
Probability - Driven Motion Planning for Mobile Robots

Aleksandar Timcenko Peter Allen
Computer Science Dept.

Columbia University
New York, NY 10027

Abstract
This paper proposes a path-planning method for mobile robots in the presence
of uncertainty. We analyze environment and control uncertainty and propose
methods for incorporating each of them into the planning algorithm.

We model the environment using the pyramid structure that encodes the
information on occupancy probabilities for each pixel as well as the partial
information on conditional probabilities among different pixels. This structtw
allows for efficient and accurate computation of collision probabilities in the
presence of environment uncertainty.

The control uncertainty is mainly characterized by its expansion in space
and time and is accordingly modeled by a stochastic differential equation
that mathematically captures this phenomenon. Models that we develop are
inevitably approximate but experiments confirm that they can be used as a
reasonable model for motion planning.

We have conducted a series of experiments on the mobile platform and we
present some of these results in the paper.

This work was supportedin part by DARPA contract DACA-76-92-C-007.
NSF grants RI-86-57151, CDA-90-24735. North American Philips Labora-
tories, Siemens Corporation and Rockwell International.

1 Introduction
Realistic robot systems are flawed by uncertainty. Handling the uncertainty is
necessary for improving robot’s performance. Some well known motion plan-
ning techniques, such as Voronoi diagrams [8] and cell decomposition [12],
often referred to as “global”, are based on graph searches and they assume
that a robot’s sensing, control and knowledge of an environment are perfect.
This assumption, albeit never absolutely true, is realistic in non-cluttered en-
vironments when the required accuracy in the goal is not critical. The simple
-and usually quite sufficient - approach is to slightly “grow” the obstacles
and “shrink” the goal in the configuration space to compensate for all present
uncertainties. Motions planned under these assumptions are usually called
gross motions.

Nevertheless, the necessity for a more elaborate treatment of uncertainties
exists. Intuitively, by conservatively “growing” the obstacles we may either
run out of free space or the goal region may disappear. Thus, we need a
planning methodology capable of coping with inherent uncertainties in a more
elaborate way. More precisely, we need a tool that allows us to suppress the
unwanted effects of different uncertainties - for example, even if our robot
“slips” from the prescribed trajectory, we want to be able to guide it towards
the goal anyway.

The classical work in robotic planning in the presence of uncertainties has
been done by Lozano-P&ez and colleagues [6,4,2]. This planning strategy is
referred to as a worst-case planning since the computed plans are guaranteed
to succeed under assumed conditions. There have been several attempts to
generalize this planning strategy to average case (see, for example, [l]). Some
further developmentsare [3] and [lo].

Output: A path planning algorithm for real-sized robots
in the presence of environment and control uncertainty

Identify sources of uncertainty;
Propose method for path planning for a point robot
in the presence of environment uncertainty;
Extend this algorithm for the case of real-sized robots;
Propose the mathematical model of control uncertainty;
Experimentally establish the model of control uncertainty;
Merge the path planning algorithm with the model
of control uncertainty;

Figure 1 : Overview of the planning method

The following is the overview of the work presented in this paper (see
figure 1). The first step is the identification of sources of uncertainty. We
will consider two types of uncertainty: environment and control uncertainty.
Next step is to come up with a path planning algorithm for point robots in
the presence of environment uncertainty. Point robots are robots whose size
is negligible compared to the size of obstacles. This algorithm is developed
in section 2. The extension of this algorithm for path planning of real-sized
robots is given in section 3. We establish the mathematical model of control
uncertainty for an experimental robotic system (a mobile platform) in section
4. The integration of the path planning algorithm from section 3 and the
control uncertainty model from section 4 is presented as the final result of this
paper in section 5 , where we give the path planning algorithm for real-sized
robots in the presence of environment and control uncertainty.

This paper is based on the first author’s doctoral dissertation [131.

2 Path Planning for Point Robots with
Environment Uncertainty

The problem we want to address in this section is how to move a “point robot”
(a robot whose size is negligible compared to the size of obstacles) among
obstacles in a 2D environment from an initial point to a goal point, observing
certain dynamical properties of the planned trajectory such as motion duration
and maximal impact force. The positions of obstacles are not completely
known. What is known are the probabilities that a given point is occupied by
an obstacle. We call such an environment “semi-static” since the obstacles’
appearance, position and orientation are allowed to change in between con-
secutive task execution instances. The scenario for a semi-static environment
is a conveyor belt or a machine feeder that brings a part to be processed each
time in a slightly different posture. Another possible scenario is the floor of

1050-4729M $03.00 0 1994 IEEE 2784

a warehouse with the objects in it having static but not completely known
positions.

The model of a semi-static environment will be the widely used concept
of an occupancy grid [7], obtained by averaging a series of images of the 2D
workspace from an overhead camera. The lighting and coloring of obstacles is
assumed to allow for unique distinction between objects and the background.
As a series of images is taken, the brightness of each pixel is computed to
be proportional to the frequency of pixel’s occupancy by an obstacle. As a
solution of the find-pathhjectory parameterization problem we propose a
combination of a grid search technique based on the A* search algorithm and
a kinetic energy-type criterion optimization. We call this criterion the task
execution diflculiy index.

2.1 Path planning with probability-induced
metric

The main idea that we employ for path planning is the choice of a probability-
dependent metric. The mathematical entity that defines a metric in a given
space is a metric tensor. We can think of a metric tensor as an n x n matrix
where n is the dimensionality of the space in question, in our case n = 2. The
infinitesimal distance d s is defined through a metric tensor gr3 by the formula
ds2 = g13dq’q3 where d q is an infinitesimal vector.

We will utilize the freedom to choose the metric tensor in order to cope with
the uncertainty. Intuitively. we can think of uncertain areas as “less desirable”
and penalize trajectories that go through those areas by considering them to
be longer. The metric tensor defines the pseudo distance in the configuration
space. This pseudo distance should be a function of the occupancyprobability
Yfil with the following properties:

d s = 46-,
d s increases, Yfil increases

Vfail = 0

ds=m, Yf&il = 1

where Yfdl = Yfil(q) is the probability that the point q is occupied by
an obstacle, which would cause the robot in this position to collide with this
obstacle and consequently cause the plan to fail. The infinitesimal distance
d s is defined by the metric tensor as stated above.

It is known in theoretical mechanics that the shortest path between two
points is given by a geodesic line that connects those two points. This geodesic
line is a solution of a differential equation that depends on the metric tensor.
The condition that distance becomes infinite if a point is certainly part of
an obstacle guarantees that the paths obtained as solutions of this differential
equation will avoidobstacles, while the condition that ds rises as b rises results
in a tendency to “prefer” paths through areas that are unlikely to be populated
by obstacles over areas with substantial uncertainty.

We have chosen gt3 to be

gt3 = 6:jd(Yfai1) (2)
where 6,, is Kronecker tensor (i.e. identity matrix), 9 is an appropriately
chosen scalar function and Yfil = Yf&iI(q) is the probability that point q is
part of an obstacle.

Once the pseudo-distance is defined, the path planning is accomplished by
a grid search using the A* algorithm. This algorithm is guaranteed to find a
path if one exists. The cost of getting from one point to another is assumed to
be the pseudodistancebetween those two points. This guarantees that the path
that the A* algorithm finds is the shortest path with respect to the assumed
distance metric.

The heuristic function in the A* algorithm is chosen to be the Euclidean
distance between the current point and the goal point.

2.2 Trajectory time parameterization
In this subsection we discuss the velocity planning along a precomputed path.
This separation of path and velocity planning is the approximation that we are

forced to make due to the numerical instability of simultaneous optimization
of the path and the velocity.

The velocity is planned through an optimization of a criterion that will
guarantee that the computed result is “the best” in a certain sense. The choice
of a criterion will define the meaning of “the best”. An attractive choice
for a criterion is undoubtedly a mathematical embodiment of the concept of
“difficulty” of a task. Now we will define an optimization criterion that we will
call task execution drflculty. It combines motion velocity with the knowledge
about the environment presented through the metric tensor. The metric tensor
in itself contains the probabilistic information on obstacle arrangement in the
environment, as in formula 1.

Definition 1 A task execution difficulty index is

for positioning a point robotfrom q(0) = qSm to q(T) = q g d in time T ,

where v’ is a velociw vector dq’ldt = v’ and g13 is a certain two time
covariant tenso,:

For the purpose of planning velocity we choose the same metric tensor
as for path planning. The optimal velocity profile along the path can be
analytically found and the solution is (see [I41 for details):

U = vo/& (4)
where uo is an initial velocity.

on total motion duration T . Simple analytic manipulation yields
In order to determine the initial velocity vo we need to impose a condition

vo = - -5 J h d s

where integrals are taken from qSm to qgd.
The importance of formula 4 is that we now have a solution for velocity

U along the trajectory in closed form. This solution depends only on local
properties of the trajectory -the probability that the current point is occupied
by an obstacle - and so it can be computed efficiently.

2.3 Simulation results
The metric tensor we have chosen is of the form

913 = 6tpiW’fai) = 6 t ~ / d m

where p is a parameter. In our simulations we have assumed the value p = 2.
Figures 2 through 6 demonstrate the behavior of the planner as we increase

the uncertainty further. The path becomes more conservative, totally aban-
doning the narrowing channel between the central and bottommost obstacles.
As the uncertainty increases even more, the planner chooses the third topolog-
ically different path, presented in figure 5 . Finally, if the uncertainty is blown
up so that almost no information remains, the planner just follows a straight
line path from the start to the goal (figure 6).

3 Path Planning for Real Robots with
Environment Uncertainty

The approach to the motion planning for real-sized robots that we examine in
this section is to estimate the probability of an arbitrarily-shaped robot hitting
an obstacle in a given configuration based on the same occupancy grid as in
the previous section. This would both keep the storage requirements low and
allow for the metric tensor method to be applied directly. Also, this method is
general in a sense that the data-gathering phase does not need to be repeated

2785

....

Figure 2: Path and velocity, (T = 0.0

Figure 3: Path and velocity, U = 0.01

I

I

Figure 4: Path and velocity, U = 0.03

I

Figure 5: Path and velocity, U = 0.08

Figure 6: Path and velocity, U = 0.5

for a robot with a different shape, but rather the same occupancy grid may
be used again. The price that we have to pay is that the probability of an
impact is just an estimate of a real probability based on certain heuristics.
Only experiments can prove or disprove the choices we have made.

In a summary, the algorithm for robot motion planning in 2D that we
describe in this section has the following favorable characteristics:

Robot's s h p e independence: The algorithm allows for planning paths
for differently shaped and possibly shape-changing robots.

Ve'elocityphning: The algorithm utilizes a similar criterion optimization
mechanism as described in section 2 for the robot's velocity planning.

Eficiency: The search through high-dimensional configuration space is
avoided. The algorithm is implemented as a set of parallel processes
that may run on a distributed system.

The algorithm has been implemented and the experiments have been con-
ducted on the mobile platform in a simple laboratory environment (see fig-
ure 11).

This section explains how we compute the collision probability for a robot
in a given configuration. It is very difficult to compute this probability exactly.
In order to do this, one would need to know all conditional dependencies
between pixels that robot covers in a given configuration. This would require
unattainable amount of information. For this reason we an forced to adopt
some approximate solution. The approximation that we propose is to define
an operator that combines pixel probabilities based on some approximate
dependency information obtained during the generation of the environment.
This operator, denoted $, needs to posses certain algebraic properties in order
to allow pixel probabilities to be combined. It dependson the pixel dependency
parameter, denoted P .

Let A be a planar robot, and A(q, 8) is the set of pixels covered by
the robot in configuration (q , 8) . For a point robot, the cardinality of A
is IIA(q,O)ll = 1 (robot occupies exactly one pixel). For the real robot,

that
configuration (q, 8) is unattainable is the probability that any of the pixels 9'
from A(q, 8) are part of the obstacle:

II4s7~)ll > 1.
Let CB be a set of obstacles in the plane. The probability

yfil(q, e) = Y { v i € C B } (5)
cl'Ed(qne)

In order to be able to combine occupancy grid probabilities for all pixels
q' E A(q, 8) the binary operation @ has to satisfy certain additional con-
ditions. Particularly, we require that the algebraic structure (@, [0,1]) is a
commutative group. This condition i s important for Yfd as given in 5 to
be well-defined. It guarantees, through associativity and commutativity of @,
that the particular order in which we combine probabilities in 5 is unimportant.

2786

Using the symbol @ we can now rewrite formula 5 in the following form:

where Y(q') stands for the probability that q' E CB.

properties, is
The final form for @ that we chose after carefully considering e ' s algebraic

YA @ = 1 - ((1 - "A)' + (1 - 'Ye)') - 1) I/ ' (7)

We use a combination of two hierarchical data structures in the algorithm
that computes the collision probability: a quad tree [l l] and a pyramid [5]. A
quad tree is used to represent the robot and a pyramid is used to represent the
environment.

A quad tree is a hierarchical data structure that allows an efficient represen-
tation of a 2D space in a form of a tree data structure. In its original definition,
as given in [111, each node in a tree is a leaf or a non-leaf, each non-leaf has
exactly four sons, named NW, NE, SW, SE (for north-west, etc.), and each leaf
is said to be either BLACK, if corresponding set of pixels entirely belongs to
an object in an environment, or WHITE, if the entire set of pixels represented
by the leaf in question is in free space in the environment. Non-leaf nodes are
considered to be MIXED, which simply means that they have offsprings that
are both BLACK and WHITE.

The problem in representing the environment with a quad tree is that it
is not sufficient to compute the collision probability for a given robot in the
given configuration due to the fact that it is not possible to deduce what is the
probability that a set of pixels (in this case, a square) is occupied by an obstacle
based on probabilities for each pixel that constitutes the set. This information
has to be acquired directly from the environment through averaging a series of
snapshots, each discretized with a set of resolution levels. For this purpose we
need more general data structure, a pyramid [5]. The algorithm for building a
pyramid works with a series of snapshots of the environment by averaging a
series of binary (BLACK /WHITE) images with different resolutions for each
snapshot. The result is a tree structure with each node bearing the probability
that the representing set of pixels contains an obstacle. These probabilities
are used to determine the dependency parameter 4 in each non-leaf node. A
dependency parameter is not defined for leaf nodes. In order to determine 4 we
apply formula 7 to probabilities computed for a node's children. This is done
as follows. Let Y be the probability in the node for which we are computing
the dependency parameter, and "NE, Yw, "SE, Y ~ w probabilities in node's
NE, NW, SE and SW son. Knowing that the operator is associative, we
can combine probabilities "NE, Y w , YSE and Ysw using formula 7. This
combination should equal Y. This condition represents an equation in P since
the operator @ is parameterized by 4. Solving These equations for each
non-leaf node we compute the dependency parameters.

Now we present a simplified version of the algorithm that computes
the collision probability for a given robot in a given configuration. Let
A = { P I , 4,. . . , P,,} be a set of pixels in the image covered by the robot
in a given configuration, and let T be a quad tree that represents this set.
Pixels PI , . . . , Pn are either leaves of T or belong to sets of pixels (squares)
represented by leaves in T. We also assume that there is available a pyramid
structure that represents the environment. The algorithm for computing the
probability that a node from T is in a state of collision with an obstacle from the
environment traverses the tree T in depth-first manner. If the node is BLACK
in T, that means that all pixels represented by this node belong to A. Thus,
the probability returned is the probability for that node found in the pyramid.
If the node has the value WHITE in T this means that no pixels represented by
the node are in A, thus the probability of collision is 0. However, if the node
is MIXED in T, we apply formula 7 to combine probabilities in the node's
sons, obtained recursively. The dependency parameter 4 is available from the
pyramid for each non-leaf node.

The full account on this algorithm can be found in [131.
Now that we have the algorithm for computing the collision probability we

use this probability to determine the pseudo-distance between pixels the same

Development of the control uncertainty model:

Output: SDE that models the control uncertainty for a given system;

begin
Select a SDE that, based on the initial understanding of the
system models its control uncertainty;
Conduct experiments that measure different aspects of
control uncertainty
(e.g. position errors due to linear motions,
orientation errors due to rotations, etc.)
do

Numerically fit the coefficients of the SDE
to the measurement results;

until (SDE closely reflects the measured data);

Statistically examine the obtained model;
if (The discrepancies between the measurements and

the model statistically significant)

{ The next step is optional }

Go back to the first step and choose another SDE;
Verify the model experimentally;

end.

Figure 7: Development of the control uncertainty model

way it is done in the previous section. Given this information, the A* search
algorithm can find the shortest path between start and goal configurations in
the robot's configuration space. Also, the motion velocity (formula4) depends
only on the collision probability, and thus can be computed once the collision
probability is found.

4 Control Uncertainty Model
In this section we will analyze the propagation of uncertainty in space and
time and the ways to capture it in mathematical form. Our primary goal is to
show that the uncertainty can be measured and statistically modeled through
stochastic differential equations that capture its dynamic nature. The ability
to measure the uncertainty is important; we cannot proceed with planning
motions unless we know both the nature and the quantity of the uncertainty
present in the system.

The primary conclusion drawn in this section is twofold:
The uncertainty in robotic systems dynamically changes in space and
time.
The control uncertainty of a wide class of robotic systems can be mod-
eled through stochastic differential equations. Those models, obtained
through experiments, can be statistically verified.

The development of the control uncertainty model for a given system is
shown in figure 7. This algorithm comprises in several steps. The first step is
the choice of the SDE that models the control uncertainty. We will concentrate
on a linear SDE that results in Gaussian random variables. This is certainly
an approximation but we argue that by careful experimental measurement
models obtained this way may serve as a reasonable source of information on
the nature if control uncertainty.

The SDE that we are looking for as a model of the control uncertainty is,
in its most general form [9],

dAq = A(Aq,v',t)dt + C(Aq,v",t)dW (8)

where Aq = [Az Ay ABIT = q" - q' is the difference between the actual
robot's position q" and the commanded position q". vC is the commanded

1

motion velocity and w is the random Wiener process. Vector functions A
and Z define the SDE that models the control uncertainty.

In order to simplify the mathematical exposition and the experimental
estimation of parameters of SDEs that model the control uncertainty in our
testbed systems, we will make the following assumptions that result in the
Gaussian noise model:

the commanded motion velocity vC does not depend on the robot’s
position q”
A is either independent from Aq or proportional to Aq. It may how-
ever depend non-linearly on other motion parameters, such as the com-
manded motion velocity vC.
Z is independent from Aq. However, similarly to A its dependency
on other motion parameters, such as the commanded velocity vC, is
arbitrary.

These assumptions greatly reduce the complexity and allow for a closed-
form solution of the SDE. The justification for them can only come from the
experimental use of models that we obtain. This is the case that we will
analyze in the reminder of this section.

With the assumptions that we made, the control uncertainty model 8 can
be rewritten in the form

dAq = AAqdt + Z d W (9)

where A and Z are matrices that define the model. These matrices do not
dependent on Aq, The purpose of control uncertainty modeling is determining
these two matrices.

We have conducted a series of experiments aimed towards estimating ma-
trices A and Z (see [131). The result that we obtained is

A = . - = [0 0 0 0 0 U]

CIV’/* 0.0 0.0]
0 0 0

and

Z = [0.0 c2v3/’ 0.0
0.0 0.0 c3w3/2

Where c1, c2 and c3 are numerical constants. Using the least square fit, their
values are estimated to be CI = 0.048, c2 = 0.0055 and cg = 18.44.

From the SDE 9, we compute the covariance matrix V that models the
error Aq. This covariance matrix is

0.0

c:v /w3dt
/ [it c iv3 + 2c:v v Jw3dtdt

What does this model mean? Let us explain this on an example. Let a
commanded trajectory be a straight line motion of length Im and velocity
O.lm/s followed by an arc of radius Im and angle 90°, with a peripheral
velocity of O.lm/s. The question we want to answer is what is the distribution
of robot’s position and orientation upon the completion of this motion.

The overall trajectory length is 1 + */2 = 2.57 meters. The angular
velocity during the rotation is 0.1 radidsec. The overall motion duration
is 25.7sec. Let ~ 1 , ~ be V’s element in place a , j . We have that v33 =
339.9Jw’dt x = 339.9 x 0.12 x 1.57 x
This is the variance in A8. The standard deviation is x IO-* or about
1.3O.

= 5.336 x

If we proceed with calculation of vt3’s eventually we obtain [0.;: 0.0 0.0]
V = 0.0 4.393 4.190 x I O w 4

4.190 5.336

Figure 8: Path planning with the control uncertainty model,
210 = 0 .25ds

which means that the error in t direction (the direction of motion) will have
the standarddeviationof -2x IO-* = 0.0078orabout0.8 centimeters,
the error in a, direction (ndicularto the direction of motion) will have the
standard deviation of $% x IO-’ = 0.02 or about 2 centimeters. Thus,
the overall error is small. due to the low motion velocity.

The model 9 has been implemented in the planning algorithm that takes
into consideration the control uncertainty. This algorithm is presented in the
following section.

5 The Integration
The objective of this section is a planning algorithm for real-sized robots that
incorporates the model of control uncertainty. We present the unification ofthe
path planning method presented in section 3 with the control uncertainty model
from section 4. The properties of the planning algorithm from section 3 allow
for straightforward generalization that accommodates the control uncertainty.

At the end of this section we present simulation and experimental results.
The experiments were done on the mobile platform examined in section 4 and
they justify the stochastic model developed there.

Knowing the distribution of robot’s position and orientation along the
trajectory we can compute the expected value of the probability that the robot
will be in the free space Cf. Let this expected probability be Y g . It can be
computed from the probability ‘f’k (9) that the robot is in Cf in configuration
q and the distribution density $ A q of the control error A q using the formula
for the expectation:

Y& = d’Aq(Aq)Yfrcc(q + Aq)dAq (1 1) J
When the probability Y E is computed the path planning problem can be

reduced to the path planning algorithm from section 3. The computation of
the integral in 1 1 is a numerical problem that can be successfully solved using
the Gauss-Hermite integration method.

When we introduce the control uncertainty model into the planning al-
gorithm, the resulting trajectory changes in order to accommodate for the
increasing uncertainty in robot’s position. This uncertainty is a function of
robot’s velocity and gets higher as robots moves faster.

We have performed a series of simulations with three different initial motion
velocities. Figure 8 shows the trajectory computed for the initial velocity
vo = 0.25ds together with the motion velocity as a function of the path
length. The uncertainty does not get very highdue to the low motion velocity.
However, the robot visibly slows down in the area when it is closest to the
obstacles.

The next experiment was performed with the initial velocity vg = 0.5m/s.
The results are given in figure 9. We notice that the trajectory, while still close
to the trajectory in figure 8, bends away from the obstacles. Also the motion
velocity further decreases in the vicinity of the obstacles.

2788

Figure 9: Path planning with the control uncertainty model,

Figure 10: Path planning with the control uncertainty model,
00 = 0 . 7 5 d ~

The biggest difference from the shortest path trajectory is in figure 10.
This figure was obtained with the initial velocity vo = 0.75ds. The robot
attempts to sta9 away from obstacles as far as possible while further lowering
the velocity. It is important to notice that the lowest success probability along
the path was below 0.5. This indicates that due to the control uncertainty
the robot is likely to collide with an obstacle. This is the behaviour that we
noticed on the actual experiments with the real system.

Figure 1 1 shows the actual robot performing one of the plans shown above.
These experiments are also presented on the video tape that accompanies this
work.

6 Conclusion
In this paper we considered the problem of motion planning for mobile robots
in the presence of environment and control uncertainty. We developed compu-
tationally efficient approximations of optimal trajectories based on the com-
putation of the collision probability. The collision probability serves as a
unifying principle in the development of the algorithm, from the case of a
point robot through the most general case of a real-sized robot in the presence
of control and environment uncertainty.

With regards to the control uncertainty, we developed a new mathematical
model that is based on stochastic differential equations. This is important
because SDEs are the correct mathematical entity to capture the expanding
nature of the control uncertainty.

We have conducted experiments with our algorithm on the mobile plat-
form. The results that we obtained show that the planning algorithms works
reasonably well even when only partial knowledge about the environment is
available and when the system is not perfect.

Figure 1 1 : The mobile platform

References
[I] R. C. Brost and A. D. Christiansen. Probabilisticanalysisof manipulation

tasks: A research agenda. In Proceedings of the IEEE Conference on
Robotics and Automation, 1993.

[2] B. R. Donald. Error Detection and Recovery in Robotics. Springer-
Verlag. 1987.

[3] B. R. Donald. Planning multi-step error detection and recovery strate-
gies. International Journal of Robotics Research, 9(1):3-60,1990.

[4] M. Erdmann. Using backprojections for fine motion planning with
uncertainty. International Journal of Robotics Research, 5(1), 1986.

[5] B. K. P. Hom. Robot W o n . MIT Press, 1989.
[6] T. Lozano-Per&, M. T. Mason, and R. H. Taylor. Automatic synthesis

of fine-motion strategies for robots. International Journal of Robotics
Research, 3(1):3-24.1984.

[7] H. P. Moravec. Sensor fusion in certainty grids for mobile robots. AI
Magazine, 9(2):61-74,1988.

[8] C. O’Dunlaing and C. K. Yap. A retraction method for planning the
motion of a disc. Journal ofdlgorithms, 6:104-111,1982.

[9] B. K. Oksendal. Stochastic differential equations: an introduction with
applications. Springer-Verlag, 2 edition, 1989.

[IO] D. K. Pai and M. C. Leu. Unceltainty and compliance of robot ma-
nipulators with applications to task feasibility. International Journal of
Robotics Research, 10(3):200-213,1991.

[I I] H. Samet. The quadtree and related hierarchical data structures. ACM
Computing Surveys, 16(2):181-260,1984.

[I21 J. T. Schwartz, M. Sharir, and J. Hopcroft. Planning, Geometry and
Complexity of Robot Motion. Ablex, Norwood, New Jersey, 1987.

[13] A. Timcenko. Planning Robot Motions in the presence of Uncertainfy.
PhD thesis, Columbia University, 1994.

[I41 A. nmcenko and P. Allen. Planning velocity profiles from task-level
constraints and environment uncertainties. In Proc. IEEE International
Con$ on Robotics and Automation, 1993.

2789

