
Finding ways to preserve cultural heritage
and historic sites is an important problem.

These sites are subject to erosion and vandalism, and as
long-lived artifacts, they have gone through many phas-
es of construction, damage, and repair. It’s important to
keep an accurate record of these sites’ current condi-
tions by using 3D model building technology, so preser-

vationists can track changes, foresee
structural problems, and allow a
wider audience to virtually see and
tour these sites. Due to the com-
plexity of these sites, building 3D
models is time consuming and diffi-
cult, usually involving much manu-
al effort. Recently, the advent of new
3D range scanning devices has pro-
vided means to preserve these sites
digitally and preserve the historic
record by building accurate geo-
metric and photorealistic 3D mod-
els. This data provides some exciting
possibilities for creating models, but
at the cost of scaling up existing
methods to handle the extremely
large point sets these devices create.
This reinforces the need for auto-
matic methods of registering, merg-

ing, and abstracting the dense range data sets.
Other projects have addressed this and similar prob-

lems.1-6 Each of these projects differs in the way they
create models and in the amount of human interaction
in the process. Our work centers on developing and
automating new methods to recover complete geomet-
ric and photometric models of large sites. We’re devel-
oping methods for data abstraction and compression
through segmentation, 3D-to-3D registration (both
coarse and fine), 2D-to-3D texture mapping of the mod-
els with imagery, and robotic automation of the sensing
task. The methods we’ve developed are also suitable for
a variety of other applications related to large-scale
model building.

One of the test beds for our model-building meth-

ods is the Cathedral Saint-Pierre in Beauvais, France,
which is an endangered structure on the World Mon-
uments Fund’s Most Endangered List (see the sidebar).
We have a number of goals in building our models of
the cathedral:

� establish a baseline model for the cathedral’s current
structural condition,

� create a geometrically accurate 3D model to examine
weaknesses in the building and propose remedies,
and

� visualize the building in previous contexts as an edu-
cational tool.

Registration methods
To create data sets that we can turn into models, we

use a time-of-flight laser scanner (Cyrax 2500) to mea-
sure the distance to points on an object. Data from the
scanner comprises point clouds, with each point com-
prising four coordinates (x, y, z) and a value represent-
ing the amplitude of the laser light reflected back to the
scanner. This fourth coordinate, labeled reflectance
strength value (RSV) is a function of the distance to the
scanned surface, angle of the surface relative to the laser
beam direction, and material properties of the surface.
A scan of 1,000 × 1,000 points takes about 10 minutes.

To acquire data describing an entire structure such as
the cathedral requires taking multiple range scans from
different locations that we must register together cor-
rectly. Although we can register the point clouds manu-
ally, it’s time consuming and error prone. Each range
scan can provide up to 1 million data points (see Figure
1 on p. 34). However, manually visualizing millions of
small points and matching them is quite imprecise and
difficult as the number of scans increases. When possible,
we use specially designed targets or fiducials to help dur-
ing the registration phase. In many cases, such as with
the cathedral, it’s difficult to place targets. This problem
led us to develop our automatic registration methods.

Our registration method is a three-step process.7 The
first step is an automatic pairwise registration between
two overlapping scans. The pairwise registration match-
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es 3D line segments extracted from overlapping range
scans to compute the correct transformation. Next is a
global registration step that tries to align all the scans
using overlapping pairs. The third step is applying a
multi-image simultaneous iterative closest point (ICP)
algorithm8 that does the final fine registration of the
entire data set.

With this data set, we use a range segmentation algo-
rithm that we developed9 to automatically extract pla-
nar regions from the point clouds. Once we have these
planar features, we can create a set of linear 3D features
at the borders of each planar segment. Thus, we convert
a 3D range scan into a set of bounded planes and a set of
finite lines (see Figure 2). By matching these lines we
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The Cathedral Saint-Pierre
The Cathedral Saint-Pierre in Beauvais, France—

commissioned in 1225 by Bishop Milon de
Nanteuil—is an example of high Gothic
architecture (see Figure A). Our team of
architectural historians, computer scientists, and
engineers at Columbia University has begun to
study the fragile structure of the tallest medieval
cathedral in France. This cathedral collapsed twice
in the Middle Ages and continues to pose
problems that threaten its long-term survival.

Although the cathedral survived the heavy
incendiary bombing that destroyed much of
Beauvais during World War II, the structure is as
dangerous as it is glorious, being at risk from flaws
in its original design, compounded by differential
settlement and with stresses placed on its flying
buttresses from gale force winds off the English
Channel. The winds cause the buttresses to
oscillate and have already weakened roof timbers.
Between the 1950s and 1980s, numerous critical
iron ties were removed from the choir buttresses
in a damaging experiment. A temporary tie-and-
brace system installed in the 1990s may have
made the cathedral too rigid, increasing rather
than decreasing stresses upon it. Although
researchers have intensively studied the cathedral,

there continues to be a lack of consensus on how
to conserve the essential visual and structural
integrity of this Gothic wonder. 

With its five-aisled choir intersected by a
towered transept and its great height (keystone
152.5 feet above the pavement), the cathedral
provides an extreme expression of the Gothic
enterprise. Only the magnificent choir and
transepts were completed; the area where the
nave and facade would be is still occupied by the
previous church constructed just before 1000. The
choir was completed by 1272, but in 1284 part of
the central vault collapsed, necessitating extensive
work of consolidation that continued until the
mid-14th century. Closed in with a wooden wall to
the west, the choir remained without a transept or
nave until work resumed in 1499. Completed by
the mid-16th century, the transept was crowned
by an ambitious central spire that allowed the
Gothic cathedral to rival its counterpart in Rome.
The tower collapsed on Ascension Day in 1573.
Repairs were completed rapidly, but soon after
1600, attempts to complete the nave were
abandoned and the unfinished cathedral closed
off with the provisional west wall that has
remained until today.

(1) (2)

A Cathedral Saint-Pierre viewed from (1) the east and (2) the south. 



can find the correct registration between scans.
After the segmentation step, we extract the following

elements from the point clouds: planar regions P, outer
and inner borders of those planar regions Bout and Bin,
outer and inner 3D border lines Lin and Lout (defining the
borders of the planar regions), and 3D lines of intersec-
tion I at the Boolean intersection of the planar regions.
Border lines are represented by their two endpoints
(pstart, pend), and by the plane ∏ on which they lie. That
is, each border line has an associated line direction and
an associated supporting plane ∏. In more detail, we
represent each border line as a tuple (pstart, pend, pid, n,
psize), where pid is a unique identifier of its supporting
plane ∏, n is the normal of ∏, and psize is the size of ∏.
We estimate the planes’ size by using the number of
range points on the plane, the plane’s computed dis-
tance from the coordinate system’s origin, and the plane
normal. The additional information associated with
each line greatly helps the automated registration.

Pairwise registration
To automatically register a pair of overlapping range

scans S1 and S2, we need to solve for rotation matrix R
and translation vector T = [Tx, Ty, Tz]T that place the two
scans in the same coordinate system. Figure 3 shows the

algorithm’s flowchart. The features
that the segmentation algorithm
extracted are automatically matched
and verified to compute the best
rigid transformation between the
two scans. The input to the algo-
rithm is a set of lines with associated
planes from the segmentation step.
Let’s call scan S1 the left scan and
scan S2 the right scan. Each left line
l is represented with the tuple (pstart,
pend, pid, n, psize), and each right line
r with the tuple (p′start, p′end, p′id, n′,
p′size). The algorithm has four stages.

At a preprocessing step, the algo-
rithm filters out pairs whose ratios
of lengths and plane sizes psize, p′size

are smaller than a threshold. Even
though the scanner doesn’t identi-
cally acquire the overlapping parts
of the two scans (because of occlu-
sion and noise), the data is accurate

enough for the extracted matching lines to have similar
lengths and positions and the matching planes similar
sizes. After some experimentation we found thresholds
that worked on all pairs of scans, giving results of simi-
lar quality. Next, the algorithm sorts all possible pairs
of left and right lines (l, r) in lexicographic order.

At Stage 1, the algorithm gets the next not visited pair
of lines (l1, r1). It computes the rotation matrix R and
estimates the translation Test assuming the match (l1,
r1). Each line is a boundary segment of an associated
plane. Hence, we can also use the information about the
planes (that is, their normals) to create enough con-
straints to fully determine the rotation matrix.

Next, the algorithm applies the computed rotation R
to all pairs (l, r) with l > l1. It rejects all line pairs whose
directions and normals don’t match after the rotation. If
the number of remaining matches is less than the cur-
rent maximum number of matches, then Stage 1 is
repeated. Otherwise, accept the match between lines
(l1, r1) and their associated planes.

Stage 2 gets the next pair (l2, r2) from the remaining
pairs of lines. It rejects the match if it isn’t compatible
with the estimated translation Test. Otherwise, it com-
putes an exact translation T from the two pairs (l1, r1)
and (l2, r2). Next, it verifies that the two line pairs and
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1 (a) Single
dense range
scan of the
cathedral
(approximately
1 million
points). 
(b) Detail of the
scan.

(a) (b)

2 (a) Segmentation detail in a scan of the cathedral data set. Different colors represent differ-
ent planes. The red color corresponds to the unsegmented (nonplanar) parts of the scene. 
(b) Registration of lines between a pair of overlapping scans of the cathedral: left lines (white),
right lines (blue), and matched lines (red and green). Due to the overlap of the matched lines,
sometimes only the red or the green component dominates.

(a) (b)



their associated plane normals cor-
respond after applying the transla-
tion T. The algorithm then accepts
(l2, r2) as the second match.

Stage 3 grades the computed
transformation (R, T) by trans-
forming all valid left lines to the
coordinate system of the right scan
and counting the absolute number
of valid pairs that correspond. The
algorithm then moves to Stage 1.

At Stage 4, after all possible com-
binations of valid pairs have been
exhausted, the algorithm recom-
putes the best transform (R, T) by
using all matched lines.

The pairwise registration algo-
rithm efficiently computes the best
rigid transformation (R, T) between
a pair of overlapping scans S1 and S2.
This transformation has an associ-
ated grade g(R, T) that equals the
total number of line matches after
applying the transformation. Note
that the grade is small if no overlap
exists between the scans.

Generally, a solution to the prob-
lem is possible if the algorithm finds
two pairs of matched lines between
the two scans S1 and S2. Using these
two matched pairs, a closed-form
formula10 provides the desired transformation (R, T).
That means that a blind hypothesis-and-test approach
would have to consider all possible 

pairs of lines, where N and M are the number of lines
from scans S1 and S2, respectively. Such an approach is
impractical due to the size of the search space to be
explored. For each pair of lines, we’d need to compute
the transformation (R, T) and then verify the transfor-
mation by transforming all lines from scan S1 to the coor-
dinate system of scan S2. The verification step is an
expensive O(M N) operation. With our method, we need
only to consider a fraction of this search space. For more
information see Stamos and Leordeanu.7

Global registration
In a typical scanning session, tens or hundreds of

range scans must be registered. Calculating all possible
pairwise registrations is impractical because it leads to
a combinatorial explosion (see Figure 4, next page). In
our system, the user provides a list of overlapping pairs
of scans, which reduces the number of possible pairings.
From this reduced list we can compute all pairwise
transformations. Then, the system selects the rightmost
scan from the graph (a better approach would be to
select a node at the center of the graph) to be the anchor
scan Sa. Finally, all other scans S are registered with

respect to the anchor Sa. In the final step, we can reject
paths of pairwise transformations that contain regis-
trations of lower confidence.

In more detail, our system computes the rigid trans-
formations (Ri, Ti) and their associated grades g(Ri, Ti)
between each pair of overlapping scans. In this manner,
the system constructs a weighted undirected graph. The
graph’s nodes are the individual scans, and the edges
are the transformations between scans. Finally, the
grades g(Ri, Ti) are the weights associated with each
edge. More than one path of pairwise transformations
can exist between a scan S and the anchor Sa. Our system
uses a Dijkstra-type algorithm to compute the most
robust transformation path from S to Sa. If p1 and p2 are
two different paths from S to Sa, then p1 is more robust
than p2 if the cheapest edge on p1 has a larger weight
than the cheapest edge of p2. This is the case because
the cheapest edge on the path corresponds to the pair-
wise transformation of lowest confidence (the smaller
the weight the smaller the overlap between scans). In
this manner, our algorithm uses all possible paths of
pairwise registrations between S and Sa to find the path
of maximum confidence. This strategy can reject weak
overlaps between scans that could affect the quality of
the global registration between scans.

Simultaneous registration of multiple range
images

Once the system registers the range images using the
automatic method previously discussed, it uses a refined
ICP algorithm to simultaneously register multiple range
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Plane and line
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3 Flowchart for automatic registration between a pair of overlapping range scans.



images to provide the final registration. This is an extend-
ed method of the one proposed by Nishino and Ikeuchi.11

Their work extends the basic pairwise ICP algorithm to
simultaneously register multiple range images. In our
approach, an error function is minimized globally against
all range images. The error function uses an estimator
that robustly rejects the outliers and can be minimized
efficiently using a conjugate gradient search framework.
To speed up the registration process, the algorithm uses
a K-D tree structure to reduce the search time for the
matched point. ICP type algorithms work by matching
the closest point in one scan to another scan. If the match-
es are predicated only on point-to-point geometric dis-
tance, the algorithm can sometimes cause misalignment.
Additional information to suggest better matches is
required. For this purpose, the algorithm uses the laser
RSV. The idea is that points that are close will have simi-
lar RSV values. To find a best match point of a model
point, the algorithm searches for multiple closest points
in the K-D tree. Then it evaluates the RSV distance (to the

model point) for each of them to get the closest point.
Once correspondences are made, we can iteratively find
the correct transformation matrices for the data points.

The data set for the cathedral contains more than 100
scans, requiring significant computational resources and
time to register these scans with full resolution. There-
fore, we subsample those scans down to 1/25 of their
original resolution to speed up the registration process.
Figure 5 shows the results of applying the algorithm on
two coarsely registered scans. The column, which is mis-
aligned initially, is correctly aligned after the procedure
(see Figure 5b).

Registration results
We first tested our methods on scans from the

Thomas Hunter building at Hunter College in New York
(referred to as the campus data set) and then on the
cathedral data set. The scans have a nominal accuracy
of 6 millimeters along the laser-beam direction at a dis-
tance of 50 meters from the scanner. We first segment-
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4 (a) Global registration problem. We need to correctly register all scans of the cathedral. (b) Graph of 27 registered scans of the
cathedral data set. The nodes correspond to the individual range scans. The edges show pairwise registrations. The weights on the
edges show the number of matched lines that the pairwise registration algorithm provides. The directed edges show the paths from
each scan to the pivot scan that’s used as an anchor.
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tion. Note
column mis-
alignment in (a)
has been
corrected.



ed each scan and extracted major
planes and lines from the scans. We
executed the pairwise registration
algorithm on pairs of overlapping
scans. In the final step, we used the
global registration algorithm. Fig-
ure 6 shows the results from the
campus building: our system auto-
matically registered 10 range scans.
Figure 7 shows registration for 27
scans of the cathedral. Figure 7a
shows the registration, the rela-
tionship of each scanner position in
the registered model, and colored
segments used in the registration
process. Figure 7b is a closeup of the
registration around the central win-
dow, showing the accuracy of the
alignment.

Tables 1 and 2 (next page) provide an extensive eval-
uation of our algorithm’s efficiency and accuracy. The
percentage of line pairs that survive after preprocessing
and reach algorithm Stages 2 and 3 demonstrate the
algorithm’s efficiency. Few lines need to be considered
at the expensive Stage 3. The running times range from
3 to 52 seconds (on a 2-GHz Linux machine) per pair,
depending on the input size and on the amount of over-
lap. The tables also show the measured pairwise regis-
tration error. This error is the average distance between
matched planes lying on the surface of the scans. The
error ranges from 1.36 mm to 14.96 mm for the campus
data set (see Table 1) and from 5.34 mm to 56.08 mm
for the cathedral (see Table 2). The average error over
all 10 scans of the campus data set is 7.4 mm and over all
27 scans of the cathedral data set is 17.3 mm.

Each table shows a set of pairwise registrations. The
rows represent one registered pair of scans. The second
column displays the number of line pairs. The prepro-
cessing column shows the percentage (over all possible
pairs) of line pairs that must be considered after the pre-
processing step of the algorithm. The percent reaching
Stage 2 and 3, respectively, show the percentage (over

all possible combinations) and total number of pairs that
reach Stage 2 and 3. Matches present the number of
matched pairs that the algorithm establishes. The run
time of the algorithm is shown for every pair (on a 2-
GHz Linux machine). Finally, the pairwise registration
error is the average distance between matched planar
region between the two scans.

Note that the errors are small if we consider the
spatial extent of the 3D data sets. The larger errors in
the cathedral data set result from the scans’ lower spa-
tial resolution (larger distance between scan lines).
The error also increases with the grazing angle
between the scan direction and the scanned surface.
This level of initial registration is adequate for our
modeling task, and we can accomplish finer registra-
tion through ICP.

However, the algorithm will fail in some cases. If few
linear features exist in the scene, matches aren’t possi-
ble. We don’t find this in urban settings, though, which
contain rich sets of linear features. Scene symmetry can
also introduce false matches. This isn’t an inherent lim-
itation of this particular algorithm, but is a problem
with all registration algorithms. We should give extra
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6 Campus site. (a) Ten automatically registered scans. Each scan is represented with a different
color. (b) Registration detail.

(a) (b)

(a) (b)

7 Cathedral site. (a) Three-dimensional mesh after placing 27 scans in the same coordinate system. Segments
used in the registration are colored. The local coordinate system of each individual scan is shown. The z-axis of
each scan points toward the cathedral. (b) Registration detail.



constraints in this case (that is, the user can specify that
the rotation and translation should be within certain
limits, or the user can add extra point constraints).

We constructed a comprehensive model of the cathe-
dral made up of data from all the scans. The resulting
model is large and visualizing the entire model can be dif-
ficult. Figure 8 shows the model from different views. For
these models, we registered 120 scans on the inside of
the cathedral and 47 on the outside. The outside scans
were registered automatically except for seven, where we
manually added a single extra point constraint to assist
the automatic procedure in overcoming symmetries. The
inside scans were first coarsely registered manually,
before we developed our automatic methods, and were
quite time consuming. We then ran our simultaneous ICP
algorithm to substantially improve the registration. A 3D
video fly-through animation of the model is available at
http://www.cs.columbia.edu/~allen/BEAUVAIS.

Texture mapping
The range data let us build a geometrically correct

model. For photorealistic results we mapped intensity
images to the polygon meshes. The input to the texture
mapping stage is a point cloud, a triangular mesh cor-
responding to the point cloud, and a 2D image. We gen-
erated the triangular mesh using the topology of the
points the scanner acquired, providing a 2D grid for each
set of scanned 3D points. Due to the size of the point
sets, we decimate them before building the mesh.

Once we build the mesh, a user manually selects a set
of corresponding points from the point cloud and the
2D image (we use the points to compute a projection
matrix P that transforms world coordinates to image
coordinates). Let (Xi, xi) be a pair of 3D and 2D homo-
geneous point correspondences, with Xi and xi of the
form (Xi, Yi, Zi, Wi) and (xi, yi, wi) respectively. Each pair
provides the following two equations:

where each Pi is a row of P. By stacking up the equations
derived from a set of n pairs, we obtain a 2n × 12 matrix
A. The solution vector p of the set of equations Ap = 0
contains the entries of the matrix P. We need at least six
point correspondences to obtain a unique solution. In
practice, we use an over-determined system, which we
solve using the singular value decomposition of matrix
A. Prior to solving the system of equations, we normal-
ize both 3D and 2D points to improve numerical stabil-
ity. This normalization consists of a translation and
scaling step; both 2D and 3D points are translated so
that their centroid is at the origin and then scaled so that
the root-mean-squared distance to the new origin of the
point sets is √2 and √3, respectively.

Once we obtain the projection matrix P, we compute
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Table 2. Performance of our algorithm on the cathedral.

Survive Reach Reach 
Line Preprocessing Stage 2 Stage 3 Runtime Error 

Pair Pairs (%) (%/number) (%/number) Matches (Seconds) (mm)

1 406 × 464 7 0.9/1650 0.3/615 42 39 9.37
2 464 × 269 7 0.7/888 0.3/443 34 16 16.9 
3 406 × 269 11 0.7/794 0.1/104 13 9 56.08 
4 151 × 406 21 1.1/668 0.8/480 16 7 5.34
5 269 × 387 11 0.7/702 0.4/369 19 9 15.8
6 326 × 197 10 0.9/597 0.1/49 24 4 11.68
7 197 × 143 15 1.0/290 0.3/82 30 3 6.44
8 143 × 194 16 1.9/520 0.1/31 11 3 29.24
9 194 × 356 15 2.0/1429 0.1/93 19 11 30.82

Table 1. Performance of our algorithm on the campus building.

Survive Reach Reach 
Line Preprocessing Stage 2 Stage 3 Runtime Error 

Pair Pairs (%) (%/number) (%/number) Matches (Seconds) (mm)

1 301 × 303 16 1.7/1555 0.38/346 35 15 10.99
2 303 × 290 17 2.8/2429 0.84/735 25 29 6.28
3 290 × 317 21 2.8/2572 1.88/1728 36 52 2.77
4 317 × 180 19 3.4/1955 1.15/656 28 21 14.96
5 211 × 180 21 4.6/1759 2.1/802 31 19 9.26
6 180 × 274 17 2.6/1306 0.34/168 22 9 11.42
7 114 × 274 19 1.6/507 2.2/894 33 6 5.61 
8 274 × 138 16 1.8/667 1.5/557 31 5 3.08 
9 114 × 138 18 2.7/423 3.8/593 32 4 3.94 

10 138 × 247 18 2.3/791 1.3/429 20 5 1.36



a visibility function V (P, Ti) → 0, 1 for each mesh tri-
angle Ti in the model. The function evaluates to 1 when
all three vertices of Ti are visible from the point of view
of the camera described by P and 0 otherwise.

We can also compute the matrix P from a 3D and 2D
line correspondence or a mixture of both, points and
lines. We’re currently working on computing P using
line correspondences so that we can later make this
process automatic following the ideas of the range-to-

range registration described earlier. Figure 9 shows a
textured mesh model of the cathedral from a number
of views.

Conclusions
As the cost of range scanning devices continues to

decrease, we can expect to see the creation of more
large-scale models. The tools and methods we’ve devel-
oped show promise in automating the registration task,
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8 Top row:
Exterior model
with 47 regis-
tered scans.
Middle and
bottom rows:
Interior model
(viewed from
outside and
inside) with 120
registered
scans.



both for 3D to 3D and 2D to 3D. The major challenges
are the extremely large size of each data set and the need
to build complete models that integrate multiple views.
The methods described here are helpful in a number of
ways. First, the segmentation algorithm9 lets us reduce
the data set size and create linear features that can be
efficiently matched for initial registration. Once these
data sets are pairwise registered, we can find a globally
consistent registration using a topological graph that
minimizes error. We can then use the ICP algorithm to
create a final registration. Using these registered data
sets, we can create meshes for texture mapping and pho-
torealistic viewing.

However, we still have some problems to solve. These
include automating the data acquisition task, view plan-
ning to select the best viewpoints, and real-time model
creation and visualization. We believe this is a rich
research area, with application to virtual reality, telep-
resence, digital cinematography, digital archaeology,
journalism, and urban planning. �
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