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Abstract— Continuum robots offer signicant advantages for
surgical intervention due to their down-scalability, dexterity,
and structural flexibility. While structural compliance offers
a passive way to guard against trauma, it necessitates robust
methods for online estimation of the robot configuration in
order to enable precise position and manipulation control.
In this paper, we address the pose estimation problem by
applying a novel mapping of the robot configuration to a feature
descriptor space using stereo vision. We generate a mapping of
known features through a supervised learning algorithm that
relates the feature descriptor to known ground truth. Features
are represented in a reduced sub-space, which we call eigen-
features. The descriptor provides some robustness to occlusions,
which are inherent to surgical environments, and the methodol-
ogy that we describe can be applied to multi-segment continuum
robots for closed-loop control. Experimental validation on a
single-segment continuum robot demonstrates the robustness
and efficacy of the algorithm for configuration estimation.
Results show that the errors are in the range of 1◦.

I. INTRODUCTION

Medical robotics and computer-assisted surgery have be-
come integral to the delivery of care due to the improved
performance granted by introducing computer processing
power and related control hardware into the workflow of
surgical intervention. Robotic technology has the potential
to improve performance over manual intervention [1] by
offering improved precision, increased dexterity, decreased
instrument volumes, motion scaling and the integration of
sensory information. The introduction of advanced instru-
mentation has allowed significant progress by the surgical
community toward new surgical paradigms that are less in-
vasive than conventional Minimally Invasive Surgery (MIS).
These techniques are Single Port Access Surgery (SPAS)
[2], Laparo-Endoscopic Single-Site surgery [3], and Natural
Orifice Transluminal Endoscopic Surgery (NOTES) [4].

Continuum robots have seen increased interest by the
research community because they are dexterous, innately
compliant, and down-scalable as surgical effectors for MIS
[5], [6], SPAS [7], and NOTES. These robots differ from
traditional industrial articulated robots in that trajectories
are generated by deformation of internal structures of the
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Fig. 1. A stereo camera system views a single segment of a continuum
snake arm in order to learn a mapping of the configuration angles from visual
feature descriptors. The algorithm was tested in the presence of a realistic
occluder in the form of a laparoscopic tool being manipulated between the
snake and the camera.

robotic mechanism as opposed to the relative motion of in-
dividual rigid links. In the past two decades several different
designs and actuation modalities have been proposed [8]–
[14]. However, they all suffer from lack of accuracy due to
friction, extension and torsion of their actuation lines, shape
discrepancy from nominal kinematics, and actuation coupling
between segments.

Researchers have tried to overcome these problems with
off-line model-based methods [6], [15]–[17] or off-line
vision-based approaches [10], [18]–[22]. Camarillo et. al.
[21] used a voxel-carving strategy to extract the position of
a flexible manipulator using 3 orthogonal cameras spread
about the environment. Hannan and Walker [18] extracted
individual vertebrae along a snake arm to fit successive
circles to determine the curvature by analyzing the change
in length of the segment due to curving. In [10], Gravagne
and Walker examined different stiffness/compliance ellip-
soids in order to explore compliance characteristics. Croom
et. al. [22] used Self-Organizing Maps in a stereo vision
framework to detect the shape of a continuum robot without
the use of fiducials for positional accuracy. More recently,
a tiered real-time controller that uses both extrinsic and
intrinsic sensory information for improved performance of
multi-segment continuum robots has been proposed [23].
The higher tier of this controller uses configuration space
feedback while the lower tier uses joint space feedback and
a feed-forward term obtained with actuation compensation
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ŷg

ẑg
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Fig. 2. [Top] Structure and kinematic nomenclature for a single-segment
continuum robot. [Bottom] IREP with two continuum arms constructed
along with the stereo camera actuated unit.

techniques. This work requires extrinsic feedback on the
segment configuration from a magnetic tracker or from a
vision system, such as the proposed algorithm of this work.

This paper proposes a method to estimate the configuration
of a single-segment continuum robot using a visual feature
descriptor that is extracted from a stereo camera system
and mapped to the robot’s configuration angles. Our image
segmentation and descriptor extraction methods are shown
to be robust to partial occlusions. We present these results
by manipulating a standard laparoscopic tool in the viewing
frustrum, providing different levels of partial occlusions in
a realistic fashion. Although the algorithm extends to any
continuum robot design, we have in mind the IREP surgical
robot [24], shown on the bottom of Fig. 2. Our method uses
training samples to interpolate a manifold, which is parame-
terized by the configuration angles of the continuum segment.
This compact representation of the appearance of the robot’s
configuration allows us to estimate unknown configurations
by extracting the feature descriptor and indexing into the
manifold to determine the best angles which may have pro-
duced that descriptor. The proposed algorithm uses a feature
descriptor to provide the sensitivity needed to accurately
capture small changes in the configuration of a continuum
robot. Although the segment bends in a circular shape,
camera perspective effects make measuring the image of the
circle (viewed as an ellipse) difficult when the movement
is out-of-plane, and the descriptor encodes this information
in an alternative and robust fashion. The algorithm relies on
the assumption that consecutive configurations are strongly
correlated and nearby in the feature descriptor’s space. We
tested on robot movements in all 3-dimensions and are able
to recover configuration angles in the range of 1◦ of accuracy.

II. MODELING OF THE CONTINUUM SEGMENT

Several designs of continuum robots that bend in a circular
shape have been proposed [25]. This section briefly presents
the kinematics of the particular design [11] used to validate
the work proposed in this paper. The multi-backbone single-
segment robot shown on the top of Fig. 2 is constructed of
one centrally located passive primary backbone, and three
radially actuated secondary backbones with pitch radius r
and separation angle β . By controlling the lengths of the
secondary backbones, the segment can be moved throughout
the workspace defined by the kinematics. The pose of the end
disk of the continuum robot can be completely described by
the generalized coordinates, termed configuration space, by

ψ = [θL,δ ]T (1)

where θL and δ define respectively the angle tangent to the
central backbone at the end disk, and the plane in which the
segment bends. The orientation of the end disk is given by
the following sequence of rotations:

R = RzRyRT
z (2)

where Rz = e−δ [e3×], Ry = e(θ0−θL)[e2×], denote the exponen-
tial forms for these rotations, ej denote the canonical basis
unit vectors for R

3, [n×] designates the skew-symmetric
cross product matrix of vector n, and θ0 = π/2. The config-
uration variables θL and δ can be obtained from (2) as:

θL = θ0 − atan2
(√

R2
13 +R2

23,R33

)
(3)

δ =−atan2(R23,R13) (4)

where Ri j are the entries of rotation matrix R1.

III. LEARNING METHOD OVERVIEW

The problem of estimating the pose of an object by
learning the appearance has been studied previously. Murase
and Nayar [26] collected a set of images by sampling the
workspace of an object’s configuration and compressing to
a low-dimensional eigen-subspace. This builds a continuous
appearance manifold for which queries can be interpolated
for unknown poses. This particular approach is extremely
sensitive because the appearance is represented at the pixel
level, and spatial variations within the image may present
a challenge. Occlusions present an issue as well, which is
extremely common in surgical environments. This parametric
eigenspace representation is the main motivation for the
contributions of our ideas, however our approach is novel
in that the manifold is constructed using feature descriptors
rather than the images themselves.

Vision offers a low-cost and safe solution to physi-
cal measurements in a surgical environment. Because the
configuration of a single-segment continuum robot can be
completely described by configuration angles, it would be
a powerful argument to do so accurately with cameras
alone. Fig. 3 shows the full algorithm flow of our method

1We use the atan2 notation such that: θ = atan2(sin(θ),cos(θ)).
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Fig. 3. Algorithm flow for the visual pose estimation algorithm. � Stereo Images, � Segmented Components, � Polygonal Points, � eigen-features, �
b closest interpolated poses, � Initial training set A. Further details in text.

for describing the configuration of a bendable arm using
vision alone. The method relies on learning mappings of
configurations to feature descriptors. The descriptors must be
stable enough so that nearby points in feature space represent
similar configurations. By discretely sampling a continuous
space of configurations, we can interpolate a continuous
feature descriptor manifold, which is parameterized by the
configuration angles, and then accurately and efficiently
estimate the unknown configuration of the arm by indexing
into the manifold and matching to the nearest neighbors of
the descriptors in the manifold and performing a weighted
average from the known configuration angles nearby.

In addition to learning, another positive aspect to our
algorithm lies in its ability to estimate the configuration
using only partial data due to visual occlusions. Often during
surgery, overlapping tools or excess liquids may temporarily
occlude parts of the continuum arm. Our algorithm robustly
and successfully persists despite partial occlusions.

Note that several of these individual segments are often
combined together to form a full robotic snake arm for
maximal dexterity, and this algorithm proposes a solution to
estimate the configuration of each single segment at a time,
which can then be combined in the end to capture the full
pose of the robot arm. We first need to train our system to
map known poses to feature descriptors.

A. Ground Truth Collection

We fixed an Ascension Technology Flock-of-Birds 3D
tracking device to the distal end of the snake segment (see
Fig. 4(a)). This is a magnetic tracker capable of providing
3D positions and orientations at approximately 144Hz. Po-
sitional and orientation accuracy are 1.8mm and 0.5◦ RMS,
respectively. The sensor provides a 3D position p and a 3D
orthonormal rotation matrix R, which we convert to ψ angles
according to (3) and (4). This ground truth is sufficient to
describe the moving configurations of the snake segment.

B. Snake Segmentation

1) Color Segmentation: A snake arm with 8 vertebrae is
color coded with lime markers. The length of the segment is
61mm, and each vertebrae disk has a height of 3.5mm with
a diameter of 14mm. This color was chosen to stand out
from typical medical imagery, which is more red by nature.

It is not unrealistic to place these kinds of fiducial mark-
ers on surgical robots to simplify these types of detection
tasks [27]. We use a single frame to perform a k-means
clustering of colors. We choose the CIELAB color space,
which consists of a luminosity layer L, chromanicity layer-a
(which indicates where colors fall along the red-green axis),
and chromanicity layer-b (which indicates where colors fall
along the blue-yellow axis). The color information is actually
in the a and b layers, and so the clustering is performed using
only those 2 components. We found this to be a more robust
representation to cluster color pixels than the typical RGB
or HSV color spaces which are commonly used.

We make the assumption that in surgical imagery, a finite
number of representative colors are present at any given
time. By using a single frame, we specify the number of
color clusters we expect to show up. For purposes of our
experiments, we use 5 clusters according to our environment.
An example is shown in Fig. 4, using sample surgical
imagery as the background. The original image from the
right camera is shown in 4(a), with a superimposed arrow
showing where the flock of birds is located. In Fig. 4(b)
we show the result of the k-means clustering using the ab
components. Here, pixels are labeled according to the closest
of the 5 learned clusters. The colored markers stand out quite
cleanly, and are labeled as red pixels. Note that no other
pixels in the image are red except for on the markers. This
learning stage is performed only once, in the beginning, and
we select the cluster label corresponding to the markers to
label subsequent images. Then, for any given image, we first
convert from RGB to CIELAB. Next, for each pixel, we
find the closest cluster according to the k-means result and
label as 255 if it’s the label we previously selected and zero
otherwise. A sample result is shown in Fig. 4(c).

2) Contour Extraction: Now that we have a binary image,
we wish to extract the best encompassing contour about
the segmented region. The challenge here lies in the gaps
between the separated vertebrae. So as to not be specific
to our hardware, we want our algorithm to be applicable
in the case of a continuous bendable segment without gaps.
We begin by computing the convex hull around the binary
pixel locations, shown in green in Fig. 4(d). However, as
the segment bends the boundary actually forms a concave
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(a) Color Image (b) Cluster Labels (c) Segmented Image (d) Contour

Fig. 4. Color segmentation is performed by using a single color frame [A] and a known set of color clusters (5 in our experiments) to label pixels in an
image according to the closest color cluster [B] in CIELAB color space. The marker pixels fall out cleanly from the learning procedure, labeled as red in
B. This results in a binary labeling [C] according to this cluster of pixels on the markers we wish to analyze. The contour being extracted [D] represents
a concave polygon. We achieve this by starting with the convex hull, shown in green, and then moving in the points along the contour towards the closest
binary-labeled pixel location. The result is shown in red, and this gives a good approximation to the best encompassing contour around the segment.

polygon. One half of the segment will be convex, and the
hull will be correct there, but the concave portion will be off.
The convex hull represents a set of vertices of line segments
which form the boundary of the polygon, however we want
a denser sampling of this boundary. To achieve this, we
iteratively interpolate linearly between successive points in
the hull, producing control points along the boundary. Then
we find the nearest pixel locations to these control points that
originally created the hull (the binary labeled pixels), thereby
moving the contour locations of the concave areas inwards
towards the true boundary of the object. The result is shown
as the red contour in Fig. 4(d). The orange arrows show the
need for this, as contour locations in the concave area need
significant adjustment. The closest points can be found either
using a linear search or a kd-tree. Both the dimensionality
and the number of points is small, and so these searches are
not computationally intensive.

As a final step, to get an even and dense sampling of
the contour, we take the points that make up the contour
and apply the Bresenham line algorithm [28] to consecutive
points, assuming local linearity between close points. To
augment this contour, we also compute a binary edge map
from the segmented image (Fig. 4(c)) using a Sobel operator.
This yields points that are interior to the polygon on the
boundaries of the markers. We add in these points with
the contour locations to build the descriptor, described next.
This can be helpful in the case of occlusions, where the
contour alone may get deformed, and the edges help diminish
the effect of the deformation. Conversely, the edges are not
sufficient to fill-in the gaps between the separated markers.

C. Descriptor Extraction

Next we seek to build a descriptor to represent the 3D
pose of the object. The scheme is to compute a feature
descriptor on each of the stereo images separately and then
combine them together to form a single, composite stereo
feature vector. Although we are not explicitly performing
3D reconstruction, 3D shape information is being encoded
because we have two separate views of the object in a
stereo setup, and ambiguous movements due to out-of-plane
perspective effects in one camera can be captured by the
other camera. We take the location of the center of the

segmented region, and build a 1D histogram of the angles of
each point along the contour with respect to the center of the
object. Fig. 5 describes this conceptually where the left image
shows the angular bins radiating from the center location,
displayed as green lines. The bins count the number of points
in each angular range and build a histogram, as shown on
the right. The histogram should be densely binned so that
small changes in shape are captured and the descriptor is
sufficiently sensitive, yet not overly noisy. We experimented
with bins of size 5◦ (72 bins), 3◦ (120 bins), and 1◦ (360
bins), ultimately choosing the 120-bin case.

The intuition behind this representation is that as the
segment bends, the shape redistributes the points along the
contour in unique ways. By counting the number of points
in each bin, we can analyze the redistribution of these points
as the shape changes. It can be thought of as the same
total number of points in the bins across the frames, yet
redistributed into different distributions within the histogram
to capture the shape changes. The example shown in Fig 5
has 16 bins for drawing purposes, however in practice we
extract much denser bin sizes.

D. Training

1) Pre-Processing: The training phase consists of map-
ping known ground truth configuration angles with feature
descriptors. First we must collect the raw data from the
sensors. Using the magnetic sensor and a stereo camera

Fig. 5. [Left] The descriptor (for a single camera) is constructed by taking
points along the contour (red) of the snake segment and computing the angle
of each point with respect to the center of the object. The angular bins are
depicted as green lines emanating from the center of the segmented region.
[Right] A densely-binned histogram counts the number of points falling
within each angular bin. The drawing on the left is an example showing 16
bins for space considerations, however in our experiments we looked at 72
(5◦), 120 (3◦), and 360 (1◦) bins per image.
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system, we collect pairs of stereo images Si = {ILi, IRi} and
associated ψi = {θLi,δi} measurements, where i= 1, ...,N for
N discrete training samples.

Each stereo pair Si is mapped to a feature descriptor H̃i =
[HT

Li,H
T
Ri] to represent the shape of the segment on that frame.

Here, HLi is the feature descriptor extracted from the ith left
image, and similarly HRi from the right frame, represented
as a single composite feature vector H̃i ∈ R

m×1.
This gives us an initial training set A =

{(ψ1, H̃1), . . . ,(ψN , H̃N)}. However, each H̃i is quite
high-dimensional, and also may be sparse. Murase and
Nayar [26] show that a compact representation of an
object’s appearance is sufficient for accurate pose estimation
by creating a parametric eigenspace to represent the
appearance. In their case, the images themselves are
projected to a lower-dimensional eigen-subspace. For our
algorithm, we similarly compute the principal components
of the full training set of H̃i samples, noting that this is
done in feature descriptor space rather than on the original
images. In our experiments, we found that we can reduce
the dimensionality quite significantly while still recovering
a large percentage of the variance.

The principal component analysis (PCA) over H̃i yields
a set of orthonormal basis vectors {e1, . . . ,em} ∈ R

m×1. We
choose k < m of these eigenvectors to capture a sufficient
percentage of the variance of the original feature descriptor
training dataset, giving a linear transformation matrix E =
[e1, . . . ,ek]∈R

m×k, where the columns of E are each of the k
basis vectors e representing the top k eigenvalues of the PCA.
We project the original training feature descriptor samples in
A to the eigen-subspace:

Li = ET (H̃i − c) (5)

where c is the mean feature descriptor over all H̃i, and Li ∈
R

k×1. We will call the Li samples eigen-features. This gives
a final training dataset Â = {(ψ1,L1), . . . ,(ψN ,LN)}.

2) Parametric Manifold Interpolation: We assume that
consecutive features are very highly correlated, and so their
projections into the eigen-subspace are close together. Our
experiments are consistent with this assumption (see sec-
tion IV). The discrete points Li describe a smooth parametric
manifold represented in eigen-subspace as:

G(ψ) = L (6)

Depending on the number of degrees-of-freedom (DOFs)
represented by ψ , the shape of G will vary. For example,
if ψ ∈R

1, then G represents a curve in k-dimensional space.
Similarly, if ψ ∈ R

2, G is a surface, and so on. Using our
representation, we obtain a parametric manifold which is
a surface. The discrete samples are used to interpolate this
manifold by performing spline interpolations of ψ to L.

A spline is a piecewise polynomial function which can
be defined on an N-dimensional space to produce a single
function value at each N-dimensional point. In order to fit
points in R

2 to points in R
k, as our manifold describes, we

Fig. 6. The interpolated parametric manifold over the 2-DOF pose angles
ψ , yielding a surface in the feature descriptors eigen-subspace, called eigen-
features. For purposes of drawing, we only show the first 3 dimensions of
the eigen projections.

must perform k 2-dimensional spline fits to each of the eigen-
feature’s output dimensions separately. We use a thin-plate
smoothing spline interpolation of the configuration angles
ψi=1,...,N to the eigen-features Li=1,...,N ∈R

k×1. This gives us
k sets of spline interpolant coefficients G j(ψi) = Li j, where
j = 1, . . . ,k corresponds to the jth eigenvector’s projection
dimension. We then use these interpolant coefficients to re-
sample the manifold at a higher density over ψ’s workspace.
This yields interpolated descriptors which smoothly describe
these estimated configuration angles.

An example of this manifold is shown in Fig. 6 for the first
3 dimensions of the eigen-features, corresponding to the 3
largest eigenvalues. The discrete training samples that were
originally collected (and then projected via PCA) exist as
points on (or close to) this manifold. Finally, the resampled
manifold points are stored in a kd-tree for the querying stage.

E. Querying

Now that we have constructed a densely-sampled manifold
and stored it within an efficient look-up data structure, we
can query unknown configurations in a very straightforward
manner. For any test frame T , we extract the feature H̃T
and using the eigenvector projection matrix E we project H̃T
using (5) to obtain the test eigen-feature LT . We then use the
kd-tree from the interpolated manifold to find the b closest
points on the manifold to LT . In our experiments b = 3,
and each of the b matches provides Euclidean distances dl
in feature space, where l = 1, . . . ,b. We use these distances
to compute weights, representing the contributions each will
make to the final pose estimate, based on proximity in feature
space. The weights wl are computed as:

wl =
1/dl

∑p
1

dp

(7)

The weights contribute as the inverse of the distances in
feature space, so that closer points contribute more than
further points. The denominator in (7) is provided so that
the weights sum to 1. Then a weighted average of the pose
angles that created those interpolated eigen-feature matches
provides the final configuration estimate for H̃T :
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ψT =
b

∑
l=1

wlψl (8)

IV. EXPERIMENTS & RESULTS

A. Accuracy of Pose Estimation

First we evaluate the main part of the algorithm, which
is to estimate the configuration angles ψ using feature de-
scriptors. We used a stereo camera system composed of two
1024x768 resolution color Point Grey Research Dragonfly2
cameras mounted on a tripod. During our experiments, the
cameras and the snake base remained static. The snake
segment was color coded with lime-green markers and we
created a background using printouts of photos from a
laparoscopic procedure. The segment was manually actuated
and the ground truth positions and rotations were collected
by interfacing with the Flock-of-Birds sensor.

1) Training Data: First, we collected stereo image pairs
and associated ground truth rotation measurements. We
choose the first frame of the image stream to construct the
CIELAB color clusters. Then we manually select the label
which corresponds to our marker color. For each subsequent
image, we classify each pixel as described in section III-
B.1. At the same time, we convert all rotation matrices to ψ
configuration angles according to (3) and (4).

These training samples are used to form the initial training
dataset A and then the modified training dataset Â according
to the method described in III-D. The manifold shown in Fig.
6 is the result of this training procedure, again only showing
the first 3-dimensions according to the top 3 eigenvalues from
the PCA projections. For our experiments, we collected 2296
training samples.

We experimented with different dimensionalities of the
feature descriptors extracted from the individual images. We
analyzed bin sizes of 1, 3, and 5 degrees, corresponding to
histogram dimensionalities of 360, 120, and 72, respectively.
Note that in these cases, the composite stereo descriptor
H̃ is twice as long, specifically 720, 240, and 144, re-
spectively. We also experimented with different degrees of
dimensionality-reduction in the PCA step in order to test the
effect of the loss of dimensions to the overall accuracy. In our
experiments, for each of the bin sizes, we looked at different
percentages of variance recovery: 65%, 85%, 90% and 95%.

2) Testing Data: Testing data is collected in the same way
as the training data. For each test measurement T , we create
the feature descriptor H̃T and then the eigen-feature LT using
the projection matrix E obtained from the training data. No
test data was used in the creation of the manifold.

3) Pose Accuracy: Table I shows results of some of
the dimensionality reductions for each of the bin sizes
of our feature descriptors. Because we use a kd-tree for
feature matching on the eigen-features, we want to reduce
this dimensionality for faster matching. In our experiments,
we found the best combination of accuracy and run-time
efficiency occurring with 120-bin feature descriptors reduced
down to 90% variance, resulting in stereo eigen-features L
which reside ∈ R

16. This yielded a configuration accuracy

TABLE I
DIMENSIONALITY REDUCTION

N-bins % Var Dims % Var Dims % Var Dims

72 65 2 85 5 95 19
120 65 2 85 8 95 39
360 65 3 85 39 95 200

with errors of [εδ = 0.98◦,εθL = 1.28◦] over 806 test samples.
With both angles combined together, the overall median pose
error was 1.16◦.

In our experiments, we could not sample a full 360◦
workspace because the snake segment was fixed to a table
so that the base could not move. The workspace of our
experiments consisted of about 1/2 the entire workspace of
the segment, cycling the δ angle 180◦ through its range and θ
approximately 70◦ for each within-plane rotation. We wanted
to ensure that out-of-plane rotations from the imaging plane
are sufficiently captured by means of the stereo system. Even
though the segment bends in a circular arc, due to perspective
effects of camera imaging systems, out-of-plane rotations are
viewed as conic sections rather than circles. Often these can
be difficult to recover by ellipse-fitting methods, and so our
descriptor mapping approach is ideal to avoid these difficult
shape-fitting problems.

4) Occlusions: We also tested our algorithm against oc-
clusions by manipulating a common laparoscopic tool near
the segment, occluding the view from the cameras in a
realistic fashion. Although accuracy degrades slightly, we
are able to achieve errors of [εδ = 1.04◦,εθL = 2.06◦], for
a combined accuracy of 1.46◦. Fig. 1 shows sample images
displaying the kinds of occlusions that were dealt with.

V. DISCUSSIONS

Training Set Size: One important aspect is in the number
of training samples required. Depending on how densely
the workspace is sampled, the accuracy of the manifold
will vary. If we collect a very dense set of configuration
measurements, the problem is reduced to a nearest neighbor
matching problem. A strength of the manifold representation

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0.5
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1.5

2

Training Samples

Er
ro

r [
de
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]
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Fig. 7. The results of randomly permuting different percentages of the
training data to interpolate the parametric manifold and the effect of this on
accuracy. To avoid outliers, the trial for each percentage was done 3 times
and the average error was taken as the result.
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is that if a small number of training samples is used,
the underlying system may still be captured. Fig. 7 shows
this observation where we randomly permuted the training
samples and selected different percentages to interpolate the
manifold and determined the effect on the accuracy. Each
trial was done 3 times to avoid outliers, and the average error
is shown on the y-axis in degrees. We show the error in δ and
θL separately as the blue and red lines, respectively. Note that
even when we only use 15% of the training data (345/2296),
we still obtain reasonable results, proving the strengths of the
manifold method. In this case, a nearest neighbor approach
would be insufficient and the interpolation is required.

Generalizing The Method: It’s important to note that
this method can be extended to interpolate the manifold
parametrically using any DOFs which apply to a robot. To
describe this idea further, suppose that instead of estimating
ψ , we wanted to track the 3D position of the endpoint. In
this case the manifold would be parametric in 3-DOFs (x,
y, z) and this would result in a manifold volume rather than
a surface. We ran this experiment using the same data as
described in section IV, but using positions from the Flock-
of-Birds rather than rotations, and we obtained a median
positional accuracy of 0.97mm. In other words, our method
can be used to accurately measure different aspects of the
robot, depending on the application.

VI. CONCLUSIONS & FUTURE WORK

Closed-loop control of surgical robotic systems require a
feedback loop with high accuracy in order to perform fine-
scaled automated manipulations. Vision is attractive as a low-
cost and safe solution, provided that the measurements can
be accurate enough to achieve these tasks. In this paper, we
have shown a novel method which uses learning to encode
visual features that can accurately represent the configuration
of a continuum robot robustly. We constructed a parametric
manifold which can be indexed in a straightforward fashion
to look-up the configuration angles given a descriptor. The
manifold is accurate even with a small number of training
samples, and is generic enough to represent arbitrary DOFs
of a continuum robot. Future work consists of scaling this
algorithm to multiple segments to replace the magnetic
sensor feedback in [23].
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