
MAPPING HAPTIC EXPLORATORY PROCEDURES 
TO MULTIPLE SHAPE REPRESENTATIONS 

Peter K. Allen 

Department of Computer Science 
Columbia University 

New York, New York 10027 

Absfract 

Research in human haptics has revealed a number of Explora- 
tory Procedures (EP’s) that are used in determining attributes 
of an object, particularly shape. We have used this research as 
a paradigm for building an intelligent robotic system that can 
perform shape recognition from touch sensing. In particular, 
we have found a number of mappings between EP’s and shape 
modeling primitives. In this paper, we discuss the choice of 
shape primitive for each EP, and present results from experi- 
ments with a Utah-MIT dextrous hand system. We also 
present a vision algorithm to complement active touch sensing 
for the task of autonomous shape recovery. 

1. INTRODUCTION 
A number of interesting properties of the human haptic system have 

been investigated by Lederman and Klatzky and their colleagues [16-181. 
This work has shown that an important component of the haptic system is 
its ability to recognize attributes of threedimensional objects quickly and 
accurately. Among these athibutes are global shape, hardness, tempera- 
ture, weight, size, articulation and function. An outcome of this research is 
the identification of hand movement strategies that are used by humans in 
discovering different attributes of three-dimensional objects. They have 
labeled these EP’s, or Exploratory Procedures, and have reported success 
rates of 96-99% in identifying different object properties using two- 
handed, haptic exploration. Given these well-developed and useful human 
skills, we have have found it natural to create analogs of these human 
capabilities in our robotic domain. Future robotic systems will need to use 
dextrous robotic hands for tasks such as grasping, manipulation, assembly, 
inspection and object recognition. 

2. MAPPING HAPTIC EXPLORATORY PROCEDURES TO 
SHAPE REPRESENTATIONS 

Our research is focused on recovering shape attributes of rigid 3-D 
objects using active touch sensing. The question of what shape representa- 
tion to use is an important open question in robotics. While we do not 
have a definitive answer to propose here, it seems that a key component of 
any working system is to use mulriple shape representations. Different 
shape representations seem to be intuitively better based upon both the task 
and object domain. Our effort in implementing robotic EP’S has led us to 
find “natural” mappings between some well-known shape representations 
and EP’s. In the sections below, we will describe the 3 EP’s we have 
implemented on our robotic hand system, and motivate our choice of shape 
representation. Experiments have been carried out using our hand system 
to recover shape using the EP’s discussed below Our hand system is 
described in detail in 121. It consists of a Utah-MIT hand mounted on a 
PUMA 560 arm and Interlink tactile sensm mounted on the distal links of 
each finger (figure 1). 

2.1. Mapping 1: Grasping by Containment 4 Superquadrics 
Consider the EP of grasping by containment. In humans, this EP is 

based on encompassing an object’s volume with the hands, deriving Sparse 
but global shape information. We have chosen superquadrics as a represen- 
tation for recovering shape with this EP. They have been used by a 
number of researchers [4,5,19] to recover shape. What makes superqua- 
drics particularly relevant for this FP is the following: 

The representation is volumemc in nature, which maps directly into 
the psychophysical perception processes suggested by grasping by 
containment. 
The models can be consaained by the volumetric constraint implied 
by the joint positions on each finger. 
The representation can be recovered with sparse amounts of point 
contact data since only a limited number of parameters need to be 
recovered. There are 5 parameters related to shape and 6 related to 
position and orientation in space. Global deformations (tapering, 
bending) add a few more. 
In addition to the use of contact points of fingers on a surface, the 
surface normals from contacts can be used to describe a dual super- 
quadric which has the same analytical properties as the model itself. 
The recovery process uses a non-linear least-squares estimate of a fit 
function. This approach is especially relevant with touch sensing, in 
which there is evidence that the human tactile system serves essen- 
tially as a low-pass filter[l81. 
Our implementation of this EP, described in detail in [31, is to obtain 

a number (typically 30-100) of finger contact points by encompassing the 
fingers of the hand around the object. The data is from all sides of an 
object, giving justification to the least-square. fit of the data from the entire 
object. Figure 2 shows a number of objects whose shape has been 
recovered using the Grasping by Containment EP. 

The problem of generating a good initial hypothesis is central to 
robust object recognition. If we can generate a good initial shape estimate, 
then we will be much more successful as we try to discover and refine 
further object structure. The requirements for an initial shape estimator are 
that it be efficient, stable in the presence of noise and uncertainty, and able 
to use sparse, partial data. Our recovery of global shape using superqua- 
drics for an initial estimator of shape meets these criteria. 

2.2. Mapping 2: Lateral Extent -+ Face-Edge-Vertex 
The second EP we have implemented with our robotic hand system 

is a Lateral Extent EP. This EP is used to explore a continuous, homo- 
geneous surface such as a planar face, and to determine its extents. 
Research with human subjects suggests that this strategy is used until a 
discontinuity is found, which can cause a change in haptic sensing stra- 
tegy. 

We have found that this EP maps into a winged-edge type of Face- 
Edge-Vertex model suggested by Baumgart [6]. This EP is capable of 
determining the extents of a planar surface, and by using multiple fingers, 
different planar faces can be explored. The intersections of these planes 
form the edges and vedces of the object in question, and are easily com- 
puted. 
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Our implementation of this EP uses the hand's index finger. While 
the index finger is held in an extended position, the PUMA arm is moved 
until the tactile sensors on the index finger contact a surface (if no contact 
is detected, the procedure terminates). After the initial contact, the Carte- 
sian position of the contact point is noted. The hand and arm then begin an 
iterative search for the boundaries of the surface by performing the follow- 
ing sequence: (a) lift the finger off the surface until tactile contact is lost; 
(b) move the arm in a direction parallel to the surface; (c) if the finger is in 
contact after the movement, note the new contact location, otherwise lower 
the index finger until it makes contact with the surface again; (d) repeat 
steps (a)-(c) until the finger fails to make contact in step (c). In step (d), if 
the finger does not contact the surface, then either the finger has moved 
beyond the edge of the surface, or the surface is too far away from the 
finger to be detected. To check for the laaer case, the arm must be moved 
toward the surface. After completing the first collection of data points and 
finding the edge of the surface, the index finger is moved back to the posi- 
tion of initial contact, and a second mapping of the surface is undertaken in 
a direction 180" opposite. This procedure continues until a second surface 
edge is detected. The search now continues as before but in a direction 
perpendicular to the first two traces. This procedure then is able to map 
out a set of contact points on the surface, describing its extent. Each time 
the fingertip contacts the surface, the Cartesian coordinates of the contact 
are retained. Figure 3 shows a pattem of traces on 2 adjacent planar faces 
of a rectangular block using this EP. Least-square planes were fit to each 
of the traces and the computed angle between the recovered planes is 96" 
(the actual angle is unknown but assumed to be goo). The intersection of 
the planes forms an edge which can be used to build the winged-edge 
model of the object. 

2.3. Mapping 3: Contour Follower + Generalized Cylinders 

The Contour Follower EP in humans is described by Klatzky and 
Ixderman as " a dynamic procedure in which the hand maintains contact 
with a contour of the object. Typically, the movement is smooth and non- 
repetitive within a segment of object contour, stops or shifts direction 
when a contour segment ends, and does not occur on a homogeneous sur- 
face [151." It seems natural that this EP will report information that can 
be used to recover a shape that can be represented as a class of generalized 
cylinders. Generalized cylinders have been proposed by many researchers 
beginning with Binford [7] as a shape modeling primitive. Other 
researchers have expanded on this idea of a swept volume by creating 
classes of generalized cylinders or cones, depending upon the nature of the 
axis curve, sweeping rule and cross sectional curve. These primitives have 
special appeal in the recognition of elongated objects and objects that pro- 
vide strong visual contours. 

Fearing U01 has attempted to recover the shape of a class of these 
generalized cones (RLSHGC - Right Linear Straight Homogeneous Gen- 
eralized Cones) using extremely sparse amounts of data. He has character- 
ized the necessary and sufficient conditions for being able to recover the 
axis and orientation of these cones. given limited, multi-fingered tactile 
sensor data that includes point contacts, surface normal direction, and sur- 
face curvature information. 

We have also chosen to use a class of these primitives for shape 
recovery. The class we are using is surfaces of revolution, which are. 
RSHGC with a circular crass section function (no linear scaling of the 
cross section is required). These surfaces may be completely described by 
the rotation of a plane curve about the axis of symmetry (see figure 4). If 
we take this axis to be the Z axis, the surface will intersect the 0 -XZ plane 
in the plane curve 

r,(u) = p ( u )  i + I ( U )  k 
and the surface of revolution has the equation 

r = p (u)cos8 i + p (u)sin8 j + I ( U )  k (2) 

From the definition, we can see that the cross-section curve is circular, but 
the contour generator curve can be quite arbitrary. 

Fearing was able to recover the shape of generalized cylinders from 
a minimal set of tactile contacts that were static in nature, not dynamic. 
Our attempt to recover the shape of these objects from touch is based upon 
receiving less accurate tactile information than the system used by Fearing. 
In particular, our tactile sensors are not capable of reporting accurate sur- 
face normals or surface curvatures; but they are capable of producing 
localized 3-D positional contacts of fingers to the object Our experience 
is that information such as surface curvature is very difficult to accurately 
sense, particularly with sensors that have low dynamic range and are used 
in an active, exploratory manner. Our approach is to use the Contour Fol- 
lower to recover the contour curve described above. If we obtain two such 
contour curves that are on either side of the object, we can estimate the 
axis of the surface of revolution, and recover the shape. This procedure 
maps naturally into a two-fingered Contour Follower EP, in which an 
object's contour on either side are sensed using the thumb and index 
finger. 

The problem of using an active tactile device to trace a surface on an 
object is a complicated one. Our previous work [l] using a onefingered 
tactile sensor mounted on a PUMA traced along a curved surface by calcu- 
lating a weighted vector of constraint directions that tried to follow the sur- 
face curvature while preserving smoothness of the trace and a constraint 
having to do with creating regions bounded by traces that were equivalent 
in size. Hor [13] traced contours of planar objects using a planar four- 
fingered "chopstick" like manipulator. Strain gauge sensors on the 
fingers of this device would calculate surface normals and move tangen- 
tially along a surface, recording the contour. Stansfield [221 used a planar 
LORD tactile sensor mounted on a PUMA to trace edges and other 
features on objects. 

Our Contour Follower EP is now described. First, the PUMA is 
moved to a location near one end of the explored object, and the thumb 
and index finger are opened enough to allow them to encompass the object 
without making contact with i t  Then the thumb is slowly moved toward 
the object until the sensors detect contact between the thumb and the 
object. Next, the index finger follows the same movement After detect- 
ing contact, the positions of the two contact locations are noted, and the 
fingers are backed off the object so that they are no longer in contact. The 
ann and hand are moved a small amount along the axis of the explored 
object, and the process is repeated. This exploratory procedure ends when 
one of the fingers moves toward the object and fails to make contact. (The 
location of the object and its axis are not currently determined auto- 
nomously, but with human aid.) 

The detection of contact and conversion to Cartesian coordinates is a 
process that requires several steps. The fingers are moved toward the 
object in a number of discrete intervals. After each movement, two checks 
are performed. First, did the tactile sensor detect contact? And second, 
did the finger move the entire distance that was commanded? If the tactile 
sensor detects contact, then the location of the center of the contact region 
is found. To find the center of the contact, the first moments of the tactile 
array are taken. Then a transformation is performed from the fingertip 
coordinate frame to the hand coordinate frame, and finally, from the hand 
coordinate frame to world coordinates. The second check is to see if the 
finger has moved the entire distance commanded (and there is no tactile 
contact). This event would signal that something is impeding a finger from 
moving. In this case, no centroid of the contact region is found and the 
data point is thrown out. After detecting contact that does not involve the 
tactile sensor, the exploratory procedure continues looking for valid con- 
tact points along the original search axis. 

We have performed a series of experiments that try to recover the 
shape of a number of different surfaces of revolution including a wine bot- 
tle, a beer bottle, a coke bottle and an Orangina bottle (a flask like object). 
The procedure begins with exploring the object along an exploration axis 
that is assumed to be perpendicular to the support table (but can be inferred 
from vision sensing described. below). The points generated from these 
contour traces are then linked into a set of linear contour segments. Circu- 
lar cross section curves are then fit perpendicular to the exploration axis 
that include trace points from each of the contours. The recovered shapes 
are shown in figure 0. The shapes are clearly distinguishable from this 
sparse data. An additional discriminating characteristic is actual 3-D size 
and volume which are calculable from these representations. 
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3. REQUIREMENTS FOR AN AUTONOMOUS HAFTIC SYSTEM 
The EP’s discussed above can be thought of as a set of primitive 

haptic functions that can be used as the building blocks for an active, auto- 
nomous haptic recognition system. The requirements of such a system are 
more complex than a similar vision based recognition system, primarily 
due to the active control needed for the hand. We now discuss how more 
autonomy may be built into such a system using vision as an intelligent 
front end to the haptic EP’s. 

3.1. Using Multiple Sensing Modalities for Autonomy 
While the focus of this paper is on the acquisition and interpretation 

of touch sensor data, our overall approach to the problem of robotic object 
recognition lies in a multi-sensor approach; we believe no single sensing 
modality is currently powerful enough to robustly perceive and recognize 
its environment. Just as humans exploit a multitude of sensor systems, 
robotic systems need to use multiple sensors for perception as outlined in 
Allen [I] and Kak and Chen [14]. A central idea in using multi-sensor 
data is that over-reliance on one sensor can cause error. It has been empir- 
ically observed that wing to extract too much information from a single 
sensing modality results in a degradation of results; however, using only 
the most reliable and highest confidence sensor data allows one to proceed 
along a path that is known to be correct We call this principle “less is 
more,” in that reduced amounts of reliable data from a single sensor are 
more useful than large amounts of data which may be spurious. By com- 
bining the data that is most reliable from each of a number of sensors, 
more accurate results may be computed. An interesting analogy to our 
work is in the ability of blind people to perceive the world. While blind 
people can and do function in complicated environments, small amounts of 
other sensory data (such as verbal visual guidance cues from sighted peo- 
ple) can extend their ability to perceive. 

3.2. Example: Finding an Exploration Axis for an EP 
Determining the exploration axis is a key part of the Contour Fol- 

lower EP. Knowing in which direction to trace the object is important to 
higher level recovery procedures which need to use this information in the 
recognition process. Once the hand makes contact with the object, it 
explores the contour along a known axis which we calculate apriori. We 
have implemented a vision based technique to determine this axis. Our 
method of visual recovery of the exploration axis exploits the recent work 
of Wolff [23] in stereo line matching. Point-based stereo techniques tend 
to be unreliable in that multiple correspondences between images can 
cause mismatches and error. More stable matching can occur using larger 
primitives such as lines [12]. Even using linebased matching, problems 
can still occur. Matching the endpoints of lines can be prone to errors in 
the output of the line finder which may break a single line into multiple 
segments due to differing edge saengths along the line. The problem here 
is that 3-D depth is being computed, which requires an absolute correspon- 
dence of points (whether from point-based or line-based methods). 

Our method alleviates this dependence on absolute matching of 
unstable primitives to generate 3-D depth. All we require of the algorithm 
is an orientation vector in 3-D. We do not need to have its absolute depth, 
but need to generate a match between a family of parallel lines sharing the 
same orientation. This orientation can then be used by the active hand as 
the exploration axis. The 3-D depth has already been determined from the 
contact of the hand with the object. Given this 3-D depth from tactile con- 
tact, we can follow the 3-D axis determined by the line based stereo 
matcher to continue our exploration. 

It is important to note that this method is less sensitive to matching 
errors and baseline measurement, another common cause of stereo error. 
In addition, it is also less prone to the effects of physical point mismatches 
as the baseline increases, since we are still matching a larger entity, the 
line itself. Intuitively, the method creates a 3-D plane in space from the 
camera center and any two points on the line. This plane and a similar 
plane from the other camera are all that are needed to create a 3-D inter- 
section line which we can use as the exploration axis. 

3.3. Vision Module 
The vision module consists of a pair of cameras that image the 

object in the scene. To extract linear features from the images, an dgo- 
rithm developed by Singh and Shneier is used [21]. This is a two stage 
process that uses the real-time edge detection capability of the PIPE image 
processing system to apply smoothing, gradient, threshold and thinning 
operators to the image in real-time. The PIPE allows images to have local 
operators work on multiple images in time as well as pipelining images 
from processing stage to processing stage for sequential processing of a 
multi-step image algorithm. Each processing step talies one field time 
(1/60 sec). The initial operator is a first derivative of a Gaussian smoothed 
image, which is used as an edge smgth measure. This image is then 
thresholded using a local averaging technique over a 5x5 window to isolate 
edges. This procedure, while able to be realized in real-time. has the 
unwanted side effect of isolated “spot” edges. These can be eliminated 
by sending the edge image to another processing stage in the PIPE where a 
morphological thinning operator can be applied, again in one image field 
time. The thinning is accomplished by two operators. one for removing 
spots and another restoring template to merge multiple parallel edges. 

To create full linear features, a non-local edge following algorithm is 
needed. This is done by shipping the edge marked binary image to a host 
over a high speed interface. The edges are linked into linear features by 
using a raster scan connected component analysis. The connected edge 
pixels are broken into linear pieces using a recursive subdivision algo- 
rithm. These linear-connected edge pixels are then fit to a least-square fit 
line that minimizes the sum of the pixels distances from the lie. The lines 
end-points are calculated by projecting the ends of the connected pixel 
chains onto the fitted line. Attributes of each line (Orientation, extent, 
length) are also calculated. 

The vision module performs the algorithm for each of the two 
images. The cameras are calibrated but no attempt is made at scan line 
registration. The intent is that the linear features are much more stable as 
candidates for stereo matching than pixel level data. 

3.4. Matching 
The linear feature extraction process serves as input to the matcher. 

The matching process is simplified by filtering the candidate lines on a 
number of criteria. The initial filtering criteria is edge length. All edges 
are rejected below a minimum length, which are taken from the statistics 
of the line feature extraction process. The edges remaining in each image 
are the longest and most stable lines in the image. The preference for l i e  
orientation is again taken from the distribution of the filtered lines, with the 
maximum of the orientation histogram chosen (an appropriate bucket size 
of 30 O is used). The lines are then matched according to orientation and 
extent, with a horizontal disparity window imposed to prevent gross 
mismatches. The procedure works well since it is matching a very small 
subset of lines. which, because of their length, are quite stable. Figure 6 
shows the left and right stereo images of the beer bottle with the extracted 
linear features overlaid on the bottle, and the matched filtered lines. 

As mentioned previously, once the lines are matched, it is still not 
possible to fully recover depth of the object points, since the matches are 
not on a pixel by pixel basis. There is still a degree of freedom (translation 
along the stereo lines matched) inherent in the recovered line match. How- 
ever, given our problem of finding a 3-D exploration axis on the object, 
this degree of freedom is acceptable. In fact, it is exactly the axis of 
exploration, dong the matched line. The hand system can locate any point 
along the line where the object is imaged, move until it contacts this point, 
and begin exploring along the axis. 

4. DISCUSSION: REASONING WITH MULTIPLE SHAPE 
REPRESENTATIONS 

We have described a number of EP’s that we have implemented, and 
the accompanying shape representation that each EP maps into. The next 
step in the object recognition process is to use these Ep’s in a coordinated 
manner to fully explore a complex, multi-part object. Each representation 
is essentially a constraint system that can be used to interpret the scene. In 
addition, the active nature of the sensing can allow one set of constraints 
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developed by an EP to drive further sensing of the object using a different 
EP. If we begin with the Grasping by Containment EP. which fits a super- 
quadric to the initial grasp data, we have a strong hypothesis about an 
object’s shape. Of particular imporulnce are the two shape parameters in 
the superquadric representation. The shape of an object can be inferred 
from these parameters and used to direct further exploration. For example, 
if the shape parameters appear to be rectangular then the Lateral Extent EP 
can trace out the planar surfaces and perform a least square fit of the trace 
data to test the surface’s planarity. If the shape parameters appear more 
cylindrical then the planar faces of the cylinder can be explored with this 
primitive, and the cylinder’s contour can be explored and verified with the 
Contour Follower EP. Data from the Lateral Extent EP can be used in a 
matching algorithm that prunes possible interpretations of model object 
from this sensor data that been has been developed by Roberts [201, using 
constraints similar to those used by Grimson and hzano-Perez [ l l ]  and 
Ellis et al. [8] These constraints have proven to be sufficient for recogni- 
tion of polyhedral objects. Finally, the large body of work with general- 
ized cones can be used for intexpretation with the Contour Follower EP, 
providing a rich and varied spatial reasoning base. 
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Figure 1: Utah-MIT Hand system with tactile sensors. 
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Figure 2: Recovered shape of cylinder, block, wedge, lightbulb 
and funnel ftom Grasping by Containment EP. 

't 

Figure 3: Lateral Extent EP contact points 

and derived Face-Edge model. 

Figure 4: Surface of revolution (from Faux and Pratt [91). 
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Figure 5: Linked contour points and recovered surfaces 

of revolution from Contour Explorer EP (left to right wine bottle, 

coke bottle, beer bottle, Orangina bottle). 

Figure 6: a) Image of beer bottle b) linear features c) matched features 
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