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Abstract

Noise Robust Pitch Tracking by Subband
Autocorrelation Classification

Byung Suk Lee

Speech pitch tracking is one of the elementary tasks of the Computational Audi-

tory Scene Analysis (CASA). While a human can easily listen to the voiced pitch in

highly noisy recordings, the performance of automatic speech pitch tracking degrades

in unknown noisy audio conditions. Traditional pitch trackers use either autocorre-

lation or the Fourier transform to calculate periodicity, which works well for clean

recordings. For noisy recordings, however, the accuracy of these pitch trackers de-

grades in general. For example, the information in parts of the frequency spectrum

may be lost due to analog radio band transmission and/or contain additive noise of

various kinds.

Instead of explicitly using the most obvious features of autocorrelation, we propose

a trained classifier-based approach, which we call Subband Autocorrelation Classifi-

cation (SAcC). A multi-layer perceptron (MLP) classifier is trained on the principal

components of the autocorrelations of subbands from an auditory filterbank. The out-

put of the MLP classifier is temporally smoothed to produce the pitch track by finding

the Viterbi path of a Hidden Markov Model (HMM). Training on various types of

noisy speech recordings leads to a great increase in performance over state-of-the-art

algorithms, according to both the traditional Gross Pitch Error (GPE) measure, and

a proposed novel Pitch Tracking Error (PTE) which more fully reflects the accuracy

of both pitch estimation/extraction and voicing detection in a single measure.

To verify the generalization and specificity of SAcC, we test SAcC on a real world



problem that has a large-scale noisy speech corpus. The data is from the DARPA

Robust Automatic Transcription of Speech (RATS) program. The experiments on

the performance evaluation of SAcC pitch tracking confirm the generalization power

of SAcC across various unknown noise conditions and distinct speech corpora. We

also report the use of SAcC output adds a significant improvement to a Speaker

Identification (SID) system for RATS as well, suggesting the potential contribution

of SAcC pitch tracking in the higher-level tasks.
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Chapter 1. Introduction 1

Chapter 1

Introduction

As the number of portable devices with recording capabilities and large storage ca-

pacities increases, people have more and more unanalyzed and unlabeled audio data

in uncontrolled acoustic conditions, mostly noisier than studio recordings. Often, the

speech portion of the audio is of interest. Pitch is a recognizable trait that can be

used to track or locate voiced speech in audio. In this thesis, we develop methods

that identify voiced speech and estimate the corresponding fundamental frequency

for various types of noisy recordings, i.e. noise robust pitch tracking methods.

Pitch is an important characteristic of speech, and determining pitch is important

in analyzing speech signals. The definition of pitch can vary depending on the context.

In this work, pitch refers to the fundamental frequency f0 of the voiced speech.

Figure 1.1 shows an example audio signal of a clean speech at a sampling rate of

16 kHz: (a) waveform, (b) autocorrelation, and (c) spectrogram (pitch in green dots).

The waveform shows repeated patterns over time; the period of these repeated pattern

corresponds to the fundamental period. The period of the pattern is 7.7 ms (130 Hz)

in the beginning of speech and is 6.7 ms (150 Hz) in the end. As we will discuss in

more detail in the next chapter, autocorrelation and spectrogram corresponds to two

major ways to find the pitch, the time-domain and the frequency-domain methods.

Both autocorrelation and the Fourier transform are calculated every 10 ms. The
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Figure 1.1: An example audio signal of a clean speech at a sampling rate of 16 kHz:

(a) waveform, (b) autocorrelation, and (c) spectrogram (pitch in green dots).

ground truth pitches are also shown every 10 ms. In the spectrogram, green dots at 0

Hz indicate the non-pitch frames. On the other hand, in autocorrelation, the largest

lag, 400, corresponds to 40 Hz, not 0 Hz; hence, there is no green dots for unvoiced

frames in Figure 1.1 (b). The 10 ground truth pitch values, highlighted with green

dots, start around 130 Hz and end around at 150 Hz, both in the autocorrelation and

in the spectrogram.

The autocorrelation shows clear peaks (the darker color is, the higher the auto-

correlation value is.) at pitches. But, there are peaks at multiple lags of the pitch,

which corresponds to the submultiples of f0. We can also observe weaker peaks at

sub-multiples of pitch period, which corresponds to the harmonics of f0. When these

non-f0 peaks are stronger than f0, the “octave error” occurs. The “octave error” refers

to the incorrect pitch recognition at multiples or submultiples of the true fundamental

frequency/period. The spectrogram also shows repeated peaks at the multiples of f0,
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the harmonics. It is not intuitively clear why the harmonics exist. When the repeated

pattern is not a pure (sine or cosine) tone, the signal is represented by combination

of f0 and the multiples of f0 (harmonics) by the Fourier analysis. This effect is shown

as the harmonics in the spectrogram. It is another source of “octave error” at the

multiples of f0.

There are several computational tasks related to pitch. The tasks that will be

studied in this work are Voice Activity Detection (VAD), pitch estimation, and pitch

tracking. In this thesis, we use the following definitions of these pitch-related tasks.

• Voice Activity Detection (VAD) refers to determining whether the audio con-

tains voiced speech or not.

• Pitch estimation refers to estimating the f0 of voiced speech in audio. A pitch

estimation algorithm will typically report some estimate of pitch even when no

voicing is present. In addition to the pitch estimation, the algorithm may report

the pitch strength, indicating how certain the pitch estimation is. Usually,

the pitch strength output is not the best single value to perform VAD, hence

the VAD performance based on this pitch strength is worse than specifically

designed VAD algorithms.

• Pitch tracking refers to performing both pitch estimation and VAD at the same

time. The point of distinguishing pitch tracking and pitch estimation is that

pitch tracking focuses estimating f0 only on the voiced speech, in contrast, pitch

estimation focuses more on estimating the pitch for the entire input audio. This

thesis focuses on this pitch tracking aspect.

1.1 Motivation

Among many applications of pitch tracking, our direct application was to obtain ro-

bust speech pitch tracks automatically within large-scale unlabeled recordings such
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Figure 1.2: The audio signal and the spectrogram (pitch in green dots) of a clean

speech example.

as user-generated audio content and communications intercepts. In such recordings,

the audio is often corrupted by additive noise and/or communication channel degra-

dation.

Traditional pitch trackers use either autocorrelation or the Fourier transform to

calculate periodicity, which works well for clean recordings. For noisy recordings,

however, the accuracy of pitch trackers degrades in general. For example, some of

the frequency regions could be lost due to radio band transmission1 and/or contain

additive noise of various kinds. While autocorrelation is a useful technique for detect-

ing periodicity, autocorrelation peaks suffer ambiguity, leading to the classic “octave

error” in pitch tracking. Moreover, additive noise can affect autocorrelation in ways

that are difficult to model.

1Radio band transmission in this thesis refers to analog modulation, not digital wireless.
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Figure 1.3: The audio signal and the spectrogram (pitch in green dots) of a noisy

speech example.

Figure 1.2 shows the waveform, spectrogram, and ground-truth pitch for a clean

speech example. Figure 1.3 shows the same example corrupted by a simulated radio

channel. The audio in Figure 1.3 is both bandlimited (processed to simulate a nar-

rowband radio channel) and mixed with additive pink noise. Comparing Figure 1.2

and 1.3, the spectrograms show the fundamental frequency f0 and a few harmonics

are lost, making the pitch tracking a challenge.

The first idea for a noise robust pitch tracker pursued in this work was to build

pitch tracking systems based on trained classifiers, rather than using heuristics to

identify specific peaks in the spectrum or autocorrelation. Our approach, based on

the trained classifiers, is expected to adapt to the specific noisy conditions and to

generalize for unseen noise conditions as well. The second idea is using subband in-

formation selectively. Pitch tracking based on subband autocorrelation is likely to
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be relatively robust to various noisy audio (including the radio transmission degra-

dation) when compared to a full-band (single band) algorithm. These ideas resulted

two pitch tracking systems.

In developing the noise robust pitch tracker, we found that principal components

of subband autocorrelation are a reliable feature for various pitch-related classification

tasks. In evaluating the pitch tracker, we proposed a novel performance measure for

pitch tracking.

1.2 Contribution

The key contributions of this thesis are the following.

• Subband Autocorrelation PCA Feature

Instead of using the autocorrelation of the full-band signal, subband (multi-

band) autocorrelation is able to find periodicity in noisy conditions. Subband

autocorrelation, however, is very high dimensional and probably is redundant.

To overcome these drawbacks, we propose to use a low-dimensional principal

component analysis of subband autocorrelation as features for classification-

based pitch tracking.

• Pitch Tracking Algorithms

We propose two systems based on two ideas (1) subband autocorrelation PCA

features and (2) classification. The first system, Subband Selection (SubSel),

selectively aggregates the subband autocorrelation trained on pitch information

in the subbands. The second system, Subband Autocorrelation Classification

(SAcC), calculates pitch observations directly by classifiers on subband auto-

correlation PCA features. Because our proposed SAcC algorithm involves a

simple, trained classification stage, it can be optimized for particular speech

conditions.
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• Performance Measure

Gross Pitch Error (GPE) is the standard measure reported in previous works.

To properly represent the performance of pitch tracking according to its defi-

nition, we propose a new measure, Pitch Tracking Error (PTE), which reflects

errors both during the voiced portion and the unvoiced portion.

1.3 Organization

In Chapter 2, the background of the thesis is given. The related algorithms, YIN and

the Wu algorithm, are described in detail.

In Chapter 3, the first approach toward the classification-driven pitch tracker

using subband autocorrelation PCA features, the Subband Selection (SubSel) pitch

tracking is presented.

In Chapter 4, a more radical approach, the pitch tracking by Subband Autocorrelation

Classification (SAcC), is presented.

In Chapter 5, applications of SAcC pitch tracker on a real world problem with a

large-scale speech corpus with various unknown noise conditions are described.

In Chapter 6, we draw the conclusions and outline the future work.
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Chapter 2

Background

This chapter provides the background for the topics covered in this thesis. Section 2.1

give introduction to the pitch tracking. Section 2.2 describes two related works on

pitch tracking in detail.

2.1 Introduction

The pitch of speech is an important characteristic and has a very long history of

study in literature, hence we do not attempt to provide a comprehensive review. For

a more complete description of computational methods to find speech pitch, please

see to the following references [Gold et al., 2011; de Cheveign, 2005].

2.1.1 What is pitch?

Human perception of pitch is a psychoacoustic phenomenon. Understanding of the

pitch perception process is yet incomplete: this psychoacoustic definition of pitch of

speech is subjective. For computational pitch analysis, pitch refers to the fundamental

frequency f0 of harmonic structure in the spectrum, so that it can be measured

objectively.
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Transform-domain Time-domain

Full-band

(Single-band)

SWIPE′ [Camacho and Harris, 2008],

Klapuri 06 [Klapuri, 2006],

Chu [Chu and Alwan, 2012]

Talkin [Talkin, 1995],

YIN [de Cheveigne and Kawahara, 2002]

Subband

(Multi-band)

Klapuri 08 [Klapuri, 2008],

Tan [Tan and Alwan, 2011],

Sha [Sha et al., 2004]

Wu [Wu et al., 2003]

Table 2.1: Representative pitch estimators.

2.1.2 Computational approaches to finding pitch

Because speech is so important to humans, the development of computer algorithms

imitating the human auditory system started with the advent of the programmable

modern computer era [Licklider, 1951; Slaney and Lyon, 1990; Meddis and Hewitt,

1991]. Pitch estimation algorithms have a long history in various applications such

as speech coding and extracting information, as well as other domains such as bioa-

coustics and music signal processing.

Pitch detection was loosely defined: it means finding the pitch in speech. Pitch

estimation, on the other hand, focuses on estimating the pitch as close to the ground

truth as possible. Pitch tracking performs pitch estimation and voicing detection

(VAD) at the same time. The precise definitions of Voice Activity Detection (VAD),

pitch estimation, and pitch tracking used in this thesis are given in chapter 1.

Computational approaches to finding the pitch of speech have been studied ex-

tensively. In finding periodicity, there are two basic approaches—time-domain meth-

ods which utilize autocorrelation-like operations [Wu et al., 2003; de Cheveigne and

Kawahara, 2002]; and frequency-domain methods that rely on Fourier transform-like

operations [Klapuri, 2008; Tolonen and Karjalainen, 2000]. The use of an auditory

filterbank inspired by the human auditory physiology led to harnessing of subband

(multi-band) information [Licklider, 1951; Meddis and Hewitt, 1991]. Some represen-

tative pitch estimators are shown in Table 2.1.
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The input of the pitch tracking/detection algorithm is sampled digital audio. The

pitch output, usually in the fundamental frequency f0 (Hz) or in the period (ms), is

generated typically every 10 ms. For pitch tracking algorithms, zero output values

typically indicate unvoiced audio. The ground truth pitch is also generated every 10

ms and uses zero value for the unvoiced portion.

2.1.3 Time-domain approach

Time-domain approaches use a self-similarity measure to find pitch in the signal such

as autocorrelation

rt (τ) =
t+W∑
t′=t

a[t′]a[t′ + τ ] (2.1)

or the squared difference function

dt (τ) =
t+W∑
t′=t

(a[t′]− a[t′ + τ ])
2

(2.2)

where a[n] is a sampled digital audio signal with the time index (integer) n at a

specific sampling rate (SR). For example, at a 16 kHz sampling rate (SR = 16 kHz),

each index increment in n corresponds to 0.0625 ms (milli-second) in physical time.

Autocorrelation has been a successful basis both for predicting human pitch per-

ception [Licklider, 1951; Slaney and Lyon, 1990; Meddis and Hewitt, 1991], and for

machine pitch tracking. The “robust algorithm for pitch tracking” (RAPT) algo-

rithm is based on normalized cross-correlation [Talkin, 1995]. RAPT is a basis for

the get f0 pitch tracker software that is very popular in speech processing.

YIN is a very efficient and effective pitch detection algorithm that operates on full-

band (as a single-band) as opposed to subbands (or multi-band) [de Cheveigne and

Kawahara, 2002]. Nakatani and Irino proposed a f0 estimator based on instantaneous

frequencies [Nakatani and Irino, 2004].

Subband autocorrelation, obtained with multiple bandpass filters and autocor-

relation, resulted more robust pitch estimation. Tolonen and Karjalainen proposed
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a real-time time-domain pitch analysis using two channel filterbank [Tolonen and

Karjalainen, 2000]. Wu, Wang, and Brown proposed a robust multi-pitch tracking

algorithm (referred to as the Wu algorithm in this paper) that integrates subband

autocorrelation information [Wu et al., 2003].

2.1.4 Frequency-domain approach

Frequency-domain approaches use variants of the Fourier transform to analyze the

frequency components of audio with a goal of finding the fundamental frequency, f0.

For the fullband algorithms, Joho et al. proposed a three-stage pitch tracking

system by connecting the partial pitch contours obtained by HMM tracking of the

Non-Negative Factorization (NMF) pitch estimation [Joho et al., 2007]. The Sawtooth

Waveform Inspired Pitch Estimator (SWIPE) finds F0 that gives most significant

harmonics peak-to-valley ratio by calculating the normalized inner product of the

cosine kernel with the frequency-warped square-root of the hann-windowed spectrum

with Harmonic weighting [Camacho and Harris, 2008; Camacho, 2007]. SWIPE′

(SWIPE-PRIME) is an improvement over SWIPE that uses the cosine the cosine

kernel harmonics corresponding to the prime numbers only.

For the subband algorithms, Sha et al. proposed a pitch tracking choosing from

multi-band pitch estimations based on classification on by coarser subband features

[Sha et al., 2004]. Tan and Alwan proposed a robust pitch estimation based on

summary autocorrelogram integrating the subband autocorrelation weighted by the

subband SNRs inferred using comb filters [Tan and Alwan, 2011]. These techniques

have even been successfully applied to mixtures containing multiple pitches [Klapuri,

2008; Wu et al., 2003; Tolonen and Karjalainen, 2000].

2.1.5 Subband Autocorrelation

Subband autocorrelation is one of the major components for our approaches, we

present the detailed description here.
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The input audio signal a[n], where n is the sample index at a sampling rate (SR),

is expanded into s subband signals xl[n], l = 1 . . . s, using an auditory filterbank. The

auditory filterbank is implemented with a bank of 4th order Infinite Impulse Response

(IIR) gammatone bandpass Equivalent Rectangular Bandwidth (ERB) filters with the

center frequencies uniformly spaced in log scale. The configuration for the auditory

filterbank can be controlled by (1) the lowest center frequency f1, (2) the number of

bands per octave (BPO), and (3) the number of the subbands s. We used f1 = 100

Hz, BPO = 16, and s = 48, which gives the fl range from 100 . . . 800 Hz.

The normalized subband autocorrelation Al (hereafter, subband autocorrelation)

is calculated for each subband every 10 ms (at tb = (b− 1)× 0.001 s× SR for frame

b ∈ {1, . . . , NF} where NF is the number of the analysis frames.) and τ is the

autocorrelation lag:

Al(tb, τ) =
rl(tb, τ)√

rl(tb, 0)
√
rl(tb + τ, 0)

(2.3)

where

rl(tb, τ) =

N/2∑
n=−N/2

xl[tb + n]xl[tb + n+ τ ] (2.4)

and the window length N = 400, corresponding to 25 ms at SR = 16000. The

largest lag is also τ = 400, i.e., down to 40 Hz fundamental at 16 kHz sampling rate.

Note that this is an unwindowed autocorrelation.

2.1.6 Post-processing

Pitch detection algorithms are frequently enhanced by various post-processing meth-

ods, from a simple median filter to a complex statistical model. A local estimate

finds the most likely periodicity around a short interval [de Cheveigne and Kawahara,

2002]. Hidden Markov models (HMMs) have been used to refine the pitch tracking

results by imposing sequential consistency [Wu et al., 2003; Lee and Ellis, 2006;

Tan and Alwan, 2011].
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2.1.7 Challenges
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Figure 2.1: The subband autocorrelation of voiced speech in a bandlimited audio

corrupted by pink noise at (a) 25 dB SNR and (b) 0 dB SNR. The f0 lag (red line)

is clearly marked by a common ridge across all subbands in (a); this common pitch

ridge is degraded in (b).

Determining the fundamental period of voiced speech signals (hereafter, “pitch

tracking”) is important in a range of applications from speech coding through to

speech and prosody recognition and speaker identification. However, high-accuracy

pitch tracking is difficult because of the wide variability of periodic speech signals

[Talkin, 1995]. There are many speech phenomena that can make the true pitch hard

to identify or even define.

For example, pitch tracking algorithms can be used to find speech automati-

cally within large-scale unlabeled recordings such as user-generated audio content

and surveillance recordings. In such recordings, the audio is often corrupted by ad-

ditive noise and/or communication channel degradation. This thesis is motivated by

the problem of identifying and recognizing speech signals in such low-quality radio

transmissions.
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While periodic signals have obvious features in these domains, they also ex-

hibit some ambiguity, leading to the well-known “octave errors” and other phenom-

ena. Moreover, additive noise can affect autocorrelation in ways that are difficult

to model. When the background noise contains strong periodic components (such

as air-conditioning), pitch tracking result in many false detections of pitch [Lee and

Ellis, 2006].

Figure 2.1 show examples of the subband autocorrelation of voiced speech in a

bandlimited audio corrupted by pink noise at (a) 25 dB SNR and (b) 0 dB SNR.

The subband autocorrelation of the cleaner 25 dB example has strong white ridge

at the fundamental lag position (the vertical red line) across all subbands. In the

subband autocorrelation of the 0 dB SNR example, information relating to the pitch

after the severe degradation can be seen at the f0 lag position in a majority of the

subbands. Hence, we decided to build classification-based noise robust pitch tracker

using subband autocorrelation as a feature.

In many cases, the previous pitch trackers report single digit error values in Gross

Pitch Error (GPE) under various additive noise conditions. Rather than using GPE

as a golden measure to optimize, we try to identify the performance of pitch tracking

to fit its objective, obtaining both f0 estimation and voicing decision.

Although we generally believe the correctness of the hand-labeled ground truth

pitch provided in standard pitch corpora [Bagshaw et al., 1993; Plante et al., 1995],

the ambiguity of start and end points of pitch makes the ground truth unreliable at

the boundary of the voiced speech. In turn, the effort to reduce the small error made

by pitch trackers at the boundaries is marginally rewarded.

Rather than improving the accuracy in the boundary of voiced speech, we focus

on improving pitch tracking for the case of more disruptive degradation, such as

low-quality band-limited audio.
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2.2 Related works

In this section, we describe two related algorithms in detail: YIN, a pitch estimator,

and, the Wu algorithm, a pitch tracker.

2.2.1 YIN Algorithm

YIN is a very efficient and effective full-band pitch estimation algorithm [de Cheveigne

and Kawahara, 2002]. YIN operates in 6 steps: (1) autocorrelation; (2) difference

function; (3) cumulative mean normalized difference function calculation; (4) absolute

thresholding; (5) parabolic interpolation; and (6) best local estimation. The power

of YIN comes from the robust difference function.

The objective of the first three steps is to get an initial measure of periodicity

using autocorrelation-derived methods. The autocorrelation rt(τ) =
∑t+W

j=t+1 xjxj+τ

which is used to calculate the difference function dt(τ) =
∑W

j=1(xj − xj+τ )2 = rt(0) +

rt+τ (0) − 2rt(τ) in the first and the second steps leads to the third step to improve

the error rate. In the third step, the cumulative mean normalized difference function

is calculated as follows:

d′t(τ) =

 1, if τ = 0

dt(τ)/ct(τ), otherwise
(2.5)

where

ct(τ) =

∑τ
j=1 dt(j)

τ
.

The difference function starts with 0 at τ = 0 and may stay close to 0 for small

τ . To avoid being misled by these small dissimilarity values for very small periods,

the cumulative mean normalized difference function starts with a fixed value, 1, by

definition and stays above 1 near τ = 0. As a result, (2.5) avoids the obvious mini-

mum and near minimum values near zero-lag and focuses on distinguishing the true

minimum at the fundamental period from other smaller minimums at the harmonic

lags.
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In the fourth step, absolute thresholding chooses the pitch period estimate τ̂ by

finding the smallest value of τ that gives a minimum of d′ smaller than the threshold

θy. If there is no such τ , τ̂ = argτ min d′(τ). The absolute thresholding further

reduces the error rate by decreasing period-multiple (suboctave) errors. The fifth step

is the parabolic interpolation which improves accuracy of the pitch period estimate,

especially in high f0. In the sixth step, the best local estimate is proposed for stability.

At t, the initial estimate of period is τ̄ = τ̂θ̂ where θ̂ = argθ min d′θ(τ̂θ) where t −

Tmax/2 ≤ θ ≤ t+Tmax/2 and the interval Tmax=25 ms. Then, the best local estimate

τ ∗ is argτ min d′t(τ) where 0.8τ̄ ≤ τ ≤ 1.2τ̄ .

To use pitch estimators as pitch trackers, voicing decision is needed. YIN provides

aperiodicity output which is inversely proportional to the voicing. Simple threshold-

ing of this aperiodicity can be used as voicing decision. But, thesis single voicing

index tend to change rapidly and might cause un wanted jumps between voiced and

unvoiced outputs. These unwanted voiced/unvoiced transitions can be reduced by

post-processing.

Although YIN is a very successful and stable time-domain pitch estimation algo-

rithm, it does not have a post-processing stage for pitch tracking. To compare the

performance of YIN against the Wu algorithm, which does include post-processing,

we added a HMM pitch tracking back-end to YIN, giving YIN-HMM. The largest

gross error improvement came from introduction of the (cumulative) difference func-

tion; thus, we built the YIN-HMM tracking based on the cumulative mean normalized

difference function d′ (2.5). According to our experiments, however, the performance

improvement of YIN-HMM from YIN was marginal.

2.2.2 Wu Algorithm

Wu, Wang, and Brown proposed a robust multi-pitch tracking algorithm (henceforth,

the Wu algorithm) [Wu et al., 2003] that combines pitch peaks identified in per-

subband autocorrelations, followed by HMM pitch tracking. By separately searching
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Figure 2.2: The diagram of the Wu pitch tracking system.

for pitch periodicity in multiple frequency regions, this algorithm achieves robustness

against noise that might corrupt the information in some subbands, while leaving

others relatively unaffected. Since this is the basis of our system, we now describe it

in more detail.

The Wu algorithm performs the following steps as in Figure 2.2: (1) cochlear

filtering; (2) normalized correlogram; (3) peak selection; (4) subband selection; (5)

cross subband integration; and (6) pitch tracking with hidden Markov model (HMM).

The details for each step are given in the below.

The first two steps are used to calculate the subband autocorrelation (2.3).

In the peak selection step, the Wu algorithm picks the candidate lags for pitch

period in the following manner. As a first attempt to get the lag corresponding to

the pitch period, the lags with the local maxima of autocorrelation are inspected for

each subband. For the initial candidate lags, the algorithm picks only the lags that

give the maximum autocorrelation using a wider window for search.

A period is selected if the normalized autocorrelation maximum is greater than

θ = 0.945. (The original paper used a different criteria for high-frequency subbands,

but in our implementation we used this single criteria throughout without apparent

impact.) Selected maxima from different subbands are combined into a single score

by spreading each peak according to an empirical Laplacian fit, then averaging across

all subbands. The result can be interpreted as the likelihood of the observations Ot at
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time t given a period hypothesis τ , i.e., P (Ot|τ). One interpretation of this combina-

tion is that it allows any true periodicity to emerge as the consensus of channels that

are minimally affected by the interference. Channels that are corrupted by noise will

either fail to reach the normalized autocorrelation threshold, or contribute random

period estimates which will be washed out in the combination process.

The Viterbi path through a Hidden Markov Model (HMM) is used to smooth

the pitch track, and to differentiate no-pitch and one-pitch states. (The original

implementation also accommodated two-pitch states to track mixture signals.) The

HMM finds the period sequence that maximizes the likelihood of the autocorrelation

observations Ot by optimizing the sum across time of

P (Ot|τt, τt−1) = P (Ot|τt)P (τt|τt−1) (2.6)

where τt and τt−1 are the pitch periods at frames t and t − 1, and the transition

probabilities P (τt|τt−1) are optimized empirically. τt = 0 is a special case meaning no-

pitch, whose probability is set to a fixed percentile of the probabilities estimated for

actual pitches. This indirect way to predict no-pitch frames is addressed in Chapter4.

Although our implementation of the Wu system differs from the original, it has

performance essentially equivalent to the c-code released by the original authors for

single-pitch conditions according to our tests on the sample audios provided by the

original authors1.

1http://www.ee.columbia.edu/~bsl/projects/wu/

http://www.ee.columbia.edu/~bsl/projects/wu/
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Chapter 3

Subband Selection (SubSel) Pitch

Tracker

This chapter presents our first approach toward the classification-driven pitch tracking

system using subband feature, the Subband Selection (SubSel) pitch tracker.

The proposed SubSel system is presented in section 3.1. The dataset and the

experimental setup are explained in section 3.2. Section 3.3 discusses the results.

Finally, a summary is drawn in section 3.4.

3.1 The SubSel Pitch Tracker

Figure 3.1 shows the diagram of the proposed Subband Selection (SubSel) pitch track-

ing system. This approach is closely based on the Wu algorithm (Figure 2.2), but

with the idea of using a more complex, trained classifier to decide when a channel

is providing useful pitch information, rather than the simple normalized autocorrela-

tion threshold. A filterbank is used to generate subband audio channels as described

in section 3.1.1. To avoid overfitting and reduce complexity, the autocorrelation is

compressed by Principal Components Analysis (PCA) dimensionality reduction (sec-

tion 3.1.2). A simple linear classifier per channel/subband is trained on the reduced
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Figure 3.1: The diagram of the proposed Subband Selection (SubSel) pitch tracking

system.

k-dimensional feature space (section 3.1.3). To train the classifiers, two subband

mask labels for training classifiers are considered (section 3.1.4). To capture the

pitch information shared across the adjacent subbands, adjacent subband features

are concatenated (section 3.1.5).

3.1.1 Subband Filtering

The subband filtering is used to selectively process different frequency ranges ac-

cording to their local Signal-to-Noise Ratio (SNR). Frequency ranges with relatively

higher SNRs will contain more reliable information than those with lower SNRs.

For instance, when a signal has been through a bandlimiting channel (such as radio

transmission), the range of SNRs across different frequency bands can be very large.

For subband filtering, a set of 48 bandpass filters (4th order IIR gammatone ERB

filters) with center frequencies ranging from 100 Hz to 800 Hz uniformly spaced in

log scale with 16 bands per octave density is used. The gain frequency responses of

the subband filters are shown in Figure 3.2.
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Figure 3.2: The gain frequency response of the 48 subband filters.

3.1.2 Subband PCA Dimensionality Reduction

Subband autocorrelation (2.3) has 400 dimensions, which corresponds to the largest

lag τmax for the autocorrelation, for each subband for each 10 ms frame. Subband

PCA is used to reduce dimensionality. PCA is performed over a large amount of data

drawn from the training set. The principal components are sorted in the decreasing

order of the corresponding eigenvalues. The first k principal components are chosen

to form the k-dim PCA. The eigenvalues of PCA components decrease very fast as

the number of principal component increases in the sorted PCA as in Figure 3.5.

The first five principal components of PCA for the subband 1, 21, and 41 (left,

middle, and right columns) learned from our dataset (described in section 3.2.1) are

shown in in Figure 3.3. The legend “All” indicates that the PCA is learned from the

all utterances. The legend ‘Pink’ indicates that the dataset is corrupted by additive

pinknoise only. The legend “RBF” indicates that the dataset is corrupted by Radio
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Figure 3.3: The first five principal components (eigennumbers in y-axis) of subbands

l = 1, 21, 41 (left, middle, and right columns) learned from KEELE dataset. The

legends indicate the PCA conditions.

Band Filtering and additive pinknoise. The legend ‘f-i’ where i = 1, . . . , 5 indicates

that the PCA is learned from the i-th fold training dataset of the 5-fold CV. The

principal components learned from the dataset with various conditions are basically

the same. In the experiments, we used the PCA learned from all the data with

degradations corresponding to the test conditions.

The individual subband principal components show interesting patterns. The first

principal component shows a decaying sinusoidal shape with frequency proportional

to the corresponding subband frequency. The subsequent principal components show

in-phase and out-of-phase sinusoidal shapes with frequencies proportional to the cor-

responding subband frequency modulated by a fundamental and harmonic frequencies
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Figure 3.4: The mean accuracy of k-dim PCA subband selection (top panel) and the

AUC of ROC curve of the subband selection (bottom panel).

of the analysis window length.

In the next section, we describe how the PCA features are used to classify subbands

as noisy or clean. To illustrate the impact of different configurations, Figure 3.4

shows the performance of subband linear classifiers with k-dim PCA for k from 3 to

70. In particular, the plot of the subband mean accuracy (top panel) of k-dim PCA

linear classifiers (predicting the Wu criterion) demonstrate that increasing k does

not linearly improve the performance. The mean accuracy is already 79 % at k = 3

and does not increase very much as k increases. The Area Under the Curve (AUC)

of Recriver Operator Characteristics (ROC) curve of the subband selection classifier

(bottom panel) in Figure 3.4 shows AUC reaches a plateau using the few principal

components with the largest eigenvalues.

Figure 3.5 shows that most energy is concentrated in the few largest principal
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Figure 3.5: The Cumulative Density Function (CDF) of Subband PCA eigenvalues.

components. Since the objective of the proposed algorithm is pitch tracking, not the

reconstruction of some intermediate values, the optimal value of k for PCA should be

determined empirically as the one that gives the best pitch tracking. We will discuss

this k decision in section 3.3.

3.1.3 Linear Classifier for Subband Selection

In the original Wu algorithm, individual subbands are included or rejected as too noisy

based on a simple threshold (0.945) applied to the largest peak in their normalized

autocorrelation. From the subband PCA output, the following classification is used for

subband selection instead of the Wu criterion. We used only a linear classifier because

we believed it would be sufficient for replacing a simple threshold with a decision that
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incorporated a wider basis of information. The following is done for each subband

l = 1 . . . s; the subscript l is dropped in the derivation for the simplicity.

With k-dimension PCA dimension reduction, the data of size n × m becomes a

n × (k + 1) matrix X, which is augmented by 1’s for a constant term; and the label

y of a vector of length n with yi ∈ {−1, 1} for all i = 1, . . . , n. We model the label y

with a linear classifier Xθ, where θ is a (k + 1)-dimensional coefficient vector.

Using minimization of the mean squared error as an optimization objective, the

loss function L (θ) is

L (θ) = |Xθ − y|2 = (Xθ − y)T (Xθ − y) . (3.1)

Using matrix algebra, the gradient of (3.1) can be expanded to

∇θL (θ) = 2XTXθ − 2XTy. (3.2)

By solving ∇θL (θ) = 0, the optimal θ̂ = argminθ L (θ) can be found as

θ̂ =
(
XTX

)−1
XTy. (3.3)

The subband classification is given by f(Xθ̂) where

f(t) =

 1, if t ≥ 0

0, otherwise.

3.1.4 Labels used to train classifier

Unlike pitch, for which we have hand-labeled ground truth [Plante et al., 1995], the

labels for subband selection have no ground truth. To train the classifiers, the ground

truth subband selection labels are required. Two approaches to generate the ground

truth subband labels are proposed: (1) Wu criterion and (2) ground truth pitch

criterion.
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Figure 3.6: The distribution of subband selection by the Wu criterion and the Ground

Truth Mask (GTM) criterion.

The Wu algorithm selects subbands by looking at the maximum value of the

normalized subband autocorrelation function Al(tb, τ) (2.3). As a starting point,

the subband classifiers were trained to learn this simple criterion. If the proposed

approach can properly learn this criterion, the performance of the Wu algorithm and

the proposed algorithm should converge as the behavior of two algorithms converge.

Another subband selection label criterion, which we call the Ground Truth Mask

(GTM), is based on the manually-labeled ground truth pitch. The GTM criterion

labels that the subband is positive when the ground truth pitch is consistent with one

of the prominent autocorrelation peaks in that subband. Since the center frequencies

of the subbands are different, the tolerance γl of ground truth pitch to the selected

pitches for the subband l can be increased as the center frequency of the subband
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fl decreases with a parameter ν: γl = 2ν (fmax/fl − 1) + 2 (lags). By increasing ν,

subbands with lower center frequencies can allow more tolerance between the truth

pitch and the selected pitches.

Figure 3.6 shows the proportion of positive labels in all subbands of the Wu

criterion (blue diamond) and the GTM criterion with pitch tolerance parameter ν =1

(red triangle). The GTM criterion had more positive labels than the Wu criterion

across all subbands.

3.1.5 Adjacent Subbands

The information of subband autocorrelation is centered around the center frequency

of the subband. Accordingly, it was observed that adjacent subbands contain similar

autocorrelation characteristics. More specifically, adjacent subbands show the peri-

odicity of similar harmonics; hence, they share pitch candidates. Subband integration

will find the pitch period candidate that is the most preserved across all subbands,

rejecting the higher order harmonics that are detected in small portions of subbands.

To take the adjacent subbands information into account, the reduced k-dim fea-

tures of adjacent subbands were concatenated to form k × q dimension features, and

classifiers were trained on these concatenated feature sets instead of single subbands.

The best value of q is found empirically found as q=3 using candidates q=3, 5, 7, and

9. For subbands at the top and bottom of the frequency axis where adjacent subbands

of equal distances are not available, the q closest subbands of unequal distances are

used instead.
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Figure 3.7: The magnitude and phase frequency response of a typical radioband filter

(RBF) estimated from the radioband-channel-transmitted speech.

3.2 Experiments

3.2.1 Experimental Setup

While development was performed on a small set of speech examples collected and

pitch-marked in-house, we used the KEELE [Plante et al., 1995] and FDA [Bagshaw

et al., 1993] corpora for evaluation. These datasets used electroglottograph (EGG)

sensors to directly measure vocal fold closure events as an independent basis for the

ground truth. As we discussed in chapter 1, we are specifically interested in speech

whose spectrum has been shaped by radio transmission. The reason for interest is

two-fold: (1) there are large-scale speech corpora generated under this type of noise

condition; (2) the performance of the traditional pitch trackers degrades severely for

the radio transmitted speech. To simulate such a channel, we used a filter estimated
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from actual speech transmitted across a handheld narrow-FM walkie-talkie1. The

radioband filter (RBF) is modeled as an FIR filter and has a bandpass characteristic

spanning approximately 500 Hz . . . 2 kHz. The frequency response of our typical

RBF is shown in Figure 3.7.

The performance of pitch tracking was measured by the Voiced Error (VE). The

VE is defined as the proportion of correctly predicted non-zero pitches. (System

outputs during periods that were marked unvoiced by the ground-truth have no effect

on Voiced Error (VE). This limitation is addressed later in chapter 4.) A predicted

pitch value is considered correct if it falls within 20 percent of the true value. The

ground truth provided values every 10 ms.

For each dataset, we employed 5-fold cross-validation (CV), in which the dataset

was divided with 80% used for training and the remainder for test, and the training

repeated five times until all the dataset had been used for test. The overall perfor-

mance is the average of these five test results. Since we focus on pitch tracking, not

on predicting no-pitch regions, the probability of no-pitch state in the HMM pitch

tracking was set to a very small value 10−10 to discourage the system from reporting

no-pitch.

3.3 Discussion

The pitch tracking results of the proposed SubSel algorithm and the Wu algorithm

on a speech sample corrupted by the RBF filtering and the additive pinknoise at 5 dB

SNR are shown in Figures 3.8 and 3.9. For the proposed algorithm, the five adjacent

subband features were concatenated to learn the ground truth pitch mask with pitch

tolerance parameter ν=1.

The subband selection masks in Figure 3.8 (b) and Figure 3.9 (b) show that the

proposed algorithm selects more subbands than the Wu algorithm on the pitched

1http://labrosa.ee.columbia.edu/projects/renoiser/

http://labrosa.ee.columbia.edu/projects/renoiser/
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Figure 3.8: The audio (a), the subband selection (b), the pitch likelihood (c), and the

pitch tracking (d) of the SubSel algorithm on an example speech corrupted by the

RBF filtering and the additive pinknoise at 5 dB SNR.

speech portion.

In Figure 3.8 (d) and Figure 3.9 (d), the blue line is the ground truth pitch;

and the black dots are the pitch tracking output. The vertical blue lines indicate

onset/offset of VAD based on the ground truth pitch.

In the third pitched speech region (around 1-1.2 s), SubSel makes fewer harmonic

errors than the Wu algorithm. In the fifth and the sixth pitch regions (around 2-

2.3 s), SubSel does not make the same harmonic/sub-harmonic errors that the Wu

algorithm makes.

The improvement comes from the pitch probability in the non-pitch regions. In
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Figure 3.9: The spectrogram (a), the subband selection (b), the pitch likelihood (c),

and the pitch tracking (d) of the Wu algorithm on an example speech corrupted by

the RBF filtering and the additive pinknoise at 5 dB SNR.

other words, SubSel correctly disconnects the pitch tracks in the non-pitch regions.

On the other hand, the Wu algorithm connects the pitches incorrectly across the

non-pitch region.

Figure 3.10 shows the overall pitch tracking performance of Wu, YIN, and the

proposed SubSel algorithms trained on the ground-truth pitch mask using 5-fold

CV on the FDA dataset corrupted with additive pink noise, with and without RBF

filtering, as a function of the noise level (SNR). The mean VE in log-scale vs SNR of

Wu, YIN, and SubSel (GTPvarAC5) algorithms are shown. For PCA, k = 30 is used.

The legend ‘var’ indicates that the subband classifier is trained using the ground
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SNR (dB)

25 20 15 10 5 0 -5 -10

KEELE (pink noise)

Wu 4.1 3.98 4.33 4.43 5.74 9.97 36.53 68.44

YIN 3.83 3.83 3.89 4.11 6.42 20.67 55.11 73.95

SubSel 5.14 5.27 5.79 6.5 8.54 17.35 50.56 76.68

KEELE (RBF pink noise)

Wu 4.51 4.69 5.27 8.1 14.89 38.23 63.45 74.77

YIN 18.76 18.75 19.37 21.8 31.64 50.99 70.16 76.07

SubSel 4.96 5.37 6.42 9.47 15.1 35.38 62.82 69.28

FDA (pink noise)

Wu 2.33 2.45 3.28 3.33 7.15 12.51 34.62 65.79

YIN 2.61 2.6 2.6 2.76 3.11 7.84 33.61 72.01

SubSel 3.52 3.85 3.69 5.6 8.14 19.31 34.76 79.81

FDA (RBF pink noise)

Wu 2.33 3.09 5.54 7.49 17 39.54 57.37 75.68

YIN 11.94 11.94 12.11 13.67 20.89 34.85 59.67 76.84

SubSel 4.78 4.41 5.4 6.28 9.12 21.83 57.47 76.65

Table 3.1: Mean VE (%) of Wu, YIN, and SubSel on KEELE and FDA corpora

truth pitch mask labels with variable pitch tolerance proportional to the subband

center frequency. The legend ‘AC5’ indicates that features of five adjacent subbands

are concatenated to form the features of one subband. The errorbars indicate the

standard deviation over 5-fold CV.

The VE results on KEELE and FDA corpora (cross-dataset train/test result) are

shown in Table 3.1. In fact, the last two rows of Table 3.1 are the same result as

Figure 3.10, showing the numbers as opposed to the log-scale plot. For the RBF and

pink noise conditions, SubSel performs the best for mid-to-high (15, 10, 5, and 0 dB)
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SNR conditions, which is our main target since there is more room for performance

improvement. The radioband filtering degrades the VE for all algorithms, with the

full-band YIN algorithm showing a drastic degradation. The proposed algorithm

had the least variation in VE under the radioband filtering. In general, subband

algorithms (Wu and SubSel) performed more robustly than the single-band (full-

band) algorithm (YIN) under RBF conditions.

Since the SubSel results are cross-corpora, the lower performance in KEELE cor-

pus re-confirms that KEELE corpus, which contains speech of ten speakers, is more

general (diverse) than FDA corpus, which contains speech of two speakers. In other

words, the SubSel trained on FDA corpus seems to be too specific that it cannot

generalize on KEELE corpus, which is more diverse.

The small performance improvement at high SNRs comes mainly due to ambiguous

frames at the edge of speech utterances. Hence, we focus on performance improvement

at higher noise conditions. SubSel focuses on these mid-to-high (15, 10, 5, and 0

dB) SNR conditions, where speech is still intelligible to human listeners, but common

automatic methods tend to fail. The performance improvement of SubSel over the Wu

system makes sense since SubSel combines information from more sources (subbands)

as in Figure 3.8 (b) and 3.9 (b).

The performance of the proposed algorithm trained on the Wu criterion was not

included in the result because it performed very similarly to the Wu algorithm. We

also tried to find the best threshold for subband classifiers. But changing the threshold

for the linear classifier such that the classifier gives the maximum accuracy on the

training data gave a similar VE result as using a fixed threshold of zero for the

subband classifiers.

Although YIN is a very successful and stable time-domain pitch detection algo-

rithm, it does not have a HMM post-processing tracking stage. To make the perfor-

mance comparison of YIN against the Wu algorithm, we introduced pitch tracking

to YIN using an HMM. The largest gross error improvement in YIN comes from
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introduction of the (cumulative) difference function; we built a YIN-HMM tracking

system based on the cumulative mean normalized difference function. We observed

that YIN-HMM improves VE for SNRs in the range 0 to 10 dB, but actually harms

performance in the high SNR region (20 and 25 dB). Contrary to intuition, the best

VE of the YIN-HMM system occurs for the relatively noisy 5 dB SNR condition. We

found that this phenomenon was caused by two sources. First was the radioband

filtering. After the radioband filtering, YIN detected spurious high pitches, especially

in the non-pitched portions of the audio, since the sharp high-pass edge of the filter re-

sults in pitch-like features at a multiple of the true f0 in the full-band autocorrelation

used by YIN.

The second cause was the HMM tracking. The HMM connects the pitch trace

in voiced regions with spurious pitch periods detected in the adjacent non-pitched

portions of the audio. In particular, the HMM pitch track would settle on rather high

pitch estimates in the unvoiced regions, making it more likely to get stuck on higher

harmonics in the subsequent pitched region. However, at lower SNRs, the pitch track

in unvoiced regions was more uniformly spread, and this bias was eliminated.

3.4 Summary

In this chapter, we presented a noise robust pitch tracking system based on based on

subband selection by classification (SubSel). The proposed SubSel algorithm incor-

porates the neighboring subband information by forming adjacent-subbands features

from k-dim PCA of subband autocorrelations. For the performance evaluation, we

reported VE as the performance metric on the KEELE and FDA corpora that provide

ground truth pitch labels. To simulate the target noise conditions, a radioband filter

was learned from real recorded samples and used in combination with additive pink

noise. The subband selection was performed by a set of linear classifiers trained on

subband mask labels. Two labeling methods were proposed: (1) Wu criterion and (2)
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the ground truth pitch mask with increasing tolerance proportional to the subband

center frequency.

In the experiment on the KEELE and FDA corpora corrupted by the radioband

filtering plus additive pink noise, the two subband algorithms – the Wu algorithm

and the proposed variant – produce relatively robust pitch estimations compared to

YIN, a full-band (single-band) algorithm.

The classification approach naturally extends to VAD, where the ground-truth

labels are now derived from labeled voicing. Since we observed that most of the pitch

tracking errors arise from tracking the irrelevant periodicity in the non-pitch regions,

a joint solution of pitch tracking combined with the VAD was expected to improve

results, and led to the revised evaluation described in the next chapter.

The SubSel algorithm modifies the way that subbands are selected, but other-

wise retains the Wu algorithm’s approach of estimating pitch likelihood by picking

autocorrelation peaks in the selected channels and combining them across frequency.

Instead, the pitch probability can be directly estimated by classifiers operating on

local subband information, eliminating the ad-hoc summary autocorrelation stage.

This idea led the topic of the chapter 4.
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Figure 3.10: The mean VE in log-scale vs SNR of Wu, YIN, SubSel (GTPvarAC5)

algorithms on FDA corpus under (a) RBF and pink noise and (b) Pink noise condi-

tions.
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Chapter 4

Subband Autocorrelation

Classification (SAcC) Pitch

Tracker

In this chapter, we extend a pitch tracking system based on the autocorrelation

of multiple subbands coming out of an auditory filterbank. However, rather than

attempting to explicitly detect the peaks that indicate particular pitches, we train

a classifier on the full autocorrelation pattern corresponding to a corpus of labeled

training examples. Since these training examples can be processed to include noise

and channel characteristics specific to particular conditions, it can be made much

more accurate in difficult conditions than “generic” pitch tracking. We also propose

a new metric that gives a balanced evaluation of both pitch estimation accuracy and

voicing detection. The contents of this chapter is based on [Lee and Ellis, 2012].

An implementation of the SAcC algorithm, with configurations trained on several

different conditions, is available both as source and as a Matlab compiled binary1.

The proposed pitch tracking system is described in section 4.1. The proposed per-

formance metric for pitch tracking is described in section 4.2. The experimental setup

1http://labrosa.ee.columbia.edu/projects/SAcC/

http://labrosa.ee.columbia.edu/projects/SAcC/
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Figure 4.1: The diagram of the proposed Subband Autocorrelation Classification

(SAcC) pitch tracking system.

and the results are described in section 4.3. Section 4.4 makes various observations.

Section 4.5 provides a summary.

4.1 The SAcC Pitch Tracker

The diagram of the proposed Subband Autocorrelation Classification (SAcC) pitch

tracking system is shown in Figure 4.1. The key change from the Wu algorithm is

that the pitch period probability is calculated by a single classifier working on the

autocorrelations from all subbands, rather than explicit peak picking and cross-band

integration. The modified stages are now described in more detail:

4.1.1 Subband PCA Dimensionality Reduction

To avoid overfitting and reduce complexity, the autocorrelation is compressed by

k-dim PCA dimensionality reduction as discussed in section 3.1.2. Each subband au-

tocorrelation Al(t, ·) is 400 points long; combining these across the s = 48 subbands

would give an extremely large feature space. In fact, the normalized autocorrelation

of each band-pass filtered signal xl[n] is highly constrained, leading to large redun-

dancy. To simplify the classification problem, we reduce the dimensionality within

each subband by applying PCA.
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The principal components corresponding to the k largest eigenvalues were used to

produce the subband k-dim PCA features Fl(t,m) for each subband where l = 1, · · · , s

is the subband index, and m = 1, · · · , k is the principal component index. We tried

values for k in the range 5 to 20. The sorted eigenvalues of the PCA components

decreased very fast, reflecting the redundancy in the autocorrelations.

4.1.2 MLP Classifier

As shown in Figure 4.1, the SAcC system uses a Multi-Layer Perceptron (MLP)

neural network classifier to predict the posterior probabilities across a set of discrete,

log-spaced pitch candidates from the subband PCA features. The MLP is trained

using QuickNet2. The number of inputs to the MLP is s×k. We used a single hidden

layer with h hidden units, where h was varied between 50 and 1600.

The MLP had separate outputs for different pitch (period) values over a range

which quantized 60 to 404 Hz using 24 bins per octave (in a logarithmic scale), a

total of 67 bins. Each ground-truth pitch value in the training data was mapped to

the nearest quantized pitch target. Any pitches outside this range were mapped to

special “too low” and “too high” bins. Finally, an additional “no-pitch” target output

accounted for unvoiced frames, giving p = 70 output units in total. To increase the

range and volume of training data, each soundfile example was resampled at 8 rates

from 0.6 to 1.6 and added to the training pool with a correspondingly-shifted ground

truth pitch label.

The output of the MLP gives the observation probability P (τt|Ot) of a pitch can-

didate τt given input observations Ot. Dividing by the pitch prior P (τ) gives a value

proportional to P (Ot|τ). To smooth the temporal progression of pitch dynamics, the

transition probability of the ground truth pitch is modeled as P (τt|τt−1) empirically.

The Viterbi path through a HMM is used to smooth the pitch track, and to differ-

entiate no-pitch and one-pitch states. More specifically, the HMM finds the pitch

2http://www.icsi.berkeley.edu/Speech/qn.html

http://www.icsi.berkeley.edu/Speech/qn.html
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sequence that maximizes the likelihood of the observations Ot by optimizing the sum

across time of

P (Ot|τt, τt−1) = P (Ot|τt)P (τt|τt−1) (4.1)

where τt and τt−1 are the pitches at frames t and t−1. The transition probabilities

are set parametrically (pitch-invariant) and tuned empirically.

4.2 Performance Metrics

The standard error measures for pitch tracking are Gross Pitch Error (GPE) and

Voicing Decision Error (VDE) [Chu and Alwan, 2009]:

GPE =
Ef0
Nvv

VDE =
Ev→u + Eu→v

N
(4.2)

where N is the total number of frames, Nvv is the count of frames in which both the

pitch tracker and the ground truth reported a pitch, Ef0 counts the frames in which

these pitches differ by some factor (typically 20%), Ev→u is the count of voiced frames

misclassified as unvoiced, and Eu→v is the number of misclassified unvoiced frames.

The problem with this measure is that GPE can be improved by labeling voiced frames

whose period is ambiguous as unvoiced, thereby reducing the Nvv denominator. This

will increase VDE, but it is difficult to compare overall performance with this pair of

numbers, and the temptation is to optimize GPE as a primary objective.

We therefore propose a modified metric to evaluate pitch trackers which we call

the Pitch Tracking Error (PTE). It is a simple average of VE and Unvoiced Error

(UE):

PTE =
VE + UE

2
(4.3)

The Voiced Error (VE) and the Unvoiced Error (UE) are given as:
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Figure 4.2: An illustration of pitch tracking and the corresponding GPE, VE, UE

and PTE.

VE =
Ef0 + Ev→u

Nv

UE =
Eu→v
Nu

(4.4)

where Nv is the number of frames for which a pitch is reported in the ground

truth, and Nu = N −Nv is the remaining (unvoiced) frame count.

An illustration of pitch tracking and the corresponding error metrics are shown

in Figure 4.2. For each error metric, the numerator portion is in yellow and the

denominator portion is in blue. The denominator portion of GPE can vary according

to the pitch tracker outputs. In contrast, the denominators of VE, UE, and PTE

are fixed by the ground truth. On the denominator side, PTE takes all frames into

account. On the numerator side, only PTE covers all types pitch tracking errors,

namely Eu→v = N2, Ef0 = N4, and Ev→u = N6.

It is more transparent to compare VE, UE, and PTE between different pitch

trackers because the denominators Nv and Nu do not vary depending on the system

output. If we consider pitch tracking as detection, VE resembles miss rate, and UE

is similar to false alarm rate. Another advantage of PTE is that it can balance the
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Figure 4.3: The GPE, PTE, VDE, UE, Rvv, and VE for YIN at various threshold

and SNR points on FDA under RBF and pink noise condition.

contribution of errors on voiced and unvoiced frames regardless of their proportion in

the actual evaluation material, making the results more comparable between different

test sets.

Different weights for VE and UE could be considered for tasks where one kind of

error was more important. In this case, PTE can more generally be defined:

PTEγ = γVE + (1− γ) UE (4.5)

where γ ∈ [0, 1] is a weight of voiced error.

If there is any need to emphasize VE or UE in reporting or measuring error, PTEγ

can be used. In this thesis, however, γ = 0.5 is always used to fairly account for VE

and UE of pitch trackers.
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Figure 4.4: The Cross Validation (CV) accuracy of the MLP using the k-dimensional

PCA feature.

4.3 Experiments

4.3.1 Data

We used the KEELE [Plante et al., 1995] and FDA [Bagshaw et al., 1993] corpora

for evaluation. The lengths of the datasets are 337 s and 332 s respectively. KEELE

consists of 10 speakers each reading the same story for about 30 s; FDA has two

speakers reading the same 50 short sentences of around 3 s each. Since KEELE in-

cludes greater variation, and to illustrate generalization, we chose to train on KEELE

and report results on FDA. Since our interest is in pitch tracking that can be used on

low-quality radio transmissions, our main experiment applied to both training and

test material a simulated radio-band filter (RBF) modeled from a real recording made

across a narrow-FM channel3 (shown in Figure 3.7), to a bandpass spanning around

500 Hz to 2 kHz, along with additive pink noise at various levels.

3http://labrosa.ee.columbia.edu/projects/renoiser/

http:// labrosa.ee.columbia.edu/projects/renoiser/
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Figure 4.5: The PTE, GPE, VE, and UE for SAcC, Wu, YIN, and SWIPE′ on FDA

under RBF and pink noise condition.

4.3.2 Experiment Setup

YIN [de Cheveigne and Kawahara, 2002], Wu [Wu et al., 2003], and SWIPE′ [Camacho

and Harris, 2008] algorithms are used for performance comparison. Both the ground

truth and the pitch trackers gave pitch values for every 10 ms.

To use YIN and SWIPE′ as pitch trackers, the pitch strength outputs (aperiodicity

for YIN and pitch strength for SWIPE′ ) are thresholded to provide voiced/unvoiced

decisions. Figure 4.3 shows the GPE, PTE, VDE, UE, Rvv, and VE of YIN versus

SNR for various thresholds for speech with RBF and pink noise, where Rvv = Nvv/N

and Rv = Nv/N . The threshold giving the best PTE was used in evaluation. For the
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Figure 4.6: The PTE, GPE, VE, and UE for SAcC, Wu, YIN, and SWIPE′ on FDA

under pink noise condition.

Wu algorithm, the probability of no-pitch is searched over the 1st to 90th percentiles

of the remaining pitch likelihoods to find the value that optimized PTE.

For the SAcC MLP, 66.7% of the data was used for training, with the rest used

for cross validation (CV). Figure 4.4 shows the CV accuracy as a function of k, the

number of principal components retained, and h, the hidden layer size on the most

challenging RBF case. From these results, we chose k = 10 and h = 800.
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Figure 4.7: The MLP outputs P (τt|Ot) (top panel); and Viterbi tracking output of

SAcC (blue diamond) and the ground truth (red line) on a sample speech corrupted

with RBF and pink noise at 25dB SNR. (bottom panel)

4.3.3 Results

Looking at the right column of Figure 4.3, we see that lowering the threshold and

thus reducing the proportion of voiced frames lowers UE (as all frames, including

the unvoiced ones, are labeled unvoiced) while increasing VE. As the sum of these

competing trends, PTE shows a clear optimum for a threshold around 0.4. In the

left column, GPE appears to improve as the threshold decreases, but this hides the

disappearing proportion of frames, Nvv (bottom pane), over which this measure is

calculated. When Nvv = 0, an arbitrary high value (150%) is assigned to GPE to

reflect that it is based on zero frames. Note that optimizing GPE at higher SNRs
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Figure 4.8: The observation pitch likelihood of YIN, Wu, and SAcC on a speech

sample corrupted with RBF and pink noise at 25dB SNR. Note that the grayscale

for SAcC likelihood is log-scaled to reveal more detail at very small probabilities.

would give a threshold closer to 0.2, quite different from the optimum for PTE. VDE

reveals an optimal threshold similar to PTE, but ignores actual pitch estimation

errors.

The performance comparisons of SAcC, YIN, Wu, and SWIPE′ on FDA dataset

under the RBF plus pink noise condition and the pink noise condition are shown

in Figure 4.5 and 4.6. SAcC is shown to outperform all the other algorithms by a

substantial margin for all positive SNRs. To be fair, this should be interpreted in

light of the fact that SAcC has been trained specifically for these conditions, whereas

the other algorithms attempt to address any possible condition.

For SAcC, PTE is dominated by UE in the high SNR and VE in the low SNR.



Chapter 4. Subband Autocorrelation Classification (SAcC) Pitch Tracker 48

Confusion matrix of SAcC on FDA (RBF and pink noise)
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Figure 4.9: The log-scale confusion matrix of SAcC on FDA corrupted with RBF and

pink noise.

In low SNRs, pitch tracker outputs are mostly no-pitch, lowering UE and increasing

VE. Note that PTE gives higher absolute values than GPE since it reflects both

difficult voiced frames and voicing errors; we consider performance in these areas to

be critical. Also note that PTE asymptotes at 50% for high-noise conditions, since

typically systems will label all frames as unvoiced in this case, making UE = 0% and

VE = 100%.

4.4 Discussion

The output of the SAcC MLP P (τ |Ot) on a sample speech is shown on the top pane of

Figure 4.7. The most likely pitch candidate for each frame has a significantly stronger
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Confusion matrix of Wu on FDA (RBF and pink noise)
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Figure 4.10: The log-scale confusion matrix of the Wu system on FDA corrupted with

RBF and pink noise.

value than the others. The HMM tracking result of SAcC on the same example is

shown on the bottom panel in Figure 4.7 along with the ground truth pitch. The

HMM tracking promotes continuous pitch tracks and discourages voicing transitions,

which sometimes causes the extension of pitch tracks into unvoiced regions.

The observed pitch likelihood of YIN, Wu, and SAcC on another speech sample

corrupted with RBF and pink noise at 25dB SNR is shown in Figure 4.8. The ver-

tical axis is lag in samples (increasing downwards) for YIN and Wu, but quantized

(log-frequency) pitch for SAcC. For SAcC, the log of the MLP output, log(P (τ |Ot)),

is shown to reveal details in the non-favorite candidates. Both YIN and Wu are

based on autocorrelation operations, and have harmonic and subharmonic structures.

Due to the absent fundamental and low harmonics, YIN is confused with more pro-
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Figure 4.11: The PTE, GPE, VE, and UE for YIN, Wu, get f0 and SAcC on FDA

under RBF and pink noise condition.

nounced sub-period errors. For the Wu system, the multiple-period errors are more

pronounced.

Since SAcC is trained to discriminate between these ambiguous cases with har-

monic relationships, it has one strong peak in most frames, reducing the confusion of

octave errors. Figure 4.9 and 4.10 show the log-scale confusion matrix figures on the

FDA corpus under the RBF and pink noise condition. The counts in the confusion

matrix is in log-scale to make the small differences in off-diagonal visible. As a result

of discriminative pitch classification of SAcC, it makes less octave/sub-octave errors

than the Wu system.
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Figure 4.12: The PTE, GPE, VE, and UE for YIN, Wu, get f0 and SAcC on FDA

under pink noise condition.

For unvoiced likelihood, YIN uses the aperiodicity output which can jump between

voiced to unvoiced. The Wu algorithm assigns indirect measure inferred from the

summary autocorrelation which performs badly in noisy conditions. In contrast,

SAcC trains a classifier for no-pitch discrimination for all noise conditions and shows

better performance.

Figure 4.11 and 4.12 show the performance comparisons including the popular

get f0 in replace of SWIPE′ . The performance advantage of the Wu system in GPE

comes at the cost of UE. For pitch tracking, UE is also an important performance

requirement, and cannot be sacrificed to improve another, GPE As we saw in this
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case. It is dangerous to optimize in terms of GPE only.

The performance improvement of SAcC is due to two major sources. First, SAcC

is trained specific to the target noise conditions. We observed that SAcC generalizes

well, but there exists performance degradation when SAcC is tested on unmatched

noise conditions. Second, the trained classifier of SAcC can discriminate octave/sub-

octave error cases better than other pitch trackers.

4.5 Summary

We have proposed a noise robust pitch tracking system, SAcC, based on subband au-

tocorrelation classification. The proposed algorithm incorporates the learning power

of a MLP classifier, the smooth tracking of a HMM, and the low dimensional rep-

resentation of the k-dimensional subband PCA feature. We have also proposed a

performance metric, PTE, to give a balanced measure of performance in both voiced

and unvoiced regions.

To simulate the target noise condition, a radioband filter was learned from real

recorded samples and used in combination with additive pink noise to make a useful

simulation of poor quality radio reception, the particular focus of our study. We

believe, however, that the subband classification structure should be advantageous

in many challenging acoustic conditions, particularly when matched training data is

available. We will discuss this issue in the next chapter.

The performance evaluation on KEELE and FDA corpora showed that SAcC im-

proves the state-of-the-art for pitch tracking on this kind of data, as measured both

by the conventional GPE metric and by our PTE metric. Because our proposed algo-

rithm involves a simple, trained classification stage, it can be optimized for particular

speech conditions and datasets.
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Chapter 5

Application of Subband

Autocorrelation Classification

(SAcC)

In this chapter, we present a set of experiments that demonstrate how SAcC gener-

alizes for a large dataset of various noise conditions.

Section 5.1 introduces the RATS dataset. Section 5.2 explains the experimental

setup. Section 5.3 discusses the experiment results. Section 5.4 discusses the applica-

tion of SAcC for the RATS Speaker Identification (SID) task. Section 5.5 discusses

the application of SAcC for relatively low-noise telephone speech (as encountered in

the Babel program). Section 5.6 provides a summary.

5.1 Dataset

To verify the generalization performance of SAcC pitch tracker, SAcC was tested on

real-world problems with a large-scale speech recording dataset.

The Robust Automatic Transcription of Speech (RATS) is a Defense Advanced

Research Projects Agency (DARPA) research program focusing on extracting in-
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formation from highly distorted audio signals that have been transmitted across a

low-quality radio channel, in a variety of languages.

There are four objectives in RATS program: (1) Speech Activity Detection (SAD):

The system need to able to determine whether whether or not the audio contains

speech. (2) Language Identification (LID): For the speech portion, the system can

identify the language spoken. (3) Speaker Identification (SID): For the speech portion,

the system can determine whether the speaker is one of the wanted speakers in the

list. (4) Key Word Spotting (KWS): For the speech portion, the system can identify

specific words from the list of keywords for the corresponding language.

Pitch tracking is directly directly relevant to SAD and potentially helpful in SID.

Although SID is a separate topic, our collaborator at SRI International observed a

performance improvement in SID using SAcC pitch and voicing probability features

trained on a subset of RATS corpus. We describe this in section 5.4.

The challenges of the RATS program include (i) wireless transmitted (bandlim-

ited) audio, (ii) frequency shifted audio (resulting from single-side band (SSB) trans-

mission), and (iii) high additive noise and distortion.

The SAD training material for RATS, released by the Linguistic Data Consortium

(LDC)1, contains 71.5 hours of clean source speech audio and 572 hours of the radio-

band transmitted audios over eight distinct actual radio channels (A-H). Table 5.1

shows the length of audio in the RATS corpus.

To compare the lengths of corpora, the lengths of KEELE [Plante et al., 1995]

and FDA [Bagshaw et al., 1993] are 5.5 mins long each; the RATS corpus is about

7000 times longer than KEELE or FDA. Even the source (pre-transmission) audio of

RATS is about 780 times longer than KEELE or FDA. The RATS corpus contains 5

language conditions.

1http://www.ldc.upenn.edu/

http://www.ldc.upenn.edu/
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Languages Source channel A-H channels Total

fsh-alv 26.0 208.0 234.0

fsh-eng 34.5 276.0 310.5

rats-cts-alv 4.0 32.0 36.0

rats-cts-pus 3.5 28.0 31.5

rats-cts-urd 3.5 28.0 31.5

Total 71.5 572.0 643.5

Table 5.1: The length in hours of the RATS dataset. Note that lengths for all channels

will generally be slightly longer due to channel transmission procedures.

5.2 Experiment

The design of the experiments are described in this section. The successful application

of SAcC on RATS corpus will demonstrate generalization performance of SAcC across

the different noise conditions and different datasets.

We used a subset of the RATS data, which is large enough to show the gener-

alization performance of SAcC. The training subset of the RATS corpus consists of

180 audio files with total length of 37.3 hours, which breaks down as 20 source (pre-

transmission) files (4.1 hours), and the 160 radio transmitted audio files (channel

A-H). The 20 source audio files of the training subset include 8 fsh-alv, 6 fsh-eng,

2 rats-cts-alv, 2 rats-cts-pus, and 2 rats-cts-urd to proportionally represent

the language distribution of the RATS corpus.

A separate testing subset of RATS corpus consists of 117 audio files with total

length of 25.6 hours, 13 distinct source files (2.8-hour long) and corresponding 104

channel transmitted audio files. The 13 source audio files of the test subset include 4

fsh-alv, 3 fsh-eng, 2 rats-cts-alv, 2 rats-cts-pus, and 2 rats-cts-urd. Since

we are interested in pitch tracking for noisy speech, we measure the performance
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Figure 5.1: An example label generated by agreement of YIN, Wu, and SWIPE′ on

RATS corpus.

on the 8 transmitted channels. The source audio is used for the ground truth label

generation as explained below.

The RATS corpus contains the audio without frame-wise pitch annotation. Since

no pitch label is available, we generated labels by applying three separate pitch track-

ers, YIN, Wu, and SWIPE′ , to the high-quality source audio using genPitchLabel2.

To use YIN and SWIPE′ for pitch trackers, the aperiodicity of YIN and the pitch

strength of SWIPE′ that give the best agreement with the Wu SAD are used to thresh-

old SAD for the corresponding pitch estimators. The three pitch trackers agreed on

about 67% of the source frames; the remaining “reject” frames were not used in train-

ing. For the test, these “reject” frames were labeled as unvoiced frames. As a result,

2http://www.ee.columbia.edu/~bsl/projects/genPitchLabel/

http://www.ee.columbia.edu/~bsl/projects/genPitchLabel/
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Name Training condition

SAcCAll CH RATS all channels (source and channels A-H)

SAcCCH RATS source and target channel only

SAcCnCH RATS all channels except target channel

SAcCABCEGH RATS all channels except channels D and F

SAcCKeele Keele corpus (RBF and pink noise)

Table 5.2: The SAcCs trained with various conditions.

the generated pitch label is biased toward mark the disagreed frames as unvoiced

frames.

An example of the labels generated by the agreement of YIN, Wu, and SWIPE′

using genPitchLabel is shown in Figure 5.1. Figure 5.1 (a) shows the individual

pitch tracking results of YIN, Wu, and SWIPE′ algorithms. Figure 5.1 (b) shows the

SAD decision based on the following criteria. The SAD is 1 when the (voiced) pitches

of three algorithms agree, 0 when three algorithms agree on unvoiced, -1 when three

algorithms disagree on voiced, and -2 when the (voiced) pitches disagree. Figure 5.1

(c) shows the final pitch label with reject values. Since the negative SAD decision

implies the instability of the pitch label, we excluded these reject frames in training.

The labeling generated from the source audio files were used to produce the labels

for the channel transmitted audio files. The timing skew between the source and

channel files are measured by the skewview tool3 and corrected in the propagated

labels.

We trained the SAcC on the five training conditions listed in Table 5.2. Four of

them are trained on RATS corpus; and one is trained on Keele corpus.

Among the RATS-trained SAcCs, we expect SAcCAll CH will be the most general

3http://labrosa.ee.columbia.edu/projects/skewview/

http://labrosa.ee.columbia.edu/projects/skewview/
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SAcC that will perform well for all conditions. SAcCCH is trained to the specific

channels, A-H. SAcCnCH is the opposite, oblivious to the specific channels. Com-

paring SAcCAll CH and SAcCCH reveals the impact of building a single classifier for

all channels versus specializing on each channel individually; Comparing SAcCAll CH

to SAcCnCH gives us a good idea how well SAcC will generalize to unseen channel

conditions.

The SAcCKeele is trained on Keele corpus with resampling at 9 rates corrupted

with RBF and pink noise at the 8 SNR conditions from Chapter 4. The performance

of SAcCKeele on RATS corpus is included to evaluate SAcC performance on unseen

audio with various unseen distortion conditions. We also include the Wu pitch tracker,

which emerged as the best competitor in Figure 4.5, as a benchmark reference.

5.3 Discussion

In this section, we discuss the result of the performance evaluation of SAcC on the

RATS corpus and FDA corpus. The pitch tracking results on the testing subset of

RATS corpus confirms the applicability of SAcC on this real-world dataset.

The performance of each SAcC will show the following effects. SAcCAll CH will

show (1) how the most general (unspecific) pitch tracker performs on the individual

channel conditions; and (2) the relative difficulty of each channel condition. SAcCCH

shows how well the most specific pitch tracker (specific to a single channel) performs.

SAcCnCH will show how specific the test conditions are for SAcC trained with all

other channel conditions.

The distortion profiles of channels D and F are different from the other channels

in that they include frequency shifting. To test the hypothesis that learning to ac-

commodate frequency-shifted signals might hurt performance on unshifted data, we

also trained a system on all channels excluding D and F, SAcCABCEGH. SAcCABCEGH

on the channels D and F will show how difficult the pitch tracking is by the pitch
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Figure 5.2: The mean PTE, GPE, VE, and UE of Wu, SAcCKeele, SAcCAll CH, and

SAcCABCEGH on FDA dataset.

tracker trained on all data except channels D and F. The performance of SAcCKeele

will show generalization of both cross-dataset and cross-condition.

The performance of each SAcC on the specific channels of the testing subset of the

RATS corpus will show the channel-wise performance of each SAcC. We describe the

mean and the sentence-wise PTE, GPE, VE, and UE results on the testing subset of

RATS corpus. To examine generalization of RATS-trained SAcC s, we also use FDA

corpus.

Figure 5.4 and 5.5 show the mean PTE, GPE, VE, and UE of Wu and the five

SAcC pitch tracking systems (trained on the described conditions, namely SAcCAll CH,

SAcCCH, SAcCnCH, SAcCABCEGH, and SAcCKeele) on the testing subset of RATS

dataset.

As expected, each SAcCCH has the lowest PTE on the corresponding channel
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across all channels, demonstrating the specificity of SAcCCH. SAcCAll CH shows the

competitive performance against the specific SAcCCH, demonstrating the generaliza-

tion of SAcCAll CH. The four pitch trackers other than SAcCAll CH and SAcCCH per-

form worse on channels D and F than on the other channels, implying that channels

D and F are quite distinct from the others. The Wu system and SAcCKeele perform

worse than the other SAcC s trained on the RATS dataset, especially in terms of VE.

The GPE is relatively lower than PTE, and does not reflect the difficulty of channels

such as F as well as PTE. PTE is mostly dominated by VE, except for the Wu al-

gorithm on the channel D. As predicted, SAcCABCEGH performs slightly better than

SAcCAll CH for channels other than D and F, but the margin is very small, indicating

that including D and F has not impacted SAcCAll CH by much.

Figure 5.6 and 5.7 show the sentence-wise PTE, GPE, VE, and UE of Wu and the

same five SAcC pitch tracking systems on RATS dataset. The sentence-wise results

show how much each performance metric varies for each algorithm on each testing

channel. Overall, the sentence-wise variation is most visible when the error is high.

To examine cross-corpus performance of SAcCs trained on RATS corpus, we report

results on the FDA corpus. Figure 5.2 shows the mean PTE, GPE, VE, and UE of Wu,

SAcCKeele, SAcCAll CH, and SAcCABCEGH on the FDA corpus corrupted by RBF and

pink noise conditions at various SNRs. As a reference, the Wu system and SAcCKeele,

which gives the best performance, were used. The performance of SAcCAll CH, which

is the most general among RATS-trained SAcC, is close to that of SAcCKeele for lower

SNRs (≤ 10 dB) and close to that of the Wu for higher SNRs (≥ 15 dB). In terms of

VE, SAcCAll CH is better than the Wu system. In terms of UE, SAcCAll CH and the

Wu are equivalent. Overall, SAcCAll CH performs better than the Wu system on the

FDA corpus.
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Target True Target False Rate

Predict True Hit (A) False Alarm (B) FA = B
A+B

Predict False Miss (C) Correct Rejection (D) M = C
C+D

Table 5.3: The false alarm (FA) rate and the miss (M) rate

Conditions
get f0 SAcC

FA@10m4 EER5 FA@10m EER

6Rside-30-30-core-seen 19.82 14.55 16.71 13.23

6Rside-30-30-core-unseen 23.26 16.06 19.07 14.41

6Rside-30-30-core key 21.47 15.26 17.86 13.86

Table 5.4: The performance of SRI prospol SID system using SAcC [L. Ferrer ’12]

5.4 Speaker Identification (SID) Task

So far, we have evaluated the performance of SAcC as a pitch tracker. The output of

pitch tracking, the pitch value and the voicing probability, can be used as a feature for

the Speaker Identification (SID) task. The fundamental frequency has been a major

feature for general speech recognition systems [Picone, 1993].

Our collaborators at SRI International6 conducted a pilot experiment using the

SAcC outputs as features for SRI prospol Speaker Identification (SID) system in

place of their standard features based on the popular get f0 software [Talkin, 1995].

The result showed a significant gain in SID performance on the current system at

SRI.

Two measures were reported for the SID task. FA@10m measures the false alarm

rate at the operating point which gives a miss rate of 10 %. The Equal Error Rate

6http://www.sri.com/

http://www.sri.com/
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(EER) is the error rate when the false alarm and the miss rate are the same. The

definitions of false alarm rate and miss rate are given in Table 5.3.

The pilot performance evaluation result of SRI prospol SID system on the RATS

corpus is summarized in Table 5.4. For various test conditions, both measures,

FA@10m and EER, are lower with SAcC features than with get f0 features. Con-

sidering the large range of other factors involved in SID system performance, the

improvement is significant and exciting. These impressive pilot result led to a full

run of the SID experiment using the SAcC features.

5.5 Application on the Babel corpus

In this section, we provide another application of SAcC in different kind of large-scale

speech corpus.

The Intelligence Advanced Research Projects Activity (IARPA) oversees high

risk, high return programs on intelligence. The IARPA Babel program is focused

on rapid development of speech recognition for novel languages, where development

time and language-specific resources such as transcribed audio may be very limited.

The IARPA Babel program develops robust speech recognition on various languages

to provide effective search on massive amount of real-world recorded audio.

Thus far, the Babel corpus has been collected via cellphone in relatively quiet

conditions, leading to relatively good quality telephone speech recordings. While

word transcripts are provided, there are no pitch annotations. We applied the

genPitchLabel utility that we used to generate the labels on the clean source audio

of RATS corpus to generate the pseudo ground truth for the Babel corpus.

Although SAcCAll CH performs better than SAcCKeele on most audio conditions,

we found that SAcCAll CH reported much more incorrect pitches on unvoiced portion

of the Babel corpus than SAcCKeele. To avoid this bias, we trained SAcCBabelnet for

several epochs on Keele corpus starting with SAcCAll CH. The output of SAcCBabelnet
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Figure 5.3: The mean PTE, GPE, VE, and UE of SAcCKeele, SAcCBabelnet, and

get f0 on Babel corpus. The three labels for each algorithms were generated with

genPitchLabel using leave-one-out strategy.

gave much fewer false pitches. The idea of SAcCBabelnet is to further train the general

SAcC pitch tracker to adapt on a specific type of noise. SAcCBabelnet is obtained by

re-training SAcCAll CH on Keele corpus for several epochs.

The performance evaluation of SAcCKeele, SAcCBabelnet, and get f0 is shown in

Figure 5.3. To avoid generating labels that agree on all three algorithms, we generated

three different labels using genPitchLabel with the other two algorithms. When all

algorithms are used to generate the genPitchLabel labels, they always agree on pitch

to label voiced frames, giving zero VE and very small GPE for all algorithms. By

generating three different labels, we can measure the performance of one algorithm

against the agreement of the others. In PTE, SAcCKeele shows the best performance;

SAcCBabelnet also performs very well compared to get f0. In VE, SAcCKeele still

performs the best. In UE sense, SAcCBabelnet performs the best, showing the superior
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ability to avoid the false alarm problem.

5.6 Summary

In this Chapter, we successfully demonstrated the generalization performance of SAcC

by showing a set of experiments on a real-world large-scale speech corpus with various

unknown audio conditions/distortions.

We propose a method, genPitchLabel, to generate pitch label when no ground

truth is available. We showed that the output of genPitchLabel agrees well with the

ground truth pitch labels of the standard pitch corpora.

We showed that SAcC is capable of generalization across different noise conditions

and different corpora. The specificity of SAcC, that improves the performance on the

specific noise condition, can be obtained by training on the specific noise condition.

We effectively showed that SAcC can be used for specificity or for generalization.

We also reported the evidence that SAcC pitch tracking output can be used to

improve the performance of the state-of-the-art Speaker Identification (SID) system.

We tried the genPitchLabel on Babel corpus that comes with no ground truth

pitch labels. Using a leave-one-out strategy to generate labels using genPitchLabel,

we showed that SAcC can be specifically trained to avoid the common false alarm

problem in band-limited corpus.
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Figure 5.4: The mean (a) PTE and (b) GPE of Wu, SAcCKeele, SAcCAll CH, SAcCCH,

SAcCnCH, and SAcCABCEGH on RATS dataset.
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Figure 5.5: The mean (a) VE and (b) UE of Wu, SAcCKeele, SAcCAll CH, SAcCCH,

SAcCnCH, and SAcCABCEGH on RATS dataset.
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Figure 5.6: The sentence-wise (a) PTE and (b) GPE of Wu, SAcCKeele, SAcCAll CH,

SAcCCH, SAcCnCH, and SAcCABCEGH on RATS dataset.
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Figure 5.7: The sentence-wise (a) VE and (b) UE of Wu, SAcCKeele, SAcCAll CH,

SAcCCH, SAcCnCH, and SAcCABCEGH on RATS dataset.



Chapter 6. Conclusions 69

Chapter 6

Conclusions

in this thesis, we successfully verified the idea of fully classification-based pitch track-

ing on low-dimensional subband autocorrelation features. The initial idea was to

develop a classification-based approach for pitch tracking. The subband autocorre-

lation was considered rich in information, but redundant for classification purpose.

The PCA dimensionality reduction of the subband autocorrelation was shown to be

effective both for the reconstruction task and for classification.

Overall, three major contribution of this thesis are as follows:

First, subband autocorrelation PCA feature is developed. To selectively exploit

the frequency subband information against loss or degradation of one or more sub-

bands, a filterbank is used to generate subband audio channels. For compact repre-

sentation without losing pitch information, PCA is used to reduce the dimensionality.

Second, two classification-based pitch tracking systems, SubSel and SAcC, are

proposed. SubSel selectively integrates subband autocorrelation according to the

pitch information in the subband. SAcC goes further to calculate the strength of

periodicity directly from the feature instead of using summarized autocorrelation

across subband selectively. It turns out that SAcC outperforms the state-of-the-art

pitch trackers under specific training noise conditions and generalizes well on other

generic noises.



Chapter 6. Conclusions 70

Third, a performance metric for pitch tracking, PTE is proposed to overcome un-

balanced conventional performance metric, GPE. The idea is that, since the objective

of pitch tracking is both pitch estimation and VAD, the metric should provide the

performance in both sub-tasks.

Fourth, a consensus method for creating pseudo ground-truth, genPitchLabel,

is proposed. This is particularly useful when the new corpus has either clean source

audio or relatively low noise audio. We applied genPitchLabel on RATS and Babel

corpora. When the source audio is available, such as in RATS corpus, the pseudo

label output of genPitchLabel is very reliable. Using the generated labels, we were

able to train SAcC that performs well both on the RATS test subset and on the FDA

corpus, demonstrating the specificity and generalization of the trained SAcC. This is

possible with the reliable pseudo label by genPitchLabel.

Fifth, we made the sources of SAcC1, our Matlab implementation of the Wu pitch

tracking system2, and genPitchLabel3 available online.

In conclusion, this thesis presents the noise robust speech pitch tracking systems

using subband autocorrelation classifications. We showed that the proposed SAcC

performs significantly better by the conventional GPE metric, as well as by the pro-

posed PTE metric, both on standard corpora and on the real-world large-scale RATS

corpus. The proposed SAcC is shown to adapt to various radio-band transmitted

channels, as well as to generalize to the various noise conditions. For any unknown

noise condition, SAcC can be trained on the specific noise conditions.

1http://labrosa.ee.columbia.edu/projects/SAcC/

2http://www.ee.columbia.edu/~bsl/projects/wu/

3http://www.ee.columbia.edu/~bsl/projects/genPitchLabel/

http://labrosa.ee.columbia.edu/projects/SAcC/
http://www.ee.columbia.edu/~bsl/projects/wu/
http://www.ee.columbia.edu/~bsl/projects/genPitchLabel/
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6.1 Future Works

In this section, we list a few potential directions for further works.

The PCA was a good initial choice for dimensionality reduction; and it worked.

We can examine the explicit benefits of PCA for pitch tracking. We can also examine

the effect of training set size and network size.

As we showed a preliminary case in the Babelnet case, we can further investigate

various mixed training schemes. We also can further examine the effect of consensus

ground truth.

As we observed the applications of SAcC in RATS SID, we can use SAcC on

various applications such as speech multi-pitch tracking and music transcription.
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