate in larger cities. Crucially, we have included population in regression 2.1 so

that even if household demographics, or any of the other controls, are correlated with city

size, that will not affect the magnitude of our adjustment. We then purge prices of store

effects in the log store-adjusted price defined as

p̃SDuzcrh = purzcrh − Zhβ̂ − δ̂r (2.3)

For stores with more than $100,000 in sales, which includes national chains such as Wal-

Mart, Kroger, and CVS, we estimate δr for each chain and purge prices of chain-specific

store amenities. We therefore included close to 100 store dummies; the majority of these

are located in 15 or more cities, and all in at least 2 cities. For smaller stores, however, we

restrict δr to be the same for all stores of the same type, where type is defined in one of

seven “channel-IDs”: grocery, drug, mass merchandiser, supercenter, club, convenience,

and other. Here, we are accounting for the fact that products might be distributed through

different channels in larger cities than smaller cities, e.g. through convenience and grocery

stores as opposed to super centers and club stores. P̃SDuzcrh = exp
(
p̃SDuzcrh

)
is the closest

approximation we have to the BLS’s approach of looking at prices within stores using a

given shopping approach, and it forms the basis of our preferred specification.

However, for the sake of robustness, we also consider a number of other possibilities.

Broda, Liebtag, and Weinstein (2009) found that stores in more expensive neighborhoods

charge more for the same UPCs presumably because consumers may enjoy shopping in

nicer neighborhoods and/or grocery-store workers in high income neighborhoods may offer

more amenities. We account for this possibility defining the following income-adjusted

price

p̃SDIuzcrh = purzcrh − Zhβ̂ − δ̂r − φ̂1 ln(Incomez) (2.4)

These prices will be useful when we want to consider the shift in utility that would occur

if a household with a particular set of demographic characteristics living in a particular

type of neighborhood moved to a comparable neighborhood in another city.

Finally, since even the prices of tradables contain a non-traded component (and this is
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something we could easily adjust our model to incorporate), we may also wish to consider

prices that have also been purged of land values as an additional robustness check. We

define land-value adjusted prices as

p̃SDILVuzcrh = purzcrh − Zhβ̂ − δ̂r − φ̂1 ln(Incomez)− φ̂2 ln(Landc) (2.5)

These prices will give us a sense of how the prices of purely traded goods vary across cities

before land rents are included in the retail prices.

2.3.2 The Price Level in Cities

We will adopt two approaches to the measurement of prices in cities. The first corresponds

to a purely structural test of the pecuniary externality identified in Krugman (1991). Since

all varieties are available for consumption everywhere, the proper way to aggregate the

prices of tradable goods is the CES price index. This is something that we can easily

compute for the set of goods available in any city. Checking whether this index falls with

city size provides a direct test of the agglomeration mechanism in Krugman (1991).

However, we have also seen that a strong feature of the data is the greater availability

of tradable varieties in larger cities. We have extended the basic model to reflect this

phenomenon and now describe how we account for it in our empirical analysis. Feenstra

(1994) developed the variety-adjusted price index for the CES utility function. Here, we

will modify it so that it can be used with our data.7 We begin by modeling the aggregate

utility function as a nested CES utility function. To do this, we need to establish some

notation. Let g ∈ {1, ..., G} denote the set of product groups, which we define in the same

way as Nielsen, i.e., sectors like “Crackers”, etc.. As in Broda and Weinstein (2010), the

product group of “Crackers”, would contain brand-modules that are the intersections of

brands (e.g. “Nabisco-Premium”) and modules within product groups (e.g. “Flaked Soda

7Given that the median number of UPCs purchased in a module by a single person household (condi-
tional on purchasing anything in the module) is one, the data suggest that one should think of households
as having heterogeneous ideal-type preferences, as opposed to the identical CES preferences that form the
theoretical foundation for the variety-adjusted exact prices indices used in this paper. This discrepancy,
however, is not a problem for our analysis if we think of consumers as having a logit demand system. In
particular, Anderson, de Palma, and Thisse (1987) have demonstrated that a CES demand system can
arise from the aggregation of ideal-type logit consumers. We will therefore follow Anderson, de Palma,
and Thisse (1987) and use the CES structure to evaluate aggregate welfare even though we know that the
discrete choice model is a better depiction of reality at the household level.
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Crackers” or “Cheese Crackers”). Thus brand-modules would be categories like “Nabisco-

Premium-Flaked Soda Crackers” and “Pepperidge Farm Goldfish-Cheese Crackers.” We

let bg ∈ {1, ..., Bg} denote the set of “brand-modules” within a product group.

We define Ubgc the set of all UPCs that have positive sales in city c in brand-module b,

in product group g; Ubg the set of all UPCs that have positive sales nationally in brand-

module b, in product group g; Bgc the set of all brands that have positive sales in city

c in product group g; and Bg the set of all brands that have positive sales nationally in

product group g.

It turns out that it is useful to measure the importance of a UPC’s sales relative to

several benchmarks. First, let subg be the national expenditures on UPC u as a share of

national expenditures on brand b in product group g, and let subgc be a city’s expenditures

on UPC u as a share of the city’s expenditures on brand b in product group g. We next

define the national market share of city c’s available UPCs in that particular brand-module

(i.e., u ∈ Ubgc) as

sbgc ≡
∑

u∈Ubgc

subg

Thus, sbgc, which we call the “UPC-share,” tells us the expenditure share of UPCs within

a brand that are available in a city using national weights. In other words, if the UPCs

that constitute a large share of a brand’s national sales are available locally, then sbgc

will be large. It will also be useful to define an analogous measure computed using local

weights:

s̃bgc ≡
∑

u∈Ubgc

subgc

Just as we defined shares of UPCs within brands, we also need to measure the impor-

tance of various brands. We do this in an analogous manner below;

sbgc ≡
∑
b∈Bgc

sbg and s̃gc ≡
∑
b∈Bgc

sbgc

where sbg, which we call the “brand-share,” is the national market share of brand-module

b in product group g, and sbgc is the local market share of brand-module b in product

group g. We can now modify Broda and Weinstein (2010)’s Proposition 1 as follows:
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Proposition 5. For g ∈ G, if Bgc 6= ∅ then the exact price index for the price of the set

of goods G in city c relative to the nation as a whole that takes into account the differences

in variety in the two locations is given by,

EPIc =
∏
g∈G

 ∏
u∈Ugc

CEPIgc (sgc)
1

1−σag
∏
b∈Bg

(sbgc)
wbgc
1−σwg

wgc

where wbgc and wgc are log-ideal CES Sato (1976) and Vartia (1976) weights defined as

follows:

wgbc =

s̃bgc−sbg
ln s̃bgc−ln sbg∑

b∈Bg

(
s̃bgc−sbg

ln s̃bgc−ln sbg

) and wgc =

s̃gc−sg
ln s̃gc−ln sg∑

g∈G

(
s̃gc−sg

ln s̃gc−ln sg

)
σag is the elasticity of substitution across brand-modules in product group g, σwg is the elas-

ticity of substitution among UPCs within a brand-module, sg is the share of product group

g in national expenditures, and CEPIgc is the conventional exact price index associated

with the CES utility function for product group g and city c relative to the national sample.

This index has been used extensively in the literature (see Feenstra (2010) for a survey

of its use), so we will only briefly discuss its properties here. While the CEPIgc measures

the prices of products available in city c relative to their average price nationally, the

second and third terms within the brackets adjust the exact price index to account for the

fact that not all varieties, respectively defined as brands and UPCs, available nationally

are available in city c.

Each variety adjustment is calculated using an elasticity of substitution parameter and

the national expenditure share of unavailable varieties. One of the properties of this index

is that the variety adjustments and, therefore, the price level will fall as more UPCs and

brands are available in a city, and will fall faster when these additional varieties and brands

are popular nationally. This property is due to the fact that the index gives more weight

to the availability of non-common varieties that comprise a larger share of expenditure in

the market where they are available, in our case, the national market. The elasticity of

substitution parameter weights varieties by how differentiated they are. As a result, the

availability of more differentiated varieties matters more than the availability of varieties
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that are close substitutes to existing varieties. We obtain the elasticities of substitution

computed for UPCs within a brand-module and across brand modules within a product

group from Broda and Weinstein (2010).

2.3.3 Measuring Variety Availability in Cities

Measuring the brand-share, sgc, and the UPC-share, sbgc, provides a particular challenge

because we do not observe all of the varieties available in each city. Our estimates of sbgc

and sgc are likely to be affected by a downward bias on our estimates of the size of sets

Ubgc and Ugc. The bias is likely to emerge from two sources. First, some cities have smaller

samples of households than other cities, so there will be a natural tendency for the counts

of UPCs purchased in each city to vary with the sample size in the city. Second, even if

the sample sizes were identical in every city, the sample count of UPCs will be below the

true count of UPCs because some goods will not be purchased by our sample of households

but will be purchased by other households in the city.

Our approach to this problem is to break it into two components. We begin by devel-

oping two methodologies for estimating the number of UPCs and brand-modules available

in a city, the size of the sets Ubgc and Ugc respectively, using purchase records for only

a sample of households in the city. The first method is parametric and the second is

non-parametric, but we will show that both methodologies yield very similar estimates for

how the numbers of varieties and brands vary across cities, which is a critical component

in understanding whether the extended NEG model is valid.

Unfortunately, there is not a theoretical underpinning for parametrically estimating

sgc and sbgc. Nevertheless, these can be estimated using a non-parametric approach. We

therefore rely on the fact that, in the standard NEG models (with no quality variation

across varieties), sgc and sbgc are proportional to the number of varieties available and the

fact that both parametric and non-parametric estimation yield very similar estimates of

the counts of varieties to motivate our use of non-parametric estimates for sgc and sbgc .

Initially, let us assume that each household selects only one UPC out of the S UPCs

available in the market. If we also assume that each UPC is purchased with a probability π

that is identical for all UPCs in the market, then it follows that π = 1/S. Our task, now, is

to estimate S using the number of different UPCs purchased by a sample of H households.
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To do this, we make one additional assumption: stores have sufficient inventories of goods

so that the purchase of a UPC by one household does not reduce the probability of another

household buying the same UPC. If household purchases are independent in the cross-

section, then the probability that we observe one of the H households in our sample

selecting a particular UPC is equal to one minus the probability that none of the H

households selects the UPC, or 1 − (1 − 1/S)H . The number of different UPCs that we

expect to observe in the purchase records of the H households is simply the sum of these

probabilities across all of the S available UPCs,

S(H) = S[1− (1− 1/S)H ] (2.6)

It would be straightforward to obtain an estimate for the number of varieties in the market

in this simple case. By equating S(H) to the sample UPC count, S̃(H) , we can derive an

estimate for the number of available UPCs, Ŝ, which satisfies equation (2.6). Note that

the distribution of S(H) should follow the negative exponential function,

S(H) = S
(

1− e− ln((1−1/S)H)
)

(2.7)

This simple approach cannot be applied to the data for two reasons. First, households

purchase more than one UPC in the course of a year. And second, some UPCs, like milk,

are likely to be purchased at higher frequencies than other UPCs, like salt. Hence the

probability that we observe the purchase of a UPC will vary across UPCs. We can deal

with the first problem by allowing the purchase probability π to differ from 1/S. The

second problem, however, is more complicated because solving it requires us to know the

purchase frequencies not only of every observed UPC but also of the UPCs that we do

not observe in our sample. In order to solve this problem, we follow Mao, Colwell, and

Chang (2005). We allow for different products to have different purchase probabilities,

but we restrict these probabilities to be identical for groups of UPCs that we will refer to

as “incidence groups.” Grouping UPCs into this way enables us to estimate the purchase

frequencies for all of the UPCs in an incidence group even though we may only observe

one of these UPCs being purchased.
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Suppose that each UPC u has a probability of πcu of being selected by any one house-

hold in city c, and that there are K different incidence groups, or values that πcu can

take in each city c, such that πcu = πck for each UPC in category k. We define αck as

the proportion of UPCs in city that are selected with probability πck. For example, when

residents of a particular city choose to buy a particular good, one might observe one pur-

chase probability for dry goods, another one for perishable goods, a third one for cleaning

supplies, etc.

We can now write the following equation relating the shares of each incidence group,

the probability a UPC in that group is selected, and the total number of UPCs in the city

as

S
K∑
k=1

αckπck = 1

The number of UPCs we expect to observe in a sample of Hc households is

Sc(Hc) = Sc

K∑
k=1

αck(1− (1− πck)Hc) (2.8)

where Mao, Colwell, and Chang (2004) note that equation (2.8) can be re-written as:

Sc(Hc) = Sc

K∑
k=1

αck(1− exp(CckHc)) where Cck = − ln(1− πck)

It is straightforward to see that equation (2.7) is a specific case of equation (2.8) in which

the selection probability is identical for all UPCs, i.e., K = 1 and π = 1/S. Equation

(2.8) is therefore referred to as the “generalized negative exponential” (GNE) model.

We can now use maximum likelihood estimation to estimate Sc as well as every αck, and

πck for any choice of K, but we relegate the details of that procedure to Appendix 2.A. In

order to identify the correct number of incidence groups, K, we estimate the parameters of

mixture distributions for a range of values for K using the conditional likelihood function.

Each distribution implies a different estimate for the total number of UPCs available in a

city. We then compute the Akaike Information Criterion (AIC) for each value of K in each

city. We choose between the distributions by selecting the number of incidence groups for

all cities equal to the K that maximizes the sum of the AICs across all cities.8

8We also assume that the sampling is sufficient so that we observe some UPCs purchased in each
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Once we have our estimates for the α’s and π’s, we can use equation (2.8) to obtain

an estimate of the total number of varieties as follows:

Ŝc = S̃c(Hc)

[
K∑
k=1

α̂ck(1− (1− π̂ck)Hc)

]−1

(2.9)

where variables with circumflexes represent parameter estimates and S̃c(Hc) is equal to

the sample count of distinct varieties in the city. It is useful to note that when the number

of sampled households in the city, Hc approaches infinity, the fact that the α’s sum to one

implies that our count of the number of distinct products purchased by these households

becomes our estimate of the number of varieties.

The above approach is parametric in the sense that we assume the distribution of

the count of varieties depends on the underlying probabilities and shares of the various

incidence groups. There is also a non-parametric approach that is often used for the

same purpose based on the estimation of “accumulation curves” (see Mao, Colwell, and

Chang (2005, 2004)). If we define an accumulation curve, S(n), as the number of distinct

UPCs purchased by a sample of n households, then the total number of different varieties

available equals the asymptote of the accumulation curve.

We follow a well-developed methodology for estimating these curves. We first randomly

order the households in our sample for a given city. We then count the number of unique

UPCs purchased by the first household in the random ordering for a city and denote this

count S(1). Next, we take the data for the second household in our ordering and add

it to the data for the first household in a hypothetical sample and count the number of

unique UPCs in this sample, denoting it S(2). We continue to add households to the

hypothetical sample creating a series (S(1), S(2), S(3), . . ., S(Hc)), where Hc is the total

number of households in our sample for city c.

One of the problems of this approach is that each accumulation curve will be sensitive to

the random order in which households are added to the curve due to both random error and

sample heterogeneity. Colwell and Coddington (1994) note that the random error can be

reduced by randomizing the sample order R times and generating an accumulation curve,

incidence group. We need this assumption because we cannot say anything about the number of goods in
an incidence group that are purchased with such low a probability that no one in the sample ever buys
them. In other words, we can only discuss the number of available varieties for observable classes of goods.
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Scr(n), for each random ordering indexed by r. The random error-adjusted accumulation

curve is the mean of the species accumulation curves over the different randomizations,

Sc(n) =

R∑
r=1

Scr(n)

We can adjust for random error by using mean accumulation curves over 50 randomiza-

tions, i.e., R = 50.9

An important feature of accumulation curves is that their value in the limit when

n approaches infinity is an estimate of the total number of different goods available in

the city.10 Unfortunately, theory does not tell us what the distribution will be for these

accumulation curves. Therefore, we will follow Jimenez-Valverde, Jimenez Mendoza, Cano,

and Munguira (2006) by estimating the parameters of various functional forms and use the

AIC goodness-of-fit test to choose between a range of functional forms that pass through

the origin and have a positive asymptote.

We use this accumulation curve methodology to estimate the “brand-share,” sgc, and

the “UPC-share,” sbgc. Just as we build an accumulation curve corresponding to the count

of the different goods represented in a sample, we can also build a curve corresponding to

the national market share of the different goods represented in a sample. We estimate the

asymptotes of the two different share accumulation curves for each product group in each

market. The first curve is used to estimate the national market share of the brand-modules

9To determine how sensitive the adjusted accumulation curve is to sample heterogeneity, Colwell and
Coddington (1994) suggest comparing the adjusted accumulation curve with the accumulation curve that
we would expect to draw if all of the UPCs purchased by the households in the city sample were randomly
assigned to households. We use the random placement method to calculate this expected accumulation
curve and its variance as:

S̃(n) = STOT −
STOT∑
u=1

(1− n

N
)
nu
, and σ2(n) =

STOT∑
u=1

(1− n

N
)
nu
−
STOT∑
u=1

(1− n

N
)
2nu

where STOT is the total number of UPCs recorded in the sample, nu is the total number of households
that purchase that UPC u, and N is the total number of households in the sample. If the expected curve,
S̃(n), rises more steeply from the origin than the mean curve, S(n), the sample heterogeneity is greater
than that which could be explained by random sampling error alone. Coleman, Mares, Willig, and Hsieh
(1982) state that the hypothesis of random placement will hold if the expected curve does not deviate by
more than one standard deviation from the mean curve for more than one third of the sample sizes, n, and
the deviations are distributed randomly across n. We checked that this is true in our data.

10One might think that it would be more appropriate to use the total number of households in the city
instead of the asymptote to compute the number of goods available. This would be true if every good
available in a city were purchased by at least one household, but not otherwise. In practice, since the
number of households in a city is quite large, it does not matter whether one focuses on the asymptote or
sets n equal to the number of households.
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that are available in a city within a product group, sgc. The second is used to estimate the

national market share of the UPCs that are available in a city within each brand-module

that is available in the city, sbgc.

Unfortunately, we are unable to estimate one value of sbgc for each brand-module b in

each product group g for each city c because household samples are sometimes too small to

allow us to observe more than a few purchases of UPCs within many of the brand-modules

available in a city, i.e., every b in Bgc. Since we do not want to estimate accumulation

curves for brand-modules in which there are very few purchases, we pool the data in each

city and estimate a common sbgc for all brand-modules within each product group in a city,

which we denote sgc. This “average” UPC-share is an estimate for the national sales of

UPCs available in a city divided by the national sales of all brand-modules available in the

city, i.e., the weighted average within-brand national market share of the UPCs available

in a city conditional on the brand-module being available in the city. We calculate this

estimate using an accumulation curve of the national sales of the UPCs available in a

hypothetical sample of H households as a share of the national sales of brand-modules

available in the city as a whole. For the denominator, we use national product group sales

multiplied by our estimate for sgc. This simplifies the variety adjustment in Proposition

5, so we can calculate the EPI for city c relative to the national sample as:

EPIc =
∏
g∈G

[
CEPIgc

(
sgc
) 1

1−σag
(
s̄gc
) 1

1−σwg

]wgc
.

By rearranging terms, we can decompose the exact price index into a common exact price

index for a city CEPIc and a variety adjustment, V Ac which we define below:

EPIc = CEPIc × V Ac =
∏
g∈G

[CEPIgc]
wgc ×

∏
g∈G

[(
sgc
) 1

1−σag
(
s̄gc
) 1

1−σwg

]wgc
. (2.10)

As we mentioned earlier, Krugman (1991) does not allow for variety and, therefore, for the

variety adjustment, V Ac, to vary across cities. Instead, Krugman (1991) predicts that dif-

ferences in traded goods prices, or CEPIc, alone makes the aggregate price index lower in

larger cities. A strict, structural test of Krugman (1991) would, therefore, focus on testing

whether the common exact price index, CEPIc, decreases with city size. The extension
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of Krugman (1991) outlined in the previous chapter makes the additional prediction that

there are more varieties available in larger cities and these variety differences further lower

the aggregate price index in the larger cities. We test this prediction by focusing on

whether the variety adjustment component of the exact price index, V Ac, decreases with

city size. The aggregate price index agglomeration mechanism in both models is tested by

examining whether the exact price index, EPIc, is decreasing in city size.

2.4 Results

We begin our analysis by exploring how prices vary with city size. One way to benchmark

our results is to compare them to the unit value results we presented in (2.1). If we regress

the log of the Nielsen food unit-value index level in a city on the log of its population,

we obtain a coefficient of 0.04 (s.e. 0.01) indicating a one log unit rise in city size is

associated with a four percent rise in the unit value of groceries. Table 2.2 presents

results from estimating equation (2.1) where now the key difference is that we are now

gauging price differences between identical products, or UPCs, sold in different cities. The

first column of the table demonstrates that if we simply regress prices on city size, the

coefficient on city size falls to only one quarter the magnitude obtained in the unit value

regression and is only significant at the 10 percent level. This result indicates that most

of the positive relationship between prices and city size in the unit value index reflects the

fact that people in larger cities buy different, higher-priced varieties of goods.

These results, however, overstate the positive association between prices and city size

because the prices of identical goods are likely to vary systematically with the store in

which they are purchased (presumably because some stores offer better amenities) and the

buyers’ responsiveness to sales. Controlling for store amenities and purchaser character-

istics eliminates the statistical link between city size and prices. Most of the apparently

higher prices of identical goods in larger cities is due to the fact that people in larger cities

shop in nicer stores.

Most surprisingly, we find that the relationship between city size and prices turns

negative (although again not significantly so) once we control for zip code income and city

land prices. These results are not conclusive in part because we have not aggregated the
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Table 2.2: Are prices higher in larger cities?

Ln(Puzcrh)

Ln(Populationc) 0.0107* 0.0105* 0.0045 0.0045 0.0037 -0.0015

[0.0056] [0.0057] [0.0035] [0.0034] [0.0034] [0.00385]

Ln(Incomez) - - - - 0.0091*** 0.0089***

- - - - [0.0007] [0.0006]

Ln(Land Valuec) - - - - - 0.0112***

- - - - - [0.0035]

HH Demographic Dummies[2] No Yes No Yes Yes Yes

Storename/type Dummies[3] No No Yes Yes Yes Yes

Observations 12.7m 12.7m 12.7m 12.7m 12.7m 12.7m

R-squared 0.928 0.928 0.935 0.935 0.935 0.935

Robust standard errors in brackets. Standard errors are clustered by city.

*** p¡0.01, ** p¡0.05, * p¡0.1

Notes:

[1] Puzcrh = average price paid for UPC u in store r in zipcode z by household h living in city c.

[2] Household controls include dummies for household size, male and female head of household age, marital status, race, and hispanic.

[3] Store type dummies are used instead of storename dummies if the store name is missing or sample store sales are under $100,000.

[4] Random weight goods have been dropped from the sample.

[5] All regressions have UPC fixed effects.

data appropriately to build a price index, but they strongly suggest that the result that

prices rise with city size is an artifact of nicer stores locating in larger cities.

We now turn to estimating the number of varieties available in a city based on our

structural GNE approach. With 49 cities, the GNE approach involves the estimation of

several hundred parameters, so we do not report all the values here. The AIC indicates

that UPCs tend to fall within 10 incidence groups in terms of their purchase frequency.11

Table 2.3 summarizes these estimates across our sample of 49 cities. We see that in all

cities there are few UPCs that are purchased with very high frequency – on average, one

in ten thousand UPCs are purchased with a frequency of 0.5 by a household. This would

correspond to about 8 UPCs in the typical city having a purchase probability of 0.5 over

11The incidence groups do not map directly into the product groups or product modules. The estimated
purchase frequency associated with each UPC within a product group or brand-module will vary with the
popularity of the UPC, which may be correlated with its brand, container, size, and other characteristics.
The UPCs in the high frequency incidence group tend to be the most popular varieties of products that are
frequently purchased, e.g. 12-packs of Coke cans, which are purchased by almost a third of the households
in our sample. Less popular varieties of soda tend to fall into the lower purchase frequency incidence
groups. These incidence groups will also be populated with the most popular UPCs in less frequently
purchased product categories, e.g. Fleischmann’s fresh cake yeast along with the more obscure varieties of
soda as well as the less popular varieties of yeast.
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the course of a year by a typical household. However, we also see that the vast majority

of UPCs have extremely low purchase probability. 49 percent of UPCs have a purchase

probability of approximately 1 in a thousand. Thus, the product space is characterized by

a few UPCs with high purchase probabilities and a vast number of UPCs that are rarely

purchased.

Table 2.3: Summary Statistics for GNE Parameter Estimates

Incidence Probability of Purchase (πck) Share of UPCs (αck)

Group (k) Mean Standard Deviation Mean Standard Deviation

1 0.496 0.096 0.00009 0.00006

2 0.332 0.103 0.00041 0.00029

3 0.226 0.085 0.00116 0.00071

4 0.152 0.066 0.003 0.00181

5 0.102 0.052 0.00757 0.0047

6 0.065 0.035 0.01953 0.01045

7 0.038 0.022 0.05083 0.01821

8 0.019 0.011 0.12115 0.01879

9 0.008 0.004 0.30803 0.03277

10 0.001 0.001 0.48823 0.03465

Another way of summarizing the estimates is to examine how the probability that a

UPC is purchased varies with city size. We would expect that the probability that any

consumer purchases any one UPC would go down as the range of available UPCs in the

city increases. Fortunately, this is easy to examine given that our GNE structure enables

us to estimate the probability that a household purchases a UPC by simply calculating

Πc =

K∑
k=1

α̂c,kπ̂c,k.

In Figure 2.2, we see that the estimated average probability of purchase (which uses no

population data in its estimation) decreases sharply with city size. A UPC sold in our

smallest city, Des Moines, has three times the probability of being purchased by any

individual household as a UPC sold in New York. The fact that households in larger cities

are much less likely to buy any individual UPC is strongly suggestive of the fact that that

the range of UPCs available in a city is increasing with city size.

We test this directly by using the GNE parameter estimates to calculate an estimate

for total number of varieties in each city and considering how this varies with city size.
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Figure 2.2

Figure 2.3 plots how the log estimated number of varieties in each city varies with city

size. It is interesting that the relationship between city size and the number of varieties in

a city is similar but much stronger than the one we observed in Figure 2.1. The data seem

to strongly suggest a relationship between the size of a city and the number of varieties

available as hypothesized by Krugman. Residents of New York have access just over 97,000

different varieties of groceries, while residents of small cities like Omaha and Des Moines

have access to fewer than 32,000.

Figure 2.3
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We test this relationship between city size and variety abundance formally in Table

2.4. Table 2.4 presents the results from regressing the log estimated number of varieties

in a city from the GNE procedure on the log of the population in the city. The first three

columns of the table present regressions of the log sample counts of varieties in each city on

the log of the city’s population. The next columns present regressions of the log estimate of



54 CHAPTER 2. PRICES AND VARIETY ACROSS CITIES: EVIDENCE

number of varieties based on the GNE asymptotes on city size, and the final three columns

repeat these results for our Weibull estimates. As one can see, the elasticity of variety

with respect to population is less using the GNE estimates because these correct for the

correlation between sample size and population in the Nielsen data. What is most striking,

however, is that we observe a very strong and statistically significant relationship between

the size of the city and the number of estimated varieties. Our estimates indicate that a

city with twice the population as another one typically has 20 percent more varieties.

Table 2.4: Do larger cities have more UPC varieties?

Sample Count ln(GNE Asymptote) ln(Weibull Asymptote)

ln(Population) 0.31*** 0.34*** 0.28*** 0.28*** 0.30*** 0.26*** 0.28*** 0.30*** 0.278***

[0.04] [0.07] [0.10] [0.04] [0.06] [0.08] [0.03] [0.05] [0.08]

ln(Per Capita Income) - -0.16 -0.04 - -0.14 -0.06 - -0.13 -0.07

- [0.34] [0.37] - [0.29] [0.31] - [0.27] [0.29]

Income HHI - -0.952 -0.29 - -0.63 -0.18 - -0.32 0.00

- [3.13] [3.25] - [2.64] [2.75] - [2.47] [2.57]

Race HHI - 0.06 0.12 - 0.07 0.11 - 0.11 0.14

- [0.41] [0.42] - [0.35] [0.35] - [0.32] [0.33]

Birthplace HHI - 0.01 0.03 - -0.01 0.004 - -0.03 -0.02

- [0.28] [0.29] - [0.24] [0.24] - [0.222] [0.23]

ln(Land Area) - - 0.09 - - 0.06 - - 0.04

- - [0.11] - - [0.09] - - [0.08]

Constant 6.2*** 7.5** 6.3* 6.9*** 8.1*** 7.2** 6.9*** 8.0*** 7.4**

[0.63] [3.39] [3.70] [0.53] [2.86] [3.13] [0.50] [2.67] [2.93]

Observations 49 49 49 49 49 49 49 49 49

R-squared 0.53 0.53 0.54 0.55 0.56 0.56 0.59 0.60 0.60

Standard errors in brackets; *** p¡0.01, ** p¡0.05, * p¡0.1

One concern with these results is that they might be biased because larger cities might

have more diverse populations. In order to control for this we constructed a number of

Herfindahl indices based on the shares of MSA population with different income, race, and

country of birth. These indices will be rising in population homogeneity. In addition, we

include the per capita income in each city. As one can see from Table 2.4, controlling for

urban diversity does not alter the results.

Finally, we were concerned that our results might be due to a spurious correlation

between city population and urban land area. If there are a constant number of unique

varieties per unit area, then more populous cities might appear to have more diversity

simply because they occupy more area. To make sure that this force was not driving
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our results, we include the log of urban land area in our regressions. The coefficient on

land area is not significant in any of the specifications, while the coefficient on population

remains positive and very significant. These results indicate that controlling for land

area and demographic characteristics does not qualitatively affect the strong relationship

between city size and the number of available varieties. The R2 of around 0.5 to 0.6

indicates that city size is an important determinant of variety availability. Thus, the

number of tradable goods varies systematically with city size as hypothesized by our

amended NEG model.

Unfortunately, our structural estimation techniques cannot be applied to the estimation

of the shares because our theory of the probability of purchasing a good does not map

into a theory for the probability of spending a particular share of income on a good. As

we mentioned earlier, this forces us to use a non-structural technique. However, before

doing so, we will first provide some intuition for the methodology and then demonstrate

that non-structural methods yield almost identical results as structural methods on count

data and fit share data extremely well.

We begin by plotting accumulation curves, which are a graph of the number of distinct

varieties we obtain on average in a random sample of n households against the number of

households. The intuition for the approach arises from the fact that if households in a city

choose more disparate sets of goods than households in a second city, the accumulation

curve for the first city will lie above that of the second city because n households in the

first city will tend to consume more varieties than n households in the second city. One

can then obtain an estimate for the total number of goods available in each city based on

the asymptote of the accumulation curve for that city.

We plot these accumulation curves for the twelve cities for which we have the largest

samples in Figure 2.4. These curves reveal that the four highest curves – corresponding to

the cities with the greatest variety of goods purchased – are for New York, DC-Baltimore,

Philadelphia, and Boston. These cities are all among the five largest cities in our sample.

This raw data plot is yet another indicator that residents of larger cities consume a broader

set of varieties than those in smaller cities.

We can examine this more formally by estimating the asymptotes of the accumula-

tion curves. Since we are not sure how to model these accumulation curves, we try five
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Figure 2.4

different functional forms – Clench, Chapman-Richards, Morgan-Mercer-Flodin, Negative

Exponential, and Weibull. We choose among these based on the Akaike Information Cri-

terion (AIC). The Weibull was a strong favorite with the lowest AIC score in the majority

of cities for which we modeled UPC count accumulation curves, and so we decided to focus

on this functional form.

Figure 2.5 plots the raw data and the estimated Weibull accumulation curve for our

largest city, New York. A typical sample of 500 random households buys around 45,000

unique UPCs, and a sample of 1000 households typically purchases around 65,000 different

goods. Since there is some overlap between the consumption baskets of different households

in the sample, the number of unique UPCs that in the sample increases at a decreasing

rate with the size of the sample. This factor produces a monotonically rising, but concave

UPC accumulation curve. As one can see from the plot, the estimated Weibull distribution

fits the data extremely well. The estimated asymptote is approximately 112,000 varieties,

which is 35,000 more than we observe in our sample of 1500 New York households.

Figure 2.6 presents a plot of the log of the estimated Weibull asymptote against the

log population in a city. As one can see, there is a clear positive relationship between the

two variables: the accumulation curves imply that larger cities have more varieties than

smaller ones. Despite the fact that the Weibull indicates more varieties for New York than

the GNE, overall Weibull asymptotes tend to be around 20 percent lower than our GNE

structural estimates. Visual inspection reveals that the relative relationship between the

estimated number of varieties and city size using the GNE and plotted in Figure 2.3 is
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Figure 2.5

almost identical to that obtained with the Weibull. We can see this even more clearly

in Figure 2.7 where we plot the Weibull asymptotes against the GNE asymptotes. The

correlation between the two is 0.99 and the slope is 1.07 indicating that both methodolo-

gies yield essentially the same relationship between city size and the number of available

varieties.

Figure 2.6

Just as we constructed accumulation curves for the number of different UPCs in cities

in the previous section, we also construct these for the share of common brands in each

product group, sgc, and the average share of common UPCs in each brand in each product

group, sgc. We then estimate the asymptotes of the fitted Weibull curve to each of these.

Figures 2.8 and 2.9 plot these estimates for one of the largest product groups in terms

of sales and the number of varieties available nationally, bread and baked goods, for two

cities with large samples in the Nielsen data but very different populations, New York and
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Figure 2.7

Little Rock. Figure 2.8 shows the sgc accumulation curve while Figure 2.9 portrays the

same curve for sgc. As one can see from the plots, the Weibull fits the share accumulation

curves extremely well.12 By examining the asymptote of the Weibull distribution in the

first panel, we can see that New Yorkers have access to a set of bread brands available

that constitute 79 percent of national expenditures on bread. By contrast, residents of

Little Rock, with a population less than a tenth as large, have access to bread brands that

constitute 74 percent of national expenditures. Figure 2.9 shows that the within-brand-

module market share of UPCs available in a city, conditional on that brand-module being

available in the city, is, on average, lower than the within-product group market share of

brand-modules available in the city. Firms sell UPCs that account for 53 and 47 percent

of their national sales in New York and Little Rock, respectively. This indicates that

knowing that a firm sells a product in a city does not necessarily mean that all varieties of

that product are available there. In summary, New Yorkers have access to 5 percent more

of the bread market, in terms of brands, than residents of Little Rock and, conditional on

a brand being available in their city, New Yorkers also have access to 6 percent more of

the market for each brand, in terms of UPCs, than do Little Rock residents.

To demonstrate how these differences in the market shares of UPCs and brands avail-

able in the two cities translate into a discount on the exact price index in New York

relative to Little Rock, we can calculate the variety adjustments for bread in each city

from equation (2.10). The elasticity of substitution between UPCs within brand-modules

12The AIC favors the Weibull distribution when computing share accumulation curves as well.
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Figure 2.8

Figure 2.9

in the bread product group is 17.2, so the UPC variety adjustment for New York is

0.531/(1−17.2), or 1.04. The across-brand elasticity of substitution for the bread product

group is 9.6, so the brand variety adjustment for New York is 0.791/(1−9.6), or 1.03. The

fact that there are fewer bread varieties available in New York than nationally means that

someone restricted to only consume those varieties available in New York would face a

price index that is 7 percent higher than someone with access to all national varieties. A

similar calculation shows that the variety adjustment for the bread product group in Little

Rock is equal to 9 percent. The variety adjustment for New York relative to Little Rock

is equal to 1.07/1.09, or 0.98, implying that if the prices of commonly available varieties

are the same in the two cities, people living in New York face 2 percent lower costs for

bread because they have access to more varieties.

Figures 2.10 and 2.11 plot the average asymptotes of the share accumulation curves
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(estimated using a Weibull distribution) in each city against the log of the population in

each city to show that the results for bread in New York and Little Rock are representative

of the sample as a whole. As one can see from the figure, there is a strong positive

relationship between our estimates for the national market share covered by varieties

available in each city and the city’s population. Nationally, consumers spend 5 percent

more on brands and UPCs available in the largest cities than they do on those brands and

UPCs available in the smallest cities. Once again we see that people in larger cities have

access to the more and/or more popular varieties, while those in smaller cities have more

limited access.

Figure 2.10

Figure 2.11

The asymptotes, in conjunction with our price data, enable us to estimate the exact

price index for each product group. Table 2.5 presents our estimates for how the con-

ventional exact price index, the variety adjustment, and the exact price index vary across



2.4. RESULTS 61

cities. The first three columns in the table use unadjusted prices to compute the index.

As we saw in Table 2.2, unadjusted prices are higher in larger cities, and these results

translate into a common exact price index that rises with city size. These higher prices,

however, are offset by the variety adjustment to prices arising from the greater availability

of varieties in larger cities, leading to an exact price index that is invariant to city size.

The unadjusted prices, however, are problematic because they do not correct for the

store in which the goods are purchased or the type of household making the purchase. We

therefore use adjusted prices in the subsequent columns. This yields two striking results.

First, when we adjust for household characteristics in columns 4 through 6 – which control

for the fact that some types of households purchase at larger discounts than others – we see

that the positive relationship between city size and price ceases to be significant and the

sign flips. This suggests that one important reason why we observe a positive relationship

between price indices and city size is due to the fact that wealthier households congregate

in large cities, and these households react less to sales.

Columns 7-9 present results in which we also control for the amenities present in the

store in which the goods are purchased. These represent the fairest test of the model

because we are focusing on the purchase of identical goods by similar shoppers in identical

stores. The fact that there is a strong, negative relationship between the population and

CEPIc provides the first empirical test of the mechanism underlying Krugman (1991).

The negative and significant variety effect provides support for our augmented model.

Each log unit increase in city size causes the prices of traded groceries to fall by about 2

percent and the variety adjusted index of tradable groceries to fall by 2.7 percent. These

results are even more surprising considering that a factor endowments model might predict

that food production would not be located in urban centers.

The remaining columns in Table 2.5 present the results of two robustness checks.

Columns 10-12 show that, if we adjust prices further for the fact that people are likely

to prefer shopping in nicer (i.e., high income) neighborhoods, the results become even

stronger. If we further purge prices of the impact of land costs and thereby look only at

the tradable goods component of the price, we see in column 15 that all indices fall very

sharply with city size and this result is significant at the 1 percent level.

One possible concern about these results is that people who live in large cities might
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not shop in all of the neighborhoods within the city’s borders. This might bias our va-

riety adjustment downwards because we may be counting varieties in, say, suburbs that

are irrelevant for people who live downtown. Alternatively, if people who live in sparsely

populated neighborhoods with low variety counts often shop in densely populated neigh-

borhoods, we might bias our variety effect upwards because measurement error leads to

attenuation bias. Which bias dominates is an empirical question.

An easy solution to this problem is to make use of the fact that the Nielsen data

records the household’s county and the zip codes of the stores in which they purchase each

UPC. We first assume that a household is located in the zip code in the county where

its grocery expenditures are the highest. We then construct the population of the market

where households in each zip code can choose to shop. For a set of households living in

the same zip code, we sum the populations of the zip codes where we observe the set

of households purchasing UPCs. This sum tells us the population of the market that is

available to households located in that zip code. We average these market populations

across the zip codes in each city to yield the average population of the neighborhoods

where households in the city can choose to shop. We refer to this number as the relevant

population.

Table 2.6 presents results in which we replace the city’s population with the relevant

population in the neighborhoods in which households actually shop. The results are quite

similar to the results using urban population as the measure of city size. The fact that the

results are so similar indicates that understanding where households shop within cities is

not important for understanding the relationship between city size and prices. The key

finding is that the exact price index falls with city size, and this relationship is significant

whenever we adjust prices to take into account store amenities and buyer characteristics.

About two-thirds of this effect appears to be due to the fact that individual goods prices

are lower in larger cities, while the remainder is due to there being more, and more

important, varieties available in larger cities. The economic significance of this result is

fairly substantial. The demographic-store-adjusted prices in New York are 10 percent lower

than those in the smallest city in our sample (Des Moines). This suggests a potentially

very important role for new economic geography affecting the cost of living in cities.
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2.5 Conclusion

Krugman (1991) hypothesized that market prices drive agglomeration and the new eco-

nomic geography literature which has followed rests on the same foundations. Previous

empirical work using the CPI or housing costs as a cost of living measure has found that

the cost-of-living is, in fact, a dis-amenity of large cities and, as such, a force of dispersion

in a model of economic geography. The results presented here suggest that Krugman’s

result, that the price index for tradable goods is lower in larger cities, is correct. More-

over, these results support the extensions to Krugman’s model in which residents of large

cities consume more varieties and the two primary components of the cost of living in-

dex – housing costs and product prices – move in opposing directions as agglomeration

occurs. The analysis presented here has shown that the variety-adjusted cost of grocery

products decreases with city size and preliminary robustness checks using one quarter of

all purchase data for a sample of 300 households in 10 cities suggest that this pattern

extends throughout the traded consumer goods sector. Further work on a larger set of

household purchases could confirm that the patterns identified here are not specific to

grocery products.
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2.A Specifying the Likelihood Function

The starting point is to realize that the number of households purchasing product in city

c, hcu, follows a binomial distribution with probability:

P (hcu) = ϕ(hcu;πcu) =

 Hc

hcu

 (πcu)hcu(1− πcu)(Hc−hcu) (2.11)

where Hc is the total number of households in the sample for city c,

 Hc

Hcu

 ≡ Hc!

hcu!(Hc − hcu)!

and once again πcu = πci for each UPC, u, in category k. Let {hcu}u∈Uc be the observed

counts of each UPC purchased by our sample of households in a city c, where Uc is the

set of UPCs observed in the city c sample. Now, we can define the binomial mixture

distribution as follows:

Φ(hcu) =
K∑
k=1

αckϕ(hcu;πck)

This distribution tells us the probability of observing hcu purchases of any UPC u in our

data, regardless of its incidence group, given the size and purchase probabilities of each of

the incidence groups.

Mao, Colwell, and Chang (2005) derive a maximum likelihood methodology for esti-

mating the α’s and π’s for a given K using data on the number of samples (in our case,

households) in which each variety is observed. The variable ncj is defined to be the number

of products that are purchased by j households in the dataset for city c, i.e., for which

hcu equals j. In other words, if 100 UPCs are purchased by no households, 50 UPCs are

purchased by 1 household, and 25 UPCs are purchased by 2 households, then we would

have nc0 = 100; nc1 = 50; and nc2 = 25. The joint likelihood of the total number of

products available in the city, Sc, and the parameters of the mixture distribution is

L
(
Sc, {αck, πck}Kk=1

)
=

Sc!
Hc∏
j=0

ncj !

Hc∏
j=0

Φ(j)ncj
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Note that from equation (2.8), we know that the number of available products, Sc, is a

function of the number of observed products, Sc(Hc) =

Hc∑
j=1

ncj , and the parameters of the

mixture distribution, {αck, πck}Kk=1. Therefore, we only need to estimate the parameters of

the mixture distribution to derive an estimate for the number of available products. To do

so, we will maximize a conditional likelihood function. Let ϕ̃(hc,u;πc,u) be a zero-truncated

binomial density, i.e., the probability that a product is purchased by j households condi-

tional on it being purchased by more than one household, and Φ̃ (j) =
K∑
k=1

αc,kϕ̃ (j;πc,k)

be the mixture distribution over these densities for K incidence groups. If we denote the

total number of UPCs that are purchased by at least one household in the sample nc+,

the conditional likelihood function is

L
(
Sc, {αc,k, πc,k}Kk=1

)
=

nc,+!
Hc∏
j=1

nc,j !

Hc∏
j=1

Φ̃(j)nc,j



Chapter 3

Are Poor Cities Cheap for

Everyone? Non-Homotheticity

and the Cost of Living Across U.S.

Cities

Jessie Handbury1

3.1 Introduction

Previous literature measuring real wage differentials across cities and the relative cost of

living across countries assumes homothetic preferences. While this assumption simplifies

theory and estimation, it is contradicted by household-level studies in multiple countries

showing that consumer demand varies systematically with income across a wide range of

product categories.2 This evidence has motivated economists to explore the implications of

non-homotheticity for economic geography and international trade. Theory suggests that

non-homotheticity might help explain the variation in returns to education across cities

1I wish to thank Chris Conlon, Don Davis, Jonathan Dingel, Rob Feenstra, Kate Ho, Amit Khandelwal,
Joan Monras, Mike Riordan, Bernard Salanié, Molly Schnell, Ina Simonovska, Eric Verhoogen, Jonathan
Vogel, David Weinstein and to participants of Columbia’s International Trade and Industrial Organization
colloquia for valuable discussions and comments. I gratefully acknowledge financial support from the
Program of Economic Research at Columbia. All errors are my own.

2See, e.g., Bils and Klenow (2001) and Broda, Liebtag, and Weinstein (2009) for the U.S., and Li (2011)
for India.
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(Black, Kolesnikova, and Taylor, 2009) and affect our predictions for production patterns

in a closed economy setting (Wuergler, 2010) and for trade patterns in an open economy

setting (see, e.g., Fajgelbaum, Grossman, and Helpman (2011), Hummels and Lugovskyy

(2009), and Markusen (2010)). Trade models with non-homotheticities generate new and

empirically-validated predictions related to the patterns of trade (Hallak, 2006) and the

prices of tradables (Simonovska, 2010). Further, Fieler (2011) has shown that a model

with non-homothetic demand predicts worldwide trade patterns better than its homothetic

counterpart.3 These papers have shown that non-homotheticity is first-order in explaining

trade patterns, but they do not use consumption data to identify the parameters that

shape non-homothetic preferences and, therefore, cannot quantify what non-homotheticity

implies for welfare in differentiated-product markets. In particular, these papers cannot

compare how variation in prices and variety across markets differentially impacts the utility

of consumers at different income levels. In this paper, I address this issue, making two

contributions to the existing literature on non-homothetic demand.

The first contribution of this paper is methodological. Economists concerned with

making aggregate statements across multiple sectors, as in trade and macroeconomics,

have chiefly modeled non-homotheticities in two ways. In one approach, the perceived

level of horizontal differentiation between products, which is closely related to the price

elasticity of demand, varies with income such that the demand of high-income consumers is

less sensitive to changes in price (see, e.g., Hummels and Lugovskyy (2009) and Simonovska

(2010)). In another approach, high-income consumers have a greater willingness to pay

for product quality but the same sensitivity to quality-adjusted prices (see, e.g., Hallak

(2006) and Fajgelbaum, Grossman, and Helpman (2011)). The challenge in empirically

differentiating between these forms of non-homotheticity is that quality is not clearly

observed but must be imputed in some way. Empirical work that estimates non-homothetic

demand for quality in multi-sector frameworks has relied on unit values as a proxy for

product price and quality (Bils and Klenow, 2001; Hallak, 2006) and has therefore not been

able to identify whether high-income consumers spend more on the same type of products

because their demand is biased towards high quality varieties or because they are less price

3The homothetic model performs well in the context of trade between wealthy countries, but cannot
reconcile the large value of trade observed between wealthy countries relative to that observed between
wealthy and poor countries.
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sensitive. I use both unit value and expenditure share data to estimate product quality

semi-parametrically with a revealed preference approach, as in Khandelwal (2010).4 Since

I do not rely on unit values alone to measure of product quality, I can separately identify

whether preferences are non-homothetic in demand for quality or in price sensitivity and

test the explanatory power of a model permitting each form of non-homotheticity, either

together or alone. I find that consumer purchase behavior is better explained by a model

that allows for non-homotheticity in demand for quality than models that allow for non-

homotheticity in both demand for quality and price sensitivity, or in price sensitivity

alone.5

The main contribution of this paper is to show that high- and low-income consumers

living in the same location reap vastly different consumption utility despite the fact that

they have the same products available to them at the same prices. I measure the variations

in grocery costs between U.S. cities for consumers at different income levels. Grocery costs

vary with prices and product assortment across cities and this variation is different for

consumers at different income levels when preferences are non-homothetic. I show that

high-income households are better-off in wealthy cities because they prefer the products

available in wealthy cities, even if they are sold at higher prices. Low-income households,

on the other hand, get much less utility from the prices and products available in wealthier

cities because the products that they prefer to consume are either more expensive or not

available in these locations. This distribution of product prices and availability across

cities is consistent with Waldfogel (2003)’s “preference externalities” model and the home

market effects predicted in Fajgelbaum, Grossman, and Helpman (2011). The models in

these papers suggest that if preferences are non-homothetic, high-income consumers will

reap greater utility from living amongst other high-income consumers than low-income

4I define product quality as a product-specific taste shock that enters the log-logit utility additively.
These parameters are identified by variation in product sales controlling for price, such that a product
with double the sales of another product selling at the same price is estimated to have double the product
quality.

5This result is consistent with the reduced-form results in Broda, Liebtag, and Weinstein (2009). They
explain that high-income households spend more on the same type of product for two reasons. First, they
buy different products that cost more per unit on average and, second, even when they purchase the same
products, they pay more because they shop in more expensive stores and are less likely to purchase products
at sale prices than poorer households. The authors refer to these effects as the “quality effect” and the
“shopping effect,” respectively. They show that the “quality effect” is ten times as large as the “shopping
effect” indicating that non-homothetic demand for quality is more important than non-homothetic price
sensitivity in explaining the prices consumers pay for similar products. I structurally estimate demand to
confirm this prediction.
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consumers do.6 I provide the first structural estimates of the size of these consumption

externalities. These estimates show the extent to which ignoring non-homotheticity biases

the measurement of cross-city real wage differential estimates,7 and suggest that assuming

homotheticity may also cause large biases in cross-country welfare comparisons, such as

purchasing power parity deflators. Further, they provide empirical evidence for a nascent

economic geography literature that suggests that non-homotheticity is one source of skill-

biased agglomeration.8

The model developed here is an attempt to bridge the gap between the heterogeneous

agent demand models used to estimate sector-level demand in industrial organization

and the representative agent multi-sector demand models of modern trade and macroe-

conomics. I model consumer choices in three levels. Consumers allocate expenditure

between differentiated products and an outside good, among categories of differentiated

products, and finally among products within each category. I model the expenditure allo-

cation between differentiated product categories and between products within each cate-

gory conditional on expenditure on a composite outside good that could include durables,

education, and housing. I do not model the utility function that governs the consumer’s

grocery/outside good expenditure allocation decision. I assume only that the outside

good is a normal good.9 I model preferences between products within each category with

6Preference externalities, as defined by Waldfogel (2003), exist in markets for differentiated products
with fixed costs of production and positive inter-city trade costs. The gathering of consumers with sim-
ilar tastes, here determined by consumer income, in one location results in more production and lower
prices for products suited to these tastes yielding to what Waldfogel (2003) refers to as “within-group”
preference externalities. Fajgelbaum, Grossman, and Helpman (2011) show theoretically that high-income
consumers gain more than low-income consumers from living in, and trading with, high-income countries
when preferences are non-homothetic in the demand for quality.

7Other papers that have measured how relative cross-market utility varies with income include Broda
and Romalis (2009) and Li (2011). Broda and Romalis (2009) calculate income-specific U.S. inflation
indexes and find that half of the increase in conventional measures of U.S. income inequality was due to a
bias caused by ignoring the variation in consumption behavior across income groups. Li (2011) shows the
difference in the welfare gains from variety enjoyed by high and low consumers that is missed by ignoring
non-homotheticity in demand for variety.

8Analysis of detailed micro-level data has shown that one of the reasons that incomes are higher in
large cities is because high-skill workers co-locate in these areas (Combes, Duranton, and Gobillon, 2008).
A possible explanation for this skill-biased agglomeration pattern is that high-skill workers enjoy greater
productivity spillovers. However, this is inconsistent with evidence that urban wage premia decrease with
skill (Adamson, Clark, and Partridge, 2004; Gyourko, Mayer, and Sinai, 2006; Lee, 2010). These papers
have proposed that high-skill consumers require lower compensating wage differentials to co-locate in high-
rent urban locations because they enjoy more utility from urban consumption amenities than low-skill,
low-income consumers. The results presented here suggest that one source of these urban consumption
amenities are preference externalities. Since consumers with similar income levels have similar tastes, they
are motivated to sort geographically by income in order to maximize the local production of the products
that suit their tastes.

9This assumption is supported in the data for the context in which I estimate demand.
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a log-logit utility function. This yields continuous-discrete purchase behavior similar to

that observed in the AC Nielsen HomeScan dataset.10 I nest the within-sector log-logit

utility functions in a CES superstructure that governs substitutability across products in

different categories. Estimating these between-sector preferences enables me to measure

aggregate utility across sectors.

Utility is non-homothetic because the amount that consumers care about the quality

of differentiated products and their perceptions regarding the substitutability between

these products depend on their expenditure on the outside good. The utility a consumer

gets from consuming a grocery product is linear in the log quantity consumed, a product-

specific parameter that is common to all consumers, and a consumer-product-specific

parameter. I will refer to the product-specific parameter as product quality and the

consumer-product-specific parameter as a consumer’s idiosyncratic taste for the product.

The weights that consumers place on the quality and idiosyncratic taste parameters vary

with their expenditure on the outside good. If high-income households spend more on

cars, schooling, and mortgages, for example, then they will have a greater willingness to

pay for products that are ranked as high quality by all consumers; such products will yield

them relatively high utility due to their idiosyncratic tastes. The willingness to pay for

quality governs the elasticity of demand with respect to quality, while the willingness to

pay for idiosyncratic utility is closely related to the price elasticity of demand. Both of

these elasticities vary with income when the utility weights on quality and idiosyncratic

tastes vary with expenditure on the outside good.

In the most general form of the model, the elasticities of demand with respect to quality

and price will vary with income. These two forms of non-homotheticity have previously

been modeled separately in the trade literature. Notably, in Auer (2010), utility is log-

logit with consumer-specific weights on a vertical product attribute. As in the model

presented here, consumers agree on the distribution of product quality, but they disagree

on their willingness to pay for this vertical attribute. Auer (2010) studies the theoretical

implications of this feature of the model, whereas I estimate the parameters of the model

imposing that the utility weight on product quality is log-linear in expenditure on an

10The model predicts that consumers purchase a continuous quantity of a single product in each product
category. This is consistent with the behavior of the typical household in the data.
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outside good. This functional form assumption implies that the representative agent CES-

style counterpart of the within-sector utility function is closely related to the representative

agent utility function used in Hallak (2006), where the willingness to pay for quality is

also log-linear in income.

The main respect in which the model here is different from Auer (2010) and Hallak

(2006) is that it also permits the demand elasticity with respect to price to vary with

consumer income. Consumers with higher levels of outside good expenditure place greater

weight on their idiosyncratic logit utility. These logit utility draws define an “ideal type”

of good for each consumer. Consumers who place greater weight on these utility draws

have a greater willingness-to-pay for products close to their ideal type and, therefore,

are less likely to switch to products further away from their ideal type in response to a

price change. This feature is similar to the non-homotheticity in Hummels and Lugovskyy

(2009). In both models, high-income consumers place a greater weight on the parameters

that govern the level of horizontal differentiation between products and are, therefore, less

price sensitive.11

Previous literature has permitted the demand elasticity with respect to product qual-

ity or price to vary with consumer income, but this is the first paper that nests both

forms of non-homotheticity and estimates the parameters that govern each form of non-

homotheticity independently in order to determine which model better explains consumer

behavior. I estimate demand using AC Nielsen household-level scanner data containing

information on the purchases of approximately 40,000 households in over 500 grocery

product categories between 2003 and 2005, as well as data on the demographics of these

households. I use generalized method of moments (GMM) to estimate the model under

four sets of parameter restrictions that correspond to versions of the model that allow

for non-homothetic demand for quality, price sensitivity, both, or neither. The parame-

ters that govern non-homothetic demand for quality and price sensitivity are separately

identified through the differences in how the expenditure shares of high- and low-income

consumers vary with differences in product quality parameters and product prices, respec-

tively. I select between the estimated versions of the model using a Bayesian Information

11This type of non-homotheticity is also generated by the translated additive-log utility function used
in Simonovska (2010). More generally, this type of non-homotheticity is also generated by translated CES
utility functions.
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Criterion (BIC) that has been adapted for GMM by Andrews (1999). I find that the

version that allows non-homotheticity in the demand for quality alone is preferred for

explaining observed consumption behavior when taking into account model complexity.

I use the estimates for the selected model to calculate how a consumer’s relative util-

ity from consumption across different U.S. markets depends on his/her income. Because

consumers are heterogeneous even within income groups, I summarize the utility of house-

holds with the same income level using a representative agent for each income level.12 This

analysis shows that utility from grocery consumption decreases for low-income households

and increases for high-income households as they move to wealthier cities. Specifically,

households earning $15,000 per year face approximately 20 percent higher grocery costs

in cities with the per capita income of San Francisco relative to cities with half that per

capita income, such as New Orleans, while households earning $100,000 per year face 20

percent lower grocery costs in the higher per capita income city.

I also measure the cross-city variation in utility predicted by the homothetic price

index, calculated using the estimates of the model that does not permit non-homotheticity

in either demand for quality or price sensitivity. I compare this single price index to the

price indexes for different income levels and find that the grocery costs predicted by

the homothetic model are highly correlated with the grocery costs I have measured for

households with incomes below $70,000, but negatively correlated with the grocery costs

for households with incomes above $100,000. This suggests that homothetic price indexes

do a better job of predicting the variation in the consumption utility across cities for

low-income and middle-income households than for high-income households.

This paper proceeds as follows. In Section 3.2, I introduce the dataset. In Section 3.3,

I outline the model I use to estimate preferences. In Section 3.4, I outline the procedures

used to estimate model parameters and demonstrate how I use the parameters to measure

relative welfare across markets. In Section 3.5, I present the parameter estimates for each

model and the model selection criteria implied by these estimates. Lastly, I measure how

12The utility of this representative agent is based on a nested CES counterpart to the household-specific
CES-nested log-logit utility function. This representative agent utility is shown to yield the same aggregate
grocery expenditure shares as the household-specific utility in an extension of Anderson, de Palma, and
Thisse (1987). This proof was first extended to models that account for product quality in Verhoogen
(2008). Appendix 3.C shows that the non-homothetic log-logit preferences presented have a Dixit-Stiglitz
CES counterpart in that both models yield identical aggregate demand functions within groups of con-
sumers at the same income level.
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cross-city price indexes vary with income.

3.2 Data

The results in this paper are based on analysis of detailed household consumption data

from the AC Nielsen HomeScan database. This data includes all food product purchases

in grocery, drug, mass merchandise, and other stores for a demographically representative,

but unbalanced, panel of 40,000 households in 52 cities across the United States between

2003 and 2005. The households in the sample were provided with barcode scanners and

instructed to collect information such as the Universal Product Code (UPC), the value

and quantity, the date, and the name, location, and type of store for every purchase they

made. AC Nielsen also surveys each household to collect information on, among other

things, their income category, the number of members, the ages of all members, and the

occupation and education levels of the female and male head of household.

There are around 400,000 UPCs represented in the sample. AC Nielsen categorizes

UPCs into 640 modules and 65 groups. The dataset includes these categorizations as

well as detailed data on the brand, size (including units), container, flavor, form, formula,

variety, style, organic seal, and salt content of the UPC. Of the 640 modules included in

the grocery database, 46 are for random weight items and are excluded from the analysis.13

I determine the manufacturer of each UPC by matching the first 7 digits of the UPC code

with a list of manufacturers downloaded from www.upcdatabase.com.

The data includes the exact price paid by each household for each of the UPCs they

purchase. Combined with the prices paid for UPCs by other households in the same

market, this data is useful both for constructing market-level expenditure shares for es-

timation and for defining the choice set used to measure city-level grocery costs. This

dataset is uniquely suited for estimating a non-homothetic utility function because it links

the characteristics of the UPCs a household purchases with the demographics of the house-

hold. I discuss how I use the AC Nielsen data on product characteristics and household

demographics below.

13One source of bias in the parameter estimates is unobserved correlation between the component of
product quality that varies across markets or time and the prices at which these products are sold. The
quality of random weight items, such as fruit, vegetables, and deli meats, varies over time as the produce
loses its freshness and it is likely that stores set prices to reflect this.
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For the structural demand estimation, I aggregate UPCs into a broader level of clas-

sification that I call a “product.” One product identifier is assigned to each set of UPCs

within a product module with the same brand, manufacturer, container size, salt content

of a product, diet and organic categorization, and number of containers sold in a pack

(equal to one when each container of the product is sold individually and greater than

one when multiple containers of the good are sold in a multipack). For example, in the

product module “SOFT DRINKS - CARBONATED”, there are 15 UPCs that refer to

non-diet, non-organic, regular salt, and single-pack 12 ounce containers sold under the

brand “COCA-COLA CLASSIC R” that are produced at “COCA-COLA USA OPERA-

TIONS.” Products are defined such that this set of UPCs belong to the same product.

The utility function presented below assumes that consumers do not differentiate be-

tween UPCs in the same product. Since firms use UPCs to monitor their distribution and

sales, otherwise identical products might have different UPCs because, for example, they

are distributed through different channels. It is appropriate to assume that, conditional on

price, consumers do not differentiate between these products. The assumption is stronger

in cases where different UPCs that I have defined to be the same product are differentiated

by their label or flavor.

Table 3.1 shows summary statistics for the sample used for estimation. This sample

has been cleaned to control for data recording errors14 and contains 538 product modules.

There are between 6 and 5,284 products in each module, and the median number of

products per module is 190. The median number of UPCs per module at 289. Although

there are much fewer products in each module than there are UPCs, the typical product

only contains one UPC.15

For the purposes of this paper, the most important demographic information contained

14In order to control for data recording errors, I drop any purchase observations for which the price paid
for a UPC was greater than three times or less than a third of the median price paid per unit of any UPC
within the same product categorization. I drop any purchase observations for which the price paid for
a UPC was greater than three times or less than a third of the median price paid per unit of any UPC
within the same product module. I also limit the sample to products that are purchased by 20 or more
households.

15To check the extent to which consumers differentiate between UPCs within product categories, I
compare the coefficient of variation for the unit value paid for each UPC with the coefficient of variation
for the unit value paid for the set of UPCs with the same product categorization. The median UPC-level
coefficient of variation is 0.14, which is only slightly lower than the median product-level coefficient of
variation at 0.15. This indicates that there is little variation in the prices charged for UPCs within the
same product.
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Table 3.1: Summary Statistics for AC Nielsen HomeScan Data Used in Estimation

Total Count

Quarters 12
Metropolitan Statistical Areas (MSAs) 49
Modules 538
Brands 12,194
Products 181,072
Universal Product Codes (UPCs) 318,825

Count of Unique UPCs Per Category

Category Minimum Median Maximum

Module 6 289 9,464
Brand 1 2 431
Product 1 1 153

Count of Unique Products Per Category

Category Minimum Median Maximum

Module 6 190 5,284
Brand 1 2 135

Coefficient of Variation of Unit Price Paid for a UPC

Minimum Median Maximum

Within the same module 0.15 0.39 0.72
Within the same brand 0.00 0.20 1.35
Within the same product 0.00 0.15 1.34
Within the same UPC 0.00 0.14 0.98
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in the dataset relates to household income. AC Nielsen classifies households into sixteen

categories based on annual income. I drop the households in the three categories with

annual income under $10,000 and adjust the income of the remaining households for the

number of household members. To adjust for household size, I first assign a numerical

value to the income of each household. This income variable is equal to the mid-point

of the bounds of a household’s income category when both bounds exist and is equal to

$150,000 for those households in the “above $100,000” income category. To adjust this

income variable for the number of members in each household, I regress log household

income against dummies for the ages, years of education, marital status, and race of the

female and male heads-of-household, as well as fixed effects for household size. I subtract

the estimated household size fixed effects from log household income and add back the one-

member household fixed effect to all observations to get a projection of the log household

income of each household if it were to have only one member. The distribution of the

single-member household income projections are shown in Figure 3.1. The bulk of the

distribution is between $10,000 and $80,000, which seems reasonable given that the per

capita incomes of the MSAs represented in the sample range from $21,446 in New Orleans

to $54,191 in San Francisco.

Figure 3.1: Distribution of Size-Adjusted Household Income
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To supplement the AC Nielsen data, I also use two forms of U.S. census data. From

the 2007 economic census, I use county-level food manufacturing output, the number of

grocery stores, and the number of grocery store employees to create price instruments that
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help identify the parameters of the model. From the 2000 U.S. census, I use per capita

income and population data for each Metropolitan Statistical Area (MSA) in the sample

to test whether high-income households face lower costs in wealthier and/or larger cities

relative to low-income households.

Table 3.2 shows the number of households included in the sample, the population, and

the per capita income for the 49 MSAs considered in the cross-city grocery cost analysis.

Although per capita income is correlated with population across the sample MSAs, three

of the ten largest cities in the sample (Los Angeles, Detroit, and Chicago) and three of

the ten smallest (Des Moines, Omaha, and Richmond) have similar per capita incomes,

between $35,000 and $40,000. This variation will help to separately identify whether the

observed variation in household income- and city-specific grocery costs is related to a story

in which high-income households benefit more from city size than low-income consumers,

or one in which all consumers benefit more from living in locations with per capita incomes

closer to their own.

3.3 Model

I will introduce the model by first outlining some notation and the general framework of

consumer choices. I will then discuss the key feature of the model, non-homotheticity,

which is achieved by allowing the outside good expenditure to enter the utility function of

the “inside” goods, i.e. differentiated grocery products. Finally, I will present the function

that characterizes consumer utility over grocery products and solve the consumer’s utility

maximization problem. I will use these solutions to generate functions for income-specific

market shares that will be used to empirically identify the parameters of the model as

described in Section 3.4.1 below.

3.3.1 Notation

Each consumer i earns income Yi that he/she allocates between a set of grocery products,

denoted by G, and a set of other goods, denoted by Z, spending W and Z in each sector,

respectively. Figure 3.2 shows the consumer’s expenditure allocation decision. Each oval

represents the product or the set of products listed within the oval, and the arrow pointing
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Table 3.2: Summary Statistics on Market Size and Income

Market ID Market Name Household Count Population Per Capita Income
1 Des Moines 145 456,022 37,650
2 Little Rock 351 583,845 33,289
3 Omaha 116 716,998 37,869
4 Syracuse 164 732,117 31,445
5 Albany 138 875,583 24,811
6 Birmingham 570 921,106 35,448
7 Richmond 194 996,512 37,082
8 Louisville 454 1,025,598 34,162
9 Grand Rapids 198 1,088,514 31,966
10 Jacksonville 130 1,100,491 35,439
11 Memphis 331 1,135,614 34,052
12 Raleigh-Durham 239 1,187,941 35,585
13 Nashville 403 1,231,311 36,056
14 Salt Lake City 248 1,333,914 33,469
15 Charlotte 1,115 1,499,293 36,580
16 Columbus 1,101 1,540,157 34,777
17 San Antonio 921 1,592,383 31,189
18 Indianapolis 245 1,607,486 36,160
19 Orlando 247 1,644,561 31,828
20 Milwaukee 170 1,689,572 37,361
21 Hartford-New Haven 193 1,725,259 41,705
22 Kansas City 220 1,776,062 35,839
23 Sacramento 1,052 1,796,857 35,318
24 New Orleans-Mobile 409 1,877,984 21,446
25 Oklahoma City-Tulsa 528 1,886,581 34,068
26 Cincinnati 317 1,979,202 35,326
27 Portland, Or 263 2,265,223 34,921
28 Buffalo-Rochester 1,135 2,268,312 33,020
29 Pittsburgh 303 2,358,695 36,159
30 Tampa 1,173 2,395,997 33,678
31 Denver 1,128 2,581,506 42,476
32 St. Louis 1,183 2,603,607 35,991
33 San Diego 139 2,813,833 40,383
34 Cleveland 362 2,945,831 35,555
35 Minneapolis 1,236 2,968,806 42,457
36 Phoenix 1,211 3,251,876 32,660
37 Seattle 1,149 3,554,760 42,356
38 Miami 1,086 3,876,380 38,342
39 Atlanta 1,038 4,112,198 35,262
40 Houston 1,070 4,669,571 40,734
41 Dallas 899 5,221,801 38,089
42 Detroit 1,001 5,456,428 37,204
43 Boston 1,275 5,819,100 47,491
44 Philadelphia 1,183 6,188,463 40,948
45 San Francisco 995 7,039,362 54,191
46 Washington, DC-Baltimore 1,115 7,608,070 46,725
47 Chicago 1,064 9,157,540 39,454
48 Los Angeles 1,151 16,373,645 37,441
49 New York 1,477 21,199,865 46,221



3.3. MODEL 81

towards each oval represents the consumer’s expenditure allocation towards that product

or set of products. For example, the oval labeled “Grocery G” represents the set of all

grocery products, and W is the expenditure that the consumer allocates to this set of

products.

Figure 3.2: Consumer Choices
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The focus of this paper will be on the choices that consumers make within the grocery

sector; that is, how consumers allocate their grocery expenditure W between the vari-

eties of grocery products available to them. The consumer’s within-grocery expenditure

allocation can be organized into two levels. First, consumers allocate their grocery expen-

diture W between distinct subsets of products called “product modules.” These subsets

are defined using the product module variable provided in the AC Nielsen data. One

such product module is “SOFT DRINKS - CARBONATED”, and a product within this

module is a 12-ounce can of Coca-Cola Classic.16 I will refer to the set of product modules

as M and will index modules with the subscript m = 1, ...,M . As shown in Figure 3.2,

consumers allocate some expenditure wm to products in module m, under the constraint

that their module expenditures sum to their total grocery expenditure allocation W ; that

is,
∑
m∈M

wm = W .

The consumer’s module expenditure is shared between the products in a module. I

denote the set of products in a module m as Gm. I identify products in a module by

the module index, m, and a product index, g = 1, . . . , Gm. The product index uniquely

16See Section 3.2 for greater detail on the product categorizations in the AC Nielsen dataset and how
they are used to define products for the purpose of this analysis.
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identifies products within modules, but does not across modules. A consumer chooses to

spend some wmg on each product g in module m. The consumer purchases qmg = wmg/pmg

units of product g in module m, where units are module-specific and pmg is the price of of

product g in module m. I will denote the set of observed grocery prices and consumption

quantities for module m as Pm = {pmg}g∈Gm and Qm = {qmg}g∈Gm , respectively, and the

set of all grocery prices and consumption quantities as P = {Pm}m∈M and Q = {Qm}m∈M,

respectively.

The consumer’s across-module and within-module expenditure allocation decisions are

linked by the fact that the consumer cannot allocate more than their total module expen-

diture, wm, between products g ∈ Gm; that is,
∑
g∈Gm

wmg = wm. If I define the consumer’s

within-module expenditure share as smg = wmg/wm, then this within-module expenditure

allocation constraint is equivalent to the restriction that these shares sum to one within a

module; that is,
∑
g∈Gm

smg = 1.

I will denote the set of all existing grocery products as G, equal to the union of

the module product sets, Gm, over all modules m = 1, ...,M . The products in set

G will be indexed by mg, where m indicates the module under which the product is

characterized and g indicates the product’s index within the module. The consumer’s

grocery expenditure allocation decision is, therefore, to allocate grocery expenditure W

between products in the set G such that
∑
mg∈G

wmg =
∑
m∈M

∑
g∈Gm

wmg = W = Yi − Z,

where the final equality is due to the consumer’s budget constraint in their grocery/non-

grocery expenditure allocation decision. A consumer allocates his/her grocery expenditure

by maximizing a utility function over all grocery products G subject to the constraint∑
mg∈G

wmg =
∑
m∈M

∑
g∈Gm

wmg = W = Yi −Z. Before explicitly stating this utility function,

I will highlight the key feature that will make it non-homothetic.

3.3.2 Non-Homotheticity Through the Outside Good

For the purposes of this paper, the most important feature of the utility function presented

below is that it is generically non-homothetic, i.e. a consumer i’s expenditure allocation

between grocery products depends on their total expenditure, or income, Yi. This non-

homotheticity is due to the fact that tastes for grocery products depend on the expenditure
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on non-grocery products, Z. The details of this dependence, and the parameter values

for which it does and does not hold, will be explained in Section 3.3.3. For now, assume

that consumers get utility from consumption of the outside good and grocery products.

I will denote this utility as f(UiG(Q, Z), Z). It is a function of two terms: non-grocery

expenditure, Z, and a quantity index, UiG(Q, Z). The quantity index represents utility

from grocery product consumption, Q, which itself depends on non-grocery expenditure.

Non-grocery expenditure will be selected to maximize f(UiG(Q, Z), Z) conditional on

a budget constraint defined by consumer income and prices:

max
Q,Z

f(UiG(Q,Z), Z) s.t.
∑
m∈M

∑
g∈Gm

pmgqmg + Z ≤ Yi, qmg ≥ 0 ∀mg ∈ G (3.1)

I do not model the consumer choice between grocery and non-grocery expenditure; how-

ever, I assume that f(UiG(Q, Z), Z) is such that optimal non-grocery expenditure is in-

creasing in income.

The assumption that the non-grocery composite good is normal is important for two

reasons. First, it is sufficient to make preferences generically non-homothetic. Grocery

utility depends on non-grocery consumption; however, this will not imply that preferences

over grocery products will be non-homothetic unless optimal grocery expenditure varies

with income. Second, it is necessary for an approximation used in estimation. In the

analysis below, I derive estimating equations that summarize grocery consumption deci-

sions conditional on household non-grocery expenditures, Zi.
17 I use these equations to

construct moments that are calculated using household income, Yi, as a proxy for opti-

mal non-grocery expenditure, Z∗i .18 This approximation is valid if optimal non-grocery

consumption is increasing in household income.

In Section 3.B of the Appendix, I solve for an implicit restriction on f(UiG(Q, Z), Z),

prices, and model parameters under which the optimal non-grocery expenditure, Z∗i , will

be increasing in income. Although I cannot show that this restriction holds generally, I am

17Specifically, I solve for the grocery product expenditure shares that maximize a consumer’s utility
from grocery products, UiG(Q, Zi), conditional on their outside good expenditure, Z∗i . I then estimate
the parameters of the function UiG(Q, Z) by minimizing the distance between the predicted expenditure
shares of a group of households with the same optimal non-grocery expenditure, Z∗, and the expenditure
shares observed in the data for groups of consumers with different levels of outside good expenditures.

18As a robustness check, I estimate the model using annual income less annualized observed grocery
expenditures as a direct measure of non-grocery expenditure. The parameter estimates using this measure
of Z are very similar.
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able to show that it holds in the data. To do so, I annualize the observed grocery expen-

diture for each household and measure annual non-grocery expenditures as the difference

between the median household income of each household’s reported income category and

the household’s annual grocery expenditures. The elasticity of non-grocery expenditures,

Zi, with respect to household income, Yi, is 1.05 with a standard error of 0.0003. There

is also an Engel curve relationship between grocery expenditures and income. The me-

dian ratio of grocery expenditures to household income decreasing from 0.15 in the lowest

income category of households to 0.05 in the highest income category. This evidence

supports the assumption that non-grocery expenditure is increasing in household income,

and thus justifies the use of household income as a proxy for non-grocery expenditure in

estimation. In the discussion below, I will refer to households with high incomes and those

with high outside good expenditures interchangeably.

3.3.3 Functional Form Assumptions

I model consumer demand for the products in G using a combination of constant elastic-

ity of substitution (CES) and log-logit preferences. A consumer i’s utility from grocery

consumption, conditional on their outside good expenditure Z is defined as:

UiG(Q, Z) =

{∑
m∈M

uim (Qm, Z)
σ(Z)−1
σ(Z)

} σ(Z)
σ(Z)−1

(3.2)

where σ(Z) > 1 is the elasticity of substitution between modules and uim(Qm, Z) is

consumer i’s utility from consumption in module m, defined as:

uim (Qm, Z) =
∑
g∈Gm

qmg exp(bmg(Z) + µm(Z)εimg) (3.3)

Here, qmg is the consumed quantity of product g in module m, bmg(Z) is the taste that

all consumers with outside good expenditure Z have for product g in module m, and εimg

is the idiosyncratic utility of consumer i from product g in module m. This idiosyncratic

utility is an independent draw from a type I extreme value distribution with shape param-

eter 0 and scale parameter 1. µm(Z) > 0 is the weight that consumers with outside good

expenditure Z place on their idiosyncratic utility draw and thus governs the importance



3.3. MODEL 85

that these consumers place on the horizontal differentiation between products in each

module. bmg(Z), µm(Z), and σ(Z) depend on the consumer’s outside good expenditure,

Z.

In what proceeds, I discuss the reasoning behind the log-logit and CES functional form

assumptions made in generating the framework above. I also outline the functional form

assumptions made on the bmg(Z), µm(Z), and σ(Z) terms, explain how they yield non-

homothetic demand for product quality, cross-product variety, and cross-module variety,

respectively. Finally, I discuss how these functional forms relate to those used in the

previous literature to model non-homothetic demand over differentiated products.

The aim of this paper is to estimate the parameters of the utility function and mea-

sure aggregate utility over many modules. The consumer’s preferences across products

in different modules are governed by the CES aggregator shown in equation 3.2. Since

the cross-module substitution patterns are governed by a CES utility function, the model

predicts that consumers will optimally spend a positive amount in each module. This pre-

diction does not match the data, although models that yield more realistic cross-module

consumption patterns would be difficult to estimate given the dimensions of the problem

that this paper addresses.19

I allow for the substitutability of products in different modules to vary with outside

good expenditure through σ(Z). Specifically, I impose that the elasticity of substitu-

tion between modules is log-linear in outside good expenditure, Z = exp(z), such that

σ(Z) = 1 + α0 + α1z. This implies that for α1 < 0, consumers with high outside good

expenditures, or high income, find products in different modules less substitutable for one

another and will, therefore, switch between modules less than consumers with low outside

good expenditures in response to changes in the relative price level across modules.

19Specifically, the typical household spends a positive amount in only 190 of 538 modules. The expendi-
ture pattern could be replicated more closely using a less-restrictive model of multiple-discrete purchasing
behavior that would allow consumers to purchase products in some, but not all, modules. For example,
one could assume nested-logit preferences across all products in G with module-level nesting. Under this
assumption, consumers would purchase multiple units of a variety of products on each purchase occasion
because their purchases are intended to cover multiple consumption occasions, as in Hendel (1999) and
Dube (2004). Consumer purchasing decisions could be also modeled in a static setting by assuming that
consumers are endowed with a certain level of utility in each module. This method, used in Song and
Chintagunta (2007) and Pinjari and Bhat (2010), implies that a consumer’s maximum marginal utility
from expenditure in a module must be greater than a certain cut-off value for a consumer to want to
purchase any products in that module. The maximum likelihood methods these authors use to estimate
these models are not computationally feasible given the size of the choice set and the number of households
in the dataset.
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We now restrict our focus to the log-logit sub-utility defined in equation (3.3). I

refer to this as the consumer i’s within-module utility function. The log-logit functional

form was selected because it predicts household-level purchasing behavior that is similar

to the observed pattern of household grocery purchases at the micro level. The typical

household in the data purchases one or more units of exactly one product per module in

each quarter.20 The utility function provided above matches this feature of the data well.

To see this, note that consumer i’s module-level utility is additive in the utility he/she

gains from each product g in each module m, uimg(Z) = qmg exp(bmg(Z) + µm(Z)εimg).

As a consequence of this additivity, these product-level utilities are perfectly substitutable

with the utility from each of the other products within the same module. This implies that

households will purchase positive quantities of only the product(s) that maximize their

marginal utility from product expenditure, exp(bmg(Z) + µm(Z)εimg)/pmg. Further, each

household’s product-specific idiosyncratic utility draws, εimg, are drawn from a continuous

distribution, so there will be a unique product that maximizes the marginal utility of

expenditure for each household within each module. The module-level utility function

therefore predicts that each household will purchase only one product within each module.

I parametrize the taste parameter, bmg(Z), which is both consumer and product spe-

cific, by assuming that a consumer’s taste for product g in module m is equal to a prod-

uct attribute, βmg, scaled by a module-specific valuation for this attribute, γm(Z); i.e.

bmg(Z) = βmgγm(Z).21 I interpret the product attribute βmg as a measure of product

quality. These quality parameters are determined in the data as the average willingness

to pay for product g across consumers. βmg will be high for a product g in module m

relative to βmg̃ for another product g̃ in the same module m when a set of consumers

20That is, the median number of products purchased in a module by a household in a quarter is equal
to one.

21The log-logit utility function defined in equation (3.3) is a generalization of a utility function used by
Auer (2010) to theoretically derive the effects of consumer heterogeneity on trade patterns and the welfare
gains from trade. In Auer (2010), consumer utility is Cobb-Douglas in an outside good and a composite
utility over a set of products J that takes the form:

ui
(
{qg}g∈J

)
=
∑
g∈J

qg exp(βgvi + µεig) (3.4)

Here, qg is the consumed quantity of product g, εig is a draw from a type I extreme value distribution
with scale parameter 0 and shape parameter 1; βg is a product attribute, vi is consumer i’s valuation of
a product attribution; and µ > 0 is a shape parameter that governs the level of product differentiation
in the set J. My utility function is a generalization of Auer (2010) in that Auer restricts the weight
on the idiosyncratic product utility, µ, be identical across consumers. Auer (2010) allows for a flexible
interpretation of what governs the product attribute and valuation terms.
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facing the same price for both products spends a higher share of their module expenditure

on product g than on product g̃ . I interpret γm(Z) as the valuation for product quality,

βmg, for product g in module m shared by consumers spending Z on the outside good. I

assume that γm(Z) is log-linear in outside good expenditure, Z = exp(z), with a module

specific slope, γm, such that:

bimg = βmgvim = βmg(1 + γmz) (3.5)

A consumer’s valuation for product quality in module m is increasing in z for γm > 0,

decreasing in z for γm < 0, and invariant to z for γm = 0. Under the assumption that Z

is a normal good, z will be increasing in consumer income Yi, so the weight a consumer

places on product quality will also be increasing with income for γm > 0. Therefore, γm

will be positive when the module expenditure share on high-quality products is higher for

consumers with higher log income, yi.

The within-module utility function defined in equation (3.3) is also non-homothetic

through the weight, µm(Z), on the idiosyncratic utility, εimg. I assume that the perceived

level of horizontal differentiation between products varies with outside good expenditure

Z = exp(z) according to the following equation:

µm(z) =
1

α0
m + α1

mz
(3.6)

These idiosyncratic utility weights govern the dis-utility from consuming products that

are horizontally differentiated from the consumer’s ideal type of product. For α1
m < 0

, µm(z) increases with z such that consumers with high non-grocery expenditures find

the available products less substitutable with each other and their ideal product and

will, therefore, have a higher willingness to pay for the product closest to their ideal than

consumers with low non-grocery expenditures. µm(Z) is equal to 1
σm(Z)−1 , where σm(Z) is

the elasticity of substitution between similar quality products in module m for a consumer

with outside good expenditure Z. With the functional form assumption in equation (3.6),

this relationship implies that σm(z) = 1 + α0
m + α1

mz. That is, for α1
m < 0, the elasticity

of substitution is decreasing in consumer income. Further, consumers who spend more on
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non-grocery products have a higher perception of the horizontal differentiation between

products within a module and are less price sensitive.

In the expenditure equations derived below, it is easy to see that both the idiosyncratic

utility weight, µm(Z), and the elasticity of substitution between modules, σ(Z), will both

govern the elasticity of consumer demand with respect to price. Specifically, the weight on

the idiosyncratic utility draw is equal to the inverse of the within-module price elasticity of

demand, and the elasticity of substitution is one minus the between-module price elasticity

of demand. In an international trade model, where markets are segmented by national

borders, non-homothetic models that yield income-specific price elasticities have been

used to explain the fact that companies export identical products at higher prices to high-

income countries than they do to low-income countries. Hummels and Lugovskyy (2009),

for example, examine international prices in a Lancaster ideal variety utility function

where the dis-utility from distance between a product and a consumer’s ideal type is an

increasing function of their consumption quantity qγω for γ ∈ [0, 1]. This weight implies

an income-specific price elasticity in a similar manner to the idiosyncratic utility weights,

µim, above. Income-specific price elasticities are also generated by the translated additive-

log utility function used in Simonovska (2010) and translated CES utility functions more

generally. The empirical tests for whether α1
m or α1 are greater than zero will test the

micro-foundations of this class of models. The model selection tests between a model that

allows α1
m to differ from zero while restricting γm to equal zero and a model that allows

γm to differ from zero while restricting α1
m to equal zero. This model selection will provide

evidence that can be used to assess the relative merits of models which allow for non-

homothetic price elasticities, such as Hummels and Lugovskyy (2009) and Simonovska

(2010), and models that allow for non-homothetic demand for quality, such as Hallak

(2006) and Fajgelbaum, Grossman, and Helpman (2011).

3.3.4 Individual Utility Maximization Problem

The utility function defined in equation (3.2) is specific to the individual through consumer

income and the consumer’s idiosyncratic utility draws. In this section, I solve for consumer

i’s optimal demand for each product g as a function of his/her outside good expenditure,

Zi, and his/her idiosyncratic utility draws. In the next section, I aggregate across the
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idiosyncratic utility draws for consumers with the same income to derive expressions for

income-specific market expenditure shares that will be used to estimate the parameters

that govern bmg(zi) and µm(zi), as well as the elasticity of substitution between modules,

σ(zi).

The consumer solves for their optimal consumption bundle by maximizing equation

(3.2) subject to the following budget and non-negativity constraints:

∑
m∈M

∑
g∈Gm

pmgqmg ≤Wi and qmg ≥ 0 ∀mg ∈ G

I will solve this optimization problem in two steps, assuming that the consumer draws an

idiosyncratic utility εig for each product g ∈ G prior to making their purchase decision.

I first solve for the consumer’s optimal module bundle, Q∗im(wm) as a function of the

consumer’s expenditure in that module, wm. I then use the solution to this problem to

solve for the consumer’s optimal module expenditure, w∗im(Wi).

The consumer’s optimal bundle, Q∗im(wm), will maximize the consumer’s within-module

utility, defined in equation (3.3), subject to the above non-negativity constraints and a

budget constraint limiting expenditure on all products with a module to be less than or

equal to the predetermined module expenditure, wm:

Q∗im(wm) = arg max
Qm≥0

∑
g∈Gm

qmg exp(bmg(Zi) + µm(Zi)εimg)

s.t.
∑
m∈M

∑
g∈Gm

pmgqmg ≤ wm, qmg ≥ 0 mg ∈ G(3.7)

Note that varieties within the same module are perfect substitutes and thus consumers

will allocate all of their module expenditure, wm, to the product(s) that maximize the

marginal utility from module expenditure. Since the idiosyncratic utility draws are from a

continuous distribution, there will be a unique product, g∗im ∈ Gm, for each module that
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maximizes this marginal utility:22

g∗im = arg max
g∈Gm

exp(bmg(Zi) + µm(Zi)εimg)

pmg
(3.8)

The optimal product choice, g∗im, is independent of the consumer’s module expenditure,

wm. Since all of wm will be allocated to g∗im, consumer i’s optimal quantity of g∗im in

module m is equal to the amount that the consumer can buy at the price they observe,

i.e. qimg∗im = wm/pmg∗im , where pmg∗im is the price the consumer observes for g∗im. For all

other products g in module m, that is, for g 6= g∗im, consumer i’s optimal quantity, qmg,

will be equal to zero. We can summarize this definition of the consumer’s optimal module

bundle Q∗im(wm) as follows:

Q∗im(wm) = (q∗im1(wm), . . . , q∗imGm(wm))

where q∗img(wm) =


wm/pmg if g = arg max

g∈Gm

exp(bmg(Zi) + µm(Zi)εimg)

pmg

0 otherwise

(3.9)

The indirect utility for consumer i in module m is the value of the within-module

utility, defined in equation (3.3), calculated at the optimal module bundle, defined in

equation (3.9):

ũim(wm) = uim (Q∗im(wm)) = wm
exp(bmg∗im(Zi) + µm(Zi)εimg∗im)

pmg∗im
= wm max

g∈Gm

exp(bmg(Zi) + µm(Zi)εimg)

pmg
(3.10)

I can now solve for consumer i’s optimal module expenditure allocations, w∗i = (w∗i1, ..., w
∗
iM ),

by subbing the indirect module utilities, ũim(wm), into the upper-level utility function de-

22Consumers allocate all of their module expenditure to the product(s) that maximize(s) the consumer’s

marginal utility from expenditure,
exp(bmg(Zi)+µm(Zi)εimg)

pmg
. Since the idiosyncratic utility parameters, εimg,

are independent draws from a continuous distribution and the other variables that determine a consumer’s
marginal utility of expenditure are exogenous to the within-module product choice, there is zero probability
that the value of the marginal utility of expenditure will be equal for two products. This implies that there
will be a unique product that maximizes each consumer’s marginal utility from expenditure in each module.
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fined in equation (3.2):

w∗i = (w∗i1, ..., w
∗
iM ) = arg max∑

m∈M

wm ≤Wi

{∑
m∈M

[ũim(wm)]ρ(Zi)

} 1
ρ(Zi)

(3.11)

Consumer i’s utility from grocery consumption is a CES aggregate over his/her indirect

utility ũim(wm) from module expenditures wm for modules m = 1, . . . ,M . If we substitute

the solution for the indirect within-module utility for each module m, defined in equation

(3.10), into the target utility in the above problem we get:

Ui(w1, . . . , wM ) =

{∑
m∈M

[ũim(wm)]ρ(Zi)

} 1
ρ(Zi)

=

{∑
m∈M

[
wm max

g∈Gm

exp(bmg(Zi) + µm(Zi)εimg)

pmg

]ρ(Zi)
} 1

ρ(Zi)

The solution to this problem is derived in Section 3.D of the Appendix:

w∗i = (w∗i1, ..., w
∗
iM ) where w∗im = Wi

[
max
g∈Gm

exp(bmg(Zi) + µm(Zi)εimg)

pmg

]σ(Zi)−1

Pi(Zi)1−σ(Zi)
(3.12)

Pi(Zi) =

[∑
m∈M

(
max
g∈Gm

exp(bmg(Zi) + µm(Zi)εimg)

pmg

)σ(Zi)−1
] 1

1−σ(Zi)

(3.13)

Note that consumer i’s optimal module expenditure allocation depends crucially on the

consumer’s idiosyncratic utility draws, εi.

3.3.5 Solving for Market Shares to Obtain Estimating Equations

I denote the parameters of the utility function using a vector θ defined as:

θ = {(β1, . . . , βM ), (γ1, . . . , γM ), (α1, . . . , αM ), α0, α1}

where αm = {α0
m, α

1
m} and βm = {βm1, . . . , βmGm}. The estimation procedure outlined

in section (3.4.1) below will identify the parameter values that minimize the distance

between the model’s predictions for the expenditure share of each product and module

in the data, conditional on consumer income, and the values of these expenditure shares
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that are observed in the data for market-specific groups of households with similar income

levels. In Sections 3.E and 3.F of the Appendix, I integrate the optimal consumer-specific

product and module expenditure functions derived in equation (3.9) and equations (3.12)

and (3.13), respectively, over the consumer’s unobserved idiosyncratic utility parameters

εi. Such integration yields the model’s predictions for the log market share of product g

relative to a base product ḡ (both in module m) and the log market share of module m

relative to a base module m̄. Both predictions are functions of observed product prices,

observed consumer income, and parameters to be estimated.

I denote the within-module expenditure share on product g in module m for a group of

households with the same outside good expenditure, Zi = exp(zi), facing a common vector

of module prices, Pm, as smg|m(Zi,Pm). As derived in the Section 3.E of the Appendix,

smg|m(Zi,Pm) takes the following form:

smg|m(Zi,Pm) = Eε[simg|m] =
exp[(α0

m + α1
mzi)(βmg(1 + γmzi)− ln pmg)]∑

g′∈Gm

(
exp[(α0

m + α1
mzi)(βmg′(1 + γmzi)− ln pmg′)]

)

To obtain the log market share of product g relative to product ḡm, I take the difference

between the log expenditure share for product g and the log expenditure share for product

ḡm in the same module m. I take the log of this expenditure share for product g and

difference from the log expenditure share for a fixed product ḡm in the same module m:23

ln(smg|m(Zi,Pm))−ln(smḡm|m(Zi,Pm)) = (α0
m+α1

mzi) [(βmg − βmḡm)(1 + γmzi)− (ln pmg − ln pmḡm)]

(3.14)

Equation (3.14) defines the expected within-module expenditure share of a set of house-

holds with outside good expenditure zi facing prices pmg and pmḡm on product g in module

m relative to product ḡm in the same module m in terms of parameters αm, γm, and

(βmg − βmḡm). This equation will be used to define moments for each product g 6= ḡm

in each module m that will be used to estimate all of the αm and γm parameters as well

as each βmg parameter relative to βmḡm , i.e. {βmg − βmḡm}g∈Gm . The remaining model

23The utility function assumes weak separability between modules and the independence of irrelevant
alternatives (IIA) property both across modules and across products with the same quality parameter.
Although neither of these are realistic characteristics of consumer behavior, they are useful for the purposes
of estimation as they imply that relative market expenditure shares can be derived as functions of observed
variables, such as household income, expenditures, and transaction prices.
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parameters, α0, α1, and {βḡm}g∈Gm , are identified using moments based on the model’s

prediction for module-level market shares. Specifically, the expected log expenditure share

in module m relative to m̄ for a group of households with the same outside good expendi-

ture, Zi = exp(zi), facing a common vector of grocery prices, P, is derived in Section 3.F

of the Appendix to be equal to:

Eε [ln sim − ln sim̄] = −(α0 + α1zi) [lnVm(zi,Pm)− lnVm̄(zi,Pm̄)] (3.15)

Here, Vm(zi,Pm) is a CES-style index over price-adjusted product qualities:

Vm(zi,Pm) =

 ∑
g∈Gm

(
exp(βmg(1 + γmzi))

pmg

)−(α0
m+α1

myi)
 1

−(α0
m+α1

myi)

(3.16)

Together equations (3.15) and (3.16) define the expected relative module expenditure

share of a set of households with income Yi that face prices Pm and Pm̄ in terms of

parameters α0 and α1, as well as αm, γm, βmg for all g ∈ Gm, and αm̄, γm̄, βm̄g for all

g ∈ Gm̄. I use these expressions as the basis for calculating moments for each module

m 6= m̄, which, in turn, will be used to estimate α0 and α1, as well as βmḡm for each

m ∈M.

3.4 Empirical Strategy

I first outline how I estimate the parameters of the model using a two-step procedure

based on the relative share equations derived in Section (3.3.5) above. I then discuss how

I use these parameter estimates to measure the relative utility of consumers at different

income levels across the geographic markets represented in the sample.

3.4.1 Estimation

I estimate the parameters of the utility function in two steps, and I split the parameter

set, θ, accordingly. Equation (3.14) defines the model’s prediction for market expenditure

shares on each product within each module. This equation identifies the price sensitivity

parameter (α0
m, α1

m) and quality taste-income gradient parameter (γm) for each module
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m ∈M. It also identifies the quality of each product, βmg, in each module relative to the

quality of the base product in that module, βmḡm , for all products g ∈ G.24 I denote this

set of parameters by θ1:

θ1 =
{
α0
m, α

1
m, γm, {βmg − βmḡm}g∈Gm

}
m∈M

Equation (3.15) defines the model’s prediction for market expenditure shares on each

module within the grocery category. Conditional on estimates for θ1, this equation is used

to identify α0, α1, and βmḡm for all m ∈M except for the base module m̄. I denote this

set of parameters by θ2:

θ2 =
{
α0, α1, {βmḡm}m∈M,m 6=m̄

}

For the purposes of estimation, I proxy outside good expenditure, Zi, with household

income, Yi. Furthermore, I split the sample of households for each quarter-MSA market,

t, into income quintiles. For each market, product, and income quintile, I calculate skgt,

the within-module product g expenditure share for households in each income quintile k

in market t; pkgt, the unit value paid for product g by households in income quintile k

in market t; and yk, the median log income of households in income quintile k in market

t. The following equation, based on equation (3.14), defines the relationship between the

sample relative within-module product shares and the model’s prediction for these shares:

ln

(
skgt
skḡmt

)
= (α0

m + α1
myk)[(βmg − βmḡm)(1 + γmyk)− (ln

(
pkgt
pkḡmt

)
)] + νkgḡmt (3.17)

Here, ḡm ∈ Gm is some fixed base product for each module m ∈ M, yk is the median

household income of the quintile and proxies zi in equation (3.14), and νkgḡmt is the error in

the predicted value of the relative product shares. This error includes differences between

the mean prices paid and incomes of households in quintile k in market t (pkgt and yk) and

the actual prices paid and incomes earned by these households. This error also includes

measurement error in the collection of the raw data.

I assume that E[Z1 · ν] = 0 for a set of instruments Z1. These instruments include

24I restrict βmg to be equal across all products g with the same brand name.
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a set of product dummies, a set of price instruments, and interaction terms between

these sets of variables and quintile income, yk. The set of product dummies includes one

dummy for each product except the base product in each module ḡm. I cannot use prices

as instruments because they might be correlated with the error term, νkgḡmt, through

unobserved market-specific product tastes. For a given market, I instrument for price

using four measures based on the prices observed in surrounding geographic or temporal

markets. First, I use average price paid by consumers in the same income quintile in all

other geographic markets in the same time period. I expect that this instrument will be

correlated with price through national cost shocks, such as the increase in the price of

wheat. Second, I use the average price paid by consumers in the same income quintile in

all geographic markets in the same region in the same time period. This proxy captures

any regional cost shocks and relies on the assumption that market-specific taste shocks

are not shared across regional MSAs.25 These instruments are similar to those used in

Hausman, Leonard, and Zona (1994) and Nevo (2000). Finally, I use the price paid for a

product by consumers in the same income quintile in the same market in both the lead

and lag time quarter. These instruments are similar to those used in Asker (2004) and

are intended to capture persistent local cost shocks, such as increases in sales taxes or

wages. The strength of this instrument relies on MSA-specific cost shocks that persist

over more than one quarter and its validity relies on the assumption that MSA-specific

demand shocks do not persist for more than one quarter.

The instruments above are intended to capture temporal cost shocks that are correlated

either across geography or over time. To capture spatial shocks, such as in retail costs and

the level of market competition, I use county-level statistics on the number of grocery store

employees, the payroll of grocery store workers, the level of food manufacturing, and the

number of grocery stores per capita. In each quarter-MSA market t, consumers in a given

income quintile will purchase products in stores in a range of counties within their MSA.

For each product, market, and income quintile, I represent each of the above statistics

by taking the weighted average of the county-level statistic in an MSA, weighting by the

purchases of a given product that consumers in a given income quintile make in each of

the counties in that MSA-quarter market. This yields four more instruments. The ninth

25The region categorizations are provided in Table 3.11 in Section 3.A of the Appendix.
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and final price instrument is the number of products sold in a market for each module.

This is intended to capture the level of competition in each module-market.

The second step in the estimation is based on equation (3.15), again proxying for

outside good expenditures with household income and replacing zi with yi. I define the

difference between the relative module expenditure shares in the sample, where the module

m expenditure share of households in income quintile k in market t is denoted by skmt,

and the model’s prediction for these shares as:

ln

(
skmt
skm̄t

)
= (α0 + α1yk) [lnVm(yk,Pkmt)− lnVm̄(yk,Pkm̄t)] + ukmm̄t (3.18)

where:

Vm(yk,Pkmt) =

 ∑
g∈Gm

(
exp(βmg(1 + γmyk))

pkmgt

)−(α0
m+α1

myk)
 1

−(α0
m+α1

myk)

(3.19)

The parameters estimated in the first stage of estimation, θ1, enter the equation above

through the price-adjusted quality index, or inclusive value, for each module Vm(yk,Pkmt).

I construct sample moments based on the above equation using data and estimates from

the first stage, θ̂1, to estimate the remaining parameters, θ2.26 These parameters include

the parameters governing the elasticity of substitution between module, α0 and α1, and

the quality parameters for the base product in each module, {βmḡm}m∈M. All but one of

these quality parameters are identified in the equations above. I, therefore normalize the

quality of the base product in the base module m̄ to zero.

Note that the inclusive value is a function of the parameters in both θ1 and θ2. Specif-

ically, each product quality, βmg, parameter is the the sum of (βmg −βmḡm), a component

of θ1, estimated using equation (3.17), and βmḡm , component of θ2. We can rewrite the

26The point estimates for θ1, which I will denote θ̂1, are used to generate right-hand side variables used
in the second stage of estimation. Since the first step of estimation yields consistent point estimates for
θ1, the second step of estimation will also yield consistent point estimates for the θ2 parameters. However,
the covariance matrix for θ̂2 will need to be adjusted to account for the error in the calculation of θ̂1 in
order to get consistent standard errors for θ̂2.
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inclusive value function so that it is log linear in the βmḡm parameters to be estimated:

lnVm(yk,Pkmt) = ln

 ∑
g∈Gm

(
exp(βmg(1 + γmyk))

pkmgt

)−(α0
m+α1

myk)
 1

−(α0
m+α1

myk)

= ln

 ∑
g∈Gm

(
exp((βmg − βmḡm)(1 + γmyk))

pkmgt

)−(α0
m+α1

myk)
 1

−(α0
m+α1

myk)

+ βmḡm(1 + γmyk)

Under the normalization that βm̄ḡm̄ = 0, and using the decomposition of the inclusive

value function above, we can rewrite equation (3.18) as:

ln

(
skmt
skm̄t

)
= (α0 + α1yk) [∆V1mm̄(yk,Pkmt,Pkm̄t, θ1) + βmḡm(1 + γmyk)] + ukmm̄t,

where ∆V1mm̄(yk,Pkmt,Pkm̄t, θ1) = lnV1m(yk,Pkmt, θ1)− lnV1m̄(yk,Pkm̄t, θ1) and

V1m(yk,Pkmt, θ1) =

 ∑
g∈Gm

(
exp((βmg − βmḡm)(1 + γmyk))

pkmgt

)−(α0
m+α1

myk)
 1

−(α0
m+α1

myk)

The ukmm̄t errors are equal to the difference between the observe and predicted val-

ues of relative module shares in each market when the predicted values are calculated

using the true values for the θ1 parameters. In practice, the predicted values of the

relative module shares in each market will be calculated using first-stage estimates for

θ1. There will be additional errors in the sample predicted values due to the fact that

∆V1mm̄(yk,Pkmt,Pkm̄t, θ1) 6= ∆V1mm̄(yk,Pkmt,Pkm̄t, θ̂1) and γm 6= γ̂m. I will denote these

errors by νkmm̄t. Taking these additional errors into account, the estimating equation

defined in equations (3.18) and (3.19) becomes:

ln

(
skmt
skm̄t

)
= (α0 + α1yk)

[
∆V1mm̄(yk,Pkmt,Pkm̄t, θ̂1) + βmḡm(1 + γ̂myk)

]
+ νkmm̄t + ukmm̄t

I assume that E[Z2 · (ν+u)] = 0 for a set of instruments Z2. Z2 includes a set of dummies

for all modules except the base module, and estimates for ∆V1mm̄(yk,Pkmt, θ̂1), and all of

these instruments interacted with income, yk.

This estimation procedure yields consistent estimates for θ2, but the variance-covariance

matrix of these parameters will be biased due to the presence of the first-step estimates
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for θ1 in the ν component of the error. I adjust this variance-covariance matrix to account

for the errors from the first stage of the estimation following the GMM analog of the Mur-

phy and Topel (1985) procedure outlined in Newey and McFadden (1994). The adjusted

variance-covariance matrix yields consistent standard errors for the θ2 estimates.27

3.4.2 Measuring Relative Utility Across Markets

A main goal of this paper is to use the model estimates to measure how variation in

the prices and product availability across U.S. cities differentially impacts the utility of

consumers at different income levels. I assume that all households with the same income

level spend the same amount on groceries in each market t such that Wit = Wk for all

households i with income yk.
28 The utility that households receive from groceries in a city

will still vary between households that earn the same income because their preferences

depend on their idiosyncratic utility draws, the εimg’s. These draws imply that no two

consumers with the same income levels, or even the same outside good expenditures, have

the same indirect utility from the same price vector and product set. The most direct

way to summarize the indirect utilities of consumers with the same income level would be

to take the expectation of the indirect utility over the idiosyncratic draws. The log-logit

module-level utility function is linear in these idiosyncratic draws, making it possible to

derive an analytic function for the expected module-level utility for a consumer conditional

on his/her income. These module-level utilities, however, are nested within a non-linear

CES aggregator, making it difficult to derive an analytic function for the expected income-

specific utility from consumption in many modules. I will deal with this problem in two

ways.

27This adjusted variance-covariance matrix is currently being calculated. These adjustments are required
for consistent standard errors for estimates of the quality of the base product in each module, βmḡm , or the
elasticity of substitution between modules, σ, but not for estimates of the remaining model parameters.
The parameter estimates summarized in Section 3.5.1 are for parameters calculated in the first stage of
estimation, so their statistical significance is determined using the consistent standard errors generated
in the first stage of estimation. The parameters estimated in the second stage are used to calculate the
cross-city price indexes, as described in Section 3.4.2 below, and their standard errors are be required to
obtain consistent estimates of the measurement error in these price indexes. This measurement error can
be ignored in the analysis that follows in Section 3.5.3, since the price indexes are dependent variables in
these regressions.

28Theoretically, this assumption could be violated since consumers at each income level may choose to
change their grocery expenditure (W ) and outside good expenditure (Z) as they move from one city to
another and thus face a different grocery price index. In the data, however, the share of income that
households spend on grocery products does not vary greatly across markets (see Figure 3.11 in Appendix
3.A).
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The first method is to numerically integrate over the idiosyncratic utility draws. To do

this, I take N random εimg draws for each product g in each module m in the sample.29

I randomly assign one draw for each product to each of N households. I split these

households into 10 groups and assign each group an income equal to the median income

in each income decile of the sample households. I then calculate the indirect utility of a

household from the set of products and prices they face in a market t by solving for their

expenditure allocations.

To calculate a household’s indirect utility, I must first determine their optimal within-

module product choice by finding the product that maximizes the consumer’s marginal

utility from expenditure in a module. Recall that the solution to this problem is:

g∗imt = arg max
g∈Gmt

exp(bmg(Zi) + µm(Zi)εimg)

pmgt
,

where the set of available products Gmt and product prices pmgt are now specific to the

market for which I am estimating a household’s utility and bmg(Zi) = β̂mg(1 + γ̂myi) and

µm(Zi) = α̂0
m + α̂1

myi are calculated using model estimates for βmg, γm, α0
m, and α1

m,

and the assumed household income yi. The idiosyncratic utility draws, or εimg’s, take the

values simulated for household i. I then calculate each household’s module expenditures

using equations 3.12 and 3.13:

w∗it = (w∗i1t, ..., w
∗
iMt) where w∗imt = Wit

[
exp(bmg∗

imt
(Zit)+µm(Zit)εimg∗

imt
)

pmg

]σ(Zit)−1

Pi1−σ(Zit)

Pi =

∑
m∈M

(exp(bmg∗imt(Zit) + µm(Zit)εimg∗imt)

pmg∗imtt

)σ(Zit)−1
 1

1−σ(Zit)

Here, σ(Zi) = 1 + α̂0 + α̂1yi is calculated using model estimates for α0 and α1 and the

assumed household income yi. Denote the utility of a household i with income yi from

grocery consumption in market t as ViG(Pt, yi). This utility is calculated by plugging the

29In the analysis below, I use N=5000.
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optimal product choices and expenditures into the direct utility function, i.e.

ViG(Pt, yi) = Wit


∑
m∈M

 ∑
g∈Gm

s∗imt
pimg∗imtt

exp(bmg∗imt(Zit) + µm(Zit)εimg∗imt)

ρ(Zit)


1
ρ(Zit)

,

where s∗imt = w∗imt/Wit is the share of grocery expenditure that household i optimally

spends in module m in market t.

Recall that I have assumed that grocery expenditures, Wit, do not vary across cities

for households with the same income Yk, such that Wit = Wk and Zit = Zk. I normalize

Wk to equal one and denote the per dollar utility of a household i earning Yk = exp(yk)

in market t with ṼiG(Pt, yk):

ṼiG(Pt, yk) =


∑
m∈M

 ∑
g∈Gm

s∗imt
pimg∗imtt

exp(bmg∗imt(Zk) + µm(Zk)εimg∗imt)

ρ(Zk)


1
ρ(Zk)

,

I calculate the per dollar indirect utility in each market t for the set of N simulated

households. I take the mean of the per dollar indirect utilities of the N/10 households

with common income Yk to approximate the expected per dollar utility of a household

earning income Yk in market t. I denote this expected utility using ṼG(Pt, yk):

ṼG(Pt, yk) =
1

N/10

N/10∑
i=1


∑
m∈M

 ∑
g∈Gm

s∗imt
pimg∗imtt

exp(bmg∗imt(Zk) + µm(Zk)εimg∗imt)

ρ(Zk)


1
ρ(Zk)

The numeric integration method above is computationally intensive. Therefore, I

reserve it for a robustness check and apply it only to the estimation of relative consumer

utility across one market-pair. For the majority of the analysis, I measure the relative

utility of households at various income levels across different markets by measuring the

utility of an income-specific representative consumer. I assume that the representative

consumer for households with income y has utility

Ui =


∑
m∈M

 ∑
g∈Gm

[qmg exp(bmg(Zi))]
ρm(Zi)


ρ(Zi)

ρm(Zi)


1

ρ(Zi)

,
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where bmg(Zi) = βmg(1 + γmyi), ρm(Zi) = 1−σm(Zi)
σm(Zi)

for σm(Zi) = 1 + α0
m + α1

myi, and ρ(Zi) =

1−σ(Zi)
σ(Zi)

for σ(Zi) = 1 + α0 + α1yi. In Section 3.C of the Appendix, I show that this income-

specific, nested, asymmetric CES utility function yields identical within-grocery budget

shares as the CES-nested log-logit utility function for that I estimate.

Since the utility of the representative agent for households with income yi is CES,

their indirect utility is the product of their grocery expenditure and a market-specific

price index that summarizes the set of prices for available products in the market. I

denote this indirect utility as V CES
G (Pt, yi), and it is expressed as

V CES
G (Pt, yi) = WkP (Pt, yi),

where

P (Pt, yi) =

∑
m∈M


 ∑
g∈Gm

(
exp(bmg(Zi))

pmgt

)(1−σm(Zi))


1−σ(Zi)

1−σm(Zi)




1
1−σ(Zi)

By assuming an exogenous Wk for the representative agent of each income category k,

I have again assumed that the representative agent’s grocery expenditure does not vary

across markets. Under this assumption, we can measure the change in a consumer’s

grocery utility from one market to another as the ratio of the market- and income-specific

price indexes, πt,t′(yi) = P (Pt, yi)/P (Pt, yi). The magnitude of the relative price index in

market t relative to market t′ above (or below) zero indicates how much lower (or higher)

the representative consumer’s grocery utility is in market t relative to market t′.

3.5 Results

3.5.1 Parameter Estimates

The model was estimated under four sets of parameter restrictions. These restrictions

allow preferences to vary with income through both the demand elasticity with respect to

quality and the demand elasticity with respect to price, through only one of these channels,

or through neither of these channels, in which case the model is homothetic.

Table 3.3 summarizes the estimates for the module-level parameters in each of these
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four models across over 500 modules. Table 3.4 summarizes parameter estimates that

are statistically significant at the 95 percent level.30 Columns [1] through [3] of each

table summarize the parameter estimates for the un-restricted version of the model. The

corresponding utility function that governs consumer i’s preferences between products

g ∈ Gm within each module m is obtained by subbing the parametrizations for bmg(Zi)

and µm(Zi), provided in equations 3.5 and 3.6, respectively, into equation 3.3:

uim (Qm) =
∑
g∈Gm

qmg exp

(
βmg(1 + γmzi) +

εimg
α0
m + α1

mzi

)
, (3.20)

where βmg characterizes the quality of product g relative to other products and εimg is

consumer i’s idiosyncratic utility from product g. In this model, the weights that con-

sumers place on quality and their idiosyncratic utility when determining their product

ranking are functions of their non-grocery expenditure, Zi = exp(zi), which is proxied in

estimation by consumer income, Yi = exp(yi). The estimate for the elasticity of substi-

tution between products is a function of the estimated weight placed on the idiosyncratic

utility, σ̂m(yi) = 1+ α̂0
m+ α̂1

myi. Therefore, when the estimated value for this weight varies

with income, or α1
m 6= 0, the elasticity of substitution will also vary with income. The first

column of Table 3.3 reports the elasticity of substitution of a consumer with the mean

log income level in the sample for each module, or ˆ̄σm = 1 + α̂1
m + α̂1

mȳm. The median

of this elasticity is 2.09, with an inter-quartile range of 1.58 to 2.59. The magnitude and

distribution of these estimates is similar across all four models. These estimates imply a

median price elasticity of -1.09 and an inter-quartile range of -0.58 to -1.59. These param-

eter estimates are well-identified in most modules, with over 380 out of 504 significant at

the 95 percent level in all four models.

We can get some sense of the reasonableness of these point estimates by comparing

them to those found in other studies. The own-price elasticities found here are slightly

smaller than those estimated in Nevo (2000), who finds the own-price elasticity across

cereal products to be between -2.2 and -4.2 whereas I estimate the own-price elasticity

for cereals to be -1.13. On the other hand, the own-price elasticities here are slightly

30Statistical significance implies that the lower bound of the 95 percent confidence interval for the σm
estimates is greater than one or that the lower (upper) bound of the 95 percent confidence intervals for
α1
m and γm estimates are greater (less than) zero.
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larger than those estimated in Dube (2004), who finds the own-price elasticity of demand

for carbonated beverages to be between -0.42 and -0.85, whereas I find the own-price

elasticity for carbonated beverages to be -1.96. All of these estimates are, however, much

lower in magnitude than the own-price elasticities implied by the elasticity of substitution

estimates in Broda and Weinstein (2008).31

Table 3.3: Summary Statistics for Parameter Estimates

Model: NH in Quality and Price NH in Quality NH in Price Homothetic
Restrictions: None α1

m = 0 γm = 0 γm = 0 & α1
m = 0

[1] [2] [3] [4] [5] [6] [7] [8]

Parameter: σ̄m γm α1
m σ̄m γm σ̄m α1

m σ̄m
Count 504 504 504 504 504 504 504 504
p25 1.58 -0.04 -0.19 1.62 -0.08 1.66 -0.03 1.64
p50 2.09 0.15 -0.05 2.13 0.09 2.14 0.04 2.11
p75 2.59 0.30 0.05 2.60 0.19 2.62 0.15 2.61

Table 3.4: Summary Statistics for Statistically Significant Parameter Estimates

Model: NH in Quality and Price NH in Quality NH in Price Homothetic
Restrictions: None α1

m = 0 γm = 0 γm = 0 & α1
m = 0

[1] [2] [3] [4] [5] [6] [7] [8]

Parameter: σ̄m γm α1
m σ̄m γm σ̄m α1

m σ̄m
Count 383 254 171 380 301 393 263 391
p25 1.87 0.15 -0.31 1.93 0.05 1.88 -0.05 1.88
p50 2.27 0.23 -0.19 2.28 0.15 2.26 0.10 2.26
p75 2.72 0.35 -0.10 2.73 0.23 2.73 0.19 2.69

Columns [2] and [5] of Table 3.3 summarize the distribution of the estimated values

for γm across all modules. All four models assume that all consumers agree on the relative

quality of products, as described by the distribution of the βmg parameters for products

g ∈ Gm within a module m. For positive values of γm, however, the utility weight that

consumers place on this component of utility, relative to their idiosyncratic utility draw for

each product or the quantity consumed, is increasing in their outside good expenditure zi.

31Broda and Weinstein (2008) use the Feenstra (1994) methodology to identify the elasticity of substi-
tution between products. This method uses the assumption that all products in the same module share
the same price elasticity of supply to help identify the price elasticity of demand. When I estimate the
above model with this method, the median as implied by the elasticity of substitution estimates for the
largest 100 modules by sales value rise from 2.4 to 7.7. I do not use this method more broadly because it
does not allow me to identify the brand quality βmg parameters.
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This implies that consumers with higher expenditures on the outside good have a higher

willingness to pay for quality. In estimation, these parameters are identified by the fact

that higher income consumers spend a relatively greater share of module expenditure on

products with relatively high βmg estimates, that is, the products for which all consumers

have a higher willingness to pay. In over half of the modules represented in the data, the

willingness to pay for quality is increasing in income.

Columns [2] and [5] of Table 3.4 show that over half of the estimates for γm, or 254

and 301 estimates out of 504, are statistically significant in the models that allow for

non-homothetic demand for quality and price sensitivity and for non-homothetic demand

for quality but not price sensitivity, respectively. Over 75 percent of these statistically

significant γm estimates are positive in the model that allows for non-homotheticity in

demand for quality alone. Figure 3.4 shows that almost all of the statistically significant

γm estimates are positive in the model that allows for non-homothetic demand for both

quality and price sensitivity. These results indicate that non-homotheticity is important

in many sectors. Since the demand for quality is increasing with income in most grocery

sectors, richer households appreciate product quality more than poorer households.

Figure 3.3: Distribution of γm Parameter Estimates Across Modules
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Columns [3] and [7] of Table 3.3 summarize the distribution of the estimated values

for α1
m in each module. In equation 3.20, one can see that the weight that consumers

place on their idiosyncratic utility is increasing in their outside good expenditure, zi, for

negative values of α1
m. Suppose that two consumers draw very high values for εimg∗ , such
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Figure 3.4: Distribution of Statistically Significant γm Parameter Estimates Across Mod-
ules
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that both consumers select to consumer product g∗ at the current market price. If the

price of product g∗ increases, then the consumer who places a higher weight on his/her

idiosyncratic utility draw will be less likely to switch to another product for which he/she

drew a lower value for εimg relative to the product’s quality, βmg. For α1
m < 0, high-

income consumers will place higher weights on their idiosyncratic utility draws and their

expenditure shares will, therefore, be less sensitive to price changes. Column [3] of Table

3.3 shows that, for the majority of modules, high-income consumers are less price sensitive,

or α̂1
m < 0, when you control for the fact that they also have a greater willingness to pay

for quality. While Column [3] of Table 3.4 indicates that 171, or fewer than half, of the 504

α1
m estimates are statistically significant, the right hand panel of Figure 3.6 shows that

the vast majority of these statistically significant α1
m estimates are less than zero. While

the evidence that price sensitivity varies with income is less prevalent across modules,

the price sensitivity is in the expected direction in modules where there is statistically

significant variation in the price sensitivity by income.

If we focus instead on the model that allows for non-homothetic price sensitivity but

not non-homothetic demand for quality, Column [7] of Tables 3.3 and 3.4 show that the ma-

jority of the α1
m estimates, and even the majority of those that are statistically significant,

are positive when γm is constrained to be zero. These estimates may be biased upwards by

a correlation between unobserved income-specific product tastes and prices. Consider the

model: ln skgt− ln skḡmt = (α0
m+α1

myk)[(βmg−βmḡm)− (ln pkgt− ln pkḡmt)]+νkgḡmt. Here,
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the error terms include any income-specific product tastes, βkmg − βkmḡm . If the stores at

which high-income consumers shop set prices in accordance with these tastes, such that

Corr(βkmg − βkmḡm , ln pkgt− ln pkḡmt) 6= 0, then the assumption that E[Z1 · ν] = 0 will be

violated. The fact that the α1
m estimates are lower, and generally negative, in the model

that allows for non-homotheticity in the demand for quality and the price sensitivity sup-

ports this theory, since this model includes a term that varies by product and income,

(βmg−βmḡm)γmyk, and therefore does not include the full value of βkmg−βkmḡm in the er-

rors. I do not, therefore, take the positive α1
m estimates in the model that does not control

for correlations in income-product specific tastes as evidence that high-income consumers

are more price sensitive than low-income consumers. Instead, the positive α1
m estimates

highlight the difficulty in identifying the non-homotheticity related to price sensitivity in

isolation from the non-homotheticity related to product quality.

Figure 3.5: Distribution of α1
m Parameter Estimates Across Modules
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Despite the results from this one model, the parameter estimates generally show con-

vincing evidence of non-homothetic demand. Specifically, high-income consumers have a

greater willingness to pay for quality than low-income consumers and, when controlling

for this non-homotheticity in the demand for quality, the results show that high-income

consumers are also less price sensitive.
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Figure 3.6: Distribution of Statistically Significant α1
m Parameter Estimates Across Mod-

ules
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3.5.2 Model Selection

We now turn to answering the first novel question that this paper addresses: which model

does the best job of explaining consumer behavior, one that allows for high-income con-

sumers to have a greater demand for quality than low-income consumers or one that allows

for high-income consumers to be less price sensitive than low-income consumers? I address

this question using the GMM-BIC model selection criterion that judges models using a

trade-off between model complexity, measured using the number of parameters relative to

the number of moments used in the estimation of those parameters, and model fit.32 The

GMM-BIC criterion selects the model and moment conditions that minimize the difference

between the estimated J statistic and the log of the number of observations multiplied

by the number of over-identifying restrictions used in estimation. I estimate the parame-

ters that govern the within-module product choice for each module m, denoted θ1
m, in a

separate GMM estimation procedure under the four sets of parameter restrictions corre-

sponding to the four models. For the most flexible version of the model, all elements of θ1
m

are estimated. These include α0
m, α1

m, γm, and a relative quality parameter (βmg − βmḡ)

for each brand represented in the module except for the brand of the base product ḡ. For

the brand of the base product ḡ, βmg − βmḡ equals zero. Each of the models with param-

eter restrictions are nested in the full model, which allows for non-homotheticity in both

32This method was developed in Andrews (1999) as a moment selection criterion and is shown to be
consistent for model selection in Andrews and Lu (2001).
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the demand for quality and price sensitivity. Therefore, I estimate all four models using

the optimal weighting matrix for the full model, which I denote by W ∗. The same set of

instruments is used to calculate each moment condition, and thus the number of moments

is also common between models for each module. I denote this set of instruments by L∗.

I select between models in each module by minimizing the following GMM-BIC crite-

rion:

GMM-BICMm(θ̂1
Mm) = nmGm(θ̂1

Mm, θ̄
1
M )′W ∗mGm(θ̂1

Mm, θ̄
1
M )− ln(nm)(L∗m−KMm) (3.21)

Here, GM (θ̂1
m, θ̄

1
M ) are the moments for model M evaluated at the estimated values for

free parameters θ̂1
Mm and zero for the restricted parameters, θ̄1

M ; KMm is the number of

free parameters in model M for module m; and n is the number of observations. I evaluate

models by calculating the unweighted and sales-weighted share of modules for which that

model minimizes the GMM-BIC criterion. The results of this model selection test are

presented in Table 3.5.

Table 3.5: Share of Modules in which GMM-BIC Criterion Selects Each Model

Parameter Unweighted Sales Weighted
M Model Name Restrictions Share Share

1. Homothetic γm = 0, α1
m = 0 0.15 0.15

2. Non-Homothetic in Price γm = 0 0.15 0.10
3. Non-Homothetic in Quality α1

m = 0 0.47 0.39
4. Non-Homothetic in Quality and Price None 0.26 0.36

The model that permits non-homothetic demand for quality, but not for price, is the

optimal model for almost half of the modules. These modules represent 39 percent of

sample sales. The most flexible model has the next highest share of “winning” modules,

representing 36 percent of sample sales. This indicates that the most flexible model per-

forms better in the larger modules. In fact, the most flexible model performs the best in

61 per cent of the largest 50 modules by sales, while the least restrictive, or homothetic

model, performs the best in 61 percent of the smallest 200 modules by sales. This is most

likely related to the number of observations used in the estimation of the largest, relative

to the smallest, modules.
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In the trade literature, non-homothetic utility functions are either non-homothetic in

the demand for quality or non-homothetic in price sensitivity. The J statistics for these

two models can be compared directly in Figure 3.7.33 The J statistic is lower for the model

that permits non-homotheticity in the demand for quality in the majority of modules. This

indicates that the quality model (Model 2) has a lower GMM-BIC criterion than the price

sensitivity model (Model 3) in the majority of those modules for which the most flexible

model has the lowest GMM-BIC criterion overall. That is, the model allowing for non-

homotheticity in the demand for quality alone explains more of the cross-income variation

in consumer behavior than the model that allows for non-homotheticity in price sensitivity

alone.

Figure 3.7: Distribution of Log Relative J Statistic for Model 2 Relative to Model 3
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Table 3.6 shows the results of these bilateral model comparisons across all four mod-

els. We see that the model that accounts for non-homothetic demand for quality has a

lower GMM-BIC criterion in modules representing approximately two-thirds of sales when

compared to all three of the other models.

3.5.3 Comparing Utility Across Markets with Relative Price Indexes

As outlined in Section 3.4.2, I use market- and income-specific price indexes as a measure

of representative consumer utility from grocery consumption. I compare how the estimated

33The two elements of the GMM-BIC criterion defined in equation 3.21 that vary by model are the J
statistic, nGm(θ̂1

Mm, θ̄
1
M )′W ∗mGm(θ̂1

Mm, θ̄
1
M ), and the number of free parameters, KMm. The models with

non-homotheticity in quality or price alone each have one parameter restriction and, therefore, the same
number of free parameters.



110 CHAPTER 3. NON-HOMOTHETICITY, PRICES, AND VARIETY

Table 3.6: Bilateral Model Comparisons: Sales Share of Modules where GMM-
BIC(M)<GMM-BIC(N)

Model N
Model M 1. 2. 3. 4.

1. Homothetic - 0.18 0.28 0.32
2. Non-Homothetic in Price 0.82 - 0.38 0.40
3. Non-Homothetic in Quality 0.72 0.62 - 0.68
4. Non-Homothetic in Quality and Price 0.68 0.60 0.32 -

price index for a representative consumer with log income yk in city c, P̂ (yk,Pc),34 varies

city-to-city using the following baseline regression model:

ln P̂ (yk,Pc) = δk + β1yc + β2ykyc + εkc, (3.22)

where δk is an income-level fixed effect and yc is log per capita income in city c.

The goal of this analysis is to determine how grocery costs differentially vary across

cities for consumers at different income levels. Specifically, equation (3.22) measures how

the elasticity of grocery costs in a city with respect to its per capita income varies with

household income. The grocery cost price index is calculated using a model that allows

for non-homotheticity in the demand for quality, and thus this elasticity will vary with

income if the goods available in each city are correlated with the tastes of the incomes of

the consumers living there. Suppose, for example, that wealthy cities sell more varieties

of high-quality goods at lower prices than poorer cities. If this is the case, the price index

faced by high-income consumers will decrease at a faster rate (or increase at a slower rate)

than the price index faced by low-income consumers, for those that move from poor to

wealthy cities. This is because high-income consumers benefit from the availability and

lower prices of the goods that they prefer. This implies that the elasticity of the price

index faced by high-income consumers with respect to city income will be lower than the

34The data includes purchases of a sample of households in each city, as opposed to all households in each
city, so I only observe prices (and calculate brand quality) for a subset of the products available in each
market. This means that each market- and income-specific price index, P̂ (yk,Pc), summarizes the utility
of consumers from this subset of observed products in each market. The number of products that I observe
in each market is increasing in the number of households sampled from that market. The sample household
count varies systematically with market population and market income, with correlation coefficients of 0.57
and 0.43, respectively. I control for any potential bias in the results due to these correlations by calculating
market-income-specific price indexes over the products purchased by a random sample of 850 households
in each market, for each of the 23 markets with 850 or more sample households.
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elasticity of the price index faced by low-income consumers with respect to city income. In

the above specification, the elasticity of grocery costs with respect to city income is equal

to the coefficient on log city income added to the product of log consumer income and by

the coefficient on the income interaction term: εPck,yc = β1 + β2yk. The results of this

regression are presented in the first column of Table 3.7. The estimates for β2 are negative

and statistically significant at the 95 percent level confirming that the elasticity of the

price level with respect to per capita income varies across income levels. The magnitude

of the β2 estimate indicates that this variation is economically significant. A consumer

who earns $15,000 a year sees his/her price index rise by around 30 percent for each log

unit increase in city per capita income, approximately equivalent to the log difference

between San Francisco (per capita income of $54,191) and New Orleans (per capita income

of $21,446). On the other hand, the price index of a consumer with a yearly income of

$100,000 decreases by around 9 percent for each log unit increase in city per capita income.

Therefore, a high-income household experiences a 40 percent greater increase in grocery

consumption utility than a low-income household when both move from a poor city to a

city with double the per capita income.

The elasticity of the income-specific price index with respect to city income is shown in

Figure 3.8. These elasticities are estimated non-parametrically using the above regression

specification but with a household income dummy interacted with per capita city income

instead of the household income level interacted with per capita city income. Figure 3.8

shows that the price index of a consumer who earns $15,000 per year increases by almost 20

percent with each log unit increase in city income, whereas the price index for a consumer

who earns $100,000 per year decreases by around 20 percent with each log unit increase

in city income.

In Figure3.9, I look specifically at the price indexes in San Francisco relative to New

Orleans by household income. This chart shows that the variation across these two markets

is higher than that predicted by the non-parametric regression coefficients presented in

Figure 3.8. Grocery costs are approximately 15 percent higher in San Francisco than those

in New Orleans for a consumer with annual income around $15,000, but they are over 60

percent lower in San Francisco for a consumer with annual income around $100,000.

In order to check the robustness of the results using price indexes to measure relative
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Table 3.7: City-Income Specific Price Index Regressions

Dependent Variable: Ln(Price Index for Representative Consumer k in City c)

Ln(Per Capita Incomec) β1 2.412*** - 2.290*
[0.996] - [1.22]

Ln(Per Capita Incomec) β2 -0.217** - -0.201*
*Ln(Household Incomek) [0.0915] - [0.112]

Ln(Populationc) β3 - 0.28 0.040
- [0.190] [0.232]

Ln(Populationc) β4 - -0.027 -0.005
*Ln(Household Incomek) - [0.018] [0.021]

Implied Elasticity of Price with respect to City Income (β1 + β2yk):
- yk = ln($15, 000) 0.325 - 0.357
- yk = ln($50, 000) 0.064 - 0.115
- yk = ln($100, 000) -0.086 - -0.069

Household Income Fixed Effects Yes Yes Yes
Observations 230 230 230
R-Squared 0.03 0.012 0.036

*** p¡0.01, ** p¡0.05, * p¡0.1
Standard errors in brackets.
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expected utility across markets, I measure the relative expected utility between San Fran-

cisco and New Orleans using numerical integration. Figure 3.10 shows that this method

also shows a 60 percent gap between the utility losses for a low-income household and the

utility gains for a high-income household when both get groceries in San Francisco instead

of New Orleans.

Figure 3.8: Variation in Elasticity of Grocery Costs with respect to City Income Across
Household Income Levels
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Figure 3.9: Grocery Costs in San Francisco Relative to New Orleans by Household Income
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San Francisco has per capita income of $54191. New Orleans has per capita income of $21446.

San Francisco vs. New Orleans
Relative Log Price Index

The data presented in Table 3.2 indicates that market income is correlated with market

size, that is, wealthier U.S. cities are larger than poorer U.S. cities (the correlation coeffi-

cient is 0.47). Therefore, it is possible that the negative coefficient on the market income

and household income interaction term in the base line regression (equation 3.22) is due

to the fact that grocery costs are lower for high-income households than for low-income
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Figure 3.10: Grocery Utility in San Francisco Relative to New Orleans by Household
Income
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households in larger, as opposed to wealthier, cities. If this were the case, the results above

would support a story in which high-income consumers receive more consumption benefits

from living in larger cities than low-income consumers, as opposed to the “preference exter-

nalities” story in which high-income consumers receive more consumption benefits from

living in wealthier cities and low-income consumers receive more consumption benefits

from living in poorer cities. I test between these two theories by including log population

and log population interacted with log household income in the regressions. The results

from these regressions are presented in the second and third columns of Table 3.7. When

the log price indexes are regressed against these population variables and household in-

come dummies, the coefficients on log population and log population interacted with log

household income are not statistically significant. When I include these extra variables

in the baseline model that controls for city-size effects, the coefficients on the controls

remain insignificant. More importantly, the coefficients on log per capita income and log

per capita income interacted with log household income are similar in magnitude to the

estimates in the baseline model, although their statistical significance has been reduced

from the 5 to the 10 percent level. These results suggest that, relative to low-income

households, high-income households receive higher consumption utility from the grocery

bundles available in a wealthier cities than from the grocery bundles available in a poorer

cities with the same population size. This pattern is consistent with theories that predict

that the composition of demand affects the value of being in a location. Waldfogel (2003)
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and Fajgelbaum, Grossman, and Helpman (2011) posit that the gathering of consumers

with similar tastes will yield greater consumption benefits to consumers with these tastes

than to those with different tastes. The authors refer to this phenomenon as “within-group

preference externalities” or “home market effects,” respectively. The results above are the

first structural estimates of these externalities and provide the first evidence that they are

large and economically significant.

I now turn to addressing the extent to which homotheticity biases our estimates of

cross-city price indexes for consumers at different income levels. If we assume that prefer-

ences are homothetic such that all households get the same utility from the consumption

baskets available in one market relative to another, we only need one homothetic price

index to compare the utility that households get in one city relative to another. By al-

lowing preferences to be non-homothetic, I allow households at different income levels to

get different relative utilities from the consumption baskets available in different locations

and, therefore, calculate a different price index to measure these relative utilities for each

income-level. The analysis above has showed that there is economically significant varia-

tion how these non-homothetic price indexes vary across cities for consumers at different

income levels. A homothetic price index captures none of this variation, but it may match

the cross-city variation in prices for consumers at some income levels better than others.

To consider this question, I first calculate a homothetic price index for each city using the

parameter estimates for the model that does not permit either the demand for quality or

the price sensitivity of a household to vary with income. In Table 3.9 I compare these

cross-city homothetic price indexes to the income-specific cross-city price indexes calcu-

lated using the parameter estimates for the selected model, which permits the demand for

quality to vary with income. The homothetic price index is highly correlated with the non-

homothetic price indexes calculated for households earning below $70,000 per year. The

correlation between the homothetic price index and the non-homothetic indexes is highest

with a coefficient of 0.97 for households earning around $50,000 per year. This indicates

that the homothetic price index does a good job at predicting the cities in which low- and

middle-income households will gain the most, and the least, from the grocery consumption

bundles available there. The correlation coefficient drops to 0.21 for rapidly for households

earning around $80,000 per year and is negative for households earning around $150,000
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per year. The homothetic price index, therefore, does a poor job of predicting which cities

high-income households find the most and the least expensive.

Table 3.9: Correlation of City-Specific Price Indexes Calculated with Homothetic and
Non-Homothetic Models

Correlation Between Homothetic Index
Household Income and Non-Homothetic Index

$16,896 0.83
$26,715 0.88
$35,715 0.94
$41,526 0.96
$53,103 0.97
$60,442 0.92
$64,805 0.83
$82,576 0.21
$93,411 0.03
$146,566 -0.11

Table3.10 further illustrates these facts. While the homothetic model does not perfectly

predict the rankings of cities for households at any income level, it performs very poorly in

predicting the most and least expensive cities for high-income households. The homothetic

model predicts that Chicago, San Antonio, Sacramento, and San Francisco, are among the

six most expensive cities for purchasing groceries. The non-homothetic model, however,

predicts that these four cities are among the six cheapest for a household earning $150,000

per year. Conversely, the homothetic model predicts that Atlanta, Detroit, and Columbus

are among the five cheapest cities for purchasing groceries, while the non-homothetic

model predicts that these cities are among the five most expensive cities for households

earning either $93,000 or $150,000 per year.35

The evidence above shows that non-homothetic preferences yield economically signif-

icant variation in living costs: wealthy consumers benefit more from the consumption

baskets available in wealthy cities than poor consumers. This variation is particularly rel-

evant for economists who currently use homothetic price indexes to measure real income

inequality. Moretti (2008), for example, argues that one should adjust nominal income by

location-specific prices when measuring national real income inequality. Since my results

35See Tables 3.12 and3.13 in Appendix Section 3.A the the levels and ranks of the homothetic and
non-homothetic grocery price indexes in all 23 markets with samples of 850 or more households.
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show that high-income consumers face vastly different location-specific prices than low-

income consumers, they suggest that economists should adjust nominal income by prices

that are both location- and income-specific when measuring national real income inequal-

ity. Moretti (2008) finds that the U.S. college wage premium is lower in real terms than in

nominal terms because college graduates are concentrated in metropolitan areas where ho-

mothetic price indexes are high. The results above indicate that the non-homothetic price

indexes faced by high-income college graduates will vary across cities differently to those

faced by high school graduates, whose earn lower incomes. If homothetic price indexes

are negatively correlated with the non-homothetic price index for high-income consumers,

as the results in Table 3.9 suggest is the case for the groceries, then Moretti (2008) will

tend to underestimate the real income of college graduates relative to high school grad-

uates. Measuring the size of this bias will require cost-of-living indexes that account for

non-homotheticity in demand for all products, services and housing and is left to future

research.

3.6 Conclusion

There is growing interest in the role of non-homothetic preferences and cross-market in-

come differences in determining production patterns in macroeconomics and trade. If

preferences are income-specific and further if the products available in different markets

are biased to the income-specific tastes in these markets, then consumers at different in-

come levels will experience different changes in their utilities across these markets. I show

that this is indeed the case: high-income households face greater consumption gains from

moving to high per capita income markets than low-income households.

I measure the extent of this variation using a multi-sector utility function that allows

for non-homothetic demand for quality. This model is based on a framework that embeds

the two forms of non-homotheticity that are most often used to model how demand varies

with income. This framework yields estimating equations in which the extent to which the

elasticity of demand with respect to quality varies with income is separately identifiable

from the extent to which the elasticity of demand with respect to price varies with income.

While previous work has used product unit values to proxy for quality when testing for
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evidence of non-homotheticity of demand with respect to quality, I estimate product qual-

ity non-parametrically. This permits the separate identification of parameters that govern

the non-homotheticity of demand with respect to estimated quality and those that govern

the non-homotheticity of demand with respect to observed prices. The data shows more

widespread evidence that preferences are non-homothetic with respect to quality than

with respect to price. In most of the grocery sectors over which demand is estimated, the

GMM-BIC model selection test picks the model that allows for non-homothetic demand

for quality but not for non-homothetic price sensitivity. Further research is required to

test whether this is the case for a wider set of products.

I show how non-homotheticity impacts our estimates of relative utility across U.S.

cities, i.e. domestic markets separated by geography. Specifically, I find that the utility

from consumption in a city relative to another city with half the per capita income is 40

percent higher for a high-income household than for a low-income household. The frame-

work presented could also be used to measure the cross-income variation in the relative

utility of consumers across international markets or across markets separated by time or

trade liberalization events. Such analysis would improve our understanding of the impli-

cations of non-homothetic preferences for the measurement of purchasing power parity,

inflation, and gains from trade. While the estimates presented here are generated using

household-level consumption data, it is conceivable that simulation techniques pioneered

in the IO field could be used to identify the parameters of the model using aggregate

market- or country- level data. If so, the framework presented above could be used to

measure how relative welfare varies with income across international markets. Future

work will investigate this possibility and, if successful, will use the model presented above

to measure income specific purchasing power parity deflators. Additionaly, the model has

the potential to be used to show how the gains from trade for consumers vary with income

over recent decades of liberalization.
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3.A Market Regions and Price Indexes

Table 3.11: Regional Categorizations for Sample Markets

Market Code Market Region Neighboring Region
1 Des Moines MW SC
2 Little Rock SE SC
3 Omaha NW MW
4 Syracuse NE MW
5 Albany NE MW
6 Birmingham SE SC
7 Richmond NE SE
8 Louisville MW SE
9 Grand Rapids MW NE
10 Jacksonville SE SC
11 Memphis SE SC
12 Raleigh-Durham SE SC
13 Nashville SE SC
14 Salt Lake City SW SC
15 Charlotte SE SC
16 Columbus MW NE
17 San Antonio SW SC
18 Indianapolis SE MW
19 Orlando SE SC
20 Milwaukee MW NW
21 Hartford-New Haven NE MW
22 Kansas City MW SE
23 Sacramento SW NW
24 New Orleans-Mobile SE SC
25 Oklahoma City-Tulsa SC MW
26 Cincinnati MW NE
27 Portland, Or NW SW
28 Buffalo-Rochester NE MW
29 Pittsburgh MW NE
30 Tampa SE SC
31 Denver SW NW
32 St. Louis MW NE
33 San Diego SW NW
34 Cleveland MW NE
35 Minneapolis MW NW
36 Phoenix SW SC
37 Seattle NW SW
38 Miami SE SC
39 Atlanta SE SC
40 Houston SC SC
41 Dallas SC SW
42 Detroit MW NE
43 Boston NE MW
44 Philadelphia NE MW
45 San Francisco NW SW
46 Washington, DC-Baltimore NE SE
47 Chicago MW NE
48 Los Angeles SW SC
49 New York NE MW
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Figure 3.11: Income-Specific Food Expenditure Shares Across Markets

0
.0

5
.1

.1
5

In
co

m
e−

C
ity

−
S

pe
ci

fic
 G

ro
ce

ry
 E

xp
en

di
tu

re
 S

ha
re

0 10 20 30 40 50
City Identifier (Sorted by Population in Descending Order)

$20418 $31047
$49589 $78951
$139326

Within−Income, City−Specific Grocery Expenditure Share

3.B Non-Homotheticity Condition

Recall from equation 3.1 that consumers select grocery consumption quantities, Q = {{qmg} g∈Gm}m∈M

, and non-grocery expenditure, Z, by maximizing:

f(UiG(Q,Z), Z) subject to
∑
m∈M

∑
g∈Gm

pmgqmg + Z ≤ Yi, qmg ≥ 0 ∀ mg ∈ G (3.23)

I break this problem into two parts, first solving for the consumer’s optimal grocery consumption quantities

conditional on their non-grocery expenditure Z:

max
Q,Z

UiG(Q, Z) =

∑
m∈M

[ ∑
g∈Gm

qmg exp(bmg(Z) + µm(Z)εimg)

]σ(Z)−1
σ(Z)


σ(Z)
σ(Z)−1

subject to
∑
m∈M

∑
g∈Gm

pmgqmg ≤ Yi − Z, qmg ≥ 0 ∀ mg ∈ G (3.24)

where bmg(Z) = βmg(1 + γmz), µm(Z) = 1
α0
m+α1

1z
, and σ(Z) = 1 + α0 + α1z for z = lnZ. The solution to

this problem for a consumer i with idiosyncratic utility draws εi is solved in the paper. Equations (3.9),

(3.12), and (3.13) define the optimal grocery bundle, Q∗(Z) =
{{
q∗mg(Z)

}
g∈G,

}
m∈M:



124 CHAPTER 3. NON-HOMOTHETICITY, PRICES, AND VARIETY

q∗img(Z) =


(Yi − Z)

[
exp(bmg(Z)+µm(Z)εig)

pmg

]σ(Z)−1

Pi(Z)1−σ(Z) /pmg if g = arg max
g∈Gm

exp(bmg(Z) + µm(Z)εimg)

pmg

0 otherwise

where

Pi(Z) =

(∑
m∈M

max
g∈Gm

exp(bmg(Z) + µm(Z)εig)

pmg

)σ(Z)−1
 1

1−σ(Z)

Plugging this solution into UiG(Q, Z) yields the consumer’s indirect utility from grocery consumption,

conditional on their non-grocery expenditure:

ŨiG(Z) = UiG(Q∗(Z), Z)

=


∑
m∈M


(Yi − Z)

(
exp(bmg(Z)+µm(Z)εig)

pmg

)σ(Z)

Pi(Z)1−σ(Z)

 I
[
g = arg max

g∈Gm

exp(bmg(Z) + µm(Z)εimg)

pmg

]
σ(Z)−1
σ(Z)


σ(Z)
σ(Z)−1

=
Yi − Z

Pi(Z)1−σ(Z)

∑
m∈M

[(
exp(bmg(Z) + µm(Z)εig)

pmg

)σ(Z)

I
[
g = arg max

g∈Gm

exp(bmg(Z) + µm(Z)εimg)

pmg

]]σ(Z)−1
σ(Z)


σ(Z)
σ(Z)−1

=
Yi − Z

Pi(Z)1−σ(Z)

{∑
m∈M

(
max
g∈Gm

exp(bmg(Z) + µm(Z)εig)

pmg

)σ(Z)−1
} σ(Z)
σ(Z)−1

=
Yi − Z

Pi(Z)1−σ(Z)
Pi(Z)σ(Z)

=
Yi − Z
Pi(Z)

(3.25)

We can now express problem (3.23) to be a choice over one variable, Z:

max
Z

f(ŨiG(Z), Z) (3.26)

The first order condition to the utility maximization problem defined in problem (3.26) with respect to Z

is:

f1(Ũ iG(Z), Z)
∂Ũ i(Z)

∂Z
+ f2(Ũ iG(Z), Z) = 0

If we assume that f(UiG(Q,Z), Z) is additive in grocery utility and non-grocery utility, i.e. f(UiG(Q,Z), Z) =

UiG(Q,Z) + Z, the formula above simplifies to:

∂Ũ i(Z)

∂Z
+ 1 = 0

Substituting the maximized grocery expenditure conditional on Z, ŨiG(Z), from equation (3.25) into this

first order condition yields a function that implicitly defines the optimal non-grocery expenditure, Z∗i , in
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terms of household income, Yi, the consumer’s idiosyncratic utility draws, εi, and model parameters:

∂

∂Z

[
Yi − Z
Pi(Z)

]
+ 1 = 0

We can simplify this expression to get income as a function of prices and outside good expenditure:

−Pi(Z)− P
′
i (Z)(Yi − Z)

Pi(Z)2
+ 1 = 0

Pi(Z) + P
′
i (Z)(Yi − Z) = Pi(Z)2

Yi =
Pi(Z)2 − Pi(Z)

P
′
i (Z)

Taking the derivative of income with respect to outside good expenditure, Z, we can see that the outside

good will be normal if the price vector is such that:

∂

∂Z

Pi(Z)2 − Pi(Z)

P
′
i (Z)

> 0

3.C Connection to Nested CES Utility Function

Consider the related utility function for some consumer i who is representative of all consumers with

outside good expenditure Z:

Ui =

∑
m∈M

[ ∑
g∈Gm

[qmg exp(bmg(Z))]ρm(Z)

] ρ(Z)
ρm(Z)


1

ρ(Z)

where bmg(Z) = βmg(1 + γmzi), ρm(Z) = 1−σm(Z)
σm(Z)

for σm(Z) = 1 + α0
m + α1

mz, ρ(Z) = 1−σ(Z)
σ(Z)

for

σ(Z) = 1 + α0 + α1z, and z = ln(Z). Suppose that this representative consumer faces the same prices

P and has the same outside good expenditure Z as a group of consumers with the CES-nested log-logit

utility defined in equation (3.2). A simple extension of the Anderson, de Palma, and Thisse (1987) result

implies that the representative consumer’s within-module expenditure shares will be identical to the within-

module market shares of a group of consumers with the same outside good expenditure. Below, I show

that the same is true for the representative consumer’s between-module expenditure shares. For the sake

of comparison, consider the representative consumer’s log expenditure in module m relative to module m̄:

ln sim − ln sim̄ = −(α0 + α1z) [lnPm(z,Pm)− lnPm̄(z,Pm̄)] (3.27)

where Pm(z,Pm) is a CES price index defined as:

Pm(z,Pm) =

[ ∑
g∈Gm

(
pmg

exp(βmg(1 + γmz))

)−(α0
m+α1

mz)
] 1
−(α0

m+α1
mz)

(3.28)
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The representative consumer’s relative log expenditure share is inversely proportional to the difference

in the quality-adjusted price levels in the modules. However, the idiosyncratic consumer’s relative log

expenditure share is proportional to the difference in price-adjusted quality levels for each module. These

relative log expenditure shares are equivalent because the quality-adjusted price levels defined in equation

(3.28) are equal to the inverse of the price-adjusted quality levels defined in equation (3.37). The income-

specific quality-adjusted price of a product g in module m is equal to the inverse of the income-specific

price-adjusted quality of the same product:

Pm(z,Pm) =

[ ∑
g∈Gm

(
pmg

exp(βmg(1 + γmz))

)−(α0
m+α1

mz)
] 1
−(α0

m+α1
mz)

=

 ∑
g∈Gm

((
exp(βmg(1 + γmz))

pmg

)−1
)−(α0

m+α1
mz)


1
−(α0

m+α1
mz)

=

[ ∑
g∈Gm

(
exp(βmg(1 + γmz))

pmg

)(α0
m+α1

mz)
] 1
−(α0

m+α1
mz)

=


[ ∑
g∈Gm

(
exp(βmg(1 + γmz))

pmg

)(α0
m+α1

mz)
] 1

(α0
m+α1

mz)


−1

= [Vm(z,Pm)]−1

3.D Solving for Optimal Between-Module Expenditure Shares

Consumer i, spending Z on the outside good, chooses how to allocate expenditures between modules by

selecting w1, ..., wM to maximize

Ui(w1, . . . , wM ) =

{∑
m∈M

[ũim(wm)]ρi

} 1
ρi

=

∑
m∈M

[
wm max

g∈Gm

exp(bmg(Z) + µm(Z)εimg)

pmg

]σ(Z)−1
σ(Z)


σ(Z)
σ(Z)−1

subject to ∑
m∈M

wm ≤Wi

We simplify the expression for the target utility function by denoting consumer i’s marginal utility

from expenditure in module m as the inverse of Aim:

max
g∈Gm

exp(bmg(Z) + µm(Z)εimg)

pmg
=

1

Aim
(3.29)

The within-module allocation decision now simplifies to:

w∗i = (w∗i1, ..., w
∗
iM ) = arg max∑

m∈M

wm ≤Wi

∑
m∈M

[
wm
Aim

]σ(Z)−1
σ(Z)


σ(Z)
σ(Z)−1

(3.30)
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The utility function over module expenditures is concave in module expenditure for each module m.

Therefore, there will be an interior solution to the maximization problem and it can be solved using the

first order conditions with respect to expenditure in each module m. The first order condition for each

module m is:

∂Ui(w1, . . . , wM )

∂wm
=

∑
m∈M

[
wm
Aim

]σ(Z)−1
σ(Z)


1

1−σ(Z)

1

Aim

[
wm
Aim

]− 1
σ(Z)

= λ

where λ is the marginal utility of expenditure. This implies that the marginal utility of expenditure must

be equal across modules. We use this equality across two modules, m and m′, to solve for the optimal

expenditure in module m′:

∑
m∈M

[
wm
Aim

]σ(Z)−1
σ(Z)


1

1−σ(Z)

1

Aim′

[
wm′

Aim′

]− 1
σ(Z)

=

∑
m∈M

[
wm
Aim

]σ(Z)−1
σ(Z)


1

1−σ(Z)

1

Aim

[
wm
Aim

]− 1
σ(Z)

1

Aim′

[
wm′

Aim′

]− 1
σ(Z)

=
1

Aim

[
wm
Aim

]− 1
σ(Z)

wm′ = wm

[
Aim′

Aim

]1−σ(Z)

Imposing the budget constraint,
∑
m∈M

wm′ =
∑
m∈M

wm ≤Wi, yields an expression for wm in terms of total

expenditure, Wi, and an index of the Aim terms:

W =
∑
m′∈M

wm′

W =
wm

A
1−σ(Z)
im

∑
m′∈M

[Aim′ ]
1−σ(Z)

wm =
A

1−σ(Z)
im∑

m′∈M

[Aim′ ]
1−σ(Z)

W

The solution to problem (3.30) is, therefore,

w∗i = (w∗i1, ..., w
∗
iM ) where w∗im =

A
1−σ(Z)
im

Pi1−σ(Z)
Wi ∀m ∈M

where Pi is a CES price index over Aim for all modules m ∈M defined as:

Pi =

[ ∑
m∈M

A
1−σ(Z)
im

] 1
1−σ(Z)

Substituting from equation (3.29) for Aimg yields consumer i’s optimal module expenditure vector,
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w∗i , as a function of total grocery expenditures, prices, and model parameters:

w∗i = (w∗i1, ..., w
∗
iM ) where w∗im = Wi

[
max
g∈Gm

exp(bmg(Z) + µm(Z)εimg)

pmg

]σ(Z)−1

Pi1−σ(Z)

Pi =

[ ∑
m∈M

(
max
g∈Gm

exp(bmg(Z) + µm(Z)εimg)

pmg

)σ(Z)−1
] 1

1−σ(Z)

3.E Deriving Within-Module Market Expenditure Shares

Equation (3.9) states that:

Q∗im(wm) = (q∗im1(wm), . . . , q∗imGm(wm)) where q∗img(wm) =


wm/pmg if g = arg max

g∈Gm

exp(bmg(Z) + µm(Z)εimg)

pmg

0 otherwise

If we rewrite consumer i’s optimal consumption quantity using an indicator function to identify which

product is selected by the consumer, consumer i’s optimal consumption quantity of product g in module

m is:

q∗img(wm) =
wm
pmg

I
[
g = arg max

g∈Gm

exp(bmg(Z) + µm(Z)εimg)

pmg

]
We can use this definition to derive consumer i’s expenditure on product g in module m:

wimg(wm) = pmgq
∗
img(wm) = wmI

[
g = arg max

g∈Gm

exp(bmg(Z) + µm(Z)εimg)

pmg

]

Dividing through by wm yields the consumer’s expenditure share on product g in module m:

simg|m = I
[
g = arg max

g∈Gm

exp(bmg(Z) + µm(Z)εimg)

pmg

]

The expected value of this expenditure share is derived by integrating over the idiosyncratic utilities in

module m, εim:

Eε[simg|m] = Eε
[
I
[
g = arg max

g∈Gm

exp(bmg(Z) + µm(Z)εimg)

pmg

]]
= Pr

[
exp(bmg(Z) + µm(Z)εimg)

pmg
≥ exp(bmg′(Z) + µm(Z)εimg′)

pmg′
, ∀g′ ∈ Gm

]
= Pr

[
εimg − εimg′ ≥

bmg(Z)− bmg′(Z)− (ln pmg − ln pmg′)

µm(Z)
, ∀g′ ∈ Gm

]

=
exp

bmg(Z)−ln pmg
µm(Z)∑

g′∈Gm

(
exp

bmg′(Z)− ln pg′

µm(Z)

)

The final equality holds because the idiosyncratic utilities, εim, are iid draws from a type I extreme value

distribution. Imposing the parametric forms for bmg(Z) = βmg(1 + γmzi) and µm(Z) = (α0
m + α1

mzi)
−1

from equations (3.5) and (3.6), respectively, ensures that the consumer’s expected expenditure share is
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common with other consumers with the same income that face the same product prices:

Eε[simg|m] =
exp[(α0

m + α1
mzi)(βmg(1 + γmzi)− ln pmg)]∑

g′∈Gm

(
exp[(α0

m + α1
mzi)(βmg′(1 + γmzi)− ln pmg′)]

)
I interpret the expected expenditure share function derived above as the expected share of expenditure

that a group of households with the same outside good expenditure, Zi = exp(zi), facing identical prices

for products in module m spend on product g. If the group of households is in the same market, then this

expected expenditure share will be the income-specific market share of product g in module m, which I

denote by smg|m(Zi,Pm). smg|m(Zi,Pm) is the share of expenditure that a group of households with the

outside good expenditure, Zi, and facing a common vector of module prices, Pm:

smg|m(Zi,Pm) = Eε[simg|m] =
exp[(α0

m + α1
mzi)(βmg(1 + γmzi)− ln pmg)]∑

g′∈Gm

(
exp[(α0

m + α1
mzi)(βmg′(1 + γmzi)− ln pmg′)]

)
Dividing this market share for product g in module m by the market share for a fixed product ḡm in

the same module m results in a relative market share that depends only on model parameters, consumer

income, and the prices of product g and ḡm
36:

smg|m(Zi,Pm)

smḡ|m(Zi,Pm)
=

exp[(α0
m + α1

mzi)(βmg(1 + γmzi)− ln pmg)]

exp[(α0
m + α1

mzi)(βmḡ(1 + γmzi)− ln pmḡ)]

I linearize the relative expenditure share equation by taking the log of both sides:

ln(smg|m(Zi,Pm))−ln(smḡ|m(Zi,Pm)) = (α0
m+α1

mzi) [(βmg − βmḡ)(1 + γmzi)− (ln pmg − ln pmḡ)] (3.31)

Equation (3.31) defines the expected within-module expenditure share of a set of households with outside

good expenditure zi facing prices pmg and pmḡm on product g in module m relative to product ḡm in the

same module m in terms of parameters αm, γm, and (βmg − βmḡm). This equation will be use to define

moments for each product g 6= ḡm in each module m, and these moments will be used to estimate all of

the αm and γm parameters, as well as each βmg parameter relative to βmḡm , i.e. {βmg − βmḡm}g∈Gm .

3.F Deriving Between-Module Relative Market Expenditure Shares

I now want to generate a similar estimation equation that can be used to identify α0, α1, and {βḡm}g∈Gm

using data on module-level income-specific market shares. Equations (3.12) and (3.13) together characterize

the optimal cross-module expenditure allocation for consumer i conditional on this consumer’s idiosyncratic

36The utility function assumes weak separability between modules and the independence of irrelevant
alternatives (IIA) property both across modules and across products with the same quality parameter.
Although neither of these are realistic characteristics of consumer behavior, they are useful for the purposes
of estimation as they imply that relative market expenditure shares can be derived as functions of observed
variables, such as household income, expenditures, and transaction prices.
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utility draws for each product in each module. These equations are:

w∗i = (w∗i1, ..., w
∗
iM ) where w∗im = Wi

[
max
g∈Gm

exp(bmg(Z) + µm(Z)εimg)

pmg

]σ(Z)−1

Pi1−σ(Z)

Pi =

[ ∑
m∈M

(
max
g∈Gm

exp(bmg(Z) + µm(Z)εimg)

pmg

)σ(Z)−1
] 1

1−σ(Z)

I generate consumer i’s optimal module m expenditure share, sim, by dividing their optimal module

expenditure, w∗im, by total grocery expenditure Wi :

sim =
w∗im
Wi

=

[
max
g∈Gm

exp(bmg(Z) + µm(Z)εimg)

pmg

]σ(Z)−1

Pi1−σ(Z)

When deriving the within-module relative market share, equation (3.31) above, I take the expectation of

the consumer’s expected product expenditure share over the idiosyncratic errors, Eε[simg|m], to derive an

expression for the market share of each product. I then divide these market shares by the market share of a

module specific base product and taking logs to linearize the equation. I change the order of this procedure

when deriving the between-module relative market share equation, i.e. difference and take the log of the

individual’s expenditure shares before taking the expectation of these terms over the idiosyncratic errors.

The reason for this reordering is that the consumer’s module expenditure shares include a term, Pi, that

depends non-linearly on all of the consumer’s idiosyncratic utility draws. This term is common to all of the

consumer’s module shares, and thus drops out of the consumer’s relative module expenditure shares, so that

these relative shares are functions of the consumer’s idiosyncratic utility draws in the two relevant modules.

The log of this relative module expenditure share term is additive in terms that depend on the consumer’s

idiosyncratic utility draws in only one module at a time; that is, a term that depends on the consumer’s

idiosyncratic utility draws in module m and a term that depends on the consumer’s idiosyncratic utility

draws in the base module m̄. This makes the expectation of the consumer’s log expenditure share in

module m relative to module m̄ easier to derive than the expectation of the consumer’s expenditure share

for a single module m.37

I now generate the relative module market shares. As discussed above, I first divide consumer i’s

37The order of the expectation, differencing, and log operations does not make a difference to the relative
market share equation in the within-module case, that is:

ln(smg|m(Yi,Pm))− ln(smḡ|m(Yi,Pm)) = ln
[
Eε[simg|m]/Eε[sim̄g|m̄])

]
= Eε

[
ln(simg|m)− ln(simḡ|m)

]
= (α0

m + α1
myi) [(βmg − βmḡ)(1 + γmyi)− (ln pmg − ln pmḡ)]

I derive the expression for the income-specific market share of product g, smg|m(Yi,Pm) = Eε[simg|m],
before taking logs and differencing to generate the estimation equation (3.31), as it demonstrates the
relationship between the term on the left-hand side of this equation, ln(smg|m(Yi,Pm))−ln(smḡ|m(Yi,Pm)),
and its value in the data: the difference between the log of the expenditure consumers earning Yi in a given
market on product g relative to the log of their expenditure on the base product ḡ or, more succinctly, the
log difference between the income-specific market shares on products g and ḡ.
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module expenditure share, sim, by his/her expenditure share in some fixed base module m̄:

sim
sim̄

=

[
max
g∈Gm

exp(bmg(Z) + µm(Z)εimg)

pmg

]σ(Z)−1

[
max
g∈Gm̄

exp(b ¯,mg(Z) + µm̄(Z)εim̄g)

pm̄g

]σ(Z)−1

Since Pi does not vary across modules for a given consumer i, it drops out of the relative module expenditure

share expression. I take the log of this relative share expression to linearize the equation:

ln sim−ln sim̄ = (σ(Z)−1) ln

(
max
g∈Gm

exp(bmg(Z) + µm(Z)εimg)

pmg

)
−(σ(Z)−1) ln

(
max
g∈Gm̄

exp(bm̄g(Z) + µm(Z)εim̄g)

pm̄g

)
,

This equation is a linear function of two terms, the first of which depends on the consumer’s idiosyncratic

utility draws in only module m and the second of which depends on the consumer’s idiosyncratic utility

draws in only module m̄. The expectation of the log difference between the consumer’s module expenditure

shares can be split into the difference between two expected values:

Eε [ln sim − ln sim̄] = (σ(Z)− 1)

{
Eε
[
ln

(
max
g∈Gm

exp(bmg(Z) + µm(Z)εimg)

pmg

)]
− Eε

[
ln

(
max
g∈Gm̄

exp(bm̄g(Z) + µm(Z)εim̄g)

pm̄g

)]}
(3.32)

Consider the two expectation terms in equation (3.32). Both take the same form, and thus I only solve for

the first expectation:

Eε
[
ln

(
max
g∈Gm

exp(bmg(Z) + µm(Z)εimg)

pmg

)]
(3.33)

The expectation term defined in equation (3.33) is the expected value of the log of a maximum. Since

the log is a monotonically increasing function, we can switch the order of the log and maximum functions

inside the expectation and linearize to yield:

Eε
[
ln

(
max
g∈Gm

exp(bmg(Z) + µm(Z)εimg)

pmg

)]
= Eε

[
max
g∈Gm

ln

(
exp(bmg(Z) + µm(Z)εimg)

pmg

)]
= Eε

[
max
g∈Gm

bmg(Z)− ln pmg + µm(Z)εimg

]
= µimEε

[
max
g∈Gm

(bmg(Z)− ln pmg)/µm(Z) + εimg

]
(3.34)

De Palma and Kilani (2007) show that, for an additive random utility model with ui = νi+εi, i = 1, . . . , n

and εi
iid∼ F (x) a continuous CDF with finite expectation, the expected maximum utility is:

Eε[max
i
νi + εi] =

∫ ∞
−∞

zdφ(z) where φ(z) = Pr[max
k

νk ≤ z] =

n∏
k=1

F (z − νk)

Since the expectation in equation (3.34) takes the form Eε[max
g

νimg + εimg], with νimg = (bmg(Z) −

ln pmg)/µm(Z), and since I have assumed that εimg
iid∼ F (x) for F (x) = exp(− exp(−x)), I can use the

de Palma and Kilani (2007) result to solve for the expectation as follows, dropping the i and m subscripts
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for the notational convenience:

Eε
[

max
g∈Gm

vg + εg

]
=

∫ ∞
−∞

zdφ(z)

=

∫ ∞
−∞

zd

[
Gm∏
g=1

exp(− exp(vg − z))

]

=

∫ ∞
−∞

zd

[
exp

(
Gm∑
g=1

− exp(vg − z)

)]

=

∫ ∞
−∞

z

(
Gm∑
g=1

exp(vg − z)

)
exp

(
Gm∑
g=1

− exp(vg − z)

)
dz

Let V = ln

[
Gm∑
g=1

exp(vg)

]
and x =

Gm∑
g=1

exp(vg − z) =

[
Gm∑
g=1

exp(vg)

]
exp(−z) = V exp(−z). I solve the

above integral by substituting for z = V − lnx, where dz = −(1/x)dx :

Eε
[

max
g∈Gm

vg + εg

]
=

∫ ∞
−∞

z

(
Gm∑
g=1

exp(vg − z)

)
exp

(
Gm∑
g=1

− exp(vg − z)

)
dz

=

∫ ∞
−∞

z exp

(
Gm∑
g=1

− exp(vg − z)

)(
Gm∑
g=1

exp(vg − z)

)
dz

=

∫ 0

∞
(V − lnx) exp (−x)x(−1/x)dx

=

∫ ∞
0

(V − lnx) exp (−x) dx

= V

Since we have defined νimg = (bmg(Z) − ln pmg)/µm(Z) and V = ln

[
Gm∑
g=1

exp(vg)

]
, we can use the above

result to solve for the expectation in equation (3.33):

Eε
[
ln

(
max
g∈Gm

exp(bmg(Z) + µm(Z)εimg)

pmg

)]
= µm(Z) ln

[ ∑
g∈Gm

exp((bmg(Z)− ln pmg)/µm(Z))

]

= µm(Z) ln

[ ∑
g∈Gm

(
exp(bmg(Z))

pmg

) 1
µm(Z)

]

= ln

[ ∑
g∈Gm

(
exp(bmg(Z))

pmg

) 1
µm(Z)

]µm(Z)

(3.35)

Plugging this result back into equation (3.32) yields the expected relative module expenditure share for

consumer i in terms of product prices and model parameters:

Eε [ln sim − ln sim̄] = (σ(Z)− 1)

{
Eε
[
ln

(
max
g∈Gm

exp(bmg(Z) + µm(Z)εimg)

pmg

)]
− Eε

[
ln

(
max
g∈Gm̄

exp(bm̄g(Z) + µm̄(Z)εim̄g)

pm̄g

)]}

= (σ(Z)− 1)

ln

[ ∑
g∈Gm

(
exp(bmg(Z))

pmg

) 1
µm(Z)

]µm(Z)

− ln

[ ∑
g∈Gm̄

(
exp(bm̄g(Z))

pm̄g

) 1
µm̄(Z)

]µm̄(Z)


This function only varies by consumer through their outside good expenditure. All consumers with the

same outside good expenditure, Zi = exp(zi)−1, that face the same prices, P, will have the same expected
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relative module expenditure share:

Eε [ln sim − ln sim̄] = −(α0 + α1zi) [lnVm(zi,Pm)− lnVm̄(zi,Pm̄)] (3.36)

where Vm(zi,Pm) is a CES-style index over price-adjusted product qualities:

Vm(zi,Pm) =

[ ∑
g∈Gm

(
exp(βmg(1 + γmzi))

pmg

)α0
m+α1

myi
] 1
α0
m+α1

myi

(3.37)

Equations (3.36) and (3.37) together define the expected relative module expenditure share of a set of

households with income Yi that face prices Pm and Pm̄ in terms of parameters α0, α1, as well as αm, γm,

βmg for all g ∈ Gm, and αm̄, γm̄, βm̄g for all g ∈ Gm̄.
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