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ABSTRACT 

Integrating Functional Genomics with Systems Biology to Discover Drivers and 

Therapeutic Targets of Human Malignancies 

Jiyang Yu 

 

Genome-wide RNAi screening has emerged as a powerful tool for loss-of-

function studies that may lead to therapeutic target discovery for human 

malignancies in the era of personalized medicine. However, due to high false-

positive and false-negative rates arising from noise of high-throughput 

measurements and off-target effects, powerful computational tools and additional 

knowledge are much needed to analyze and complement it. Availability of high-

throughput genomic data including gene expression profiles, copy number 

variations from large-sampled primary patients and cell lines allows us to tackle 

underlying drivers causally associated with tumorigenesis or drug-resistance.  

In my dissertation, I have developed a framework to integrate functional RNAi 

screens with systems biology of cancer genomics to tailor potential therapeutics 

for reversal of drug-resistance or treatment of aggressive tumors. I developed a 

series of algorithms and tools to deconvolute, QC and post-analyze high-

throughput shRNA screening data by next-generation sequencing technology 

(shSeq), particularly a novel Bayesian hierarchical modeling approach to 

integrate multiple shRNAs targeting the same gene, which outperforms existing 



 

 

 

 

methods. In parallel, I developed a systems biology algorithm, NetBID2, to infer 

disease drivers from high-throughput genomic data by reverse-engineering 

network and Bayesian inference, which is able to detect hidden drivers that 

traditional methods fail to find.  

Integrating NetBID2 with functional RNAi screens, I have identified known and 

novel driver-type therapeutic targets in various disease contexts. For example, I 

discovered that AKT1 is a driver for glucocorticoid (GC) resistance, a problem in 

the treatment of T-ALL. The inhibition of AKT1 was validated to reverse GC-

resistance. Additionally, upon silencing predicted master regulators of GC 

resistance with shRNA screens, 13 out of 16 were validated to significantly 

overcome resistance. In breast cancer, I discovered that STAT3 is required for 

transformation of HER2+ breast cancer, an aggressive breast tumor subtype. 

The suppression of STAT3 was confirmed in vitro and in vivo to be an effective 

therapy for HER2+ breast cancer. Moreover, my analysis revealed that STAT3 

silencing only works in ER- cases. Using my framework, I have also identified 

potential therapeutic targets for ABC or GCB-type DLBCL and subtype-based 

breast cancer that are currently being validated. 
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Chapter 1 Introduction 

Personalized medicine is coming of age [1, 2]. Traditional clinical diagnosis and 

treatment of diseases are based on patients‘ phenotypic information including 

clinical signs and symptoms, medical and family history, and data from laboratory 

tests and imaging evaluation [1, 3, 4]. The phenotypic information is often too 

vague to make the diagnosis and treatment precise and accurate. Moreover, 

clinical phenotypes are often late outcomes of disease progress and 

development, which makes treatment starts only after the signs and symptoms 

appear. Advances in human genetics and molecular medicine have enabled 

more detailed and more personalized characteristics of disease so that diagnosis 

and treatment based on such information at molecular level has emerged as a 

new field, i.e. personalized medicine or tailed therapeutics [1-10]. Personalized 

medicine is rational design of therapeutic approaches based on the specific 

genetic and other molecular characteristic information of the patient and/or 

patient‘s disease to maximize the clinical benefits and minimize risks, or in a 

simple explanation, personalized medicine is healthcare targeted to you, and just 

you. It means your individual health interventions — prevention, diagnosis and 

treatment — are custom-tailored specifically for you, based on your personal 

DNA, the expression of powerful proteins and each of you unique biological 

responses. My dissertation work is in this exploding but still very young field of 

personalized medicine. 
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1.1 Personalized Medicine in Cancer Treatment 

One major focus of personalized medicine or tailed therapeutics during the past 

one or two decades is on human cancer treatment [11-13]. In cancer treatment, 

we are moving from conventional approaches including chemotherapy, 

radiotherapy and surgery based on tumor characteristics such as size lymph 

node, cell grade and patient fitness such as age, weight, general health, 

menopausal status, which are usually vague, to the emerging targeted 

therapeutic approaches based on patients‘ genetic information and specific 

molecular biomarkers, which are more precise and more personalized [1, 4, 14]. 

1.1.1 Problems of conventional cancer treatment approaches 

There are significant problems with traditional phenotype-based therapeutic 

approaches for cancer treatment. First, the toxicity of chemotherapy or 

radiotherapy is usually high [15-17]. For example, chemotherapy that uses drugs 

to destroy cancer cells often kills adjacent normal tissues as well. Therefore, it 

often makes patients suffering tremendous side effects such as nausea, vomiting, 

hair loss, fatigue, anemia, mouth sores, taste and smell changes, infection, 

diarrhea, menopause, infertility, etc. Secondly, a significant number of patients 

are initially resistant to chemo- or radio-therapies, or relapse to develop 

resistance quickly. For example, in treatment for T-cell acute lymphoblastic 

leukemia (T-ALL), glucocorticoids are commonly-used chemotherapeutic agents 

in clinic due to its inducement of apoptosis in leukemia cells [18, 19], however, 

over 25% of T-ALL patients are resistant to this type of treatment, in which the 
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majority acquires resistance after treatment [18, 20-24]. Another example is 

cisplatin, a widely used chemotherapeutic agent against solid tumors such as the 

cancers of the testis, ovary, head, neck and lung [25, 26]. Although, cisplatin 

shows outstanding efficacy in the treatment of testicular cancers where regimens 

including this drug afford cure rates of greater than 95%, its effectiveness in the 

treatment of other cancers is more limited because of acquired or intrinsic 

resistance [27-33]. 

Therefore, we need tumor-selective therapeutic approaches or reversal of drug 

resistance for cancer treatment. In Chapter 7 and Chapter 8 of this dissertation, I 

will demonstrate in details how we identify therapeutic targets to overcome 

glucocorticoid resistance in T-ALL treatment. In Chapter 12, I will also show you 

a study of overcoming cisplatin resistance in lung cancer. 

1.1.2 Problems of targeting oncogenes for cancer treatment 

In the past decade of personalized cancer medicine, one main strategy that has 

been developed is to target oncogenes. Oncogenes are genes that have the 

potential to cause cancer, and in tumor cells, they are constitutively amplified or 

over-expressed because of aberrant genetic alternations, for example, HER2 

(Human Epidermal Growth Factor Receptor 2) in breast cancer [34], EGFR 

(epidermal growth factor receptor) in lung cancer [35] and NOTCH1 (Notch 

homolog 1, translocation-associated), a transmembrane receptor, in T-cell 

leukemia [36, 37]. New molecular testing methods have enabled the testing for 

oncogene gene, protein, and protein pathway and/or somatic mutations in cancer 



4 

 

 

 

cells from patients. Targeting oncogenes will most likely benefit the patients with 

active oncogenic proteins. 

Tremendous efforts have been invested to develop drugs or small-molecules to 

target aberrant oncogenes in a subset of patients with a given cancer type and 

many drugs are approved by Food and Drug Administration (FDA). For 

example, trastuzumab (marketed as Herceptin) and two other drugs – 

pertuzumab and lapatinib – are used in the treatment of women with breast 

cancer in which HER2 protein is amplified or overexpressed [38]. New drugs 

such as cetuximab, IRESSA and Tarceva that directly target the EGFR are used 

for EGFR positive lung cancer patients with a 60% responsive rate [35, 39]. 

Gamma secretase inhibitors such as RO4929097 and MK-0752 targeting 

NOTCH1 are being used for treatment of T-ALL [40, 41]. Also tyrosine 

kinase inhibitors such as imatinib (marketed as Gleevec) blocking activity of ABL 

are used to treat chronic myeloid leukemia (CML), in which the BCR-ABL fusion 

is present in >95% of cases [42]. 

However, targeting oncogenes as therapeutics of cancer treatment has 

significant problems as well. First, patients who receive such treatment usually 

develop resistance very quickly. For example, 50% of HER2+ breast cancer 

patients are resistant to Herceptin treatment initially, and the other 50% of 

patients treated with Herceptin will eventually develop resistance very quickly, 

within one or two years [43]. Secondly, many oncogenes are undruggable, 

especially when they are regulatory factors, such as KRAS (V-Ki-ras2 Kirsten rat 

http://en.wikipedia.org/wiki/Tarceva
http://en.wikipedia.org/wiki/Tyrosine_kinase
http://en.wikipedia.org/wiki/Tyrosine_kinase
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sarcoma viral oncogene homolog), a well-studied oncogene in cancers of colon 

[44], pancreas [45] and lung [46], and MYC, another well-known oncogene that is 

constitutively activated in Burkitt's lymphoma, breast cancer, neuroblastoma and 

many other cancers [47]. Thirdly, the toxicity of some therapeutics targeting 

oncogenes is also high. For example, in treatment of T-ALL, gamma secretase 

inhibitors that block NOTCH1 activity have been shown to induce lethal gut 

toxicity [24]. 

The above limitations of targeting oncogenes for cancer treatment motivate us to 

search for alternative new therapeutic approaches or overcoming resistance of 

existing ones. In Chapter 9 of my dissertation, I will demonstrate an example of 

discovering novel therapeutic targets for HER2 positive breast cancer, and in 

Chapter 12, I will show you a study of searching for therapeutics to overcome 

PARP inhibitor resistance for BRCA1-mutated breast cancer. 

1.2 Functional Genomics: Genome-wide RNAi Screening 

In the era of personalized medicine, genome-wide RNA interference (RNAi) 

screening has been widely used to discover therapeutic targets for human 

malignancies. RNAi has emerged as one of the standard techniques for studying 

phenotype-specific gene function from plants to fungi to animals via suppression 

of gene expression [48-51]. RNAi-based gene silencing can be achieved by the 

use of short interfering RNAs (siRNAs) or short hairpin RNA (shRNA) expression 

vectors. Among the two approaches, shRNA is more feasible because siRNA 

has the problem of transient inhibition of gene expression and inefficient 
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transfection into non-dividing cells; however, shRNA can be stably integrated into 

a target cell genome via retroviral or lentiviral gene transfer, resulting in the 

permanent reduction of the targeted gene product. Several shRNA expression 

libraries targeting entire human genome have been generated to facilitate 

functional analysis of the whole transcriptome through loss-of-function genetic 

studies [52-55]. 

In genome-wide shRNA screening, a large population of cells is infected or 

transfected with a pool of different shRNA lentiviral vectors and shRNA hairpins 

are integrated into cell genomes. After that, there are two common applications 

of these transduced cells. One is growing the cells for a sufficient number of 

doubling times, extracting the genomic DNA at initial time (T0) and after 

harvesting (T10), and then comparing quantity of shRNAs in these two time-

points. This usage is to identify genes that are essential for cell survival or growth, 

thus making potential therapeutic targets for cancer and other type of human 

diseases, and hairpins of those lethal genes will be depleted or under-

represented in T10 population. The other application is splitting infected cells into 

two groups, treating the two groups differently, for example treating one group 

with drug and nothing to the other as control. After this selective pressure, grow 

cells from both populations and then compare shRNAs extracted from genomic 

DNA of each population. This approach is to identify genes that modulate 

response to the perturbation. In the example of drug treatment, this screen can 

help to identify genes that increase sensitivity or resistance of cells to the drug. 
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1.2.1 Microarray-based shRNA screening 

To read out shRNA hairpins extracted from genomic DNA, microarray 

hybridization is commonly used with the advantage of low cost and flexibility. It 

employs PCR-amplified shRNA template sequence pools extracted from shRNA 

library-transduced cells under test as well as reference conditions. Each PCR 

fragment is labeled with a different fluorophore, followed by hybridization of both 

pools to the same array, or labeled with the same fluorophore followed by 

hybridization to multiplex arrays. Taking the two-color microarray as example, the 

ratio of signal intensities of two colors (Cy3, Cy5) for each probe sequence 

reflects the relative abundance of cells expressing the corresponding shRNA 

construct under test condition as compared to the reference. Consequently, 

shRNA hairpins that sensitize cells in the selective condition will be depleted from 

the pool, showing low values of signal ratio, whereas shRNA constructs that 

render cells resistant will be enriched, showing high values of signal ratio. Three 

types of molecular tags have been used as microarray probes, namely full-length 

hairpin, half hairpin, and external barcode sequence. Half hairpin is able to 

overcome the self-annealing problem during PCR amplification happening to full-

length hairpin, and correspondingly has more efficient labeling and microarray 

hybridization than full-length hairpin [51, 56]. Barcodes are not necessary for 

enrichment screens or positive selections such as designs to detect shRNA 

constructs for cell proliferation [57], but are critical for depletion screens or 

negative selections such as studies designed to detect cell-lethal or drug-

sensitive shRNAs [56, 58-60]. 
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1.2.2 NGS-based shRNA screening 

Next generation sequencing (NGS) has recently emerged as a cost-effective 

technology of quantitatively measuring abundance of short-length DNA or RNA in 

a short time. This massively parallel sequencing has been used in pooled shRNA 

screens[61-63], and comparing to microarray-based approaches, it offers several 

potential advantages in terms of coverage of targeting genes, flexibility of input 

library, scalability and dynamic range. Moreover, barcode-based sequencing is 

commonly used to increase the multiplicity and efficiency by mixing multiple 

samples together and sequencing at once. As the cost of NGS is rapidly 

decreasing, this means might dominate high-throughput shRNA screening in the 

near future. 

In my dissertation, I will discuss computational analysis of both microarray and 

NGS-based shRNA screening data. In particular, I will introduce a novel 

computational pipeline to deconvolute and analyze NGS-based shRNA screening 

(shSeq) data because shSeq is relatively new comparing with microarray data 

analysis and there are no established tools and algorithms to analyze it. This 

pipeline includes software packages and algorithms for quality assessment (QA) 

of raw sequencing data, deconvolution of raw reads, preprocessing and 

normalization, quality controls (QC) of processed data, differential representation 

analysis at both individual shRNA level and integrated gene level, and other post-

analysis of shSeq data such as functional enrichment analysis and sensitivity 

analysis. Especially, I will introduce a new statistical algorithm to integrate 

multiple shRNAs targeting the same gene in the library using Bayesian 
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hierarchical modeling approach, and will show that this new approach 

outperforms existing ones. 

1.2.3 Limitations of high-throughput RNAi screening 

Despite the powerfulness of high-throughput RNAi screening, there are a number 

of limitations and problems with current version of this emerging technology. For 

example, high false-positive and false-negative rates are usually associated with 

RNAi screening. A long list of candidates is often reported from a pooled shRNA 

screen, in which only a small percentage are true hits. It‘s impossible to follow up 

all identified thousands of candidates, and it‘s also heuristic to pick up top hits 

because the scores of top candidates are very close to each other. The reasons 

could be because of off-targets, i.e. designed shRNA construct targeting 

unexpected genes by sequence similarity, and low knock-down efficacy of 

shRNAs. Furthermore, noise and small sample size of high-throughput 

measurements makes the estimation of statistical metrics to score hairpins or 

genes inaccurate. Therefore, powerful computational analysis and additional 

knowledge are much needed to complement it. 

1.3 Cancer Genomics and Systems Biology 

Advances in human genetics and molecular medicine have driven progress in 

our understanding of cancer biology. Development and improvement in DNA 

copy number, gene expression, and next-generation sequencing (NGS) 

technologies have resulted in more comprehensive characterization and accurate 

classification of human tumors and provided insights into cancer genome 
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complexity and heterogeneity. This has led to the emerging field of cancer 

genomics to study human cancer genome. It is a systematic search within cancer 

families and patients for the full collection of genes and genetic or epigenetic 

alternations – both inherited and sporadic – that contribute to the development of 

a cancer cell and its progression from a localized cancer to one that grows 

uncontrolled and metastasizes. 

Cancer genomics can also be extended and generalized to proteomics, 

epigenetics and epigeomics. Advances in proteomics with mass-spectrum 

technology have enabled comprehensive analysis and characterization of all of 

the proteins and protein isoforms encoded by the human genome that may have 

a significant impact on cancer biology as well. This is because while the DNA 

genome is the information archive, it is the proteins that do the work of the cell: 

the functional aspects of the cell are controlled by and through proteins, not 

genes. Progress in characterizing post-transcriptional and post-translational 

modifications has led to identification of epigenetic factors that governed 

important biological functions: growth, death, cellular movement and localization, 

differentiation, etc. Those proteins form a potential class of therapeutic targets for 

cancer treatment. 

The cancer genomic data provides us significant molecule insights into genes, 

proteins and pathways that are causally associated with tumorigenesis, 

progression, or drug-resistance. We can use this information to complement 

genome-wide RNAi screens to shortlist candidates coming from RNAi screening, 
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and, more importantly, to identify novel oncogenes or tumor suppressor genes as 

therapeutic targets for cancer treatment.  

1.3.1 Collaborative projects on cancer genomics 

A significant number of community-driven collaborative research projects or 

programs on cancer genomics using high-throughput genomic technologies have 

been launched to provide systematic, comprehensive genomic characterization 

and sequence analysis of multiple types of human cancers, both primary 

samples and cell lines, and to facilitate cancer discoveries among scientists. 

Below are a few examples: 

 The Cancer Genome Atlas (TCGA) is a pilot project of the National 

Cancer Institute (NCI) and the National Human Genome Research 

Institute (NHGRI) since 2005 [64]. It covers almost major types of human 

tumors including glioblastoma multiforme (GBM), squamous carcinoma of 

the lung, and ovarian serous cystadenocarcinoma, breast invasive 

carcinoma, kidney renal clear cell carcinoma, colon adenocarcinoma, etc. 

Data type includes copy number variants, DNA methylation, exon 

expression, gene expression, protein expression, miRNA expression, SNP, 

and somatic mutation. 

 The International Cancer Genome Consortium (ICGC) has been 

organized to launch and coordinate a large number of international cancer 

genome research projects [65]. It provides comprehensive catalogues of 

genomic abnormalities including somatic mutations, gene expressions, 
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and epigenetic modifications in tumors from 50 different cancer types 

and/or subtypes. 

 Therapeutically Applicable Research to Generate Effective 

Treatments (TARGET) is initiated by NCI and is dedicated to identify valid 

therapeutic targets in pediatric cancers including acute lymphoblastic 

leukemia (ALL), acute myeloid leukemia (AML), neuroblastoma (NBL), 

high-risk Wilms tumor and osteosarcoma (OS) [66]. Data type includes 

gene expression, copy number variants, epigenetics, whole genome 

sequencing and exome sequencing. 

 The Cancer Cell Line Encyclopedia (CCLE) project is an effort between 

the Broad Institute and the Novartis Institutes for Biomedical Research to 

conduct a detailed genetic characterization of a large panel of 1000 

human cancer cell lines [67]. It includes DNA copy number, mRNA 

expression and mutation data. 

 The Connectivity Map (CMAP) is a project launched by The Broad 

Institute to study the connections between genes, drugs and cancer [68]. 

It‘s a collection of genome-wide transcriptional expression data from 

human cells treated with bioactive small molecules. The second version 

contains more than 7,000 expression profiles representing 1,309 

compounds on 5 human cancer cell lines. 

1.3.2 Systems biology 

To identify causally-associated genes or pathways from large-sampled high-

throughput cancer genomic data, robust computational or statistical methods are 
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required. Because of the high dimension and noise from large-scaled genomic 

data, traditional methods of analysis at single factor level in such context might 

not work well. Taking gene expression data as an example, classical signature 

analysis of two phenotypes from two independent datasets designed to study the 

same cancer problem might produce very different results [69]. This has led to a 

new filed of systems biology, which integrates and aggregates multiple 

perspectives of ―omics‖ data to define a system and then performs analysis of the 

behavior of the system from a global view or network point. 

Systems biology approaches have been successfully applied to high-dimensional 

data of cancer genomics. It has been shown that computationally inferred 

context-specific maps of transcriptional or post-translational molecular 

interactions from large-scaled gene expression profiles (GEPs) allow the 

elucidation of cryptic driver proteins whose gain or loss is necessary and 

sufficient for tumor initiation or progression [70-73]. Such master regulators or 

drivers are more robust than traditional signatures to distinguish phenotypes [69]. 

Therefore, we suggest that systematic inference of driver-type regulators from 

genomic data complementing with RNAi screen technology will give a more 

comprehensive molecular understanding of mechanisms of tumor progression or 

drug-resistance and provide novel targets for therapeutics. 

In my dissertation, I will introduce a systems biology framework, Network-based 

Bayesian Inference of Disease Drivers (NetBID2), to infer disease drivers from 

high-throughput genomic data by reverse-engineering network and Bayesian 
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inference. I will demonstrate that this framework performs more robust than 

classical signature analysis, and is able to detect not only known drivers of 

various cancer contexts, but also hidden drivers that conventional methods fail to 

find. The prediction rate of this algorithm is also high based on experimental 

validations. 

1.4 Integration of Functional Genomics with Cancer Genomics 

As discussed above, genome-wide high-throughput RNAi screening is a powerful 

technology to identify therapeutic targets for cancer treatment, however, due to 

high false-positive and false-negative rates arising from off-target effects, low 

silencing efficiency, and noise, the technology itself might not be good enough to 

work alone. Availability of large-sampled public cancer genomic data enables us 

to discover tumor-associated genes or pathways. Particularly, systems biology 

analysis of cancer genomics, by utilizing network strength, is capable of 

identifying underlying drivers of tumorigeneis or drug-resistance with a high 

successful rate. This motivates the integration of systems biology of cancer 

genomics with functional RNAi screens to tailor driver-type therapeutic targets for 

cancer treatment. 

In my dissertation, I have developed a framework to integrate functional RNAi 

screens with systems biology of cancer genomics to tailor potential therapeutics 

for reversal of drug-resistance or treatment of aggressive tumors. I have been 

working intensively on shRNA screening with Dr. Jose Silva, who developed 

GIPZ library, one of the two most popular shRNA libraries. I developed a series 
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of algorithms and tools to deconvolute, QC and post-analyze high-throughput 

shRNA screening data by next-generation sequencing technology (shSeq). My 

pipeline has become the standard for this type of analysis at Columbia‘s Genome 

Center. I have analyzed all shSeq data generated at Columbia so far in 

collaboration with over ten labs. 

In parallel, I developed a systems biology algorithm, NetBID2, to infer disease 

drivers from high-throughput genomic data by reverse-engineering network and 

Bayesian inference, which is able to detect hidden drivers that traditional 

methods fail to find. Integrating NetBID2 with functional RNAi screens, I have 

identified known and novel driver-type therapeutic targets in various disease 

contexts. 

For example, I discovered that AKT1 is a driver for glucocorticoid (GC) resistance, 

a problem in the treatment of T-ALL. From mass-spectrum data, we found that 

GC-resistance derives from AKT1‘s phosphorylation of the GC receptor, thereby 

blocking its translocation to nucleus. The inhibition of AKT1 was validated to 

reverse GC-resistance. Additionally, upon silencing predicted master regulators 

of GC resistance with shRNA screens, 13 out of 16 were validated to significantly 

overcome resistance. 

In breast cancer collaborating with Dr. Jose Silva, I discovered that STAT3 is 

required for transformation of HER2+ breast cancer, an aggressive breast tumor 

subtype. The suppression of STAT3 was confirmed in vitro and in vivo to be an 



16 

 

 

 

effective therapy for HER2+ breast cancer. Moreover, my analysis revealed that 

STAT3 silencing only works in ER- cases. 

In collaboration with Dr. Riccardo Dalla-Favera, I applied a similar approach to 

DLBCL. The integration of RNAi screens, ABC or GCB-type expression profiles 

and CNV data enabled the identification of known master regulators such as 

BCL6 and IRF4, as well as novel drivers specific to ABC or GCB-type. These 

potential therapeutic targets are currently being validated. 

My integrative framework has also been applied to subtype-based breast cancer 

in collaboration with Dr. Jose Siva. Integrating shRNA screens of a panel of 16 

breast cancer cell lines with systems biology of TCGA breast cancer expression 

profiling data, we identified therapeutic target candidates specific for luminal, 

basal A, basal B or HER2+ form of breast cancer, which are currently being 

validated. 

1.5 Overview of the Dissertation 

This dissertation is dedicated to develop algorithms and tools to integrate 

functional genome-wide RNAi screening data with systems biology of cancer 

genomics to discover drivers and therapeutic targets for human malignancies to 

meet the need of personalized medicine. Chapter 2 and Chapter 3 focus on 

genome-wide RNAi screening technology. Specifically, I will introduce a 

computational pipeline with a series of algorithms and tools for NGS-based 

shRNA screening (shSeq) data in Chapter 2, and a novel algorithm for meta-
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analysis of shRNA screening data to report gene level activity in Chapter 3. In 

Chapter 4, I will introduce a novel systems biology framework, NetBID2, to infer 

disease drivers from cancer genomic data with an improved enrichment analysis 

method, BSEA detailed in Chapter 5. Chapter 6 is an example of using systems 

biology approach – Bayesian network – to infer drug-induced apoptosis pathways 

from CMAP data. Chapter 7 and 8 are on studies of identifying therapeutic 

targets to overcome glucocorticoid resistance in T-ALL. Specifically, in Chapter 7, 

my NetBID2 framework discovers AKT1 as a therapeutic target to reverse the 

resistance as validated biochemically and pharmacologically; and in Chapter 8, I 

will describe how we integrate genome-wide RNAi screens with systems biology 

to discover promising regulatory drivers as therapeutics to reverse glucocorticoid 

resistance in T-ALL. In Chapter 9, I will demonstrate another example of 

integrating RNAi screens with computational analysis of genomic data to tailor 

therapeutics for ERBB2/HER2+ breast cancer, in which we identify and validate 

STAT3 as an effective target. Chapter 10 and Chapter 11 are two more 

examples with preliminary results of applying my integrative framework to DLBCL 

and subtype-based breast cancer. In Chapter 12, I will briefly describe more 

examples of applying shSeq technology. In Chapter 13, I will introduce a user-

friendly and dynamic web system I developed to manage collaborative projects 

and to facilitate and speed up our research. Finally Chapter 14 is a summary of 

the entire dissertation. 
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Chapter 2 Computational Analysis of Next Generation 

Sequencing-based shRNA Screening (shSeq) Data 

2.1 Introduction 

RNA interference (RNAi) has emerged as one of the standard techniques for 

phenotype-specific gene function studies from plants to fungi to animals via 

suppression of gene expression [48-51] and has been widely used for 

therapeutic target discovery [50, 74-79]. RNAi-based gene silencing can be 

achieved by the use of short interfering RNAs (siRNAs) or short hairpin RNA 

(shRNA) expression vectors, among which shRNA is more feasible than siRNA. 

It‘s because siRNA has the problem of transient inhibition of gene expression 

and inefficient transfection into non-dividing cells; however, shRNA can be stably 

integrated into a target cell genome via retroviral or lentiviral gene transfer, 

resulting in the permanent reduction of the targeted gene product. Several 

shRNA expression libraries targeting entire human genome have been generated 

to facilitate functional analysis of the whole transcriptome through loss-of-function 

genetic studies [52-55]. 

In genome-wide shRNA screening, a large population of cells is infected or 

transfected with a pool of different shRNA lentiviral vectors and shRNA hairpins 

are integrated into cell genomes. After that, there are two common applications 

of these transduced cells. One is growing the cells for a sufficient number of 
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doubling times, extracting the genomic DNA at initial time (T0) and after 

harvesting (TX), and then comparing quantity of shRNAs in these two time-points. 

This usage is to identify genes that are essential for cell survival or growth, thus 

making potential therapeutic targets for cancer and other type of human diseases, 

and hairpins of those lethal genes will be depleted or under-represented in T10 

population. The other application is splitting infected cells into two groups, 

treating the two groups differently, for example treating one group with drug and 

nothing to the other as control. After this selective pressure, grow cells from both 

populations and then compare shRNAs extracted from genomic DNA of each 

population. This approach is to identify genes that modulate response to the 

perturbation. In the example of drug treatment, this screen can help to identify 

genes that increase sensitivity or resistance of cells to the drug. 

To read out shRNA hairpins extracted from genomic DNA, microarray 

hybridization and Next generation sequencing (NGS) are commonly used. 

Microarray has a long history and is well-developed whereas NGS based on 

sequencing-by-synthesis has recently emerged as a cost-effective technology of 

quantitatively measuring abundance of short-length DNA or RNA in a short time. 

This massively parallel sequencing has been used in pooled shRNA screens [61-

63], and comparing to microarray-based approaches, it offers several potential 

advantages in terms of coverage of targeting genes, flexibility of input library, 

scalability and dynamic range. As the cost of NGS is rapidly decreasing, this 

means might dominate high-throughput shRNA screening in the near future. 
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In this chapter, I will mainly focus on analysis of NGS-based shRNA screening 

(shSeq) data because this is relatively new and there are no standard tools to 

deconvolute and analyze such data. But for analysis of microarray-based RNAi 

screening data, please refer to the book chapter [80] in Appendix A I wrote for 

Methods in Molecular Medicine. In this analytical pipeline of shSeq data analysis 

(Error! Reference source not found.), I will introduce multiple quality 

ssessment metrics for NGS raw  

 

Figure 2-1 An overview of the pipeline for shSeq data analysis including a series 

of software packages and algorithms 

QA of Raw Seq Data (ShortRead+) 

Deconvolution of Raw Reads (shScanner) 

Annotation, Normalization, QC (shSEQ) 

shRNA Level Differential Representation (shADER) 

Gene Level Activity (shMA / BHM) 

Post-Analysis (Pathway/GO Enrichment, Sensitivity 
Analysis) 
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data, an efficient algorithm to decode shRNA NGS data, preprocessing of 

screening data including background correction and normalization, quality 

controls of processed data to detect biological artifacts of experiments, statistical 

methods for differential representation analysis at individual shRNA level and 

gene level to identify candidates of interest and additional post-analysis of 

shRNA screens including functional enrichment and sensitivity analysis. 

Note: all NGS-based shRNA screening data in this dissertation is on Illumina 

HiSeq platform and outputted by Genome Analyzer IIx. 

2.2 shRNA Library 

Thermo Scientific Open Biosystems GIPZ Lentiviral human shRNAmir library is 

used to illustrate the analysis of shSeq data. The library is composited of 58,493 

hairpin constructs, in which 39,458 shRNAs are known to target 18,661 human 

genes, about 75% of the genome. In the GIPZ library, one gene might have 

multiple shRNAs and as shown in the distribution table of number of shRNAs per 

gene (Table 2-1), the majority of genes has 2 to 3 hairpins on average. 

 

# shRNAs 

Per Gene 
1 2 3 4 5 6 7 8 9 10 11 13 total 

Frequency 

of Genes 
6,931 5,986 3,635 1,355 481 168 60 24 12 4 4 1 18,661 

Table 2-1 Distribution of Number of shRNAs per Gene 
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2.3 ShortRead+: QA of Raw NGS Data 

The first thing to do after we have raw sequencing data is to check the overall 

quality of sequencing data and make sure there are no technical mistakes. I 

develop an R package, ShortRead+ to do quality assessment (QA) based on the 

existing ShortRead package. ShortRead package was designed for input, quality 

assurance, and basic manipulation of `short read' DNA sequence produced by 

different platforms such as Solexa, 454, Illumina HiSeq, and related technologies. 

It is working well for small data set, for example, a sequence run with less than 

10 million total reads, however, it‘s extremely time and space consuming for big 

data such as a sequence run with over 100 million reads, which is commonly 

obtained from shSeq experiments. Therefore it‘s not duable to process 100 or 

200 million of reads by ShortRead. That‘s why ShortRead+ is developed. It 

overcomes the drawbacks and limitations of ShortRead and also improves some 

plotting features from classical R lattice [81] plotting to more popular ggplot2 

framework [82]. 

2.3.1 Format transformation of raw NGS data (QSEQ to FASTQ) 

ShortRead takes NGS data in FASTQ format as input. FASTQ is currently a 

standard format of Genome Analyzer output; however, in old version of Genome 

Analyzer, the default output of raw data is in QSEQ format. In this situation, we 

need to transform data from QSEQ to FASTQ format. Example raw NGS data in 

QSEQ and FASTQ formats are shown in Table 2-2 and Table 2-3. QSEQ format 

is in tabular text content, in which each row is a record of short read and the 
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columns are defined as in Table 2-4. One thing to be careful is that the quality 

score in QSEQ format sometimes is in Phrd64 format, which is different from the 

quality score (Phred33) in FASTQ format. A transformation is also needed. 

Functions for both transformation of QSEQ to FASTQ including quality score 

format are supported by ShortRead+. 

HWI-

ST618 

80 4 1101 1081 2086 0 1 C.CG.ACTGCC 

CCGCTGGCAG 

GTAGGTGATG 

TTCC..GAGCGT 

........ 

]BYZB][[[[`_ 

`_^^______Y 

\_`BBBBBBBB 

BBBBBBBBBB 

BBBBBBB 

0 

HWI-

ST618 

80 4 1101 1243 2093 0 1 CATCAACATGC 

TACTGGCGTTA 

GTTCCAGATCTT 

GAGGAAGCTAT 

CCCAGG 

dddddaZdddcc 

c^d_V]ccedee 

ebaccWdabdc 

adSdbddd^^]_ 

ba]e 

1 

Table 2-2 Example of raw NGS data in QSEQ format 
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Table 2-3 Example of raw NGS data in FASTQ format 

Field Description 

Machine Name Identifier of the sequencer. 

Run Number Number to identify the run on the sequencer. 

Lane Number Positive integer (currently 1-8). 

Title Number Positive integer. 

X 

X coordinate of the spot. Integer. 

As of RTA 1.6, OLB 1.6, and CASAVA 1.6, the X and Y 

coordinates for each clusters are calculated in a way that makes 

sure the combination will be unique. The new coordinates are the 

old coordinates times 10, +1000, and then rounded. 

@D8GSQ5P1:4:1101:1730:2234#0/1 

CGATGTATCCACGCTGTTTTGACCTCCATAGAAGATTCTAGAGCTAGCGA

ATTCGCCCTTCCATGCCAAGTCAGAAGAGGTTATAATTTGGCTCTTACTCT 

+D8GSQ5P1:4:1101:1730:2234#0/1 

___cecccggfeghdgghhihhddgffgfhfhhhefhfhfgbdghdhfgghfgS_eagfdbdddfgbdd

eZ_bdY]Z]aaLZ_]bccccY_Y_`bbbRY`Y 

@D8GSQ5P1:4:1101:2152:2242#0/1 

CAGATCATCCAAGCTGTTTTGACCTCCATAGAAGATTCTAGAGCTAGCGAA

TTCGCCCTTCTTCAAGATTTTCATCCTCCAACTGCAGAACCAGGAAATTA 

+D8GSQ5P1:4:1101:2152:2242#0/1 

[^ZZcccaeSb^eghfbadgdgagfaeb]effb_cdgcgg_fRcefX[^^eg`H[ed_ag_\_^dR\Z`

bZ^]ZZZHMZZ]]bb`Z`b_`^a[_a^^bbb_ 
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Y 

Y coordinate of the spot. Integer. As of RTA 1.6, OLB 1.6, and 

CASAVA 1.6, the X and Y coordinates for each clusters are 

calculated in a way that makes sure the combination will be unique. 

The new coordinates are the old coordinates times 10, +1000, and 

then rounded. Index Index sequence or 0. For no indexing, or for a 

file that has not been emultiplexed yet, this field should have a 

value of 0. 

Read Number 
1 for single reads; 1 or 2 for paired ends or multiplexed single 

reads; 1, 2, or 3 for multiplexed paired ends. 

Sequence Called sequence of read. 

Quality The calibrated quality string. 

Filter Did the read pass filtering? 0 - No, 1 - Yes. 

Table 2-4 QSEQ format of raw NGS data: column filed descriptions 

2.3.2 Phred quality score 

In output of Genome Analyzer, i.e. raw NGS data, each nucleotide of a single 

read has a matched quality score indicating the error rate of base calling, which 

is in Phred format [83]. The transformation of base-calling error rate to reported 

quality score by Genome Analyzer follows equation in Figure 2-2. In generally, a 

base with a quality score over 30, corresponding base-calling error rate under 

0.001 is considered as a good one. 
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Figure 2-2 Equation of transforming base-calling error rate or probability (P) to 

Phred Quality Score (Q) 

ShortRead+ takes raw NGS data in FASTQ format (Phred33 for quality score) 

and checks the following quality metrics with plots and html report. 

2.3.3 Overall quality of raw NGS data 

The overall quality of one single read can be represented by the average Phred 

quality scores of all nucleotides in such read. Then we can check the distribution 

of overall quality of all reads. Figure 2-3 shows density distribution plot of overall 

quality scores from four different lanes. If the sequencing data is in good quality, 

you would expect a strong peak on the right, meaning that the majority of reads 

have a high averaged quality score, such as s_4, s_5, and s_6 in the example.  
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Figure 2-3 Density distribution plot of overall quality scores of all reads. The 

overall quality score of each read is calculated by averaging Phred scores of all 

nucleotides inside. A strong peak on the right indicates good overall quality of the 

sequencing data. 

Otherwise, a peak on the left such as s_7 in the example indicates problems of 

the overall quality and you might want to check whether there is any flaw during 

the entire sequencing process. 
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2.3.4 Cycle-based quality distribution 

We can also check the overall quality of each cycle by looking at the distribution 

of cycle-based or position-based quality scores. As shown in Figure 2-4, 

 

Figure 2-4 Cycle-based quality distribution (boxplot) of four different sequencing 

runs. The dashed short line ―-― at each cycle indicates the median quality score, 

and the dark blue region at each cycle represents the 95% interval of quality 

score. Outliers are denoted by ―.‖ or by the light blue dots at each cycle.  
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the quality goes up and stays stable in the middle and then goes down with 

increasing cycles. The bad overall quality of some cycles in s_7 lane explains the 

left peak in distribution plot of averaged overall quality. 

2.3.5 Distribution of read count 

It‘s also important to check the distribution of read count, especially to check the 

portion of low-frequent or high-frequent reads. One way to do that is to plot 

cumulative distribution curve (Figure 2-5) of how coverage is distributed amongst 

reads. Ideally, the cumulative proportion of reads will transition sharply from low 

to high. Portions on the left represent low-count reads and might correspond 

roughly to sequencing or sample processing errors. Portions to the right 

represent reads that are over-represented compared to expectation. Broad 

transitions from low to high cumulative proportion of reads might reflect 

sequencing bias or perhaps intentional features of sample preparation resulting 

in non-uniform coverage. 
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Figure 2-5 Cumulative distribution plot of read count. A point on the curve 

indicates the portion of reads (the score on the y axis) that has less than or equal 

to a certain number of count (the number on the x axis, log10 transformed). 

Portions on the left are for low-frequent reads and portions on the right 

represents reads with high count number. 



31 

 

 

 

2.3.6 Cycle-based base calls 

 

Figure 2-6 Cycle-based base calls or base count. N is for undermined bases, 

which should have a low-count curve in good-quality sequencing data. 

Per-cycle base call should usually be approximately uniform across cycles. A 

constant count in the middle (around cycle 40) of the four example lanes (Figure 

2-6) is because those cycles are the 19 common nucleotides of a shRNA 

construct (Figure 2-8) for all reads. 
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2.3.7 Example of a bad sequence run 

Multiple QA metrics provided by ShortRead+ can help you to detect bad quality 

sequencing runs which might come from technical mistakes. For example in 

Figure 2-7, there is a significant peak on the left of averaged quality distribution 

(A) indicating that there is a large portion of low-quality reads. Cycle-based 

quality distribution and base call plots point out the reason: after cycle about 30, 

the quality of sequencing drops to almost 0, resulting in bad overall quality. After 

careful investigation of the process, it turns out that this is due to a failure of a 

agent kit during the sequencing. However, if you skipped this QA steps and 

performed analysis directly, you would not be able to identify this technical flaw. 
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Figure 2-7 Example of a bad sequence run shown by (A) density distribution of 

averaged quality scores (B) cycle-based boxplot of quality distribution and (C) 

cycle-based base calls or base count. 

2.4 shScanner: Deconvolution of Raw NGS Reads 

After confirming the quality of raw sequencing reads is relatively good, the next 

step of shSeq analysis is to deconvolute each short read by identifying which 

sample it represents and which hairpin it comes from. According to the 

construction of each 50nt or 100nt-length sequence read (Figure 2-8), the first 6 

nucleotides (in blue) are used to mapping back to the barcodes for multiple 

samples representing different experimental conditions, and the 22 nucleotides 

(in red) in the middle are used to identify shRNA hairpin in the library it belongs to. 

 

Figure 2-8 Sequence structure decomposition of each shSeq read. The first 6 

bases in blue are from barcodes of experimental design and the 22nt bases in 

red are from sequences of shRNA hairpins in the library, out of which 19 

nucleotides in the middle are perfectly matched to the genome sequence. 

Decoding a single read is easy in this context. Deconvolution of barcode and 

hairpin follows the same procedure. Take decoding hairpin as an example, it has 

the following steps: 
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1) Extract the hairpin sequence from the read (position 26 to 47) 

2) Align the hairpin sequence with reference sequences in the library 

3) Calculate the score of the alignment between each reference sequence 

and query sequence 

4) Identify the reference sequences which has maximum alignment score 

5) If there is only reference sequence identified, i.e. having maximum 

alignment score, report this sequence as the hairpin source of this read; if not, 

mark this read as ambiguous 

The score of alignment is calculated by counting the number of exact matches 

between two sequences. A parameter of maximum number of mismatches (the 

default is 6 for barcode and 22 for hairpin) is introduced to control reads with a 

large number of mismatches. 

However, to decode 100 million of reads, it would be extremely time and space-

consuming if you do it one by one. shScanner implements a parallel computing 

framework under Titan clustering system [84] at Columbia C2B2 IT department. 

With the parallel computing technique, shScanner is able to decode 100M reads 

in just a few hours and only requires a 1G memory size for each job. 

In deconvolution results, shScanner reports an identification table representing 

the count of each hairpin (rows) under each sample (column). In general, over 75% 

of total reads can be identified (Table 2-5). The distribution of total identified 

reads across barcoded samples depends on the number of cells mixed when 

preparing the samples, but in general they are equally distributed. 
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Table 2-5 A summary table of deconvolution results for 6 shSeq runs. Each run 

contains 6 samples (T0 and T10 in replicate A-C), in which the total identified 

reads (the first rows in each run) and averaged count per shRNA (the second 

row in each run) are reported. Identification rate is the percentage of identified 

reads. The numbers in red indicate a case of low signals which might cause the 

data noisy. T10/T0 is the ratio of total identified reads at T10 and T0. 

2.5 shSEQ: Processing, Normalization and QA of 

Deconvoluted shSeq Data 

Deconvolution of raw shSeq data generates a table representing abundance of 

hairpins under each sample. However, before comparing different conditions, e.g. 

T10 vs. T0, to identify depleted or enriched candidates, we need to process the 
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data, normalize it and perform a secondary QA of normalized data. I develop a 

package, named shSEQ to do these jobs. 

2.5.1 Preprocessing 

Hairpin abundance in the shSeq data is count-based, thus there could be zeros, 

especially if the total number of identified reads is low. To obtain robust results of 

later comparisons and to avoid zero or infinite value when calculating fold change 

to represent the difference, a pseudo-count (default 1) is added to the abundance 

table. This is equivalent to putting a uniform or flat prior to the likelihood of such 

discrete data. 

2.5.2 Normalization 

Due to the discrete nature of shSeq count data, the normalization of such data is 

different from microarray data. The first step of shSeq data normalization is 

scaling the count to make each sample have the same total number of reads so 

that count between different samples is comparable. With the capacity of GIPZ 

library, 10 million of total reads is commonly used to do scale normalization, 

therefore each hairpin has about 170 reads on average. The scale-normalized 

count of one hairpin is proportional to the percentage of its abundance in a fixed 

size cell population. This step is similar to the background correction in 

microarray data preprocessing. After scale normalization, all replicates are 

scaled to have the same center roughly as shown in Figure 2-9 and Figure 2-10. 

However, scale normalization doesn‘t reduce the variance within replicates as 

indicated by the correlation of replicates in Figure 2-9 and Figure 2-10. The 
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variance within replicates is an important source of noise for shSeq data and 

needs to be controlled. Therefore, a novel normalization procedure is proposed 

to reduce the variance of replicates by correcting outliers among replicates for 

each hairpin. Hairpins that have outlier count are determined by standard 

deviation ranking. By default, 25% of total hairpins are considered to contain 

outliers. For a hairpin with outlier count value, the outlier is decided as the one 

which causes the largest increase of standard deviation. The other two or more 

count values are used to fit a Gaussian distribution for the count value under this 

condition, which is then used to simulate a new corrected count for the outlier. If 

zero standard deviation occurs, the median of standard deviations of all hairpins 

is used instead. 

After normalization by replicates (NBR), the variance within replicates is reduced 

as indicated by the increased correlation between replicates shown in Figure 

2-11. 
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Figure 2-9 Scatter (A), density (B) and CDF (C) plots of data before normalization. 

(A) Scatter plots and correlations between biological replicates. Plots in the 

dialogue are density distributions of data in each replicate. Texts in the upper 

triangle cells indicate Pearson (the first number) and Spearman correlations. 
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Figure 2-10 Scatter (A), density (B) and CDF (C) plots of data after scale 

normalization 
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Figure 2-11 Scatter (A), density (B) and Cumulative distribution function (C) plots 

of data after normalization by replicates 
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2.5.3 QA of normalized data 

After preprocessing and normalization of shSeq count data, we need to do a 

second QA to check the quality in biological perspective, i.e. the relations 

between different biological conditions and replicates.  

The shSEQ package incorporates and extends QA metrics for microarray data 

[85] and checks the following aspects of normalized shSeq data. 

2.5.3.1 MA plot 

M and A are defined as: 

                

  
             

 
 

V1 is the shRNA count (sequencing data) of the sample studied, and V2 is for a 

"pseudo"-sample that consists of the median across all samples. Generally, we 

expect the mass of the distribution in an MA plot to be concentrated along the M 

= 0 axis, and there should be no trend in M as a function of A. If there is a trend 

in the lower range of A, this often indicates that the samples have different 

background signals; this may be addressed by background correction. A trend in 

the upper range of A can indicate saturation of the measurements; in mild cases, 

this may be addressed by non-linear normalization. 
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Figure 2-12 MA plot of shSeq data of multiple samples. 

2.5.3.2 Distribution of hairpin count 

Distribution plots including boxplot and density plot are commonly used to check 

the average strength of signal and noise level. Boxplots (Figure 2-13) represent 

summaries of the signal distributions of the samples. Each box corresponds to 

one sample. Typically, we expect the boxes to have similar positions and widths. 

If the distribution of a sample is very different from the others, this may indicate 

an experimental problem. Outliers based on the Kolmogorov-Smirnov statistic 

between each sample's distribution and the distribution of the pooled data, are 

marked by an asterisk (*). 
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Figure 2-13 Boxplot of shSeq count in each sample. 

Density plots (Figure 2-14) are smoothed histograms of the data. Typically, the 

distributions of the samples should have similar shapes and ranges. Outliers, 

according to the same criterion as in the boxplots, are highlighted by color. 
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Figure 2-14 Density plot of hairpin count in each sample. 

2.5.3.3 Consistence of biological replicates 

One important perspective we need to check in the second QA of normalized 

shSeq data is the consistence of biological replicates. There are several ways of 

doing this supported by shSEQ package. 

A straight-forward approach is to look at the correlation of replicates condition by 

condition. As shown in Figure 2-9, Figure 2-10 and Figure 2-11, empirical 

distribution of each replicate sample is plotted in the dialogue, and they are 

expected to have similar shape and scale as indicated in part B and part C 

(cumulative distribution plot). In part A, upper triangle shows the Pearson and 

Spearman correlation between two replicated samples without any filtering on 

shRNAs. 
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Heatmap (Figure 2-15) of between sample distances and dendrogram of sample 

clustering (Figure 2-16Error! Reference source not found.) can help to detect 

batch effects, as well as clustering of samples based on biological effects. The 

color scale is chosen to cover the range of distances encountered in the dataset. 

Datasets for which the sum of the distances to the others is much different from 

the others are detected as marked by * as outliers. The distance between two 

samples is the mean absolute difference (L1-distance) between the vectors of M-

values (see 2.5.3.1) of the samples. 
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Figure 2-15 Heatmap of sample similarities. 
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Figure 2-16 Hierarchical clustering of samples. Each row represents a condition 

while boxes on each rows are replicates under that condition. Dots on the upper 

left plot indicates where to split the three to obtain specific number of clusters, in 

which the yellow one is for the current plot; colors are for different clusters. 

2.5.3.4 PCA plot 

Scatter plot of the samples along the first two principal components (Figure 2-17) 

is used to check whether the samples cluster, and whether this is because of an 

intended biological or experimental factor, or according to unintended reasons 

such as "batch effects". Outliers, according to the same criterion as in the 

heatmap plot, are indicated by larger symbols. 
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Figure 2-17 PCA plot of samples. 

2.5.3.5 Variance-mean dependence plot 

Variance-mean dependence plot (Figure 2-18) is the standard deviation of the 

representation values across samples on the y-axis versus the rank of their mean 

on the x-axis. The red dots, connected by lines, show the running median of the 

standard deviation. Typically, one expects the red line to be approximately 

horizontal, that is, show no substantial trend. In some cases, a hump on the right 



51 

 

 

 

hand of the x-axis can be observed and is symptomatic of a saturation of the 

measurements. 

 

Figure 2-18 Variance-Mean dependence plot. 

2.6 Comparison of NGS with Microarray Platform for RNAi 

Screening 

With the above QA metrics, one interesting question we can ask is how shSeq 

data is comparing with classical microarray-based pooled shRNA screening. 

Using the metric of consistence between replicates, we observe that shSeq data 

with an average correlation of over 0.9 (Figure 2-11), is in general better than 
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microarray data, both barcode-probed with a correlation of 0.6 to 0.7 and hairpin-

probed with a correlation of 0.7 to 0.8 (Figure 2-19). However, the shSeq data 

could be noisy as well, especially if the data doesn‘t have enough total identified 

reads as shown in Figure 2-20, which directly affects signal representation.  

 

Figure 2-19 Consistence of replicates for RNAi screening data by barcode-

probed (left) and hairpin-probed microarray platforms. 
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Figure 2-20 An example of bad shSeq run. The numbers on the bottom-right are 

total number of identified reads for each replicate. Low total numbers (in red) for 

replicate B and C reduces the signal representation, thus making the data noisy. 

2.7 shADER: shRNA-level Differential Representation Analysis 

Once shSeq is normalized and secondary QA shows good results, we are ready 

to conduct differential representation analysis by comparing shRNA abundance 

at TX with T0, to identify hairpins or genes that are either essential for cell 

proliferation or survival, i.e. depleted ones, or suppressors of cell growth, i.e. 

enriched ones. In negative pooled hairpin screens, we are more interested in 

depleted or under-represented candidates because those genes are potential 

therapeutic targets of diseases such as cancer. Because there are multiple 

shRNAs targeting the same gene in the library, we can do this analysis at 
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individual shRNA level or at gene level by integrating multiple hairpins for the 

same gene. 

In literature, there are a number of different metrics to estimate the differential 

representation of individual shRNAs. For example, straight-forward such as fold 

change, log-transformed fold change, signal to noise ratio, difference of means 

can be used for simple analysis. To estimate the fold change between case and 

control samples, one need to calculate the mean within case or control samples. 

Two methods can be used: arithmetic or geometric mean, and the latter one is 

suggested for robustness. 

2.7.1 Bayesian linear model 

However, the above methods doesn‘t take statistical significance into account, 

therefore Student‘s t-test or moderated t-type test [86, 87] can be used to test the 

statistical significance, or a linear modeling approach [88] can be used to fit the 

data. For the modeling approach, the likelihood needs to be regularized by 

classical Frequentist‘s stabilization method [87], Bayesian or empirical Bayesian 

approach [88] due to small sample size issue. The regression coefficient 

represents the level of difference between case and control groups, and the 

statistical significance can be estimated by Chi-square test or Wald‘s z-test. 

In my dissertation, I develop a method, shADER, to do shRNA level analysis of 

differential representation. It‘s essentially a linear model under Bayesian 

framework. The reason to do it with Bayesian inference is because shSeq data is 

usually noisy and the sample size is small, and Bayesian modeling [89] 
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overcomes those problems very well. Because of the discrete nature of shSeq 

count data, a Poisson distribution (Figure 2-21) is employed to model the data, 

but for microarray data which is continuous, a Gaussian distribution (Figure 2-22) 

is commonly used. In shADER, it supports multiple priors for the coefficient or the 

slope including Gaussian prior [89], t-prior [90] and g-prior [91]. In general, 

Markov Chain Monte Carlo (MCMC) computing techniques are used to simulate 

the posterior distribution and estimate parameters in the model by posterior 

mean or median. 

 

Figure 2-21 A Bayesian linear Poisson model. Y is hairpin abundance in count, 

which follows a Poisson distribution with a log-link. X indicates the condition, e.g. 

T10 or T0. The coefficient of linear model β represents the magnitude of 

differential representation, and α is the intercept. The noise follows a Gaussian 

distribution with mean 0 and standard deviation σ. Priors for this model is a 

conjugate one, in which coefficients, β and α use a Gaussian distribution, and 

variance of noise σ2 follows Inverse Chi-square prior[89]. 

 

Figure 2-22 A Bayesian linear Gaussian model. Y is hairpin abundance in 

continuous value, which follows a Gaussian distribution. X indicates the condition, 

Bayesian Linear Poisson Model Priors

Bayesian Linear Gaussian Model Priors
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e.g. T10 or T0.The coefficient of linear model β represents the magnitude of 

differential representation, and α is the intercept. The noise follows a Gaussian 

distribution with mean 0 and standard deviation σ. Priors for this model is a 

conjugate one, in which coefficients, β and α use a Gaussian distribution, and 

variance of noise σ2 follows Inverse Chi-square prior. 

2.7.2 Summarizing differential representation results 

With the linear modeling approach, the slope is generally used to represent the 

magnitude of differential representation, but a summarized z-score is more 

robust to represent the differential representation results by taking the variance of 

the slope into account, especially when the data is noisy. Corresponding p-value 

will also be reported for statistical significance. The Z-score is calculated by 

estimate of regression coefficient over its standard deviation, which 

asymptotically follows a standard Gaussian distribution, therefore the two-tailed p 

value for statistically significance can be calculated based on this null distribution. 

This is essentially Wald‘s z-test. 

FDR for correction of multiple comparisons in shADER is calculated by BH 

procedure [92]. 

The package of shADER also supports multiple visualization of the results. For 

example, density plot of z-scores (Figure 2-23) and histogram of p values (Figure 

2-24) give overall distribution of depleted or enriched hairpins, also significance 

and non-significance. A uniform distribution of non-significant hairpins is 

expected, which is also the assumption of FDR calculation. Heatmap of selected 
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shRNAs using z-scores (Figure 2-25) or original shSeq data (Figure 2-26) 

visualizes the pattern of differentiated shRNA-silencing effects such as similarity 

between genes or samples. 

 

Figure 2-23 Distribution of z-scores indicating differential representation results 

from four different shSeq data sets. Positive z-score means enrichment of 

hairpins while negative is for depletion. 
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Figure 2-24 Distribution of p-values indicating differential representation results 

from four different shSeq data sets. 
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Figure 2-25 Heatmap of z-scores of significant depleted hairpins. Euclidian or 

correlation can be used for distance metrics and Wald method is suggested for 

hierarchical clustering. 
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Figure 2-26 Heatmap of shSeq data of significant hairpins in different conditions. 

Euclidian or correlation can be used for distance metrics and Wald method is 

suggested for hierarchical clustering. 

2.8 shMA / BHM: Scoring Gene Level Activity by Integrating 

Multiple Hairpins Targeting the Same Gene 

The final goal of genome-wide of RNAi screening is to identify candidate genes 

that can used as therapeutic targets, therefore it‘s more interesting to score gene 
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level activity from RNAi screening data. Because of the fact that multiple shRNAs 

targets the same gene in the shRNA library, statistical methods are needed to do 

gene-level differential representation analysis by integrating all hairpins for the 

same gene. I develop a package shMA (shRNA meta-analysis) using Bayesian 

hierarchical modeling (BHM) approach to combine multiple shRNAs targeting 

one gene. See Chapter 4 for more details about this algorithm. 

2.9 Post-Analysis 

With results of differential representation analysis or selected candidates, there 

are multiple post-analysis we can do, for example, functional enrichment analysis 

and sensitivity analysis. 

2.9.1 Functional enrichment analysis 

One interesting question we can ask about the selected candidates is that what 

functions or pathways they are enriched in. The way to answer it is to perform 

enrichment analysis in known functional categories or pathways. 

There are multiple sources of functional databases we can use: 

 The Gene Ontology [93] includes annotations of biological process, 

molecular function and cellular component for entire human or mouse 

genome. 

 Pathway commons [94] is a collection of biological pathway information 

from public pathway databases including BioGRID, Nature Pathway, 

Reactome, KEGG, etc. 
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 Molecular signatures database (MSigDB) [95] is collection of annotated 

gene sets for use with GSEA software. 

Various available methods or tools for enrichment analysis we can use include: 

 DAVID [96] supports gene-annotation enrichment analysis using Fisher‘s 

exact test. 

 Gene Set Enrichment Analysis (GSEA) [97] is K-S statistic based 

enrichment analysis method developed at Broad Institute. 

 Gene Set Analysis (GSA) [98] introduces a new ―maxmean‖ statistic for 

enrichment score by Brad Efron. 

GSEA-type enrichment analysis of pathways or GO terms (Figure 2-27) uses 

differential representation results of all shRNAs or genes as the reference, for 

example, ranking from the most enriched to the most depleted. Classical 

weighted can be used to estimate the enrichment score, and gene label shuffling 

is commonly used to estimate significance in this small sample size situation. 

I develop a new enrichment analysis method, Bayesian Set Enrichment Analysis 

(BSEA), using Efron‘s ―maxmean‖ statistic and Bayesian inference. It 

outperforms GSEA and GSA. More details are in Chapter 5. 
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Figure 2-27 An example GSEA plot of pathway or GO gene sets in differentially-

represented shRNAs. Y axis shows the z score of differential representation at 

shRNA level or gene level. The red dashed lines indicate normalized Enrichment 

Score (nES) and P value. 

2.9.2 Sensitivity analysis 

Another interesting analysis we can do with high-throughput shRNA screening 

data is sensitivity analysis, particularly when we have a number of RNAi screens 

across multiple cell types or disease contexts. Basically it asks a very general 

question: how sensitive is a cell line to respond to RNAi perturbation, or how 

difficult to kill certain type of cells by RNAi? The way to answer it is simply 

counting the number of depleted hairpins or genes in RNAi screen of each cell 
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line. The larger the number of significantly depleted genes, the more sensitive 

this cell line is to respond to RNAi perturbation, or the easier to kill this cell line by 

RNAi.  

Based on this methodology, a sensitivity analysis plot can be generated by 

plotting the number of depleted hairpins of each cell line at different p-value 

cutoffs. Figure 2-28 shows the sensitivity analysis plot for a panel of 16 breast 

cancer cell lines covering major subtypes of breast cancer. The larger the area 

under the curve (AUC), the more sensitive the cell line is. So we can see that the 

most sensitive cell line is MCF10A, which is a normal line, while the most 

resistant one is SUM149PT, which is inflammatory breast cancer, probably the 

most aggressive form of breast cancer. If we group them into subtypes, there is a 

pattern of decreasing sensitivity from normal, to luminal to Basal A to Basal B 

type of breast cancer, or it is harder to kill Basal B than Basal A than Luminal 

than Normal cells, which is consistent with the aggressiveness we know about 

those forms of breast cancer. This pattern can be seen more clearly in the left 

panel of Figure 2-30. 

Similarly, we can do the same thing for enriched hairpins which corresponds to 

genes that are suppressors of cell growth or survival such as tumor suppressors. 

However, as shown in Figure 2-29 and the right panel of Figure 2-30, there is no 

such pattern we observed in depleted hairpins. This might reflect the difference 

of essential genes (depleted) with tumor suppressor genes. There is no 
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preference of cell types to make the cell grow better, but to kill them depends on 

the cell type, which has a specific defense system. 

 

Figure 2-28 Sensitivity analysis. Number of significant depleted haiprins (y axis) 

in each of 16 breast cell lines at different p-value cutoffs (x axis). Cell lines 

represented by lines in different colors are classified into four groups represented 

by shape of dots. 
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Figure 2-29 Sensitivity analysis of looking at depleted, enriched or both hairpins 

in the panel of 16 breast cell lines. 
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Figure 2-30 Statistical comparisons of sensitivity analysis results of 16 breast cell 

lines in both depleted and enriched cases. A Student‘s t-test is used to do the 

comparisons. 

The sensitivity analysis of different cell types can be viewed in another 

perspective by counting the number of cell lines in each group that share certain 

number of depleted hairpins or genes (Figure 2-31). The lower the percentage at 

certain number of depleted genes, the more resistant this type of cells, or given a 

percentage of cell lines, the larger the number of depleted genes they share, the 

more sensitive this cell type is to respond to RNAi perturbations. 
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Figure 2-31 The percentage (y axis) of cell lines in each group share a certain 

number of common depleted hairpins (x axis) at different p-value cutoff (in 

various colors). 
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Chapter 3 Meta-Analysis of High-throughput RNAi 

Screening Data (the BHM algorithm) 

3.1 Summary 

Genome-wide RNA interference (RNAi) screening has emerged as a standard 

tool for systematic loss-of-function studies and therapeutic target discovery. 

Short hairpin RNA (shRNA) is commonly used because of its stableness 

compared to small inference RNA (siRNA) that suffers transient silencing. 

However, due to high false-positive and false-negative rates, statistical analysis 

of high-throughput shRNA screening data remains challenging, particularly meta-

analysis of multiple shRNAs targeting the same gene in the library to report 

gene-level activity. Here we propose a Bayesian hierarchical modeling (BHM) 

approach to tackle this challenge and validate that this novel ―modeling-all-

together‖ strategy outperforms classical ―separate-and-combine‖ approaches. 

Surprisingly, our BHM algorithm works extremely well when applied to relatively 

low-quality screens, which is observed in about 80% of shRNA screens. 

Moreover, this hierarchical modeling framework can be useful in similar 

applications. 

Keywords: Bayesian hierarchical modeling, high-throughput RNAi 

screening, shRNA screening, separate-and-combine, modeling-all-together 
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3.2 Introduction 

RNA interference (RNAi) has emerged as a standard technique for studying 

phenotype-specific gene function in many organisms (e.g. plants, fungi and 

animals) via suppression of gene expression [48-51]. RNAi-based gene silencing 

can be achieved by the use of small interfering RNAs (siRNAs) or short hairpin 

RNA (shRNA) expression vectors. Between the two approaches, shRNA is more 

feasible due to the siRNA-specific problem of transient inhibition of gene 

expression and inefficient transfection into non-dividing cells. However, shRNA 

can be stably integrated into a target cell genome via retroviral or lentiviral gene 

transfer, resulting in the permanent reduction of the targeted gene product. Two 

major shRNA expression libraries, GIPZ library [52-54] and TRC library [55] that 

target the entire human genome have been generated to facilitate functional 

analysis of the whole transcriptome through loss-of-function genetic studies.  

In a genome-wide shRNA screen, a large population of cells is transfected with a 

pool of different shRNA lentiviral vectors and shRNA hairpins which subsequently 

integrate into cells‘ genomes. These transduced cells can be used for two main 

applications. One is to identify genes that are essential for cell survival or growth, 

thus representing potential therapeutic targets for cancer and other human 

diseases. Hairpins of such essential genes will be dropped out or under-

represented as time evolves. The other is to identify genes that modulate 

response to cell perturbation, such as chemotherapeutic agents. To do this the 

transfected cells are split into two groups, one treated with an agent of choice, 
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the other with a vehicle control. With this selective pressure, depleted or enriched 

hairpins will represent candidates that increase sensitivity or resistance of cells to 

a therapeutic agent. 

To quantify and analyze shRNA hairpins extracted from genomic DNA, 

microarray hybridization is commonly used with the advantage of low cost and 

flexibility. It employs PCR-amplified shRNA template sequence pools extracted 

from shRNA library-transduced cells under test as well as reference conditions. 

Each PCR fragment is labeled with a different fluorophore, followed by 

hybridization of both pools to the same array, or labeled with the same 

fluorophore followed by hybridization to multiplex arrays. Taking the two-color 

microarray as example, the ratio of signal intensities of two colors (Cy3, Cy5) for 

each probe sequence reflects the relative abundance of cells expressing the 

corresponding shRNA construct under the sample condition as compared to the 

reference. Consequently, shRNA hairpins that target essential genes for cell 

viability will be depleted from the pool, showing low values of signal ratio, 

whereas shRNA constructs that target genes inhibiting cell growth such as tumor 

suppressors will be enriched, showing high values of signal ratio. 

Because each gene represented in the shRNA library is targeted by an average 

of 2-3 hairpins in GIPZ library and 5 hairpins in TRC library, we must integrate 

evidences of all shRNAs for one gene to uncover the gene-level activity. 

Traditional methods usually employ a ―separate-and-combine‖ approach – 

scoring shRNA individually first and then picking up representative shRNA with 
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high score or combining scores of all shRNAs targeting the same gene. Different 

algorithms that select or combine shRNAs have been proposed including 

choosing the second best or most depleted shRNA [59] (RIGER_SB), averaging 

the best two shRNAs[59] (RIGER_WS), performing enrichment analysis of all 

shRNAs targeting one gene against all shRNAs in the library [59] (RIGER_KS), 

or probability-based averaging of all shRNAs per gene [99] (RSA). A limitation 

with these types of approaches is that they rely on accurate estimation of 

individual shRNA activity which is very difficult to achieve in common large-

scaled shRNA screens with a small sample size. Also off-target effects, low 

silencing efficiency, small differences among shRNAs targeting one gene, and 

microarray noise will make heuristic selection of shRNAs to represent gene-level 

behavior problematic and cause high false-positive rates. 

To overcome the above drawbacks, in this study we propose a novel Bayesian 

hierarchical modeling (BHM) algorithm to report gene-level activity. Hierarchical 

modeling [89, 100], also known as multilevel modeling, has been increasingly 

used in large-scaled `omics studies for its robustness [101]. In this context, BHM 

algorithm puts all shRNAs targeting the same gene together, instead of 

separating them, and then fits a linear mixture model by allowing variation of 

activities among different hairpins, also known as random effects. This ‗modeling-

all-together‘ strategy improves parameter estimation by increasing sample size 

and reduces prediction error and false-positive rate by integrating information of 

all shRNAs. Furthermore, we employ Bayesian inference with Markov chain 

Monte Carlo (MCMC) techniques to further improve accuracy and robustness of 



73 

 

 

 

scoring metrics. Evaluation results based on benchmark shRNA screens 

designed for profiling essential genes suggest that our BHM method outperforms 

classical ‗separate-and-combine‘ algorithms significantly on sensitivity and 

precision, and especially BHM dominates the others when the data is of low 

quality, which accounts for about 80% cases of normal high-throughput shRNA 

screens. 

3.3 Profiling Cell Essential Genes by Microarray-based RNAi 

Screens 

As described in the previous section, negative genome-wide RNAi screening is 

commonly used to identify essential genes for proliferation and viability in cancer 

cells. A typical procedure of microarray-based pooled shRNA screening to profile 

cell essential genes is shown in Figure 3-1-A. The pool of shRNA plasmid 

vectors is transfected into a target cell population at a multiplicity of 0.3 to 

achieve one shRNA per cell. Infected cells are then harvested for X doubling 

times in triplicates. Genomic DNAs are extracted from cells collected at T0 and 

TX, PCR-amplified, labeled and hybridized to multiplex microarray. 

Analysis of microarray readout involves several steps (Figure 3-1-B). Signals 

representing shRNA relative abundance are extracted and processed with 

background correction and normalization. Differential representation analysis 

(DRA) on processed data at TX and T0 time points are performed to identify 

under-represented shRNAs at TX time whose target genes are potential 

candidates of essential genes. Because of multiple shRNA probes per gene in 
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the library, DRA can be conducted at individual shRNA level and integrated gene 

level. Classical ―separate-and-combine‖ approaches score shRNAs for one gene 

separately and then combine them to derive gene level score; however, our 

newly-proposed ―modeling-all-together‖ methodology skips the individually 

scoring step and fits a hierarchical model into all data for one gene to estimate 

gene level activity directly. Associated statistical metrics with gene-level 

behaviors including fold-change, p-value, false discovery rate or z-score will be 

reported as well.  
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Figure 3-1 Outline of microarray-based shRNA screens to profile cell essential 

genes (A) experimental procedures and (B) analysis pipelines 

3.4 Classical “Separate-And-Combine” Approach 

All previous methods to estimate activity of genes targeted by multiple shRNAs in 

large-scale shRNA screening data are based on a ―separate-and-combine‖ 

strategy as illustrated in an example from benchmark datasets that a gene is 

targeted by three shRNA clones (Figure 3-2-A). There are two well-developed 

algorithms for this type of approach: RNAi gene enrichment ranking [59] (RIGER) 

and redundant siRNA activity [99] (RSA). RIGER has three sub-algorithms to 

integrate multiple shRNA scores including Kolmogorov-Smirnov statistic-based 

enrichment analysis (RIGER_KS), weighted sum of the best two hairpins 

(RIGER_WS) and the second best hairpin (RIGER_SB). RSA employs a 

hypergeometric distribution or Fisher‘s exact test-based statistical method to rank 

gene activities. These algorithms can be reclassified into summarizing all 

shRNAs targeting the same gene (RIGER_KS and RSA) and heuristic selection 

of representative shRNAs (RIGER_SB and RIGER_WS).  
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Figure 3-2 Separate-and-combine approach. (A) An example of three shRNAs 

targeting KPNB1 gene from MCF7 dataset is selected to illustrate this approach. 

A Bayesian linear model is fit into data of each shRNA respectively. Estimated 

parameters (fitted lines in red) and summary statistical metrics are displayed on 

bottom left of each shRNA plot. Z scores and p-values are calculated by Wald 

test using a standard Gaussian as null distribution. Individual shRNA scores as 

input for algorithms to combine them can be calculated by t (Student‘s t-statistic), 

z (z-statistic of β in linear model), β (the coefficient in the linear model), signal-

noise ratio (mean difference of TX vs. T0 over sample standard deviation), logFC 

(logarithm of fold change of TX vs. T0) and diff.mean (mean difference of TX vs. 

T0). (B) In the linear regression model under Bayesian framework, yi indicates 

time point, TX or T0, and xi represents shRNA abundance for sample i; m is the 

sample size of the corresponding shRNA; noise follows a Gaussian distribution 

with mean 0 and variance σ2; β is the parameter of interest, indicating the 

silencing effects on cell viability by the shRNA in consideration. As for priors, a 

RIGER_KS
RIGER_SB
RIGER_WS

RSA

t, z, β
signal-noise ratio, logFC, diff.mean

Bayesian Linear Model Priors

A

B
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two-variable multi-Gaussian is set for coefficients and an Inverse-Gamma is for 

variance. 

Various metrics have been proposed to score individual shRNA behavior (Figure 

3-2-A) at TX and T0 time points including Student‘s t-statistic, z-statistic, 

coefficient of linear regression model, signal to noise ratio, logarithm of fold 

change, and difference of mean. Student‘s t-statistic or z-statistic of coefficient in 

linear model is commonly used due to their statistical integration of replicate 

variance. Student‘s t-test is equivalent to a linear model with Gaussian noise. 

However, with the fact that the sample size in this context is usually small, a 

Bayesian linear model with a Gaussian prior for coefficients (Figure 3-2-B) is 

suggested for its robustness. 

3.5 Our “Modeling-All-Together” Approach: Bayesian 

Hierarchical Model 

Instead of two-step analysis, we propose a ―modeling-all-together‖ approach to fit 

a complex hierarchical or multilevel model into data of all shRNAs targeting the 

same gene. Particularly, we establish the model within Bayesian framework to 

overcome inaccurate estimation problems from small sample size and microarray 

noise. Bayesian hierarchical model (BHM) introduces an additional level to the 

classical linear model with parameter of coefficient corresponding to silencing 

effect of shRNA group (indexed by j) and the parameter is assigned its own 

distribution (Figure 3-3-A). We have also allowed the intercept to vary across 
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hairpin classes in a similar manner. Additionally, our Bayesian analysis requires 

us to specify prior distributions for the parameters of coefficients and variance, 

which follow Gaussian and Inverse-Wishart or Inverse-Gamma distribution 

respectively (Figure 3-3-A). The multilevel model can be rewritten as a linear 

mixture model (Figure 3-3-B), in which ―fixed effect‖ corresponds to gene-level 

activity and ―random effect‖ reflects the variation of silencing effects from different 

shRNA classes targeting the same gene. 

Using the same example in previous section, the data of three shRNA classes (in 

three different colors) is modelled together and parameters are estimated by 

MCMC simulations (Figure 3-4). The red solid line indicates the integrated 

behavior of all three shRNA groups, and each dashed line reflects individual 

shRNA-level behavior by adding random deviations to fixed gene-level activity on 

both slope and intercept.  

The hierarchical model can be viewed and interpreted from another conceptual 

perspective. As shown in Figure 3-5, a middle layer is introduced to indicate the 

shRNA level, thus forming the hierarchy structure of the model. All data points for 

one shRNA are clustered together, but all shRNAs targeting the same gene are 

fit in the same model with allowance of their internal difference. 
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Figure 3-3 Modeling-all-together approach. Bayesian hierarchical modeling (A) 

The data of all shRNAs targeting one gene can be fit by a hierarchical model, in 

which the extra level is indexed by j, indicating the shRNA group the sample 

belongs to. Sample index i is up to n, the total number of samples for one gene; j 

is up to J, the number of shRNA classes. Parameter µ, a vector of slope and 

intercept, reflects the gene-level activity and allows variation for each shRNA 

class. Conjugate priors are set for parameters. (B) The model can be rewritten to 

a two-component mixture model in which ―fixed effect‖ corresponds to gene-level 

behavior and ―random effect‖ indicates the noise of each shRNA group. 

Fixed Effect Random Effect

Model

Priors

Rewriting the Model

B
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Figure 3-4 Modeling-all-together approach. Bayesian hierarchical modeling. A 

practical application of the Bayesian hierarchical model to the example in Figure 

2 is summarized in the plot. Red solid line indicates fitted gene-level/fixed effects 

in the model. Estimated parameters and summary statistics including z-statistic 

and p-value are displayed on bottom middle. Each colored dashed line reflects 

individual activity of each shRNA class by adding random effect to fixed gene-

level effect. 



82 

 

 

 

 

Figure 3-5 A different representation of the hierarchical model. A middle layer is 

introduced to indicate the shRNA level. All data points for one shRNA are 

clustered together, but all shRNAs targeting the same gene are fit in the same 

model with allowance of their internal difference. 

3.6 Benchmark Datasets and Validations 

To benchmark different algorithms for meta-analysis of shRNAs targeting the 

same gene, we selected three representative datasets from a panel of 72 RNAi 

screens designed for profiling essential genes in breast, pancreatic, and ovarian 
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cancer cell lines [102] using 80K pooled TRC library targeting 16K human genes 

with an average of 5 shRNAs per gene. In the original study [102], cells at three 

time points including T0 were collected for each cell line to investigate the 

dynamics of shRNA behaviors. However, due to our interest in detecting 

depleted genes essential for cell viability, we only selected the final time point 

and T0. This aids in the detection of depleted genes that are essential for cell 

viability, no matter whether they are dropped out early or late, and early depleted 

shRNAs would still remain under-represented in later time point. This two-time-

point design is also generally applied in literature for cost consideration, but a 

long evolution time is usually required to capture late-dropped-out genes. In 

Figure 2, the three types of tumors selected, MCF7, HPAFII and OVCAR5 for 

breast, pancreatic, and ovarian cancer respectively, are represented by three 

lines. More importantly, they also represent high (MRC: minimum replicate 

correlation > 0.9), medium (MRC between 0.8 - 0.9) or low (MRC < 0.8) data 

quality categories in terms of the consistence between replicates (Figure 3-7), 

each of which accounts for 22%, 50% and 28% of the total 72 screens (Figure 

3-6). 

Without a gold standard in place for selecting human essential genes, 

housekeeping and evolutionary-conserved genes likely to be critical for cell 

viability were used to benchmark methods of probing essential genes [102]. We 

followed this validation method to compare our new BHM approach with existing 

algorithms of reporting gene-level potency to be essential genes from shRNA-

level evidences. In our study, we collected four independent gene sets as 
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references – two adapted from previous study [102] and two more recent studies 

on human housekeeping genes [103, 104]. Housekeeping or ortholog genes that 

were not present in the shRNA library were filtered out. We then determined the 

percentage of overlapped genes of reference set with top k hits predicted as 

essential genes by each method. To avoid selection bias on k, we sampled k 

from 0 up to 1000 with a sliding widow of 5. The larger intersection with reference 

gene set the algorithm produces consistently, the more powerful this method is. 
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Figure 3-6 Distribution of data quality (MRC: minimum replicate correlation) for 

the panel of 72 shRNA screens: High (MRC>0.9): 22%, Medium (MRC in 0.8-0.9): 

50%, Low (MRC<0.8): 28%. 
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Figure 3-7 Quality of benchmark datasets. Each dataset has two time points (T0 

and TX) and three replicates (A, B and C). Each sub-figure displays the scatter 

plots on bottom left and correlations (Pearson_Spearman) on upper right 

between any two replicates of the corresponding group, and density distribution 

of shRNA abundance in each replicate on the diagonal. Low variability of scatter 

plots, high correlations and high similarity of distribution plots indicate good 

consistence of replicates, thus good quality of the data. The label (High, Medium 

or Low) after each cell line name indicates the data quality group it belongs to, 

defined by MRC (minimum replicate Pearson correlation), the ―bottle-neck‖ of 

each dataset. MCF7 (MRC > 0.9), HPAFII (MRC between 0.8-0.9), and OVCAR5 

(MRC < 0.8) represent 22%, 50% and 28% of 72 screens respectively. 

3.7 Evaluation Results 

3.7.1 BHM dominates RIGER and RSA 

To evaluate the performance of our BHM algorithm compared with classical 

RIGER (RIGER_KS, RIGER_SB, RIGER_WS) and RSA methods, we applied 

the validation strategy of using housekeeping and conserved genes as ―gold 

standard‖ for essential genes to three benchmark dropout shRNA screens. In 

RIGER and RSA methods, we used t-statistic for individual shRNA scoring that 

was commonly used in their software packages. We plotted the intersection 

percentage of each reference gene set against top 0 up to 1000 hits inferred as 

essential genes by each algorithm in each testing dataset (Figure 3-8). The Y-

axis corresponds to sensitivity or recall rate while the X-axis reflects precision or 

prediction rate. Therefore the area under the curve (AUC) of each algorithm is 
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proportional to its power to identify a large percentage of true hits while 

maintaining a high precision. 

 

Figure 3-8 Evaluation results of final time point data. Housekeeping or conserved 

ortholog genes can be used as reference gene set to evaluate algorithms to 

detect essential genes from RNAi screens. Each colored curve shows the 

percentage of each reference set (―name‖_―number of genes in the set‖) 

intersected by top 0 to 1000 hits predicted as essential genes by the 

corresponding algorithm in each dataset. The slope of ―Random‖ method line (in 

purple) is proportional to the frequency of the reference set out of all genes in the 

library. The greater the area under the curve, the more powerful the algorithm is. 

From the evaluation plot results (Figure 3-8), first we noticed that all methods in 

consideration performed consistently better than random selection with p-value of 
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all paired comparisons against random method by Student‘s t-test (also used by 

the following similar comparisons) < 4.4E-10. This was expected as it indicated 

that all three pooled shRNA screens were informative to detect human essential 

genes. Second, AUC curves of RIGER_KS, RIGER_WS, RIGER_SB and RSA 

were mixed together in all situations without clear separation. This suggested 

that there was little difference among ―separate-and-combine‖ type of methods. 

Third, BHM dominates RIGER and RSA in HPAFII and OVCAR5 studies (HPAFII: 

P < 0.05 in all 16 comparisons and P < 0.01 in 14 cases; OVCAR5: P < 1.7E-8 in 

all 16 comparisons), though it had unclear advantage in screen of MCF7 cells (P 

< 0.05 in 6 comparisons, P > 0.05 in the other 10 cases), which was actually 

explained by the association with data quality later. 

The above conclusions are also supported by the analysis of the data at a 

different time point (Figure 3-9).  
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Figure 3-9 Evaluation results using middle time point data. Housekeeping or 

conserved ortholog genes can be used as reference gene set to evaluate 

algorithms to detect essential genes from RNAi screens. Each colored curve 

shows the percentage of each reference set (―name‖_―number of genes in the 

set‖) intersected by top 0 to 1000 hits predicted as essential genes by the 

corresponding algorithm in each dataset. The slope of ―Random‖ method line (in 

purple) is proportional to the frequency of the reference set out of all genes in the 

library. The greater the area under the curve, the more powerful the algorithm is. 

Interestingly, we observed that the advantages of BHM over RIGER or RSA were 

monotonically increasing from studies of MCF7 to HPAFII to OVCAR5, which 

exactly matched the decreasing pattern – from high to medium to low replicate 

consistence – in data quality of these three screens. This confirmed our 
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expectation that our ―modeling-all-together‖ strategy with BHM algorithm 

consistently outperformed classical ―separate-and-combine‖ approaches on 

statistical power and robustness. More importantly, about 80% of shRNA screens 

in the panel of 72 cancer cell lines had medium or low data quality, in which BHM 

dominated the other methods significantly. If the data quality of the screens were 

high such as MCF7 in this study, methods would not matter too much because all 

methods reached the optimum. However, high quality data in high-throughput 

RNAi screens was rarely achieved due to off-target effects, measurement noise, 

and small sample size, which made our improved BHM method extremely 

valuable to produce trustable hit decisions. 

3.8 Discussion 

Meta-analysis of shRNA screening data to report robust gene-level behaviors 

remains difficult. We proposed a novel ―modeling-all-together‖ strategy, 

specifically a Bayesian hierarchical modeling algorithm, to address this problem. 

The evaluation results demonstrated that our BHM method outperformed 

traditional ―separate-and-combine‖ approaches (RIGER and RSA) dramatically in 

general, and especially dominated all the other methods in about 80% cases 

when the data was in relatively low quality. 

Hierarchical modeling, also known as partial pooling, can be viewed as a 

compromise between two extremes. One extreme, complete pooling, assumes 

the equal knockdown effect across all shRNA classes targeting the same gene. 

The other extreme, no pooling, ignores the similarity of the replicates within one 
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shRNA group and treat each hairpin replicate separately. The assumptions of 

these two extreme methods are too strong for shRNA screening design to be 

considered for integration of multiple shRNA evidences because different 

shRNAs targeting the same gene in the library might have significantly different 

silencing efficiencies. Hierarchical modeling comprises two extremes by allowing 

between-group variance and considering within-group effects, thus making an 

appropriate solution to this question. 

The problem of multiple comparisons can also disappear in Bayesian hierarchical 

models [105]. Partial pooling in hierarchical models shifts estimates toward each 

other whereas classical procedures for multiple comparison correction typically 

adjust p-values corresponding to intervals of fixed width. Thus BHM fitting results 

in reliable and conservative estimates for main effects or gene-level effects in this 

context.  

For ―separate-and-combine‖ strategy, a few other possible algorithms might be 

considered to integrate shRNA-level scores for the same gene, for example, 

Fisher‘s method [106] to combine signed p-values, or Stouffer‘s method to 

combine z-statistics [107]. However, these integrating p-values or z-scores 

methods easily over-estimate the significance of gene-level activity and generate 

a long list of significant candidates. Also, they ignore the magnitude of 

knockdown effects for each hairpin by only considering the statistical significance 

of how the effect is away from zero, and require strong assumptions. Thereby, 
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these methods might not be comparable to our BHM algorithm, or could be even 

worse than the other ―separate-and-combine‖ methods. 

Additionally, other enrichment analysis algorithms such as GSA [98] have been 

used in this context [108] and might perform better than KS-based GSEA method; 

however, these algorithms still bear the drawbacks of ―separate-and-combine‖ 

strategy, making them less powerful than BHM. The valuable point from 

enrichment-type methods that might improve BHM is to borrow information from 

all shRNAs or genes in the library because current BHM algorithm only considers 

shRNAs corresponding to one gene. Looking at entire list of candidates might 

produce more robust statistics for cut-off based hits selection, but probably would 

not change the rank of a gene as a potential candidate. 

Next generation sequencing (NGS) has recently emerged as a cost-effective 

technology for quantitatively measuring the abundance of short-length DNA or 

RNA in a short time, and this large-scale parallel sequencing has been used in 

pooled shRNA screens [61, 108]. Compared to microarray-based approaches, 

NGS offers several potential advantages in terms of coverage of targeting genes, 

flexibility of input library, scalability and dynamic range, which might make it 

dominate the technology for RNAi screening in the near future. In this study, we 

only focused on microarray-based shRNA screening data. However, our 

approach can be extended to analyze NGS-based shRNA screens by employing 

different underlying models for example Poisson distribution for discrete 
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sequence count-based shRNA screening data, instead of Gaussian model 

generally used for continuous microarray data. 

In summary, we developed a novel hierarchical modeling algorithm within 

Bayesian framework for meta-analysis of shRNA screening data. This ―modeling-

all-together‖ strategy dominates classical ―separate-and-combine‖ methodology 

to analyze such noisy high-throughput data. However, this approach can be 

generalized and applied to any similar meta-analysis problem in which multilevel 

can be formulized. 
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Chapter 4 NetBID2: Network-based Bayesian Inference of 

Disease Drivers 

4.1 Introduction and Motivation 

4.1.1 The era of post-genomics in cancer 

Advances in human genetics and molecular medicine have driven progress in 

our understanding of cancer biology. Development and improvement in DNA 

copy number, gene expression, and next-generation sequencing (NGS) 

technologies have resulted in more comprehensive characterization and accurate 

classification of human tumors and provided insights into cancer genome 

complexity and heterogeneity. This has led to the emerging field of cancer 

genomics to study human cancer genome. It is a systematic search within cancer 

families and patients for the full collection of genes and genetic or epigenetic 

alternations – both inherited and sporadic – that contribute to the development of 

a cancer cell and its progression from a localized cancer to one that grows 

uncontrolled and metastasizes. 

A significant number of community-driven collaborative research projects or 

programs on cancer genomics using high-throughput genomic technologies have 

been launched to provide systematic, comprehensive genomic characterization 

and sequence analysis of multiple types of human cancers, both primary 

samples and cell lines, and to facilitate cancer discoveries among scientists. For 
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example, The Cancer Genome Atlas (TCGA) [64] and The International Cancer 

Genome Consortium (ICGC) [65] provide comprehensive characterization 

including gene expression, copy number variants, SNP of major types of human   

cancers; Therapeutically Applicable Research to Generate Effective Treatments 

(TARGET) [66] focuses on pediatric cancer; The Cancer Cell Line Encyclopedia 

(CCLE) [67] is a collection of genomic data for a large panel of human cancer cell 

clines; The Connectivity Map (CMAP) [68] provides genomic profiles of 

perturbation experiments by thousands of small-molecules. 

All these cancer genomic data provide us significant molecule insights into genes, 

proteins and pathways that are causally associated with tumorigenesis, 

progression, or drug-resistance. We can use this information to complement 

genome-wide RNAi screens to shortlist candidates coming from RNAi screening, 

and, more importantly, to identify novel oncogenes or tumor suppressor genes as 

therapeutic targets for cancer treatment. 

The genomic data I focus on to develop computational algorithms or framework 

is gene expression profiles or transcriptome data which is widely available with 

mature microarray or NGS technologies. However, the methods or computational 

framework I developed can be extended to other types of genomic data. 

4.1.2 Gene expression signature is not robust 

To identify causally-associated genes or pathways from large-sampled high-

throughput cancer genomic data such as gene expression profiles, what people 

usually do is to identify the so called signature genes. For example, there are two 
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phenotypes, tumor or normal, drug-sensitive or drug-resistant, signature genes 

are usually defined as differentially expressed between the two phenotypes 

(Figure 4-1). However, the problem with conventional signature analysis is that 

they are not robust. Here is an example: Two groups were studying the same 

disease problem, metastasis in breast cancer, and each of them identified a 

group of signature genes based on their own large-sampled gene expression 

profiles, however, there is only one overlap out of about each 70 signature genes 

(Figure 4-2). One paper was published in Nature [109] while the other was in 

Lancet [110]. 

Another example is the following: we aim to identify a gene expression signature 

for ERBB2 mutation. To do that, we generate profiles for two cell lines – ERBB2 

mutated one and the wild type. However, if we culture exactly the same cells in 

2D or 3D environments, we would expect to see similar results because they 

represent the same cell types, however, we get very different results of signature 

genes. For example, there are about 30% of differentially expressed genes 

showing opposite directions in 2D and 3D systems (Figure 4-3) with individual 

examples as shown in Figure 4-4. Also if we looked at top over-expressed genes 

in 2D and 3D signatures as in the Venn diagram of Figure 4-3, there are only 

about 5 or 6 percent of top genes that are overlapped. We see the same pattern  

As shown in the above examples, traditional methods of signature analysis at 

single factor level in such context might not work well because of the high 

dimension and noise from large-scaled genomic data and also intrinsic noise of 
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gene expression itself. However, it doesn‘t mean the expression data is useless. 

We just need to develop better method to dig into it. So we have to go beyond 

gene expression signature and develop better methods to identity more robust 

biomarkers or genes that are associated with cancer progression or drug 

resistance. And it‘s more interesting to identify ―driver‖ genes of the phenotypes 

instead of ―passenger‖ ones. 

 

Figure 4-1 Heatmap of example for gene expression signature genes of two 

phenotypes. 
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Figure 4-2 Example of that master regulators are more robust than gene 

expression signature genes. Two groups were studying the same disease 

problem, metastasis in breast cancer, and each of them identified a group of 

signature genes, but there is only one overlap. However, in our predicted drivers 

for each of the datasets, the overlap improves dramatically from 1 out of 70 to 6 

out of 20. 



100 

 

 

 

 

Figure 4-3 Example of that gene expression signature is not robust. Signature 

genes (z > 1.96 or < -1.96) were plotted for both 2D (x axis) and 3D (y axis). 

Pearson and Spearman correlations are calculated on the top. 
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Figure 4-4 Individual examples of that gene expression signature is not robust. 

The first two genes are over-expressed in mutated cells with 2D culture, but are 

under-expressed in mutated cells with 3D culture. The last two genes are on 

opposite. 

4.1.3 Systems biology 

The problems with conventional gene expression signature have led to the 

development of systems biology approaches which integrate multiple pieces of 

information and utilize the strength of networks. Systems biology approaches 

have been successfully applied to high-dimensional data of cancer genomics to 

identify driver-type genes [70-73]. We have shown that computationally inferred 

context-specific maps of transcriptional or post-translational molecular 

interactions from large-scaled gene expression profiles (GEPs) allow the 
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elucidation of cryptic driver proteins whose gain or loss is necessary and 

sufficient for tumor initiation or progression [70-73]. Such master regulators or 

drivers are more robust than traditional signatures to distinguish phenotypes [69].  

In this chapter, I will introduce a novel systems biology framework, Network-

based Bayesian Inference of Disease Drivers (NetBID2), to infer disease drivers 

from high-throughput genomic data based on reverse-engineering network and 

Bayesian inference. It improves and extends existing MARINa algorithm [70-73]. 

I will demonstrate that this framework performs more robust than classical 

signature analysis, and is able to detect not only known drivers of various cancer 

contexts, but also hidden drivers that conventional methods fail to find. The 

prediction rate of this algorithm is also high based on experimental validation 

results. 

4.2 Explanation of NetBID2 using a Social Example 

Before going to details about NetBID2 algorithm, I would like to explain the idea 

using a metaphor or a social example (Figure 4-5) as below: 
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Figure 4-5 A social or non-scientific example to explain NetBID2 algorithm. 

Imaging there is a gang group in the New York City (NYC) which has a 

relationship network structure like this. All gang members listen to the god father 

or Mafia. This gang group is responsible for a number of criminals such as a 

killing like this. Well, the New York Police Department (NYPD) wants to capture 

those bad guys who committed the crime. What the police would do is to 

investigate the crime scene and collect evidences. Actually this is very similar to 

what we scientists do to study cancer or drug resistance. The police profile 

people to identify suspects, and we do gene expression profiling to identify genes 

that are associated with diseases. However, if the police only look at evidences 

directly associated with the crime, most-likely they will identify some small guys 

in this gang group, however, they will never get to this Mafia, who actually drives 
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all these crimes because there is no evidence directly pointing to him. He is the 

guy who NYPD really wants to put in jail. To capture the big fish, the NYPD has 

to collect extra information and build a relationship network like this. Then they 

can borrow the strength of this network and apply the rule of ―guilty-by-

association‖ to get to him. These small players are like signature genes which 

are not robust because in this crime, the police might get this one, but in another 

crime, a different guy will be caught. What NetBID2 does is similar to this: it 

constructs a network first and instead of identifying those small signature genes, 

it looks for genes that are highly associated with so-called signature genes which 

are potential to be drivers.  

Actually those hidden driver genes, especially signaling proteins, are promising 

therapeutic targets. There is an old saying in Chinese, ―destroy the leader and 

the gang will collapse‖, and the crime will stop, at least committed by this gang 

group. Similarly to crack cancer or drug-resistance, we would like to target those 

hidden drivers. And most likely, the deeper this big fish hide, the more promising 

it is to be a therapeutic target. 

To summarize the example, the key idea of NetBID2 is to utilize the strength of 

networks to search for candidates that are highly connected with unstable 

signature genes instead of looking at individual signature genes. So we do use 

signature analysis results, but we go beyond them. 
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4.3 The NetBID2 Framework 

In NetBID2 framework (Figure 4-6), there are basically three steps to infer drivers 

of phenotypes from gene expression data: (1) reverse-engineering network (2) 

signature analysis of phenotypes and (3) gene set enrichment analysis of 

Subnetwork of driver candidates in phenotype signature. Details about each step 

are discussed as below. 

4.3.1 Reverse-engineering regulatory or signaling networks (Step 1) 

The first step of NetBID2 is to reconstruct a biological network from gene 

expression data. It has been shown that context-specific maps of transcriptional 

or post-translational molecular interactions can be computationally inferred from 

large-scaled gene expression profiles (GEPs) and allow the elucidation of cryptic 

driver proteins whose gain or loss is necessary and sufficient for tumor initiation 

or progression [70-73]. In this step, we use a well-developed reverse-engineering 

algorithm, ARACNe (Algorithm for the Reconstruction of Accurate Cellular 

Networks) [111]. ARACNe method uses mutual information to measure and 

construct pairwise connection between two genes but applies an information 

theory of data processing inequality (DPI) to eliminate the vast majority of indirect 

interactions typically inferred by pairwise analysis. On synthetic datasets 

ARACNE achieves extremely low error rates and significantly outperforms 

established methods, such as Relevance Networks and Bayesian Networks [111]. 

Application to the deconvolution of genetic networks in human B cells 
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demonstrates ARACNE‘s ability to infer validated transcriptional targets of the c-

MYC proto-oncogene [70]. 

The original version of ARACNe only focused on tackling transcriptional 

regulatory network or transcription factor (TF)-centered network. However, in 

NetBID2, we extend ARACNe to reconstruct signaling molecule centered 

network by treating signaling protein genes as TFs in the original ARACNe setup. 

Actually it‘s more appropriate for ARACNe to reverse-engineer signaling network 

than transcriptional network for the following reasons. 

First, the novel part of ARACNe is to use DPI to eliminate indirect directions. DPI 

says if three genes follow a Markov-chain network structure, i.e. A->B->C or C-

>B->A, then I(A; C) <= I(A; B) or I(B; C). Based on the theory, ARACNe removes 

edges between A and C if I(A; C) <= I(A; B) or I(B; C). However, the underlying 

assumption is that A, B, C follows the Markov-chain structure, which is actually 

rare in transcriptional regulatory networks because of large amounts of feed-back 

and feed forward loops [112] for their importance in regulation of biological 

processes. Without holding the assumption, ARACNe will remove a significant 

number of true edges between TFs. There has been an increasing awareness of 

this problem [113].  However, in signaling transduction networks, Markov chain 

structures are everywhere whereas feed-forward loops are rare because the time 

scale of signaling transduction reactions is too small to have feed forward or 

feed-back loops. So DPI is more appropriate to remove redundant interactions 

between signaling factors than between transcription factors.  
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Second, using ARACNe to reconstruct both transcription regulatory networks and 

signaling networks share a common assumption: the activity of proteins such as 

transcription factor or signaling molecules can be inferred from their gene 

expression level information, which is reasonable in many cases. The more 

mRNAs the cell produces for a gene, the more protein copies it generates. 

However, there is low or no correlation between gene expressions at mRNA level 

with protein level due to the dynamic nature of transcription and translation 

processes and the internal or external noise. However, this is a common 

limitation using gene expression data to reconstruct transcriptional network or 

signaling network, which can only be overcome by improving technology and 

using protein level data. 

In the discussion section, I will demonstrate that the targets or regulons inferred 

by ARACNe-predicted signaling network have a consistently higher precision 

than TF-centered network. Because the regulon size in TF-centered network is 

much bigger than signaling molecule centered network, the inferred interacting 

partners in signaling network are much cleaner and more informative than those 

in ARACNe inferred transcriptional network. 
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Figure 4-6 The NetBID2 framework. Step 1 uses reverse-engineering algorithm, 

ARACNe to reconstruct TF or Signaling centered networks from gene expression 

profiles. Step 2 utilizes phenotype information to perform signature analysis using 

a Bayesian Probit model approach. Step 3 applies gene set enrichment analysis 

for each driver candidate by taking its first neighbors as a gene set and using 

signature analysis results of all genes as the reference. 
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4.3.2 Signature analysis of diseases by Bayesian Probit model (Step 2) 

The second step of NetBID2 is signature analysis of phenotypes. Signature 

analysis is to measure a correlation between each individual gene with the 

phenotypes such as tumor or drug resistance, and it can be performed by 

differential gene expression analysis between the phenotype of interest with the 

control phenotype, such as tumor vs. normal, drug resistant vs. sensitive 

samples, etc. In NetBId2, to generate a robust reference signature of these two 

phenotypes, we used a Bayesian Probit regression model for each individual 

gene [89] (Figure 4-7). Probit model has the advantage of detecting weak signals 

and has a nice tail behavior comparing with linear model or logistic model [89]. 

Bayesian inference with Markov Chain Monte Carlo (MCMC) computing 

techniques help to overcome sample size problem and help to estimate 

parameters more accurately and robustly from noisy high-throughput microarray 

data. For Bayesian inference of parameters, a t-distribution prior or weakly-

informative prior is used due to its robustness and its ability to handle outliers 

[90]. Gibbs sampling of MCMC technique is used to simulate the posterior 

distribution of parameters and posterior mean or median can be used as 

estimate of parameters, especially beta, the slope of the model, which measures 

the correlation between its expression activities with phenotypes.  
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Figure 4-7 The Bayesian Probit Model for gene expression signature analysis. 

Distribution details about the model is on the left and on the right is a graphical 

representation of the Probit model. Nodes in solid square are observation 

variables, in solid eclipse with white background are direct parameters of Probit 

model, in dashed eclipse are latent variables and the others are hyper-

parameters for priors. Y is an indicator variable for phenotypes, X is expression 

level of gene X, Z is a latent variable in Probit model. Inside the white box is 

likelihood section, while outside is for priors. Parameters are estimated by a 

Gibbs sampling procedure.  

4.3.3 Gene set enrichment analysis to infer disease drivers (Step 3) 

The final step of NetBID2 is to perform gene set enrichment analysis for each 

driver candidate and estimate their potency to be a good driver of the disease of 

interest. For driver candidates, NetBID2 only considers transcription factors or 

signaling molecules which have the function to be drivers. In the first step, 

transcription factor or signaling factor centered networks have been generated by 
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ARACNe. In the diver inference step, for each driver candidate, we take all its 

first neighbors from its subnetwork as a gene set and test whether this set is 

enriched in the signature of disease produced in the second step. If there is a 

significant enrichment pattern, we consider and report the driver of testing as a 

good driver of this disease by controlling top signature genes. 

There are tons of methods to do enrichment analysis such as classical GSEA 

(Gene Set Enrichment Analysis) [97] developed at Broad Institute, GSA (Gene 

Set Analysis) [98] by Brad Efron and so on. However, I develop a new set 

enrichment analysis algorithm, BSEA (Bayesian Set Enrichment Analysis), using 

Efron‘s ―maxmean‖ statistic for enrichment score and Bayesian inference, which 

outperforms both GSEA and GSA. See details in Chapter 5. 

Enrichment analysis will report an enrichment score (ES) or normalized 

enrichment score (nES) with corresponding value to indicate the evidence of the 

candidate being a driver of the disease. Positive ES indicates the genes 

associate with this driver are enriched in up-regulated or over-expressed genes 

in the disease phenotype, vice versa, negative ES means those regulon genes of 

the driver are over-represented in down-regulated or under-expressed genes. 

However, the sign of enrichment score doesn‘t necessarily positively correlate 

with the activity of the driver gene. For example, a positive ES for a significant 

driver candidate doesn‘t necessarily mean this driver is active in the disease 

phenotype side. It‘s highly possible that the driver is repressed in the disease 

samples, and those associated genes are its repressed targets therefore causing 
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these neighbors enriched in the positive direction. What we can roughly conclude 

with the enrichment output is that whether this driver candidate has a strong 

association with the disease or not, but we cannot tell accurately whether the 

driver is active or inactive to cause the disease phenotype. The reason is 

because we are using gene expression data to infer the activity of genes at 

protein level. In many cases, there is a clear negative correlation of mRNA 

expression with protein expression due to feed-back loops and dynamics of gene 

transcription and translation. To tell the direction correctly, we need more 

information at lower genetic DNA level or upper protein level, or experimental 

validations of perturbation by either silencing or over-expressing driver 

candidates. 

4.4 Evaluation of NetBID2 

We evaluate the performance of this new framework, NetBID2 to discover 

disease drivers from gene expression data in several perspectives as shown 

below. 

4.4.1 NetBID2 is more robust than expression signature 

First, we compare NetBID2 method with conventional signature analysis to 

characterize the relationship between genes and the disease of study. In the 

example of identifying genes associated with ERBB2 mutation from expression 

profiles of 2D and 3D cultured cells as we discussed in introduction section 

(4.1.2), the signature analysis showed dramatically different results, especially 

the overlap of top signature genes is small, only about 5 or 6% of selected 
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differentially-expressed genes. So we applied NetBID2 to this example by 

identifying drivers that are associated with ERBB2 mutation using 2D or 3D data. 

Surprisingly, there is a dramatic increase of overlaps between drivers inferred 

from 2D expression data with 3D data (Figure 4-8), about 1/3 out of top inferred 

master regulators or signaling modulators. Therefore, the dramatic difference 

between 2D and 3D signatures cannot be explained only by the difference of 

environments. Actually the methods count a lot. NetBID2 is able to generate a 

more robust list of genes that are potential drivers of ERBB2 mutation no matter 

what culturing environment is used. 

 

Figure 4-8 Venn diagram of NetBID2 inferred drivers (both TF and Signaling 

factors) from 2D or 3D expression data of ERBB2 mutated MCF10A cells. 

Fisher‘s exact test is used to test the significance of overlaps. Total number is the 

number of probes for TF or signaling factors in the microarray data. 
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4.4.2 Ability to identify known drivers 

Another way to test how NetBID2 performs is to ask whether it can detect known 

drivers. And the answer is yes. We applied NetBID2 to predict TF or signaling 

drivers for Basal vs. Luminal breast cancer, HE2+ vs. HER2– breast cancer, and 

ABC vs. GCB-DLBCL (Diffuse large B cell lymphoma). As shown in Table 4-1, 

among top 30 NetBID2-predicted drivers, most known drivers from literature are 

identified (highlighted in red). For example, FOXA1, GATA3, ESR1, PGR are 

well-studied drivers for Luminal breast cancer. ER and PR are also signaling 

molecules, and they show up in the top list of signaling drivers. For HER2+ 

breast cancer, ERBB2 itself definitely should be on the top without surprise. And 

FGFR4, GRB7 are also commonly amplified or over-expressed with ERBB2. 

ZBTB4 is a newly-identified tumor-suppressor in aggressive breast cancer. It 

shows up in both Basal vs. Luminal, and HER2+ breast cancer. Also for DLBCL, 

BCL6, IRF4 are known master regulators of ABC or GCB subtype. So NetBID2 is 

able to detect known drivers of diseases. However, it‘s not surprising because 

the evidences for all those drivers are so strong that you don‘t need to do 

complicated analysis to identify them. Most of them are also significantly 

differentially-expressed in the phenotypes which can be identified by signature 

analysis. There are duplicated names in the list because the analysis was done 

at probe or transcript level. One gene could have multiple probes in expression 

data representing different transcripts, but more probes for the same gene 

showing up gives more prediction power for that gene being a driver. 
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Table 4-1 Top 30 NetBID2-preditcted TF or Signaling drivers for Basal vs. 

Luminal breast cancer, HER2+ vs. HER2- breast cancer, and ABC vs. GCB-type 

of DLBCL. Genes in red are known drivers of corresponding diseases reported in 

literature. Duplicate gene names are for different probes or transcripts. 

4.4.3 Ability to identify “hidden” drivers 

We showed that NetBID2 is able to find known drivers of diseases; however, the 

true power of this network-based framework is to detect ―hidden‖ drivers that 

classical methods such as signature analysis fail to find. For example, we 

identified and validated AKT1 as a good driver for glucocorticoid resistance in T-

ALL, but if we look at the expression of AKT1, there is no significant change or it 
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shows some anti-evidence to be active in resistant samples. So based on 

traditional differential expression analysis, AKT1 will never ever be identified. See 

details about this example in Chapter 7. 

 

Figure 4-9 NetBID2 identifies AKT1 as a driver for glucocorticoid resistance in T-

ALL (left), but there is no evidence from expression of AKT1 itself. 

Another example is STAT3 for HER2+ breast cancer. By NetBID2, we identified 

STAT3 as a significant master regulator and signaling modulator of ERBB2 

induced breast cancer, however, there is no expression change of STAT3 itself 

between ERBB2+ and control cells. Again, conventional signature analysis will 

lose STAT3. See details about this example in Chapter 9. 
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Figure 4-10 NetBID2 identifies STAT3 as a driver for ERBB2+ breast cancer (red 

line), but there is no evidence from expression of STAT3 itself (blue line). 

4.4.4 High prediction rate by experimental validations 

The most straightforward way to evaluate the prediction of NetBID2 is to do 

experiments. Basically we perturb the predicted driver by silencing or over-

expressing it and check whether the perturbation can change the phenotype. We 

validated top 30 predicted TF drivers or master regulators for glucocortcoid 

resistance in T-ALL by siRNA. Surprisingly, only 7 (two have p value like 0.05) or 

5 predicted drivers showed no effects on changing resistance upon silencing 

(Figure 4-11). Over 76% or 80% of predicted drivers have significant effects on 

either reversing resistance or increasing resistance upon silencing. The validated 

drivers with positive scores are potential targets to reverse resistance by 

silencing. Those negative ones function as suppressors of resistance, which 
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need to be overexpressed or activated to reverse the resistance. In summary, the 

prediction rate of NetBID2 for disease drivers is strikingly high. 

 

Figure 4-11 Validation results by siRNA for top 30 NetBID2-predicted TF drivers 

of glucocorticoid resistance in T-ALL. (A) top 30 candidates (in red) together with 

positive controls (in blue) and negative controls (in green) are ranked by the 

score (central dot) for capability to reverse GC-resistance upon silencing with 

uncertainty (range line crossing the central dot, thick line for one standard 

deviation, thin line for two standard deviations corresponding to 95% confidence 
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interval). The color of candidate label on x axis is associated with calibrated p-

value: dark red for P<0.005, red for P≈0.05. (B) Bar plots of apoptosis level 

induced by combined treatment of RNAi with DEX (in red), and control, RNAi with 

DMSO (in light blue) for 30 predicted candidates, positive controls (labeled in red) 

and negative controls (labeled in blue). All genes are ranked the same as in 

panel A. The label on top of bar plot represents the increased apoptosis level of 

candidate gene comparing with average of negative controls (normalized by its 

own DMSO control and averaged over triplicates) and associated statistical 

significance level (*** for P<0.005, * for P≈0.05). 

4.5 Evaluation of ARACNe Predictability 

4.5.1 Using STAT3 as an example to evaluate ARACNe predictability 

In NetBID2, we use ARACNe, an information theory-based algorithm to 

reconstruct transcription factor or signaling factor-centered networks. The key 

idea is to apply DPI to eliminate interactions between a TF and an indirect target 

or between a signaling molecule gene and its indirect downstream or upstream 

factor. We consider neighbors of a TF in the inferred regulatory network or a 

signaling protein in predicted signaling network as its regulons or targets or 

interacting partners. So how does ARACNe to predict targets of a TF or 

interacting proteins of a signaling factor? One way to answer this question is to 

do experiments to define a set of true targets and then use it as a gold standard 

to check the predictability of ARACNe. 

We used the example of STAT3 which is both a TF and a signaling protein to 

check the prediction of ARACNe. We did microarray expression profiling after 
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silencing or activating STAT3 biochemically and defined the most changed genes 

after perturbation as downstream targets or effectors of STAT3. Then we used 

the perturbation results as a gold standard to evaluate ARACNe-predicted 

targets or interacting partners from either regulatory network (STAT3 as a TF) or 

signaling network (STAT3 as a signaling protein).  

4.5.2 Overall prediction of ARACNe is good 

First, we noticed that ARACNe-predicted targets, as both TF and signaling factor, 

are significantly enriched in experimentally-generated gold standard. Six 

ARACNe-inferred target sets (three probes for STAT3, two types of network) 

showed strong enrichment in activated target side, in consistent with STAT3 

being an activator in general. 
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Figure 4-12 Enrichment of ARACNE-predicted targets of STAT3 in 

experimentally-identified targets. TF is for predicted targets in transcription 

regulatory network. Sig is predicted targets from signaling network. Three sets of 

inferred targets are for different transcripts or probes of STAT3. 

4.5.3 The direction of interaction defined by correlation might be 

misleading 

One of the key steps in MARINa [69, 71, 72] algorithm is to define positive and 

negative regulons of each TF after obtaining ARACNe-generated network 

because ARACNe uses mutual information to measure the dependence of two 



122 

 

 

 

distributions which is nonnegative.  If the inferred a regulon or target has a 

significant positive correlation with the TF of study, it‘s defined in MARINa as an 

activated target. Similarly, negative correlation is to define repressed targets. 

However, this method might be misleading because correlation only captures 

linear relationship between a TF and its target which might not be true in many 

cases due to the dynamics of feedback or feed-forward loops.  

 

Figure 4-13 Enrichment of ARACNE-predicted positive targets of STAT3 in 

experimentally-identified targets. Positive is defined by the positive correlation 

between the target and STAT3 expression. TF is for predicted targets in 

transcription regulatory network. Sig is predicted targets from signaling network. 
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Three sets of inferred targets are for different transcripts or probes of STAT3. 

Green check sign indicates P < 0.05. 

 

Figure 4-14 Enrichment of ARACNE-predicted negative targets of STAT3 in 

experimentally-identified targets. Negative is defined by the negative correlation 

between the target and STAT3 expression. TF is for predicted targets in 

transcription regulatory network. Sig is predicted targets from signaling network. 

Three sets of inferred targets are for different transcripts or probes of STAT3. 

The check sign indicates non-significant. 
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Therefore, we use the example of STAT3 to check how good the direction 

defined by correlation. As shown in Figure 4-13, three out of six positive target 

sets predicted by ARACNe with correlation-defined signs are significantly 

(P<0.05) enriched in experimentally identified activated targets of STAT3, out of 

which two are from signaling network and one is from TF network. However, as 

shown in Figure 4-14, all six negative target lists predicted by ARACNe with 

correlation post-analysis showed the wrong direction with gold standard negative 

targets of STAT3, or in another words, those negative targets defined by 

correlation are actually positive targets. This suggests that correlation-defined 

positive or negative targets on ARACNe-outputted network might be misleading 

and it‘s not a good idea to use mutual information to capture nonlinear 

relationships but then only considering linearly-related pairs. 

In NetBID2, there is no classification of positive or negative sets defined by linear 

correlation. That‘s why we identified STAT3 as a driver, however, if we separated 

activated or repressed targets for STAT3, we would have definitely missed it 

because all predicted negative targets are actually positive ones and dilute the 

signal of STAT3 being an activator. 

4.5.4 Signaling network prediction is more precise than TF network 

One novel part of NetBID2 is that it extends the network from transcriptional 

regulatory network to signaling network by applying ARACNe against signaling 

proteins. With the gold standard targets from perturbation experiments for STAT3, 
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which is both a TF and a signaling factor, we can compare and evaluate the 

quality of TF network and signaling network generated by ARACNe. 

First, the number of targets in TF-subnetwork of STAT3 is about twice as large 

as the number in signaling networks, though the number varies among the three 

probes of STAT3. So in signaling network, ARACNe removes more interactions 

than TF network.  

 

Figure 4-15 Number of target size for STAT3 (three probes at x axis) from TF 

(blue) or signaling (red)-centered network predicted by ARACNe. 
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Second, we checked the overlap of predicted targets from TF network or 

signaling network with top ―gold standard‖ targets from experiments. Interestingly, 

the targets or interacting proteins in signaling network consistently demonstrated 

larger overlaps with gold standards than TF network. This suggests that signaling 

network is more precise than TF network. Since signaling network has a much 

smaller size than TF network, but identifies more true targets, it infers that 

signaling network has more power of identifying true positive interactions and 

removing true negative ones.  
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Figure 4-16 Number of targets (in percentage, upper panel) from TF (blue) or 

signaling (red)-centered network predicted by ARACNe that are overlapped with 

top experiment-identified targets for STAT3 (three probes in three columns) and 

odds ratio of Fisher‘s exact test for the overlap (lower panel). The higher the 

overlap is, or the higher the odds ratio is, the more powerful or more precise the 

prediction is. 

4.6 Conclusion 

In this chapter, I introduced a computational framework, NetBID2, based on 

network inference of both regulatory and signaling networks and Bayesian 

statistics, to infer disease drivers from large-scaled gene expression data. We 

demonstrated that this new framework is much more robust to capture disease-

associated driver-type genes, is able to detect not only known drivers but more 

importantly, ―hidden‖ drivers with a very high prediction rate based on validation 

results. I also evaluated one novel part of NetBID2, extension to signaling 

network, by using an experimentally-defined gold standard and confirmed that 

signaling network predicted by ARACNe has more power to capture true positive 

interactions and remove indirect true negative ones than traditional TF network. 
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Chapter 5 BSEA: Bayesian Set Enrichment Analysis 

5.1 Introduction 

Advances in techniques such as deep sequencing and high-throughput 

gene/protein profiling have transformed biological research by enabling 

comprehensive monitoring of a biological system. Analysis of such high-

throughput data typically yields a list of differentially expressed genes or proteins. 

This list is extremely useful in identifying genes that may have roles in a given 

phenomenon or phenotype. However, the candidate list is usually too long to 

investigate all of them. Researches are more interested in identifying underlying 

biological mechanisms or processes involved by a group of differentially 

expressed genes or proteins. That led to the development of pathway analysis or 

functional enrichment analysis. 

Pathway enrichment analysis helps to gain insight into the underlying biology of 

differentially expressed genes and proteins by reducing complexity and 

increasing explanatory power. Additionally, identifying active pathways that differ 

between two conditions can have more explanatory power than a simple list of 

different genes or proteins. 

During the evolution of pathway analysis in the past decade [114], three major 

classes of methods have been developed sequentially (Figure 5-1, Table 5-1). 

The first type of methods is over-representation analysis by doing hyper-
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geometric distribution based Fisher‘s exact test on the overlap of top 

differentially-expressed genes with known member genes in the pathway. 

However, this type of methods gives equal weight of differentially expression to 

the member genes in the pathway and highly depends on the selection threshold 

of top representative genes. That led to the second group of methods, functional 

class scoring or gene set enrichment analysis [97, 98]. This type of methods 

uses entire list of genes with differential expression scores as the reference 

instead of putting some threshold and selecting top differentially expressed 

genes and consider the genes in pathway as a gene set to test the enrichment of 

this set in the reference. It overcomes the unrobustness from heuristic selection 

and overcomes the equal weight problem by using differential expression scores 

weighting genes differently. A new generation of pathway analysis utilizes the 

pathway topology [115] to weight genes. However, this type of methods highly 

depends on the knowledge of the pathways. So in this chapter, we mainly focus 

on the second class of methods, set enrichment analysis. 

 

Figure 5-1 Three major categories of functional enrichment analysis methods. 

Adapted from Khatri, et al, 2012 [114].  
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Table 5-1 A collection of available tools and methods for functional pathway 

enrichment analysis. Adapted from Khatri, et al, 2012 [114]. 

The first and the most popular enrichment analysis methods, GSEA (Gene Set 

Enrichment Analysis) [97, 98], was based on a signed version of the 

Kolmogorov-Smirnov (KS) statistic to summarize set enrichment. Later Brad 

Efron developed a different approach, GSA (Gene Set Analysis) [97, 98], by 

using a novel ―maxmean‖ statistic to summarize enrichment and a few other 

statistical techniques. Multiple scoring metrics for individual differential gene 
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expression have been used including signal noise ratio, t-statistic, z-statistic, FC, 

logFC, diff mean, etc.  

However, in this chapter, I will introduce a new set enrichment analysis method, 

BSEA (Bayesian Set Enrichment Analysis). It utilizes the ―maxmean‖ enrichment 

score statistic and Bayesian modeling techniques. I will demonstrate that this 

new method outperforms GSEA and GSA by using the meta-analysis of RNAi 

screening data. As mentioned in Chapter 4, one of the key steps in NetBID2 

framework is enrichment analysis, for which BSEA is the default method. 

5.2 The BSEA Algorithm 

The key features of BSEA algorithm include ―maxmean‖ statistic to summarize 

enrichment score, restandarization for measuring statistical significance and 

Bayesian modeling for scoring individual gene, as discussed below. 

5.2.1 “Maxmean” statistic 

―Maxmean‖ statistic was developed by Brad Efron in his GSA method [97, 98] to 

summarize the enrichment of a gene set. The idea is explained in Figure 5-2. For 

a gene set S, we separate its member genes into positive and negative groups 

according to the sign of their individual scores between phenotype 1 and 

phenotype 2, i.e. member genes with positive scores belong to positive set while 

negative ones form the other set. The adjusted mean is calculated for each 

positive or negative subset. The adjusted mean is different from general mean in 

the following way: the sum of scores for genes in the positive or negative subset 
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is divided by the size of the entire set (union of positive or negative subsets) 

instead of its own subset size. And out of the two means, the one with maximum 

absolute value is used as the enrichment score for the full set. 

 

Figure 5-2 ―Maxmean‖ statistic developed by Efron. The genes in the set (blue 

bars on the bottom) are divided into positive (red on the right) and negative (blue 

on the left) according to the sign of their individual scores between phenotype 1 

and phenotype 2 (y axis). The adjusted mean (divided by the size of the entire 

set) of each subset is calculated, and the one with maximum absolute value is 

used as the enrichment score for this set. 

According to Efron‘s simulation results as shown in the ROC curves of Figure 5-3, 

―maxmean‖ statistic outperforms KS-statistic based GSEA method in both 

sensitivity and specificity. Later in our evaluation section using real data (5.4.1), 
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we also confirmed Efron‘s conclusion that ―maxmean‖ method is indeed more 

powerful than KS statistic to summarize enrichment of a set. 

 

Figure 5-3 Efron‘s simulation results (sensitivity vs. specificity) on comparison of 

Maxmean statistic with KS-based GSEA. Adapted from Figure 8 in Efron, et al, 

2007 [97, 98].  

5.2.2 Restandarization 

Another key technique BSEA adapted from GSA method is restandarization that 

incorporates both sample shuffling and gene shuffling for statistical significance 

measurement. In general to estimate a statistical significance of an enrichment 

score when we do gene set enrichment analysis, we use permutation test by 

either shuffling sample labels or shuffling gene labels. Sample permutation has 

been shown to have more power than gene shuffling because gene shuffling 
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perturbs the correlation between two genes. However, sample permutation 

requires a large size of samples and usually has a high false discovery rate 

especially when the gene sets are similar with each other. To overcome these 

problems, Efron developed a novel statistical technique named restandarization, 

to balance sample permutation and gene permutation. The basic idea is that in 

each sample permutation, all calculated enrichment scores are scaled according 

to the distribution of current enrichment scores, i.e. subtracting the mean and 

dividing by the standard deviation of all enrichment scores in this permutation 

(Figure 5-4). 

 

Figure 5-4 Restandarization technique for statistical significance estimation. 

Adapted from Efron, et al, 2007 [97, 98]. 

5.2.3 Bayesian inference 

The only difference between BSEA and GSA lies in the usage of Bayesian 

statistics for individual gene scoring. The motivation is to use Bayesian 

techniques to overcome inaccurate estimation problems of parameters by 

traditional metrics to score individual genes such as signal noise ratio, t-statistic, 

z-statistic, FC, logFC, diff mean, etc. Those classical methods in general are 
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replying on large samples and good data quality, which is rare in reality. 

Especially in the high-throughput experiments, data is usually noise and the 

sample size is small. In this situation, conventional fold change or maximum 

likelihood estimated parameters will be problematic. To overcome this problem, 

BSEA utilizes the advantage of Bayesian modeling methods for its robustness 

and ability to deal with noisy data, small sample size and outliers. 

In NetBID2 algorithm, I already introduced a Bayesian Probit model method for 

differential expression analysis at individual gene level, but Probit model might 

require a relative large sample size. The alternative model is Bayesian linear 

model (Figure 5-5) and Gaussian prior or weakly-informative t-prior is commonly 

used for coefficients in the model. A z-score for the slope and corresponding p 

value will be reported to represent the statistical strength of differential 

expression. The slope itself can also be used to score individual gene. 
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Figure 5-5 A Bayesian linear Gaussian model for individual gene scoring with 

Gaussian or t distribution as prior for coefficients and inverse Chi-square or 

Gamma distribution as prior of noise variance. 

5.3 Benchmark and Evaluation using Meta-Analysis of RNAi 

Screening Data 

As discussed in Chapter 3, the integration of multiple hairpins targeting the same 

gene to estimate gene level activity from high-throughput RNAi screening data, 

one category of methods to combine multiple shRNAs for a gene is to do 

enrichment analysis by treating all hairpins of a gene as a set and using all 

shRNAs in the library as the reference. And there, we introduced an evaluation 

strategy by using house-keeping or evolutionarily-conserved genes as a gold 

standard of essential genes that RNAi screening is designed to search for (3.6). 

So here, we follow the same idea and evaluate enrichment analysis methods 

only for integration of multiple shRNAs to estimate gene level activity.  

Bayesian Linear Gaussian Model

Gaussian Prior

t Prior

Prior for Coefficients

Prior for Variance of Noise
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Here we use exactly the same data sets, three shRNA screens (MCF7, HPAFII, 

OVCAR5) and four independent gene sets as references – two adapted from 

previous study [102] and two more recent studies on human housekeeping 

genes [103, 104]. Again the percentage of overlapped genes of reference set 

with top k hits predicted as essential genes by each enrichment method is 

calculated. To avoid selection bias on k, we sampled k from 0 up to 1000 with a 

sliding widow of 5. The larger intersection with reference gene set the algorithm 

produces consistently, the more powerful the method is. 

5.4 Results 

With the benchmark RNAi screening datasets and evaluation strategy, we 

compare three enrichment analysis methods, my BSEA, Efron‘s GSA and 

Broad‘s GSEA. GSEA is equivalent to RIGER_KS method discussed in Error! 

eference source not found.. GSA method was used by Allen Ashworth to report 

gene level activity from shRNA screens [108]. 

5.4.1 “Maxmean”-based GSA outperforms KS-based GSEA 

First, we checked whether ―maxmean‖ statistic proposed by Efron in his GSA 

method performs better to summarize enrichment score than KS statistic used by 

traditional GSEA, as Efron reported based on his simulation studies. We 

compared GSA with GSEA only first, and indeed GSA showed consistently larger 

AUC (Area Under the Curve) than GSEA (Figure 5-6) to identity true positives 

with a high precision rate. 
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Figure 5-6 ―Maxmean‖ statistic (GSA) vs. KS statistic (GSEA) for summarization 

of enrichment score. Housekeeping or conserved ortholog genes can be used as 

reference gene set to evaluate algorithms to detect essential genes from RNAi 

screens. Each colored curve shows the percentage of each reference set 

(―name‖_―number of genes in the set‖) intersected by top 0 to 1000 hits predicted 

as essential genes by the corresponding algorithm in each dataset. The slope of 

―Random‖ method line (in purple) is proportional to the frequency of the reference 

set out of all genes in the library. The greater the area under the curve, the more 

powerful the algorithm is. 

5.4.2 BSEA >= GSA > GSEA 

As shown in the comparisons of BSEA with GSA and GSEA (Figure 5-7), first, 

we noticed that GSEA (the blue curve) is the worst in all cases, indicating KS 

statistic is not a good method to summarize set enrichment. Second, in the first 
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two datasets, BSEA and GSA are kind of mixed together. One reason for that is 

because the data of the first two screens is relatively good (Figure 3-7). However, 

for the third one, BSEA beats GSA as expected, because BSEA uses Bayesian 

statistics which is much more robust than maximum likelihood statistics used by 

GSA. So overall, BSEA is the best enrichment analysis method comparing with 

GSA and GSEA. 

 

Figure 5-7 Evaluation results of BSEA, GSA and GSEA. Annotation is the same 

with Figure 5-6. 
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5.4.3 BSEA dominates GSEA 

If we only compare BSEA with GSEA, as shown in Figure 5-8, GSEA 

dominates GSEA in all cases. 

 

Figure 5-8 Evaluation results of BSEA vs. GSEA. Annotation is the same with 

Figure 5-6. 

5.4.4 Bayesian vs. Frequentist 

Remember that the only difference between BSEA and GSA is that BSEA uses 

Bayesian statistics while GSA uses classical Frequentist‘s maximum likelihood 

approaches. So we compared these two techniques by fixing all parameters but 

only changing individual scoring methods to Bayesian z score method or 
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Frequestist‘s t score approach. As expected shown in Figure 5-9, there is no 

difference between Bayesian and Frequentist‘s method when the data is good 

(the first two screens), both of which converges the optimum, however, when the 

data is noisy such as the third example, Bayesian shows its super power 

compared to Frequentist‘s method. So overall, Bayesian method is much more 

robust than classical maximum likelihood methods. 

 

Figure 5-9 Evaluation results of Bayesian vs. Frequentist methods for individual 

scoring. ―Maxmean‖ is used for enrichment score. Annotation is the same with 

Figure 5-6. 
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5.4.5 BSEA cannot beat BHM 

In Chapter 3, we developed a novel Bayesian Hierarchical Modeling (BHM) 

approach for meta-analysis of multiple shRNAs targeting the same gene from 

RNAi screening data and demonstrated it‘s the best comparing with GSEA 

(RIGER). In this chapter, we developed BSEA, a better enrichment approach 

than GSEA, so we asked whether BSEA can beat BHM. Unfortunately, the 

answer is no. As shown in Figure 5-10, BSEA is getting close to BHM, but still 

under it. The reason might be that BHM uses the strategy of ―modeling-all-

together‖, while BSEA is still under the framework of ―separate-and-combine‖.  

 

Figure 5-10 Evaluation results of BHM (Bayesian Hierarchical Model), BSEA, and 

GSEA. Annotation is the same with Figure 5-6. 
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5.5 Conclusion 

To summarize this chapter, I developed a novel approach for set enrichment 

analysis by using ―maxmean‖ statistic and Bayesian inference. Based on the 

evaluation results using RNAi screening data, I have demonstrated that BSEA 

outperforms existing GSA and GSEA, especially when the data is noisy. I 

confirmed that ―maxmean‖ is more powerful than KS for set enrichment score, 

and Bayesian is more robust than classical statistic for scoring at individual level. 

Although BSEA cannot beat BHM for meta-analysis of RNAi screening data due 

to the problem of ―separate-and-combine‖ strategy, overall, BSEA is the best 

algorithm for set enrichment analysis with high sensitivity and precision. 
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Chapter 6 Recovering Drug-Induced Apoptosis 

Subnetwork from Connectivity Map Data via a 

Bayesian Network Approach 

6.1 Summary 

The Connectivity Map project profiled human cancer cell lines exposed to a 

library of anti-cancer drugs or chemical compounds with the goal of connecting 

cancer with underlying genes and potential treatments. Since the therapeutic 

goal of most anti-cancer drugs is to induce tumor-selective apoptosis, it is critical 

to understand the specific cell death pathways that are activated by drugs. This 

can help to better understand the mechanism of how cancer cells respond to 

chemical stimulations and improve the treatment of aggressive human tumors. In 

this study, using Connectivity Map microarray data from breast cancer cell line 

MCF7, we applied a Gaussian Bayesian network modeling approach and 

identified apoptosis as a major drug-induced cellular-pathway. In order to reduce 

computational complexity without losing generality, we focused on 13 apoptotic 

genes that showed significant differential expression across all drug-perturbed 

samples. In our predicted subnetwork, 9 out of 15 high-confidence interactions 

were validated in literature, and our inferred network captured two major cell 

death pathways by identifying BCL2L11 and PMAIP1 as key interacting players 

for the intrinsic apoptosis pathway, and TAXBP1 and TNFAIP3 for the extrinsic 
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apoptosis pathway. Our inferred apoptosis network also suggested the role of 

BCL2L11 and TNFAIP3 as ‗gateway‘ genes in the drug-induced intrinsic and 

extrinsic apoptosis pathways. Our study extended the usage of Connectivity Map 

data and applied a Bayesian network framework to recover underlying drug-

induced biological programs for a better understanding of the mechanism of 

action of cancer drugs, and provided potential targets in the apoptosis pathway 

for better cancer treatment.  

6.2 Introduction 

One goal of biomedical research is to better understand human diseases such as 

cancer by studying gene patterns associated with diseases and using them to 

find the best potential treatments. Recently, Todd Golub and his colleagues at 

the Broad Institute initialized the ―Connectivity Map‖ project (CMAP) [116, 117] to 

make these disease-gene-drug connections by utilizing microarray technology. 

High-throughput microarrays are able to profile gene expression at the level of 

the whole-genome, and can be used to detect signatures under certain 

perturbations or phenotypes in cells [118]. Since the therapeutic goal of most 

anti-cancer drugs is to induce tumor-selective cell death [119], it is reasonable to 

hypothesize that apoptosis may be a major cellular mechanism targeted by anti-

cancer drugs. It is therefore critical to understand the specific cell death 

pathways that are activated by drugs. This would help to better understand the 

mechanism of how cancer cells respond to chemical stimulations and improve 

the treatment of aggressive human tumors. 
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Apoptosis in mammalian cells is induced by intracellular cysteine proteases 

known as caspases. Caspases are first synthesized as largely inactive zymogens 

known as procaspases, and are later activated through post-translational 

mechanisms. Two principal pathways of caspsase activation have been 

recognized [120, 121]. One pathway, which is of more ancient origin and 

evolutionarily conserved, is known as the stress pathway, mitochondrial pathway, 

or intrinsic pathway [120, 121]. It is induced by developmental cues and diverse 

intracellular stresses. This pathway begins with the activation of caspase-9 on a 

scaffold formed by Apaf-1 in response to cytochrome c release from damaged 

mitochondria. It is known to be regulated primarily by proteins from the Bcl-2 

family. The other pathway is known as the extrinsic pathway, and is triggered by 

so-called ‗death receptors‘ on the cell surface. The death receptors are engaged 

by cognate ligands of the tumor necrosis factor (TNF) family. This pathway 

begins with the activation of caspase-8 (and caspase-10 in human cells), via 

adaptor proteins including Fas-associated death domain protein (FADD) [120, 

121]. Once activated, caspase-9 in the intrinsic pathway or caspase-8 (-10) in the 

extrinsic pathway activates downstream 'effector caspases' including caspases-3, 

-6 and -7. In an expanding cascade, these caspases carry out the execution 

phase of cell death. 

Because the CMAP database contains profiles from a large collection of human 

cancer cell lines that capture information of how cells respond to chemical 

stimulations, it can be used to test the hypothesis that the apoptosis pathway 

might be a major responsive program of drug perturbations in cancer cells.  One 
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can do this by enrichment analysis of apoptotic genes in drug-responsive genes 

or in differentially-expressed genes in drug-exposed cancer cells. CMAP data 

also contains dynamic transcriptional activities of most genes across diverse 

conditions, giving sufficient data for associating the activities of genes of interest 

with each other, and for reconstructing parts of the apoptosis pathway in the 

context of drug-exposed cancer cells. In this study, we used CMAP gene 

expression profiles to test the hypothesis that apoptosis may be a major drug-

induced cellular mechanism. We then employed a Gaussian Bayesian network 

modeling approach to reconstruct the subnetwork of the drug-induced cell death 

pathway. To minimize the effects of heterogeneity from different tumor types, our 

study focused on a single breast cancer cell line, MCF7. 

To better understand whether anti-cancer drugs target the intrinsic and extrinsic 

apoptosis pathways, and identify specific pathways or interactions activated by 

anti-cancer drugs, we crossed our predicted drug-triggered apoptosis network 

with literature-validated interactions. We were able to identify key players as well 

as interactions in the drug-induced intrinsic and extrinsic pathways. Our results 

shed light on the mechanism of action of drugs in cancer cells and may lead to 

improved treatments that target key apoptotic proteins that are most related to 

drug response. 

6.3 CMAP Data 

The CMAP "build 02" gene expression dataset (http://www.broad.mit.edu/cmap/) 

contains over 7,000 profiles of cancer cells that have been exposed to 
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perturbations by 1,309 compounds, and contain data from  five human cancer 

cell lines: MCF7, PC3, SKMEL5, HL60 and ssMCF7. The microarray platforms 

used include Affymetrix HT_HG-U133A and HT_HG-U133A_EA. To avoid the 

effects of tumor heterogeneity and multiple microarray platforms, to avoid the 

heterogeneity of different cellular contexts, we only focused on samples from the 

breast cancer cell line MCF7 that were profiled using the Affymetrix HT_HG-

U133A platform. The dataset is composed of 404 control and 2,417 compound-

perturbed samples. The HT_HG-U133A microarray platform contains 22,268 

Affymetrix probe sets representing 13,262 genes. The GCRMA method [122] 

was used to normalize the data. 

6.4 Drug-Response Signature Analysis 

To identify drug-responsive signature genes at a transcriptional level in cancer 

cells, one approach is to perform differential gene expression analysis by 

comparing drug-perturbed samples with controls. However, since the dataset 

contains samples tested with over 1,000 chemical perturbations, it is important 

we take into account the diverse mechanisms of actions of the different 

compounds. One solution would be to perform differential expression analysis for 

each compound separately and then combine the results together using a p-

value-based Fisher's method or Stouffer‘s z-score approach to obtain the overall 

differential expression level for each gene across all compounds. However, a 

limitation with this type of analysis has to do with the fact that each compound 

only has a limited number of perturbed samples and even smaller number of 
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control samples. This would cause the statistical power to be extremely low for 

individual compound analysis, and would result in an inaccurate estimation of 

parameters and a high false positive rate. In addition, another known issue with 

this type of 'Separate-then-Combine' analysis is a low precision rate, which 

means there is a high occurrence of false positives among the most differentially 

expressed genes or top-hits. One way to overcome this drawback is to combine 

all compounds together at the beginning, as known as ‗complete pooling‘ method. 

Although different drugs may have distinct mechanisms of action and different 

target proteins, it may still be reasonable to group them together. One reason is 

that there are a relatively limited number of pathways or mechanisms through 

which cells respond to chemical stimulations. Also, compounds tested for cancer 

treatment are known to share some common characteristics. For example, a 

large number of anti-cancer drugs are known to induce cell death or repress cell 

growth programs. In addition, the combination or ‗complete pooling‘ strategy 

increases the sample size from less than 5 to thousands, dramatically increasing 

the statistical power for inferring true responsive genes across all compounds. 

This assumption is also confirmed by the fact that most perturbed profiles are 

clustered together as shown in Figure 6-2. These results indicate that the 

variability of transcriptional profile for the same type of cell (MCF7 in this study) 

due to drug heterogeneity is much smaller than that caused by different chemical 

stimulations.  
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Figure 6-1 Heatmap of top differentially-expressed genes (FDR<0.05) in drug-

perturbed and control samples. The genes are ranked from most up-regulated 

(labeled in dark red on right panel) to most down-regulated (labeled in dark green) 

in drug-perturbed samples, and the 13 selected apoptotic genes are labeled on 

the right with their ranks in the list. 
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Figure 6-2 The heat map of distances between profiles of CMAP data including 

randomly-selected 100 control and 100 drug-perturbed samples. 

To estimate the effect of each compound on gene expression and to test the 

significance of differential expression for each probe set, we used a linear 

modeling method with empirical Bayes moderated t-test [123]. A non-parametric 

Bonferroni procedure was employed for multiple comparison correction. Using a 

false-discovery-rate (FDR) threshold of 0.05, we identified 137 up-regulated and 

90 down-regulated probe sets, representing 112 over-expressed and 79 under-

expressed genes respectively, in drug-perturbed cancer cells. 
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6.5 Enrichment of Apoptosis Pathway 

As described previously, one of the most important mechanisms through which 

cancer drugs act is the inducement of cell death programs. More specifically, we 

hypothesized that the apoptosis pathway may be a major drug-induced program. 

Enrichment analysis was proposed to validate this hypothesis. By searching the 

Gene Ontology database [93, 124], we obtained a list of 380 human genes that 

were annotated with apoptosis-related GO terms. 211 genes were annotated as 

pro-apoptotic by induction of apoptosis, positive regulation of apoptosis, and 

negative regulation of anti-apoptosis. 194 genes were annotated as anti-

apoptotic by negative regulation of apoptosis and positive regulation of anti-

apoptosis. 25 genes were involved in both positive and negative regulation of 

apoptosis. We then performed enrichment analysis with differentially-expressed 

genes of drug-perturbation in the apoptosis pathway. Two methods were 

employed to do this analysis: the first method was the Fisher's exact test to 

validate whether known apoptotic genes were overrepresented in a selected 

differentially-expressed drug-responsive gene set. The second method was to 

test the known apoptotic genes using Gene Set Enrichment Analysis (GSEA) 

which does not perform a selection on differentially-expressed genes, but instead 

considers the entire set of genes and their differential expression as the 

background. For Fisher‘s exact test, a set of previously-identified 191 signature 

genes with a threshold of FDR<0.05, and all 12,632 genes in the microarray were 

used to fit the null hyper-geometric distribution. For GSEA, the mean of absolute 

value of differential expression was used as enrichment score because apoptotic 
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genes could be either up- or down-regulated in drug-perturbed samples. The 

significance of the enrichment scores were tested against 10,000 permutations of 

gene names. 

There are 13 genes Table 6-1 that overlap between the 191 drug-inducement 

signature genes and the 368 human apoptotic genes in our dataset. The 

significance level of Fisher‘s exact test for this overlap is approximately 0.001 (), 

consistent with the result from GSEA, which had a p-value of 0.002 (Figure 6-3). 

Therefore, both methods confirm that the pre-identified drug-induced signature 

genes are significantly enriched in the human apoptosis pathway. In other words, 

we were able to validate our hypothesis that the apoptosis pathway is a major 

cellular mechanism targeted by anti-cancer drugs. Furthermore, separate 

analysis of pro- or anti-apoptotic genes (Figure 6-4, Figure 6-5) showed that 

drug-responsive genes were enriched in both positively- or negatively-regulated 

apoptosis gene sets. Since the analysis was done using the combination or 

‗complete pooling‘ strategy, the significance of these results suggests that 13 

drug-induced apoptotic genes in our gene set are responsible for a highly 

conserved response to multiple chemical compounds in the context of breast 

cancer. 
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probeId entrezId logFC t pval FDR 

annotated 

apoptosis 

type* 

PMAIP1 204285_s_at 5366 0.32 7.46 1.19E-13 2.64E-09 pro 

VEGFA 210512_s_at 7422 0.18 6.15 8.88E-10 1.98E-05 anti 

SERINC3 221471_at 10955 0.06 5.62 2.08E-08 4.64E-04 pro 

TNFAIP3 202644_s_at 7128 0.24 5.39 7.61E-08 1.70E-03 anti 

BNIP3L 221479_s_at 665 0.12 5.04 4.88E-07 1.09E-02 both 

GCLC 202923_s_at 2729 0.08 4.91 9.42E-07 2.10E-02 anti 

BCL2L11 222343_at 10018 0.14 4.83 1.41E-06 3.14E-02 pro 

TAX1BP1 200976_s_at 8887 0.07 4.76 2.01E-06 4.47E-02 anti 

SON 214988_s_at 6651 -0.06 -4.75 2.11E-06 4.71E-02 anti 

NUP62 202153_s_at 23636 -0.11 -4.83 1.41E-06 3.14E-02 anti 

NOL3 59625_at 8996 -0.13 -5.32 1.13E-07 2.53E-03 anti 

TUBB 212320_at 203068 -0.09 -5.55 3.11E-08 6.92E-04 pro 

MSH6 202911_at 2956 -0.09 -6.40 1.87E-10 4.16E-06 pro 

Table 6-1 The 13 selected differentially-expressed or drug-responsive apoptotic 

genes. *: pro: annotated by GO terms: induction of apoptosis, positive regulation 

of apoptosis, negative regulation of anti-apoptosis; anti: annotated by GO terms: 

negative regulation of apoptosis, positive regulation of anti-apoptosis. 
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Figure 6-3 Summary of (A) Fisher‘s Exact Test and (B) Gene Set Enrichment 

Analysis (GSEA) to test whether apoptosis pathway with 368 apoptotic genes is 

enriched in drug-induced signature genes. For GSEA method, absolute mean 

was used to summarize the enrichment and 10,000 gene permutations were 

used to produce the significant level. 
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Figure 6-4 Summary of (A) Fisher‘s Exact Test and (B) Gene Set Enrichment 

Analysis (GSEA) to test whether 207 pro-apoptotic genes are enriched in drug-

induced signature genes. 
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Figure 6-5 Summary of (A) Fisher‘s Exact Test and (B) Gene Set Enrichment 

Analysis (GSEA) to test whether 185 anti-apoptotic genes are enriched in drug-

induced signature genes. 

6.6 Bayesian Network 

We next asked the question of how the 13 identified genes work together 

systematically and whether we can recover the underlying network structure of 

their interactions. This would help us to better understand the mechanism of how 

cancer drugs induce the apoptosis pathway at a global systems level. In order to 

infer the underlying signaling, transcriptional, and causality network of the 13 

drug-induced apoptotic genes, we used one of the best methods for network 
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reconstruction in the literature, the Bayesian Network or Graphical Model [125-

129]. The details of the method are described below. 

6.6.1 Data modeling 

A Bayesian network represents the dependence structure of a joint probability 

distribution of multiple variables, which can be factorized into a product of 

distributions of each individual node conditioning on its parents. To model the 

local distribution of each node conditioned on its parents, a commonly used 

method for continuous data is to discretize data points into bins and then fit a 

multinomial distribution to the discretized data. However, data discretization 

results in a loss of information and can be highly sensitive to the number of bins 

the data is split into.   Furthermore, due to the continuous nature of microarray 

data and the marginal normality of many genes in this study as shown in Figure 

6-6, we determined it would be more accurate to employ a continuous model. We 

therefore used a conditional linear Gaussian model [130] for the local distribution 

of each node as shown below: 

 

This model can be recognized as a linear regression model, in which node gi is 

the response variable, its parents are covariates, and the noise follows a white 

Gaussian distribution with mean 0 and variance
2
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Figure 6-6 Marginal distributions of the 13 selected drug-responsive apoptotic 

genes across all samples in CMAP data. 

6.6.2 Parameter learning 

Given the linear regression model for the local distribution, a classical Maximum 

Likelihood or Least Squares approach can be used to estimate its parameters. 

However, various studies in statistics have suggested that Bayesian approaches 

or Bayes estimators are more robust than Frequentist maximum likelihood 

method [129], especially when the sample size is small or the data is noisy. 

Therefore a Markov Chain Monte Carlo (MCMC) simulation-based Bayesian 

computing method was used to estimate parameters of the model. To select the 

priors for the Bayesian model, two principles were followed: one is conjugation 

for computing easily as the posterior will fall in the same distribution family as 
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prior, and in our case, the prior would be Gaussian for conditional coefficient and 

Inv-Gamma for variance; the other is global and local parameter independence, 

parameter modularity and likelihood equivalence [131, 132].  

6.6.3 Structure scoring and search 

To determine the Bayesian network or Graphical model that can best fit the data, 

we needed a scoring system to compare different potential network structures. 

For structure learning, a Bayesian factor-based method, which compares the 

conditional probability of each graphical structure given observed data, was used. 

As shown below, according to Bayes theorem, the odds ratio between two 

possible structures, G1 and G2 can be decomposed as a product of structure 

prior odds ratio and the Bayesian factor, which is the ratio of the likelihoods of the 

two graphical models.  

 

 

Using the uniform distribution for structure prior, which is reasonable because we 

have no preference on particular graphical structure, the score for a network 

structure, G, can be defined as the following formula, which is the log-likelihood 

of the graphical model. 

 

In our study with 13 variables, there were 1.86766e+31 possible directed acyclic 

graphs [133], so it was not realistic to enumerate the entire network structure 
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space. To search more efficiently, we used a classical heuristic algorithm: hill 

climbing with random restarts [134, 135]. Using this stochastic algorithm, the 

search-space was reduced dramatically. Using 2 restarts, we only needed to 

compare 12, 655 structures before reaching a maximum score. One risk was that 

we had found a local maximum, rather than the global maximum, but the risk 

would be decreased further by increasing the number of restarts. 

6.6.4 Bootstrapping and model averaging 

With the methods outlined above, we obtained a Bayesian network structure that 

best described the observed data. However, it is possible that the model may be 

over-fitted, which means that a small change to the dataset could make the 

network structure change dramatically. A way to solve this issue is to apply a re-

sampling method or simulating the dataset. The method would learn the best 

graphical model for each sampled dataset, and generate a consensus network 

from the average of the sample models. This method is also known as model 

averaging. The simulation method we used to do model averaging was Efron‘s 

bootstrapping method [136, 137]. To increase robustness, the method only 

considered predicted network structures with a score within 95% of the 

confidence interval.  The distribution of network scores is shown in Figure 6-7. In 

generating the final combined consensus network, edges were selected based 

on a confidence threshold of 75%. 



162 

 

 

 

 

Figure 6-7 (A) Histogram and (B) Box plot of scores for best-learned graphical 

model in each bootstrapped sampling. 

6.7 Results 

Using the described Gaussian Bayesian network modeling framework, a network 

model was generated for the 13 identified drug-responsive apoptotic genes as 

shown in Figure 6-8-A. The network contains 15 interactions and each edge has 

a confidence of over 75%. The inferred interactions represent dependence 

among these 13 genes of interest, which may be due to direct or indirect protein-

protein interactions, transcriptional regulation, or signal transduction. To validate 

the inferred interactions, we searched the Interactions component of NCBI Gene 

database (http://www.ncbi.nlm.nih.gov/gene), which contains data from multiple 

interaction databases such as BIND, HPRD, BioGRID, etc. We then generated a 

A B

http://www.ncbi.nlm.nih.gov/gene
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validated interaction network of the 13 apoptotic genes using their validated 

interactions [Figure 6-9]. The validated network contained 216 interacting genes, 

including our 13 genes of interest. The network also contained 243 interactions 

after removing duplicate interactions (365 interactions with duplicates). When 

compared with our predicted network, 9 out of 15 predicted interactions were 

found to be direct or indirect interactions in the validated network [marked in red, 

Figure 6-8-A]. An indirect interaction means the network does not contain a direct 

edge between the two genes, but there exists a path between them via 

intermediate genes. Since we only considered 13 apoptotic genes in network 

inference, it is highly possible that the inferred interactions are indirect, but 

illustrate the dependence or information transmission between the two 

corresponding genes. More precisely a sub-validated network that includes only 

evidences (20 nodes and 28 interactions) for our predicted interactions was 

extracted as shown in Figure 6-8-B. For indirect evidences, we only counted the 

shortest paths between two apoptotic genes of interest. 

6.7.1 Known direct interactions 

Two edges in our predicted network (marked in thick red, Figure 6-8-A) have 

been validated as direct interactions in literature and are clearly annotated in the 

functional summary of corresponding genes as shown below. 

TAX1BP1 -> TNFAIP3: As seen in the annotation of TAX1BP1, Tax1 (human T-

cell leukemia virus type I) binding protein 1, from the NCBI Gene database, this 

protein inhibits TNF-induced apoptosis by mediating TNFAIP3‘s anti-apoptotic 
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activity [138, 139]. In vivo experiments and yeast two hybrid assays also confirm 

the interaction between TNFAIP3 (zinc finger protein A20) and TAX1BP1. 

TNFAIP3 also interacts with TXBP151, an anti-apoptotic protein and may inhibit 

inflammatory signaling pathways such as TNF-induced NF-κB activation [140, 

141]. TNFAIP3 and TAX1BP1 inhibit the inflammatory signaling pathway by 

interacting with Ubc13 and UbcH5c and triggering their ubiquitination and 

proteasome-dependent degradation [142]. 

PMAIP1 -> BCL2L11: Although there is no evidence showing direct interaction 

between PMAIP1 (also known as NOXA) and BCL2L11 (also known as BIM), the 

functional annotation of PMAIP1 [143] from the UniProtKB/Swiss-Prot database 

shows that the PMAIP1 competes with BCL2L11 to bind with MCL1 and can 

displace BCL2L11 from its binding site on MCL1. The predicted interaction 

between PMAIP1 and BCL2L11 may be explained by the competition between 

PMAIP1 and BCL2L11 in binding MCL1. The competition may occur either 

through a direct interaction between the two proteins, or through a third protein 

that is able to bind both. In addition, both PMAIP1 and BCL2L11 have been 

shown to interact directly with many other BCL2 protein family members 

including BCL2, BCL2A1, BCL2L1 and BCL2L2 [144, 145]. This indicates that 

NXOA and BIM may share common binding regions to BH3-only BCL2 family 

proteins. NOXA and BIM as BH3-only proteins have been recognized as critical 

mediators of anti-cancer drug- and p53-induced apoptotic responses [146, 147], 

which are consistent with our findings in this study that both of them are 

differentially expressed drug-responsive genes. 
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6.7.2 Consistency with two major cell death pathways 

As described previously, there are two major apoptosis programs in mammalian 

cells: the intrinsic or mitochondrial stress-induced pathway and extrinsic or death 

receptor-triggered pathway. Our predicted network captures the important 

players and key interactions in both apoptosis programs. For the intrinsic 

pathway, our predicted network identifies two of the most important mediators, 

BLC2L11/BIM and PMAIP1/NOXA, and their competing interaction in terms of 

regulating many other BH3-only BCL2 family member proteins including BLC2, 

BCL2L1, BCL2L2, BCL2A1 and MCL1, which is illustrated as well as in the 

validated network (Figure 6-8-B). For the extrinsic death receptors-triggered 

pathway, we successfully recovered one representative of cancer-therapy or 

drug-induced cell death pathway: TNF-induced apoptosis. TNFAIP3/A20 and 

TAX1BP1/TXBP151 are two key players of this pathway, and they interact with 

each other to turn on the down-stream cell death machinery. 

6.7.3 BCL2L11/BIM as a gateway gene to drug-induced intrinsic apoptosis 

As shown in our inferred drug-induced apoptotic sub-network, BCL2L11 is 

located downstream of most cell death sub-pathways, which includes drug-

affected apoptotic genes such as BNIP3L, NOL3, PMAIP1, NUP62, and SON. 

This suggests that BCL2L11 may act as a downstream gate or switch for drug- or 

stress-induced apoptosis programs. This finding is consistent with the main role 

of BCL2L11 as an apoptosis facilitator. The mechanism through which BCL2L11, 

a BH3-only protein, activates cell death is by inactivating Bcl-2-like proteins, 
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keeping them from restraining Bax and Bak.  Bax or Bak can cause the outer 

membrane of the mitochondria to become permeable. This releases 

cytochrome c, which provokes Apaf-1 (apoptotic protease-activating factor 1) to 

activate caspase-9 [120]. The gateway role of BCL2L11 has also been illustrated 

in our literature-generated validation network (Figure 6-8-B). 

6.7.4 TNFAIP3/A20 as a gateway gene to drug-induced extrinsic apoptosis 

As shown in both our predicted network and validated network (Figure 6-8), 

TNFAIP3, a zinc finger protein, acts as a hub by transmitting upstream signals 

from cell death receptors to downstream cell death cascades. This suggests that 

TNFAIP3 may be a gateway protein for drug-induced extrinsic apoptosis. 

TNFAIP3/A20 acts as a key player in TNF-induced apoptosis by inhibiting NF-κB 

activation. These results indicate that TNF-induced signaling may be the most 

common anti-cancer drug or chemical compound-triggered cell death program. 

Many studies have demonstrated the involvement of the TNF-mediated 

apoptosis in cancer therapies such as ionizing radiation or the chemotherapeutic 

agent, daunorubricin [138]. This again confirms our hypothesis that anti-cancer 

drugs induce apoptosis of cancer cells and confirms that apoptosis pathways can 

be inferred from drug-perturbed gene expression profiles. 
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Figure 6-8 (A) Predicted subnetwork of 13 selected drug-responsive apoptotic 

genes: edges in red are validated interactions in literature, and edges in dark red 

are strong validated direct interactions. (B) A subnetwork from literature showing 
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evidences for validated interactions in predicted network including candidate 

genes (colored in yellow) with their validated interactants (in brown). Each 

validated edge in predicted network (red in A) can be mapped to one path in 

evidence network (B) between the two corresponding interacting candidate 

genes. 

 

Figure 6-9 A network from literature for 13 candidate genes (colored in yellow) 

with their validated interactants (in brown). Edges in red are evidences for 

validation of interactions in predicted apoptosis network. 
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6.8 Discussion 

We have demonstrated the value of CMAP data for studying drug-response in 

mammalian cancer cells. We have also validated the hypothesis that the 

apoptosis pathway may be a main program targeted by anti-cancer drugs. 

Furthermore, we have shown that CMAP data contains sufficient information 

about the dynamic activities of human genes for reconstructing gene-gene 

interactions in drug-perturbed cancer cells. We have also successfully applied a 

Gaussian Bayesian network framework to reconstruct a subnetwork containing 

validated interactions between genes with known roles in the apoptosis pathway.  

In addition, our network successfully predicted key players and interactions in 

drug-induced apoptosis, including both the intrinsic and extrinsic apoptosis 

pathways.  

Our framework may be improved in a few ways. First, we only considered the 

general effects of drugs based on the assumption that cancer cells have a similar 

response mechanism to different drugs. However this assumption may be over-

generalized, since there are some drugs to which the cells have no response. 

This can be clearly seen in Figure 1, which contains a heat map of signature 

genes across all drugs (Figure 6-1). One way to deal with this limitation may be 

to cluster drugs by their expression profiles or by their physical or chemical 

properties. A similar comparison analysis may be performed, but would take into 

the account the effects of different drug groups. Second, to reduce computational 

complexity, we limited our analysis to apoptotic genes that were differentially 
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expressed with a Bonferroni-corrected pvalue threshold of 0.05. This threshold 

might have been overly stringent and may have caused us to filter informative 

genes from the analysis.  One way to deal with this problem might be to include 

more candidate genes, but this would increase complexity and computation. 

We have shown that Bayesian network modeling can be a powerful tool for 

reconstructing biological networks from noisy high-throughput microarray data. In 

the Bayesian network modeling approach to network reconstruction, we have 

found that a linear Gaussian model for local probability distribution is able to give 

a more accurate description for continuous data and is also able to reduce the 

number of parameters when compared to discrete methods. In discrete methods, 

data points are separated into multiple levels, and this can result in the loss of 

information, especially in cases where the variable has a large range of values 

and has many parent variables [125-128]. However, one limitation with the linear 

Gaussian model is that although it works well in cases where the data fits a 

normal distribution and there are linear dependences between nodes and their 

parents, the model can easily over-fit the data if these dependencies are not met. 

In this study it was reasonable to apply Gaussian distribution because most 

candidate genes fit a normal distribution, as shown in Figure 6-2. However, a 

possible improvement may come from performing graphical diagnosis and doing 

further transformation on the data, or employing other statistical models to fit the 

data. An alternative approach to learning the structure of the Bayesian network is 

simulated annealing with Markov chain Monte Carlo (MCMC) sampling. This 

method may overcome the limitation of the hill-climbing method used in this study. 



171 

 

 

 

 In hill-climbing method, the function finds the nearest optimum value. Depending 

on the starting point, this peak may or may not be the true optimum value. 

However, one limitation with MCMC sampling is that it is significantly more time-

consuming than the hill-climbing method. For network comparison or scoring, 

other asymptotic criteria such as AIC, BIC, or DIC could be tried as well. 

The two major apoptosis sub-pathways of mammalian cells are largely 

independent because over-expressed Bcl-2 does not protect lymphocytes from 

apoptosis induced by death receptor ligands. Literature has shown that in certain 

other cell types such as hepatocytes the two pathways intersect, because 

CASP8 can process the pro-apoptotic Bid into its active truncated form (tBid) and 

prevent catastrophic untimely cell death [121]. However, cross-talk between 

these two programs has been rarely studied in the context of drug-perturbations. 

Our computationally predicted apoptosis network might shed light on how both 

pathways are regulated together by identifying cross-talk interactions such as 

PMAIP1 and TNFAIP3, BCL2L11 and TNFAIP3 via SON. 

In summary, we have extended the usage of CMAP data and reconstructed a 

subnetwork of drug-induced apoptosis in mammalian cancer cells using a 

computational statistical modeling approach. Apoptosis induction is a major 

theme of cancer treatment by drugs, and we confirmed that it is indeed a major 

drug-responsive program. Our findings have added new knowledge of how 

cancer cells respond to drug and provided potential specific targets in apoptosis 

pathway for better cancer treatment. However, cell death might not be the only 
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drug-induced program, so our computational framework to CMAP data could be 

extended to other interesting biological pathways related to cancer treatment by 

drugs. 
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Chapter 7 NetBID2 Identifies AKT1 as a Therapeutic 

Target to Revere Glucocortoid Resistance in T-ALL
1
 

7.1 Summary 

Glucocorticoid resistance is a major driver of therapeutic failure in T-cell acute 

lymphoblastic leukemia (T-ALL). Here we used a systems biology approach, 

NetBID2, based on the reverse engineering of signaling regulatory networks, 

which identified the AKT1 kinase as a signaling factor driving glucocorticoid 

resistance in T-ALL. Indeed, activation of AKT1 in T-ALL lymphoblasts impairs 

glucocorticoid-induced apoptosis. Mechanistically, AKT1 directly phosphorylates 

the glucocorticoid receptor NR3C1 protein at position S134 and blocks 

glucocorticoid-induced NR3C1 translocation to the nucleus. Consistently, 

inhibition of AKT1 with MK-2206 increases the response of T-ALL cells to 

glucocorticoid therapy both in T-ALL cell lines and in primary patient samples 

thus effectively reversing glucocorticoid resistance in vitro and in vivo. These 

results warrant the clinical testing of ATK1 inhibitors and glucocorticoids, in 

combination, for the treatment of T-ALL. 

                                            

1 Eric Piovan from Adolfo Ferrando Lab did validation experiments. This chapter 

is based on our paper [148]. 
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7.2 Clinical Significance 

Glucocorticoids are central drugs in the treatment of T-ALL and glucocorticoid 

resistance is associated with poor outcomes in this disease. Therefore, the 

elucidation of molecular mechanisms contributing to glucocorticoid resistance 

and the identification of therapeutic targets for the treatment of glucocorticoid 

resistant T-ALL have become major imperatives in the field. Our identification of 

AKT1 as a direct inhibitor of glucocorticoid receptor function and a mediator of 

glucocorticoid resistance will facilitate the development of combination therapies 

with AKT1 inhibitors and glucocorticoids for the treatment of T-ALL. Moreover, 

these results further highlight the value of systems biology approaches based on 

reverse engineering of signaling networks to identify key modulators of drug 

resistance in human cancer. 

Keywords: AKT1, glucocorticoid resistance, T-ALL, NetBID2, systems 

biology, NR3C1, phosphorylation 

7.3 Introduction 

Glucocorticoids (GCs) play a fundamental role in the treatment of all lymphoid 

tumors due to their capability to induce apoptosis in lymphoid progenitor cells 

(Figure 7-1) [18, 19, 149]. However, the importance of glucocorticoid therapy in 

lymphoid malignancies is underscored by the strong association of glucocorticoid 

response with prognosis in childhood acute lymphoblastic leukemia (ALL). Thus, 

the initial response to 7 days of glucocorticoid therapy is a strong independent 
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prognostic factor in this disease [150-152]. Moreover, resistance to 

glucocorticoids, defined as inability by lymphoblastic leukemia cells to initiate the 

apoptotic program in response to glucocorticoid treatment in vitro, is also 

associated with unfavorable prognosis [153, 154]. Finally, the majority of ALL 

patients in relapse show increased resistance to glucocorticoid therapy, 

suggesting glucocorticoid resistance as a potential major contributor to treatment 

failure [153, 155].  

The transcriptional and cellular effects of glucocorticoids in leukemia cells are 

mediated by the glucocorticoid receptor alpha, a nuclear receptor ligand-

activated transcription factor encoded by the NR3C1 gene [156].  In its unligated 

state, the glucocorticoid receptor protein is located primarily in the cytoplasm as 

part of an inactive hetero-oligomeric complex that contains heat shock proteins 

and chaperones [157]. After binding to an agonist ligand, NR3C1 undergoes 

conformational changes, dissociates from the heat shock protein complex, 

partially homodimerizes, and translocates to the nucleus where it binds to DNA 

and activates gene expression via positive glucocorticoid response elements 

located in the promoters of glucocorticoid target genes [158]. In addition to its 

role as a transcriptional activator, the glucocorticoid receptor has also been 

shown to directly participate in transcriptional repression, via binding to negative 

glucocorticoid response elements, which mediate the assembly of cis-acting 

NR3C1-SMRT/NCoR repressing complexes [159] and indirectly, via interaction 

with other transcriptional regulators such as AP-1,  NFKB, TP53, CREBP and 

STAT5 [158]. Thus, activation of the glucocorticoid receptor in lymphoid cells 
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induces a broad transcriptional program affecting genes responsible for multiple 

cellular functions, including cell cycle progression, cell metabolism and the 

induction of apoptosis [160-163]. 

 

Figure 7-1 Glucocorticoid receptor signaling pathway, adapted 

from SABiosciences. 

A number of different mechanisms have been involved in glucocorticoid 

resistance in ALL, including loss-of-function mutations in the glucocorticoid 
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receptor gene, loss of glucocorticoid receptor auto up-regulation, expression of 

glucocorticoid receptor splice variants, and upregulation of antiapoptotic 

pathways [164-173]. Overall, although multiple distinct genetic and epigenetic 

alterations seem to contribute to glucocorticoid resistance in ALL, complete 

functional loss of glucocorticoid receptor activity is rare, suggesting that 

strategies aimed to enhance glucocorticoid receptor expression and activity in 

leukemic lymphoblasts may be exploited to overcome resistance in the clinic.  

Moreover, even though glucocorticoid resistance is a complex phenotype, 

glucocorticoid resistant leukemias share a distinct gene expression signature, 

suggesting that common effector mechanisms may participate in blunting 

glucocorticoid response in resistant tumors [23]. Correspondingly, several 

therapeutic strategies have been proposed to overcome GC-resistance such as 

inhibition of MEK, HDAC, mTOR, or NOTCH1 [23, 24, 174-178]. However, due to 

strong toxicity of existing therapeutics [179], reversal of GC-resistance remains a  

clinical challenge and new therapeutic strategies are much needed. 

In this chapter, we aimed to identify specific signaling proteins that directly 

modulate the activity of the glucocorticoid receptor and may thus be exploited for 

the reversal of glucocorticoid resistance. To achieve this goal, we applied 

NetBID2 (Figure 7-2), the systems biology framework I developed to infer 

disease drivers from gene expression data in couple with signaling-molecule 

centered network. NETBID2 is based on computationally-assembled regulatory 

networks from a cohort of gene expression profiles (GEPs) and Markov chain 

Monte Carlo (MCMC) based Bayesian modeling techniques. It extended an 
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existing master regulator analysis method, MARINa, which has been successful 

in the identification of transcription factors that are master regulators of high-

grade Glioma subtypes [72] and Germinal Center formation [71], to the analysis 

of signaling proteins as candidate modulators of glucocorticoid resistance in T-

cell acute lymphoblastic leukemia (T-ALL). This approach led to the identification 

of AKT1 as a master regulator of glucocorticoid resistance in T-ALL and 

suggested several additional potential master regulators. To validate these 

findings, we demonstrate that the glucocorticoid receptor, NR3C1, is a direct 

phosphorylation target of AKT1 at S134 and that its AKT1-mediated 

phosphorylation impairs glucocorticoid response via nuclear exclusion and 

targeted degradation of the NR3C1 protein. Consistently, and most importantly, 

pharmacologic inhibition of AKT1 effectively reverses glucocorticoid resistance 

both in T-ALL primary samples and in cell lines (i.e., in vitro and in vivo). Overall, 

these results show that regulatory network analysis is a valuable tool in the 

identification of critical modulators of therapeutic response in human cancer and 

identify AKT1 as an actionable therapeutic target for the reversal of 

glucocorticoid resistance in T-ALL. 



179 

 

 

 

 



180 

 

 

 

Figure 7-2 NetBID2 algorithm to identify drivers of GC-Resistance in T-ALL from 

gene expression profiles. 

7.4 Results 

7.4.1 NetBID2 with signaling network identifies AKT1 as a driver of 

glucocorticoid resistance in T-ALL 

Reverse engineering of transcriptional regulatory or signal transduction networks 

has emerged as a valuable tool to identify master regulators of human 

phenotypes, both physiologic and pathologic [70, 180, 181]. More recently, this 

approach has also been successful in establishing functionally relevant, 

experimentally validated interactions between signaling molecules and 

transcription factor oncogenes [73]. Here we postulated that the gene expression 

signature EGC, associated with glucocorticoid resistance, could be effectively 

used to interrogate the signaling interaction network of T-ALL to identify master 

regulators of resistance. Since data on signal transduction networks is too sparse 

and lacks context specificity, we relied instead on the fact that numerous 

feedback loops results in transcriptional coherence among proteins that are in 

the same signal transduction pathway. This suggests that candidate interactions 

of a signaling proteins S should be enriched among genes with a statistically 

significant Mutual Information with S, computed from transcriptional profiles 

(Figure 7-2). In addition, since these feedback loops are reasonably modeled as 

Markov chains, we hypothesized that using the Data Processing Inequality, a 

method successfully used by the ARACNe algorithm [111] to dissect direct 
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targets of transcription factors, could also be used to further enrich the inferred 

interactions in genes whose expression was more directly controlled by a 

signaling protein. We are cognizant that this is only an approximation. Yet, we 

reasoned that if the inferred regulon RS of a signaling protein S were sufficiently 

enriched in genes whose expression is regulated by S, directly or indirectly, the 

MARINa algorithm could then be used to identify the corresponding protein‘s role 

as candidate master regulator of glucocorticoid resistance.  

To define the EGC signature for glucocorticoid resistant vs. glucocorticoid 

sensitive leukemia, we analyzed microarray data from a public series of 32 

leukemias, with detailed information on glucocorticoid sensitivity [23], by Probit 

analysis using a Bayesian MCMC method for robust parameter estimation, see 

methods section. Consistent with previous reports, glucocorticoid resistant T-

ALLs were characterized by a robust transcriptional signature with 53 

upregulated and 73 downregulated genes in resistant patients (P <0.01) (Table 

7-2). 
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Figure 7-3 Top signaling drivers of GC-resistance inferred by NetBID2 and siRNA 

validation results. (a) Signaling factors associated with glucocorticoid resistance 

by NetBID2. (b) Apoptosis analysis in DND41 T-ALL cells electroporated with 

siRNA pools targeting validated candidate regulators of glucocorticoid resistance 

and treated with dexamethasone (1µM) for 48 hours. The apoptotic index 

indicates apoptotic cell number in gene specific siRNA dexamethasone treated 

samples relative to siRNA control dexamethasone treated cells. *, P <0.01; **, P 

<0.05. (c) Quantitative RT-PCR analysis of siRNA knockdown. 

Next, to assemble a T-ALL specific signaling network to interrogate such a 

signature, we used gene expression profile data from a large collection of 223 T-

ALL primary samples to infer groups of genes (S-regulons) whose expression is 

modulated by 2,602 proteins annotated as having signal transduction function, 

using the ARACNe algorithm [70, 111]. This analysis yielded a network 

comprising 21,033 genes and 415,424 candidate interactions.  
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Finally, we applied the NetBID2 algorithm to rank signaling proteins according to 

the enrichment of their S-regulon (RS) in the glucocorticoid resistance signature, 

based on a two-tail Gene Set Enrichment Analysis (GSEA) [97]. Given that 

signaling pathways can trigger either positive or negative transcriptional feedback 

loops we considered that if S activation induced glucocorticoid resistance, then 

RS genes could be enriched either among overexpressed or underexpressed 

genes in the glucocorticoid resistance signature. All signaling proteins were then 

ranked by their two-tail GSEA statistics, using the Normalized Enrichment Score, 

NES, and associated P-value. This analysis identified 42 signaling drivers of GC-

resistance (P<0.01, set size > 50, involved in at least known pathway, Table 7-1, 

Figure 7-25). We selected top 9 signaling factor-associated gene sets with highly 

significant enrichment scores (P < 0.0025) for validation. SiRNA mediated 

silencing of each of these candidate glucocorticoid resistance modulators 

validated that inhibition of 3 out of 9 (33%) of these predicted genes can increase 

the response of T-ALL lymphoblasts to glucocorticoids. Thus, knockdown of 

PPP2R5D, a protein phosphatase 2A regulatory B subunit; the B3GAT3 

glucuronosyl transferase 1; and AKT1, a central mediator in phosphatidylinositol 

3-kinase (PI3K) signaling, can all enhance glucocorticoid induced apoptosis in 

DND41 T-ALL cells (Figure 7-3). The prominent role of the PI3K-AKT signaling 

pathway in the pathogenesis of T-ALL [182, 183], and the development of 

clinically relevant PI3K-AKT specific inhibitors for the treatment of human cancer, 

prompted us to analyze the mechanistic role of AKT1 in the control of 

glucocorticoid resistance in T-ALL. 
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More interestingly, in the predicted network of AKT1, three AKT1-associated 

genes (VEGFB, TREX1, B3GAT3) are among the top 9 signaling proteins we 

selected and validated. B3GAT3 is also validated by siRNA (Figure 7-3) to 

sensitize GC-resistant cells upon inhibition. Out of 30 transcription factors or 

signaling molecules (92 genes in total) connected to AKT1 in the predicted 

network, 15 are also inferred as drivers of GC-resistance (Figure 7-4). This may 

suggestion that AKT pathway is highly involved in inducement of GC-resistance 

in T-ALL and may provide a therapeutic avenue to reverse the resistance by 

inhibiting AKT pathway. This also gives us more confidence and interest to follow 

up AKT1 to test it out and to identity the mechanism of AKT1 causing GC-

resistance. 

Moreover, NetBID2 also identifies AKT2 as a signal driver of GC-resistance in T-

ALL (Figure 7-6), which is another important member of PI3K/AKT pathway and 

shares similar functions with AKT1 in many biological processes. Again this 

makes it more interesting to work on AKT pathway. 

One point we want to highlight is that NetBID2 identifies AKT1 as a driver of GC-

resistance (Figure 7-5); however, AKT1 is not a signature gene in GC-resistant 

samples by looking at its own expression (Figure 7-7). It‘s not differentially 

expressed in GC-resistant and sensitive samples and also shows slightly up-

regulation in GC-sensitive samples. This again confirms the power of NetBID2 to 

identify hidden underlying drivers that classical signature method would fail to 

find. 
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Figure 7-4 AKT1-subnetwork predicted by ARACNe. Out of 30 (92 genes in total) 

TFs (diamond shape) or signal molecules (circle shape) that are predicted to 

connect with AKT1, 15 as shown are also inferred as drivers of GC-resistance. 

The strength of evidence (p-value) as a driver is color coded. Three signaling 

proteins in red are among top 9 proteins selected for validation. B3GAT3 is also 

confirmed to reverse GC-resistance by siRNA. 
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Figure 7-5 NetBID2 identifies AKT1 as a driver of GC-resistance in T-ALL. 

 

Figure 7-6 NetBID2 identifies AKT2 as a driver of GC-Resistance in T-ALL. 
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Figure 7-7 mRNA expression of AKT1 in GC-resistant and GC-sensitive primary 

samples. AKT1 is slightly over-expressed in sensitive samples. 

7.4.2 Constitutive activation of AKT1 impairs glucocorticoid response in T-

ALL  

Mutations and deletions in the PTEN tumor suppressor gene result in constitutive 

activation of AKT1 in T-ALL [182, 183].  Consistently, PTEN inactivation in 

DND41 cells by shRNA knockdown resulted in drastic reduction of PTEN protein 

levels and increased phosphorylation of AKT1 compared to control cells infected 

with shRNAs targeting the Luciferase gene (Figure 7-8-a). Treatment of PTEN 
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knockdown and control DND41 cells with dexamethasone showed that loss of 

PTEN and consequent AKT1 activation results in blunted induction of 

glucocorticoid induced apoptosis in T-ALL (Figure 7-8-b,c).  

The glucocorticoid receptor (NR3C1) functions as a ligand activated transcription 

factor [184]. Expression analysis of TSC22D3, a glucocorticoid target gene 

associated with inhibition of cell proliferation; BCL2L11, which encodes BIM a 

proapoptotic BH3-only factor; and the glucocorticoid receptor NR3C1 gene itself, 

showed a significant reduction in activation of these glucocorticoid induced 

transcripts in DND41 PTEN knockdown cells treated with dexamethasone 

compared with controls (Figure 7-8-d). In addition, AKT1 siRNA knockdown 

induced a significant enhancement in the upregulation of glucocorticoid response 

transcripts upon dexamethasone treatment (Figure 7-9). Consistently, expression 

of an activated myristoylated form of AKT1 (MYR-AKT1) diminished the capacity 

of the glucocorticoid receptor to activate a luciferase reporter construct under the 

control of a synthetic glucocorticoid response element (Figure 7-8-e), and blunted 

the response of the physiologic AF11-AF12 glucocorticoid response element 

responsible for the autoupregulation of the NR3C1 hematopoietic specific 

promoter [185] (Figure 7-8-f). Overall these results suggest that AKT1 could 

promote glucocorticoid resistance via inhibition of the glucocorticoid receptor.  
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Figure 7-8 Activation of the PI3K-AKT signaling pathway via PTEN inactivation 

induces glucocorticoid resistance in T-ALL and blunts glucocorticoid-induced 

gene expression. (a) Western blot analysis of PTEN expression and AKT1 

activation in DND41 T-ALL cells expressing a shRNA targeting the PTEN tumor 

suppressor (shRNA PTEN) compared to control cells expressing a hairpin 

against luciferase (shRNA LUC). (b,c) Representative plots (b) and quantification 
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(c) of glucocorticoid-induced apoptosis in control and PTEN knockdown DND41 

cells treated with dexamethasone (1µM) for 48 hours. Percentages of viable 

(lower left quadrant), apoptotic (lower right quadrant) and dead (upper right 

quadrant) are indicated.  (d) RT-PCR analysis of glucocorticoid response gene 

induction in control and PTEN knockdown DND41 cells treated with 

dexamethasone. (e,f) Luciferase reporter analysis of dexamethasone-induced 

glucocorticoid receptor transactivation in U2OS cells expressing MYR-AKT1 

compared with GFP only expressing controls using a synthetic glucocorticoid 

response element reporter (e) and the glucocorticoid receptor promoter 1A FP11-

FP12 regulatory sequence (f). 

 

Figure 7-9 Inactivation of AKT by siRNA facilitates glucocorticoid-induced gene 

expression. RT-PCR analysis of glucocorticoid response gene induction in 

control and AKT1 knockdown DND41 cells treated with dexamethasone 
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7.4.3 Phosphorylation of the glucocorticoid receptor (GCR) by AKT1 

Activation of gene expression by glucocorticoids is a multistep process that 

requires effective release of the glucocorticoid receptor from heat shock protein 

complexes, effective translocation to the nucleus and formation of a multiprotein 

transcriptional complex in the promoter of glucocorticoid target genes. To test if 

AKT1 could directly interact and inhibit the glucocorticoid receptor protein we 

transfected 293T cells with plasmid constructs driving the expression of Flag-

tagged AKT1 and HA-tagged NR3C1 and isolated glucocorticoid receptor-

containing protein complexes via immunoprecipitation using an anti-HA antibody. 

Western blot analysis demonstrated the presence of FLAG-AKT1 in HA-NR3C1 

immunoprecipitates suggesting that AKT1 can interact with NR3C1 in vivo 

(Figure 7-10-a). Reciprocal immunoprecipitation experiments, confirmed the 

association between Flag-AKT1 and HA-NR3C1 (Figure 7-10-b). Moreover, 

immunoprecipitation of NR3C1 protein complexes from the T-ALL cell lines 

DND41 and CCRF-CEM, demonstrated that endogenous NR3C1 and AKT1 can 

interact in T-ALL lymphoblast cells (Figure 7-10-c, Figure 7-11). Finally, 

glutathione-S-transferase (GST)-pulldown assays showed that recombinant 

GST-NR3C1 fusion protein can directly interact with His-tagged AKT1 (Figure 

7-10-d).  

AKT1 kinase target proteins are typically phosphorylated by AKT at RXRXXS/T 

motifs [186-188]. Phospho-AKT motif scanning analysis of NR3C1 revealed a 

potential AKT phosphorylation motif 131RSTS134 (Figure 7-10-e), suggesting that 

the glucocorticoid receptor could be an AKT1 substrate phosphorylated at serine 
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134. To test this possibility, we expressed HA-tagged wild type NR3C1 (HA-

NR3C1) or an HA-tagged form of the glucocorticoid receptor with a serine to 

alanine substitution at position 134 (HA-NR3C1 S134A) in cells infected with 

retroviruses expressing MYR-AKT1. Protein immunoprecipitation of NR3C1 with 

an antibody against HA and subsequent Western blot analysis with an antibody 

recognizing the phospho-RXXS/T AKT phosphorylation motif showed the 

presence of a HA-NR3C1 phospho-AKT band in cells expressing the wild type 

glucocorticoid receptor, but not in cells expressing the HA-NR3C1 S134A mutant 

(Figure 7-10-f). Next, we performed in vitro kinase assays in which we analyzed 

the capacity of the AKT1 kinase to phosphorylate the wild type or S134A 

glucocorticoid receptor proteins.  This assay demonstrated that AKT1 can 

effectively phosphorylate recombinant wild type NR3C1 protein in vitro, but not 

the serine 134 to alanine NR3C1 mutant protein (Figure 7-10-g).  Importantly, 

this effect was not mediated by impaired interaction between AKT1 and 

NR3C1S134A as GST-pulldown experiments showed that GST-NR3C1 S134A 

mutant protein can effectively interact with AKT1 in vitro (Figure 7-12). Moreover, 

mass spectrometry analysis of HA-NR3C1 protein isolated from MYR-AKT1 

expressing cells demonstrated the presence of serine phosphorylation at position 

134 of the glucocorticoid receptor by mass spectrometry (Figure 7-10-h,i). Mass 

spectrometry of the digested peptides by nanoLC-ESI-MS/MS verified the 

presence of NRC31 phosphorylation at S134 [ratio non-phosphorylated peptide: 

phosphorylated peptide (non-P:P)= 1.5:1] in addition to other previously 

characterized NR3C1 phosphosites including T8 (non-P:P= 10:1), S45 (non-P:P= 
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20:1), S203 (non-P:P= 1:1) and S267 (non-P:P= 25:1). Overall, these results 

demonstrate that the glucocorticoid receptor is a direct phosphorylation target of 

AKT1. 

 

Figure 7-10 AKT1 interacts with and directly phosphorylates the glucocorticoid 

receptor protein in position S134. (a) Western blot analysis of AKT1 after 

glucocorticoid receptor NR3C1 immunoprecipitation in 293T cells expressing 

Flag-tagged AKT1 and HA-tagged NR3C1. (b) Western blot analysis of 

glucocorticoid receptor NR3C1 protein after AKT1 immunoprecipitation in 293T 

cells expressing Flag-tagged AKT1 and HA-tagged NR3C1. (c) Western blot 

analysis of AKT1 after NR3C1 protein immunoprecipitation in DND-41 T-ALL 

cells.  (d) Analysis of AKT1-NR3C1 interaction via AKT1 detection via Western 

blot analysis of protein complexes recovered after NR3C1-GST pull down of 

recombinant His-tagged AKT1.  (e) Partial alignment of the glucocorticoid 

receptor protein sequence flanking S134. (f) Western blot analysis of NR3C1 

phosphorylation with an anti  AKT phospho-motif specific antibody in NR3C1 
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protein immunoprecipitates from U2OS cells expressing MYR-AKT1 together 

with HA-tagged wild type glucocorticoid receptor (HA-NR3C1) or an HA-tagged 

glucocorticoid receptor protein harboring a serine 134 to alanine substitution (HA-

NR3C1 S134A). (g) In vitro kinase analysis of AKT1 phosphorylation of 

recombinant wild type NR3C1 (GST-NR3C1) and NR3C1 S134A mutant (GST-

NR3C1 S134A) protein. Top panel shows P32 autoradiography after SDS-PAGE. 

The corresponding protein loading for each reaction is shown in the Coomassie 

blue staining micrograph at the bottom. (h) ESI-MS/MS spectrum of 

monophosphorylated peptide STpS134VPENPK (S-132 to K-140) obtained after 

trypsin digestion of NR3C1 isolated from cells expressing constitutively active 

AKT1.  (i) Collision induced dissociation of the molecular ion, [M+2H]2+ at m/z 

519.72 (M = 1037.42 Da) corresponding to S134. Characteristic b- and y-

fragment ions including y7 which contains pSer and features the loss of 98 Da 

(elimination of phosphoric acid) are shown. 
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Figure 7-11  AKT1 directly interacts with the glucocorticoid receptor in T-ALL 

cells. Western blot analysis of AKT1 after NR3C1 protein immunoprecipitation in 

CCRF-CEM cells. 
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Figure 7-12 AKT1 can directly interact with both wild type and mutant S134A 

glucocorticoid receptor. Analysis of AKT1-NR3C1 interaction via AKT1 detection 

via Western blot analysis of protein complexes recovered after wild type (NR3C1-

GST) or mutant (NR3C1 S134A-GST) glucocorticoid receptor GST pull down 

with recombinant His-tagged AKT1. 

7.4.4 AKT signaling inhibits NR3C1 nuclear translocation following 

glucocorticoid treatment  

After establishing the interaction and phosphorylation of the glucocorticoid 

receptor by AKT1 we aimed to elucidate the relevance of the NR3C1 S134 

phosphorylation for glucocorticoid receptor function. Glucocorticoid induced 

cytoplasmic-nuclear shuttling is strictly required for glucocorticoid receptor 
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activity. U2OS cells, which express undetectable levels of endogenous NR3C1 

(Figure 7-14), showed cytoplasmic localization of retrovirally expressed HA-

tagged glucocorticoid receptor protein, which was completely relocalized to the 

nucleus upon dexamethasone treatment (Figure 7-13-a). Notably, expression of 

MYR-AKT1 in these cells resulted in impaired nuclear relocalization of NR3C1 

after dexamethasone treatment (Figure 7-13-b). In addition, and in contrast with 

wild type glucocorticoid receptor, the NR3C1 S134A mutant protein showed 

increased nuclear localization in basal conditions and effective nuclear 

relocalization upon dexamethasone treatment (Figure 7-13-c), even upon 

expression of MYR-AKT1 (Figure 7-13-d). Next we analyzed the capacity of 

MK2206 a highly potent and selective AKT inhibitor [189], to modulate 

glucocorticoid induced translocation of NR3C1 to the nucleus in T-ALL cells.  

CCRF-CEM and MOLT3, two PTEN null T-ALL cell lines expressing high levels 

of AKT activation (Figure 7-13-e, Figure 7-15) showed cytoplasmic localization 

NR3C1 in basal conditions, which was only partially relocalized to the nucleus 

upon dexamethasone treatment (Figure 7-13-e, Figure 7-15). Inhibition of AKT 

with MK2206 effectively enhanced glucocorticoid-induced translocation of the 

NR3C1 protein to the nucleus in these cells (Figure 7-13-e, Figure 7-15). 
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Figure 7-13 AKT1-mediated S134 phosphorylation of the NRC3C1 protein 

impairs dexamethasone-induced glucocorticoid receptor nuclear translocation.  

(a) Confocal microscopy analysis and quantitation of the cellular distribution of 

NR3C1 cellular localization in U2OS cells expressing HA-NRC31 in basal 
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conditions (DMSO) and after dexamethasone (Dexa) stimulation. (b) NR3C1 

cellular localization in U2OS cells expressing HA-NRC31 and MYR-AKT1 in 

basal conditions and after dexamethasone stimulation. (c) Cellular localization of 

NR3C1 in U2OS cells expressing the HA-NRC31 S134A mutant in basal 

conditions and after dexamethasone stimulation. (d) Cellular localization of the 

HA-NRC31 S134A protein in U2OS cells expressing MYR-AKT1 in basal 

conditions and after dexamethasone stimulation. (e) Cellular localization analysis 

of NR3C1 via nuclear and cytoplasmic cell fractionation and analysis of AKT1 

signaling in cell lysates from CCRF-CEM T-ALL cells treated with vehicle only 

(DMSO), dexamethasone (Dexa), the MK2206 AKT inhibitor and MK2206 plus 

dexamethasone. Tubulin and MAX proteins are shown as controls for cytosolic 

and nuclear fractions, respectively. C: cytoplasmic fraction; N: nuclear fraction. 
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Figure 7-14 U2OS cells do not express detectable levels of endogenous NR3C1. 

Western blot analysis of NR3C1 expression in U2OS cells expressing pMSCV 

empty vector, pMSCV-HA NR3C1 or pMSCV-HA NR3C1 S134A. 
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Figure 7-15 AKT1-mediated phosphorylation of the NR3C1 protein impairs 

dexamethasone-induced glucocorticoid receptor nuclear translocation in T-ALL 

cells Cellular localization analysis of NR3C1 via nuclear and cytoplasmic cell 

fractionation and analysis of AKT1 signaling in cell lysates from MOLT-3 T-ALL 

cells treated with vehicle only (DMSO), dexamethasone (Dexa), the MK2206 

AKT inhibitor and MK2206 plus dexamethasone. Tubulin and MAX proteins are 

shown as controls for cytosolic and nuclear fractions, respectively. C: 

cytoplasmic fraction; N: nuclear fraction. 
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7.4.5 Pharmacologic inhibition of AKT reverses glucocorticoid resistance 

in vitro and in vivo 

Next we analyzed if AKT inhibition with MK2006 could broadly enhance the 

antileukemic effects of glucocorticoids and reverse glucocorticoid resistance in T-

ALL. Treatment of DND41 T-ALL cells with MK2206 effectively suppressed AKT1 

signaling (Figure 7-16) and showed a synergistic antileukemic effect in 

combination with dexamethasone [MK-2206 and dexamethasone Combination 

Index (CI)= 0.48] (Figure 7-16).   Consistently, treatment of CCRF-CEM cells with 

increasing doses of dexamethasone in the presence or absence of MK2206 

showed effective reversal of glucocorticoid resistance upon AKT inhibition 

(Figure 7-17-a). Similar results were obtained in the MOLT3 cell line (Figure 

7-18). Next we analyzed the effects of MK2206 and glucocorticoid in vivo in a 

xenograft model of glucocorticoid-resistant T-ALL. CCRF-CEM cells expressing 

the luciferase gene were injected intravenously in immunodeficient NOD SCID 

mice and tumor engraftment was assessed by in vivo bioimaging at day 18. 

Animals harboring homogeneous tumor burdens were treated with vehicle only 

(DMSO), MK2206, dexamethasone or MK2206 plus dexamethasone for 3 days.  

In this experiment, animals treated with dexamethasone or MK2206 showed 

progressive tumor growth similar to that observed in vehicle-treated controls, 

while mice treated with MK2206 plus dexamethasone had significant antitumor 

responses (Figure 7-17-b; P < 0.05).  

Next, we evaluated the response to the combination treatment MK2206 plus 

dexamethasone in primary T-ALL lymphoblasts.  Towards this goal we 
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established viable in vitro cultures of T-ALL leukemia samples supported by bone 

marrow MS5 stroma cells expressing the Delta like 1 NOTCH1 ligand [190]. 

Treatment of T-ALL primary leukemia cultures with MK2206 plus dexamethasone 

in combination showed significantly increased antileukemic effects compared 

with treatment with dexamethasone or MK2206 alone in 8/10 primary T-ALLs 

analyzed (Figure 7-22-a, b and Figure 7-19).  

To further test the efficacy of this treatment combination in vivo we established 

leukemia xenografts in Rag2/gamma (c) double knockout mice using two 

independent primary T-ALL samples infected with lentiviruses expressing the 

luciferase gene. Animals harboring homogeneous tumor burdens by in vivo 

bioimaging were treated with vehicle only (DMSO), MK2206, dexamethasone or 

MK2206 plus dexamethasone. In this experiment, mice treated with 

dexamethasone or MK2206 showed progressive tumor growth similar to that 

observed in vehicle-treated controls, while mice treated with MK2206 plus 

dexamethasone showed significant antitumor responses (Figure 7-22-c, d and 

Figure 7-20, Figure 7-21).  
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Figure 7-16 Pharmacological inhibition of AKT synergizes with dexamethasone to 

increase the antileukemic effects of glucocorticoids in DND-41 T-ALL cells. (a) 

Western blot analysis of AKT1 activation in DND41 T-ALL cells treated with the 

MK2206 AKT inhibitor. (b) Isobologram representation of cell viability results and 

Combination Index analysis of DND41 cells treated with dexamethasone and 

MK-2206 in combination. 
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Figure 7-17 Pharmacologic inhibition of AKT with MK-2206 reverses 

glucocorticoid resistance in human T-ALL cell lines. (a) Representative plots and 

quantification of apoptosis and loss of cell viability in CCRF-CEM T-ALL cell line 
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treated with vehicle only, MK2206, dexamethasone or dexamethasone plus 

MK2206 in combination in vitro. (b) Quantification of tumor load by 

bioluminescence in  in vivo imaging and analysis of luciferase activity or human 

CD45 expressing cells in the bone marrow of CCCF-CEM T-ALL xenografted 

mice treated with vehicle only, MK2206, dexamethasone (Dexa) or MK2206 plus 

dexamethasone (Dexa + MK2206). 

 

Figure 7-18 Pharmacological inhibition of AKT reverses glucocorticoid resistance 

in MOLT-3 T-ALL cells (a,b) Representative plots (a) and quantification (b) of 

apoptosis and cell viability (c) in MOLT-3 T-ALL cells for 72 hours with vehicle 

only, MK2206 and dexamethasone alone or dexamethasone plus MK2206 in 

combination. 
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Figure 7-19 Pharmacologic inhibition of AKT with MK-2206 reverses 

glucocorticoid resistance in human T-ALL primary samples. (a,b) Representative 

plots (a) and quantification of loss of viability analysis (b) in primary T-ALL patient 

samples treated with vehicle only, MK2206 and dexamethasone alone or 

dexamethasone plus MK2206 in combination. Percentages of viable (PI −), and 

non-viable (PI +) cells are indicated.  (c-f) Representative examples of primary 

human T-ALL xenografted mice showing changes in tumor load assessed by in 

vivo imaging (c), spleen size (d), spleen weight (e) and luciferase activity in bone 

marrow cells (f) from primary human leukemia xenografted mice treated with 

vehicle only, MK2206, dexamethasone (Dexa) or MK2206 plus dexamethasone 

(Dexa + MK2206). Scale bar: 2 cm. 
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Figure 7-20 Pharmacological inhibition of AKT in vitro reverses glucocorticoid 

resistance in primary human T-ALL xenografts. Analysis of cell viability in primary 

T-ALL samples treated for 72h with vehicle only, MK2206 and dexamethasone 

alone or dexamethasone plus MK2206 in combination 



209 

 

 

 

 

Figure 7-21 Pharmacological inhibition of AKT in vivo reverses glucocorticoid 

resistance in primary human T-ALL xenografts. (a,b) Bioimaging quantification (a) 

and analysis (b) of tumor load changes in mice treated with vehicle (control), 

dexamethasone (Dexa), MK2206, MK2206 plus dexamethasone (Dexa + 

MK2206) for 5 days. 
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Figure 7-22 Pharmacological inhibition of AKT in vivo reverses glucocorticoid 

resistance in primary human T-ALL xenografts. (a,b) Representative images of 

spleens (a) and spleen weights (b) of leukemic mice treated with vehicle only, 

MK2206, dexamethasone (Dexa) or MK2206 plus dexamethasone (Dexa + 

MK2206) for 4 days. (c,d) Quantification of tumor load by determining luciferase 

activity from cells isolated from the spleen (c) and bone marrow (d). (e) 

Quantification of tumor load changes by determining the increase in circulating 

CD45 positive cells in the peripheral blood of mice injected with a human 

xenograft and treated with vehicle (control), dexamethasone (Dexa), MK2206, 

MK2206 plus dexamethasone (Dexa + MK2206) for 4 days. Scale bar: 2cm. 
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Finally, we generated a mouse leukemia model in which glucocorticoid 

resistance is specifically driven by genetic loss of Pten using a well-established 

retroviral transduction and bone marrow transplantation protocol [191]. In this 

model, transplantation of tamoxifen-inducible conditional Pten knockout 

(Rosa26TMCre Ptenflox/flox) hematopoietic progenitors with retroviruses 

expressing a mutant and constitutively active form of the NOTCH1 receptor 

(NOTCH1 L1601P PEST) resulted in the development of NOTCH1 driven T-

ALL tumors as previously described [191]. Next we infected NOTCH1 

Rosa26TMCre Ptenflox/flox T-ALL lymphoblasts with a luciferase expressing 

retrovirus and transplanted them into secondary recipients which were treated 

with vehicle only or tamoxifen in order to generate Pten-non-deleted and Pten-

deleted isogenic tumors, respectively. Treatment of Pten-non-deleted tumor 

bearing mice with dexamethasone showed a significant improvement in survival 

compared with vehicle only treated controls (P < 0.01)(Figure 7-23-a). In contrast, 

and consistent with a role of Pten loss and AKT1 activation in promoting 

glucocorticoid resistance, all mice harboring Pten-deleted tumors failed to 

respond to dexamethasone treatment and showed no survival differences 

compared to vehicle treated controls (Figure 7-23-b).  

To test the efficacy of MK2206 and glucocorticoid combination we treated mice 

transplanted with NOTCH1-induced Pten-deleted murine tumors expressing 

luciferase in secondary recipients, with vehicle only (DMSO), MK2206, 

dexamethasone or MK2206 plus dexamethasone and monitored their response 

to therapy by in vivo bioimaging. Animals treated with dexamethasone or 
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MK2206 in this experiment showed progressive tumor growth similar to that 

observed in vehicle-treated controls, while mice treated with MK2206 plus 

dexamethasone showed significant antitumor responses (Figure 7-23-c, d; P < 

0.01) which translated in significantly improved survival in this group (Figure 

7-23-e). 

Finally, we analyzed the role of NR3C1 S134 phosphorylation in the therapeutic 

response to glucocorticoids and the effects of Pten loss in glucocorticoid therapy 

in this model. Retroviral expression of the glucocorticoid receptor in Pten non-

deleted lymphoblasts (Figure 7-24) enhanced the response of NOTCH1-induced 

leukemias to glucocorticoid treatment; an effect that was effectively abrogated 

upon Pten loss (Figure 7-23-f). In contrast, expression of the AKT-resistant 

NR3C1 S134A mutant protein was equally effective at increasing the 

antileukemic effects of glucocorticoids in Pten non-deleted and Pten null 

lymphoblasts (Figure 7-23-f).  
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Figure 7-23 Pharmacologic inhibition of AKT reverses glucocorticoid resistance in 

a mouse model of glucorticoid resistant T-ALL. (a,b) Kaplan-Meier survival plot in 

mice treated with dexamethasone (Dexa) or vehicle (Control) after allograft 

transplantation of Pten-non-deleted [−Tmx (Pten f/f)] (a) or Pten-deleted [+Tmx 

(Pten −/−)] (b) NOTCH1-induced T-ALL tumor cells. Arrows indicate the time of 

drug treatment. (c,d) Representative images and changes in bioluminescence in 

vivo imaging (c) and analysis of treatment response in mice allografted with 

NOTCH1 induced Pten deleted mouse leukemia cells and treated with vehicle 

only, MK2206, dexamethasone (Dexa) or MK2206 plus dexamethasone (Dexa + 

MK2206). (e) Kaplan-Meier plot of overall survival in mice allografted with 

NOTCH1 induced Pten deleted mouse leukemia cells and treated with vehicle 

only (control), MK2206, dexamethasone (Dexa) or MK2206 plus dexamethasone 

(Dexa + MK2206). (f) Quantification of glucocorticoid-induced loss of viability in 
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NOTCH1 induced Pten non deleted [−Tmx (Pten f/f)] or Pten deleted [+Tmx 

(Pten −/−)] mouse leukemia cells infected with an empty vector control (MSCV-

puro) or retroviruses expressing the wild type glucocorticoid receptor NR3C1 

(MSCV HA-NR3C1) or the S134A glucocorticoid receptor NR3C1 mutant protein 

(MSCV HA-NR3C1 S134A). 

 

Figure 7-24 Overexpression of NR3C1 and NR3C1 S134A mutant in primary 

murine leukemia cells. (a) Western blot analysis determining the retroviral 

expression of NR3C1 or NR3C1 S134A in Pten non-deleted [-Tmx (Pten f/f)] and 

(b) PTEN deleted [+Tmx (Pten -/-)] NOTCH1-induced T-ALL mouse leukemia 

cells. Beta actin is shown as loading control. 

Overall these results support a direct effect of AKT on the response to 

glucocorticoid therapy mediated by S134 phosphorylation of the glucocorticoid 

receptor protein and show that pharmacologic inhibition of AKT can effectively 

enhance glucocorticoid response and reverse glucocorticoid resistance in T-ALL. 
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7.5 Discussion 

Despite much research, the molecular basis of glucocorticoid resistance in ALL 

remains poorly understood. Genetic abnormalities of the glucocorticoid receptor 

gene are rarely seen in primary glucocorticoid-resistant leukemias [19] or in ALL 

samples at relapse [165]. However, alternative glucocorticoid receptor-centered 

mechanisms of resistance including decreased glucocorticoid receptor 

expression [166, 192] and impaired glucocorticoid receptor auto-upregulation 

[167-172] have been proposed. Notably, increasing glucocorticoid receptor 

expression or glucocorticoid receptor autoupregulation via inhibition of NOTCH1 

signaling can effectively abrogate glucocorticoid resistance in T-ALL primary 

samples and cell lines [193]. In addition, increased expression of antiapoptotic 

factors such as MCL1 [173] and epigenetic silencing of the BCL2L11 proapototic 

gene [194] can impair glucocorticoid induced apoptosis in ALL. Thus, decreasing 

MCL1 expresion via inhibition of mTOR with rapamycin [23], and increased 

BCL2L11 levels via GSK3 inhibition [195] can enhance glucocorticoid induced 

cell death and reverse glucocorticoid resistance in ALL.  

Our results show a new mechanistic role for AKT1 in glucocorticoid resistance in 

T-ALL. Notably, activation of the PI3K-AKT signaling pathway is highly prevalent 

in T-ALL and can result from deletions and mutations in PTEN [182, 183] and 

from activating mutations in the PIK3CA gene [182, 183], but also downstream of 

mutations and autocrine or paracrine receptor triggering the activation of cytokine 

receptor kinases. AKT1 is a pleiotropic factor with broad effects promoting cell 
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growth, metabolism and survival [23, 196-199]. Thus, constitutive activation of 

AKT1 can potentially antagonize glucocorticoid induced apoptosis via multiple 

indirect mechanisms. Still, our results demonstrate a direct effect of AKT1 in the 

phosphorylation and inhibition of the glucocorticoid receptor protein.  

Protein phosphorylation can modulate the activity of nuclear receptors by 

affecting their transactivation activity, cellular localization, interaction with 

cofactors and stability [200]. Mechanistically, AKT1 phosphorylation of NR3C1 

results in impaired glucocorticoid-induced nuclear localization. Notably, 

phosphorylation of S134 together with the presence of a conserved proline 

residue in position 136 (Figure 7-13-e), creates a potential 14-3-3 binding motif, 

which is a common mode of regulation of AKT1 substrates.  Thus, 14-3-3 binding 

has been implicated in AKT mediated inhibition of the proapototic factor BAD and 

the FOXO1, FOXO3 and FOXO4 transcription factor proteins [196, 201], 

suggesting a potential role for 14-3-3 interaction on the inhibitory effect of AKT1 

on the NR3C1 glucocorticoid receptor function.  

Overall, the results presented here, strongly support that AKT inhibition may 

reverse glucocorticoid resistance and warrant the clinical testing of AKT inhibitors 

and glucocorticoids in combination for the treatment of T-ALL. Finally our results 

demonstrate that reverse engineering of signaling networks can be exploited to 

identify relevant therapeutic targets for the reversal of chemotherapy resistance 

in human cancer. 
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7.6 Materials and Methods 

7.6.1 Reverse engineering signaling molecule-focused network analysis of 

glucocorticoid resistance in T-ALL 

Here we used the mRNA expression of genes globally co-expressed with a 

signaling molecule (S) as a surrogate readout of the activity of S based on the 

assumption that such genes are enriched for both members of the signal 

transduction cascade that includes S (both upstream and downstream members) 

and targets of transcription factors regulated by S. To generate a T-ALL 

transcriptional network, we processed Human U133 Plus2 Affymetrix microarray 

gene expression data from a series of 223 T-ALL primary samples using GC-

RMA normalization and non-specific filtering (removing probes with no Entrez id, 

Affymetrix control probes, and non-informative probes by IQR variance filtering 

with a cutoff of 0.5), to 21,054 probes in total.  Then we run the ARACNe 

algorithm[180], against 4831 probe sets corresponding to 2602 genes with 

annotated functions in signaling transduction (with annotation of ―signal 

transduction‖ (GO:0007165) in Gene Ontology as of 2009) to establish a 

signaling factor-centered Interactome at transcriptional level. Use of ARACNe is 

justified to find minimal regulatory paths, i.e., to eliminate most indirect 

interactions in signal transduction analysis. This produces a minimal 

representation such that if any interaction were removed, information transfer in 

the system could no longer be explained. The parameters of the algorithm were 

configured as below: P-value threshold P = 1e−7, DPI tolerance e = 0, and 
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number of bootstraps NB = 100. We used the adaptive partitioning algorithm for 

mutual information estimation. 

7.6.2 Glucocorticoid resistance signature analysis 

Out of the 223 primary samples with gene expression profile data, twenty-two 

were diagnosed as glucocorticoid resistant and ten as glucocorticoid sensitive. 

Using this a priori classification, we performed differential gene expression 

analysis to generate an EGC signature for glucocorticoid resistance. A statistical 

Probit model was used to infer the correlation of gene expression and 

phenotypes with the advantage of detecting weak effects, and Bayesian-MCMC 

computing was employed to estimate parameters for its robustness and accuracy, 

even with small sample size. In particular, a t-distribution prior and Gibbs 

sampling were used in this analysis [202]. 

7.6.3 Inferring master signaling drivers of glucocorticoid resistance in T-

ALL by NetBID2 

We used the NetBID2 algorithm to interrogate the ARACNe-inferred signaling 

network with the EGC signature, to identify candidate master modulators that may 

induce or suppress glucocorticoid resistance. It has been shown that feedback 

loops in signaling pathways induce co-expression of their member proteins, once 

the network has relaxed to steady state [203]. Thus, for each signaling gene S, 

we generated a putative S-regulon RS, from the T-ALL signaling interactome by 

selecting the first neighbors of S. This is based on the assumption that such 

genes are enriched for both members of the signal transduction cascade that 
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includes S (both upstream and downstream members) and targets of 

transcription factors regulated by S. Next, we used Gene Set Enrichment 

Analysis (GSEA) to test the enrichment of the RS genes in the EGC signature as 

previously described [204]. For GSEA method we used ‗maxmean‘ statistic [205] 

to score the enrichment of the gene set in the EGC signature and sample 

permutation to build the null distribution for statistical significance. To generate 

robust signatures, we only used signaling proteins with more than 50 genes in 

their S-regulon. P-values were corrected using Efron‘s procedure [205]. 

7.6.4 Cell lines and primary leukemia samples 

Human embryonic kidney (HEK) 293T and osteosarcoma U2OS (HTB-96) cells 

were maintained in Dulbecco‘s modified Eagle‘s medium (DMEM) containing 10% 

fetal bovine serum and 0.05 mg/ml penicillin/streptomycin. T-ALL cell lines were 

maintained in RPMI-1640 media supplemented with 10% FBS and 0.05mg/ml 

penicillin/streptomycin. T-ALL lymphoblast samples were provided by 

collaborating institutions in the US (Department of Pediatrics, Columbia 

Presbyterian Hospital, New York), Italy (Department of Pediatrics, University of 

Padova), the Hospital Central de Asturias (Oviedo, Spain) and the Eastern 

Cooperative Oncology Group (ECOG). All samples were collected with informed 

consent and under the supervision of local IRB committees. Primary T-ALL cells 

were cultured in vitro with MS5 stromal cells expressing the Delta-like1 NOTCH 

ligand protein in cytokine supplemented media as previously described [206]. 
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7.6.5 Inhibitors and drugs 

The allosteric AKT inhibitor MK2206 or 8-[4-(1-aminocyclobutyl)phenyl]-9-phenyl-

1,2,4-triazolo[3,4-f] [1,6]naphthyridin-3(2H)-one hydrochloride [1:1]  was obtained 

from Selleck Chemicals LLC. Dexamethasone and 4-Hydroxytamoxifen were 

from Sigma-Aldrich. 

7.6.6 siRNA validation of regulators of glucocorticoid resistance 

We performed siRNA experiments in the glucocorticoid sensitive T-ALL cell line, 

DND41. For this purpose, DND41 cells were electroporated with smartpool 

siRNAs (Dharmacon) targeting the top nine master regulators identified through 

MARINa analysis using the SF Cell line 96-well Nucleofector Kit (Lonza). Twenty-

four hours after electroporation, cells were treated with Dexamethasone (1µM) 

for 48h. Cells were then collected and analyzed for apoptosis by FACS after 

staining membrane expression of Annexin V and 7-AAD with the PE AnnexinV 

Apoptosis Kit I (BD Biosciences). 

7.6.7 Luciferase reporter assays 

We performed NR3C1 reporter assays in U2OS cells stably expressing 

haemagglutinin (HA) tagged wild type or mutant S134A NR3C1 and infected with 

retroviruses expressing EGFP only (pMSCV IRES GFP) or myristoylated AKT1 

and GFP (pMSCV MYR-AKT1 IRES GFP) and sorted for GFP expression [182]. 

These cells were cultured in DMEM media supplemented with 10% dialyzed fetal 

bovine serum in the presence or absence of increasing doses of dexamethasone 

(10nM to 1 µM). In these experiments cells were co-transfected with an inducible 
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firefly luciferase reporter containing tandem repeats of the Glucocorticoid 

Responsive Elements (GRE) and a constitutively expressing Renilla construct in 

the Cignal GRE Reporter (luc) Kit (SABiosciences); or alternatively  a luciferase 

reporter construct (pGL3 NR3C1 A1 FP11-FP12) containing the FP11-FP12 

regulatory sequence (5‘-CGTAAAATGCGCATGTGTTCCAACGGAAGCACTGG-

3‘) responsible for autoregulation of the NR3C1 promoter A1[24, 185] and the 

plasmid expressing pRL-CMV Renilla luciferase gene (Promega). NR3C1 

reporter activity and Renilla luciferase activity were analyzed 40-48 hours after 

transfection and 24 hours after dexamethasone treatment with the Dual-

Luciferase Reporter Assay kit (Promega).  

7.6.8 Quantitative real-time PCR 

Total RNA from T-ALL cell lines was extracted using Trizol reagent (Invitrogen). 

cDNA was generated with the Super Script First Strand Synthesis System for 

RT-PCR (Invitrogen) and analyzed by quantitative real-time PCR using SYBR 

Green PCR Master Mix (Applied Biosystems) and the 7300 Real-Time PCR 

System (Applied Biosystems). Relative expression levels were normalized with 

GAPDH expression used as a reference control.  

7.6.9 Western blotting and immunoprecipitation 

Total cell lysates were prepared using RIPA lysis buffer supplemented with 

phosphatase inhibitor cocktail set I and II (Sigma) and protease inhibitor cocktail 

tablets (Roche) and normalized for protein concentration using the BCA method 

(Pierce). For Western blotting, protein samples were separated on 4-12% 
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gradient Tris-Glycine SDS-PAGE (Invitrogen) and transferred to PVDF 

membrane (Millipore). Membranes were blocked in PBST containing 5% nonfat 

milk, incubated with primary antibodies according to the antibody manufacturer‘s 

instructions, followed by incubation with horseradish peroxidase-conjugated goat 

anti-rabbit, goat anti-mouse or donkey anti-rat IgG (Amersham) and enhanced 

chemiluminescence detection (Perkin Elmer). Antibodies against glucocorticoid 

receptor (E-20), tubulin (TU-02), beta actin (C-11) and MAX (C-17) were from 

Santa Cruz Biotechnology. Antibodies recognizing BIM, phospho-AKT Ser473, 

phospho-AKT Thr308, phospho-mTOR (S2448), mTOR, AKT and phospho-

(Ser/Thr) Akt substrate were from Cell Signaling Technologies. HA epitope 

antibody was from Roche, FLAG epitope antibody from Sigma and an antibody 

against PTEN (clone 6H2.1) was obtained from Cascade Biosciences. For 

immunoprecipitation, cell lysates were incubated with anti-HA or anti-FLAG M2 

affinity gel beads (Sigma) overnight at 4°C.  Beads were washed five times with 

lysis buffer and proteins were eluted by incubating the beads with HA peptide 

(1mg/ml, Roche) or FLAG peptide (1mg/ml, Sigma). Immune complexes were 

analyzed by SDS-PAGE and Western blotting.  

For immunoprecipitation of endogenous NR3C1 bound proteins in T-ALL cells, 

we lysed 100-150 million T-ALL cells for 30 min in RIPA lysis buffer 

supplemented with phosphatase and protease inhibitor cocktails. After 

centrifugation, the cell lysates were pre-cleared with TrueBlot® anti‐Mouse Ig IP 

Beads (eBioscience) before being incubated overnight with 5µg of mouse 

antibody against NR3C1 (AbCam) or irrelevant mouse Ig (Santa Cruz). 
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Subsequently, samples were incubated 2 hours with TrueBlot® anti‐Mouse Ig IP 

Beads and immunoprecipitates washed 5 times with CO-IP buffer (50mM Tris-

HCl pH 7.9, 150 mM NaCl, 1mM EDTA, 0.1% NP-40 and protease inhibitors). 

Immune complexes were then analyzed by SDS-PAGE and Western blotting. 

7.6.10 Preparation of Cytoplasmic and Nuclear extracts 

CCRF-CEM, MOLT-3 T-ALL cells were treated with vehicle (DMSO), 

dexamethasone (1µM), MK2206 (0.5-1µM), or the combination dexamethasone 

and MK2206 for 1 hour before being harvested. Cytoplasmic and nuclear 

extracts were prepared using the nuclear extraction kit (Active Motif) according to 

the manufacturer‘s recommendations. 

7.6.11 In vitro GST-pull down protein interaction assays 

For in vitro binding assays, GST fusion proteins of NR3C1 or mutant NR3C1 

S134A were expressed and purified from BL-21 bacterial cells. Approximately 2 

µg of GST fusion proteins bound to glutathione-agarose beads (Immobilized 

glutathione; Thermo scientific) were incubated with 1-2 µg of Histidine-tagged 

activated AKT1 (His-AKT1, Millipore) in GST-lysis buffer (20 mM Tris-HCl, 200 

mM NaCl, 1mM EDTA, 0.5% NP-40 and protease inhibitors) for 2 hours at 4 °C. 

After extensive washing in GST-lysis buffer, proteins were separated on 4-12% 

NuPage gradient gels, transferred to PVDF, and probed by Western blot using 

antibodies against AKT1 and the NR3C1 protein. 
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7.6.12 In vitro kinase assays 

Flag-tagged recombinant GST-NR3C1 wt and GST-NR3C1 S134A mutant 

proteins were expressed, purified from Escherichia coli, and incubated with 

recombinant active His-AKT1 protein (Millipore) in kinase buffer (Cell Signaling) 

containing γ-32P-ATP at 30°C for 30 min. The reaction was stopped by the 

addition of 5X SDS-Laemmli‘s sample buffer. Samples were separated on 3-8% 

Tris-Acetate SDS-PAGE (Invitrogen), and the gels subjected to autoradiography. 

7.6.13 Mass spectrometry analysis of NR3C1 phosphorylation sites 

U2OS cells stably expressing HA-tagged human NR3C1 and Myr-AKT were 

lysed in RIPA buffer and immunoprecipitated with anti-HA antibody conjugated 

beads (Sigma). After overnight incubation, the beads were extensively washed 

with BC-500 (500 mM NaCl, 20 mM Tris-Cl pH =8.0, 20% glycerol, 1% Triton-X, 

1mM EDTA) and, subsequently, proteins were eluted by incubating the beads 

with HA peptide (1mg/ml, Roche). The eluted NR3C1 was diluted in 4X SDS-

PAGE sample buffer and electrophoresed on 3-8% Tris-Acetate gels. Gel bands 

were stained with Simply Blue Stain (Invitrogen), excised, reduced with DTT, 

alkylated with iodoacetamide and digested with trypsin. Afterward, the digest was 

analyzed for phosphorylated peptides by nanoLC-ESI-MS/MS. MS/MS spectra 

were processed using ProteinLynx from the MassLynx 4.0 software and 

searched against the Swiss-Prot protein database using Mascot 

(www.matrixscience.com) with differential modifications for Ser/Thr/Tyr 

phosphorylation (+79.97) and the sample processing artifacts Met oxidation 

(+15.99) and Cys alkylation (+57.02). MS/MS spectra of phosphorylated peptides 
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and the corresponding non-phosphorylated peptides were manually inspected to 

be sure that all b− and y− fragment ions aligned with the assigned sequence and 

modification sites. For relative quantification of phosphorylation peptide signal 

levels, the total ioncurrent (TIC) for the phosphorylated peptide ion and non-

phosphorylated peptide ion were integrated and calculated according to the 

following equation: TICPO4/(TICPO4 + TICnonPO4) = ratio of phosphopeptide 

signal. Comparison of the ratio of the phosphorylated to nonphosphorylated 

peptide forms using this method provides an accurate measure of signal level 

change since the total peptide signal (modified and unmodified) is measured. 

7.6.14 Immunofluorescence studies 

U2OS cells stably expressing wild type or the S134A NR3C1 mutant together 

with MYR-AKT1 IRES EGFP or EGFP alone were plated on 35-mm dishes with 

glass bottom inserts and treated with vehicle only or dexamethasone (1 µM). 

After 1 hour they were washed with PBS, fixed in 4% paraformaldehyde and 

permeabilized with NP-40 (0.1% NP-40 in PBS). We blocked the permeabilized 

cells with 1.5% goat serum and incubated them with antibodies against NR3C1 

(1:500; Santa Cruz Biotechnology), followed by Alexa Fluor 594 (1:1000; 

Invitrogen) staining. We mounted the stained cells in Vectashield containing 

DAPI (4‘,6‘-diamidino-2-phenylindole; Vecta Laboratories, Burlingame, CA) and 

analyzed them by confocal imaging on a Zeiss LSM510-NLO microscope. 

Quantification of the NR3C1 signal in the cytoplasmic and nuclear compartments 

was done using ImageJ software. 
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7.6.15 Cell viability assays and flow cytometric analysis 

We analyzed cell viability via a metabolic colorimetric assay using the Cell 

Proliferation Kit I (MTT; Roche) or Cell Proliferation Reagent WST-1 (Roche). 

Drug concentrations used in these experiments were 10nM to 10 µM for 

dexamethasone and 0.5µM to 5µM for MK2206. We analyzed apoptosis by flow 

cytometry (FACS) after staining membrane expression of Annexin V and 7-AAD 

with the PE AnnexinV Apoptosis Kit I (BD Biosciences). For primary T-ALL 

samples, we assessed cell viability using the BD Cell Viability kit (BD 

Biosciences) coupled with the use of fluorescent counting beads. In these 

experiments, 2×105 leukemic cells were plated with 4×104 MS5-DL1 stroma cells 

into 24-well plates. The next day we treated cells with vehicle only (DMSO), 

dexamethasone (10 nM-1 µM), MK2206 (0.5 µM-10 µM) or the combination 

dexamethasone (10 nM-1 µM) plus MK2206 (0.5 µM-10 µM). After 72 hours we 

harvested the treated cells, passed them through a 50 µM Nylon mesh and 

stained them with an APC-conjugated antibody recognizing human CD45. After 

CD45 surface staining, we incubated the cells with a staining mix containing 

thiazole orange (TO) which labels all cells and PI which labels dead cells. 

Fluorescent BD Liquid counting beads were added to calculate absolute cells 

numbers. The viability of T-cell lymphoblasts was determined gating on CD45 

positive cells and is expressed as the percentage of TO positive and PI negative 

cells. 
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7.6.16 Retroviral and lentiviral constructs and viral production 

We created the retroviral construct pMSCV-HA-NR3C1 by cloning a pCMV-HA-

hGR BamHI-DraI fragment containing an HA tagged full length NR3C1 cDNA, 

into the pMSCV-puro vector [24].  Site-directed mutagenesis was performed 

using the Quickchange Site Directed Mutagenesis Kit (Stratagene, Windsor, ON, 

USA) according to the manufacturer‘s protocol. Ser 134 on hNR3C1 was 

replaced with alanine (S134A) in the pMSCV-HA-NR3C1-puro with the following 

primers: forward 5'- CTCAATAGGTCGACCGCCGTTCCAGAGAACCC-3' and 

reverse 5'-GGGTTCTCTGGAACGGCGGTCGACCTATTGAG-3'. Flag-tagged 

constitutively active AKT (pBabe-Puro-Myr-Flag-AKT1), which lacks its plekstrin 

homology domain but has a Src myristoylation signal seguence, was obtained 

from Addgene (plasmid number 15294).  PTEN knock-down was done using 

pLKO-shPTEN-GFP [182] and pLKO-shLUC-GFP was used as control. 

Retroviral particles driving the expression of EGFP (pMSCV IRES GFP), 

myristoylated AKT (pMSCV MYR-AKT IRES GFP), NR3C1 (pMSCV HANR3C1 

puro), NR3C1 S134A (pMSCV HA-NR3C1 S134A puro) were generated as 

previously described [207]. Lentiviral particles determining the knock-down of 

PTEN (pLKO shPTEN GFP) or the luciferase gene as control (pLKO shLUC-GFP) 

were generated according to standard protocols. Lentiviral particles expressing a 

luciferase and neomycin phosphotransferase fusion transcript were generated 

with the FUW-Lucneo vector [208]. Retroviral and lentiviral particles were 

produced and used in spin infections as previously described [209]. 
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7.6.17 Recombinant protein production 

To generate glucocorticoid receptor-GST fusion proteins we amplified the NR3C1 

cDNA by PCR and subcloned it in the pGEX4T-1 prokaryotic expression vector 

(Amersham Biosciences). We introduced a point mutation resulting in the NR3C1 

S134A substitution via site directed mutagenesis. We produced GST-NR3C1 and 

GST-NR3C1 S134A proteins in BL21 bacteria transformed with pGEX4T-1 

NR3C1 and pGEX4T-1 NR3C1 S134A vectors. We induced GST protein 

synthesis in bacteria with 0.2 mM isopropyl-b-D-thiogalactopyranoside (Sigma) 

for 5 hours at 30°C, then harvested the bacteria cells by centrifugation, and lysed 

them in modified BC-500 buffer (500 mM NaCl, 20 mM Tris-Cl pH=8.0, 20% 

glycerol, 1% Triton-X, 1mM EDTA, 0.2% NP-40) for 1h at 4°C. Cleared bacteria 

lysates were subsequently incubated with glutathione-Sepharose 4B beads 

(Amersham Biosciences) overnight at 4°C, and the glutathione-bead bound 

proteins were eluted by adding 15 mM glutathione in 50 mM Tris-HCl, pH=8.0. 

Finally, we removed glutathione by dialysis against PBS and analyzed the 

recombinant proteins for yield and purity by SDS-PAGE followed by Coomassie 

Brilliant Blue R-250 staining.  

7.6.18 Mice and animal procedures 

All animals were maintained in specific pathogen-free facilities at the Irving 

Cancer Research Center at Columbia University Medical Campus. Animal 

procedures were approved by the Columbia University Institutional Animal Care 

and Use Committee. Rosa26 Cre-Tam mice expressing a tamoxifen-inducible 

form of the Cre recombinase from the ubiquitous Rosa26 locus [210] and Pten 
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conditional knockout mice (Ptenfl) have been previously described [211]. To 

generate NOTCH1-induced T-ALL tumors in mice we performed retroviral 

transduction of bone marrow cells with an activated form of the NOTCH1 

oncogene  (NOTCH1 L1601P ΔPEST) and transplanted them via intravenous 

injection into lethally irradiated recipients as previously described [191]. Briefly, 

bone marrow cells were collected from the long bones of 6-9 week-old C57BL/6 

Rosa26 Cre-Tam Ptenflox/flox mice. Linneg cells were isolated using Lineage 

Depletion magnetic beads (Miltenyi Biotech). Purified cells were cultured in 

transplant medium consisting of Optimem (Gibco) supplemented with IL-3 

(10ng/ml), SCF (50ng/ml), IL-6 (10ng/ml) and 5% fetal calf serum overnight, ans 

spin infected by incubation in retroviral supernatant (MigR1-NOTCH1 L1601P 

ΔPEST) containing the same cytokine cocktail and 8 µg/ml polybrene and 

centrifuged at 2500 rpm for 90 minutes. A second round of spinoculation was 

performed after 24 hours. After washing with PBS, at least 50,000 Sca-1+GFP+ 

cells were injected intravenously into lethally irradiated (9.5 Gy) recipients. Mice 

were maintained on antibiotics in drinking water 2 weeks after bone marrow 

transplantation. Tumor bearing mice were euthanized and primary tumor cells 

extracted from the spleens of leukemic mice. These tumor cells were then 

infected with retroviral particles (MigR1 Cherry-LUC), expressing a fusion protein 

between the red cherry fluorescent protein and luciferase and re-injected in sub-

lethally irradiated mice (4 Gy).  After a 5 day window for tumor engraftment, 

secondary recipients of NOTCH1-induced Pten inducible conditional knockout 

cells labeled with Cherry-luciferase harboring homogeneous tumors were treated  
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with tamoxifen (5mg/mouse) (n=16), to induce deletion of the Pten locus  or 

vehicle only (n=16) by intra-peritoneal injection. After 1 week, Pten-non-deleted 

and Pten-deleted mice were analyzed by luciferase bioimaging [24] and 

segregated into groups of isogenic leukemias containing 8 animals each and with 

homogeneous tumor loads.  A control group of Pten-non-deleted animals and a 

control group of Pten-deleted mice were treated with vehicle (DMSO), while 

glucocorticoid treatment groups of Pten-non-deleted and Pten-deleted mice 

received escalating daily doses of 1mg/kg, 2mg/kg and 5mg/kg of 

dexamethasone. Each dose of dexamethasone was administered for three 

consecutive days. At the end of treatment all mice were monitored daily and 

animals showing overt signs of disease were euthanized following Institutional 

Animal Care and Use Committee guidelines. For intravenous transplantation 

model, we used sub-lethally irradiated C57BL/6 mice (Taconic Farms). We 

injected 2 million Pten deleted NOTCH1 L1601P PEST CHERRY-luciferase 

expressing cells via tail vein injection. After a 10 day window for tumor 

engraftment, we segregated mice with homogeneous tumor loads into treatment 

groups (7-10 mice per group) and treated them daily with vehicle (DMSO), 

dexamethasone (5 mg/kg via intraperitoneal injection), MK2206 (10 mg/kg via 

oral gavage twice a day) or dexamethasone (5 mg/kg) plus MK2206 (10 mg/kg) 

for 7 days. We evaluated disease progression and therapy response after 3 days 

of treatment by bioluminescence. For imaging studies, mice were anesthetized 

by isoflurane inhalation and injected with D-luciferin at 50 mg kg–1 (Xenogen) 

intraperitoneally. Photonic emission was imaged with the In Vivo Imaging System 
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(IVIS, Xenogen) with a collection time of 5-60 seconds. Tumor bioluminescence 

was quantified by integrating the photonic flux (photons per second) through a 

region encircling each mouse as determined by the LIVING IMAGES software 

package (Xenogen). At the end of 7 days of treatment, the disease was allowed 

to progress and all mice were monitored daily and animals showing overt signs of 

disease were euthanized following Institutional Animal Care and Use Committee 

guidelines. 

CCRF-CEM xenograft experiments were performed with 7 to 9-week-old female 

NOG (NOD/scid/IL-2Rnull) mice (Taconic Farms).  We injected 5 ×106 CCRF-

CEM cells expressing luciferase via tail vein injection. After a 15 day window for 

tumor engraftment, we segregated mice with homogeneous tumor burdens into 

treatment groups (3-4 per group) and treated them daily with vehicle (DMSO), 

dexamethasone (5 mg/kg via intraperitoneal injection), MK2206 (10 mg/kg via 

oral gavage twice a day) or dexamethasone (5 mg/kg) plus MK2206 (10 mg/kg) 

for three days. We evaluated disease progression and therapy response by 

bioluminescence (see above), luciferase activity on isolated tumor cells and by 

flow cytometry (CD45 staining). 

For the transduction of primary T-ALL cells, freshly thawed primary T-ALL cells or 

tumor cells obtained from xenografts were infected with lentiviral particles 

expressing the red fluorescent protein CHERRY and luciferase (FUW-CHERRY-

puro-LUC) by single spinoculation on retronectin coated plates. Twenty-four 

hours after transduction primary cells were injected intravenously into NOG 

recipient mice. Tumor bearing mice showing engraftment of luciferase expressing 
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ALL cells were euthanized and primary tumor cells extracted from the spleens of 

leukemic mice. Subsequently, 5-8 ×106 TALL cells were injected intravenously in 

NOG recipient mice. Leukemia progression was assessed by flow cytometry of 

mouse peripheral blood using anti-CD45 antibodies and bioimaging. When >30% 

human cells were detectable in blood and saturating photon emission was 

recorded with a collection time of 1 minute, animals were randomized into 4 

treatment groups (n=4-5) and treated daily with vehicle (DMSO), dexamethasone 

(5 mg/ kg via intraperitoneal injection), MK2206 (10mg/kg via oral gavage twice a 

day) or dexamethasone (5 mg/kg) plus MK2206 (10 mg/kg) for 4-5 days. We 

evaluated disease progression and therapy response after 3-5 days of treatment 

by bioluminescence.  

7.6.19 Statistical analyses 

We performed statistical analysis by Student‘s t-test. We considered results with 

P <0.05 as statistically significant. We analyzed drug synergism using the 

median-effect method of Chou and Talay [212] and used the CalcuSyn software 

(Biosoft, Great Shelford, Cambridge, UK) to calculate the combination index (CI) 

and perform isobologram analysis of drug interactions. CI values below 1, equal 

to 1, and above 1 represent synergism, additivity, and antagonism, respectively. 

The isobologram is formed by plotting the concentrations of each drug required 

for 50% inhibition (ED50) on the x-and y-axes, respectively, and connecting them 

to draw a line segment, which is ED50 isobologram. Combination data points that 

fall on, below and above the line segment represent additivity, synergy, and 

antagonism, respectively. Survival in animal experiments was represented with 
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Kaplan–Meier curves and significance was estimated with the log-rank test 

(Prism GraphPad). 

 

Figure 7-25 NetBID2 results of top signaling drivers of GC-resistance in T-ALL. 
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Table 7-1 All predicted signaling drivers of GC-resistance by NetBID2 with 

P<0.01, set size > 50, being involved in >= known pathway. 
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Table 7-2 Gene Expression Signature of Glucocorticoid Resistance (10 Resistant 

vs. 22 Sensitive Primary Samples, P<0.01) 
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7.7 GC-Responsive Signature of After vs. Before Treatment to 

Sensitive T-ALL Patients 

In addition to the expression profiles of GC-resistant and sensitive primary 

patients before treatment which we used to identify AKT1 as a signaling driver of 

resistance by NetBID2, we also had microarray data of GC-sensitive T-ALL 

patients before and after treatment at 6h or 8h and 224h [213]. With this 

information, we generated a signature of GC response by coming expression 

change at 6h or 24h vs. 0h (Figure 7-26). And then we applied NetBID2 to 

identity master regulators or signaling modulators that control GC-responsive 

signature genes. The drivers of early (6 or 8h) and late (24h) response to 

glucocorticoid show signature overlaps (Figure 7-27). 

 

Figure 7-26 Summary of GC-Responsive signature at 6h and 24h. 
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Figure 7-27 Comparison of drivers regulating or modulating early (6 or 8h) and 

late (24h) responsive signature genes in GC-sensitive T-ALL patients. Sign of 

drivers is taken into consideration. Fisher‘s exact test is used to the significance 

of overlaps. 

We also checked the overlap of GC-responsive drivers, using signature 

treatment after 6h or 24h vs. before treatment in sensitive patients, with GC-

resistant drivers, using signature of resistant vs. sensitive patients before 

treatment. Interestingly, there is a significant overlap between resistant drivers 

with early (6h) responsive drivers, but not with late (24h) responsive drivers 

(Figure 7-28). This may suggest that drivers that are involved in resistance 

mechanism are enriched in early responsive master regulators. 
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Figure 7-28 Overlap of TF master regulators for GC-Resistance and GC-

Response (6h or 24h). Fisher‘s exact is used to test overlap significance. 

7.7.1 NetBID2 identifies AKT1 as driver of GC-responsive signature 

NetBID2 identifies AKT1 (P<0.001) and AKT2 (P=0.024) as drivers of early (6 or 

8h) GC-responsive signature genes (Figure 7-29), but not as drivers of late (24h) 

responsive signature genes. This confirms the role of AKT1 or entire AKT 

pathway in glucocortoid regulatory signaling pathway, which might explain its 

abnormal activation causing GC-resistance. 
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Figure 7-29 NetBID2 identifies AKT1 (P<0.001) and AKT2 (P=0.024) as drivers 

of early (6 or 8h) GC-responsive signature genes, but not as drivers of late (24h) 

responsive signature genes. 

7.8 Preliminary Results of Crossing Signaling Drivers with 

RNAi Screens 

In the next chapter, we will discuss the integration of NetBID2-predicted drivers 

with functional RNAi screening to identify potential therapeutic targets for 

reversal of GC-resistance, however, in the next chapter we will only focus on 

validation of transcription factor-type drivers while this chapter focuses on 

signaling drivers. And actually it‘s more interesting to cross signaling modulators 
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with shRNA-screened candidates because signaling molecules tend to be 

druggable. We checked the overlap of NetBID2-inferred signaling drivers with 

RNAi screening of two resistant T-ALL cell lines (Table 7-3) and selected 

candidates are to be validated by our collaborator. Here I only show you partially 

results relevant to AKT, the major focus of this chapter. 

7.8.1 AKT1 doesn’t show up from shRNA screening as a candidate 

We computationally predicted and validated AKT1 as a therapeutic target to 

reverse GC-resistance in T-ALL. We asked whether it also shows up from 

shRNA screening. However, two hairpins targeting AKT1 in GIPZ library 

demonstrate no significant depletion of sh-AKT1 in the screens of both resistant 

cell lines. It‘s even worse that in CUTLL1, it shows some anti-evidence. However, 

one hairpin targeting AKT2 showed significant depletion in CUTLL1, but no 

evidence in HPBALL. This might be because the quality of shRNAs targeting 

AKT1 or AKT2 is not good and might also reflects the noisy nature of shRNA 

screening data.  
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Figure 7-30 shRNA screening results of AKT1 and AKT2 in two GC-resistant cell 

lines. 

7.8.2 PRKAR1A in PI3K pathway shows up in both driver prediction and 

shRNA screens 

PRKAR1A, as shown in Figure 7-31, is a key downstream player of PI3K 

pathway, which is parallel to AKT to trigger apoptosis pathway. It is predicted by 

NetBID2 as a driver of GC-resistance and hairpins targeting PRKAR1A shows 

significant depletion in both resistant cell lines, making it a very interesting 

therapeutic target to reverse resistance. It might be an alternative to AKT 

inhibition or has synergistic effects with targeting AKT that needs to be tested out. 
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Figure 7-31 PRKAR1A shows up in both NetBID2 prediction and shRNA screens. 
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Table 7-3 Candidates of integrating top signaling of drivers of with RNAi 

screening results to reverse GC-resistance upon silencing. 
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Chapter 8 Integrating Functional Genomics with Systems 

Biology on Discovering Therapeutics to Reverse 

Glucocorticoid Resistance in T-ALL
2
 

8.1 Summary 

Glucocorticoid (GC) resistance is strongly associated with poor prognosis in 

childhood acute lymphoblastic leukemia. We applied Genome-wide RNA 

interference (RNAi) screens, a powerful tool for systematic loss-of-function 

studies, to search for new therapeutic targets to reverse GC-resistance. However, 

due to high false positive rates of screen data, additional knowledge was needed 

to select candidates. In this study, we developed an integrative system biology 

framework, by complementing RNAi screen data with a computational algorithm 

inferring regulatory drivers of phenotypes, to identify therapeutic candidates for 

GC-resistant T-cell Acute Lymphoblastic Leukemia (T-ALL).  The phenotype 

driver prediction algorithm (NetBID2) was based on a computationally assembled 

T-All specific transcriptional network from a large collection of gene expression 

profiles and Markov chain Monte Carlo based Bayesian modeling techniques.  

Our framework identified 16 transcription factors, when repressed, sensitize GC 

resistant cells. Out of 16 candidates, 13 were validated in vitro, and 10 

                                            

2 Maria Sol Flaherty from Ferrando lab did the validation experiments. 
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outperformed positive controls (NOTCH1 and MCL1). Moreover, 75% of 

computationally predicted drivers demonstrated significant effects on GC-

sensitivity in vitro. Network analysis of validated targets discovered that they 

formed three well-connected subnetworks and might work cooperatively to 

induce resistance. Particularly, we identified TRIM28 as a critical master 

regulator of GC-resistance and a TRIM28-modulated mechanical regulatory 

subcircuit that gave insights on potential synergistic therapeutic strategies to 

rescue GC-sensitivity in T-ALL. 

Keywords: glucocorticoid resistance, T-ALL, RNAi screen, regulatory driver, 

Bayesian, MCMC, systems biology 

8.2 Introduction 

Glucocorticoids (GCs) play a fundamental role in the treatment of all lymphoid 

tumors due to their capability to induce apoptosis in lymphoid progenitor cells [18, 

19, 149]. Resistance to glucocorticoids is strongly associated with unfavorable 

prognosis in childhood acute lymphoblastic leukemia (ALL). Majority of ALL 

patients in relapse show increased resistance to GC-therapy [153, 154, 214]. 

Different molecular mechanisms have been elucidated for GC-resistance in ALL, 

including loss-of-function mutations in the glucocorticoid receptor (GR) gene, loss 

of GR auto upregulation, expression of GR splice variants, and upregulation of 

antiapoptotic pathways [20, 164, 166, 168, 171, 172, 215-219]. Correspondingly, 

several therapeutic strategies have been proposed to overcome GC-resistance 

such as inhibition of MEK, HDAC, mTOR, or NOTCH1 [23, 24, 174-178]. 
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However, due to strong toxicity of existing therapeutics [179], reversal of GC-

resistance remains a  clinical challenge and new therapeutic strategies are much 

needed. 

Genome-wide RNA interference (RNAi)-mediated genetic screen has emerged 

as a powerful tool for systematic loss-of-function studies in mammalian cells [50-

53].  This technology can be applied to identify genes that form synthetic lethal 

interactions with glucocorticoids in resistant cells, thus making potential 

therapeutic targets to overcome GC-resistance. However, due to a high false 

positive rate arising from high throughput noise and off target effect, additional 

knowledge and powerful analysis tools are needed. 

We have shown that computationally inferred context-specific maps of 

transcriptional or post-translational molecular interactions from large-scaled gene 

expression profiles (GEPs) allow the elucidation of cryptic driver proteins whose 

gain or loss is necessary and sufficient for tumor initiation or progression [70-73]. 

Such master regulators are more robust than traditional signatures to distinguish 

phenotypes [69]. Therefore, we suggest that systematic inference of driver-type 

regulators from genomic data complementing with RNAi screen technology will 

give a more comprehensive molecular understanding of mechanisms of GC-

resistance and provide novel targets for therapeutics. 

We developed a framework, NetBID2, as detailed in Chapter 4, to infer disease 

drivers from gene expression data based on computationally-assembled 

regulatory networks from a cohort of gene expression profiles (GEPs) and 
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Markov chain Monte Carlo (MCMC) based Bayesian modeling techniques. 

Integrating RNAi screens of GC-resistant cells with NetBID2 algorithm identified 

16 transcription factors that, upon silencing, sensitize GC resistant T-ALL cells, 

out of which 13 were validated in vitro and 10 outperformed positive controls 

(NOTCH1 and MCL1). Moreover, 75% of computational-predicted regulatory 

drivers changed sensitivity of resistant cells in vitro. Network analysis of validated 

targets discovered that they formed three well-connected subnetworks and might 

work cooperatively to induce resistance. Particularly, we identified TRIM28 as a 

super master regulator and a TRIM28-centered mechanical regulatory subcircuit 

that gave insights on potential synergistic therapeutic strategies to rescue GC-

sensitivity in T-ALL. 
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Figure 8-1 The framework integrating genetic RNAi screen with genomic 

inference of phenotype drivers to identify therapeutic targets for reversal of GC-

resistance upon repression. 

8.3 Methods 

8.3.1 Reverse engineering transcriptional regulatory network of T-ALL 

To generate a T-ALL transcriptional network we processed microarray gene 

expression data (Affymetrix HU133Plus2) of 223 T-ALL primary samples using 
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GC-RMA normalization and cleaned the dataset to 21,054 probe sets with non-

specific filtering. Then we ran the ARACNe algorithm [111] with default 

parameters against 2007 probes corresponding to 1073 TFs to establish a TF-

centered interactome. 

8.3.2 Signature analysis of GC-resistance 

Out of the 223 samples with GEPs, 22 were diagnosed as GC-resistant and 10 

as sensitive. To generate a reference signature of these two phenotypes, part of 

our regulatory driver inference algorithm, we used a Probit regression model [89] 

(Figure 8-2) for its advantage of detecting weak effects. Bayesian-MCMC 

computing was employed to estimate parameters for its robustness and accuracy. 

In particular, a t-distribution prior and Gibbs sampling were used in this analysis 

[90]. 

8.3.3 GSEA of inferring regulatory drivers of GC-resistance 

For GSEA method to predict regulatory drivers of GC-resistance, we used a 

―maxmean‖ statistic [98] as enrichment score and 1,000 sample permutations to 

build the null distribution for statistical significance. 
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Figure 8-2 Distribution setup (left) and graphical representation (right) of Probit 

model used for assessing association of phenotypes (GC-resistant or GC-

sensitive) with gene expressions. Nodes in solid square are observation 

variables, in solid eclipse with white background are direct parameters of Probit 

model, in dashed eclipse are latent variables and the others are hyper-

parameters for priors. Y is an indicator variable for phenotypes, X is expression 

level of gene X, Z is a latent variable in Probit model. Inside the white box is 

likelihood section, while outside is for priors. Parameters are estimated by a 

Gibbs sampling procedure.  

8.3.4 Pooled shRNA screening 

We made use of the shRNAmir library [51], comprising 51,830 shRNAs targeting 

12,049 genes. High titer lentiviral pools were prepared and two GC-resistant cell 

lines – CUTLL1 and HPBALL were infected. The infected cells were selected 

with puromycin (1ug/ml) for 5 days. For each infected line we treated three 

cultures with vehicle only (DMSO) and the other three with dexamethasone (DEX 
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1μM). Cell cultures were maintained in exponential growth and in the presence of 

fresh drug. Genomic DNA was extracted from samples collected after 5 weeks of 

treatment. PCR amplification was performed on the barcodes associated with 

each shRNA vector. To ensure homogeneous sampling of the library, 48 

individual PCR reactions containing 2 μg of genomic DNA each were performed. 

PCR products were gel purified, fluorescently labeled with Cy3 and hybridized in 

a custom Agilent DNA microarray together with a Cy5-labeled reference sample 

containing normalized amounts of all barcodes in the library.  

8.3.5 Differential representation analysis of individual shRNA 

To assess the effects on reversal of GC-resistance by individual shRNA, we 

compared abundance of shRNA in DEX-treated with DMSO control using a linear 

model. Bayesian-MCMC procedures were applied to overcome small sample 

size issue and to obtain robust estimation of parameters. 

8.3.6 Integration of multiple shRNAs targeting the same gene 

To estimate the overall effects of a gene targeted by multiple shRNAs on GC-

sensitivity, we applied a hierarchical modeling approach [89]. This model allowed 

―random effects‖ from different shRNAs, and coefficient of ‗fixed effects‘ was 

used to score capability of increasing sensitivity at gene level. Bayesian-MCMC 

computing was set up for accurate estimations. 
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8.3.7 Combining differential representation scores of two cell lines 

To identify genes that are depleted or enriched in both RNAi-screened cell lines, 

we used Stouffer‘s z score method [107] shown in the following formula. 

  
        

√ 
    (   ) 

For each gene, ZCU and ZHPB were its differential representation scores in 

CUTLL1 and HPBALL respectively, which followed a standard normal distribution. 

Combined two-tailed p value was calculated based on integrated Z score. 

8.3.8 Silencing by siRNA and cell apoptosis assays 

To validate 46 predicted candidates, we used siRNA (Dharmacon) to knock-

down testing genes. KOPTK1, a GC-resistant cell line, was electroporated with 

the siRNAs using the amaxa system (Lonza, SF solution CM 150). After 24 hours 

of electroporation cells were treated in triplicate either with DEX (100nM) or 

DMSO. After 48 hours of treatment apoptosis was analyzed by annexin, PI 

staining (BD Biosciences). NOTCH1 and MCL1 were used as positive controls, 

and two non-silencing siRNAs as negative controls. Linear modeling similar to 

individual shRNA analysis of RNAi screen was applied to analyze these 

apoptosis readouts. Two negative controls were taken average to be compared 

with candidate genes. 
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8.4 Results 

8.4.1 The framework integrating RNAi screens with regulatory driver 

inference by NetBID2 identifies sixteen potential therapeutic targets 

As shown in Figure 8-1, we developed an integrative framework to identify driver-

type therapeutic targets to overcome GC-resistance in T-ALL. First, we 

performed genome-wide, pooled short hairpin RNA (shRNA) screening on 

resistant T-ALL cell lines exposed to GCs. This negative genetic screen mainly 

aimed to identify under-represented shRNAs in GC-treated cells, whose targeting 

genes increased GC sensitivity. Second, we studied GEPs of large-sampled 

primary T-ALL patients to build a Transcription Factor (TF) centered T-ALL 

regulatory network using a well-developed algorithm, ARACNe [111]. Then we 

utilized phenotypic information, i.e. GC-resistant or sensitive, to perform 

signature analysis studying association between gene expression and GC-

resistance. Instead of identifying classical signature genes that were not robust to 

characterize phenotypes [69], we developed an algorithm to discover uplevel 

regulatory drivers of GC-resistance. Our reasoning was that if a TF induces GC-

resistance, its regulons inferred from the network should be enriched either 

among overexpressed or underexpressed genes in GC-resistant samples or both. 

Gene Set Enrichment Analysis (GSEA) was used for this analysis. Subsequently, 

we overlapped depleted genes in shRNA screen with inferred regulatory drivers 

to generate a shorter list of candidates that reverse GC-resistance in T-ALL. 
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Genome-wide shRNA screens on two resistant T-ALL cell lines (CUTLL1 and 

HPBALL) identified 1,900 genes that were significantly depleted (P<0.05) in at 

least one cell line. Based on GEPs of 223 primary samples [220], we obtained a 

transcriptional interactome centered by 1,073 TFs (2,007 probe sets) comprising 

21,035 transcripts and 373,327 interactions. Our regulatory driver inference 

algorithm yielded 126 TFs showing significant evidences (set size>40, P<0.05) 

as master regulators of controlling signature genes of GC-resistance, out of 

which 81 had data in shRNA screens. Finally, by crossing the two candidate sets 

(Figure 8-3-A), we obtained 16 regulatory drivers (Table 8-1) as potential 

therapeutic targets with the potential to reverse GC-resistance in T-ALL when 

silenced. 

 

Figure 8-3 Summary of candidates from RNAi screening or genomic inference. 

(A) Only 81 out of 126 genomics-analysis identified regulatory drivers have 
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shRNAs in RNAi screening. B-D display the distribution of 81 TF drivers (blue 

bars) and 26 validated ones (red bars) in RNAi screening results. All 12,049 

genes are ranked from most depleted (left) to most enriched (right) using 

differential representation score (z score) at gene level in combination of two cell 

lines (B) or individual cell line (C-D). Similar summary by considering only TF 

genes in RNAi screening is shown in Figure 8-4. 

 

Figure 8-4 Similar summary with Figure 8-3, but considering only TF genes in 

RNAi screen. 

8.4.2 13 of 16 candidates, when repressed, reverse GC-resistance in vitro  

To validate these 16 candidates, we performed in vitro experiments by knocking 

down candidate genes in resistant cells and measuring cell apoptosis after being 

exposed to glucocorticoids. Good targets would rescue GC-sensitivity and thus 
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increase cell death of resistant cells. As summarized in Figure 8-5-A, all 

candidates including controls were ranked by the capability to reverse GC-

resistance. Remarkably, 13 out of 16 showed significantly increase in apoptosis 

of resistant cells. Moreover, 10 out of 13 genes were more effective than positive 

controls, NOTCH1 and MCL1, that were previously shown to reverse GC-

resistance [24, 175]. Additionally, as shown in Figure 8-5-B, top candidates 

(CC2D1A, WHSC1, ZHX2) showed up to 15% increase in apoptosis comparing 

to negative controls. All 16 predicted targets showed consistent directions with 

inference from RNAi screen, i.e. increase sensitivity when repressed. 
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Figure 8-5 Validation results in vitro of 16 overlapped candidates. (A) 16 

candidates (in red) together with positive controls (in blue) and negative controls 

(in green) are ranked by the score (central dot) for capability to reverse GC-

resistance upon silencing with uncertainty (range line crossing the central dot, 

thick line for one standard deviation, thin line for two standard deviations 

corresponding to 95% confidence interval). The color of candidate label on x axis 
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is associated with calibrated p-value: dark red for P<0.005, red for P≈0.05. (B) 

Bar plots of apoptosis level induced by combined treatment of RNAi with DEX (in 

red), and control, RNAi with DMSO (in light blue) for 16 predicted candidates, 

positive controls (labeled in red) and negative controls (labeled in blue). All genes 

are ranked the same as in panel A. The label on top of bar plot represents the 

increased apoptosis level of candidate gene comparing with average of negative 

controls (normalized by its own DMSO control and averaged over triplicates) and 

associated statistical significance level (*** for P<0.005, * for P≈0.05). 

This result with a prediction rate of 81.3% confirmed the power of our framework 

integrating RNAi screen with systematic analysis of genomic data to identify 

therapeutic targets. If we only used pooled shRNA screening and ranked all 

genes by ability to sensitize resistant cells from most depleted to most enriched 

in GC-treated case (Figure 8-3-B, C, D), the top three candidates validated in 

vitro only ranked 89th, 296th, 595th respectively (Figure 8-3-B), and among top 10 

validated candidates, only two ranked within top 50, more precisely, in 44th and 

46th. This suggested that high-throughput RNAi screen itself might not be 

sensitive and accurate enough to discover positive therapeutic targets, and our 

regulatory driver inference from genomic data is critical to complement it. 
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Table 8-1 Overlapped 16 candidates between RNAi screening and genomic 

inference of regulatory drivers. 
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8.4.3 75% of top genomics-Inferred drivers show significant effects to 

change GC-sensitivity in vitro 

In addition to validating overlapped candidates with depleted genes in RNAi 

screen, we also tested computationally identified regulatory drivers of GC-

resistance from genomic data, because rescuing sensitivity may be achieved by 

both repressing and activating genes. We selected top 30 additional inferred 

drivers (Table 8-2) and performed the same in vitro experiments. Twenty three 

out of thirty genes, when knocked down, showed significant effects to either 

increase (n=8) or decrease (n=15) apoptosis of GC-exposed resistant cells 

(Figure 8-6). Out of the eight targets that increased apoptosis, five had no 

significant evidences from RNAi screen and three were not included in the 

shRNA library. Among the 15 targets that decreased apoptosis, effect of 

knocking down ATF6 (Figure 8-8) was consistent with RNAi screen finding while 

the other 14 genes either had no significant support (n=7) from RNAi screen or 

had no shRNA targeting them (n=7). The overall prediction rate of our algorithm 

was 75% by considering all validated genes falling in top-hits. 
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Figure 8-6 Validation results in vitro of top 30 additional genomics-predicted 

regulatory drivers of GC-resistance. (A) 30 candidates classified into no data (in 

brown-yellow), no significant evidence (in blue) and significantly over-

represented (in purple) from RNAi screen, together with positive controls (in blue) 

and negative controls (in green) are ranked by the score for capability to reverse 

GC-resistance upon silencing with uncertainty. Extra annotations in panel A and 

B are the same with Figure 8-5. 
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8.4.4 Validated targets work cooperatively by forming well-connected 

subcircuits 

Within 36 validated drivers of GC-resistance showing effects in vitro on sensitivity, 

we hypothesized that these key regulators might work cooperatively to induce 

GC-resistance. To test this hypothesis, we pulled out these candidates and their 

interactions from our assembled transcriptional T-ALL interactome. As shown in 

Figure 8-9, these  regulatory drivers were separated into three well-connected 

subgroups  denoted as A, B, and C. Size of the node represented their regulating 

targets in the  network, while color indicated that downregulation of this gene 

increased (blue) or decreased (red) apoptosis of GC resistant cells. 

Interestingly, candidate genes that had similar effects, especially increased 

resistance when silenced, tended to cluster together. For example, in component 

A, MYBL2, TRIM28, CXXC1 formed a clique and connected closely with E2F1, 

E2F2, KDM1A, and CIZ1. This indicated that these red nodes worked 

cooperatively as a key regulatory circuit to repress GC-resistance in T-ALL. This 

circuit might be a promising targeted unit to overcome GC resistance upon 

overexpression. Similarly, UBE2K and ZNF320 in component B, TCF3 and 

HMGB20 in component C represented two additional regulatory units responsible 

for GC-resistance and might cooperate to induce sensitivity when overexpressed. 
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Figure 8-7 RNAi screening results and GSEA plots of CC2D1A and WHSC1, the 

top two validated targets in vitro.  

 

Figure 8-8 RNAi screening result and GSEA plot of ATF6, showing the strongest 

effect on increasing resistance in vitro when silenced. 

A B
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8.4.5 TRIM28 is a critical master regulator of GC-resistance in T-ALL 

The subnetwork of our candidates identified TRIM28 as a critical master 

regulator of GC-resistance in T-ALL. Firstly, TRIM28 was one of the biggest hub-

type regulatory drivers among all candidates. It regulated 377 genes in our 

inferred transcriptional regulatory network. Secondly, eight of TRIM28 regulating 

genes (MYBL2, CXXC1, KDM1A, CIZ1 in red, WHSC1, CC2D1A, MTA1, 

SREBF2 in blue) were also confirmed to reverse GC-resistance, making TRIM28 

as the largest hub in this subnetwork.  Our finding was confirmed by several 

studies that TRIM28 epigenetically regulated a broad spectrum of genes and was 

involved in GR activities [221, 222]. 

8.4.6 Silencing TRIM28 increases GC-resistance by down-regulating GR 

In subnetwork of validated targets (Figure 8-9), all interactions between red and 

blue nodes except MYBL2-FOXP1 were positively correlated. However, silencing 

them individually demonstrated opposite effects: This indicated that additional 

pathways were involved to cause these unexpected effects. One possible 

mechanism we found was that TRIM28, the critical regulator of GC-resistance, 

upregulated GR, or was required for GC-induced activities by interacting with GR. 

As shown in Figure 8-10, we recovered direct interactions between TRIM28 and 

NR3C1 or TRIM28 and BUD31 that were removed falsely by Data Processing 

Inequality in ARACNe algorithm [111].  It was observed that TRIM28 activated 

GR via a feed forward loop with BUD31. Validation results suggested that 

repressing TRIM28 or its co-activators or upstream regulators such as MYBL2 
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and CXXC1 would be sufficient to suppress GR expression, and therefore further 

reducing the sensitivity of resistant cells. 

 

Figure 8-9 Subnetwork from T-ALL interactome of candidates that are validated 

in vitro either to increase (blue nodes) or decrease (red nodes) sensitivity when 

silenced. A, B and C are three well-connected components covering only direct 

interactions among these candidates. Nine isolated effective candidates that 

have no direct interactions with other candidates are not shown. The size of node 

is proportional to the size of its regulons or first neighbors from T-ALL 

interactome. Edge in red is for positive correlation of two interactants, while blue 

for negative correlation.  
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Figure 8-10 A TRIM28-centered subnetwork for a novel mechanism of GC-

resistance and a synergistic strategy to overcome resistance. The left square-like 

part is extracted from Fig 5.1 including the top 3 best validated targets (blue 

nodes) and the clique of TRIM28 (red nodes). The right triangle-like part is from 

T-ALL regulatory network illustrating the mechanism of TRIM28 upregulating 

NR3C1 via a feed forward loop. Number on edge represents the mutual 

information between expression levels of two interactants. Dashed edges are 

recovered from false removals by DPI in ARACNe35 algorithm. 

Considering the top three most effective targets CC2D1A, WHSC1 and FOXP1, 

we inferred a transcriptional subcircuit from T-ALL interactome and validation 

results (Figure 8-10). We removed the direction from WHSC1 or CC2D1A (Figure 

8-7) to the triple-clique of TRIM28 based on the observation that repressing 

CC2D1A or WHSC1 had no effects to upregulate GR. This subnetwork might 

represent a novel mechanism of GC-resistance in T-ALL and a promising 
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therapeutic target. In particular, inhibition of CC2D1A, WHSC1 or FOXP1 already 

demonstrated extraordinary capabilities to sensitize resistant cells. 

8.5 Discussion 

We demonstrated that integration of genome-wide RNAi screen and our 

computational framework to infer regulatory drivers of phenotypes was a 

powerful strategy to discover novel therapeutic targets. Out of 16 overlapped 

candidates from two approaches, 13 showed significant effects on reversal of GC 

resistance upon repression in vitro. Among them, 10 demonstrated stronger 

capabilities to sensitize resistant cells comparing to previously discovered targets. 

Moreover, 75% of top predicted drivers (Figure 8-11) showed effects on changing 

drug sensitivity when silenced. Network topology of all 36 effective targets 

identified three well-connected regulatory subcircuits that might shed lights on 

new mechanisms of GC-resistance and novel pathways as therapeutic targets 

(Table 8-5). 

RNAi screening itself usually gave a long list of candidates with a high false 

positive rate due to off-target effects, small sample size, and noise of microarray 

measurements. For example, our screens identified 1,900 candidates at gene 

level (5,851 at individual shRNA level for 4,783 genes) significantly depleted 

(P<0.05) in at least one cell line (Figure 8-3-A, Table 8-4). Sophisticated 

statistical approach such as Bayesian-MCMC method, or multiple test correction 

and stringent threshold would not solve the problem. The top 5 candidates from 

in vitro experiments ranked 89th, 206th, 595th, 66th, and 148th respectively in the 
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screen result starting from the most depleted gene, and the best rank of working 

candidates was 19th (Figure 8-3, Table 8-3).  Moreover, 8 predicted regulatory 

drivers from genomic analysis showed significant effects to reduce resistance, 

but there was no evidence from RNAi screen. Besides, shRNAs in the screening 

library did not target all the genes in human genome. For example, out of 23 

candidates validated in vitro, 10 had no shRNAs in the library. Overall, we 

confirmed that RNAi screen might not be sensitive enough to work alone (Figure 

8-3-B, C, D). 

Our inferred regulatory drivers of GC-resistance by NetBID2 showed much 

higher robustness and predictability than signature genes as therapeutic targets. 

Out of 21 effective candidates, only one gene-ZNF770, fell in the signature list 

(P<0.05) of being overexpressed in GC-resistant samples (Table 8-2, Table 8-3).  

There were limitations of our algorithm. For example, we did not identify 

NOTCH1, which was previously shown to reverse GC-resistance upon inhibition 

[24]. One reason might be that our framework assumed activity of a TF could be 

inferred from its transcriptional expression However, NOTCH1 transcriptional 

level did not correlate to protein expression [181]. RNAi screen result did not 

identify NOTCH1 either. Secondly, we only focused on TFs in this study, while 

other types of therapeutic targets such as signaling molecules or anti-apoptotic 

proteins were not included. Signaling proteins might be interesting to us in the 

future due to their potency as drug targets.  We also tested enrichment of our TF 

drivers in RNAi screen-identified candidates by Fisher‘s exact test and GSEA 
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(Figure 8-3, Figure 8-4), but there was no statistical significance (all Ps>0.1). This 

suggested that other functional groups should be considered for seeking 

therapeutics. 

Moreover, our approach could infer key regulators for GC-resistance but could 

not accurately predict the direction in relation to convert GC resistant phenotype. 

RNAi screen would show the correct directions, thus integrating two approaches 

would provide a much more powerful tool to predict therapeutic targets. 

From the subnetwork of effect candidates (Figure 8-9), we observed that all blue 

node targets were well separated from red ones by sitting either upstream or 

downstream. This suggested these starting or ending blue proteins might 

modulate different subprograms that contributed to diverse mechanisms of GC-

resistance in T-ALL, thus shedding light on multiple therapeutic strategies to 

reverse GC-resistance. For example, a subnetwork of WHSC1, E2F7, and 

HMGB1 in Figure 8-9-A might be an interesting therapeutic targeting program to 

sensitize resistant cells by RNAi. 

Our network analysis identified TRIM28 as a hub master regulator of GC-

resistance in T-ALL. Its centered subcircuit might represent a novel resistant 

mechanism. We showed that knock-down of TRIM28 induced more resistance 

due to subsequent downregulation of NR3C1 thus its low expression causing low 

production of GR that was required by glucocorticoids to induce downstream 

apoptosis. This also suggested that TRIM28 was required for GR activities, in 

consistent with literature studies showing that these two protein interacting with 
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each other [222]. Similar effects were also observed when silencing two other 

TRIM28 positively-correlated candidates, MYBL2 and CXXC1. However, 

overexpressing TRIM28 might not work either to reverse GC-resistance. 

Upregulation of TRIM28 would overexpress WHSC1 and CC2D1A which were 

required at low expression to rescue sensitivity. Topology of TRIM28 subnetwork 

indicated that down-stream players including FOXP1, WHSC1 and CC2D1A 

were more likely to induce resistance than their upstream regulators, and they 

may work synergistically to induce resistance. This leads to a potential 

combination therapy.  

We observed dramatic difference between two RNAi-screened cell lines (Figure 

8-3-C, D), probably due to heterogeneity of resistance mechanisms. Simply 

overlapping two cell lines for potential targets would lose a lot of true positives, 

therefore we considered candidates showing evidence in at least one cell line. 

Validations on a third cell line confirmed our strategy: 5 out of 13 validated 

targets including the top 3 came out in only one screened line. 

Successful validation in a separate cell line of 75% genomics-inferred regulatory 

drivers demonstrated the power and robustness of our computational framework. 

However, the non-validated candidates in the cell line didn‘t mean that they were 

not important for GC-resistance. For example, SMARCA4, one of our candidates 

showing up in both RNAi screening and genomic analysis, was a key component 

of SWI/SNF complex that mediated chromatin remodeling and was required for 

GC transcriptional activity in vitro. A recent study showed that SMARCA4 was 
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associated with GC-resistance, but its knock-down only worked on some cell 

lines to reverse GC-resistance [223], in consistent with our finding. It might be 

because of its dependence on other factors. Thus searching for cofactors or 

synergistic therapeutic targets would be needed in future to overcome 

complicated GC-resistance in T-ALL. 

 

Figure 8-11 Validation results in vitro of all 46 selected genomics-predicted 

regulatory drivers of GC-resistance. (A) 46 candidates classified into no data (in 

brown-yellow), no significant evidence (in blue) and significantly over-

represented (in purple) from RNAi screen, together with positive controls (in blue) 

and negative controls (in green) are ranked by the score for capability to reverse 
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GC-resistance upon silencing with uncertainty. Extra annotations in panel A and 

B are the same with Figure 8-5. 

 

Table 8-2 Additional top 30 computationally-identified regulatory drivers of GC-

resistance in T-ALL but with no support from RNAi screens. 
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Table 8-3 Top computationally-inferred regulatory drivers for GC-resistance in T-

ALL (P<=0.05). 
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Table 8-4 Pooled shRNA screens: depleted genes in at least one cell line 

(P<0.05). 
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Table 8-5 Top enriched KEGG pathways by depleted TF genes in RNAi screens 

and genomics-inferred TF drivers. 
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Chapter 9 Integrating Functional Genomics with Systems 

Biology to Discover Therapeutic Targets for 

ERBB2/HER2+ Breast Cancer
3
 

9.1 Summary 

The ERBB2/HER2 amplified breast cancers, accounting for approximately 30% 

of human breast cancer patients, has the worst survival and prognosis among all 

subtypes of breast tumors. The development of anti-HER2 therapeutic agents 

such as Herceptin has significantly altered the treatment of this disease in clinic. 

However, despite the clinical benefits of these HER2-targeted therapies, all 

HER2+ patients will eventually develop resistance to this therapy, in which about 

50% are initially resistant to Herceptin, whereas the other half that respond to 

Herceptin will develop resistance within 1 to 2 years of treatment. In this study, to 

identify alternative therapeutic targets for HER2-amplfied breast tumors, we used 

a genetically-engineered model cultured in 2D, 3D and in vivo xenograft 

environments and developed a framework to integrate genome-wide RNAi 

screens with NetBID2, a systems biology algorithm of inferring disease drivers 

from gene expression data. With the integrative approach, we discovered that 

STAT3 as a driver-type therapeutic target for HER2+ breast cancers, and we 

                                            

3 Ruth Rodriguez-Barrueco from Silva lab did all the experiments. 
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biochemically validated, both in vitro and in vivo, that silencing STAT3 is indeed 

an effective therapeutic target to stop growth of HER2+ tumor cells. Also from 

analysis of primary tumor samples, we demonstrated that STAT3 inhibition for 

killing HER2+ breast cancers has a dependence on ER- subpopulation. We also 

identified downstream targets of STAT3 that are involved in HER2-triggered 

tumor transformation and are also potential therapeutic targets.  

9.2 Introduction 

The ERBB2/HER2 oncogene is overexpressed in approximately 30% of human 

breast cancer patients due to constitutive amplification [224]. HER2+ subtype has 

the worst survival and prognosis in breast cancer population [225]. The 

development of anti-HER2 therapeutic agents, such as trastuzumab (also known 

as Herceptin) and two other drugs – pertuzumab and lapatinib – have 

significantly altered the treatment of this disease in clinic. Despite the clinical 

benefits of these HER2-targeted therapies, however, about 50% of breast cancer 

patients with HER2-amplification have no response to Herceptin, and almost the 

other 50% patients that respond to Herceptin eventually develop resistance 

quickly, usually within 1 to 2 years after treatment [226, 227]. Therapeutics 

aiming to overcome resistance has been proposed such as targeting AKT 

pathway based on the mechanism that tumor suppressor PTEN is loss in over 40% 

of HER2+ breast cancer [228], or blocking Interleukins 6 (IL6) feedback loop 

[229]based on IL6‘s regulation of cancer stem cells [230-232]. However, in this 
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chapter, we are searching for alternative therapeutic targets for HER2-amplfied 

breast tumors instead of reversing resistance of anti-HER2 agents. 

Genome-wide RNAi screening has emerged as a powerful tool for systematic 

loss-of-function studies in mammalian cells [50-53] that may lead to cancer 

therapeutic target discovery.  This technology can be applied to identify genes 

that form synthetic lethal interactions with ERBB2 in HER2+ breast tumor cells, 

thus making potential therapeutic targets for HER2+ subpopulation of breast 

cancers. However, due to a high false positive rate arising from high throughput 

noise and off target effect, additional knowledge and powerful analysis tools are 

needed. 

We have shown that computationally inferred context-specific maps of 

transcriptional or post-translational molecular interactions from large-scaled gene 

expression profiles (GEPs) allow the elucidation of cryptic driver proteins whose 

gain or loss is necessary and sufficient for tumor initiation or progression [70-73]. 

Such master regulators are more robust than traditional signatures to distinguish 

phenotypes [69]. Therefore, we suggest that systematic inference of driver-type 

regulators from genomic data complementing with RNAi screen technology will 

give a more comprehensive molecular understanding of mechanisms of HER2+ 

breast tumors and provide novel targets for therapeutics. 

We developed a framework, NetBID2, as detailed in Chapter 4, to infer disease 

drivers from gene expression data based on computationally-assembled 

regulatory networks from a cohort of gene expression profiles (GEPs) and 
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Markov chain Monte Carlo (MCMC) based Bayesian modeling techniques. In 

parallel, we performed pooled shRNA screens on a genetically-engineered model 

by introducing ERBB2 overexpression in MCF10A cells, using both microarray 

and deep sequencing techniques. We also cultured the cells in 2D, 3D and in 

vivo xenograft environments.  Integrating NetBID2 prediction of drivers for 

HER2+ breast cancers using expression profiles of the isogeneic model with a 

panel of genome-wide shRNA screens identified three candidates – STAT3, 

AGRN, and GLRX – that are driver-type lethal proteins to HER2-induced tumors. 

With a focus on STAT3, we confirmed that STAT3 is required for HE2-induced 

tumorigenesis and we biochemically validated, both in vitro and in vivo, that 

silencing STAT3 is indeed an effective therapeutic target to stop growth of 

HER2+ tumor cells. Also from analysis of primary tumor samples, we discovered 

that STAT3 inhibition for killing HER2+ breast cancers has an addiction to ER- 

subpopulation. We also identified downstream targets of STAT3 that are involved 

in HER2-triggered tumor transformation and are also potential therapeutic targets.  

9.3 Results 

9.3.1 The integrative framework of genome-wide RNAi screening with 

systems biology of cancer genomics (NetBID2) to identify therapeutic 

targets of ERBB2+/HER2+ breast cancer 

Following the integrative framework in the previous chapter, we developed a 

similar approach of integrating high-throughput RNAi screens with computational 
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inference from genomic data to identify novel therapeutic targets for ERBB2+ 

breast cancer (Figure 9-1). 

To identify synthetic lethal partners with ERBB2 in breast cancer, we did pooled 

shRNA screening on an isogenetic model, by genetically engineering a normal 

breast cell line, MCF10A. MCF10A is ERBB2 null, so we overexpress ERBB2 in 

the cells, and use wild type as control. We transduced shRNA-mir library into 

both mutated and wild type MCF10A cells then grow infected cells for ten 

doubling times. We extracted genomic DNA from both cell populations and 

measure hairpin abundance by using both microarray and next-generation 

sequencing. By comparing shRNA readout in mutated with wild type MCF10A 

cells, we are interested in finding hairpins or genes depleted in engineered 

ERBB2+ cells, which are potential therapeutic targets for ERBB2+ breast cancer. 

For the isogenetic MCF10A model, we culture the mutated and wild type cells in 

2D and 3D culturing system respectively for in vitro studies, and also make 

mouse xenograft models of ERBB2+ MCF10A for in vivo experiments. 

In parallel, we applied NetBID2, the systems biology framework I developed, to 

infer drivers of ERBB2+ breast cancer from gene expression data and crossed 

computationally-predicted ERBB2+ master regulators or signaling modulators 

with functional shRNA screening identified candidates to produce a more 

promising short list of therapeutic target candidates. 

To define a signature of ERBB2+ breast cancer, a key step in NetBID2, we 

profiled gene expression of mutated and wild type MCF10A cells using 
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microarray. We did this for both 2D and 3D cultured systems. The signature was 

generated by doing differential expression analysis of ERBB2+ vs. wilt type in 2D 

and 3D data respectively. However, these classical signature genes were shown 

to be unstable to characterize phenotypes [69], we confirmed this point by 

looking at the overlaps of top signature genes in 2D and 3D systems (Figure 4-3).  

Therefore, we developed NetBID2 to go beyond expression signatures. 

At the same time, we studied gene expression profiles from a cohort of 359 

breast cancer patients in TCGA project and constructed both TF-centered 

regulatory network and signaling molecule-centered cellular networks specific to 

breast cancer context. The networks were built using a well-developed algorithm, 

ARACNe [111]. Then we performed enrichment analysis for each driver 

candidate, TF or signaling molecule, using BSEA algorithm to predict drivers 

regulating or modulating ERBB2+ breast cancer transformation. 
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Figure 9-1 The integrative framework of genome-wide RNAI screening with 

systems biology of cancer genomics (NetBID2) to identify therapeutic targets of 

ERBB2+/HER2+ breast cancer. 

 Subsequently, we overlapped depleted genes in shRNA screens with inferred 

drivers to generate a shorter list of candidates as therapeutic targets tor 

treatment of ERBB2+ breast cancer.  
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9.3.2 Integrating RNAi screens with NetBID2 identifies STAT3 and two 

other signaling molecules as driver-type therapeutic targets of ERBB2+ 

breast cancer 

In pooled shRNA screens, we had data from 2D, 3D and in vivo systems using 

both microarray and NGS technologies, in each of which we generated a list of 

candidates being depleted in ERBB2+ cell population. To identify potential 

candidates in each separate data set, we did the differential representation 

analysis at both individual shRNA level and integrated gene level. The best 

strategy to get a robust candidate list is to combine all evidences together by 

doing meta-analysis. So we combined all results from microarray-based RNAi 

screening data in different analysis levels and identified 134 depleted genes in 

ERBB2+ population. Similarly by combining evidences in NGS-based data, we 

obtained 406 candidates. Furthermore, combining both microarray and 

sequencing data, we generated 355 candidates, and by crossing three separate 

combined results, finally we got 36 candidates (Figure 9-2) as therapeutic targets 

from RNAi screening only. 

For driver inference using NetBID2 algorithm from gene expression data, we 

generated driver lists for 2D and 3D signature reference and combine them 

together, finally got 137 regulatory master regulators or signaling modulators. 
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Figure 9-2 Integration of RNAi screening with NetBID2 driver prediction identifies 

three candidates as driver-type therapeutic targets for ERBB2F+ breast cancer. 

The left is a summary table of candidate selection by combing evidences from 

both NetBID2 driver predictions (blue background) and RNAi screening (green 

background). For driver prediction, we have candidates based on 2D or 3D 

signature of ERBB2+ cells, and we also combine evidences of 2D drivers and 3D 

drivers, finally 137 TFs or signaling molecules are overlapped among the three 

driver lists. For RNAi screening, we have combined microarray or sequencing 

results alone in best.comb (combine hairpin from different datasets first and then 

select the best as representative), comb.gene (combined gene level by BHM 

algorithm), and comb.best (select best hairpin in each data set first and then 

combine them), and combined both microarray and sequencing results. Only 36 

genes came out from RNAi screening. On the firth venn diagram, crossing 137 

drivers and 36 candidates from RNAi screening, only three genes show up, 

which is not happening randomly based on Fisher‘s exact test. 
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With the integrative systems biology framework of combining functional genomics 

with cancer genomics, we identified three candidates, STAT3, AGRN and GLRX, 

that showed significant evidence of depletion in RNAi screens (Table 9-1) and 

were predicted as strong drivers of ERBB2+ cancer cells (Table 9-2). All three 

are signaling molecules which are potentially druggable. 

 

Table 9-1 NetBID2 inference results of three final candidates from integrative 

analysis. Duplicate names for GLRX represent two probes for GLRX in the 

microarray data. In functional type (Func Type), TF is for transcription factor, Sig 

is for signaling molecule. The column of # of pathway indicates the number of 

known pathway from multiple databases the candidate gene is involved in. 

nES.comb.Drivers is the normalized enrichment score of combing 2D and 3D 

NetBID2 outputted nES. Pval.comb.Drivers is based on nES.comb. The GEP 

signature analysis columns show fold change (FC), z score and pvalue of 

differential expression analysis for 2D and 3D data. 
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Table 9-2 Genome-wide shRNA screening results of three final candidates from 

integrative analysis. In # shRNAs column, ‗All‘ means the number of hairpins 

present in all platforms including hairpin-probed microarray (SH.array), barcode-

probed microarray (BC.array) and sequencing. In combine Array & Seq columns, 

n.Pval is the number of comparisons or evidences, n.sh.Depleted is the number 

of hairpins showing significant depletion (P<0.05). 

Among the three candidates, STAT3 is an interesting one. There are three 

hairpins targeting STAT3 in the shRNA library and integrated RNAi screening 

results showed that it‘s significantly depleted in both microarray and sequencing 

data. It‘s connected to 396 genes in the predicted network. STAT3 has dual roles 

of both transcriptional factor and signaling molecule and participated in 71 known 

pathways, one of which is a well-studied JAK/STAT3 pathway. STAT3 or 

JAK/STAT3 pathway has been shown to have oncogenetic effects in several 

disease contexts [233-242], but it has been associated with ERBB2+ breast 

cancer. All these make STAT3 as an interesting candidate to follow up. 
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9.3.3 STAT3 and phosphorylated-STAT3 is confirmed to be active in 

ERBB2+ MCF10A cells 

STAT3 was predicted by NetBID2 from genomic data to be a modulator of 

ERBB2+ transformation, and its depletion showed lethal effects to ERBB2+ cells 

from RNAi screening results. So based on that, we hypothesized that STAT3 is 

abnormally active in ERBB2 engineered MCF10A cells. Literature also suggested 

that STAT3 needs to be phosphorylated to be active [243]. We checked the 

protein level of phosphorylated-STAT3 by doing western blot, and indeed, 

phosphorylated-STAT3 is only active in ERBB2+ MCF10A cells (Figure 9-3), but 

not in wild type and other genetically-engineered (CYCD1, E1A, PTEN, P53) 

MCF10A cells. This suggests that ERBB2 over-expression triggers activation of 

STAT3 thus transforming normal cells into tumor cells and STAT3 seems to be 

required by ERBB2-induced cancer transformation.  

  

Figure 9-3 Western blots of phosphorylated-STAT3 (P-Stat3) and 

phosphorylated-STAT5 (P-Sat5) in wild type, and genetically-engineered 



288 

 

 

 

(ERBB2+, CYCD1+, E1A+, PTEN-, and p53-) MCF10A cells.  pSTAT3 and 

pSTAT5 are only activate in ERBB2+ MCF10A cells. 

9.3.4 STAT3 is validated in vitro to be lethal to ERBB2+ MCF10A cells 

when being silenced 

STAT3 was identified as a synthetic lethal partner with ERBB2 in breast cancer. 

It was predicted as a driver of ERBB2+ MCF10A cells and was confirmed to be 

activated in ERBB2+ cells. We are interested in testing out whether STAT3 is a 

good therapeutic target to stop ERBB2+ cancer transformation. First, we 

validated this using in vitro system. We knocked down STAT3 by siRNA or two 

shRNAs in ERBB2-muated MCF10A cells. Viability assay results demonstrated 

that silencing STAT3 by both siRNA and shRNAs reduces growth or viability of 

ERBB2+ cancer cells significantly (Figure 9-4). Moreover, time-course curve of 

viability results showed increased reduction of ERBB2+ cell growth over time. 
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Figure 9-4 Validation of STAT3 in vitro by siRNA and shRNA. Viability assays 

were performed after knock-down of STAT3 by siRNA or two shRNAs. 

Second, we performed colony forming cell (CFC) assays to validate STAT3 as a 

lethal gene to ERBB2+ breast cancer. Qualitative and quantitate measurements 

of CFC assays showed a significant reduce of cancer cell growth in ERBB2+ 

cells when STAT3 is inhibited by shRNA (Figure 9-5). In the control population 

without ERBB2 overexpression, silencing STAT3 showed no effects on tumor cell 

transformation and growth. If we induced ERBB2 in wild type MCF10A cells, 

tumor colonies were formed quickly and expanded dramatically, but however, if 

we silenced STAT3 in ERBB2-overexpressed MCF10 cells, there is almost zero 

tumor transformation or even decreased tumor formation comparing with wild 

type. This again confirmed that STAT3 is indeed an effective target to stop 

transformation and growth of ERBB2+ tumors. 
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Figure 9-5 Validation of STAT3 in vitro by colony forming cell (CFC) assays with 

shRNA silencing. Colony assays were performed in wild type MCF10A cells with 

and without STAT3 silencing by shRNA, ERBB2-muated MCF1-A with and 

without shSTAT3. Quantitate cell counts were measured for each colony assay.  

9.3.5 STAT3 is validated in vivo to be lethal to ERBB2+ xenograft mouse 

models 

Besides in vitro system, we also tested STAT3 in vivo, by making xenograft 

mouse models of ERBB2+ MCF10A cells with and without STAT3 silencing, 

More strikingly, in mouse models of ERBB2+ MCF10A cells with STAT3 silencing 

by shRNA, there was almost no sign of tumor formation and no growth of tumor 

population, comparing with the exponential growth of tumor cells in the mice 

without STAT3 inhibition. Again, STAT3 is indeed a valid and effect target to 

control tumor transformation by ERBB2 inducement upon inhibition and may 
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suggest potential clinical applications to treatment of HER2+ breast cancer, one 

of the most aggressive form in breast cancer.   

 

Figure 9-6 Validation of STAT3 in vivo. Xenograft mouse models were made for 

ERBB2+ MCF10A cells with and without STAT3 silencing by shRNA. Cell 

population with tumor marker were imaged and measured weekly, up to 7 weeks, 

when tumor size was photographed. 

9.3.6 STAT3 inhibition is specific to ERBB2+ breast cancer 

We have shown that silencing STAT3 dramatically stops growth of ERBB2+ 

cancer cells, but we have to test the specificity of STAT3 inhibition to ERBB2 

overexpression in breast cancer. We selected a cell line, MDAMB231, a basal 

type breast cancer cell line which is ERBB2- but STAT3+ (Figure 9-7) to validate 

the specificity of STAT3 silencing to ERBB2 amplification. In vitro completion 
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assays demonstrated that there is no significant viability change of MDAMB231 

cells with and without STAT3 silencing (Figure 9-8). Furthermore, in vivo mouse 

models of MDAMB231 cells showed almost identical tumor growth curves with 

and without STAT3 inhibition (Figure 9-8). Therefore, this suggested that 

silencing STAT3 has no effects on growth or viability of ERBB2- cancer cells 

though STAT3 is expressed in those cells, confirming the specificity of STAT3 

knock-down to ERBB2 overexpressed breast cancer cells. 
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Figure 9-7 Western blots of STAT3, phosphorylated STAT3, ERBB2, 

phosphorylated ERBB2 in different breast cancer cell lines: wild type MF10A, 

ERBB2+ MCF10A, three Luminal lines (SKBR3, MDAMB361, ZR7530), four 

Basal lines (MDAMB231, HC70, HCC1954, SUM190PT). 
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Figure 9-8 In vitro and in vivo validation of STAT3 specificity to ERBB2 using 

MDAMB231 cell line. MDAMB231 is a ERBB2- but STAT3+ line. In vitro 

competition assays and in vivo xenograft mouse models with and without STAT3 

silencing by shRNA were performed to measure viability of tumor cells or tumor 

growth. 

9.3.7 STAT3 doesn’t show up as a driver for HER2+ from NetBID2 analysis 

on expression profiles of primary breast cancer patients 

We identified STAT3 as a signaling modulator of ERBB2 induced tumorigenesis 

by applying NetBID2 algorithm to expression profile generated from a genetically-

engineered isogenetic model, MCF10A with ERBB2 overexpression. However, 

we have to be careful that this type of isogenetic model is homogeneous, but 
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doesn‘t capture the heterogeneity that is commonly present in primary patients 

(Figure 9-9). Therefore, we asked whether we can still identifiy STAT3 if we 

applied the same computational framework (NetBID2) to expression data from 

primary patients. 

 

Figure 9-9 Illustration of genetically-engineered isogenetic model. ERBB2 is 

overexpressed genetically in MCF10A cells to mimic ERBB2+ breast tumors. 

In application of NetBID2 to this project, we constructed breast cancer 

interactomes from gene expression profiles of a cohort of 359 primary breast 

cancer patients, out of which, 58 patients were clearly classified as HER2+ based 

on clinical lab IHC assays and 201 one were defined as HER2-. So we 

performed the signature analysis using those clearly defined HER2+ and HER2- 

patients‘ profiles instead of homogenous MCF10A profiles with and without 

ERBB2 overexpression. And then we applied NetBID2 algorithm to identify 

master regulators or signaling drivers of this primary tumors‘ signature, however, 
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in both transcription factor-centered network analysis and signaling protein-

focused network analysis, STAT3 didn‘t show up as a driver candidate for 

HER2+ breast cancer (Figure 9-10). 

This reflected the difference of isogenetic models and primary patient samples. 

Particularly, this inferred the heterogeneity of HER2+ breast cancer patients. It 

seems that STAT3 is only modulating a subset of HER2+ breast cancer 

population and STAT3 inhibition seems only work on the patients that are similar 

to the model we used, MCF10A.  

 

Figure 9-10 STAT3 doesn‘t show up as a driver of HER2+ primary samples in 

both transcription factor (TF)-centered network analysis and signaling protein 

(Sig)-focused network analysis. 

9.3.8 STAT3 is addicted to ER status being a driver for ER- and HER2+ 

breast cancer, but not for ER+ ones 

As discussed in previous section, STAT3 inhibition is not a uniform cure for all 

HER2+ breast cancer patients, and we need to identify the co-founding factors 

that determine which sub-population it works on. 
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Patricia Villagrasa Gonzalez, a postdoc from Silva lab reminded me of that 

MCF10A, the model we used to identify STAT3 as a driver of HER2+ subtype, is 

ER-. However, the majority of HER2+ primary patients (83%) from which we 

failed to find STAT3, are ER+. And we know ER is one of the most important 

biomarkers to classify breast cancer patients. Therefore, this motivated me to 

separate HER2+ patients into ER+ and ER- groups and then applied NetBID2 to 

each of them. 

 

Figure 9-11 NetBID2 results of STAT3 on ER- and ER+ groups of HER2+ 

population. STAT3 only shows up in ER- group as a driver. 

Surprisingly, after we differentiate ER+ and ER- in HER2+ population, STAT3 

showed up only in ER- group with exactly the same pattern as we saw in 

MCF10A model (Figure 9-11). This is consistent with what we hypothesized 

based on the fact that MCF10A is ER-. There was no pattern for STAT3 network 

in ER+ and HER2+ population, which is the majority of HER2+ patients, thus 

diluting the signal of STAT3 as a driver if we mixed ER+ and ER- together. 
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We have shown that STAT3 is only modulating ER- sub-population of HER2+ 

patients, which is one of the most advanced forms of breast tumors. We also 

tried other characteristic factors to check whether we can find STAT3 in one of 

them. We separated HER2+ patients into Basal or Luminal type according to 

their gene expression profiles and applied NetBID2. Since MCF10A is classified 

into Basal group, we expected to STAT3 coming out from analysis on Basal-type 

HER2+ group, however, STAT3 didn‘t show up as a significant driver candidate 

though the direction is consistent with the one in MCF10A analysis. Interesting 

thing is that STAT3 showed up as a driver for Luminal type and HER2+ group, 

however, the pattern of direction is opposite to the pattern we observed in 

MCF10A model. This suggested that STAT3 is modulating Luminal type of 

HER2+ breast cancer patients but in a different mechanism from ER- and HER2+ 

group.  

 

Figure 9-12 NetBID results of STAT3 in Luminal and Basal subtype of HER2+ 

patients. STAT3 shows up in Luminal group but shows opposite direction pattern 

to the one in MCF10A model and ER- subgroup. 
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9.3.9 Searching for downstream targets of STAT3 being involved in 

modulation of ER- and HER2+ breast cancer 

We identified STAT3 as a modulator of ER- and HER2+ breast cancer, but we 

are more interested in identifying the entire pathway specifically responsible for 

tumorigenesis of ER- and HER2+ breast cancer. The reason is because STAT3 

is a well-known upstream signaling transduction modulator and regulator of a 

spectrum of downstream biological processes. We asked what specific 

downstream players or targets of STAT3 are involved in the pathway of tumor 

initialization and growth induced by ERBB2, or in the pathway of inducing 

apoptosis in this type of breast cancer cells when we knock-down STAT3. 

To identify potential targets of STAT3 experimentally in this context, we did 

microarray profiling of whole genome by perturbing STAT3. We did knock-down 

of STAT3 by two shRNAs in ERBB2+ cells and did inducement of STAT3 by 

over-expressing IL6, an upstream activator of STAT3, in ERBB2- cells. Positive 

targets of STAT3 will be down-regulated in STAT3- samples but up-regulated in 

STAT3+ samples, whereas negative targets will show the opposite pattern. We 

identified 66 targets of STAT3 (Figure 9-13) using a stringent threshold (P<0.05, 

fold change > 4). SOCS3 is a well-known activated target of STAT3 showing up 

as one of the top positive targets. STAT3 itself can also be used a positive 

control showing down-regulation if you silence STAT3 and up-regulation if you 

over-express IL6. 
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Figure 9-13 Heatmap of top STAT3 targets from perturbation experiments by 

knocking-down STAT3 by two shRNAs or over-expressing IL6, an upstream 

activator of STAT3. Red stands for down-regulation while green means up-

regulation, for example, in sh-STAT3 experiments (the left four samples), genes 

in red are under-expressed when silencing STAT3 or are potential positive 

targets of STAT3, while green ones are potential negative targets of STAT3. 

SOCS3 is a known target activated by STAT3 and STAT3 itself is another 

positive control. 

In addition to experimental searching for STAT3 targets, we also looked at the 

targets (Figure 9-14) computationally predicted by ARACNe from a large cohort 
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of breast cancer expression profiles. The analysis of ARACNe is on probe level 

and is separated for transcription factor-centered and signaling molecule-

centered networks. There are three probes for STAT3 representing three 

different transcripts of STAT3 and STAT3 has dual role of being transcription 

factor and signaling protein, therefore there are 6 lists of targets predicted by 

ARACNe, and the number ranges from 100 to 250. And all of the six lists of 

predicted targets are significantly enriched in experimentally-identified targets of 

STAT3 (Figure 9-15). 

 

Figure 9-14 Subnet of STAT3 predicted by ARACNe in the signaling-centered 

network. Genes on the right circle are transcription factors (TF in square shape), 

signaling molecules (Sig in diamond shape) or both (TF_Sig in hexagon shape). 

Genes in dark green are also predicted as master regulators or drivers (MR) of 

HER2+ breast cancer. Genes on the left circle are the ones in general. Red edge 

is for positive correlation while blue is for negative correlation. 
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Figure 9-15 Enrichment of ARACNE-predicted targets of STAT3 from 

transcription factor (TF)-centered or Signaling molecule (Sig)-centered network in 

experimentally identified targets of STAT3 by microarray profiling after knock-

downing STAT3 or overexpressing IL6 (activator of STAT3). 

9.3.10 STAT3 targets that are lethal to ER- and HER2+ breast cancer 

With a handful of STAT3 targets from perturbation experiments, we asked how 

many of them are also lethal to HER2+ cancer cells. So we did enrichment 
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analysis of 111 selected STAT3 targets (P<0.05, FC>3) in RNAi screening 

results of ERBB2+ MCF10A cells and there was an enrichment pattern on the 

depleted side, meaning that majority of STAT3 targets are also lethal to ERBB2+ 

MCF10A cells. If we distinguished positive and negative targets of STAT3, there 

was no significant enrichment for 70 positive targets, but there was a significant 

enrichment for 43 selected negative targets. 

Besides MCF10A isogenetic model, we also did shRNA screens for three HER2+ 

breast cancer lines (SKBR3, SUM190PT and MDAMB361).Among these three 

HER2+ cell lines, SKBR3 is ER+ while the other two are ER-. Unfortunately, 

STAT3 didn‘t show up being lethal to all the three lines. MDAMB361 was 

expected because it is an ER+ line, but SUM190PT and SKBR3 were not 

expected. The reason could be either hairpins targeting STAT3 were not working 

well, or the data was noisy or there could be other factors making these two lines 

resistant to STAT3 inhibition. 

However, STAT3 pathway seems to be activated in ER- and HER2+ breast 

tumors. So we went downstream and checked STAT3 targets that are lethal to 

HER2+ population. Fortunately, there are a few STAT3 targets such as S100A9, 

TRDMT1 (activated), FLRT1, NPAS1 (repressed) that are lethal to both HER2+ 

breast cell lines and genetically-engineered MCF10A cells. Those candidates 

might be alternative therapeutic targets for HER2+ breast cancer because of their 

lethal effects to both models and might be more specific than STAT3 because 

STAT3 is modulating or regulating a number of sub-programs and those lethal 
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targets might specifically involve in tumorigenesis of HER2+ breast cancer, 

making them more promising as novel therapeutics for HER2+ patients. 

 

Figure 9-16 Enrichment of STAT3 targets from perturbation experiments in 

shRNA screening results of ERBB2+ MCF10A cells. Reference genes are ranked 

from the most enriched to most depleted in ERBB2+ vs. wild type MCF10A cells. 

STAT3 targets are selected by P<0.05 and FC>3. Positive targets are defined as 

positive expression in STAT3-induced samples comparing with expression in 

STAT3-silenced samples. Negative targets are defined in the opposite way. Top 

lethal positive or negative targets are listed in the boxes on the bottom-right. 
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Figure 9-17 Enrichment of STAT3 targets from perturbation experiments in 

shRNA screening results of ERBB2+ breast cancer cell lines (SKBR3, 

SUM190PT, MDAMB361). Reference genes are ranked from the most enriched 

to most depleted in three HER2+ cell lines (using a combined score). STAT3 

targets are selected by P<0.05 and FC>3. Positive targets are defined as positive 

expression in STAT3-induced samples comparing with expression in STAT3-

silenced samples. Negative targets are defined in the opposite way. Top lethal 

positive or negative targets are listed in the boxes on the bottom-right. Yellow 

ones are the common targets lethal to ERBB2+ MCF10A cells (Figure 9-16). 

9.3.11 Other STAT family members (STAT5A and STAT1) show up as 

drivers of ERBB2+ breast cancer in analysis of data from both isogenetic 

models and primary patients 

Besides STAT3, we also identified other STAT family members including 

STAT5A and STAT1 as drivers of HER2+ breast cancer from MCF10A isogenetic 

model. In particular, STAT5A has similar patterns with STAT3.  For example, 
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STAT5A was inferred as a driver from MCF10A isogenetic model (Figure 9-18), 

but didn‘t show up from all HER2+ primary tumors (Figure 9-19). However, 

STAT5A showed the addiction to ER status by being predicted as a driver for 

only ER- and HER+ primary samples, not from ER+ group (Figure 9-20). It turned 

out that in the predicted network, STAT5A is interacting with STAT3 in a positive 

manner (Figure 9-21, Figure 9-22), which might explain the above patterns. 

Unfortunately, STAT5A didn‘t show up from RNAi screening data and was 

confirmed by individual knock-down experiments. 

 

Figure 9-18 STAT5A is predicted as a driver of ERBB2+ MCF10A cells. 
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Figure 9-19 STAT5A like STAT3 is not a driver of HER2+ primary tumors. 

 

Figure 9-20 STAT5A is a driver of ER- but not ER+ group of HER2+ primary 

patients. 
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Figure 9-21 Subnet of STAT5A predicted by ARACNe in the signaling-centered 

network. Genes on the left circle are transcription factors (TF in square shape), 

signaling molecules (Sig in diamond shape) or both (TF_Sig in hexagon shape). 

Genes in dark green are also predicted as master regulators or drivers (MR) of 

HER2+ breast cancer. Genes on the right circle are the ones in general. Red 

edge is for positive correlation while blue is for negative correlation. 
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Figure 9-22 Subnetwork of STAT3 and STAT5A predicted by ARACNe in the 

signaling-centered network. Annotation is the same as in Figure 9-20 and Figure 

9-21. 

STAT1 also was predicted as a driver of ERBB2+ MCF10A cells (Figure 9-23), 

however it showed different enrichment pattern with STAT3 and STAT5A. 

Moreover, it didn‘t display the addiction to ER- subgroup of HER2+ primary 

population (Figure 9-25) though it showed no enrichment pattern in all HER2+ 

primary samples similar to STAT3 and STAT5A (Figure 9-24). 
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Figure 9-23 STAT1 is a driver of ERBB2+ MCF10A cells, but shows different 

enrichment pattern with STAT3 and STAT5A. 

 

Figure 9-24 STAT1, similar to STAT3 and STAT5A, is not a driver of all HER2+ 

primary tumors. 
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Figure 9-25 STAT1, different from STAT3 and STAT5A, doesn‘t show any 

addiction to ER status being a driver of HER2+ primary tumors. 

9.3.12 RNAi screening from 2D vs. 3D vs. In Vivo environment 

Nowadays, there is increasing awareness of the drawbacks of 2D cell culture and 

the related effect on the value of the research being performed.  Not surprisingly, 

scientists are shifting their focus to cells cultured in 3D or in vivo mouse models 

because cells in 3D or mouse model environments are much more similar to cells 

in the real environment, a living organism (in vivo) than flat, unnaturally thin, 

single layer cells grown on 2D plastic. So in this project to identify therapeutic 

targets of ERBB2+ breast cancer, we cultured our cells in 2D, 3D and in vivo 

environments. 
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From literature, we learned that there are differences between 2D and 3D culture 

systems such as the following: 

 Shape:  Cells in 3D are typically ellipsoids with dimensions of 10-30 

μm, while cell cultured in 2D are flat with typical thickness of 3 μm. 

 Environment:  Cells in 3D usually have nearly 100% of their surface 

area exposed to other cells or matrix, but cells in 2D have only about 

50% of their surface area exposed to fluid, approximately 50% 

exposed to the flat culture surface or intermediate, and a very small 

percent exposed to other cells. 

 Behavior:  Cells in 3D comparing with 2D show differences in 

differentiation, drug metabolism, gene and protein expression, general 

cell function, in vivo relevance, morphology, proliferation, response to 

stimuli, and viability. 

However, the cons of 3D or in vivo culturing systems might be larger noise than 

2D because of increased dimensions and unknown factors. So we checked the 

shSeq data quality from different environments. We noticed that in vivo data is 

much noisier than both 2D and 3D data in terms of raw NGS data quality (Figure 

9-26) and consistence of replicates (Figure 9-27). There was no significant 

difference between 2D and 3D data quality, or in some cases, 3D data is much 

cleaner than 2D. We also checked the distances between samples, and 

interestingly, 3D and in vivo data are much closer to each other than to 2D 

(Figure 9-28) and the difference between mutated and wild type samples is much 
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smaller in 3D than that in 2D, meaning 3D data is less sensitive than 2D in terms 

identifying candidates from shRNA screening data. 

 

Figure 9-26 Overall quality (left) and cycle-based quality (right) of raw NGS 

shRNA screening data of cells in 2D, 3D and in vivo environments. 
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Figure 9-27 Consistence of replicates of NGS shRNA screening data in 2D, 3D 

and in vivo environments. 
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Figure 9-28 Distribution (A: boxplot, B: density) plots, Heatmap of sample 

distances (C) and PCA (D) plot of 2D, 3D and in vivo data of NGS-based shRNA 

screening. 
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9.4 Methods 

9.4.1 Reverse engineering transcriptional regulatory or signaling networks 

of Breast Cancer 

To generate breast cancer interactomes we processed microarray gene 

expression data (Agilent G4502A platform) of 359 breast cancer primary samples 

from TCGA project [64] using loess normalization and cleaned the dataset to 

24,401 probe sets with non-specific filtering. Then we ran the ARACNe algorithm 

[111] with default parameters against 1775 probes corresponding to 780 TFs to 

establish a TF-centered interactome and against 6475 probes for 2453 signaling 

molecule genes to construct a signaling protein-focused network. There are 319 

probes for 60 genes that are both TF and signaling proteins. 

9.4.2 Signature analysis of ERBB2+ MCF10A model 

We did microarray profiling (Agilent) on the isogenetic model, ERBB2 engineered 

and wild type MCF10A cells to generate a signature of ERBB2+. We cultured the 

cells in 2D and 3D systems with 6 replicates for each condition (5 replicates for 

3D cells) so we can generate two signature reference for 2D and 3D data 

respectively. The microarray data was normalized by VSN [244] and RSN [245] 

methods. To generate a reference signature of ERBB2 overexpression 

phenotype, part of our NetBID2 driver inference algorithm, we used a Probit 

regression model [89] (Figure 8-2) for its advantage of detecting weak effects. 

Bayesian-MCMC computing was employed to estimate parameters for its 
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robustness and accuracy. In particular, a t-distribution prior and Gibbs sampling 

were used in this analysis [90]. 

9.4.3 GSEA of inferring regulatory or signaling drivers of ERBB2+ MCF10 

Cells 

For GSEA method to predict regulatory drivers or signaling modulators of 

ERBB2+ phenotype, we used BESA method in Chapter 5 with a ―maxmean‖ 

statistic [98] as enrichment score and Bayesian statistics. 1,000 sample 

permutations with Efron‘s restandarization technique to build the null distribution 

for statistical significance.  

9.4.4 Pooled shRNA screening of ERBB2+ MCF10A cells 

We made use of the pGIPZ shRNAmir library [51], comprising 58,493 shRNAs 

targeting 18,651 genes. We did shRNA screening for ERBB2 mutated and wild 

type MCF10A cells cultured in 2D and 3D systems separately in triplicates. We 

also did the screening in mouse models by injecting shRNA library-infected cells 

with triplicates as well. All genomic data were extracted at T0 and after 10 

doubling times. Both microarray (barcode-probed and hairpin-probed) and NGS 

deep sequencing technologies were used to read out shRNA abundance. 

In the NGS data of shRNA screening for 2D, 3D and in vivo models, over 75% of 

total reads were identified in each case. All samples have enough identified 

reads to capture signals expect two replicates of in vivo mouse model (Table 9-3). 
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Table 9-3 Summary of deconvolution for NGS data of shRNA screening on 

ERBB2+ and wild type MCF10A cells in 2D, 3D and in vivo systems. Cells with 

sky blue background are data for this study. Numbers in dark red background are 

cases with < 1M identified reads, in light read are cases with 1-5M reads. 

9.4.5 Differential representation analysis of individual shRNA 

To assess the effects on reversal of GC-resistance by individual shRNA, we 

compared abundance of shRNA in ERBB2+ with wild type control using shADER 

algorithm, which is essentially a Bayesian linear model as detailed in Chapter 2.7. 

9.4.6 Gene level activity by integration of multiple shRNAs targeting the 

same gene 

To estimate the gene level effects of a gene targeted by multiple shRNAs, we 

applied BHM algorithm, a hierarchical modeling approach as detailed in Chapter 

3. This model allowed ―random effects‖ from different shRNAs, and coefficient of 
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‗fixed effects‘ was used to score capability of increasing sensitivity at gene level. 

Bayesian-MCMC computing was set up for accurate estimations. 

9.4.7 Meta-analysis of combining differential evidences 

To combine evidences form different sources for meta-analysis, for example, to 

identify depleted genes in ERBB2+ cells with shRNA screening results from 

microarray data and NGS data under 2D, 3D or in vivo systems, we used 

Stouffer‘s z score method [107] shown in the following formula. 

  
∑   
 
   

√ 
     (   ) 

In the above equation,    is the z-score indicating the strength of evidence, for 

example, differential representation score of a gene or a hairpin, in one source, 

say number i from total number of k sources. zi follows a standard normal 

distribution, so the integrated Z score also follows a standard Gaussian 

distribution assuming independence of all k evidences. Combined two-tailed p 

value was calculated based on the integrated Z score. 

9.5 Discussion 

9.5.1 Phosphorylation of STAT3 is required for STAT3 activity 

We showed that STAT3 inhibition is specific to ERBB2+ breast cancer by 

measuring viability or tumor growth on MDAMB231 cell line, which is ERBB2- but 

STAT3+, with and without STAT3 silencing both in vitro and in vivo. One 

interesting point is that although STAT3 is active in MDAMB231 cells at protein 
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level, phosphorylation of STAT3 is not induced (Figure 9-7, Figure 9-8). This may 

suggest that STAT3 is actually not functionally active in MDAMB231 cells, 

making it resistant to STAT3 inhibition treatment. However, this might be 

explained that ERBB2 induces STAT3 activity by phosphorylation, most likely by 

indirect phosphorylation via IL6 autocrine signaling loop [230, 246]. In ERBB2- 

cells such as MDAMB231, STAT3 is not phosphorylated without ERBB2 

inducement, thus being inactive. 

9.5.2 2D vs. 3D: gene expression signature and NetBID2-predicted drivers 

We also had the gene expression profiles of cells in 2D and 3D environments, 

giving us opportunity to check the gene expression difference between these two 

culturing methods. First, in gene signature results, 2D and 3D showed 

significantly difference. For example, the correlation of differential expression 

scores in 2D (ERBB2+ vs. WT) with those in 3D is poor, only about 0.1. 

Moreover, among top signature genes in 2D and 3D, there are only about 5-6% 

genes that were overlapped (Figure 9-29). However, there was a much increased 

correlation and overlap for NetBID2-predicted drivers for 2D and 3D data (Figure 

9-30). This again confirmed the robustness of NetBID2 to detect true phenotype-

associated factors.  
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Figure 9-29 Gene expression signature of ERBB2+ MCF10A cells in 2D vs. 3D 

environments. 

Although drivers increased the consistence between 2D and 3D inference, the 

correlation is still only about 0.3 and the overlap is only about 1/3, so there are 

still significant difference between 2D and 3D systems, which probably can be 

only explained by intrinsic difference between these two methods. 
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Figure 9-30 NetBID2-predicted drivers of ERBB2+ MCF10A cells in 2D vs. 3D 

environments. 

9.5.3 The power of meta-analysis and integration of functional genomics 

with systems biology 

In previous discussion section, we demonstrated again that NetBID2 framework 

is much more robust to infer disease or phenotype-associated biomarkers. 

However, NetBID2 is an application of meta-analysis and actually in shRNA 

screening data analysis of this study, we showed the power of meta-analysis as 

well. For example, we had multiple experiments of shRNA screening, 2D, 3D or 

in vivo environments, microarray or deep sequencing technologies. If we only 

looked at individual data set, STAT3 didn‘t show up as in the top candidate list for 

all of them. However, if we combined all evidences together by meta-analysis, 

STAT3 was ranked 64th in the combined results (Figure 9-31). Moreover, if we 

crossed with NetBID2 predictions from cancer genomic data, STAT3 was the 

number 1 candidate. All these again proved the power of integrating evidences 
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by meta-analysis. Identification of STAT3 as a validated and effective target for 

ER- and ERBB2+ breast cancer patients confirmed the success of our strategy 

by integrating noisy functional genomic RNAi screening data with systems 

biology inference of large-scaled cancer genomic data to tail therapeutic targets 

for human cancers. 

 

Figure 9-31 Heatmap of z score for top depleted (in green) or enriched (in red) 

candidates from shRNA screening results of ERBB2 engineered MCF10A cells in 

2D, 3D and in vivo system. STAT3 is ranked 64th in the depleted gene list by the 

combined z-score. 
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Chapter 10 Integrating Functional Genomics with Systems 

Biology to Discover Driver-type Therapeutic Targets 

for ABC or GCB-type DLBCL 

10.1 Summary 

We have performed genome-wide RNAi screens on four DLBCL cell lines 

including one ABC-type (HBL1) and three GCB-type (BJAB, Ly7 and SUDHL4), 

by both microarray and deep-sequencing technologies. To obtain robust 

candidates from such high-throughput experiments, we designed a procedure to 

combine results from both microarray and sequencing data. Our analysis led to a 

genome-wide functional profile for each cell line, indicating gene-silencing effects 

on cell proliferation. Un-supervised clustering showed a clear separation between 

ABC and GCB. Supervised comparison of RNAi screen between ABC and GCB 

generated 587 candidate genes (P<0.001) that are specifically lethal to ABC or 

GCB. Besides, based on a cohort of 260 DLBCL gene expression profiles, we 

built a B-cell interactome computationally and performed NetBID2 analysis to 

identify drivers that are specific to ABC or GCB subtype. This analysis gave us 

125 master regulators or signaling factors (P<0.001) meditating expression 

signature of ABC vs. GCB. By integrating RNAi screened candidates with 

genomics-inferred drivers of ABC vs. GCB, we obtained 20 transcription factors 

and 47 signaling molecules that are both lethal to and critical of meditating ABC-

DLBCL. Out of those candidates, four genes (TCF4, ZCCHC24, CILP, and 
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PTPRG) also showed significant gain or amplification in ABC patients from copy 

number variation data, which may constitute promising therapeutic targets for 

ABC, which is usually associated with poor prognosis.  Further biochemical 

experiments are being conducted to validate selected candidates both in vitro 

and in vivo. 

10.2 Introduction 

The goal of this project is to identify novel therapeutic targets that are specific to 

ABC or GCB-type of DLBCL. The approach we developed to address this task is 

similar to what we have developed in Chapter 10 and chapter 11, an integrative 

framework of crossing genome-wide RNAi screens with systems biology analysis 

of cancer genomics (Figure 10-1). On one side, we performed genome-wide 

shRNA screens on four DLBCL cell lines including one ABC-type (HBL1) and 

three GCB-type (BJAB, Ly7 and SUDHL4), by both microarray and deep-

sequencing technologies. With sophisticated meta-analysis of combining 

microarray and sequencing data, we were able to identify candidates that are 

lethal to ABC or GCB-type DLBCL lines as potential therapeutic targets. However, 

this list is usually too long to validate all of them. On the other side, we had a 

cohort of 260 gene expression profiles from primary patients or cell lines in the 

context B cells, among which 35 are ABC and 50 are GCB-type. With this data, 

we applied the NetBID2 algorithm to identify drivers, both master regulators and 

signaling modulators, which are specific to ABC or GCB subtype. We also had 

copy number variants (CNV) data for 72 out of those 260 samples, which helped 
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us to identify genes that are amplified or depleted in ABC or GCB groups. Then 

we integrated all these evidences together and produced a short list of 

candidates as therapeutic targets for ABC or GCB subtype of DLBCL. 

 

Figure 10-1 The integrative framework to identify therapeutic targets for ABC or 

GCB-type DLBCL by integrating genome-wide RNAi screens (left) with systems 

biology (NetBID2) of cancer genomics. 
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10.3 Results 

10.3.1 Pooled shRNA screens of DLBCL lines by microarray and NGS 

We did pooled shRNA screens for four DLBCL cell lines using both microarray 

(Barcode-probed and hairpin-probed) and NGS technologies. All screens except 

SUDHL4 with shRNA-probed microarray and BJAB with sequencing are in good 

quality (Table 10-1).   There were significant batch effects for sense-probes and 

anti-sense probes in hairpin-probed microarray data of SUDHL4 line (Figure 

10-2). Two samples of BJAB shSeq data didn‘t have enough total number of 

identified reads, which caused the data noisy (Table 10-2). The best way to get 

robust candidates out of all these data is to exclude the bad screening data, 

perform analysis on individual data set and then integrate the others together. 

The Stouffer‘s or naïve Bayesian method was used to combine multiple 

evidences. 

 

Table 10-1 Summary for genome-wide shRNA screens of four DLBCL cell lines. 

Green check sign indicates the data quality is good while red one represents that 

that data is not good or missing.  
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Figure 10-2 Batch effects detected for shRNA hairpin-probed microarray data of 

SUDHL4 cell line. 



329 

 

 

 

 

Table 10-2 Summary of deconvolution of NGS-based shRNA screening data of 

four DLBCL cell lines. Red ones are the run with not enough signals. SUDHL4 

was run three times to get good quality data. 

10.3.2 Clustering of shRNA screening samples  

First we did hierarchical clustering of all T10 or T0 samples for each of the four 

DLBCL lines in both NGS and microarray platforms to check the consistence of 

replicates and to check biological relationships among T0 and T10 data. As 

shown in Figure 10-3, most replicates for each condition are clustered together, 

indicating consistence of biological replicates and good overall quality of the data. 
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Figure 10-3 Clustering of T0 or T10 shRNA screening data in NGS, BC-probed 

microarray and shRNA hairpin-probed microarray. 
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10.3.3 Functional profiles separate well ABC from GCB, BCL2-rearranged 

from non-rearranged DLBCL subtypes 

The four DLBCL cell lines can be classified into ABC and GCB subtype based on 

their gene expression profiles, or BCL2-rearranged or non-rearranged based on 

BCL2 translocation status. We wondered whether we can still separate those 

subtypes by using the functional profiles from shRNA screening data. The 

answer is yes.  

First, we generated a new profile of differential representation for each cell line 

using the difference of T10 and T0 data (log (T10/T0). This profile indicates the 

functional effects of each hairpin or gene to cell growth or survival of the cell line, 

for example, positive value for enriched hairpins meaning the targeting genes are 

suppressors of cell growth, while negative value for depleted hairpins 

representing that corresponding genes are lethal to this cell line. Then we did 

clustering of the four lines based on their functional profiles. Here we only 

showed you the results using NGS-based shRNA screening data, but the results 

from microarray data are similar. Since there are triplicates for each cell line, we 

enumerated all six possible pairs of T10 vs. T0 therefore generated six new 

functional profiles for each cell line (except Ly7 for which we removed two bad 

replicates, therefore it only has three profiles).  

As shown in Figure 10-4, first, we noticed that all generated profiles for each cell 

line are clustered together as expected; second, HBL1 in blue, the only ABC cell 

line is clearly separated from the other three GCB lines; third, among three GCB 
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lines, BJAB in red and SUDHL4 in purple stayed together showing clear 

difference from Ly7 because both of them are BCL2-translocated, while Ly7 is 

close to HBL1 as both of them are not BCL2-translocated. We saw exactly the 

same pattern if we averaged all generated profiles for each cell line as shown in 

Figure 10-5.  

In conclusion, shRNA screens-produced functional profiles are able to separate 

ABC and GCB, the two major subtypes of DLBCL and are also able to classify 

BCL2-rearranged and non-rearranged samples. Also the difference of ABC with 

GCB subtype is larger than the signal of BCL2-rearrangement. 

 

Figure 10-4 Heatmap with hierarchical clustering (Ieft) and PCA plot (right) of 

generated functional profiles from NGS-based shRNA screening data on four 

DLBCL cell lines. Six profiles for cell lines with triplicates for both T10 and T0 

data. For Ly7, two T10 replicates are bad and removed, therefor only three 

generated profiles. 
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Figure 10-5 Heatmap with hierarchical clustering (Ieft) and PCA plot (right) of 

generated functional profiles from NGS-based shRNA screening data on four 

DLBCL cell lines. All generated profiles for each cell line are averaged to produce 

only one profile. 

10.3.4 Differentially represented genes from shRNA screens 

We performed differential representation analysis at gene level using BHM 

algorithm for each of the four DLBCL lines to identify genes whose hairpins in the 

library are either enriched or depleted at T10 time. Deleted genes are of interest 

as they are genes that are lethal to the cells and are potential therapeutic targets 

to kill DLBCL cells of study. We did the analysis for individual cell lines. Statistical 

results including p-value and z-score are summarized in Figure 10-6.  
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Figure 10-6 Histogram of p-values (left) and density plot of z-scores (right) for 

gene-level differential representation analysis of each cell line. The bin width for 

p-value histogram is 0.05. 

We also performed a meta-analysis to combine results of four lines for each gene 

by Stouffer‘s method. The combined z score for gene X indicates the overall 

effects of silencing X on all four DLBCL lines. The number of significantly 

depleted or enriched genes in each cell line and combined analysis is 

summarized in Table 10-3. For example, there are 1962 significantly differentially 

represented genes in HBL1, in which 1783 are depleted and 179 are enriched. 

There is a significant bias between depleted genes and enriched ones in HBL1, 

BJAB and SUDHL4, which might reflect the sensitivity difference of different type 

of cells. 

Cell line n.total n.over n.under 

HBL1 1962 179 1783 
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BJAB 2329 770 1559 

Ly7 1204 627 577 

SUDHL4 6184 4738 1446 

Combined 2468 870 1598 

Table 10-3 Summary of enriched or overrepresented and depleted or under-

represented genes in shRNA screening for each cell line. ―Combined‖ is using 

Stouffer‘s method to integrate all four cell lines. It‘s based on gene level results 

with selection threshold of P<0.05. 

We also calculated the number of genes that are depleted in at least a certain 

number of cell lines (Table 10-4) to indicate its lethal effects on the majority of 

DLBCL cells. 

n.lines 1 2 3 4 sum 

n.all 5936 2237 379 33 8585 

n.over 4775 708 41 0 5524 

n.under 3716 716 71 1 4504 

Table 10-4 Number of genes depleted (under) or enriched (over) in at least 1 or 2 

or 3 or 4 cell lines, based on gene level results with selection threshold of P<0.05. 

10.3.5 Top differentially represented genes cross all cell lines 

We applied a stringent criteria and selected top depleted or enriched genes in all 

cell lines. With a threshold of p-value less than 0.05, 33 genes showed up as 

either under-represented or over-represented in all cell lines (Figure 10-7, Table 
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10-5). Unfortunately, there is only gene RFC3 that is depleted in all four lines. 

This reflects the heterogeneity of DLBCL.  

We also did clustering using the profiles of selected 33 genes, and again there 

was a clear separation between ABC (HBL1) and GCB lines. The majority of 

these 33 genes are exclusively either depleted in ABC or depleted in GCB lines. 

However, there are a few genes that are specific to BCL2-translocaiton. For 

example, ACCS and AKT1 are depleted in BJAB and SUDHL4, two BCL2-

translocated lines, while THS07A is depleted in two BCL2 non-translocated lines 

(Ly7 and HBL1). 

 

Figure 10-7 Top genes selected by a threshold of P<0.05 in all four lines. Red is 

for depletion while green is for enrichment. 
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Table 10-5 Top genes depleted in all cell lines, and depleted in ABC or GCB cell 

lines only. Red indicates depletion while green indicates enrichment. ―n.shRNAs‖ 

is the number of shRNAs in NGS-based data and ―n.shRNAs.array‖ is the 

number of hairpins in microarray data. ―numPathways‖ is the number of known 

pathways being involved in. 

We also tried to loosen the threshold and selected genes by combined statistics. 

The goal was to identify genes that showed consistent effects cross all cell lines, 

either lethal to all of them or suppressing their growth upon silencing. With a 

combined p-value threshold of 0.001, 293 genes were selected (Figure 10-8) and 

clustering analysis showed the same pattern as we observed using all genes or 

top differentially-represented genes. 



338 

 

 

 

 

Figure 10-8 Top genes selected by combined p-value with a threshold of 0.001. 

10.3.6 Enriched pathways by RNAi screening identified candidates 

With a long list of candidates for each cell line, we were interested in whether 

those lethal candidates are enriched in any known pathways, or whether there 

are common lethal pathways shared by different subtypes of DLBCL. Therefore, 
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we performed the functional enrichment analysis by using my BSEA (Chapter 5) 

algorithm. As shown in the top enriched pathways (Table 10-6) in at least one of 

the four cell lines, there are a significant number of pathways that are lethal to 

HBL1, the ABC type of DLBCL. Details about top two pathways that are lethal to 

HBL1 are shown in Figure 10-9 and Figure 10-10. 

 

Table 10-6 Top pathways enriched in shRNA screening-identified candidates. 

Red means genes in the pathway are significantly enriched in the under-

represented genes in that cell line, while green is for enrichment in over-

represented side. 
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Figure 10-9 IL23-mediated signaling pathway is enriched by lethal genes in HBL1, 

but not by lethal genes in other cell lines. 
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Figure 10-10 Alternative NFKB pathway is enriched by lethal genes in HBL1, but 

not by lethal genes in other cell lines. 

10.3.7 Crossing RNAi screening with signature genes of ABC vs. GCB 

Out of the cohort of 230 gene expression profiles from DLBCL primary samples 

and cell lines, 35 are ABC type and 50 GCB type. Although I mentioned the 

chapter of NetBID2 algorithm that gene expression signature is not robust, the 

signature for ABC and GCB might be an exception because these two subtypes 

are classified based on gene expression signature data. So using the profiles of 

35 ABC and 50 GCB samples, we generated a signature for ABC vs. GCB type 

of DLBCL (Figure 10-11). And crossed top signature genes with RNAi screening 

identified candidates. The selection criteria we applied are the following: 
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 GEPs: as a signature, P<0.05 

 RNAi Screen: 

o Significant in combined ABC vs. GCB: P<0.05 

o Depleted in either only HBL1 (ABC) or only all three GCB lines 

 Significant in combined GEP and shRNA: P<0.05 

With the above selection, 141 genes showed up as shown in Figure 10-12. 

 

Figure 10-11 Heatmap of top signature genes of 35 ABC vs. 50 GCB DLBCL 

profiles. Red means under-expression in ABC relative to GCB, while green is for 

over-expression in ABC. 
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Figure 10-12 Heatmap of top candidates overlapped between signature genes of  

ABC vs. GCB and RNAi screening identified candidates lethal to ABC or GCB. 

―z.GEP‖ is the z score indicating differntial expression of ABC vs. GCB. ―z.shRNA‖ 

indicates the z score of comparing RNAi screening data of ABC vs. GCB cell 

lines. ―z.negGEP.shRNA‖ is a combined z score of negative z.GEP and z.shRNA. 

Negative z.GEP is used because negative z.shRNA for gene X indicating X is 

depleted in ABC samples and we expect it‘s over-expressed in GEP data or 

positive score of z.GEP, but positive z.GEP will cancel z.shRNA out, therefore a 
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negative z.GEP is used to indicate the evidence of being depleted and over-

expressed in one subtype. 

10.3.8 Crossing RNAi screening with NetBID2-predicted drivers of ABC vs. 

GCB 

More interesting and more robust integration is to cross our NetBID2-predicted 

drivers with RNAi screening results to identify driver-type therapeutic targets for 

ABC or GCB-type DLBCL. We used the cohort of 230 DLBCL samples to build a 

B-cell interactome and applied NetBID2 on the signature of 35 ABC vs. 50 GCB 

samples. We applied the following selection criteria and identified 64 driver-type 

therapeutic targets for ABC or GCB-DLBCL (Figure 10-13). 

 GEPs: as a MR, P<0.05 

 RNAi Screening: 

o Significant in combined ABC vs. GCB: P<0.05 

o Depleted in either only HBL1 (ABC) or only all three GCB lines 

If we loosed the selection criteria from requiring depletion in all GCB lines to 

being depleted in at least one GCB line, we got 35 more candidates (Figure 

10-14). 
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Figure 10-13 Heatmap of top candidates crossing RNAi screening results with 

NetBID2-predicted drivers specific to ABC or GCB-DLBCL. ―nES‖ is the 

normalized enrichment score as evidence of being a driver. ―z.GEP‖ is the 

differential expression of ABC vs. GCB. 



346 

 

 

 

 

Figure 10-14 Heatmap of top candidates crossing RNAi screening results with 

NetBID2-predicted drivers specific to ABC or GCB-DLBCL, based on a loosed 

threshold. ―nES‖ is the normalized enrichment score as evidence of being a 

driver. ―z.GEP‖ is the differential expression of ABC vs. GCB. 
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10.3.9 Crossing RNAi screening with CNV data 

In this study, we also had copy number variants (CNV) data for 29 ABC and 26 

GCB DLBCL primary samples. So with CNV data, we identified a list of genes 

that are amplified or depleted in ABC vs. GCB samples (Figure 10-15). Then we 

crossed with RNAi screening results and identified 48 candidates (Figure 10-16) 

with the following criteria: 

 CNVs: as a signature, P<0.05 

 RNAi Screen: 

o Significant in combined ABC vs. GCB: P<0.05 

o Depleted in either only HBL1 (ABC) or only all three GCB lines 

 Significant in combined CNV and shRNA: P<0.05 

 

Figure 10-15 Heatmap of top candidates from CNV profiles of ABC vs. GCB 

samples. Red means amplification while green for depletion. 
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Figure 10-16 Heatmap of top candidates crossing CNV results with RNAi 

screening results for ABC vs. GCB-DLBCL. ―z.CNV‖ indicates amplification (red) 

or depletion (green) in ABC vs. GCB samples. ―z.negCNV.shRNA‖ is the 

combined z score of CNV result with shRNA differential represention score. The 

negative has the same annotation as in Figure 10-12. 
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10.3.10 Crossing RNAi screening with NetBID2-predicted drivers and 

amplified genes from CNV data 

We further filtered the candidates by integrating RNAi screens with NetBID2-

predicted driver and with CNV results, and finally selected only eight driver-type 

candidates (Figure 10-17) that are lethal to ABC or GCB type DLBCL and show 

evidence of amplification in corresponding subtype with the following criteria: 

 GEPs: as a MR, P<0.05 

 CNVs: as a signature gene, P<0.05 

 RNAi screens: 

o Significant in combined ABC vs. GCB: P<0.05 

o Depleted in either only HBL1 (ABC) or only at least one GCB lines 

 Significant in combined GEP, CNV and shRNA: P<0.05 
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Figure 10-17 Selected eight candidates crossing RNAi screens with NetBID2-

predicted drivers and CNV results for ABC or GCB-DLBCL. 

―z.MR.negCNV.shRNA‖ is the combined z score of driver evidence, negative 

CNV score and shRNA screening. ―nES‖ is the driver score.‖z.GEP‖ is for 

differential expression. 
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10.4 On-going and Future Work 

In the results section, I only showed the prediction results and selected promising 

candidate therapeutic targets specific to ABC or GCB type DLBCL. All selected 

targets are being validated by our collaborators. 

Another interesting genetic feature we were interested in is BCL2 translocation. 

We also talked a little about this in this chapter. Literature suggested different 

clinical outcomes of BCL2-translocated and non-translocated patients and needs 

to be treat differently. We have two BCL2-rearranged cell lines (BJAB and 

SUDHL4) and clustering analysis based on functional profiles showed significant 

difference of these two BCL2-rearranged lines with the other two non-rearranged 

cell lines. We have performed similar analysis with ABC vs. GCB subtype and 

identified potential therapeutic targets specific for BCL2-rearrangemnt, which are 

being under validation as well. 
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Chapter 11 Integrating Functional Genomics with Systems 

Biology on Therapeutic Target Discovery for Subtype 

or Genetic-feature Specific Breast Cancer 

11.1 Introduction 

The goal of this chapter is to apply the integrative framework of crossing RNAi 

screening with systems biology to identification of therapeutic targets that are 

specific to subtype-based breast cancer and genetically-defined breast cancer. 

For subtype-based breast cancer, we focused on luminal and basal types which 

are two well-classified forms of breast tumors based on transcriptional profiles. 

We did genome-wide shRNA screens using NGS technology on 16 breast cancer 

cell lines in which four are luminal subtype and eight are basal subtype. From 

RNAi screens, we identified candidates that are lethal to each cell line and lethal 

to only luminal or basal subtype cell lines. In parallel, we applied our NetBID2 

algorithm to TCGA gene expression data of breast cancer and identified drivers 

for basal vs. luminal subtype. Then integrating RNAi results with computationally-

predicted drivers suggested potential therapeutic target candidates for luminal or 

basal type of breast cancer. The graphical explanation of the integration 

framework is shown in Figure 11-1. 



353 

 

 

 

 

Figure 11-1 The integrative framework of RNAi Screening with NetBID2 to 

identifiy potential therapeutic targets specific to basal or luminal type of breast 

cancer. On the left, we did shRNA screening on 16 breast cancer lines including 

8 basal and 4 luminal by NGS. On the right, we applied NetBID2 to TCGA breast 

cancer gene expression profiles to identify drivers of basal vs. luminal subtype. 

Breast cancer can also be classified by various genetic features such as 

amplified oncogenes or depleted tumor suppressors that are causally associated 
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with tumorigenesis or progression. In this study, we applied the same idea in 

Chapter 9 by employing an isogenetic model and mimicking genetic alternations 

in a normal breast cell line, MCF10A. We focused on oncogenes of PI3K, MYC, 

ERBB2, CCND1, and tumor suppressors of E1A (RB1), PTEN. We did shRNA 

screens on those genetically-engineered models. Comparing shRNA abundance 

in mutated cells with the control of wild type, we identified candidates that are 

functionally related to the corresponding oncogene or tumor suppressor, forming 

a synthetic lethal pair. 

11.2 Drivers and Therapeutic Targets for Basal or Luminal type 

Breast Cancer 

11.2.1 Summary for shSeq data of 16 breast cell lines 

We did shRNA screens using high-throughput sequencing or NGS on 16 breast 

cell lines, which are characterized in Table 11-1. Among 16 breast cell lines, 

there are four basal A, four basal B, two normal but basal B like based on 

transcription profiles, and two inflammatory breast cancer (IBC) lines. The 

deconvolution of shSeq data for 16 cell lines is summarized in Table 11-2. In 

generally, over 75% of total reads can be identified in terms of sample conditions 

and shRNA hairpins, and most samples have enough identified reads (over 5 

million in total or 80 per hairpin on average). The default Illumina filtering 

procedure might be useless (last two columns in Table 11-2) because the 

sequence we care about is the first 6 nucleotides for barcodes of samples and 

the 22 nucleotides for hairpin sequence.  
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The shSeq data for all 16 cell lines are in good quality, except T47D highlighted 

as an outlier in Figure 11-2. 

 

Table 11-1 Characteristics of 16 breast cell lines with shRNA screening data.  

BaA=Basal A; BaB=Bsal B; Lu=luminal, ER/PR/HER2/TP53 status: ER/PR 

positivity, HER2 overexpression, and TP53 protein levels and mutational status 

(obtained from the Sanger web site; M=mutant protein; WT=wild-type protein) are 

indicated. Square brackets indicate that levels are inferred from mRNA levels 

alone where protein data is not available. A/B: A is from Neve, et al, Cancer Cell, 

2006; B is from Kao et al, Plos One, 2009. AC=adenocarcinoma; 

AnCa=anaplastic carcinoma; C Sar = carcinoma sarcoma; DC=ductal carcinoma; 

F=fibrocystic disease; IDC=invasive ductal carcinoma; Inf=inflammatory; Met AC 

= metastatic adenocarcinoma PB=primary breast; RM= reduction mammoplasty; 

PE=pleural effusion; BR=Brain W=White; B=Black. 
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Table 11-2 Summary for deconvolution of shSeq data for 16 breast cell lines. 

Numbers in red are the samples that have < 5M identified reads. The last two 

columns are using the default Illumia filtering criteria. 

 

Figure 11-2 Clustering of shSeq samples by normalized data. Each row is for one 

sample condition. Three boxes on each row are the biological triplicates. One 

replicate T47D.T0 is highlighted as an outlier. 

11.2.2 Results of differential representation analysis 

For each cell line, we performed differential representation analysis comparing 

T10 with T0 data at both individual shRNA level by shADER and gene level by 
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BHM algorithm. Summarized statistics including p value and z score are plotted 

in Figure 11-3 and Figure 11-4. 

 

Figure 11-3 Histogram of p value at gene level activity analysis for shRNA 

screens of 16 breast cell lines. The bin width is 0.05. 
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Figure 11-4 Density plot Histogram of z score at gene level activity analysis for 

shRNA screens of 16 breast cell lines. 

11.2.3 Unsupervised clustering of functional profiles separate subtypes 

well 

With functional profiles indicating silencing effects in each line, we asked whether 

the clustering of functional profiles showed consistence with the clustering of 

gene expression profiles that defined different subtypes of breast cancer. So we 

performed unsupervised clustering analysis of 14 breast tumor cell lines using 

their z scores at gene level. As shown in Figure 11-5, these 14 tumor lines can 
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be separated into five clusters: the red one on the left is for HER2+ subtype; the 

yellow one is for luminal; the green one is IBC, the most aggressive form of 

breast cancer, showing very different performance with the others; the blue one 

is for basal B, and the purple one is for basal A. If we only considered two 

clusters, one big cluster on the left is more like luminal subtype including HER2+, 

and the other on the right is more like basal subtype. This suggested that 

functional profiles from shRNA screening are able to separate different subtypes 

well. 

 

Figure 11-5 Clustering of 14 breast tumor cell lines by funtional profiles. 

Functional profile is using differential representation score at gene level. 
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11.2.4 Top candidates that are common in all breast tumor lines 

Before discussing about essential genes specific to any subtype of breast cancer, 

we first asked whether there is any common gene that is depleted or enriched in 

all breast tumor lines. Those candidates might be potential targets for the 

majority of breast tumors. We used Stouffer‘s method to combine shRNA 

screening data of 12 tumor lines with good data and 912 genes were selected 

with a combined p value less than 0.01 (Figure 11-6). 

 

Figure 11-6 Heatmap of functional profiles for top depleted or enriched genes 

(P<0.01) in the majority of 12 breast tumor cell lines. The genes are selected by 
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a combined z score of all 12 tumor lines using Stouffer‘s method. ―12T‖ is the z 

score of combining 12 tumor lines. Similarly, ―4Lu‖ is combining 4 luminal lines, 

―3BaA‖ for basal A lines, ―5BaB‖ for 5 basal B lines including SUM149PT, and 

―2N‖ for two normal lines. 

11.2.5 Sensitivity analysis: difference between depleted essential genes 

and enriched tumor suppressor genes 

With shRNA profiles of a panel of 16 breast cancer lines, we have the ability to 

do so-called ―sensitivity analysis‖ (Figure 11-7) to address the question of how 

sensitive each cell line is to respond RNAi perturbation or how easily to kill a cell 

line by RNAi. Details were discussed in 2.9.2. 

 

Figure 11-7 Sensitivity analysis of shSeq data for 16 breast lines. 
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11.2.6 Supervised clustering analysis of functional profiles identifies 

subtype specific lethal genes 

We performed supervised clustering analysis on basal vs. luminal breast cancer 

cell lines using their functional profiles. Interestingly, top differentially-behaved 

genes in basal vs. luminal types also classify other subtypes well such as HER2+, 

IBC, basal A, and basal B (Figure 11-8).  

 

Figure 11-8 Heatmap of top shRNA screening identified candidates using 

functional profile. Functional profile is defined by differential representation score 

at gene level. Blue stands for depletion while red for enrichment. 
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11.2.7 Functional enrichment of lethal genes specific to basal or luminal 

subtype 

We performed the functional enrichment analysis to identify potential pathways 

that are essential to either basal or luminal type of breast cancer. A combined z 

score was generated for each gene for all luminal lines or basal lines. BSEA 

method was used to estimate the enrichment of known pathways. We identified 

that ESRRA up-regulated targets are lethal to luminal type, ESRRA down-

regulated targets, COPI mediated transport pathway, ribosome pathway are 

lethal to basal type (Figure 11-9). More interestingly, E2F family proteins with 

their targets showed lethal effects to basal type of breast cancer (Figure 11-10). 

 

Figure 11-9 Top enriched pathways by depleted genes in luminal or basal 

subtypes. 
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Figure 11-10  Top enriched pathways by depleted genes in luminal or basal 

subtypes. Top lethal genes in the pathways are listed. 

11.2.8 Crossing with NetBID2-predicted drivers of basal vs. luminal subtype 

Out of 359 TCGA primary breast cancer patients with gene expression profiles, 

78 are classified as basal type and 188 are luminal. With these data, we applied 

the NetBID2 algorithm to predict drivers of basal or luminal breast cancer, and 

then crossed with shRNA screening identified basal or luminal specific lethal 

genes. The integrative analysis with stringent threshold yielded only three 

candidates, in which two signaling proteins, GNA14 and ATP6V1G2, were 

predicted as drivers and showed lethal effects in luminal breast cancers, while 

E2F2 was a therapeutic target candidate for basal type breast tumors. 
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geneSymbol funcType n.shRNAs nES z.DE z.BaVSLu.geneLevel 

GNA14 Sig 3 -2.23 -3.28 4.29 

ATP6V1G2 Sig 3 -2.75 -6 2.26 

E2F2 TF 1 2.39 7.51 -2.34 

Table 11-3 Overlapped candidates of NetBID2-predicted drivers and RNAi 

Screening identified lethal candidates for basal or luminal subtype. ―nES‖, 

normalized enrichment score, indicates the driver prediction strength. ―z.DE‖ 

indicates the differential expression of the gene itself. ―z.BaVSLu.geneLevel‖ is 

the z score of comparing shRNA screening profiles of basal with luminal cell lines. 

GNA14, ATP6V1G2 are potential therapeutic targets for luminal subtype, while 

E2F2 is for basal subtype. 

11.2.9 Consistency with drug sensitivity data 

Out of the 16 breast cell lines we did shRNA screening, we also had the 

sensitivity data for 12 lines treated by 74 small molecules or compounds [247]. 

Known targets for those 74 drugs were also collected from drugbank database 

[248]. We used the drug targets to connect shRNA screening data with drug 

sensitivity data and checked the consistence of drug effects with shRNA 

silencing effects on cell viability. 

Here we only focused on a specificity study of basal and luminal, the two major 

subtypes of breast cancer. The basic idea was to perform specificity analysis of 

comparing basal vs. luminal cell lines using drug sensitivity data only, shRNA 

screening data of drug targets only and a combined meta-analysis of both. The 

results (Figure 11-11, Figure 11-12) suggested that targets of over half of top 
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subtype-specific drugs also show up in the specificity analysis of shRNA screen 

data and half of which show the same direction. 

 

Figure 11-11 Specificity analysis by linear model using drug sensitivity data and 

shRNA screening data, also combination. Combination using known targets of 

drugs matched with shRNA screening data. Combined analysis is done using 

Stouffer‘s method. Purple dashed line indicates the significance level at 0.05. 
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Figure 11-12 Number of significant drugs that are specific to basal or luminal 

using different data source at various p value cutoffs. ―n.drugs‖ is using drug 

sensitivity data only. ―n.drugs.shRNA‖ is based on shRNA data of drugs‘ targets.  

―n.overlap.drugs‖ is the number of overlapped drugs between ―n.drugs‖ and 

―n.drugs.shRNA‖. ―n.consist.drugs‖ is the number of overlapped drugs showing 

consistent direction in both shRNA screening results and drug sensitivity results. 

Green dashed line is half of the green line, and so is the red dashed line. 

We used the functional profiles of targets from top drugs that are specific to basal 

or luminal type to classify basal and luminal breast cancer cell lines, and they 

separated the two subtypes well (Figure 11-13). This again confirmed a large 

consistence of drug data and shRNA screening data. 
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Figure 11-13 Heatmap of top drugs using their sensitivity data and their targets‘ 

shRNA scores. 

Out of top candidates, we observed that luminal breast tumors are sensitive to 

inhibitors of HDAC4 (Figure 11-14) and HDAC1 (Figure 11-15), confirmed by 

their shRNA performance; and basal breast tumor cells are sensitive to inhibitor 

of IKBKB (Figure 11-16) whose shRNA screening data showed the same 

specificity. 
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Figure 11-14 HDAC4 is specific to luminal type breast cancers shown by 

sensitivity data of HDAC4 inhibitors (left) and shRNA screening data of HDAC4 

hairpins (right). 

 

Figure 11-15 HDAC1 is specific to luminal type breast cancers shown by 

sensitivity data of HDAC1 inhibitors (left) and shRNA screening data of HDAC1 

hairpins (right). 



371 

 

 

 

 

Figure 11-16 IKBKB is specific to basal type breast cancers shown by sensitivity 

data of IKBKB inhibitor (left) and shRNA screening data of IKBKB hairpins (right). 

However, there might be some issues with the drug sensitivity data we have to 

be careful with. For example, drugs targeting the same targets might show 

different sensitivity. The sample size of cell lines in each subtype might make the 

analysis less powerful. More data might the produce more accurate results. 

11.3 RNAi Screens to Search for Synthetic Lethal Partners of 

Genetic-features in Breast Cancer 

Breast cancer are also characterized by a number of genetic features such as 

PI3K, MYC, CCND1, ERBB2 oncogenes and PTEN, RB1 tumor suppressors. We 

were also interested in identifying synthetic lethal partners with those genetic 
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features in breast cancer. We used shRNA screening to search for lethal genes 

that are specific to genetic-feature defined breast cancer. To avoid heterogeneity, 

we used an isogenetic model – MCF10A cell line – and genetically introduced 

engineered amplification of PI3K, ERBB2, MYC, CCND1 and depletion of PTEN 

and E1A individually. Then we did shRNA screening using NGS for each of those 

engineered models. 

11.3.1 Summary for the shSeq data of genetically-engineered models 

We performed shRNA screening using NGS technology for six genetically-

engineered MCF10A models including PI3K, ERBB2, MYC, CCND1, PTEN and 

E1A. The cell culture was under 2D system and the infected cells were harvested 

for 10 generations. Most of the shSeq data had enough signals expect MYC 

(Table 11-4). And QC report of normalized data showed all the shSeq data were 

in good shape (Figure 11-17, Figure 11-18). 

 

Table 11-4 Summary of deconvolution of shSeq data for six genetic-engineered 

models. Numbers in red are cases with < 5M total identified reads. 



373 

 

 

 

 

Figure 11-17 Distribution of hairpin count in samples of six genetic-engineered 

models. 

 

Figure 11-18 Heatmap of sample distances and PCA plot of sample of six 

genetic-engineered models. 
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11.3.2 Overall gene level activity for each genetic-feature defined breast 

cancer 

As usual, we performed differential representation analysis at both individual 

shRNA level and gene level for each of the six shSeq datasets. Summary 

statistics including p value (Figure 11-19) and z score (Figure 11-20) showed 

reasonable results as the uniform distribution of non-significant p values. With a p 

value threshold of 0.05, numbers of significant candidates in each of six models 

or in at least 1 to 6 models were summarized in Table 11-5. One interesting thing 

we noticed is that there is a significant bias between number of depleted and 

enriched genes in most of the genetic features: number of depleted genes in 

CCND1, PTEN, PI3K and E1A is much smaller than enriched ones, while ERBB2 

and MYC are on the opposite. 

 

Figure 11-19 Histogram of p values for gene level differential representation 

analysis of shSeq data from six genetic-engineered models. The bin width is 0.05. 
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Figure 11-20 Density plot of z scores for gene level differential representation 

analysis of shSeq data from six genetic-engineered models. 

 

Table 11-5 Number of significant depleted or enriched genes in each of six 

genetically-engineered models (left) and in at least 1 to 6 these models (right). 

P<0.05 is defined as significant. 
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11.3.3 Sensitivity difference between genetic-features in breast cancer 

We were interested in the sensitivity difference of various genetic backgrounds, 

especially the difference between oncogenes and tumor suppressors. Therefore, 

we performed sensitivity analysis by counting the number of depleted or enriched 

genes in each case. As shown in Figure 11-21, for the depleted genes or 

synthetic lethal partner genes, there is a significantly decrease from ERBB2 to 

MYC to PI3K to PTEN to E1A and to CCND1, which can be grouped into ERBB2 

class, PI3K and MYC class, PTEN, E1A and CCNC1 class. In general, 

oncogenes (ERBB2, MYC, PI3K) are much more sensitive than tumor 

suppressors (PTEN, E1A). However, for the enriched genes, there is no such 

clear pattern, consistence with what we have seen in other screening data. 

 

Figure 11-21 Sensitivity analysis of shRNA screening results for six genetic-

engineered models. 



377 

 

 

 

11.3.4 Unsupervised clustering genetic-features in breast cancer by 

functional profiles 

We also did unsupervised clustering of six genetic features using their functional 

profiling scores (Figure 11-22). Interestingly, there is a clear separation between 

tumor suppressors and oncogenes, which might reflect intrinsic and fundamental 

difference between these two types of tumor casual genes. 

 

Figure 11-22 Unsupervised clustering of six genetic-engineered models by their 

shRNA screening functional profiles. 

11.3.5 Top candidates genetic-features in breast cancer by functional 

profiles 

Top candidates or synthetic lethal pair genes were selected by the criteria of p 

value < 0.05 and showing depletion in >= 1 genetic-engineered models (Figure 
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11-23). There are only 16 genes (P<0.05) essential for all 6 driver mutations. The 

clustering based on these depleted candidates also classified tumor suppressor 

genes and oncogenes well. 

 

Figure 11-23  Heatmap of top synthetic lethal partners for each of six genetic-

engineered models. 
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11.4 Ongoing and Future Work 

Identified candidates for basal or luminal type of breast cancer are being under 

validation. Other analysis to identify drivers and therapeutic targets specific to 

basal A, basal B, IBC type of breast cancer will be conducted. This is a joint 

project with Archana Iyer, Celine Lefebvre, Mariano Alvarez and Yao Shen from 

our lab and Jose Silva lab. 
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Chapter 12 Additional shSeq Applications 

12.1 Overview 

In addition to all the projects that employed the NGS-based shRNA screening 

(shSeq) technology for therapeutic target discovery as I demonstrated previously, 

I have also been involved in many other projects by applying shSeq technology 

in different contexts for different purposes. These additional applications are in 

collaboration with over ten labs at Columbia. I have analyzed all shSeq data 

generated at Columbia Genome Center. In total there are over 50 screens with 

over 10 billion of reads, and the data size is over 5 TB data. The following are a 

few examples. 

12.2 Therapeutic Targets for MYCN-amplified Neuroblastoma 

Amplification of MYCN is one of the most important genetic prognosis factors for 

nueroblastoma (NBL). Nueroblastoma patients with amplification of MYCN have 

much worse survival than non-MYCN-amplified patients. In this project, 

collaborating with labs of Darrell Yamashiro and Jose Silva, we aimed to search 

for therapeutic targets for MYCN-amplified NBL by using shRNA screening. We 

used an isogenetic model by introducing MYCN amplification in a MYCN- NBL 

cell line under normoxia and hypoxia environments and did shRNA screening 

using both microarray and NGS technologies. The results shown below were 

based on shSeq data (Table 12-1). Top depleted candidates (Figure 12-1) that 
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are lethal to MYCN-amplified NBL cells were selected from individual analysis of 

normoxia and hypoxia conditions. Pathway analysis revealed that PI3K and GSK 

pathways (Figure 12-2) seemed to mediate MYCN amplification and serve as 

potential targeting avenues to stop MYCN+ NBL cells.  Interestingly, known up-

regulated targets of MYC showed a significant enrichment in depleted genes of 

MYCN+ NBL cells (Figure 12-3) and top depleted MYC activated targets (Figure 

12-4, Figure 12-5, Figure 12-6) might be interesting therapeutic targets for 

treatment of MYCN amplified NBL. 

 

Table 12-1 Summary of deconvolution for shSeq data of MYCN-amplified and 

non-MYCN-amplified nueroblastoma samples under normoxia and hypoxia 

enrionments. ―OFF‖ is dox-off representing MYCN-amplification, while ―ON‖ is for 

non-MYCN-amplificatiion. Numbers in red are the cases with low total number of 

identified reads. 
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Figure 12-1 Heatmap of shSeq profiles for top hairpins depleted or enriched in 

MYCN-amplified NBL lines. 
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Figure 12-2 Top pathways enriched by depleted hairpins in MYCN-amplified NBL 

line under normoxia condition. 

 

Figure 12-3 MYC up-regulated targets is enriched by depleted hairpins in MYCN-

amplified NBL line under hypoxia condition. 
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Figure 12-4 RPL13 and HNRNPA2B1 as MYC activated targets are lethal to 

MYCN-amplified NBL cells. 

 

Figure 12-5 HSPA8  as MYC activated target is lethal to MYCN-amplified NBL 

cells. 
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Figure 12-6 CDC25C as MYC activated target is lethal to MYCN-amplified NBL 

cells. 

12.3 Overcoming Cisplatin or PARP Inhibitor Resistance in 

Small Cell Lung Cancer 

Cisplatin is one of the most commonly used chemotherapeutic agents for solid 

tumor, such as small cell lung cancer because Cisplatin is able to trigger 

apoptosis by causing crosslinking of DNA. However, over 70% of patients with 

Cisplatin treatment are resistant or relapse to develop resistance. PARP1 is 

important for repairing single-strand break and its inhibition causes multiple 

double strand breaks. PARP inhibitor is a new on-trial drug for treatment of lung 

cancer and it has been that shown to have dependence on BRCA-mutated 

cancer cells. However, a large percentage of lung cancer patients have no 

response to PARP inhibitor treatment. Collaborating with Haiying Cheng and 

Jose Silva, this project aimed to search for therapeutic targets or modifiers to 

overcome resistance of Cisplatin and PARP inhibition treatments in small cell 
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lung cancer. Pooled shRNA screens by NGS were performed for a lung cancer 

cell line with and without Cisplatin (IC20 dose) treatment or PAPR inhibitor (IC50 

dose) treatment. DMSO was used as control. Potential modifiers of resistance 

would be dropped out in the treated cells comparing with DMSO control. In the 

NGS data, nine samples were mixed together for barcode sequencing and all 

samples except one were successfully deconvoluted (Table 12-2). Analysis of 

individual hairpins was done using both statistical shADER method and simple 

fold change analysis (Figure 12-7, Figure 12-8 and Figure 12-9). Top candidates 

to reverse resistance to Cisplatin or PARP inhibition treatment were selected 

(Figure 12-11), and top enriched pathways were identified (Figure 12-10). 

 

Table 12-2 Summary of shSeq data for small cell lung cancer with and without 

Cisplatin or PARP inhibitor treatment. Cis=Cisplatin, PARP=PARP inhibitor, 

PARP.C was removed for further analysis because of its low signals. 
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Figure 12-7 Histogram and boxplot of fold change (log2 transformed) of averaged 

and three individual replicates of shSeq data Cisplatin treatment vs. DMSO. 

 

Figure 12-8 Histogram and boxplot of fold change (log2 transformed) of averaged 

and three individual replicates of shSeq data PARP inhibitor treatment vs. DMSO. 
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Figure 12-9 Cumulative distribution plot of log2-transformed fold changes of 

shSeq data of Cisplatin or PARP inhibitor treatment vs. DMSO. 

 

Figure 12-10 Heatmap of top depleted genes in Cisplatin or PARP inhibitor 

treated shSeq samples.  
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Figure 12-11 Top enriched pathways by depleted candidates from shSeq results 

of Cisplatin treatment comparing DMSO control.  

12.4 Genetic Modifiers of SMN as Therapeutic Targets for Spinal 

Muscular Atrophy 

Spinal muscular atrophy (SMA) – the most common genetic cause of death in 

infancy – is a motor neuron disease caused by reduced expression of the 

survival motor neuron (SMN) protein. SMA patients have homozygous loss of the 

SMN1 gene and retain at least one copy of the nearly identical SMN2 gene. 

Currently, there is no effective treatment for SMA and most therapeutic efforts 

focus on identifying strategies that enhance expression of SMN from the SMN2 

gene. However, discovery efforts for SMA therapeutics are hampered by the 

limited knowledge of suitable targets. Collaborating with Livio Pellizzoni and Jose 

Silva, this project aims to identify and characterize cellular factors that control the 
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expression and function of the SMN protein with the ultimate goal of identifying 

novel avenues of therapeutic intervention for SMA via genome-wide RNAi 

screening. Preliminary results were reported in Table 12-3 and Figure 12-12. 

 

Table 12-3 Summary of deconvolution of shSeq data for SMA project.   

 

Figure 12-12 Histogram of p values and density plot of z scores from differential 

representation analysis at individual hairpin level. 
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12.5 Positive shRNA Screens to Identify Novel Modulators of 

P53 Pathway 

In collaboration with Wei Gu and Jose Silva, this project aims to identify genes 

that are able to survive P53 induced apoptosis as potential modulators of P53 

pathway. A positive shRNA screen using NGS was carried out on a P53 null cell 

line with and without P53 inducement in four replicates. The deconvolution of 

shSeq data looked fine (Table 12-4), however, the distribution of read counts 

(Figure 12-13) and results of differential representation analysis (Figure 12-14) 

reflected some flaws of this experiment. For example, there is one or two hairpins 

which have a count of over 2M, about 1/5 of total reads in each sample, and the 

majority of hairpins have zero or very low count. Also the distribution of non-

significant p values showed abnormal behavior. 

 

Table 12-4 Deconvolution table of shSeq data for P53 positive screen project. 
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Figure 12-13 Consistence of replicates for shSeq data of P53 positive screen.  

 

Figure 12-14 Histogram of p values and density plot of z scores from differential 

representation analysis at individual hairpin level. 
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12.6 Overcoming Resistance to Glucocorticoid or NOTCH-

inhibition in T-ALL 

This study continued the project of glucocorticoid resistance in Chapter 7 and 

Chapter 8 by using NGS technology and screening one more cell line, and also 

aimed to identify therapeutic targets to reverse resistance of NOTCH-inhibition, 

another major strategy for treatment of NOTCH1-mutated T-ALL. Genome-wide 

shRNA screens by NGS were performed on three cell lines with and without 

glucocorticoid or NOTCH-inhibitor treatment, in which all three are resistant to 

glucocorticoid and two are resistant to treatment of NOTCH inhibition. 

 

Table 12-5 Deconvolution of shSeq data for glucocorticoid or NOTCH-inhibition 

resistance in T-ALL. The sequence run in dark red is the re-sequenced because 

of a technical flaw of previous run.  
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Figure 12-15 Heatmap of sample distances and PCA plot of samples showed 

consistence with biological meanings. 

 

Figure 12-16 Unsupervised clustering of conditions in shSeq studies for 

glucocorticoid or NOTCH-inhibition resistance in T-ALL. 
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Figure 12-17 Sensitivity analysis of shSeq studies for glucocorticoid or NOTCH-

inhibition resistance in T-ALL. 

 

Table 12-6 Number of significant (P<0.05) candidates in each of the five cases or 

in at least one to five cases of shSeq studies for glucocorticoid or NOTCH-

inhibition resistance in T-ALL. 
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Figure 12-18 Top candidates that are depleted in at least one of five cases in 

shSeq studies for glucocorticoid or NOTCH-inhibition resistance in T-ALL. 

Deconvolution (Table 12-5) and QA (Figure 12-15) showed all shSeq data were 

in good shape. In unsupervised clustering (Figure 12-16), functional profiles from 

the same cell line were clustered together, revealing intrinsic difference between 

the three cell lines. Sensitivity analysis (Figure 12-17) showed a decrease of 

sensitivity from CUTLL1 to HPBALL to JUKAT. Top candidates (Table 12-6, 

Figure 12-18) identified to reverse either of the two resistances are being under 

validation.  
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Chapter 13 A Dynamic Web System for Collaboration 

Management 

13.1 Overview 

To facilitate our research and to manager a large number of collaborative 

projects, in winter 2009, I developed a user-friendly and dynamic web system for 

the lab (http://califano.c2b2.columbia.edu). This system is under Apache-PHP-

MySql framework. It is based on Drupal [249] an open-sourced content 

management system and Open Atrium [250], an Drupal-enabled team 

collaboration tool. It is project or group-oriented: each project is a group and 

within the group, you can create accounts for your collaborators and add existing 

users into this group. You can share documents, blogs, events, tweets, 

comments, or anything within the group. You can make the group public or 

private. This system also supports different user roles with different level of 

permissions. So far over 60 groups have been created and over 120 users, of 

which half are collaborators, have been added. 

13.2 Features 

In the following, I will demonstrate with snapshots a few representative features 

for collaboration management in this web system. 

http://califano.c2b2.columbia.edu/
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13.2.1 Dashboard 

Dashboard is the default home page after you log into the system (Figure 13-1). 

It shows the latest activities in your groups including shoutbox messages, blog 

teasers and list of group-tagged activity titles. ―All activity‖ shows all activities you 

are permitted to view. ―My threads‖ shows the posts that you are subscribed to. 

―Files‖ shows you any files that have been attached to new posts (Figure 13-2). 
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Figure 13-1 Collaborative web system: site dashboard - home page 
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Figure 13-2 Collaborative web system: site dashboard - files 

13.2.2 Group 

The key feature of this system is to organize contents in groups (Figure 13-3, 

Figure 13-4, Figure 13-5, and Figure 13-6). A group could be created for (only by 

current member) 

 an on-going project by who is mainly in charge (group admin) 

 a topic of interest: e.g. Computational Group 

 general membership: Lab General Activities. 

The user who creates the group is automatically as group admin, which can 

add/approve new members, give member admin permission, add new account 

for collaborator and modify group settings, etc. 

There are two types of groups supported: 
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 Public group: everything is public to all users in the system 

 Private group: only available for group members. 

 

Figure 13-3 Collaborative web system: my groups 

 

Figure 13-4 Collaborative web system: group list 
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Figure 13-5 Collaborative web system: users-groups 

 

Figure 13-6 Collaborative web system: group dashboard – home page 
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13.2.3 User Roles 

This system is customized to have different roles for different levels of permission 

to control the management and collaboration (Figure 13-7). It supports the 

following roles: 

 Manager: manage all projects and all members 

 Current Member: create groups, access their own and all public content, 

access view profiles 

 Collaborator: only access their groups and public content, cannot create 

group and view group directory, cannot view other people‘s profiles 

 Intern or Rotation Student: similar with collaborator except they can view 

group directory 

 Past Member: similar with collaborator. 

 

Figure 13-7 Collaborative web system: users in different roles 
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13.2.4 Document / Wiki 

The most commonly used content type to share and communicate within a group 

is document or wiki page (Figure 13-8, Figure 13-9). A document could be 

 a web page for project description, software usage, useful resources 

 a collection of presentation slides (in the attachment) 

 a manuscript by many authors. 

The document content type has the following features: 

 Organized by the format of book (Figure 13-11) 

 Wiki: editable by any people in the group 

 revision control: revert, show diff (Figure 13-10). 

 

Figure 13-8 Collaborative web system: document list in a group 
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Figure 13-9 Collaborative web system: a document 

 

 

Figure 13-10 Collaborative web system: revision history of a document 
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Figure 13-11 Collaborative web system: document creating page 

13.2.5 Calendar Event 

The calendar event is used for manage and record lab meetings or meetings with 

collaborators (Figure 13-12). An event could be 

 a lab meeting 

 a seminar or talk you would like to share with people 

 a conference outside. 
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Figure 13-12 Collaborative web system: calendar and event 
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13.2.6 Blog 

A blog entry (Figure 13-13) is generally used for 

 a discussion for anything about the project or group 

 a review or comment on interesting papers 

 a further discussion about a seminar talk or a presentation 

 any suggestion to your group or the lab 

 anything about your life and research. 

 

Figure 13-13 Collaborative web system: blog in a group 
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13.2.7 Project and case tracker 

You can create projects within a group, assign it to any group members and keep 

track of the project status using the feature of ―Case Tracker‖ (Figure 13-14). The 

status of a case can be Open, Resolved, Deferred, Duplicated, Closed. The 

priority can be defined as High, Normal, or Low. You can also define case types. 

 

Figure 13-14 Collaborative web system: project case tracker 
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13.2.8 Shoutbox / Twitter 

The shoutbox feature (Figure 13-15) is like the twitter or facebook status function 

to share a short message, a link, a comment, a word about your mood, etc. 

 

Figure 13-15 Collaborative web system: shoutbox or twitter in a group 

13.2.9 Images 

Image feature is used to share photos or images organized in galleries (Figure 

13-16).  
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Figure 13-16 Collaborative web system: image or photo collection 

13.2.10 Notification and others 

Notification feature allows the user to send out email notification when a content 

entry is created or updated. The user can choose subscribe to all content type in 

the group or to author so that the notification will be automatically sent out. 

There are many other web 2.0 or web 3.0 features that this system supports, 

such as personalization, in which you can customize background color, logo, 

layout of your group and customize your personal page including background 

color, avatar, profiles, editor, etc. The content in the system is context-dependent, 

which only shows related links or tabs when you are view a page. It also supports 

WYSIWYG (What You See Is What You Get) html editor for easier content 

writing. 
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13.3 Insights into Biological Systems from Software Systems 

This website I created for lab collaboration management is a software 

engineering system which is built by different elements on different layers. 

Actually from the architecture of this engineering system, we might gain some 

insights into reverse-engineering and better understanding the nature or 

biological system (Figure 13-17). For example, the data content in this web 

system is similar to DNA, RNA or protein in the cells of biological system; the 

underlying modules in the web system are like the signaling transduction,  

 

Figure 13-17 An analogy among software system, hardware system and 

biological natural system. 



413 

 

 

 

transcription, translation, regulation, and other basic and fundamental units in the 

living cells; blocks or menus that are built on those underlying modules in the 

web system are the functional pathways or biological processes that are formed 

by basic units; also in the web system different users or units have various 

permissions to function normally and similarly in the cellular system, different 

players have specific rules to function well; finally the beautiful web styles and 

themes we view are like the phenotypes of biological system. The ―bottom-up‖ 

construction framework to engineer a functional software system helps us on ―up-

down‖ reverse-engineering of biological system. Additionally, the improvement of 

modules in current system on reusability, scalability and robustness also shed 

light on how to decipher underlying pathways in biological system (Figure 13-18). 

 

Figure 13-18 Insights from Drupal future to Pathway future: reusability, scalability 

and robustness. 
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Chapter 14 Conclusions 

14.1 Key Contributions and Findings 

In this dissertation, I have showed you the power of integrating functional 

genome-wide RNAi screens with systems biology of cancer genomics to discover 

driver-type therapeutic targets for reversal of drug-resistance or treatment of 

aggressive human tumors.  

14.1.1 NGS-based shRNA screening (shSeq): an analytical pipeline 

For high-throughput RNAi screening, I have focused on NGS-based pooled 

shRNA screening (shSeq). The shSeq technology is new and there are no 

established tools to analyze such new data. I have developed a computational 

pipeline with a series of algorithms and software packages to deconvolute, QC 

and post-analyze shSeq data as detailed in Chapter 2. Specifically, the 

ShortRead+ package is used to do QA of raw NGS data; the shScanner package 

is for deconvolution of shSeq raw reads; shSEQ package is to annotate, 

normalize and do a secondary QC of shRNA abundance profiles; the method of 

shADER is for differential representation analysis at individual shRNA level, and 

the package of shMA/BHM is at gene level to identify potential depleted or 

enriched hits or candidates. 

In particular, I have developed a novel ―Modeling-All-Together‖ strategy using 

Bayesian hierarchical modeling (BHM) approach as shown in Chapter 3 to 
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integrate multiple shRNAs targeting the same gene and estimate gene level 

activity. I have demonstrated that this algorithm consistently outperforms existing 

―Separate-And-Combine‖ methods such as RIGER, RSA, etc, especially when 

the data is in low-quality. 

14.1.2 Systems biology of cancer genomics: NetBID2 

In parallel, for systems biology of cancer genomics, I have developed a 

computational algorithm, Network-based Bayesian Inference of Disease Drivers 

(NetBID2), to infer regulatory or signaling drivers of diseases from high-

throughput transcriptomic data or gene expression profiles as detailed in Chapter 

4. NetBID2 is based on reverse-engineering cellular network and Bayesian 

inference. I have demonstrated that NetBID2 is more robust than conventional 

expression signature analysis; it is able to detect not only known drivers of 

human cancers but also, more importantly, the hidden drivers that traditional 

methods fail to find. Furthermore, experimental validation results have showed 

high prediction rates (>75%) of NetBID2. 

Additionally, for a key step of NetBID2 framework, I have developed a new 

enrichment analysis algorithm, Bayesian Set Enrichment Analysis (BSEA), as 

described in Chapter 5. BSEA uses ―maxmean‖ statistic to summarize 

enrichment score but is under Bayesian framework. According to evaluation 

results, BSEA consistently outperforms existing GSEA and GSA methods. 
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14.1.3 Successful studies of integrating functional genomics with systems 

biology for driver-type therapeutic target discovery 

By integrating functional RNAi screens with NetBID2, I have identified known and 

novel driver-type therapeutic targets in various disease contexts. For example, in 

Chapter 7, I have discovered that AKT1 is a driver for glucocorticoid (GC) 

resistance, a significant clinical problem in the treatment of T-ALL. We have 

validated, both biochemically and pharmacologically, that the inhibition of AKT1 

is able to reverse GC-resistance in T-ALL. Additionally, integration of systems 

biology predictions with shRNA screens (Chapter 8) identified 16 master 

regulators of GC resistance, out of which 13 have been validated to significantly 

overcome resistance upon silencing, and more surprisingly, 10 have showed 

stronger effects than positive controls to sensitize GC-resistant T-ALL cells. 

In breast cancer, I have discovered that STAT3 is required for transformation of 

HER2+ breast cancer, an aggressive breast tumor subtype (Chapter 9). The 

suppression of STAT3 has been confirmed in vitro and in vivo to be an effective 

therapy for HER2+ breast cancer. Moreover, my analysis has revealed that 

STAT3 silencing has a co-dependence on ER-. 

With my integrative framework, I have also identified potential therapeutic targets 

for ABC or GCB-type DLBCL (Chapter 10) and subtype-based breast cancer 

(Chapter 11) that are currently being validated. 
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14.1.4 Collaboration model between computational and experimental 

biologists 

This dissertation has demonstrated a perfect collaboration model between 

computational and experimental biologists. As a computational biologist, I have 

been interacting well with my biologist collaborators and have achieved a few 

successful interdisciplinary stories as shown in previous section. Additionally, I 

have been collaborating with over ten biological labs (Chapter 12) to apply my 

computational framework of shSeq technology for therapeutic target discovery or 

genetic modifier identification. Besides, I have developed a user-friendly and 

dynamic web system to manage collaborative projects (Chapter 13), which has 

helped to facilitate and speed up the communication between computational 

biologists and experimental biologist collaborators. 

14.2 Future Directions 

In this dissertation, I have shown that genome-wide RNAi screening technology, 

especially NGS-based pooled shRNA screening (shSeq), is indeed a powerful 

tool for therapeutic target discovery. However, there is much space to improve 

this technology and analysis of shSeq data. First, design of high quality shRNA 

library is much needed due to low silencing efficiency and off-target effects of a 

significant number of hairpin constructs in current libraries. A recent study [61] of 

enumerating RNAi performance of all possible hairpins sequences using a tilled 

sensor assay approach provides an opportunity to learn and develop an 

algorithm of optimal shRNA design based on sequence features of targeting 
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genes, therefore yielding a quality-improved and coverage-enlarged shRNA 

library. Second, with a design algorithm of shRNA construct, we can predict the 

knock-down efficiency or quality of existing hairpins in current library and filter or 

weight them when estimating gene level activity by integrating all shRNAs 

targeting the same gene. Third, the deconvolution of shSeq raw reads can be 

improved, in both time and space efficiency, by using optimal data structure such 

as suffix array or suffix tree. Additionally, Poisson distribution is currently used to 

model shSeq count data in differential representation analysis; however, negative 

binomial distribution might be a better try as widely used in RNA-Seq data 

analysis. Besides, it‘s challenging to extend the biological models of shRNA 

screening from 2D to 3D or in vivo systems, which are more close to the true 

living system. 

In this dissertation, we mainly focus on transcriptomic data or gene expression 

profiles, and use them to integrate with RNAi screening data. However, there are 

many other types of cancer genomic data such as copy number variations, SNPs, 

epigenomic, proteomic profiles and microRNA expression data, which are widely-

available and might be mined to cross with functional RNAi screens for discovery 

of underlying genetic mutation causes or dependence or translational and 

regulatory modifiers. 

Additionally, large amounts of context-specific small-molecule screens provide 

valuable resources and information for study of mechanism of actions for small 

molecules. Therefore, integration of small-molecule screens with functional RNAi 
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screens would be able to identify drugs or compounds targeting RNAi screening 

identified therapeutic targets in specific tumor contexts, which will boost up 

cancer drug discovery. 
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Appendix A: High-throughput RNAi Screening: 

Experimental Approach
4
 

1.1 Introduction 

RNA interference (RNAi), a cellular process that regulates gene expression, has 

emerged as a powerful genetic venue to functionally interrogate the entire 

genome by loss-of-function studies. Small regulatory RNAs (siRNAs and miRNAs) 

bind to the enzymatic RNAi machinery and suppress the expression level of 

targeting mRNAs [2]. This process can be experimentally controlled to knock 

down the expression of any specific gene. 

Response to transfected siRNAs is transient, from 3 to 7 days, making this 

approach unsuitable for the analysis of silencing long-term effects. The search 

for a sustained silencing response has resulted in the development of a class of 

RNAi triggers denominated short hairpin RNAs (shRNAs). Plasmids expressing 

shRNAs are integrated into the cell genome, so that by continuously supplying 

the RNAi trigger, stable gene silencing can be achieved [3].  

Several groups have previously described the construction of shRNA libraries 

that cover a significant fraction of all human genes [4-7]. In this chapter, we use 

                                            

4 This chapter is co-authored by my collaborator Ruth Rodriguez-Barrueco from 
Jose Silva lab, based on her book chapter [1]. 
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Thermo Scientific Open Biosystems GIPZ Lentiviral Human shRNAmir Library as 

a model to illustrate the accomplishment of genome-wide RNAi screening. The 

library is composed of 58,493 hairpin constructs, in which 39,458 shRNAs are 

known to target 18,661 human genes, about 75% of the human genome. These 

shRNA-mirs are modeled after endogenous miRNAs, specifically contained in the 

backbone of the primary miR-30 microRNA [6]. Additionally, targeting sequences 

were selected, by a mathematical algorithm, to fit thermodynamic asymmetry 

rules. Overall, these shRNA libraries offer a convenient, flexible, and highly 

effective tool for studying gene function in human cells. 

There are two main approaches for screening large collections of silencing 

triggers for their effects on mammalian cells: cell-based assay and pooled 

screening. In the first method, individual siRNA or shRNA is transfected and 

screened in a multi-well format for the activation or repression of a reporter [8, 9]. 

In this format, individual genes are transiently suppressed 'one-by-one' and 

analysis is carried out in a high-throughput manner using a robotic platform. 

However, this method is expensive, labor intensive, and time consuming. On the 

other hand, pooled screening allows the ability to analyze the effects of the whole 

library at once. If, for example, a gene targeted by a particular shRNA induces 

response to a growth inhibitor stimulus, then its representation should increase 

after treatment. If a given shRNA sensitized a population to a specific stress, 

then, the relative abundance this shRNA should diminish after the stress. Using 

RNAi libraries in a pooled fashion provides the opportunity to investigate the 
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entire genome in loss-of-function studies and to find genes relevant to any 

biological process.  

The RNAi library can be used to perform either positive or negative screening 

(Figure 1). In a positive screen, cells that survive a selection pressure or that 

show a differentiating phenotype are selected. The specific shRNA leading to the 

recognizable cell population can be sequenced from the genomic DNA of 

isolated colonies or analyzed in a high throughput fashion. When performing a 

negative screen, populations that are sensitive to a selection pressure or that 

show an impaired growth are selected. In this case, the integrated shRNA will be 

depleted in the final population; microarray hybridization or next generation 

sequencing (NGS) technologies can be used to read out hairpin abundance. 

Careful design of the experimental pipeline is essential to answer the biological 

question. In the following sections, a protocol for conducting both positive and 

negative screens is described. 
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Figure 1 Procedure of a shRNA screen: transduce shRNA lentiviral library into 

cells of study with a MOI of ~ 0.3, filter out uninfected cells, grow cells for X 

doubling times, extract genomic DNA from T0 and TX, PCR amplify them, and 

then measure the shRNA abundance either by microarray or next generation 

sequencing. 
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1.2 Materials 

1.2.1 shRNA Library 

The library pool consists of 58,493 shRNAs integrated into the backbone of 

miR30 and cloned into the pGIPZ lentiviral vector (Open Biosystems GIPZ 

Lentiviral Human shRNA Library). It is known that 39,458 of these shRNAs target 

18,661 human genes, which accounts for about 75% of the human genome. 

Number of haiprins varies in different platforms (Table 1-3), but on average, each 

gene has two to three shRNAs. Combining RNA polymerase II promoters with 

shRNAs in miR30-backbones permits efficient suppression even with the 

integration of a single copy. Each shRNA cassette contains two unique identifiers: 

the shRNA itself and a random 60-nucleotide barcode that was determined for 

the identification of a single shRNA amongst the human shRNA library. Overall, 

the shRNA library offers a convenient, flexible, and effective tool for studying 

gene function in human cells [10]. 

# 

shRNAs 

1 2 3 4 5 6 7 8 9 10 13 total 

Freq 

(genes) 

4092 4238 2792 1065 347 110 30 10 2 2 1 12689 

Table 1 Barcode-probed microarray platform: number of shRNAs frequency. 

# 

shRNAs 

1 2 3 4 5 6 7 8 9 10 11 12 13 15 total 

Freq 

(gene) 

2801 4362 4278 1837 678 248 88 27 13 8 2 1 1 1 14345 

Table 2 Hairpin-probed microarray platform: number of shRNAs frequency. 
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# 

shRNAs 

1 2 3 4 5 6 7 8 9 10 11 13 Total 

Freq 

(genes) 

6934 5983 3628 1355 480 167 60 24 12 4 4 1 18652 

Table 3 Next generation sequencing platform: number of shRNAs frequency. 

1.2.2 Bacterial media 

Prepare, sterilize, and store the solutions at room temperature.  

1) SOC media: In a glass beaker, mix 0.5 g of NaCl, 5.0 g of yeast extract, 20 g 

of tryptone, 2.5 mL of 1M KCl, and 10 mL of 1M MgCl2. Add about 900 mL of 

ultrapure water and adjust the pH to 7.0 with NaOH. Using a cylinder, 

complete with water to one liter. Autoclave the solution, and while still warm 

add 10 mL of 40% Glucose.  

2) LB low salt media: In a beaker mix, 5 g of NaCl, 10 g of tryptone, and 5 g of 

yeast extract. Add 900 mL of ultrapure water and adjust the pH to 7.5 with 10 

M NaOH. Using a cylinder, complete with water to one liter. Before using, 

autoclave the solution. 

3) LB Ampicillin plates: In a beaker, mix 10 g of NaCl, 10 g of tryptone, 5 g of 

yeast extract, and 15 g of agar. Add 900 mL of ultrapure water and adjust the 

pH to 7.4. Using a cylinder, complete with water to one liter and autoclave the 

solution in a bottle. Once the LB agar is warm, add 1 mL of Ampicillin 

prepared as described in section 2.2.3. 

4)  Following sterile procedures pour the LB agar in to plates.  
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1.2.3 Antibiotics 

Prepare the solutions as described below. Once resuspended, filter and then 

prepare 1 mL aliquots. Store at -20 °C. 

1) Ampicillin: Weigh 1 g of Ampicillin and put into a conical tube. Add 10 mL 

of ultrapure water and dissolve by shaking.  

2) Zeocin: Weigh 1 g of Zeocin, put into a conical tube, and dissolve in 10 mL 

of ultrapure water.  

3) Puromycin: On a precision scale, weigh 20 mg of Puromycin. Add 10 mL 

of ultrapure water and dissolve by gently shaking the tube.  

1.2.4 Linear PEI  

Polyethylenimine (PEI) [11] is available in branched and linear forms and can be 

found in different molecular size polymers. However, low molecular Linear PEI 

(25kDa) is the one that shows the best transfection efficiency in our hands. The 

preparation of Linear PEI may be difficult because it is not highly soluable in 

water. To mix the linear PEI, it is necessary to stir and heat for a long time. As 

described in the Methods section, the drop by drop addition of HCl to the water is 

necessary to fully dissolve the Linear PEI. 

1. On a precision scale, weigh 323 mg of Linear PEI 25,000 Da. 

2. In a glass beaker, add 90 mL of ultrapure water and mix by warming and 

stirring the solution. Add HCl drop-wise until the product is completely 

dissolved. Make sure to mix between each drop.  
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3. Using a cylinder, adjust the volume of the solution to 100 mL. Store at -20 °C 

as a concentrated stock. 

4. Prepare the working Linear PEI solution by diluting the stock 1/10: In a 

conical tube, mix 9 mL of ultrapure water and 1 mL of concentrated Linear 

PEI. Mix by inverting the tube several times. Store the transfection reagent at 

4 °C until use.  

1.2.5 DNA precipitation 

3M NaOAc: In a glass beaker, dissolve 24.6 g of NaOAc in 80 mL of ultrapure 

water. Adjust the pH to 4.8 with Glacial Acetic Acid. Complete to 100 mL with 

ultrapure water. Autoclave the solution and store at room temperature.  

1.2.6 PCR primers sequence (Table 4) 

Name Sequence 

Illumi

na 

Fw1 

5‘- 

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTatcacgT

AGTGAAGCCACAGATGTA - 3‘ 

Illumi

na 

Fw2 

5‘- 

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTcgatgtT

AGTGAAGCCACAGATGTA – 3‘ 

Illumi

na 

Fw3 

5‘- 

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTttaggcT

AGTGAAGCCACAGATGTA – 3‘ 

Illumi

na 

Fw4 

5‘- 

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTtgaccaT

AGTGAAGCCACAGATGTA – 3‘ 

Illumi

na 

Fw5 

5‘- 

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTacagtgT

AGTGAAGCCACAGATGTA – 3‘ 
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Illumi

na 

Fw6 

5‘- 

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTggcaatT

AGTGAAGCCACAGATGTA – 3‘ 

Illumi

na 

Rv1 

5‘-  CAAGCAGAAGACGGCATACGAGCTCTTCCGATCTGTAATCCAGAGGTTGATTGTTCCA -3‘ 

Table 4 Sequence of example PCR primers including Illumina barcode for PCR 

preparation of RNAi screening 

1.2.7 Labeling 

1) Random primers: A random sequence of 6 nucleotides is used (NNNNNN). 

Dissolve dry hexamers in ultrapure water to a concentration of 100 OD 

units/mL; this corresponds with 15X concentrated primers. Make 5X primer 

Prepare aliquots and store at -20°C. 

2) 

1 M MgCl2

of ultrapure water. Mix by inverting the tube several times. Prepare 1 mL 

aliquots and store at -20 °C. 
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1.3 Experimental Procedures of a RNAi Screen 

1.3.1 Library preparation 

1.3.1.1 Bacterial transformation 

1) Thaw two vials of high efficiency electrocompet

bacteria per vial). 

2) 

tapping. 

3) 

careful not to generate bubbles and be careful to keep the cubette on ice at 

all the times. 

4) Prepare four polypropylene round-bottom tubes with 5-10 mL of SOC media 

(each tube will correspond with an electroporation cubette). 

5) Dry the cubette, put into the electroporator, and switch the electroporator on. 

Immediately, add 1 mL of SOC media to the cubette and pipette up and down 

gently. Collect the bacteria and pipette in to the previously prepared SOC 

media. Note that having an optimal bacterial transformation is critical to 

maintain the representation of the library. To ensure this it is important to 

perform every step gently and to keep the bacteria on ice at all times. After 

electroporation, the bacteria have to be pipetted in to SOC media immediately. 

This works better if the cubettes are electroporated one by one. 

6) Let the bacteria recover for 1 hour in a 37°C shaker. 
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7) 

of the transformation. Testing the efficiency of the transformation is an easy 

control for the efficiency of this process. The library is composed of almost 

60,000 shRNA and it has been determined that a good representation is 

having at least a representation of 1,000 times per shRNA; thus 6*107 

bacteria have to be transformed. From the 1 mL of bacteria that you remove, 

prepare the following dilutions: 

a. Dilution 1- 

colonies. 

b. Dilution 2- 1): You 

expect about 60 colonies. 

c. Dilution 3- 

expect more than 6 colonies. 

over night. Count the colonies the next day. 

8) Put to grow in a 37 °C shaker until saturation-usually about 24 hours.  

1.3.1.2 Plasmidic DNA extraction 

1) Harvest the bacterial cells by centrifugation at 6,000 x g for 15 minutes at 4°C. 

2) Using the QIAGEN Plasmid Mega Kit, follow the manufacturer‘s instructions 

to extract the plasmidic DNA.  
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1.3.1.3 Library validation 

It is necessary to confirm that the representation of each shRNA in the new 

plasmid library is equal to the representation of each shRNA in the original one. 

This can be checked by either hybridization to custom microarrays or by NGS of 

the PCR product (as described in section 2.3.7). 

1.3.2 Virus production 

Following sterile procedures, carry out all of the cellular manipulation in a hood.  

1.3.2.1 Plate Phoenix cells (Day 1) 

Aspirate the media from the Phoenix cells plate and wash with sterile PBS. 

Remove the PBS and add 1.5 mL of trypsin to cover the plate. Place 3 mL of 

PBS + 20% FBS into a conical tube. Once the cells have detached from the 

surface of the plate, take the liquid with a pipette and add to the conical tube. 

Centrifuge the cells at 1,200 rpm for 5 minutes at room temperature. Aspirate the 

media and resuspend the pellet in 5 mL of DMEM + 10% FBS. Count the cells 

and plate the amount necessary to have a confluency of 50-70% the next day. 

The number of cells plated the day before depends on the size of the plate, being 

optimal: 

a. In a 6-well plate: 6*105 - 8*105 cells 

b. For a 10 cm plate: 3*106 - 4*106 cells 

c. In a 15 cm plate: 6*106 - 8*106 cells 
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1.3.2.2 Transfection (Day 2) 

The following protocol has been constructed to perform a transfection in a 10 cm 

plate. If there is a need to increase the volumes, follow the instructions as 

described in Table 5 for DNA amount and Table 6 for linear PEI amount. 

Plate Total Lentiviral PMD CMV NaCl 

6-well      

10 cm 12      

15 cm      

Table 5 DNA amount reference for plate volume adjustment during transfection 

of RNAi screening 

Plate Linear PEI 

volume 

NaCl 

6-well   

10 cm   

15 cm   

Table 6 Linear PEI amount reference for plate volume adjustment during 

transfection of RNAi screening 

1) 

[12], and then pipette up and down several times. 

To the DNA mix, add 150 mM NaCl to Vortex 

gently and spin down briefly. 

2) 

directly to the liquid. Vortex gently and spin down briefly. 
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3) solution. Mixing 

the solution in the reverse order may reduce the transfection efficiency. 

4) Vortex the solution immediately and spin down briefly. 

5) Incubate for 20 minutes at room temperature 

6) -wise to the cells in in a 

10 cm plate containing 10 mL of serum-containing medium and homogenize 

by gently swirling the plate. Return the plates to the cell incubator. 

1.3.2.3 Change media (Day 3) 

Carefully remove the media from Phoenix cells and replace with fresh DMEM + 

10% FBS media. The efficiency of the transfection can be assessed by 

visualizing the green cells with a fluorescence microscope. 

1.3.2.4 Collect the virus (Day 4) 

Collect the virus-

sterile filter. This virus-containing media can either be used to directly infect the 

cells or can be concentrated.  

1.3.3 Infection (Figure 2) 

Following sterile procedures carry out all of the cellular manipulation in a hood. 

The conditions for infection must be determined for each different cell line and 

batch of virus prepared, as described in section 2.3.4. 

1) Day 1: In a 6-well plate, plate the appropriate number of cells that is needed 

to perform the screen. 
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2) Day 2: In a conical tube, prepare a mix of fresh media and virus-containing 

media at the ratio calculated to produce a low infection efficiency. Add 

 

Remove the media from the 6-well plates and add the previously prepared 

mix. Centrifuge the plates at 1,000 rpm for one hour at room temperature. 

After the centrifugation, place the plates back in to the cell incubator. 

3) Day 3: Change the media of the infected cells. 

 

Figure 2 Pipeline for transfection and infection protocol in RNAi screening. 

Transfection procedure is schematized in the upper part of the panel. Plate 

Phoenix cells for a confluency of about 50 -70% the next day. On the second day 

follow transfection protocol and change the media 24 hours after. Finally, collect 

and filter the virus-containing media, this media can be directly used to infect the 

target cells or stored at -20 °C. The infection protocol is outlined under the 

dashed line. Plate the target cells for 30% confluency and allow them to attach. 
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The next day, remove the media and replace with media/virus-containing media, 

centrifuge the plate, and place back into the incubator. Change the media the 

next day and allow the cells to recover. Infection efficiency can be tested the next 

day or antibiotic can be added this same day to remove the uninfected cells. 

1.3.4 Infection efficiency test 

It is crucial to have a multiplicity of infection (MOI) lower than 1 (usually between 

0.1 and 0.3) to ensure that any observed effects are in response to the effects of 

a single shRNA. To ensure this, the number of cells and the ratio media to virus 

must be adjusted to have an efficiency of infection of 10 - 30% (see Note 7). In all 

the procedures, the manipulation of the cells must be performed in sterile 

conditions.  

The success of the screen depends on the fact that only single viral particle 

infects every cell, thus transductions should be performed at multiplicity of 

infection of less than 1 (typically between 0.1 and 0.3) having in account the 

Poisson distribution (Table 7). 

MOI 0 1 2 3 4 

0.1 0.90 0.09 0.00 0.00 0.00 

0.2 0.82 0.16 0.02 0.00 0.00 

0.3 0.74 0.22 0.03 0.00 0.00 

0.4 0.67 0.27 0.05 0.01 0.00 

0.5 0.61 0.30 0.08 0.01 0.00 

0.6 0.55 0.33 0.10 0.02 0.00 

0.7 0.5 0.35 0.12 0.03 0.00 

0.8 0.45 0.36 0.14 0.04 0.01 
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0.9 0.41 0.37 0.16 0.05 0.01 

1.0 0.37 0.37 0.18 0.06 0.02 

Table 7 Poisson Distribution Reference of Multiplicity Of Infection (MOI) 

1.3.4.1 FACS determination of infected cells 

1) Infect the target cells as described in section 2.3.3. 

2) 48 hours after infection collect the cells and spin down at 2,000 rpm for 5 

minutes at room temperature. Resuspend in 1 mL of PBS + 2% of serum and 

PBS + 2% serum. Pass the suspension of cells through a round-bottom tube 

with cell-strainer cap. 

3) Analyze the efficiency of infection by Cytometer by quantifying the percentage 

of cells that express green fluorescence protein (GFP). 

1.3.4.2 Cell number 

The efficiency of infection will change depending on multiple aspects of the target 

cell line; therefore it is necessary to determine the conditions for each case and 

for each new batch of virus prepared. The main factors to be determined are the 

number of plated cells and the dilution of the virus. Follow the following 

instructions as a first test and modify depending on the results attained. 

1) Day 1: Plate different amount of cells in every well of a 6-well plate. As an 

example, 1*105/2*105/3*105/5*105/7*105/1*106 cell per well can be seeded in 

a plate.  
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2) Day 2: Infect the cells as described in section 3.3. The infection mix may be 

done in a ratio 1/1 or 2/1 (media/virus-containing media).  

3) Day 3: Change the media. 

4) Day 4: Determine the efficiency of the infection in every well by FACS.  

1.3.4.3 Ratio media/virus 

1) Day 1: In a 6-well plate, plate the number of cells to ensure an infection 

efficiency of around 50%.  

2) Day 2: In 3 conical tubes prepare 3 different infection mixes: 

3) Tube 1: 1 mL of fresh media + 1 mL of virus-containing media 

4) Tube 2: 1.5 mL of fresh media + 0.5 mL of virus-containing media 

5) Tube 3: 1.75 mL of fresh media + 0.25 mL of virus-containing media 

a.  

b. Aspirate the media from the 6-well plate and add a different mix to 

each well. Centrifuge the plate at 1,000 rpm for 1 hour at room 

temperature. Return the plates to the cell incubator 

6) Day 3: Change the media on the 6-well plates 

7) Day 4: Determine the efficiency of the infection in each well by FACS. 

1.3.5 Screening 

1.3.5.1 Infection 

The infection of a single particle of virus per cell is critical for de-convoluting the 

resulting phenotype, but it is also necessary to ensure that a minimum number of 

cells are infected with each shRNA to ensure the reliability of the screen. It is 
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accepted that having a minimal representation of 50 - 100 times the number of 

shRNAs is enough for performing a positive screen, while a representation of 500 

– 1,000 is necessary for a negative screening. Thus, for positive screen, the 

minimum number of infected cells has to be 6*106 cells (while 6*107 in a negative 

screen). You must keep at least this same number in every passage, freezing 

aliquots or preparing pellets as you go.  

1) Day 1: Plate the previously determined number of target cells in 6-well plates 

(Section 2.3.4.2). Prepare as many plates needed to maintain the minimal 

representation of the library and prepare an additional plate to be used as an 

uninfected control. The number of plated cells has to be calculated taking in 

to account the minimal representation of the library and that not all of the cells 

will be infected. Typically, assuming a MOI of 0.3, it is necessary to plate 1.8 

*107 cells to obtain the 6*106 infected cells needed for a positive screen 

(1.8*108 in a negative screening). 

2) Day 2: In a conical tube, mix fresh media with the virus-containing media in 

accordance with the ratio established in section 3.4.3. Add polybrene to a 

 

Aspirate the media from the 6-well plates and add 2 mL of the diluted virus 

prepared in point 2. Add only fresh media to the uninfected control plate. 

Centrifuge the plates at 1,000 rpm for 1 hour at room temperature. Return the 

plates to the incubator after centrifugation. 

3) Day 3: Collect the infected cells from the 6-well plates and mix together in a 

tube. Mix well and plate the necessary number of 15 cm plates to reach a 
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confluency of about 70%. In a separate tube, mix the uninfected cells and 

plate in a separate 15 cm plate. 

4) Day 4: Add Puromycin to the 15 cm plates in the appropriate concentration to 

kill the uninfected cells in 2-4 days.  

Monitor the cells daily. When all the cells in the uninfected plate have died, 

the selection has been completed.  

1.3.5.2 Passages 

Once the 15 cm dishes are subconfluent, collect the cells from all the plates and 

mix them in a tube. Count the live cells and split them in to three tubes that 

contain at least the minimum number of cells to maintain the representation of 

the library: 

1) Tube 1: Time 0 pellet. Spin down the cells. Aspirate the media and wash the 

pellet with PBS. Centrifuge and aspirate the media again. Resuspend the 

pellet in 1 mL of fresh PBS and transfer the suspension to a 1.5 mL tube. 

Centrifuge at 2,000 rpm for 2 minutes. Aspirate the supernantant and freeze 

the pellet in liquid nitrogen. This is the t=0 of the screening. 

2) Tube 2: Storage. Spin down the cells and resuspend the cells in 1 mL of 

serum + 10% DMSO. Place the cells on dry ice immediately and store in 

liquid nitrogen. 

3) Tube 3: Screening. Split the cells in to three replicas that each contains the 

minimum representation of the library. Replate the cells following the pipeline 

that you have designed for you screening.  
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1.3.6 Genomic DNA 

1.3.6.1 Cell pellet 

1) Collect the cells and spin them down at 1,200 rpm for 5 minutes at room 

temperature.  

2) Aspirate the supernatant and resuspend the pellet in 1 mL of PBS. Transfer 

the cells to a previously labeled 1.5 mL tube. Centrifuge in a microcentrifuge 

at 2,000 rpm for 5 minutes at room temperature. When preparing the cells for 

the genomic DNA extraction, it is recommended to save to aliquots of the final 

time point, as a backup in every pellet, remember to freeze the minimum 

number of cells for maintaining the representation of the library. 

3) Aspirate the supernatant and lyse or freeze the cell pellet. 

1.3.6.2 Genomic DNA extraction 

1) Resuspend the cell pellet in 10 mL of cold PBS 

2) Extract genomic DNA using QIAGEN Blood & Cell Culture DNA Kit (Genomic 

Tip 500/G) following the manufacturer‘s instructions. 

3) Quantify the DNA concentration and the quality of the DNA and store at -

20 °C. The optimal concentration of the DNA to have a good PCR quality is 

around 0.5 – 1 mg/mL. If the resulting DNA is more concentrated, increase 

the volume by adding nuclease-free water. 
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1.3.7 Sequencing PCR 

1.3.7.1 PCR conditions 

The conditions for PCR have been set up withusing the FastStart Taq DNA 

Polymerase, dNTP Pack from Roche, and may have to be modified if using a 

different polymerase. To avoid the contamination of the reaction, it is critical to 

set up the PCR in a clean hood and to never expose to the library plasmid.To 

ensure the reliability of the PCR, always include a negative control. Include also 

a positive control in which the reaction is performed used the original library (10 

ng of the plasmidic DNA). A minimal representation of each shRNA is also 

required when setting up the PCR. The DNA from 6*106 cells has to be amplified 

when doing a positive screen (6*107 in a negative one).  It is calculated that 

every cell contains about 3 pg of DNA, therefore to get the minimal 

in a negative). This procedure results in a PCR product of 490-500 bp depending 

on the primers used. 

1) A for the 

library plasmid. 

2) PCR Mix (Table 8). Per reaction prepare. Frequently, primer dimers occur 

when running the PCR; to avoid primer dimers it is recommended to keep the 

reaction on ice all the times. 

Reagent Amount 

H2O  
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PCR Buffer 10 X+ 

MgCl2 

 

DMSO  

dNTPS  

  

  

FastStart Taq 

Polymerase 

 

DNA  

Table 8 PCR mix in PCR step of RNAi screening. 

3) PCR Conditions (Table 9) 

95°C 5 minutes 

95°C 
45 seconds 

57°C 
30 seconds 

72°C 
45 seconds 

72°C 
10 minutes 

4°C  

Table 9 PCR conditions of PCR step in RNAi screening 

4) In a conical tube, mix all of the PCR products obtained from the same sample.  

5) Prepare a 1.5% agarose gel and run 20 

that the reaction worked properly. To visualize the PCR prepare a 1.5 % 

agarose gel in TAE and run an aliquot of the reaction. It is necessary to let it 

35 cycles 
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run for a long time with a low voltage to avoid the generation of secondary 

structures and separate the amplified product from the dimers. 

1.3.7.2 DNA precipitation 

1) Take the conical tube containing the total PCR product for every sample and 

add 1/10 volume of 3M NaOAc pH 4.8 and 1/100 volume of Glycogen. Mix it 

well by inversion. 

2) Add 0.8 volume of Isopropanol and mix well by balancing gently. At this point, 

a turbid solution should appear. 

3) Spin down at 4,000 rpm for 30 minutes. 

4) -free 

water and transfer to a 1.5 mL tube.  

5) Precipitate the DNA again by adding 1 mL of 100% Ethanol to the tube. 

6) Pellet DNA at 13,000 rpm for 30 minutes. 

7) Aspirate the supernatant and wash the pellet with 1 mL of 70% Ethanol and 

spin at 13,000 rpm for 15 minutes. 

8) Aspirate supernatant and air dry DNA. Do not over dry pellet because it will 

be difficult to resuspend. 

9) -free water to the DNA and resuspend at room 

temperature for at least 2 hours. 

1.3.7.3 PCR product purification 

1) Once resuspended, run the PCR product in a 1.5% agarose gel. Loading 100 

-purify the PCR product is not easy depending on the comb format. 
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It is possible to connect 2 or 3 wells with tape to get a bigger well. Also, the 

product could be split in 3 wells and mixed at the end. 

2) Cut with a razor the band that appears at 490-500 bp size and pass it to a 

previously labeled 1.5 mL tube.  

3) Extract the DNA from the agarose using a DNA gel extraction kit and 

following the manufacturer instructions. NOTE: Elute DNA in the minimum 

amount permitted. 

1.3.7.4 DNA quantification 

The quantification of DNA concentration has to be very precise to keep the 

correct proportion between conditions when preparing the samples. To ensure 

this, it is recommended to quantify the DNA concentration by 2 different methods, 

as for example: 

1) Quantification of DNA using an accurate equipment, such as Nanodrop or 

Qubit. 

2) Quantification in gel. Prepare a 1.5% agarose gel and load 200 ng of each 

sample according to the concentration that has been previously measured. 

The intensity of all of the bands must be equal. 

3) The resulting PCR product can be analyzed by hybridization of customized 

microarray (2.3.7.5) or by NGS (section 2.3.7.6). 

1.3.7.5 Sample preparation for hybridization 

1) Place 1-

with nuclease-free water. 
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2) 

down. Incubate the mixture at 98 °C for 5 minutes and immediately place on 

ice for 5 minutes. 

3) e. 

4) - -

dCTP to each reference sample. Pipette the mix up and down. 

5) 

Incubate at 37 °C for 4 hours in a thermocycler. Let it cool down to 4 °C. 

6)  

7) -water. 

Pipette the mix into an Amicon Ultra -0.5 mL 30 K disposal to clean the 

unbound dye. Centrifuge at 10,000 X g for 15 minutes. 

8) -

free water to the sample. Centrifuge the tube at 10,000 x g for 15 minutes. 

Repeat this procedure until the drained liquid appears clear. 

9) Collect the sample and store in a new previously labeled 1.5 mL 

tube.Quantify the DNA amount and the incorporation of the dye using a 

Nanodrop device. 

10) 

nuclease-free water. Store the sample at 4°C or freeze it.  
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1.3.7.6 Sample preparation for sequencing 

The conditions of the sample to be deep sequenced may vary between different 

facilities, but, as a general statement, in a 1.5 mL, mix 100 ng of each sample. 

Add H2

the instructions received. 
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Summary 

Genome-wide RNA interference (RNAi) screening has emerged as a powerful 

tool for functional genomic studies of disease-related phenotypes and discovery 

of molecular therapeutic targets for human diseases. Commercial short hairpin 

RNA (shRNA) libraries are commonly used in this area and state-of-the-art 

technologies including microarray and next generation sequencing are available 

to read out shRNA-triggered phenotypes. However, computational analysis of 

this complex data remains challenging due to noise and small sample size from 

such large-scaled experiments. In this chapter we discuss the pipelines and 
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statistical methods of processing, quality assessment and post-analysis for both 

microarray and sequencing-based screening data. 

Key Words: genome-wide, pooled shRNA screen, microarray, Next-

Generation Sequencing, barcode, QA, normalization, decoding, differential 

representation, GSEA 

1 Introduction 

RNA interference (RNAi) has emerged as one of the standard techniques for 

studying phenotype-specific gene function from plants to fungi to animals via 

suppression of gene expression [1-4]. RNAi-based gene silencing can be 

achieved by the use of short interfering RNAs (siRNAs) or short hairpin RNA 

(shRNA) expression vectors. Among the two approaches, shRNA is more 

feasible because siRNA has the problem of transient inhibition of gene 

expression and inefficient transfection into non-dividing cells; however, shRNA 

can be stably integrated into a target cell genome via retroviral or lentiviral gene 

transfer, resulting in the permanent reduction of the targeted gene product. 

Several shRNA expression libraries targeting entire human genome have been 

generated to facilitate functional analysis of the whole transcriptome through 

loss-of-function genetic studies [5-8]. 

In genome-wide shRNA screening, a large population of cells is infected or 

transfected with a pool of different shRNA lentiviral vectors and shRNA hairpins 

are integrated into cell genomes. After that, there are two common applications 
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of these transduced cells. One is growing the cells for a sufficient number of 

doubling times, extracting the genomic DNA at initial time (T0) and after 

harvesting (T10), and then comparing quantity of shRNAs in these two time-

points. This usage is to identify genes that are essential for cell survival or growth, 

thus making potential therapeutic targets for cancer and other type of human 

diseases, and hairpins of those lethal genes will be depleted or under-

represented in T10 population. The other application is splitting infected cells into 

two groups, treating the two groups differently, for example treating one group 

with drug and nothing to the other as control. After this selective pressure, grow 

cells from both populations and then compare shRNAs extracted from genomic 

DNA of each population. This approach is to identify genes that modulate 

response to the perturbation. In the example of drug treatment, this screen can 

help to identify genes that increase sensitivity or resistance of cells to the drug. 

To read out shRNA hairpins extracted from genomic DNA, microarray 

hybridization is commonly used with the advantage of low cost and flexibility. It 

employs PCR-amplified shRNA template sequence pools extracted from shRNA 

library-transduced cells under test as well as reference conditions. Each PCR 

fragment is labeled with a different fluorophore, followed by hybridization of both 

pools to the same array, or labeled with the same fluorophore followed by 

hybridization to multiplex arrays. Taking the two-color microarray as example, the 

ratio of signal intensities of two colors (Cy3, Cy5) for each probe sequence 

reflects the relative abundance of cells expressing the corresponding shRNA 

construct under test condition as compared to the reference. Consequently, 
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shRNA hairpins that sensitize cells in the selective condition will be depleted from 

the pool, showing low values of signal ratio, whereas shRNA constructs that 

render cells resistant will be enriched, showing high values of signal ratio. Three 

types of molecular tags have been used as microarray probes, namely full-length 

hairpin, half hairpin, and external barcode sequence. Half hairpin is able to 

overcome the self-annealing problem during PCR amplification happening to full-

length hairpin, and correspondingly has more efficient labeling and microarray 

hybridization than full-length hairpin [4, 9]. Barcodes are not necessary for 

enrichment screens or positive selections such as designs to detect shRNA 

constructs for cell proliferation [10], but are critical for depletion screens or 

negative selections such as studies designed to detect cell-lethal or drug-

sensitive shRNAs [9, 11-13]. 

Next generation sequencing (NGS) has recently emerged as a cost-effective 

technology of quantitatively measuring abundance of short-length DNA or RNA in 

a short time. This massively parallel sequencing has been used in pooled shRNA 

screens [14-16], and comparing to microarray-based approaches, it offers 

several potential advantages in terms of coverage of targeting genes, flexibility of 

input library, scalability and dynamic range.  As the cost of NGS is rapidly 

decreasing, this means might dominate high-throughput shRNA screening in the 

near future. 

In this chapter, we will discuss computational analysis of both microarray and 

NGS-based shRNA screening data. In particular, we will introduce multiple 
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quality assessment metrics for raw data of microarray and NGS respectively, the 

pipeline to decode shRNA NGS data, preprocessing of screening data including 

background correction and normalization, quality controls of processed data to 

detect biological artifacts of experiments, statistical methods for differential 

representation analysis at individual shRNA level and gene level to identify 

candidates of interest and functional enrichment of selected candidates. 

2 Materials 

2.1 shRNA Library: Thermo Scientific Open Biosystems GIPZ Lentiviral human 

shRNAmir library is used to illustrate the analysis of RNAi screening data. 

The library is composited of 58,493 hairpin constructs, in which 39,458 

shRNAs are known to target 18,661 human genes, about 75% of the genome. 

In the GIPZ library, one gene might have multiple shRNAs and as shown in 

the distribution table of number of shRNAs per gene (Table 1), the majority of 

genes has at least 2 or 3 shRNAs. 

2.2 Microarray Data: Two types of microarray probe designs based on the 

structure of shRNA construct are introduced in this chapter: barcode and half 

shRNA hairpin. For each type of design, the oligonucleotide probes for 

hybridization have both sense and anti-sense sequences of the molecular 

tags. 

2.3 Next-Gen Sequencing: NGS-based screening data used in this chapter is 

generated from Illumina HiSeq 2000. 
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2.4 Software: all analysis is performed under the platform of R [17] and related 

Bioconductor [18] packages. 

2.5 Experimental Design: A negative RNAi screen experiment in both microarray 

and NGS platforms is employed (see Note 1) to illustrate the computational 

analysis procedures.  

3 Methods 

3.1 Preprocess of Microarray Data: extract intensity signals of two-colors (red 

for sample, green for reference) from DNA microarray readout, and use the score of 

log10(Ired/Igreen)  as representation of shRNAs, separate data for barcode or shRNA 

probes and control probes, and then perform background correction (see Note 2) 

for each array. 

3.2 Normalization of Microarray Data: assemble the microarray data of all 

samples together and conduct quantile normalization (see Note 3) across all arrays. 

3.3 QA of Raw Sequencing Data: transform millions of short-reads generated 

from NGS machine into FASTQ format, and conduct quality assessment (QA) using 

different metrics (see Note 4) before any further analysis. 

3.4 Decoding of shRNA Sequencing Data: decode each short read by 

identifying its experimental condition and represented shRNA construct (see Note 

5), and count number of short reads for each shRNA in each sample. 

3.5 Normalization of Processed NGS Data: normalize the profiles of shRNA 

count (see Note 6) in order to compare shRNA representations under different 

conditions. 
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3.6 QA of Normalized Data: perform advanced quality assessment on 

normalized microarray or sequencing data to identify outlier experiments using MA 

plot (see Note 7), variance-mean dependence plot (see Note 8), distribution plot 

(see Note 9), clustering of samples (see Note 10), Principle Component Analysis 

(PCA) and plot of the first two components, (see Note 11).  

3.7 Consistence of Replicates: plot and calculate correlations (see Note 12) 

between biological replicates of the same experiment to further check consistence 

of experiments and to detect outlier samples. 

3.8 Differential Representation Analysis: conduct case-control comparison 

(T10 vs. T0) to identify differentially-represented shRNAs, either depleted or 

enriched in case samples. Depletion or under-representation of a shRNA means the 

targeting gene is lethal to experimental cells, thus making it a good candidate as 

potential therapeutic targets of diseases. Due to the fact that multiple shRNAs could 

target the same gene in the library, silencing effects of shRNA on cell viability are 

estimated at individual shRNA level (see Note 13), best shRNA level (see Note 14), 

and integrated gene level (see Note 15). Corresponding statistics including fold 

change (FC) (see Note 16), Z-score (see Note 17), p-value, False Discovery Rate 

(FDR) (see Note 18) are reported. 

3.9 Heatmap of Selected shRNAs/Genes: to visualize the pattern of 

differentiated shRNA-silencing effects such as similarity between genes or samples, 

plot clustering-enabled heatmap of z score and microarray or NGS data of pre-

selected shRNAs (see Note 19). 
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3.10 Functional Enrichment Analysis: to identify functional similarities of genes 

identified by RNAi screens, perform Gene Set Enrichment Analysis (GSEA) using 

public available functional database including Gene Ontology, KEGG pathways, etc 

(see Note 20).  

4 Notes 

4.1 Four Diffuse-Large B-Cell Lymphoma (DLBCL) cell lines are prepared for 

shRNA screening. For each cell line, genomic DNA is extracted at T0, the initial 

time after transduction of lentiviral shRNA library and at T10 when cells are 

harvested after 10 doubling times. Triplicates are conducted for each time point. 

4.2 Negative control probes that targeting no genes are used to estimate the 

background signal of each array, which is proportional to the total amount of 

sample DNAs. Background correction is performed by subtracting the 

mean/median of negative controls from signal of each shRNA within the same 

microarray. 

4.3 Quantile-normalization method [19] is suggested to normalize microarray data 

across multiple arrays to preserve the rank of shRNAs and to make it 

comparable between conditions by forcing the same distribution of each array. 

4.4 An R Bioconductor package ‗ShortRead‘ [20] is used to do quality assessment of 

Genome Analyzer output. It takes FASTQ format as input. The report summary 

includes read distribution (Figure 1A), read count (Figure 1B), read overall 

quality (Figure 1C) and cycle-specific base quality (Figure 1D). 
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4.5 According to the construction of each 51nt-length sequence read(Figure 2), the 

first 6 nucleotides (in blue) are used to mapping back to the barcodes for 6 

experimental conditions, and the 22 nucleotides (in red) in the middle are used 

to identify shRNA hairpin in the library it belongs to. 

4.6 The normalization of sequencing count profile is scaling reads of each shRNA to 

equalize the total number of reads for all samples, which is proportional to the 

cell population size of each experiment. 

4.7 M and A are defined as: 

                

  
             

 
 

V1 is the intensity ratio (microarray data) or shRNA count (sequencing data) 

of the sample studied, and V2 is for a "pseudo"-sample that consists of the 

median across all samples. Generally, we expect the mass of the distribution 

in an MA plot (Figure 3A) to be concentrated along the M = 0 axis, and there 

should be no trend in M as a function of A. If there is a trend in the lower 

range of A, this often indicates that the samples have different background 

signals; this may be addressed by background correction. A trend in the 

upper range of A can indicate saturation of the measurements; in mild cases, 

this may be addressed by non-linear normalization. 

4.8 Variance-mean dependence plot (Figure 3B) is the standard deviation of the 

representation values across samples on the y-axis versus the rank of their 

mean on the x-axis. The red dots, connected by lines, show the running median 

of the standard deviation. Typically, one expects the red line to be approximately 
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horizontal, that is, show no substantial trend. In some cases, a hump on the right 

hand of the x-axis can be observed and is symptomatic of a saturation of the 

measurements. 

4.9 Boxplots (Figure 3C) represent summaries of the signal distributions of the 

samples. Each box corresponds to one sample. Typically, we expect the boxes 

to have similar positions and widths. If the distribution of a sample is very 

different from the others, this may indicate an experimental problem. Outliers 

based on the Kolmogorov-Smirnov statistic between each sample's distribution 

and the distribution of the pooled data, are marked by an asterisk (*). Density 

plots (Figure 3D) are smoothed histograms of the data. Typically, the 

distributions of the samples should have similar shapes and ranges. Outliers, 

according to the same criterion as in the boxplots, are highlighted by color. 

4.10 Heatmap (Figure 4A) of between sample distances and dendrogram of 

sample clustering (Figure 4B) can help to detect batch effects, as well as 

clustering of samples based on biological effects. The color scale is chosen to 

cover the range of distances encountered in the dataset. Datasets for which the 

sum of the distances to the others is much different from the others are detected 

as marked by * as outliers. The distance between two samples is the mean 

absolute difference (L1-distance) between the vectors of M-values (see Note 7) 

of the samples. 

4.11 Scatter plot (Figure 4C) of the samples along the first two principal 

components is used to check whether the samples cluster, and whether this is 

because of an intended biological or experimental factor, or according to 
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unintended reasons such as "batch effects". Outliers, according to the same 

criterion as in the heatmap plot, are indicated by larger symbols. 

4.12 Scatter plot (Figure 5) of between biological or technical replicates is 

another quick visualization method to check the consistence of experimental 

replicates. Empirical distribution of each replicate sample is plotted in the 

dialogue, and they are expected to have similar shape and scale. Upper triangle 

shows the Pearson and Spearman correlation between two replicated samples 

without any filtering on shRNAs. 

4.13 To estimate the differential representation of individual shRNAs, a 

moderated t-type test [21, 22] can be used to test the statistical significance, or a 

linear modeling approach [23] can be used to fit the data. For the modeling 

approach, the likelihood needs to be regularized by classical Frequentist‘s 

stabilization method [22], Bayesian or empirical Bayesian approach [23] due to 

small sample size issue. The regression coefficient represents the level of 

difference between case and control groups, and the statistical significance can 

be estimated by Chi-square test or Wald‘s z-test. 

4.14 To obtain the effects of shRNA on cell viability at gene level, one simple 

approach is to perform individual shRNA analysis first, and from all shRNAs 

targeting the same gene, select the one showing the most significant depletion 

or enrichment, namely the best shRNA for the corresponding gene. However, 

this approach is heuristic and might cause a high false positive rate. 

4.15 Another idea to estimate the effects at gene level is to integrate all shRNA 

data for the same gene. For this type of method, one can perform individual 
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shRNA analysis first and then combine statistics of all shRNAs for the same 

gene by either signed Fisher‘s method [24] or Stouffer‘s method [25], or one can 

use hierarchical modeling approach [26, 27] by introducing an indicator variable 

for shRNA level and allowing random effects along with different shRNAs and 

use the fixed effects to estimate the overall gene level effects. The first separate-

and-combine approach might introduce many false positives due to inaccurate 

estimation of individual shRNAs effects from small sample size and noisy nature 

of high-throughput design, but the second modeling-together method might 

overcome this problem by increasing sample size. Also, the likelihood of 

statistical model needs to be penalized by Bayesian approach to obtain robust 

estimation of parameters. 

4.16 To estimate the fold change between case and control samples, one need 

to calculate the mean within case or control samples. Two methods can be used: 

arithmetic or geometric mean, and the latter one is suggested for robustness. 

4.17 For the linear modeling approach, the Z socre (Figure 6A) is calculated by 

estimate of regression coefficient over its standard deviation, which 

asymptotically follows a standard Gaussian distribution, therefore the two-tailed 

p value (Figure 6B) for statistically significance can be calculated based on this 

null distribution. 

4.18 FDR for correction of multiple comparisons is calculated by BH procedure 

[28]. 

4.19 The Heatmap with both row and column clustering of Z scores (Figure 7A) 

and normalized data (Figure 7B) can be used to visualize the similarity pattern 
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between shRNAs or sample conditions. Euclidian or correlation can be used for 

distance metrics and Wald method is suggested for hierarchical clustering. 

4.20 Gene Set Enrichment Analysis of pathways (Figure 8) or GO terms uses 

differential representation results of all shRNAs or genes as the reference, for 

example, ranking from the most enriched to the most depleted. Classical 

weighted K-S statistic [29] or Maxmean statistic [30] can be used to estimate the 

enrichment score, and gene label shuffling is commonly used to estimate 

significance in this small sample size situation. 
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Tables and Figures 

Table 1: Distribution of Number of shRNAs per Gene 

# shRNAs 
Per Gene 

1 2 3 4 5 6 7 8 9 10 11 13 total 

Freq of 
Genes 

6,931 5,986 3,635 1,355 481 168 60 24 12 4 4 1 18,661 
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Figure 1: Quality assessment plots of raw NGS data. (A) Read count distribution 

(B) Cycle-specific nucleotide count (C) Distribution of average base quality (D) 

Boxplot of cycle-specific base quality 

 

Figure 2: Decomposition of each NGS short-read. The first 6 bases in blue are 

from barcodes of experimental design and the 22nt bases in red are from 
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sequences of shRNA hairpins in the library, out of which 19 nucleotides are 

perfectly matched to the genome sequence. 

 

Figure 3: Quality assessment part 1 of normalized microarray or NGS data. (A) 

MA plot (B) Variance-mean dependence plot (C) Boxplot (D) Density distribution 

plot 
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Figure 4: Quality assessment part 2 of normalized microarray or NGS data. (A) 

Heatmap of sample distances (B) Scatter plot the first two principal components 

(C) Hierarchical clustering of all samples: dots on the upper left plot indicates 

where to split the three to obtain specific number of clusters, in which the yellow 

one is for the current plot; colors are for different clusters. 
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Figure 5: Scatter plots and correlations between biological replicates. Plots in 

the dialogue are density distributions of data in each replicate. Texts in the upper 

triangle cells indicate Pearson (the first number) and Spearman correlations. 
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Figure 6: Density plots of Z score and histograms of p values for differential-

representation results. Negative Z score means depletion of shRNA in 

experiment of study. 

 

Figure 7: Heatmap of (A) Z scores and (B) normalized data of shRNAs showing 

significantly (P<0.01) differential-representation in all screened cell lines. 
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Figure 8: An example GSEA plot of pathway or GO gene sets in differentially-

represented shRNAs. Y axis shows the z score of differential representation at 

shRNA level or gene level. The red dashed lines indicate normalized Enrichment 

Score (nES) and P value. 
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