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Columbia University

February 3, 2016

1We thank Yeon-Koo Che, Navin Kartik, and especially Arnaud Dupuy, Fuhito
Kojima and Phil Reny for useful comments. This paper builds on material from
an unpublished manuscript circulated under the name “The Roommate Problem Is
More Stable Than You Think,” which is now obsolete.

2Address: Department of Economics, Columbia University, 1009A Interna-
tional Affairs Building, 420 West 118th St., New York, NY 10027, USA. E-mail:
pc2167@columbia.edu. Chiappori gratefully acknowledges financial support from
the NSF (award #1124277.)

3Economics Department and Courant Institute, New York University and Eco-
nomics Department, Sciences Po. Address: NYU, Department of Economics. 19 W
4th Street, New York, NY 10012, USA. Email: ag133@nyu.edu. Galichon gratefully
acknowledges funding from the European Research Council under the European
Union’s Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement
no. 313699.

4Address: Department of Economics, Columbia University, 1131 International
Affairs Building, 420 West 118th Street, New York, NY 10027, USA. E-mail:
bsalanie@columbia.edu.



Abstract

In many economic contexts, agents from a same population team up to bet-
ter exploit their human capital. In such contexts (often called “roommate
matching problems”), stable matchings may fail to exist even when utility
is transferable. We show that when each individual has a close substitute, a
stable matching can be implemented with minimal policy intervention. Our
results shed light on the stability of partnerships on the labor market. More-
over, they imply that the tools crafted in empirical studies of the marriage
problem can easily be adapted to many roommate problems.



1 Introduction

The search for a more efficient use of human capital often leads several indi-
viduals to team up. Lawyers gather in law firms, doctors associate in medical
practices, architects congregate in architectural firms,. . . . Such partnerships
are typical of the professions; but they extend to other services firms such as
consultancies. The mechanisms through which agents match to form these
partnerships, and sometimes leave or dissolve them, vary in interesting ways.
Yet they have not attracted the attention they deserve in the matching lit-
erature.

This statement may seem surprising, given the huge body of work that
has followed the seminal works of Gale and Shapley (1962), Koopmans and
Beckmann (1957), Becker (1973) and Shapley and Shubik (1971) among oth-
ers. Yet these matching models mostly consider bi- or multipartite matching
games, in which each “team” consists of partners that come from prespeci-
fied, separate subpopulations. This feature is especially prominent in mod-
els with transferable utility (hereafter TU): analyses of the marriage market
have traditionally considered man/woman matches (see Chiappori, Salanié,
and Weiss (2015), Galichon and Salanié (2015), or Dupuy and Galichon
(2014)), labor market models have employers and employees (Gabaix and
Landier (2008), Tervio (2008)), and so on. The partnerships we have men-
tioned, however, have a very specific feature that distinguishes them from
the bipartite literature: the agents who team up to jointly exploit their hu-
man capital very often belong to the same population. Lawyers who join
forces in a law firm may each have their own specialty, but in larger firms
several lawyers share the same specialty. Dentists rarely match with oncol-
ogists, and consultancies congregate experts who often come from the same
pool of individuals.

It has been known for some time that this apparently minor difference
in settings may generate largely divergent results. Take, for instance, the
specific case in which teams consist of exactly two people, both coming
from the same population—what is classically called the roommate matching
problem. In the No Transferable Utility (NTU) context, Gale and Shapley
(1962) showed that stable matchings may not exist. In the TU framework,
any potential couple generates a surplus that is (endogenously) shared by its
members. The resulting matching must satisfy a stability property, reflect-
ing robustness to unilateral and bilateral deviations. Properties of stable
matchings in bipartite matching models under TU are by now well-known.
A stable matching exists under mild continuity and compactness conditions;
it maximizes aggregate surplus, and the associated individual surpluses solve
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the dual imputation problem. Yet as we will see, stable roommate matchings
may also fail to exist when transfers are allowed.

Since Gale and Shapley (1962), a few papers have studied the property
of NTU stable roommate matchings when they do exist. Gusfield and Irv-
ing (1989) showed that the set of singles is the same in all stable matchings;
Klaus and Klijn (2010) study whether any of them can be “fair”. Efficient
algorithms have also been available since Irving (1985). Necessary and suf-
ficient existence conditions under strict preferences have been found by Tan
(1991) for complete stable matchings and by Sotomayor (2005) for stable
matchings. Chung (2000) shows that a condition he calls “no odd rings” is
sufficient for stable matchings to exist under weak preferences. Rodrigues-
Neto (2007) introduces “symmetric utilities” and Gudmunsson (2014) uses
“weak cycles.”

The TU case has been less studied in the theoretical literature, in spite
of its relevance in empirical applications. All examples at the beginning
of this introduction, and arguably the vast majority of relevant economic
applications, involve transfers. The profit generated by a law firm is split
between partners, and the rule governing that division is (at least partly)
endogenous to the matching game1. Chung (2000) shows that when the
division of surplus obeys an exogenous rule, odd rings are ruled out and
the roommate problem has a stable matching; but that is clearly not an
appealing assumption. Karlander and Eriksson (2001) provide a graph-
theoretic characterization of stable outcomes when they exist; and Klaus
and Nichifor (2010) studies their properties. Talman and Yang (2011) give
a characterization in terms of integer programming.

In this paper, we provide an extensive analysis of the two-partner room-
mate matching problem under TU. We first argue that the existence problem
is still present. However, its economic implications may be much less dam-
aging than one would expect. Specifically, we consider a model in which
agents belong to various “types”, where each type consists of individuals of
indistinguishable characteristics and tastes. In this context, we show two
main results. First, a stable matching always exists when the number of
individuals in each type is even. Second, when the number of individuals
of any given type is large enough, there always exist “quasi-stable” match-
ings: even if a stable matching does not exist, existence can be restored with
minimal policy intervention. To do this, one only needs to convince one in-
dividual to leave the game in each type with an odd number of individuals.

1If only because it is usually negotiated as part of the matching agreement, particularly
when a new partner joins in.
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If this requires a compensation to be paid, this can be done at a per capita
cost that goes to zero when the population of each type goes to infinity.

The results of this paper are related to those of Azevedo, Weyl, and
White (2013), who show the existence of a Walrasian equilibrium in an
economy with indivisible goods, a continuum of agents and quasilinear util-
ity. Unlike their main results, ours apply in markets with finite numbers of
agents. Our methods are also original. As is well-known, in bipartite prob-
lems all feasible matchings that maximize social surplus are stable. This is
not true in roommate problems; but we show how any roommate problem
can be “cloned” in order to construct an associated bipartite problem. We
then exploit this insight to prove existence of stable matchings in roommate
problems with even numbers of agents within each type.

To the best of our knowledge, the connection between the unipartite and
bipartite problems stressed in this paper is new. Importantly, this implies
that the empirical tools devised for the bipartite matching setting should
carry over directly to the roommate context when the populations under
consideration are large. Some of the results of the present paper are applied
in this direction in Ciscato, Galichon, and Goussé (2015).

Our results have clear implications for the partnerships enumerated at
the beginning of this introduction. To put things a bit loosely, such a part-
nership is more likely to be stable when any member has a close substitute
within the partnership. “Close substitute” here has a precise meaning: i is
a close substitute to j if the joint surplus a partnership that includes j can
generate is very similar to what could be generated by replacing j with i2.
A partner is less likely to have a close substitute when it has a rare, valuable
skill; a doctor may for instance be the only expert available on one particular
disease. In professional partnerships (or in academia!), management skills
may also be very unevenly distributed; and our analysis suggests that part-
nerships that depend on rare leadership skills are more susceptible to break
up. This would also true of firms that rely on a very charismatic individual
for inspiration. The early (1969–84) trajectory of Apple under Steve Jobs
may be a case in point. To take the polar opposite, medical practices formed
by a largish number of doctors with similar specialties should be rather sta-
ble. Consultancies are an intermediate case: while junior consultants may
be relatively interchangeable, leadership matters in finding clients and con-
serving them. Firm-specific capital is also likely to stabilize a partnership.

When partnerships are least likely to be stable, regulation may play a

2Note that it does not imply that j (or i) obtain no surplus in equilibrium, since the
condition also applies to all other members of the partnership.
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useful role. While we do not pursue this here, one can imagine cases when
non-compete or “no poaching” clauses that make mobility more costly could
actually be welfare-improving, if the courts allow them. Becker (1991, p.
330) already cited the ability of homosexual unions to “dissolve without
judiciary proceedings, alimony, or child support payments” as one reason
why they are less stable than heterosexual unions. This is an interesting
topic for further research.

2 A Simple Example

We start by giving the intuition of our main results on an illustrative exam-
ple.

2.1 Unstable Matchings

It has been known since Gale and Shapley that a stable matching may not
exist for the roommate problem under non-transferable utility. As it turns
out, it is almost equally easy to construct an example of non-existence of
a stable matching with transferable utility. Here a matching defines who
is matched to whom and how the corresponding surplus is divided between
the partners. Stability requires that

• no partner would be better off by leaving the partnership

• no group of individuals could break off their current match, rematch
together, and generate a higher joint surplus than the sum of their
current individual utilities.

Consider the following example, in which only two-member matches are
possible:

Example 1 The population has three individuals. Any unmatched individ-
ual has zero utility. The joint surplus created by the matching of any two of
them is given by the off-diagonal terms of the matrix

Φ =

− 6 8
6 − 5
8 5 −

 (1)

so that individuals 1 and 2 create, if they match, a surplus of 6; 1 and 3
create a surplus of 8, etc.
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Assume that there exists a stable matching. A matching in which all
individuals remain single is obviously not stable; any stable matching must be
such that one person remains single and the other two are matched together.
Let (ux) be the utility that individual of type x = 1, 2, 3 gets out of this game;
stability imposes ux + uy ≥ Φxy for all potential matches, with equality if x
and y are actually matched—and ux ≥ 0 with equality if x is single. One can
readily check, however, that no set of numbers (u1, u2, u3) satisfying these
relationships for all x and y exists: whichever the married pair is, one of
the matched partners would increase her utility by matching with the single
person. Indeed, if the matched pair is {1, 2}, then

u1 + u2 = 6, u3 = 0, u2 ≥ 0

contradicts u1 + u3 ≥ 8: agent 3, being single, is willing to give up any
amount smaller than 8 to be matched with 1, while the match between 1 and
2 cannot provide 1 with more than 6. Similarly, if the married pair is {2, 3},
then

u2 + u3 = 5, u1 = 0, u2 ≥ 0, u3 ≥ 0

contradicts both u1 + u2 ≥ 6 and u1 + u3 ≥ 8 (so that 1 is willing to give
more than 5 and less than 6 to agent 2 to match with her, and more than 5
and less than 8 to 3.) Finally, if the married pair is {1, 3}, then

u1 + u3 = 8, u2 = 0, u1 ≥ 0, u3 ≥ 0

is incompatible with u1 +u3 ≥ 11, which follows from combining u1 +u2 ≥ 6
and u2 + u3 ≥ 5 with u2 = 0 (since agent 2 is single 1 could match with her
and capture almost 6, while 3 could match with her and capture almost 5;
these outside options are more attractive than anything 1 and 3 can achieve
together.) We conclude that no stable matching exists.

Note that there is nothing pathological in Example 1. The surpluses can
easily be (locally) modified without changing the result. Also, the conclusion
does not require an odd number of agents; one can readily introduce a
fourth individual, who generates a small enough surplus with any roommate,
without changing the non-existence finding.

2.2 Cloning

However, there exists a simple modification that restores existence in Exam-
ple 1. Let us now duplicate the economy by“cloning”each agent; technically,
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we now have three types x = 1, 2, 3 of agents, with two (identical) individ-
uals of each type. The joint surplus created by a matching between two
individuals of different types x 6= y is as in Example 1; but we now also
need to define the surplus generated by the matching of two clones (two
individuals of the same type.) Take it to be 2 for every type—more on this
later. We then have the matrix:

Φ′ =

2 6 8
6 2 5
8 5 2

 (2)

Consider the following matching µ∗: there is one match between a type
1 and a type 2 individuals, one between type 1 and type 3, and one be-
tween type 2 and type 3. Assume individuals share the surplus so that each
individual of type 1 gets 4.5, each individual of type 2 gets 1.5, and each
individual of type 3 gets 3.5. This is clearly feasible; and it is easy to verify
that it is a stable matching.

Less obvious but still true is the fact (proved later on) that existence
would still obtain for any values chosen for the diagonal of the matrix,
although the stable matching pattern that would emerge may be different3.
In other words, our cloning operation always restores the existence of a stable
match, irrespective of the values of the joint surpluses created by matches
between clones.

2.3 Surplus Maximization

Our main result is better understood when related to another, closely linked
problem: finding a feasible matching that maximizes total surplus. Total
surplus is simply the sum of the joint surpluses of every match (keeping to
a normalized utility of zero for singles). In the standard, bipartite frame-
work, the adjective “feasible” refers to the fact that each individual can only
be matched to one partner or stay single. Roommate matching, however,
introduces an additional feasibility constraint. For any two types x 6= y,
denote µxy the number of matches between an individual of type x and an
individual of type y; since a roommate matching for which µxy and µyx dif-
fer would clearly not be feasible, it must be the case that µxy = µyx. This
additional symmetry constraint is absent from the bipartite model, where
these two individuals would belong to two separate subpopulations and the
number of marriages between say, a college-educated man and a woman

3For instance, if the diagonal elements are large enough, the stable matching matches
each individual with her clone.
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who is a high-school graduate may well differ (and typically does) from the
number of marriages between a college-educated woman and a man who is
a high-school graduate.

This symmetry constraint is the source of the difficulty in finding stable
roommate matchings; and our cloning operation addresses it. To see this on
our Example 1, first go back to roommate matching with one individual of
each type x = 1, 2, 3, and neglect the symmetry constraint. Since there is
only one individual of each type x, she cannot match with herself: µxx ≡ 0;
and neglecting symmetry, the only other feasibility constraints are

for every x,
∑
y 6=x

µxy ≤ 1

and
for every y,

∑
x 6=y

µxy ≤ 1.

The two matchings

µ1 =

0 0 1
1 0 0
0 1 0

 and µ2 =

0 1 0
0 0 1
1 0 0


are feasible in this limited sense; and they both achieve the highest possible
surplus when the symmetry conditions are disregarded. The existence of
two solutions is not surprising: given the symmetric nature of the surplus
matrix Φ, if a matrix µ maximizes total surplus, so does its transpose µt.
Unfortunately, neither is symmetric, and therefore neither makes any sense
in the roommate problem. For instance, µ1 has agent 1 matched both with
agent 3 (in the first row) and with agent 2 (in the first column). Also, note
that a third solution to this relaxed problem is the unweighted mean of µ1

and µ2,

µm =

 0 1/2 1/2
1/2 0 1/2
1/2 1/2 0


However, while this matrix is indeed symmetric, its coefficients are not in-
teger and thus it is not a feasible matching either; moreover, and quite in-
terestingly, it cannot be interpreted as the outcome of randomization since
it is not a convex combination of feasible roommate matching matrices4.

4For any stable roommate matching matrix, the sum of coefficients equals 2, reflect-
ing the fact that one agent must remain single. This property is preserved by convex
combination; however, the sum of coefficients of µm equals 3.
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Let us now reintroduce the symmetry constraint. The (now fully) fea-
sible matching that maximizes total surplus can only have one matched
pair and one single; and the pair that should be matched clearly consists of
individuals 1 and 3:

µ̄ =

0 0 1
0 0 0
1 0 0

 .

Obviously, µ̄ is not a solution to the maximization problem without sym-
metry constraint; in other words, the symmetry constraint is binding in this
example. As we shall see below, this is characteristic of situations in which
the roommate matching problem with transferable utility does not have a
stable matching. Indeed, we prove in the next section that a stable matching
exists if and only if the symmetry constraint does not bind.

Now take the “cloned” version of Example 1, in which each type x has
two individuals. It is easy to see that the solution to the relaxed problem
which neglects the symmetry constraint is the µ∗ of section 2.2, which is
symmetric; therefore the symmetry constraint does not bind, and a stable
matching exists. This is a general result: we shall see below that in any
cloned roommate matching setup, at least one solution to the relaxed prob-
lem is symmetric—which implies the existence of a stable match.

2.4 A Bipartite Interpretation

The relaxed problem, in turn, has a natural interpretation in terms of bipar-
tite matching. Start from the three-agent Example 1, and define an associ-
ated bipartite matching problem as follows: clone the population again, but
this time assign a label (such as “man” or “woman”) to each of the two sub-
populations. Then consider the bipartite matching problem between these
subpopulations of “men” and “women”, with the joint surplus matrix given
by Φ′ in (2).

By standard results, there always exists a stable matching in this asso-
ciated bipartite matching problem; and it maximizes the associated total
surplus. In our example, µ1 and µ2 are the two stable matchings. Any con-
vex combination such as µm can be interpreted as a randomization between
these two matchings; it is natural to focus on µm since it is the only symmet-
ric one and feasible roommate matchings must be symmetric. As remarked
above, in the original roommate problem µm cannot be stable, since it has
non-integer element.

Now if the roommate matching problem is cloned we can proceed as in
the above paragraph, except that with twice the number of individuals we
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should work with 2µm. As an integer symmetric matrix, reinterpreted in the
cloned roommate matching setup, it defines a feasible roommate matching
which is stable—in fact it is the stable matching µ∗ of section 2.2. This
construction is general: we shall see below that any roommate matching
problem in which the number of individuals in each type is even has a
symmetric stable match.

We now provide a formal derivation of these results.

3 The Formal Setting

We consider a population of individuals who belong to a finite set of types
X . Individuals of the same type are indistinguishable. We denote nx the
number of individuals of type x ∈ X , and

N =
∑
x∈X

nx

the total size of the population.
Without loss of generality, we normalize the utilities of singles to be zero

throughout.

3.1 Roommate Matching

A match consists of two partners of types x and y. An individual of any
type can be matched with any individual of the same or any other type, or
remain single. In particular, there is no restriction that matches only involve
two partners of different “genders.”

Let a match {x, y} generate a surplus Φxy. In principle the two partners
could play different roles. In sections 3 and 4 we will assume that they are
in fact symmetric within a match, so that Φxy is assumed to be a symmetric
function of (x, y):

Assumption 1 The surplus Φxy is symmetric in (x, y).

We show in section 5 that, surprising as it may seem, there is in fact
no loss of generality in making this assumption. The intuition is simple:
if Φxy fails to be symmetric in (x, y), so that the partners’ roles are not
exchangeable, then they should choose their roles so to maximize output.
This boils down to replacing Φxy with the symmetric max (Φxy,Φyx). Thus
our results extend easily when we do not impose Assumption 1; but it is
easier to start from the symmetric case.
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A matching can be described by a matrix of numbers
(
µxy
)

indexed by
x, y ∈ X , such that

• µx0 is the number of singles of type x

• when y 6= 0, µxy is the number of matches between types x and y.

The numbers µxy should be integers; given Assumption 1, they should be
symmetric in (x, y); and they should satisfy the scarcity constraints. More
precisely, the number of individuals of type x must equal the number µx0

of singles of type x, plus the number of pairs in which only one partner has
type x, plus twice the number of pairs in which the two partners are of type
x—since such a same-type pair has two individuals of type x.

Finally, the set of feasible roommate matchings is

P (n) =

µ =
(
µxy
)

:

2µxx +
∑

y 6=x µxy ≤ nx
µxy = µyx
µxy ∈ N

 (3)

3.2 TU stability and optimality

We define an outcome (µ, u) as the specification of a feasible roommate
matching µ and an associated vector of payoffs ux to each individual of type
x. These payoffs have to be feasible: that is, the sum of payoffs across the
population has to be equal to the total output under the matching µ. Now
in a roommate matching µ, the total surplus created is5

SR(µ; Φ) =
∑
x

µxxΦxx +
∑
x 6=y

µxy
Φxy

2
. (4)

This leads to the following definition of a feasible outcome: an outcome
(µ, u) is feasible if µ is a feasible roommate matching and∑

x∈X
nxux = SR(µ; Φ). (5)

We define stability as in Gale and Shapley (1962): an outcome (µ, u) is
stable if it cannot be blocked by an individual or by a pair of individuals.

5Note that in the second sum operator the pair {x, y} appears twice, one time as (x, y)
and another time as (y, x); but the joint surplus Φxy it creates must only be counted once,
hence the division by 2.
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More precisely, an outcome (µ, u) is stable if it is feasible, and if for any two
types x, y ∈ X , (i) ux ≥ 0, and (ii) ux+uy ≥ Φxy. By extension, a matching
µ is called stable if there exists a payoff vector (ux) such that the outcome
(µ, u) is stable.

In bipartite matching the problem of stability is equivalent to the prob-
lem of optimality : stable matchings maximize total surplus. Things are obvi-
ously more complicated in roommate matchings—there always exist surplus-
maximizing matchings, but they may not be stable. The maximum of the
aggregate surplus over the set of feasible roommate matchings P(n) is

WP (n,Φ) = maxSR(µ; Φ) (6)

s.t. 2µxx +
∑
y 6=x

µxy ≤ nx

µxy = µyx

µxy ∈ N.

While no stable matching may actually achieve this value, it plays an im-
portant role in our argument.

3.3 The Associated Bipartite Matching Problem

We shall now see that to every roommate matching problem we can asso-
ciate a bipartite matching problem which generates almost the same level of
aggregate surplus. More precisely, we will prove that for every vector of pop-
ulations of types n = (nx) and every symmetric surplus function Φ = (Φxy),
the highest possible surplus in the roommate matching problem is “close to”
that achieved in a bipartite problem with mirror populations of men and
women and half the surplus function:

WP(n,Φ) ' WB (n, n,Φ/2) .

where WB (n, n,Φ/2) is defined as the maximal surplus of the bipartite
matching problem:

WB (n, n,Φ/2) = max
ν ∈ B(n, n)

SB(ν; Φ) (7)

where SB(ν; Φ) =
∑

x,y∈X νxy
Φxy

2 and B(n, n) is the set of feasible matchings
in the bipartite problem:

B (n, n) =

ν = (νxy) :

∑y νxy ≤ nx∑
x νxy ≤ ny
νxy ∈ N

 (8)
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We also define stability for a feasible bipartite matching (νxy) in the
usual way: there must exist payoffs (ux, vy) such that

SB(ν; Φ) =
∑
x∈X

nxux +
∑
y∈X

nyvy (9)

ux + vy ≥
Φxy

2
ux ≥ 0, vy ≥ 0

By classical results of Shapley and Shubik (1971), there exist stable
matchings ν, and they coincide with the solutions of (7). Moreover, the
associated payoffs (u, v) solve the dual program; that is, they minimize∑

x∈X nxux +
∑

y∈X nyvy over the feasible set of program (9). Finally, for
any stable matching, µxy > 0 implies ux + vy = Φxy/2, and µx0 > 0 implies
ux = 0.

Remark 3.1 The marriage problem obviously is a particular case of the
roommate problem: if in a roommate matching problem Φxy = −∞ whenever
x and y have the same gender, then any optimal or stable matching will be
heterosexual.

3.3.1 Links Between WP and WB

It is not hard to see thatWP (n,Φ) ≤ WB (n, n,Φ/2) . In fact, we can bound
the difference between these two values:

Theorem 1 Under Assumption 1,

WP (n,Φ) ≤ WB (n, n,Φ/2) ≤ WP (n,Φ) + |X |2 Φ

where
Φ = sup

x,y∈X
Φxy.

and |X | is the cardinal of the set X , i.e. the number of types in the popula-
tion.
Proof. See appendix.

In some cases, WP (n,Φ) and WB (n, n,Φ/2) actually coincide. For in-
stance:

Proposition 2 If nx is even for each x ∈ X , then under Assumption 1,

WP (n,Φ) =WB (n, n,Φ/2) .

Proof. See appendix.
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3.3.2 Stable Roommate Matchings

The existence of stable roommate matchings is directly related to the diver-
gence of WP (n,Φ) and WB (n, n,Φ/2). Indeed, one has:

Theorem 3 Under Assumption 1,
(i) There exist stable roommate matchings if and only if

WP (n,Φ) =WB (n, n,Φ/2) .

(ii) Whenever they exist, stable roommate matchings achieve the maxi-
mal aggregate surplus WP (n,Φ) in (6).

(iii) Whenever a stable roommate matching exists, individual utilities at
equilibrium (ux) solve the following, dual program:

min
u,A

∑
x

uxnx (10)

s.t. ux ≥ 0

ux + uy ≥ Φxy +Axy

Axy = −Ayx

Proof. See appendix.

Note that while the characterization of the existence of a stable match-
ing in terms of equality between an integer program and a linear program is
a well-known problem in the literature on matching (see Talman and Yang
(2011) for the roommate problem), the link with a bipartite matching prob-
lem is new.

Also note that in program (10), the antisymmetric matrix A has a natural
interpretation: Axy is the Lagrange multiplier of the symmetry constraints
µxy = µyx in the initial program (6). Our proof shows that if µxy > 0
in a stable roommate matching, then the corresponding Axy must be non-
positive; but since µyx = µxy the multiplier Ayx must also be non-positive,
so that both must be zero. The lack of existence of a stable roommate
matching is therefore intimately linked to a binding symmetry constraint.

Given Proposition 2, Theorem 3 has an immediate corollary: with an
even number of individuals per type, there must exist a stable roommate
matching. Formally:

Corollary 3.1 If nx is even for each x ∈ X , then under Assumption 1,
there exists a stable roommate matching.

13



In particular, for any roommate matching problem, its “cloned” version,
in which each agent has been replaced with a couple of clones, has a sta-
ble matching; and this holds irrespective of the surplus generated by the
matching of two identical individuals. Of course, in general much less than
full cloning is needed to restore existence; we give this statement a precise
meaning in the next paragraph.

Our next result shows that one can restore the existence of a stable
matching by removing at most one individual of each type from the popula-
tion; if these individuals have to be compensated for leaving the game, this
can be done at limited total cost:

Theorem 4 (Approximate stability) Under Assumption 1, in a popu-
lation of N individuals, there exists a subpopulation of at least N −|X | indi-
viduals among which there exist a stable matching, where |X | is the number
of types. The total cost for the regulator to compensate the individuals left
aside is bounded above by |X |Φ.

Proof. See appendix.

4 Matching in Large Numbers

We now consider the case of a“large”game, in which there are“many”agents
of each type. Intuitively, even though an odd number of agents in any type
may result in non existence of a stable roommate matching, the resulting
game becomes “close” to one in which a stable matching exists. We now
flesh out this intuition by providing a formal analysis.

We start with a formal definition of a large game. For that purpose, we
consider a sequence of games with the same number of types and the same
surplus matrix, but with increasing populations in each type. If nkx denotes
the population of type x in game k and Nk =

∑
x n

k
x is the total population

of that game, then we consider situations in which, when k →∞:

Nk →∞ and nkx/N
k −→ fx

where fx are constant numbers.
As the population gets larger, aggregate surplus increases proportionally;

it is therefore natural to consider the average surplus, computed by dividing
aggregate surplus by the size of the population. We also extend the definition
of WB in program (7) to non-integers in the obvious way so as to define the
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limit average bipartite problem WB (f, f,Φ/2). Note that the linearity of
the program implies

WB(cn, cm,Φ/2) = cWB(n,m,Φ/2)

for any c > 0.

Proposition 5 In the large population limit, under Assumption 1, the aver-
age surplus in the roommate matching problem converges to the limit average
surplus in the related bipartite matching problem. That is,

lim
k→∞

WP
(
nk,Φ

)
Nk

= lim
Nk→∞

WB
(
nk, nk,Φ/2

)
Nk

=WB (f, f,Φ/2) .

Proof. See appendix.
Our approximation results crucially rely on the number of types becom-

ing small relative to the total number of individuals. By definition, two
individuals of the same type are indistinguishable in our formulation, both
in their preferences and in the way potential partners evaluate them. This
may seem rather strong; however, a closer look at the proof of Theorem 5
shows that our bound can easily be refined. In particular, we conjecture
that with a continuum of types, Theorem 5 would hold exactly.

A related effect of the number of individuals becoming much larger than
the number of types is that the costs of the policy to restore stability in
Theorem 4 become negligible:

Proposition 6 In the large population limit and under Assumption 1,
(i) one may remove a subpopulation of asymptotically negligible size in

order to restore the existence of stable matchings.
(ii) the average cost per individual of restoring the existence of stable

matchings tends to zero.

Proof. See appendix.

In particular, in the case of a continuum of individuals (that is, when
there is a finite number of types and an infinite number of individuals of each
type), we recover the results of Azevedo, Weyl, and White (2013) (hereafter,
AWW). To make the connection with this paper, the partner types in our
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setting translates into goods in AWW’s. The social welfare in our setting
translates into the utility u of a single consumer in AWW. u is such that
u (C) = Φ ({x, y}) for C = {x, y}, u ({x}) = 0, and u = −∞ elsewhere (or
very negative). Then it can be shown without difficulty that the existence
of a TU stable matching in our setting is equivalent to the existence of a
Walrasian equilibrium in the AWW setting. Thus existence and TU sta-
bility in the case of a continuum of individuals follows from Theorem and
Proposition in AWW.

5 The Nonexchangeable Roommate Problem6

We now investigate what happens when the surplus Φxy is not necessarily
symmetric. This will arise when the roles played by the partners are not
exchangeable. For instance, a pilot and a copilot on a commercial airplane
have dissymmetric roles, but may be both chosen from the same population.
Hence, in this section, we shall assume away Assumption 1, and we refer
to the “nonexchangeable roommate problem”; it contains the exchangeable
problem as a special case.

As it turns out, this can be very easily recast in the terms of an equivalent
symmetric roommate problem. Indeed if Φxy > Φyx, then any match of
an (ordered) 2-uple (y, x) will be dominated by a matching of a (x, y) 2-
uple, and the partners may switch the roles they play and generate more
surplus. Therefore, in any optimal (or stable) solution there cannot be such
a (y, x) 2-uple. As a consequence, the nonexchangeable roommate problem
is equivalent to an exchangeable problem where the surplus function is equal
to the maximum joint surplus x and y may generate together, that is

Φ′xy = max (Φxy,Φyx) ;

and since this is symmetric our previous results apply almost directly. De-
noting πxy the number of (x, y) pairs (in that order), one has

µxy = πxy + πyx, x 6= y

µxx = πxx

and obviously, πxy need not equal πyx. The population count equation is

nx =
∑
y∈X

(πxy + πyx) , ∀x ∈ X

6We are grateful to Arnaud Dupuy for correcting a mistake in a preliminary version of
the paper.
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and the social surplus from a matching π is∑
x,y∈X

πxyΦxy.

so that the optimal surplus in the nonexchangeable problem is

W ′P (n,Φ) = max
∑
x,y∈X

πxyΦxy

s.t. nx =
∑
y∈X

(πxy + πyx) , ∀x ∈ X .

The following result extends our previous analysis to the nonexchange-
able setting:

Theorem 7 The nonexchangeable roommate matching problem is solved by
considering the surplus function

Φ′xy = max (Φxy,Φyx)

which satisfies Assumption 1. Call optimized symmetric problem the prob-
lem with surplus Φ

′
xy and population count nx. Then:

(i) the optimal surplus in the nonexchangeable roommate problem co-
incides with the optimal surplus in the corresponding optimized symmetric
problem, namely

W ′P (n,Φ) =WP
(
n,Φ′

)
(ii) the nonexchangeable roommate problem has a stable matching if and

only if the optimized symmetric problem has a stable matching.

Given Theorem 7, all results in Sections 3 and 4 hold in the general
(nonexchangeable) case. In particular:

• Theorem 1 extends to the general case: the social surplus in the room-
mate problem with asymmetric surplus Φxy is approximated by a bi-
partite problem with surplus function Φ′xy = max (Φxy,Φyx) /2, or
more formally:

W ′P (n,Φ) ≤ WB
(
n, n,Φ′/2

)
≤ W ′P (n,Φ) + |X |2 Φ,

and as an extension of Proposition 2, equality holds in particular when
the number of individuals in each types are all even.
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• Theorem 3 extends as well: there is a stable matching in the roommate
problem with asymmetric surplus Φxy if and only if there is equality
in the first equality above, that is:

W ′P (n,Φ) =WB
(
n, n,Φ′/2

)
.

• All the asymptotic results in Section 4 hold true: in the asymmetric
roommate problem, there is approximate stability and the optimal
matching solves a linear programming problem.

6 Conclusion

Some roommate problems involve extensions to situations where more than
two partners can form a match; but the two-partner case is a good place to
start the analysis. Here, we have shown that when the population is large
enough with respect to the number of observable types, the structure of the
roommate problem is the same as the structure of the bipartite matching
problem. Most empirical applications of matching models under TU use a
framework as in this paper in order to understand, depending on the context,
how the sorting on a given matching market depends on age, education or
income, but also height, BMI, marital preferences, etc.7.

As a consequence of our results, the empirical tools developed in the bi-
partite setting, especially for the analysis of the marriage markets (see Choo
and Siow (2006), Chiappori, Salanié, and Weiss (2015), Fox (2010), Galichon
and Salanié (2015), to cite only a few8) can be extended to other contexts
where the bipartite constraint is relaxed. These include law firms or doctor
practices, but also team jobs such as pilot/copilot (and more generally team
sports), as well as “tickets” in US presidential elections, marriage markets
incorporating single-sex households, and many others. Also, we conjecture
that the same “cloning” technique could be applied to matches involving
more than two partners—the multipartite reference, in that case, being the
“matching for teams” context studied by Carlier and Ekeland (2010). We
leave this for future research.

While our analysis has been conducted in the discrete case, it would
be interesting to extend our results to the case where there is an infinite
number of agents with a continuum of types. We conjecture that this could

7See for instance Choo and Siow (2006), Chiappori and Oreffice (2008) Chiappori,
Oreffice, and Quintana-Domeque (2012) among many others.

8Graham (2011) has a good discussion of this burgeoning literature.
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be done, at some cost in terms of the mathematics required9. Stability would
probably require that the distribution of agents’ characteristics should not
feature regions with very low density.

Finally, it seems natural to apply our “cloning technique” when utility
is not transferable. One may think of assigning arbitrarily genders to both
clones of each type, and considering a bipartite stable matching between
the two genders. Such a matching will be stable in the roommate matching
framework if the bipartite matching of the cloned populations is symmetric.
However, such a symmetric stable bipartite matching of the cloned popula-
tion may not exist. Therefore, the usefulness of cloning to restore stability
in the non-transferable utility version of the roommate problem is an open
question.
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A Appendix: Proofs

Our proofs use an auxiliary object: the highest possible surplus for a frac-
tional roommate matching, namely

WF (n,Φ) = max
µ∈F(n)

∑
x

µxxΦxx +
∑
x 6=y

µxy
Φxy

2

 . (11)

where F (n) is the set of fractional (roommate) matchings, which relaxes the
integrality constraint on µ:

F (n) =

(µxy) :

2µxx +
∑

y 6=x µxy ≤ nx
µxy = µyx
µxy ≥ 0

 . (12)

The program (11) has no immediate economic interpretation since frac-
tional roommate matchings are infeasible in the real world; and while ob-
viously WP (n,Φ) ≤ WF (n,Φ), the inequality in general is strict. We are
going to show, however, that the difference between the two programs van-
ishes when the population becomes large. Moreover, we will establish a link
between (11) and the surplus at the optimum of the associated bipartite
matching problem.

We start by proving:

Lemma A.1
WF (n,Φ) =WB (n, n,Φ/2) . (13)

Moreover, problem (11) has a half-integral solution.

Proof of Lemma A.1. First consider some fractional roommate matching
µ ∈ F (n), and define

νxy = µxy if x 6= y

νxx = 2µxx.

As a (possibly fractional) bipartite matching, clearly ν ∈ B (n, n); and∑
x

µxxΦxx +
∑
x 6=y

µxy
Φxy

2
=

1

2

∑
x,y∈X

νxyΦxy.

Now the right-hand side is the aggregate surplus achieved by ν in the bi-
partite matching problem with margins (n, n) and surplus function Φ/2. It
follows that

WF (n,Φ) ≤ WB (n, n,Φ/2) . (14)
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Conversely, let (νxy) maximize aggregate surplus over B(n, n) with sur-
plus Φ/2. By symmetry of Φ, (νyx) also is a maximizer; and since (7) is a
linear program, ν ′xy =

νxy+νyx
2 also maximizes it. Define

µ′xy = ν ′xy if x 6= y

µ′xx =
νxx
2
.

Then

2µ′xx +
∑
y 6=x

µ′xy = νxx +
1

2

∑
y 6=x

(νxy + νyx)

=
1

2
(νxx +

∑
y 6=x

νxy)

+
1

2
(νxx +

∑
y 6=x

νyx).

Now νxx +
∑

y 6=x νxy ≤ nx by the scarcity constraint of “men” of type x,
and νxx +

∑
y 6=x νyx ≤ nx by the scarcity constraint of “women” of type x.

It follows that µ′ ∈ F (n), and∑
x

µ′xxΦxx +
∑
x 6=y

µ′xy
Φxy

2
=

1

2

∑
x,y∈X

νxyΦxy.

Therefore the values of the two programs coincide.
Half-integrality follows from the Birkhoff-von Neumann theorem: there

always exists an integral solution ν of the associated bipartite matching
problem, and the construction of µ′ makes it half-integral10.

Given Lemma A.1, we can now prove Theorem 1.

Proof of Theorem 1. The first inequality simply follows from the fact
that P (n) ⊂ F (n). Let us now show the second inequality. Lemma A.1
proved that WF (n,Φ) = WB (n, n,Φ/2). Let µ achieve the maximum in
WF (n,Φ), so that

WF (n,Φ) =
∑
x

µxxΦxx +
∑
x 6=y

µxy
Φxy

2
.

10The half-integrality of the solution of problem (11) also follows from a general theorem
of Balinski (1970); but the proof presented here is self-contained.
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Let bxc denote the floor rounding of x; by definition, x < bxc+ 1, so that

WF (n,Φ) <
∑
x

bµxxcΦxx +
∑
x 6=y

⌊
µxy
⌋ Φxy

2
+
∑
x

Φxx +
∑
x 6=y

Φxy

2
.

The right-hand side can also be rewritten as∑
x,y

⌊
µxy
⌋

Φxy +
∑
x,y

Φxy.

But bµc is in B(n, n), and is integer by construction; therefore∑
x,y∈X

⌊
µxy
⌋

Φxy ≤ WP (n,Φ) .

Finally, ∑
x,y∈X

Φxy ≤ |X |2 Φ

so that
WF (n,Φ) ≤ WP (n,Φ) + |X |2 Φ.

A.1 Proof of Proposition 2

Proof. Let n′x = nx
2 . By Lemma A.1, problem WF (n′,Φ) has an half-

integral solution µ′; therefore problem WF (n,Φ) has an integral solution
2µ′, which must also solve (7). It follows that

WP (n,Φ) =WF (n,Φ) .

A.2 Proof of Theorem 3

Proof. By Theorem A.1, Problem (11) coincides with a bipartite match-
ing problem between marginal (nx) and itself. By well-known results on
bipartite matching, there exist vectors (vx) and (wy) such that

vx ≥ 0, wy ≥ 0

vx + wy ≥ Φxy
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and the latter inequality is an equality when µxy > 0. Setting

ux =
vx + wx

2

the symmetry of Φ implies

ux ≥ 0

ux + uy ≥ Φxy

and ∑
x∈X

nxux =
∑
x∈X

µxxΦxx +
∑
x6=y

µxy
Φxy

2

so that the outcome (µ, u) is stable.
Conversely, assume that µ is a stable roommate matching. Then by

definition, there is a vector (ux) such that

ux ≥ 0

ux + uy ≥ Φxy

and ∑
x∈X

nxux =
∑
x∈X

µxxΦxx +
∑
x 6=y

µxy
Φxy

2
.

Therefore (u,A = 0) are Lagrange multipliers for the linear programming
problem (11), and µ is an optimal solution of (11); finally, µ is integral since
it is a feasible roommate matching. QED.

(i), (ii) and (iii) follow, as there exist integral solutions of (11) if and
only if

WP (n,Φ) =WF (n,Φ) ,

and WF (n,Φ) coincides with WB (n, n,Φ/2) from Lemma A.1.

A.3 Proof of Theorem 4

Proof. For each type x, remove one individual of type x to the population
if nx is odd. The resulting subpopulation differs from the previous one by
at most |X | individuals, and there is an even number of individuals of each
type; hence by Proposition 3.1 there exists a stable matching.

Each individual so picked can be compensated with his payoff ux. Since
ux ≤ Φ, the total cost of compensating at most one individual of each type
is bounded from above by |X |Φ.
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A.4 Proof of Proposition 5

Proof. By Theorem 1, in the large population limit

lim
k→∞

WP
(
nk,Φ

)
Nk

=WF (f,Φ)

and Lemma A.1 yields the conclusion.

A.5 Proof of Proposition 6

Proof. (i) The number of individuals to be removed is bounded from above
by |X |, hence its frequency tends to zero as |X | /N → 0. (ii) follows from
the fact that

WF (n,Φ)−WP (n,Φ)

N
→ 0.

A.6 Proof of Theorem 7

Proof. (i) Consider an optimal solution µxy to WP (n,Φ′). For any pair
x 6= y such that Φxy > Φyx, set πxy = µxy, and πxy = 0 if Φxy < Φyx.
If Φxy = Φyx, set πxy and πyx arbitrarily nonnegative integers such that
πxy + πyx = µxy; set πxx = µxx. Then π is feasible for the optimized
symmetric problem, and one has∑

x∈X
µxxΦ′xx +

∑
x6=y

µxy
Φ′xy

2
=
∑
x,y∈X

πxyΦxy

so that
WP

(
n,Φ′

)
≤ W ′P (n,Φ) .

Conversely, consider πxy an optimal solution toW ′P (n,Φ). First observe
that if Φxy < Φyx then πxy = 0; otherwise subtracting one from µxy and
adding one to πyx would lead to an improving feasible solution, contradicting
the optimality of π. Set

µxy = πxy + πyx, x 6= y

µxx = πxx

so that ∑
x∈X

µxxΦ′xx +
∑
x 6=y

µxy
Φ′xy

2
=
∑
x,y∈X

πxyΦxy
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and hence
W ′P (n,Φ) ≤ WP

(
n,Φ′

)
.

(ii) Assume there is a stable matching πxy in the nonexchangeable room-
mate problem. Then if there is a matched pair (x, y) in that order, one
cannot have Φyx > Φxy; otherwise the coalition (y, x) would be blocking.
Hence one can define

µxy = πxy + πyx, x 6= y

µxx = πxx

and the matching µ is stable in the optimized symmetric problem. Con-
versely, assume that the matching µ is stable in the optimized symmetric
problem. Then it is not hard to see that, defining π from µ as in the first
part of (i) above, the matching π is stable in the nonexchangeable roommate
problem.
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