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AbstractÐWe describe an automated scene modeling system that consists of

two components operating in an interleaved fashion: an incremental modeler that

builds solid models from range imagery and a sensor planner that analyzes the

resulting model and computes the next sensor position. This planning component

is target-driven and computes sensor positions using model information about the

imaged surfaces and the unexplored space in a scene. The method is shape-

independent and uses a continuous-space representation that preserves the

accuracy of sensed data. It is able to completely acquire a scene by repeatedly

planning sensor positions, utilizing a partial model to determine volumes of

visibility for contiguous areas of unexplored scene. These visibility volumes are

combined with sensor placement constraints to compute sets of occlusion-free

sensor positions that are guaranteed to improve the quality of the model. We show

results for the acquisition of a scene that includes multiple, distinct objects with

high occlusion.

Index TermsÐ3D scene reconstruction, model acquisition, sensor planning,

active vision.

æ

1 INTRODUCTION

TO build accurate and complete 3D models of unknown objects
or scenes, two fundamental issues must be addressed. The first is
how to acquire, model, and integrate noisy and incomplete
sensor data into an accurate model. The second issue is the
problem of planning the next sensor position and orientation
during the modeling process so as to acquire as much new scene
information as possible. We have developed a system that creates
accurate solid models from multiple range scans. Further, we are
able to plan each successive viewpoint to reduce the number of
scans needed to create a model. This planning problem has been
called the Next Best View (NBV) problem and arises naturally in
systems that autonomously investigate and model their sur-
roundings [19]. The application area we are focused on is
recovery of buildings using range scans in cluttered, high
occlusion urban areas, but the methods we describe here are
applicable to other modeling tasks as well.

Previous work in 3D model acquisition from range imagery [6],
[18], [3], [7], [21], whether with small indoor objects or large
outdoor structures such as buildings, has often neglected this
planning component in favor of a large number of images and the
assumption of complete scene sampling. In cluttered environments
such as outdoor, urban scenes, occlusion, and sensor positioning,
costs can be high enough to prohibit exhaustive sensing. Our
method plans the next sensor viewpoint so that each additional
sensing operation recovers object surface that has not yet been
modeled and attempts to reduce the number of sensing operations
to recover a model. Systems without planning tend to use human
interaction or overly large data sets with significant overlap
between them. Given large data set sizes and long image
acquisition times, reducing the number of views while providing

full coverage of the scene is a major goal. It is assumed that in these
environments this reduction will correspond to either improved
model quality or a reduction in total model acquisition time.

Previous solutions to the NBV problem differ in their
representations of unexplored space, their method of utilizing this
representation, or both. Connolly [5] used octrees to model the
workspace and differentiated between sensed and occluded octree
nodes. Planning was either by ray-casting the model from discrete
sensor positions or by using a histogram of normals for unexplored
octree node faces. Surface normal histograms were also used by
Maver and Bajcsy [10] in a method that used polygonal surfaces to
represent regions occluded from the sensor and, therefore, was not
affected by the discretization issues associated with octrees. Whaite
and Ferrie [20] used an uncertainty metric for models composed of
superellipsoids: Ray-casting operations on the model from discrete
sensor positions were used to find the viewpoint that will
maximize the reduction in uncertainty. Banta et al. [2] described
an algorithm that determines a set of viewpoints from an
occupancy grid model by examining regions that have a high
degree of curvature. Again, a ray-casting procedure is used to
choose the best candidate viewpoint. Pito [9] used a mesh surface
model of imaged scene features on which the border elements have
been extended a short distance in the viewing direction, in a sense
modeling limited parts of the scene occlusion. In an inversion of
the ray-casting process, these border elements were used to weight
sensor positions, thus avoiding unnecessary ray-casting opera-
tions. Work by Kutulakos [8] obtained a hypothesis of how an
object surface behaves at the extremal boundary of the model and
then observed its deformation during a change in viewpoint.
Sobh et al. [13] used coarse and fine sensors and domain
knowledge about the scene to determine a hierarchical sensing
plan.

Our previous work in sensor planning computed unoccluded
sensor viewpoints for a set of known features given a model of a
scene, a sensor model, and a set of sensing constraints [1], [17].
However, these methods are only effective for planning to acquire
distinct features on known objects. In this paper, we apply these
techniques to the problem of acquiring an unknown object. We are
able to do this by completely modeling all scene occlusion as well
as the sensed surfaces and determining occlusion-free viewpoints
for portions of the occlusion boundary. For a survey of the sensor
planning literature, see [16].

2 OVERVIEW OF MODEL ACQUISITION

We briefly review our model acquisition system which uses range
images to build accurate 3D models of an object or scene [12]. The
method is an incremental one in which modeling operations may
be interleaved with the planning method that determines the next
sensor position. For each range scan, a mesh surface is formed and
ªsweptº in space to create a solid volume representing both the
imaged object surfaces and the occluded volume (Fig. 1). This is
done by applying an extrusion operator to each triangular mesh
element, sweeping it along the vector of the rangefinder's sensing
axis, until it comes in contact with the boundary of the workspace.
The result is a five-sided triangular prism. A regularized union
operation is applied to the set of prisms, which produces a
polyhedral solid consisting of three sets of surfaces: a mesh-like
surface from the acquired range data, a number of lateral faces
equal to the number of vertices on the boundary of the mesh
derived from the sweeping operation, and a bounding surface that
caps one end. In this method, the occlusion boundary is explicitly
realized as a surface: This feature is important because it causes
each model to be a closed, bounded set and allows application of
the robust analysis and modification functions of solid modeling
techniques. Each surface of this model is tagged as ªimagedº or

1460 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 22, NO. 12, DECEMBER 2000

. M.K. Reed is with Blue Sky Studios, 44 S. Broadway, White Plains, NY
10601. E-mail: reed@blueskystudios.com.

. P.K. Allen is with the Computer Science Department, Columbia
University, 1214 Amsterdam Ave., New York, NY 10027.
E-mail: allen@cs.columbia.edu.

Manuscript received 22 Apr. 1999; revised 12 July 2000; accepted 18 July
2000.
Recommended for acceptance by L.B. Wolff.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number 109671.

0162-8828/00/$10.00 ß 2000 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161442268?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ªocclusion,º depending on the following constraint: when the
angle between the sensing direction and the surface normal is
greater than the ªbreakdown angleº (the maximum inclination of
the sensor with respect to a surface) for the sensor, that surface is
labelled as an occlusion surface. It is these surfaces that drive the
planning process.

Each successive sensing operation results in new information
that must be merged with the current model being built, called the
composite model, by performing a regularized set intersection
operation between the two. The intersection operation propagates
the surface-type tags from surfaces in the individual models
through to the composite model. These tags are key to our
algorithms for planning the next view, as they denote surfaces that
are used as targets in the planning process. The system also has
other important benefits. It places no topological constraints on the
object or sceneÐthere may be multiple objects, objects with holes,
etc. The resulting models are guaranteed to be ªwater-tightº 3D
solids at each step in the process and the method supports
incremental improvement as new views are integrated into the
model.

3 STRATEGIES FOR VIEWPOINT PLANNING

A ªroughº model is acquired first, e.g., from four distinct views
that can then be used to plan the NBV. Deciding the number of
initial views depends on the scene and the task and it may be best
to have user interaction specify this quantity. Once a partial model
is acquired, the planner operates by considering the entire
workspace as the potential location for the next sensor placement
and then constraining this volume until a solution for the next
viewpoint is found. The constraints are represented as volumes in
continuous space which may be combined to form a plan via set
operators. The object of the planning is to maximize the surface
area of the occlusion boundary in the scene that is imaged in each
sensing operation.

There are three constraints that the planner considers. Sensor

imaging constraints are limitations on the imaging of a surface in
the scene due to the sensor's modality or implementation. For
example, if the sensor must be within a certain angle of inclination
with respect to the surface, this produces a constraint on the

representative volume. Scene occlusion constraints are limitations
due to the fact that parts of the current composite model block
some locations in space from viewing the target surface. Finally,
sensor placement constraints limit the range of positions in which
the sensor may be placed. Each of these constraints may be
represented as a volume, called VV imaging; VV occlusion; and VV placement,
respectively.

An overview of the process is shown in Fig. 2. The left column
shows the entire model acquisition process, which is an acquire-
model-integrate-plan loop. The right column shows the steps in
planning. The first step is to select one or more targets. For each
target, the sensor imaging constraint is computed to yield VV imaging.
For each target, potential self-occlusions are determined by testing
scene model surfaces for intersection with any VV imaging. Scene
occlusion constraints, VV occlusion, are then computed for each surface
that may occlude a target. Next, visibility volumes, VV target, which
are the set of sensor positions that may properly image the target,
yet are not occluded by parts of the model, are found. These are
intersected with the sensor placement constraints to find the final
viable positions of the sensor. Usually, more than one target is
being considered, so that there is the possibility of imaging
multiple targets in one sensing operation. In this case, computation
of sensor imaging constraints and sensor occlusion constraints is
done for each target surface from a set of eligible surfaces. A
running example is described next and depicted in Fig. 3,
demonstrating the planning process for a model consisting of
three surfaces: a single target and two occluding surfaces.

3.1 Computing Sensor Imaging Constraints

VV imaging describes the locations from which a sensor can effectively
image one of the target surfaces. The factors that contribute to the
imaging constraints are the modality of the sensor and the
geometric parameters describing its ability to acquire images,
such as breakdown angle �, depth of field, standoff (which
describes the closest the sensor may be to the target), and its range
and resolution. Each of these parameters affect the shape of a
volume representing this constraint. For common sensors, the
volume VV imaging may be quickly generated from a polygonal target
surface by performing an extrusion operator on the surface, in the
direction of the surface normal, with a draft angle equal to the
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Fig. 1. (a) Data points from range scan of video game controller and (b) solid model created from scan showing imaged (light) and occlusion (dark) surfaces. (c) Image of

actual controller and (d) reconstruction of controller from the model at top right and models from two additional viewpoints.



breakdown angle �. Fig. 3a shows the three surfaces and VV imaging

for the target surface assuming a sensor with a 45 degree
breakdown angle.

3.2 Computing Occlusion Constraints

The occlusion constraints further restrict the positioning of the
sensor for a specified target by disallowing all positions in space
from which the target is occluded by any part of the environment.
The surfaces in the current composite model are analyzed to see if
they occlude the sensor from the target. For each surface ii that
potentially occludes the target, a volume OOi is constructed that
represents the space that is disallowed for the sensor. To describe
the entire space from which it is not possible to see the target, it
suffices to compute:

VV occlusion � [
8i i 6� target

OOi �1�

that is, the union of these volumes over all surfaces in the
composite model comprises the space from which it is not possible
to see the target and, hence, captures the occlusion constraints. In
the running example shown in Fig. 3b, VV occlusion is shown for the
two occluding model surfaces. Fig. 3c shows VV target for this scene,
the computation of which is described below. The computation of
OOi for a specific target and model surface i utilizes an algorithm
earlier developed for polygonal feature visibility described in [17],
[15]. It derives a geometric decomposition of space into volumes
from which a specified model feature either can or cannot be fully
imaged by an ideal sensor. If a target surfaceÐthat is, an
ªocclusionº surface in the modelÐis used as a feature, this
algorithm may be used to produce valid viewpoints for any target-
and occluding-surface pair. The resulting occlusion volumes are
then united (via a union operation) as shown above. The polygons
need to be convex which may require a convex decomposition.

3.3 Computing Sensor Placement Constraints

Sensor placement constraints describe the physical locations in
which the sensor may be placed and are typically derived from a
description of the manipulator used to position the sensor. This
may be a six-degree-of-freedom manipulator, in which case the
sensor placement constraint may be represented by a sphere of

finite radius. Many systems built around laser rangefinders use a
turntable to rotate the object and constrain the sensor to one degree
of freedom, usually along a linear path, and this produces a
cylindrically-shaped sensor placement constraint. We have pre-
viously included the resolution constraint for the case of a
2D camera in [14]. Fig. 3d shows VV placement for a model of a sensor
attached to a cartesian manipulator.

3.4 Constraint Integration

The planning process constructs a visibility volume,

Vtarget � Vimaging ÿ Vocclusion; �2�
that describes the set of all sensor positions that have an
unoccluded view of the target for a specified model as shown by
the volume VV target in Fig. 3c. Once this visibility volume has been
computed, it is only necessary to include the constraint repre-
sented by VV placement to determine the plan:

Vplan � Vtarget \ Vplacement: �3�
This integration is shown in Fig. 3d, in which VV target is shown along
with VV placement, which, in this case, models a sensor attached to a
cartesian manipulator.

Each of these constraints is represented volumetrically by a set
in three-dimensional space and a solution may be found by
applying set operators. The final result is a set of points, lines,
surfaces, or volumes that represent admissible viewpoints and
may be the empty set if there is no solution. Fig. 3e shows the final
VV plan, formed by the set intersection in (3). This plan represents the
accessible, unoccluded positions from which the sensor can
properly acquire the target surface.

4 EXAMPLE: CITY SCENE

We now show a planning example of the scene shown in Fig. 4,
which is composed of multiple objects and has extremely high self-
occlusion. These environments are typified by large structures that
encompass a wide range of geometric shapes with significant
occlusion. Our experimental setup, common in laser rangefinder
systems because it maximizes the stability and repeatability of the
rangefinder, allows the manipulator to move the sensor only in the

1462 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 22, NO. 12, DECEMBER 2000

Fig. 2. Overview of the sensor planning process.



world z coordinate, while a turntable rotates the object around the

z axis (cylindrical workspace). The modeling process was initiated

by acquiring four range images 90 degrees apart to produce the

composite model shown in Fig. 5. In this rendering, ªocclusionº

surfaces are shown in solid gray, while ªimagedº surfaces are

shown with their edges visible. Approximately 25 percent of the

entire acquirable model surface is, at this point, composed of

ªocclusionº surface. After decimating these surfaces, the planner

selects the 30 largest by area as targets: Thus, 30 VV target volumes

will be constructed. In Fig. 6, VV target is shown for each of these

surfaces with the initial model at the center to allow the reader to

observe the relative orientations.
These visibility volumes are intersected with VV placement to

compute the sets of occlusion-free sensor positions for the targets,

as shown at the left in Fig. 6. Each intersection, shown as a surface

on the cylindrical VV placement, represents a set of occlusion-free

sensor positions for a specific target: Overlapping regions

represent visibility for multiple targets. In this example, a solution

for the next sensor position is found by testing the continuous-

space plans for intersection with the vertical path of the sensor at

incremental angle "�" = 2 degrees in this example). The results of

this process are shown at the right of Fig. 6 in a ªplanning

histogram,º where the height of each gray bar represents the area

of target surfaces visible from that sensor location. Thus, higher

bars denote desirable sensor locations, lower ones less desirable.

The sensor position is found by selecting the peak in the planning

histogram. After the next range image is acquired, modeled, and

integrated, the planning process is restarted with the next model.

In Fig. 7, the continuous and discrete plans are shown for the next

seven views, resulting in a total of twelve images automatically

acquired, modeled, and integrated. This final model is shown

texture-mapped in Fig. 8. Note that the arches and pillars are

correctly recovered despite the high occlusion.

5 ANALYSIS: MODEL CITY

Table 1 lists measurements of the model during the acquisition

process, which can be used to assess the performance and accuracy

of the system. These measurements include: total volume of the

model (cm3), total model surface area (cm2), occluded area

(cm2)Ðthe total area of all occlusion surfaces, planned area

(cm2)Ðthe total surface area of the targets for which plans have

been generated, and percent target area plannedÐthe surface area

of planned-for targets, as a percentage of the total occlusion surface

area.
As shown in Table 1, the first four views were acquired without

any planning (view zero is just the entire workspace). The total

model volume decreases over time, as, indeed, it must for a system

that uses set intersection for integration and has not duplicated any

sensor viewpoints. The total surface area does not strictly decrease,
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Fig. 3. Constraint integration (a) VV imaging: visibility volume for unoccluded target. (b) VV occlusion: occlusion volumes caused by two model surfaces. (c) VV target: visibility

volume formed by VV imaging ÿ VV occlusion. (d) VV placement: for a cartesian manipulator, shown with VV target. (e) VV plan: (in dark gray) shown with VV placement.



due to an increase in the scene complexity with the integration of
new images. Of particular import is the data in the final column.
Because the plans are computed using a fixed number of surfaces
at each iteration, it is interesting to see what percentage of the total
available target area is being planned for. Clearly, if every target
surface were considered, this would be 100 percent each time.
Even though only 30 of the largest targets by area are planned for,
the percent of the planned area never drops below 10 percent of
the total area and in most cases is over 20 percent. This shows that
the considerable computational cost saved by selecting a subset of
the targets to plan for is a viable strategy. The actual volume of the
city scene has been estimated as 362 cm3, whereas the calculated
model volume is 370 cm3.

The peaks in the planning histogram are very steep. In some
cases, a difference of only a few degrees in sensor placement
causes the viewpoint to be an occluded view and prevents it from
acquiring new information, reflecting the fact that the scene has
high occlusion and viewpoint planning becomes more important.
There is at least one feature that is only visible for a nine degree
region of the sensor placement constraint. Thus, at least 41 images
at equal turntable rotations are needed to guarantee acquisition of
that feature if no view planning is performed, as opposed to
12 images needed with sensor planning. Note, in Fig. 8, the
recovery of the occluded areas behind the columns and arches
which have been recovered correctly with view planning.

The planning component has not yet been optimized and the
time to plan a new sensor viewpoint is approximately 120 minutes
for each of the planned city scenes. This is a factor of 20 greater
than the time required for an unplanned view, which is
approximately six minutes. Although the minimum of 41 un-
planned images necessary to acquire the scene would have been
faster in this situation, it is easy to imagine a situation where this
would not be the case: The break-even point is 29 minutes for
planning, at which point the two methods take the same amount of
time. However, because the viewpoint planning greatly reduces
the number of views (from 41 to 12), it also reduces the amount of
data storage necessary.

6 OTHER CONSIDERATIONS

Planning can be one of the more computationally expensive aspects
of the model acquisition process. It is unclear whether the planning
algorithm, as currently implemented, is as fast as a brute force ray-
casting method. However, in the long run this method will be more
beneficial than ray-casting, particularly since it works in continuous
instead of discrete space. The cost of our method may be drastically
reduced if the computation of the constraints is done in serial
fashion and if information from one constraint is used to reduce the

amount of calculation in the more computationally intensive

calculations. To illustrate this, consider the current costs of

calculating the constraint volumes for a target surface ff :

. Sensor imaging constraint VV imaging : OO�m�, where m = the
number of edges of ff .

. Occlusion constraint VV occlusion: OO�n2�, where n = the
number of occluding surfaces. This calculation is domi-
nated by the cost of unioning the OOi volumes.

. Sensor placement constraint VV placement : OO�1�, as this is
independent of the surfaces in the model and may be
computed off-line.

It is clear that for any real-world situation the most computa-

tionally expensive computation is that of the occlusion constraint.

However, it can be seen that only those surfaces that intersect the

volume described by the sensor imaging constraint need to be

considered1 because no model surfaces outside of that volume may

come between the sensor and the target surface. The sensor

imaging constraint can be calculated very rapidly, because the vast

majority of surfaces in our model are triangular, the rest being

simple polygons with a small number of edges. Thus, if VV imaging is

calculated first and, then used to determine the candidate model

surfaces for the occlusion constraint, a considerable amount of

calculation is avoided. In particular, consider that many of the

target surfaces have no model surfaces that might possibly block

the sensor from them and so the occlusion calculation is avoided

entirely. Candidate model surfaces may be evaluated for possible

occlusion simply by testing if they intersect VV imaging. This ordering

of the application of constraints in no way affects the outcome of

the planning process.
However, in the interest of further reducing the amount of time

spent in the planning process, there are two other optimizations that

do reduce the accuracy of the computed plan: decimating the surface

of the composite model and discretizing the space representing the

sensor placement constraint. These methods reduce the accuracy

because they use approximations to either the model or the

continuous-space plan and, hence, are not exact solutions.
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Fig. 4. The city scene consisting of three toy buildings. Note the archway under the

rightmost building and one of three pillars visible on the leftmost building.

Fig. 5. Composite model of city scene from four sensing operations.

1. Standoff should not be included here because it may prevent the
consideration of occluding surfaces that are closer than the standoff
distance.



Sensor space discretization has been shown previously in the
examples. The decimation of the composite model is performed by
separating the occlusion boundary into targets consisting of
coplanar, convex surfaces via a variant of the Simplification
Envelopes (SE) algorithm [4]. SE is a method that generalizes offset
surfaces to determine an interior and exterior boundary between
which the resulting decimated model must lie and so has the
desirable property of having an absolute bound for the distance
between the original surface and the simplified one. The distance
from these boundaries to the original surface is given as a single real
number input to the algorithm. However, in its original form SE
produces models whose representative sets may be subsets of the
original model and, therefore, may miss some occlusion situations.
To prohibit this effect, in applying the SE method it is necessary to
allow only the use of an exterior offset surface, so that the resulting
simplified model is always a superset of the model from which it is

derived. In addition to this, we have modified the algorithm so that

it retains the surface-type tags which describe the surface elements

as imaged or occluded and disallows any merging process between

them. This is done to ensure that the resulting surfaces are

composed of only one type of modeled surface: It is not clear what

the resulting surface describes if it is due to the merging of an

imaged and an occluded surface. The computational cost of the

decimation is O(n) and, therefore, is fast enough to provide a

substantial benefit without a quantifiable loss of fidelity.
A primary consideration for a system that plans dynamically is

that of determining when planning is no longer needed and the
modeling process is complete. While there are many ways to
compute termination criteria, in essence it is a function of the
application and its needs. A benefit of our method is that at each
step the number and area of occluded and imaged surfaces is
known due to the tagging process and this can be used as the
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Fig. 6. Continuous-space plans for targets (left) and discretization (right) to area-weighted sensor positions.

Fig. 7. Plan generation for views 6-9 (left two columns) and 10-12 (right two columns). Each plan is shown as VV plan in continuous space (to left) and planning histogram



termination criterion. This provides a measure that can be used to
quickly create models at reduced resolution or build a more
detailed and accurate model, depending on user needs.

When acquiring an image that contains a particular surface,
much of the surrounding surfaces are also acquired. Therefore, it
makes sense to consider as targets, those parts of the model with a
high density of occluded surface. ªOccludedº model surface area is
not strictly related to actual unimaged object surface area, as in the
case of a long cylinder, where the scanner cannot image much of
the interior walls, yet is able to acquire the hole and properly
model the object's topology. Because ªoccludedº surfaces usually
lie close to the boundaries of true surfaces, or at worst delimit
unexplored volume in the workspace, using them to guide
exploration is a sound strategy.

For the modeling process, highly reflective surfaces in the scene
can be problematic. In the current implementation, we assume
these regions are relatively small in the image and that their
artifacts may be removed in image preprocessing. Another
limitation of this system is that it considers only total visibility
for each target. It is possible that some solutions are missed where
partial visibility would allow a better result. ªTotal visibilityº in
this context means that every position in the plan can completely
image the target surface. For example, when planning for two
targets, their visibility volumes may be disjoint, meaning that there
are no positions that totally image both targets. However, there
may be positions that partially image both targets and whose total
imaged area is greater than either target individually. A similar

limitation is that, as currently implemented, the system requires

full images of the scenes. This is purely an implementation issue of

the modeling component of the system: The planning process does

not require such images and would operate similarly if the

modeling system were modified to use an alternative method to set

intersection for integration.

7 CONCLUSION

The automated model acquisition method presented in this paper

consists of two components that operate in an interleaved fashion:

An incremental modeler and a sensor planner that analyzes the

resulting model and computes the next sensor position. This

planning component utilizes a partial model to determine volumes

of visibility for contiguous areas of unexplored scene. The visibility

volumes are combined with sensor placement constraints to

compute sets of occlusion-free sensor positions that are guaranteed

to improve the quality of the model. These sets may be intersected to

determine a single best region for the next sensor position, or

discretized if a continuous solution is not necessary. We are

currently equipping a mobile robot base with sensors (both range

and photometric) to automatically acquire models of real buildings

using this system. The system will acquire a partial model from a

small number of viewpoints which will be used both to plan the next

viewpoint and to navigate the mobile sensor base to this position.
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TABLE 1
Model Measurements During Acquisition

Fig. 8. Final texture-mapped city model.
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