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Abstract 
This paper proposes a path-planning method for mobile robots in the presence 
of uncertainty. We analyze environment and control uncertainty and propose 
methods for incorporating each of them into the planning algorithm. 

We model the environment using the pyramid structure that encodes the 
information on occupancy probabilities for each pixel as well as the partial 
information on conditional probabilities among different pixels. This structtw 
allows for efficient and accurate computation of collision probabilities in the 
presence of environment uncertainty. 

The control uncertainty is mainly characterized by its expansion in space 
and time and is accordingly modeled by a stochastic differential equation 
that mathematically captures this phenomenon. Models that we develop are 
inevitably approximate but experiments confirm that they can be used as a 
reasonable model for motion planning. 

We have conducted a series of experiments on the mobile platform and we 
present some of these results in the paper. 

This work was supportedin part by DARPA contract DACA-76-92-C-007. 
NSF grants RI-86-57151, CDA-90-24735. North American Philips Labora- 
tories, Siemens Corporation and Rockwell International. 

1 Introduction 
Realistic robot systems are flawed by uncertainty. Handling the uncertainty is 
necessary for improving robot’s performance. Some well known motion plan- 
ning techniques, such as Voronoi diagrams [8] and cell decomposition [12], 
often referred to as “global”, are based on graph searches and they assume 
that a robot’s sensing, control and knowledge of an environment are perfect. 
This assumption, albeit never absolutely true, is realistic in non-cluttered en- 
vironments when the required accuracy in the goal is not critical. The simple 
-and usually quite sufficient - approach is to slightly “grow” the obstacles 
and “shrink” the goal in the configuration space to compensate for all present 
uncertainties. Motions planned under these assumptions are usually called 
gross motions. 

Nevertheless, the necessity for a more elaborate treatment of uncertainties 
exists. Intuitively, by conservatively “growing” the obstacles we may either 
run out of free space or the goal region may disappear. Thus, we need a 
planning methodology capable of coping with inherent uncertainties in a more 
elaborate way. More precisely, we need a tool that allows us to suppress the 
unwanted effects of different uncertainties - for example, even if our robot 
“slips” from the prescribed trajectory, we want to be able to guide it towards 
the goal anyway. 

The classical work in robotic planning in the presence of uncertainties has 
been done by Lozano-P&ez and colleagues [6,4,2]. This planning strategy is 
referred to as a worst-case planning since the computed plans are guaranteed 
to succeed under assumed conditions. There have been several attempts to 
generalize this planning strategy to average case (see, for example, [l]). Some 
further developmentsare [3] and [lo]. 

Output: A path planning algorithm for real-sized robots 
in the presence of environment and control uncertainty 

Identify sources of uncertainty; 
Propose method for path planning for a point robot 
in the presence of environment uncertainty; 
Extend this algorithm for the case of real-sized robots; 
Propose the mathematical model of control uncertainty; 
Experimentally establish the model of control uncertainty; 
Merge the path planning algorithm with the model 
of control uncertainty; 

Figure 1 : Overview of the planning method 

The following is the overview of the work presented in this paper (see 
figure 1). The first step is the identification of sources of uncertainty. We 
will consider two types of uncertainty: environment and control uncertainty. 
Next step is to come up with a path planning algorithm for point robots in 
the presence of environment uncertainty. Point robots are robots whose size 
is negligible compared to the size of obstacles. This algorithm is developed 
in section 2. The extension of this algorithm for path planning of real-sized 
robots is given in section 3. We establish the mathematical model of control 
uncertainty for an experimental robotic system (a mobile platform) in section 
4. The integration of the path planning algorithm from section 3 and the 
control uncertainty model from section 4 is presented as the final result of this 
paper in section 5 ,  where we give the path planning algorithm for real-sized 
robots in the presence of environment and control uncertainty. 

This paper is based on the first author’s doctoral dissertation [ 131. 

2 Path Planning for Point Robots with 
Environment Uncertainty 

The problem we want to address in this section is how to move a “point robot” 
(a robot whose size is negligible compared to the size of obstacles) among 
obstacles in a 2D environment from an initial point to a goal point, observing 
certain dynamical properties of the planned trajectory such as motion duration 
and maximal impact force. The positions of obstacles are not completely 
known. What is known are the probabilities that a given point is occupied by 
an obstacle. We call such an environment “semi-static” since the obstacles’ 
appearance, position and orientation are allowed to change in between con- 
secutive task execution instances. The scenario for a semi-static environment 
is a conveyor belt or a machine feeder that brings a part to be processed each 
time in a slightly different posture. Another possible scenario is the floor of 
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a warehouse with the objects in it having static but not completely known 
positions. 

The model of a semi-static environment will be the widely used concept 
of an occupancy grid [7], obtained by averaging a series of images of the 2D 
workspace from an overhead camera. The lighting and coloring of obstacles is 
assumed to allow for unique distinction between objects and the background. 
As a series of images is taken, the brightness of each pixel is computed to 
be proportional to the frequency of pixel’s occupancy by an obstacle. As a 
solution of the find-pathhjectory parameterization problem we propose a 
combination of a grid search technique based on the A* search algorithm and 
a kinetic energy-type criterion optimization. We call this criterion the task 
execution diflculiy index. 

2.1 Path planning with probability-induced 
metric 

The main idea that we employ for path planning is the choice of a probability- 
dependent metric. The mathematical entity that defines a metric in a given 
space is a metric tensor. We can think of a metric tensor as an n x n matrix 
where n is the dimensionality of the space in question, in our case n = 2. The 
infinitesimal distance d s is defined through a metric tensor gr3 by the formula 
ds2 = g13dq’q3 where d q  is an infinitesimal vector. 

We will utilize the freedom to choose the metric tensor in order to cope with 
the uncertainty. Intuitively. we can think of uncertain areas as “less desirable” 
and penalize trajectories that go through those areas by considering them to 
be longer. The metric tensor defines the pseudo distance in the configuration 
space. This pseudo distance should be a function of the occupancyprobability 
Yfil with the following properties: 

d s  = 46-, 
d s  increases, Yfil increases 

Vfail = 0 

ds=m,  Yf&il = 1 

where Yfdl = Yfil(q) is the probability that the point q is occupied by 
an obstacle, which would cause the robot in this position to collide with this 
obstacle and consequently cause the plan to fail. The infinitesimal distance 
d s  is defined by the metric tensor as stated above. 

It is known in theoretical mechanics that the shortest path between two 
points is given by a geodesic line that connects those two points. This geodesic 
line is a solution of a differential equation that depends on the metric tensor. 
The condition that distance becomes infinite if a point is certainly part of 
an obstacle guarantees that the paths obtained as solutions of this differential 
equation will avoidobstacles, while the condition that ds  rises as b rises results 
in a tendency to “prefer” paths through areas that are unlikely to be populated 
by obstacles over areas with substantial uncertainty. 

We have chosen gt3 to be 

gt3 = 6:jd(Yfai1) (2) 
where 6,, is Kronecker tensor (i.e. identity matrix), 9 is an appropriately 
chosen scalar function and Yfil = Yf&iI(q) is the probability that point q is 
part of an obstacle. 

Once the pseudo-distance is defined, the path planning is accomplished by 
a grid search using the A* algorithm. This algorithm is guaranteed to find a 
path if one exists. The cost of getting from one point to another is assumed to 
be the pseudodistancebetween those two points. This guarantees that the path 
that the A* algorithm finds is the shortest path with respect to the assumed 
distance metric. 

The heuristic function in the A* algorithm is chosen to be the Euclidean 
distance between the current point and the goal point. 

2.2 Trajectory time parameterization 
In this subsection we discuss the velocity planning along a precomputed path. 
This separation of path and velocity planning is the approximation that we are 

forced to make due to the numerical instability of simultaneous optimization 
of the path and the velocity. 

The velocity is planned through an optimization of a criterion that will 
guarantee that the computed result is “the best” in a certain sense. The choice 
of a criterion will define the meaning of “the best”. An attractive choice 
for a criterion is undoubtedly a mathematical embodiment of the concept of 
“difficulty” of a task. Now we will define an optimization criterion that we will 
call task execution drflculty. It combines motion velocity with the knowledge 
about the environment presented through the metric tensor. The metric tensor 
in itself contains the probabilistic information on obstacle arrangement in the 
environment, as in formula 1. 

Definition 1 A task execution difficulty index is 

for positioning a point robotfrom q(0) = qSm to q(T) = q g d  in time T ,  

where v’ is a velociw vector dq’ldt = v’ and g13 is a certain two time 
covariant tenso,: 

For the purpose of planning velocity we choose the same metric tensor 
as for path planning. The optimal velocity profile along the path can be 
analytically found and the solution is (see [I41 for details): 

U = vo/& (4) 
where uo is an initial velocity. 

on total motion duration T .  Simple analytic manipulation yields 
In order to determine the initial velocity vo we need to impose a condition 

vo = - -5 J h d s  

where integrals are taken from qSm to qgd. 
The importance of formula 4 is that we now have a solution for velocity 

U along the trajectory in closed form. This solution depends only on local 
properties of the trajectory -the probability that the current point is occupied 
by an obstacle - and so it can be computed efficiently. 

2.3 Simulation results 
The metric tensor we have chosen is of the form 

913 = 6tpiW’fai) = 6 t ~ / d m  

where p is a parameter. In our simulations we have assumed the value p = 2. 
Figures 2 through 6 demonstrate the behavior of the planner as we increase 

the uncertainty further. The path becomes more conservative, totally aban- 
doning the narrowing channel between the central and bottommost obstacles. 
As the uncertainty increases even more, the planner chooses the third topolog- 
ically different path, presented in figure 5 .  Finally, if the uncertainty is blown 
up so that almost no information remains, the planner just follows a straight 
line path from the start to the goal (figure 6). 

3 Path Planning for Real Robots with 
Environment Uncertainty 

The approach to the motion planning for real-sized robots that we examine in 
this section is to estimate the probability of an arbitrarily-shaped robot hitting 
an obstacle in a given configuration based on the same occupancy grid as in 
the previous section. This would both keep the storage requirements low and 
allow for the metric tensor method to be applied directly. Also, this method is 
general in a sense that the data-gathering phase does not need to be repeated 
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Figure 2: Path and velocity, (T = 0.0 

Figure 3: Path and velocity, U = 0.01 

I 

I 

Figure 4: Path and velocity, U = 0.03 

I 

Figure 5: Path and velocity, U = 0.08 

Figure 6: Path and velocity, U = 0.5 

for a robot with a different shape, but rather the same occupancy grid may 
be used again. The price that we have to pay is that the probability of an 
impact is just an estimate of a real probability based on certain heuristics. 
Only experiments can prove or disprove the choices we have made. 

In a summary, the algorithm for robot motion planning in 2D that we 
describe in this section has the following favorable characteristics: 

Robot's s h p e  independence: The algorithm allows for planning paths 
for differently shaped and possibly shape-changing robots. 

Ve'elocityphning: The algorithm utilizes a similar criterion optimization 
mechanism as described in section 2 for the robot's velocity planning. 

Eficiency: The search through high-dimensional configuration space is 
avoided. The algorithm is implemented as a set of parallel processes 
that may run on a distributed system. 

The algorithm has been implemented and the experiments have been con- 
ducted on the mobile platform in a simple laboratory environment (see fig- 
ure 11). 

This section explains how we compute the collision probability for a robot 
in a given configuration. It is very difficult to compute this probability exactly. 
In order to do this, one would need to know all conditional dependencies 
between pixels that robot covers in a given configuration. This would require 
unattainable amount of information. For this reason we an forced to adopt 
some approximate solution. The approximation that we propose is to define 
an operator that combines pixel probabilities based on some approximate 
dependency information obtained during the generation of the environment. 
This operator, denoted $, needs to posses certain algebraic properties in order 
to allow pixel probabilities to be combined. It dependson the pixel dependency 
parameter, denoted P .  

Let A be a planar robot, and A(q,  8) is the set of pixels covered by 
the robot in configuration ( q , 8 ) .  For a point robot, the cardinality of A 
is IIA(q,O)ll = 1 (robot occupies exactly one pixel). For the real robot, 

that 
configuration (q, 8) is unattainable is the probability that any of the pixels 9' 
from A( q, 8) are part of the obstacle: 

II4s7~)ll > 1. 
Let CB be a set of obstacles in the plane. The probability 

yfil(q, e) = Y { v i € C B }  ( 5 )  
cl'Ed(qne) 

In order to be able to combine occupancy grid probabilities for all pixels 
q' E A(q, 8) the binary operation @ has to satisfy certain additional con- 
ditions. Particularly, we require that the algebraic structure (@, [0,1]) is a 
commutative group. This condition i s  important for Yfd as given in 5 to 
be well-defined. It guarantees, through associativity and commutativity of @, 
that the particular order in which we combine probabilities in 5 is unimportant. 
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Using the symbol @ we can now rewrite formula 5 in the following form: 

where Y(q') stands for the probability that q' E CB. 

properties, is 
The final form for @ that we chose after carefully considering e ' s  algebraic 

YA @ = 1 - (( 1 - "A)' + ( 1  - 'Ye)') - 1 )  I/ '  (7) 

We use a combination of two hierarchical data structures in the algorithm 
that computes the collision probability: a quad tree [ l l ]  and a pyramid [5]. A 
quad tree is used to represent the robot and a pyramid is used to represent the 
environment. 

A quad tree is a hierarchical data structure that allows an efficient represen- 
tation of a 2D space in a form of a tree data structure. In its original definition, 
as given in [ 111, each node in a tree is a leaf or a non-leaf, each non-leaf has 
exactly four sons, named NW, NE, SW, SE (for north-west, etc.), and each leaf 
is said to be either BLACK, if corresponding set of pixels entirely belongs to 
an object in an environment, or WHITE, if the entire set of pixels represented 
by the leaf in question is in free space in the environment. Non-leaf nodes are 
considered to be MIXED, which simply means that they have offsprings that 
are both BLACK and WHITE. 

The problem in representing the environment with a quad tree is that it 
is not sufficient to compute the collision probability for a given robot in the 
given configuration due to the fact that it is not possible to deduce what is the 
probability that a set of pixels (in this case, a square) is occupied by an obstacle 
based on probabilities for each pixel that constitutes the set. This information 
has to be acquired directly from the environment through averaging a series of 
snapshots, each discretized with a set of resolution levels. For this purpose we 
need more general data structure, a pyramid [5]. The algorithm for building a 
pyramid works with a series of snapshots of the environment by averaging a 
series of binary (BLACK /WHITE) images with different resolutions for each 
snapshot. The result is a tree structure with each node bearing the probability 
that the representing set of pixels contains an obstacle. These probabilities 
are used to determine the dependency parameter 4 in each non-leaf node. A 
dependency parameter is not defined for leaf nodes. In order to determine 4 we 
apply formula 7 to probabilities computed for a node's children. This is done 
as follows. Let Y be the probability in the node for which we are computing 
the dependency parameter, and "NE, Yw, "SE, Y ~ w  probabilities in node's 
NE, NW, SE and SW son. Knowing that the operator is associative, we 
can combine probabilities "NE, Y w ,  YSE and Ysw using formula 7. This 
combination should equal Y. This condition represents an equation in P since 
the operator @ is parameterized by 4. Solving These equations for each 
non-leaf node we compute the dependency parameters. 

Now we present a simplified version of the algorithm that computes 
the collision probability for a given robot in a given configuration. Let 
A = { P I ,  4,. . . , P,,} be a set of pixels in the image covered by the robot 
in a given configuration, and let T be a quad tree that represents this set. 
Pixels PI , .  . . , Pn are either leaves of T or belong to sets of pixels (squares) 
represented by leaves in T. We also assume that there is available a pyramid 
structure that represents the environment. The algorithm for computing the 
probability that a node from T is in a state of collision with an obstacle from the 
environment traverses the tree T in depth-first manner. If the node is BLACK 
in T, that means that all pixels represented by this node belong to A. Thus, 
the probability returned is the probability for that node found in the pyramid. 
If the node has the value WHITE in T this means that no pixels represented by 
the node are in A, thus the probability of collision is 0. However, if the node 
is MIXED in T, we apply formula 7 to combine probabilities in the node's 
sons, obtained recursively. The dependency parameter 4 is available from the 
pyramid for each non-leaf node. 

The full account on this algorithm can be found in [ 131. 
Now that we have the algorithm for computing the collision probability we 

use this probability to determine the pseudo-distance between pixels the same 

Development of the control uncertainty model: 

Output: SDE that models the control uncertainty for a given system; 

begin 
Select a SDE that, based on the initial understanding of the 
system models its control uncertainty; 
Conduct experiments that measure different aspects of 
control uncertainty 
(e.g. position errors due to linear motions, 
orientation errors due to rotations, etc.) 
do 

Numerically fit the coefficients of the SDE 
to the measurement results; 

until (SDE closely reflects the measured data); 

Statistically examine the obtained model; 
if (The discrepancies between the measurements and 

the model statistically significant) 

{ The next step is optional } 

Go back to the first step and choose another SDE; 
Verify the model experimentally; 

end. 

Figure 7: Development of the control uncertainty model 

way it is done in the previous section. Given this information, the A* search 
algorithm can find the shortest path between start and goal configurations in 
the robot's configuration space. Also, the motion velocity (formula4) depends 
only on the collision probability, and thus can be computed once the collision 
probability is found. 

4 Control Uncertainty Model 
In this section we will analyze the propagation of uncertainty in space and 
time and the ways to capture it in mathematical form. Our primary goal is to 
show that the uncertainty can be measured and statistically modeled through 
stochastic differential equations that capture its dynamic nature. The ability 
to measure the uncertainty is important; we cannot proceed with planning 
motions unless we know both the nature and the quantity of the uncertainty 
present in the system. 

The primary conclusion drawn in this section is twofold: 
The uncertainty in robotic systems dynamically changes in space and 
time. 
The control uncertainty of a wide class of robotic systems can be mod- 
eled through stochastic differential equations. Those models, obtained 
through experiments, can be statistically verified. 

The development of the control uncertainty model for a given system is 
shown in figure 7. This algorithm comprises in several steps. The first step is 
the choice of the SDE that models the control uncertainty. We will concentrate 
on a linear SDE that results in Gaussian random variables. This is certainly 
an approximation but we argue that by careful experimental measurement 
models obtained this way may serve as a reasonable source of information on 
the nature if control uncertainty. 

The SDE that we are looking for as a model of the control uncertainty is, 
in its most general form [9], 

dAq = A(Aq,v',t)dt + C(Aq,v",t)dW (8) 

where Aq = [Az Ay ABIT = q" - q' is the difference between the actual 
robot's position q" and the commanded position q". vC is the commanded 
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motion velocity and w is the random Wiener process. Vector functions A 
and Z define the SDE that models the control uncertainty. 

In order to simplify the mathematical exposition and the experimental 
estimation of parameters of SDEs that model the control uncertainty in our 
testbed systems, we will make the following assumptions that result in the 
Gaussian noise model: 

the commanded motion velocity vC does not depend on the robot’s 
position q” 
A is either independent from Aq or proportional to Aq. It may how- 
ever depend non-linearly on other motion parameters, such as the com- 
manded motion velocity vC. 
Z is independent from Aq. However, similarly to A its dependency 
on other motion parameters, such as the commanded velocity vC, is 
arbitrary. 

These assumptions greatly reduce the complexity and allow for a closed- 
form solution of the SDE. The justification for them can only come from the 
experimental use of models that we obtain. This is the case that we will 
analyze in the reminder of this section. 

With the assumptions that we made, the control uncertainty model 8 can 
be rewritten in the form 

dAq = AAqdt + Z d W  (9) 

where A and Z are matrices that define the model. These matrices do not 
dependent on Aq, The purpose of control uncertainty modeling is determining 
these two matrices. 

We have conducted a series of experiments aimed towards estimating ma- 
trices A and Z (see [ 131). The result that we obtained is 

A = . - = [  0 0 0  0 0 U ]  

CIV’/* 0.0 0.0 ] 
0 0 0  

and 

Z =  [ 0.0 c2v3/’ 0.0 
0.0 0.0 c3w3/2 

Where c1, c2 and c3 are numerical constants. Using the least square fit, their 
values are estimated to be CI = 0.048, c2 = 0.0055 and cg = 18.44. 

From the SDE 9, we compute the covariance matrix V that models the 
error Aq. This covariance matrix is 

0.0 

c:v /w3dt 
/ [ it c iv3  + 2c:v v Jw3dtdt 

What does this model mean? Let us explain this on an example. Let a 
commanded trajectory be a straight line motion of length Im and velocity 
O.lm/s followed by an arc of radius Im and angle 90°, with a peripheral 
velocity of O.lm/s. The question we want to answer is what is the distribution 
of robot’s position and orientation upon the completion of this motion. 

The overall trajectory length is 1 + */2 = 2.57 meters. The angular 
velocity during the rotation is 0.1 radidsec.  The overall motion duration 
is 25.7sec. Let ~ 1 , ~  be V’s element in place a , j .  We have that v33 = 
339.9Jw’dt x = 339.9 x 0.12 x 1.57 x 
This is the variance in A8. The standard deviation is x IO-* or about 
1.3O. 

= 5.336 x 

If we proceed with calculation of vt3’s eventually we obtain [ 0.;: 0.0 0.0 ] 
V = 0.0 4.393 4.190 x I O w 4  

4.190 5.336 

Figure 8: Path planning with the control uncertainty model, 
210 = 0 .25ds  

which means that the error in t direction (the direction of motion) will have 
the standarddeviationof -2x IO-* = 0.0078orabout0.8 centimeters, 
the error in a, direction ( ndicularto the direction of motion) will have the 
standard deviation of $% x IO-’ = 0.02 or about 2 centimeters. Thus, 
the overall error is small. due to the low motion velocity. 

The model 9 has been implemented in the planning algorithm that takes 
into consideration the control uncertainty. This algorithm is presented in the 
following section. 

5 The Integration 
The objective of this section is a planning algorithm for real-sized robots that 
incorporates the model of control uncertainty. We present the unification ofthe 
path planning method presented in section 3 with the control uncertainty model 
from section 4. The properties of the planning algorithm from section 3 allow 
for straightforward generalization that accommodates the control uncertainty. 

At the end of this section we present simulation and experimental results. 
The experiments were done on the mobile platform examined in section 4 and 
they justify the stochastic model developed there. 

Knowing the distribution of robot’s position and orientation along the 
trajectory we can compute the expected value of the probability that the robot 
will be in the free space Cf. Let this expected probability be Y g  . It can be 
computed from the probability ‘f’k ( 9 )  that the robot is in Cf in configuration 
q and the distribution density $ A q  of the control error A q  using the formula 
for the expectation: 

Y& = d’Aq(Aq)Yfrcc(q + Aq)dAq ( 1 1 )  J 
When the probability Y E  is computed the path planning problem can be 

reduced to the path planning algorithm from section 3. The computation of 
the integral in 1 1 is a numerical problem that can be successfully solved using 
the Gauss-Hermite integration method. 

When we introduce the control uncertainty model into the planning al- 
gorithm, the resulting trajectory changes in order to accommodate for the 
increasing uncertainty in robot’s position. This uncertainty is a function of 
robot’s velocity and gets higher as robots moves faster. 

We have performed a series of simulations with three different initial motion 
velocities. Figure 8 shows the trajectory computed for the initial velocity 
vo = 0.25ds  together with the motion velocity as a function of the path 
length. The uncertainty does not get very highdue to the low motion velocity. 
However, the robot visibly slows down in the area when it is closest to the 
obstacles. 

The next experiment was performed with the initial velocity vg = 0.5m/s. 
The results are given in figure 9. We notice that the trajectory, while still close 
to the trajectory in figure 8, bends away from the obstacles. Also the motion 
velocity further decreases in the vicinity of the obstacles. 
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Figure 9: Path planning with the control uncertainty model, 

Figure 10: Path planning with the control uncertainty model, 
00 = 0 . 7 5 d ~  

The biggest difference from the shortest path trajectory is in figure 10. 
This figure was obtained with the initial velocity vo = 0.75ds.  The robot 
attempts to sta9 away from obstacles as far as possible while further lowering 
the velocity. It is important to notice that the lowest success probability along 
the path was below 0.5. This indicates that due to the control uncertainty 
the robot is likely to collide with an obstacle. This is the behaviour that we 
noticed on the actual experiments with the real system. 

Figure 1 1 shows the actual robot performing one of the plans shown above. 
These experiments are also presented on the video tape that accompanies this 
work. 

6 Conclusion 
In this paper we considered the problem of motion planning for mobile robots 
in the presence of environment and control uncertainty. We developed compu- 
tationally efficient approximations of optimal trajectories based on the com- 
putation of the collision probability. The collision probability serves as a 
unifying principle in the development of the algorithm, from the case of a 
point robot through the most general case of a real-sized robot in the presence 
of control and environment uncertainty. 

With regards to the control uncertainty, we developed a new mathematical 
model that is based on stochastic differential equations. This is important 
because SDEs are the correct mathematical entity to capture the expanding 
nature of the control uncertainty. 

We have conducted experiments with our algorithm on the mobile plat- 
form. The results that we obtained show that the planning algorithms works 
reasonably well even when only partial knowledge about the environment is 
available and when the system is not perfect. 

Figure 1 1 : The mobile platform 

References 
[I] R.  C. Brost and A. D. Christiansen. Probabilisticanalysisof manipulation 

tasks: A research agenda. In Proceedings of the IEEE Conference on 
Robotics and Automation, 1993. 

[2] B. R. Donald. Error Detection and Recovery in Robotics. Springer- 
Verlag. 1987. 

[3] B. R. Donald. Planning multi-step error detection and recovery strate- 
gies. International Journal of Robotics Research, 9( 1):3-60,1990. 

[4] M. Erdmann. Using backprojections for fine motion planning with 
uncertainty. International Journal of Robotics Research, 5(1), 1986. 

[5] B. K. P. Hom. Robot W o n .  MIT Press, 1989. 
[6] T. Lozano-Per&, M. T. Mason, and R. H. Taylor. Automatic synthesis 

of fine-motion strategies for robots. International Journal of Robotics 
Research, 3(1):3-24.1984. 

[7] H. P. Moravec. Sensor fusion in certainty grids for mobile robots. AI 
Magazine, 9(2):61-74,1988. 

[8] C. O’Dunlaing and C. K. Yap. A retraction method for planning the 
motion of a disc. Journal ofdlgorithms, 6:104-111,1982. 

[9] B. K. Oksendal. Stochastic differential equations: an introduction with 
applications. Springer-Verlag, 2 edition, 1989. 

[IO]  D. K. Pai and M. C. Leu. Unceltainty and compliance of robot ma- 
nipulators with applications to task feasibility. International Journal of 
Robotics Research, 10(3):200-213,1991. 

[ I  I ]  H. Samet. The quadtree and related hierarchical data structures. ACM 
Computing Surveys, 16(2):181-260,1984. 

[I21 J. T. Schwartz, M. Sharir, and J. Hopcroft. Planning, Geometry and 
Complexity of Robot Motion. Ablex, Norwood, New Jersey, 1987. 

[13] A. Timcenko. Planning Robot Motions in the presence of Uncertainfy. 
PhD thesis, Columbia University, 1994. 

[I41 A. nmcenko and P. Allen. Planning velocity profiles from task-level 
constraints and environment uncertainties. In Proc. IEEE International 
Con$ on Robotics and Automation, 1993. 

2789 


