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Abstract 
 

Structural characterization of primary cilia using accelerated piezoelectrically 
driven STED nanoscopy 

 
Bhavik Nathwani 

	  
Primary cilia are non-motile, hair-like projections occurring on most 

mammalian cell types. They play essential roles in transduction of chemical and 

mechanical signals across the cell membrane. For example, primary cilia are 

able to transduce sonic hedgehog signals, necessary in embryonic development 

and adult stem cell functions. Recent work on primary cilia has demonstrated 

correlations between primary cilia morphology and its ability to sense/transduce 

signals. Several such studies have underscored the need for detailed study of 

morphology of primary cilia and structure-function mapping of its morphology with 

its ability to transduce signals. However, the size scale of the primary cilium 

makes it very challenging to extract biologically relevant morphometric features 

using conventional imaging techniques. The molecular architecture of the primary 

cilium is beyond the resolvability of conventional diffraction limited optical 

imaging techniques. Data from non-optical tools such as electron microscopy 

have been limited by the need for dehydration during sample prep. Advent of 

superresolution optical imaging approaches has only recently made it possible to 

probe primary cilia morphologically to study its structure in physiologically 

interesting environments.  

Signaling pathways regulated by primary cilia are critical to embryo 

development and organogenesis. Therefore, it would be interesting to study 

primary cilia both in somatic (adult) cells while simultaneously comparing and 



	  

	   	  

contrasting it with their occurrence on stem cells. Human induced pluripotent 

stem cell (hiPSC) reprogramming possesses enormous potential in stem cell 

research and disease modeling. Chemical and mechanical signaling has been 

implicated in maintenance of pluripotency of hiPSCs and their differentiation 

pathways toward various lineages, where primary cilia have been shown to play 

a critical role in mechano-chemical signaling across a wide spectrum of cell 

types. The functions of primary cilia in hiPSCs and their characteristic changes 

during the reprogramming process remain largely vague. 

Therefore, in order to study primary cilia morphology on both somatic cells 

as well as hiPSCs, we developed a superresolution nanoscopy system using the 

stimulated emission depletion (STED) technique with novel accelerated 

piezoelectric control (apSTED). This improved STED system achieved a 

reduction in photobleaching rates from ~80% to ~10% while maintaining 

superresolution, ~50 nm at the focal plane for biological samples. 

Subsequently, we focused on conducting comparative morphometric 

studies of primary cilia found on somatic cells and hiPSCs. Our work was the first 

to systematically demonstrate the existence of primary cilia on hiPSCs. Using 

quantitative PCR assays, we demonstrated high levels of expression of primary 

cilia signaling partners, such as Patched1, Smoothened, and members of Gli 

family. Comparative morphometric analysis revealed that the mean length of 

reprogrammed cells was shorter than those of parental human fibroblasts. 

Morphometric analyses revealed that reprogramming resulted in an increase in 

curvature of primary cilia from ~0.015 µm-1 to 0.064 µm-1, indicating an 



	  

	   	  

underlying ~4-fold decrease in their rigidity, and a decrease in length of primary 

cilia from ~2.38 µm to ~1.45 µm. Furthermore, reprogramming resulted in fewer 

primary cilia displaying either kinked or punctated geometries. 

 Custom-built software scripts were developed to extract and analyze 

superresolution apSTED imaging data collected on fibroblast primary cilia. Using 

apSTED, we were able to measure local variations in primary cilia curvature. A 

review of confocal data revealed that such variations in curvature were either 

completely missed or were significantly underestimated. We also utilized our 

technique to study macromolecular complexes within transition zone; a structure 

found at the base of primary cilia that plays a significant role in ciliogenesis and 

in maintaining structural integrity of primary cilia. Our data provides the first 

visualization of two important transition zone members, Tctn-2 and Cep290. We 

were able to demonstrate structural detail heretofore impenetrable to 

conventional imaging techniques. Furthermore, quantification of spatial 

distribution of these molecules, ~160 nm for Tctn-2 and ~180 nm for Cep290, 

provides evidence to indicate the relative positioning of these molecules within 

the transition zone. These studies highlight the advantages of using apSTED to 

study primary cilia and provide tools that could enable the deciphering of the 

architecture of the transition zone in primary cilia. 
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Abbreviations 
  

ACIII Adenylyl Cyclase isoform III 

STED Stimulated Emission Depletion 

IFT88 Intraflagellar Transport protein 88  

Ac-Tub Acetylated Tubulin 

PBS Phosphate Buffered Saline 

Tctn2 Tectin 2 

PBST Phosphate Buffered Saline + Triton-X 100 

Hff1 Human foreskin fibroblast cells 

FBS Fetal Bovine Serum 

P/S Penicillin-Streptomycin 

PFA Paraformaldehyde 

iPSC Induced Pluripotent Stem cells 

hiPSC Human Induced Pluripotent Stem cells 

Shh Sonic Hedgehog 

Ac-Tub Acetylated Tubulin 
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1 Background and Motivation 

1.1 Significance of primary cilia 

Primary cilia are non-motile, solitary cellular projections playing essential 

mechanical and chemical sensory roles across a wide spectrum of cell types1-3. 

Primary cilia were first discovered in the year 18984. For most of the previous 

century, they were considered vestigial5. However, recent studies have 

demonstrated that they serve as a central hub for the localization of receptors 

and signal transduction components that are involved in development, 

mechanotransduction, and stem cell functions6. For example, primary cilia are 

able to sense Sonic hedgehog (Shh) through Patched1 (Ptc1) localized at the 

cilia and accumulate Smoothened (Smo) leading to the activation of signaling7. 

This Shh signaling pathway is essential for embryonic development and adult 

stem cell functions7,8. Table 1 summarizes functions of primary cilia in a number 

of representative cell types. 

Defective structures of primary cilia have been implicated in myriad 

disorders, broadly classified as ‘ciliopathies’. Briefly, abnormalities in primary cilia 

development or function have been correlated with development of polycystic 

kidney disease (PKD)9, Bardet-Biedl syndrome (BBS)10, arthritis, osteoporosis11, 

heart failure, cancer, and obesity12. Therefore, interest in studying primary cilia 

structure and in particular mapping the structure-function relationship has 

become a priority for the scientific community.  
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Table 1. Primary cilia functions on different cell types 

Cell Type Function 

Olfactory sensory 

neurons 
As a part of the first step of olfaction, the odorant interacts 

with a G-protein coupled receptor (GPCR) on the surface 

of primary cilia producing the second messenger cyclic 

adenosine monophosphate (cAMP) within the cilium13. 

Elevated levels of cAMP opens a cyclic nucleotide-gated 

channel in the primary cilia, thereby, depolarizing the cell. 

Rod and cone cells Primary cilia on these cells have an expanded tip, called 

outer segment. Outer segments have opsin GPCRs on 

their surface, which respond to photons. When excited, 

these GPCRs hydrolyse cyclic guanosine monophosphate 

(cGMP); hence, closing the cGMP-gated channels14. 

Kidney cells Deflection of primary cilia resulting from fluid flow within 

the kidney results in extra cellular calcium dependent 

increase in intracellular calcium15,16. This response has 

been reported to be mediated by membrane bound 

proteins, polycystin 1, and polycystin 21. 

 Chondrocytes Stretch activated ion channel such as transient receptor 

potential cation channel subfamily V member 4 (TRPV4) 

localizes within primary cilia. TRPV4 have been shown to 

mediate osmotic pressure sensing17,18. Furthermore, 

deflection of primary cilia on bone cells results in a 

adenylyl cyclase 6, AC6, mediated decrease in cAMP19. 

Fibroblasts Primary cilia have been shown to align in the direction of 

cell migration20. Reorientation of primary cilia in the 

direction of cell migration has been shown to be an initiator 

in the process of wound healing21. 



	   3	  

	   	  
	   	   	  

Structurally, as shown in Figure	  1-‐1, a primary cilium consists of a central 

axoneme containing nine circumferentially distributed microtubule doublets. The 

axoneme is attached at the base to the mother centriole, older of the two 

centrioles, and is enveloped by plasma membrane. Broadly, this structure is 

similar to motile cilia with one very significant difference. Unlike primary cilia, 

motile cilia have an additional pair of microtubule doublet at the center of the 

axoneme connected to the circumferentially distributed microtubule doublets 

through radial spokes. Their structures are commonly referred to as ‘9+0’ for 

primary cilia and ‘9+2’ for motile cilia, respectively.  

At the base of primary cilia, a contiguous structure from the mother 

centriole, called the transition zone, provides necessary gating separating the 

molecular elements inside primary cilia from the surrounding cytosolic materials. 

Specifically, molecular complexes in the transition zone help differentiate 

between cargoes that can enter the primary cilia structure from the ones that 

cannot22. Studies have shown that Septin 2 (Sept 2) acts a diffusion barrier at the 

base of primary cilia22. Furthermore, the transition zone is populated by several 

proteins, which play varied roles in the process of ciliogenesis (formation of 

primary cilia), and maintaining its homeostatic functions, although the detailed 

mechanism remains elusive. These include Nephronophthisis (NPHP) 1, 4, and 

8, which have been implicated to be significant players in nephronophthisis, a 

cystic kidney ciliopathy23-25. Axoneme components are delivered to the primary 

cilia using intraflagellar transport (IFT) proteins. Transition zone proteins in 

conjunction with transitional fibers are believed to recruit IFT proteins to the base 
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of primary cilia through unknown mechanism26-28. Protein Cep290 localizes at the 

base of primary cilia and has been demonstrated to be a part of Meckel Syndrom 

(MKS) and Joubert Syndrome (JBTS) complexes29,30. Additionally, a 

transmembrane protein, TCTN2, has been found to be important for the 

structural integrity of the base of primary cilia and to play a role in MKS31. 

Together these studies reveal a dynamic environment at the base of the primary 

cilia consisting of proteins and protein complexes that are not only structurally 

important for ciliogenesis but play a significant role in maintaining functional 

homeostasis for primary cilia.  

  

Figure 1-1. Structure of primary cilia. Unlike motile cilia, primary cilia body 

consists of 9 microtubule doublets. Intraflagellar transport (IFT) rafts carry 

materials in and out of the primary cilia structure. Image adapted from 

Nature Reviews Molecular Cell Biology 12, 222. (2011)32  
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1.2 Primary cilia in the context of cellular reprogramming 

Cell reprogramming by expression of ectopic transcription factors has 

been able to convert somatic cells into induced pluripotent stem cells (iPSCs)33-

38. Signaling pathways play important roles in generating iPSCs, where Wnt 

signaling promotes reprogramming39 and de-activation of Shh pathways 

facilitates reprogramming40. Despite the importance of these pathways in iPSC 

reprogramming, the existence of primary cilia and their characteristics as well as 

potential roles in iPSCs remain unclear. As summarized in Figure	  1-‐2, iPSCs are 

functionally equivalent to embryonic stem cells (ESCs), although minor 

differences between iPSCs and ESCs have also been reported41,42. Comparative 

studies of primary cilia and their corresponding signaling pathways between 

iPSCs and ESCs would provide a new test in the functional similarities and 

differences between these two pluripotent cell types.  

A recent study demonstrated the presence of primary cilia on human 

ESCs (hESCs)43. Examining primary cilia in hESCs, the authors reported the 

existence and length characteristics of primary cilia in these cell lines. 

Furthermore, they showed the activities of molecules in the hedgehog signaling 

pathways, including the stimulation response of key pathway components Ptc1, 

Smo, Gli1, and Gli2. Studies have demonstrated that these Shh pathway 

elements dynamically communicated with each other on primary cilia to mediate 

the initiation of Shh signaling cascade44. Expression profiling showed that Ptc, 

Smo, Gli1, Gli2, and Gli3 were up-regulated in hESCs when compared with 
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differentiated cells45, demonstrating that Shh pathway was relatively more active 

in hESCs than in somatic cells.  

 

Figure 1-2. Induced pluripotent stem cells (iPSCs) are derived by 

reprogramming somatic cells derived from adults, hence, circumventing all 

the moral and ethical dilemmas offered by embryonic stem cells (ESCs). 

Ectopic expression of transcription factors, OCT-4, SOX-2, Klf-4, and c-

MYC in cells derived from skin biopsies resulted in generation of iPS cells. 

Being pluripotent, functionally equivalent to ESCs, they can differentiate 

into all cell types, providing a starting point for cell-based therapies and for 

drug development and for an improved understanding of pluripotency 

(Schematic adapted from SigmaAldrich.com and Nature 481, 29546). 
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In addition to the length characteristics of primary cilia measured in ESCs, 

other characteristics of primary cilia morphology can also play important roles in 

their functions6. For example, modulation of mechanosensitivity in cells is 

believed to be mediated through changes occurring in primary cilia morphology. 

It is known that the length of primary cilia dictates their mechanical sensitivity47-49. 

Serum starvation is one way to increase the length of primary cilia50. Blocking 

Ca2+ entry and increasing intracellular cAMP48 as well as stress deprivation49,51 

have also been shown to increase the length of primary cilia. Conversely, cyclic 

loading has been demonstrated to decrease length of primary cilia47,49. 

Mechanical loading conditions have also been shown to influence other 

morphological parameters of a primary cilium such as its curvature49, and 

categorizing the morphology of primary cilia has also been reported52. Bending of 

primary cilia has previously been associated with an increase in influx of calcium 

and suppression of cAMP53. On the other hand, under varying flow conditions, 

changes in degree of bending of primary cilia has been associated with 

differences in calcium measurements within kidney epithelial cells54. Taken 

together, these studies underscore the role of morphological characteristics of 

primary cilia and determining the transfer function for various signaling events. It 

is thus important to examine the effects of cell reprogramming on morphological 

characteristics of primary cilia to gain better understanding of potential signaling 

changes due to reprogramming.  

In this study, we demonstrate the presence of primary cilia on human 

induced pluripotent stem cells (hiPSCs) through a combination of imaging based 
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assays and quantitative PCR assays. We demonstrate the up-regulation of 

various signaling molecules associated with primary cilia. We performed 

morphometric analysis of primary cilia to examine the effects of reprogramming 

on various mechanical characteristics, including length, curvature, bending 

shape, and aggregated puncta. These mechanical studies of primary cilia for 

somatic cells and hiPSCs may shed light on the transition of mechanosensing 

landscape through the reprogramming process and provide a better 

understanding of the mechanical roles of primary cilia in hiPSCs.  

1.3 Need for super-resolution microscopy 

Because morphology of primary cilia governs the signaling ability of 

primary cilia, and specifically primary cilia on iPSCs, one should perform detailed 

morphological analysis of primary cilia on these cells. However, the 250-300 

nm12 resolution limit of conventional far-field optical imaging systems makes it 

impossible to study local changes in morphological parameters such as local 

variations in the curvature of primary cilia, given the size scale of primary cilia, 

~200 nm in diameter. Electron microscopy can reach a much higher resolution, 

but it is limited by the special vacuum condition and extremely low imaging 

throughput. Usage of a high resolution far-field optical imaging system is thus 

necessary to address these gaps and to facilitate high-resolution study of primary 

cilia morphology. 

1.4 A brief history of super-resolution microscopy 

The resolution limit of light was first proposed by Ernst Abbe55. His law has 

been accepted to be a fundamental limit on microscopy since the end of 19th 
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century. The law stated that objects closer than about half the wavelength of light 

being used to image them could not be distinguished as that was the smallest 

spot size allowed by diffraction when the light passes through any optical 

element such as an objective lens. It was quantified using the famous Abbe’s 

equation:  

Δ𝑥 ≈
𝜆

2𝑛 sin𝛼 

where, Δx=spatial resolution, λ=wavelength of light used, 2n sinα=numerical 

aperture of the microscope. 

Techniques to overcome the diffraction barrier offered by Abbe’s law have 

been developed in the past. Most notably, electron microscopy56 and near field 

microscopy57 techniques can circumvent this barrier. However, the following are 

the two major limitations of these techniques: 

1. Low throughput 

2. Fundamental incompatibility with live cell applications 

Electron microscopy takes advantage of the extremely small wavelength of 

electron propagation to overcome the diffraction limit. However, it requires a 

vacuum environment to function and therefore is fundamentally not suitable for 

live cell applications. Furthermore, extensive sample preparation also limits the 

throughput of the technique. Near field microscopy relies on the proximity of the 

detection probe to the sample, to sidestep the diffraction barrier. However, given 

that the probe needs to be within nanometers of the sample, the technique is not 

useful in studying any phenomenon that occur at a reasonable distance from the 

surface. This limits its applicability in biological settings.  
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Recent developments in microscopy make it possible to circumvent the 

Abbe’s law and perform super-resolution imaging. Stochastic super-resolution 

techniques such as PhotoActivated Localization Microscopy (PALM)58, 

Fluorescence PhotoActivated Localization Microscopy (FPALM)59, STochastic 

Optical Reconstruction Microscopy (STORM)60, direct STORM (dSTORM)61, 

targeted read-out techniques, such as, Stimulated Emission Depletion (STED)62 

microscopy, Ground State Depletion (GSD)63 microscopy, Saturated Structured 

Illumination Microscopy (SSIM)64, Point Accumulation for Imaging in Nanoscale 

Tomography (PAINT)65, and myriad derivatives66-70 of these techniques, have 

offered several alternatives recently to circumvent the Abbe’s limit.  

Stochastic techniques achieve super-resolution by turning ON/OFF a small 

subset of the total number of fluorophores available in the focal volume71,72. If the 

individual fluorophores that emit fluorescence photons are separated by more 

than an Abbe’s distance, the coordinates of those fluorophores can be calculated 

with near arbitrary precision73,74. ON/OFF states of the fluorophores are achieved 

using either photoactivation75 or photoswitching76. Because a random subset of 

fluorophores is activated per frame, several hundred to thousand frames are 

collected to produce an individual ‘image’. Resolution of stochastic super-

resolution techniques depends on the number of fluorophore emitted by 

individual fluorophore molecules. If a molecule emits s photons, the precision 

calculating the coordinates of its position using a stochastic technique, is given 

by74: 
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Figure 1-3. Images demonstrating improvement in resolution achieved by 

STORM microscopy. Top panel shows conventional images of 

microtubules labeled on BS-C-1 cells. Bottom panel shows STORM images 

of the same regions underscoring the improvement in resolution achieved. 

Images adapted from Science 317, 1749-1753 (2007)72  

𝜎 = !
!!  !"#$ !

  

Therefore, the brighter the fluorophore, the larger the s for the given 

fluorophore, and hence the better the resolution. Exploiting this principle, 

stochastic techniques, such as STORM, PALM, etc. have to-date been able to 

achieve <20 nm resolution in the focal plane58,60,77. Figure	   1-‐3 and Figure	   1-‐4 

demonstrate representative image data sets collected using STORM and PALM 

respectively.  
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While PALM, STORM, and their derivatives depend on switching 

fluorophores ON/OFF stochastically, Point Accumulation for Imaging in 

Nanoscale Topography (PAINT)78 depends on continuously targeting the imaging 

surface with fluorescent probes that are present in the solution. Each time a 

fluorophore binds to a surface molecule, it emits fluorescent photons (turns ON). 

Each time it dissociates from the surface or photobleaches, the fluorescence 

turns OFF. Therefore, the sample inherently fluoresces stochastically. Using 

algorithms similar to the ones described in the previous paragraph, the 

coordinates of these interactions are calculated providing a super-resolution view 

of the sample surface79.  

Amongst these techniques, STED has been demonstrated to be most 

suitable to studying biological questions. This stems from the fact that STED not 

only provides ~4-fold improvement in resolution, majority of the other super-

resolution techniques enumerated in the previous paragraph also offer competing 

resolutions, it achieves this resolution based on photo-physical manipulation of 

fluorophores. This enables image acquisition rates of STED to be at par with 

conventional imaging technologies, making it the only technique offering spatial 

resolution superior to conventional imaging systems while not compromising with 

the temporal resolution.  
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Figure 1-4. Figure sequence demonstrating application of PALM 

microscopy. COS-7 cells expressing lysosomal transmembrane protein 

CD63 tagged with PA-FP Kaede were imaged using TIRF (A) and PALM (B). 

(C) and (D) are zoomed in versions of subregions of the PALM image 

underscoring the resolution improvement achieved by PALM. Image 

adapted from Science 313: 1642-1645 (2006)58 
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1.5 Outline of this work  

 After briefly sketching out the background about the topics of interest in 

this work in chapter 1, chapter 2 will cover the details of implementation of super-

resolution apSTED, a faster version of STED implemented by accelerating a 

piezoelectrically driven stage scanner, microscopy system. We will briefly touch 

upon the principle that governs STED microscopes. Further, we will discuss the 

various stages of development and validation of different parts of the system. We 

will discuss data that underscores the resolution improvement achieved by our 

STED system. We will also briefly touch upon the enhancements implemented to 

make apSTED more widely adaptable and useful for applications in various 

biological fields.  

 Chapter 3 details results of several imaging based studies that we 

undertook on primary cilia. Specifically, we setup assays to label and identify 

primary cilia structures. We report results of labeling components of the 

axonemal structure of primary cilia, components of transition zone, and basal 

body of primary cilia. We establish approaches that allow us to study primary cilia 

from three major perspectives, large scale mechanical structure of primary cilia, 

molecular structure of primary cilia, and components of primary cilia that 

participate in mediation of various signaling pathways.  

 While primary cilia have several important roles in fully differentiated 

lineage defined adult cells, more recent studies have highlighted their role in 

embryonic stem cell biology. In chapter 4, we report results of our studies on 

primary cilia on human induced pluripotent stem cells (hiPSCs). Using myriad 
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imaging and biochemical assays, we are the first group to report the presence of 

primary cilia on hiPSCs. We performed a differential morphometric analysis of 

primary cilia on somatic (adult) cells vs hiPSCs. Our data show significant 

differences in morphology of primary cilia on these cell types, indicative of 

differences in signal sensing and modulation on hiPSCs performed by primary 

cilia. Work in chapter 4 appears in Nathwani et al., Stem Cells and Development, 

under review.  

Chapter 5 extensively details results of imaging primary cilia using 

apSTED microscopy. Typically, biological samples scatter light more than clean 

calibration samples. Therefore, we focus our attention on the improvement in 

resolution achieved by STED on biologically interesting samples, a more 

stringent test than imaging traditional calibration samples. We also focus on 

several image-processing modules that we developed to extract quantifications 

from STED images. We utilize these scripts to analyze data collected using both 

confocal and STED microscopes to underscores the advances that can be 

achieved in studying primary cilia using STED as opposed to conventional 

imaging techniques. Specifically, we utilize the superior apSTED system to 

image several transition zone components, such as, TCTN2, and Cep290.  

 In chapter 6, we briefly summarize our results and recommend future 

steps to enhance this exciting technology even further. We believe with all the 

exciting developments happening in the field, STED has the potential to become 

an indispensable tool for all cutting-edge biology labs.  
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2 Development of super-resolution imaging system – 

apSTED nanoscopy 

Typically, cell biology problems have been studied using far-field optical 

microscopy systems. There are several advantages to this approach. 

Specifically, widely applicable protein labeling strategies have been perfected 

over the years. Utilizing these strategies, it is possible to fluorescently label 

biomolecules with minimal to no interference with the functioning of those 

molecules. Recent development of fluorescent proteins has also rendered the 

challenge of specificity superfluous.  Furthermore, flurophores are available 

across the visible spectrum and it has become increasingly easier to perform 

multi-model, multi-color fluorescence based assays to study multiple processes 

simultaneously. This coupled with the commercial availability and ease of 

operation of the fluorescence microscope makes optical microscopy a tool of 

choice for biology. However, as discussed in detail in chapter 1, we have 

reached an inflection point in the field where current problems in biology are 

challenging the resolution limits of these microscopes and are no longer readily 

amenable to conventional imaging tools. Here, we report the development of a 

super-resolution apSTED nanoscopy system, or accelerated piezoelectric stage 

scanning STED nanoscopy, that allows us to circumvent the challenge of 

diffraction-limited resolution and enables studies of biomolecules at previously 

unprecedented resolution.  
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2.1 Principle of STED microscopy 

Identifying spectrally separated, different colored, fluorophores is not 

challenged by Abbe’s barrier i.e. fluorophores of different colors can be discerned 

at arbitrary closeness in spatial dimensions. Similarly, Abbe’s law also does not 

prevent calculation of coordinate of a light emitting molecule with arbitrary 

precision, a fact exploited remarkably well in stochastic super-resolution imaging 

systems. Along similar lines, it is possible to sidestep Abbe’s barrier physically if 

the densely packed fluorophores are forced to emit sequentially instead of all at 

once. This fact forms the backbone of the STED principle.  

 

Figure 2-1. Principle of STED microscopy. A red shifted toroid shaped 

depletion beam is super-imposed on a diffraction limited excitation spot 

size. The photophysical dynamics of the fluorophore resulting from 

exposure to these two pulses results in fluorescence being generated from 

the central zero of the toroid providing super-resolved fluorescence spot. 

This super-resolved spot is scanned across a sample to generate image 

pixels. 
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STED works by transiently switching off fluorophores in the outer rim of 

diffraction limited fluorescence excitation spot. To achieve this, typically, a 

diffraction-limited spot of excitation laser beam is overlapped with a toroid 

shaped spot of a red-shifted laser beam, called depletion beam. This scheme is 

demonstrated by a schematic in Figure	   2-‐1. The depletion beam deexcites the 

fluorophores from excited energy state to ground state through the well 

understood process of stimulated emission. Thus, effectively only the 

fluorophores in the toroid center are excited, thereby decreasing the effective 

point spread function and achieving super-resolution. Studies have demonstrated 

the effectiveness of STED at studying nano-scale phenomena, including the 

study of biological problems at the cellular level. 

 While diffraction governs both the laser lines, the effective reduction is 

point spread function is what enables the user to sidestep the Abbe barrier. The 

governing equation1 quantifying the resolution of the system, modified Abbe’s 

equation, is: 

Δ𝑥 ≈
𝜆

2𝑛 sin𝛼 1+ 𝐼
𝐼!
  
 

Where, I=intensity of the depletion laser, Is=laser intensity to deplete 50% of the 

fluorophores  

2.2 Implementation of STED system 

At the Liao lab, we implemented a continuous wave (CW) STED 

nanoscopy system based on a previously reported design2. Using a diode-

pumped solid state (DPSS) 491 nm laser line (Calypso 25, Cobolt Ab) as an 



	   29	  

	   	  
	   	   	  

excitation source and a 1000 mW, 592 nm fiber laser line (VFL-P-1000-592, MPB 

Communications Inc.) as a depletion source, we implemented the system 

following the schematic shown in Figure	   2-‐2. The two laser lines were coupled 

into their respective single mode polarization maintaining fibers (p3-488pm-fc-2, 

Thorlabs) to clean and filter the pulses. A vortex phase mask (VPP1, RPC 

Photonics) introducing helical phase ramp of exp(iφ)  with 0 < φ < 2π was used 

to sculpt the depletion beam into a toroid shape. The lasers were merged using 

dichroic mirrors (Semrock) and subsequently focused at an equi-focal plane 

using an oil immersion objective lens (Olympus UPLSAPO100x-1.4 NA). The 

sample was placed on a 3-axis piezoelectric stage scanner (Nano-PDQ375HS, 

Mad City Labs Inc). Fluorescence being an Omni-directional phenomenon, signal 

was collected using the same objective lens. Subsequently, both the laser lines 

were separated from the signal using dichroics (Semrock). Signals were cleaned 

using a 532/22 band-pass filter (Semrock). After filtering, the signal was coupled 

to a multi-mode fiber (M31L05, Thorlabs) with a core diameter of 80% of the back 

projected airy disk to achieve confocalization of the signal. In accordance with 

the brightness of the sample, a photo-multiplier tube, PMT, (MP963, PerkinElmer 

Optoelectronics) or an avalanche photo-diode, APD, (SPCM-AQR-15, 

PerkinElmer Optoelectronics) was used as a detector.  
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Figure 2-2. Schematic of the STED setup implemented at Liao lab. 491 and 

592 nm laser lines were used as excitation and depletion sources 

respectively. The depletion laser was passed through a 2pi phase 

retardation plate before coupling it into a confocal imaging path collinear 

with the excitation laser. An avalanche photodiode was used as the 

detection source of choice. Laser focusing and signal collection was done 

through a 100x 1.4 NA Olympus objective lens.  Sample was scanned using 

an XYZ piezoelectrically driven stage 

2.2.1 Excitation Coupling 

The excitation coupling is shown in Figure 2-3, with the following components:  

A. A 491 nm, 25 mW, excitation laser source (Calypso 25, Cobolt Ab). This 

laser was used as an excitation source for STED imaging and also 

enabled confocal imaging 

B. Mounted achromatic half wave plate (AHWP05M-630, Thorlabs) 
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C. Precision linear polarizer (10LP-Vis-B, Newport Corporation). A 

combination of half wave plate and a polarizer act as an adjustable optical 

attenuator.  

 

 

Figure 2-3. Coupling excitation laser into a single mode polarization 

maintaining fiber.  

D. Mirrors M1 (10D20BD.1, Newport Corporation) and M2. The two mirrors 

enable the coupling of the laser into the single mode polarization 

maintaining fiber. 

E. Collimator (F280APC-A, Thorlabs). Used to focus the collimated laser 

beam into the optical fiber.  

A	  

B

C

M1	   M2	  

E
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F. Single mode polarization maintaining fiber (P3-488PM-FC-2, Thorlabs). 

Enables the decoupling of the laser source from the rest of the optical 

setup. Enables high fidelity coupling of the laser to be carried over to the 

main optical path of the system. All fibers used in this setup were FC/APC 

cut, in order to reduce the amount of back reflection from the fiber. 

 

Figure 2-4. Coupling the depletion laser into a single mode polarization 

maintaining fiber. 

2.2.2 Depletion Coupling 

The depletion coupling is shown in Figure	  2-‐4, with the following components: 

A. A 592 nm, 1 W, depletion laser source (VFL-P-1000-592, MPB 

Communications Inc.). This source was used to achieve stimulated 

emission of the fluorophores in the focal volume.  

A	  

B	  
M3	  M4	  

D	  
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B. Polarizer. Used to clean the laser beam and to prepare it to be launched 

into an optical fiber. 

C. Mirrors M3 and M4. Are used to afford the necessary degrees of freedom 

in order to be able to couple the laser beam into the fiber. 

D. Optical fiber coupler (F91-c1, Newport Corporation). Contains an xyz 

stage that can hold the optical fiber and an objective lens to focus the 

laser beam into the fiber.  

  

Figure 2-5. Excitation out-coupler launching the laser onto a dichroic mirror 

that would couple it into the main optical path. 

2.2.3 Excitation fiber launch 

The excitation fiber launch is shown in Figure	  2-‐5, with the following components: 

A. Optical fiber out-coupler that launches the excitation laser beam.  

A	   M5	  

D1	  
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B. Mirror M5. Used to steer the beam into the main optical path through the 

dichroic mirror.  

C. Dichroic D1. It reflects the excitation laser wavelength while allowing light 

of longer wavelengths to pass through. As a consequence, it couples the 

excitation laser into the main (common) optical path by reflecting it and 

couples the fluorescent signal onto the detection pathway by allowing it to 

pass through.   

  

Figure 2-6. Collimator launches the depletion laser onto a dichroic passing 

through a phase retardation plate that engineers the beam wave-front to 

produce a toroid at the plane-of-focus. The dichroic couples the engineered 

depletion laser beam onto the common optical path.  

D2	  

A	  

M6	  

C	  
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2.2.4 Depletion fiber launch  

Figure	  2-‐6 shows depletion fiber launch, with the following components: 

A. Depletion laser is launched at the other end of the fiber using a collimator. 

The collimator converts the focused depletion laser beam to a collimated 

state again.  

B. Mirror M6. This mirror reflects the depletion laser on to a dichroic, which 

will subsequently couple the laser in to the main optical path.  

C. Vortex phase plate (VPP-1, RPC Photonics Inc.). The vortex phase plate 

introduces 2-pi phase retardation on the depletion laser, which results in 

generation of a donut at the plane of focus of this laser.  

D. Dichroic D2. Couples the depletion laser into the main optical path by 

reflecting it. It also allows the fluorescent signal to pass through.  

 

Figure 2-7. A combination stage combining the high-speed - small range 

nanoscan stage with a low speed – large range microscan stage.  The 

sample holder is placed in the central void in the nanoscan stage.  

A	  

B	  
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2.2.5 Sample Stage 

Figure	  2-‐7 shows the setup of the sample stage, with the following components: 

A. The NanoPDQ 375HS from Mad City labs was used as a sample stage. It 

provides a 75 um range in XY and a 50 um range in Z. It includes position 

sensors for absolute position measurement and sub-nanometer resolution.  

B. It was used in conjunction with a motorized stepper motor driven 

microstage (Microstage-20E, Mad City Labs). The microstage affords a 

maximum range of 1” contingent on the objective lens placement. It has a 

two-axis stepper motor enabling a minimum step size of 95 nm in XY 

direction. It has a step repeatability of 50 nm. It is fitted with linear 

encoders with a resolution of 20 nm.  

2.2.6 Detection pathway 

Figure	  2-‐8 shows the detection pathway setup, with the following components: 

A. Fluorescent signal being omni-directional is collected using the same 

objective and is allowed to pass through the main optical path 

encountering the dichroics D1 and D2 on their way. Passing through the 

dirchroics enables the laser signal to get filtered out. Furthermore, to 

ensure high quality filtering and noise reduction of the signal, a band pass 

fluorescent filter (ET535/50m, Chroma Technologies) is placed in the 

detection pathway. 
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Figure 2-8. Detection pathway consisting of a fluorescent filter that 

removes noise photons, improving the signal-to-noise ratio, followed by a 

45° mirror that couples the signal onto a telescope that images the mirror 

onto a multimode detection optical fiber. A collimator focuses the signal in 

to the detection fiber.  

B. Mirror M6 couples the filtered fluorescent signal onto the optical detection 

path.  

C. A telescope, consisting of achromatic doublets E5 (AC254-150-A-ML, 

Thorlabs) and E6, images the mirror on to a collimator. 

D. A collimator couples the fluorescent photons onto the multi-mode 

detection fiber (M31L05, Thorlabs). In addition to carrying the signal to the 

detector, the fiber also acts as a pinhole effectively confocalizing the 

A	   M6	  

E5	  

E6	  

D	  
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signal. Therefore, when the system is operated with the depletion laser 

turned off, it’s a high-end confocal microscope. Whereas, when the 

depletion laser is turned ON in addition to the excitation source, it’s a 

STED imaging system. 

  

Figure 2-9. A telescope to image the two lasers onto a 45° mirror that 

couples the two lasers on the objective lens 

E. The detection fiber collects the fluorescent signal and in turn delivers it to 

one of the two detectors that it is connected to at any given time, a PMT or 

an APD. 

2.2.7 Main optical path 

Figure	   2-‐9 shows the main optical path combining both the lasers and also 

carrying the fluorescence signal. It is constituted of the following components: 

A	  

B	  
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A. Both the excitation and the depletion lasers get combined into a common 

beam after being reflected by their respective dichroics.  

B. A telescope lens pair image the combined laser beam at the back aperture 

of the objective lens 

  

Figure 2-10. Coupling the lasers in to the objective lens through a quarter 

wave-plate. Quarter wave plates enable conversion of linearly polarized 

light to circular polarization, ensuring all fluorophores irrespective of the 

orientation of their dipole would interact with the lasers. 

2.2.8 Coupling the lasers into the objective  

Figure	   2-‐10 shows the setup that couples the two lasers into the objective. It 

consists of the following components: 

A	  

B	  

C	  
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A. A 45° mirror changes the direction of propagation of the two lasers to be 

parallel with the vertical axis 

B. A quarter wave plate transforms the linearly polarized laser beams into 

circularly polarized versions. Circular polarization ensures homogeneous 

laser fluorophore interaction irrespective of the orientation of the 

fluorophore dipole.  

C. A 100x 1.4 NA objective lens focuses the lasers on to the sample plane.   

D. Fluorescence being an omni-directional phenomenon, the same objective 

collects fluorescence signal and passes it on to the common optical path 

after reflecting off of the 45° mirror shown above. 

2.3 Vibration Analysis 

In order to validate the immunity of the optical system to low frequency 

vibrations, a damping analysis protocol was developed. Briefly, a sub-resolution 

gold particle sample was imaged using the excitation laser. Once found, the laser 

was parked at the center of the particle and the detector was initiated to collect 

data. Data was sampled at 5 microsecond intervals. The maximum amount of 

time that the data was collected for was 20 min (data not shown). Figure	  

2-‐11shows a typical plot of the data collected. It is a trace of the photon count 

acquired by the detector as a function of time. As the plot reveals, and is 

subsequently quantified in Figure	   2-‐12, the photon count followed a normal 

distribution. This indicates the relative stability of the optical setup and its 

immunity to low frequency vibrations, such as, those caused by people walking in 

the corridors outside the lab. 
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Figure 2-11. Vibration analysis was carried out to validate immunity to low 

frequency vibrations. Laser was on the center coordinate of the particle 

and the detector was poled every 5 microseconds for a total of 10 seconds. 

The data suggests high degree of immunity to low frequency perturbations 

like pedestrians walking outside the lab, etc. 

To validate this result, we did a positive control. While the detector was 

still collecting photons, we tapped on the optical setup, deliberately introducing 

noise in the system. The detector picked up the noise signal. A spike in the 

photon following the tapping on the optical table was positive data confirming the 

validity of our previous test.  
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Figure 2-12. Frequency analysis of the vibration data. Small standard 

deviation is indicative of high level of immunity to low frequency noise. 

2.4 Development of the scanning protocol 

 Instrumentation and control algorithms were deployed in Labview. Image 

reconstruction and processing were carried out through a combination of scripts 

developed in Labview, Matlab, and ImageJ. Raw data for confocal and STED 

images were compared with each other to validate the superior resolution 

afforded by the STED system. To achieve coarse control of the placement of the 

sample, the nanostage, NanoPDQ, was integrated with a microstage (MadCity 

Labs Inc). Various scanning protocols were employed at different stages of 

development of the system, to validate different aspects of the system 

performance.  
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2.4.1.1 Raster scan for the Nano-stage 

 

Figure 2-13. Schematic representing development of a raster scan strategy 

to scan a sample on STED system. Typically, the stage starts at the origin, 

the point labeled, “Start here”. It moves through a horizontal line, the 

length of which has been assigned by the user, length of the area to be 

scanned. It stops at intermediate distances, pixel size, and the detector 

collects photons each time the stage stops. At the end of the line, it moves 

one “step”, y-dimension of pixel size. It repeats this process (width of the 

area to be scanned/y-dimension of pixel size) to collect data across the 

raster grid. Subsequently, an image reconstruction algorithm parses this 

data to reconstruct an image based on photon counts collected.  

While the micro-stage would enable coarse positioning of the sample, 

NanoPDQ would offer the necessary flexibility to actually image the sample. 

Therefore, we first implemented a conventional raster scan algorithm on the 

NanoPDQ as shown in Figure	   2-‐13. Briefly, the stage were given a matrix of 

positions, it would stop at each position, shown by blue crosses on the scanning 
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path schematic, it was allowed a brief settling time, the detector would collect the 

signal at that position, the stage would move to the next position, and the 

process would repeat until the stage had visited each position assigned to it by 

the position matrix. Black arrows on the schematic signify motion of the stage in 

the y direction. An important thing to note is the fact that given the relatively large 

time difference between each step in the y direction, motion in y axis, referred to 

as minor axis from now on, was not rate limiting. To increase the scanning speed 

of the stage, we would need to focus on improving velocity in the x direction, 

“major axis”. The step size of the NanoPDQ, pixel size of the image, while 

programmable, was sub-100 nm to generate confocal data. We expected 

confocal resolution of ~250 nm. Therefore, sub-100 nm pixel size would satisfy 

the Nyquist’s sampling criteria. Once the system had been validated and was 

ready to be used for STED imaging, the pixel size was always dictated by STED 

resolution. Typically, we achieved ~50 nm resolution on STED, therefore, we 

used 25 nm pixel size (unless mentioned otherwise for specific image datasets). 

To ensure appropriate comparison between confocal and STED data, both image 

frames were collected using the same pixel size. For faster scanning, other 

scanning geometries were also implemented (discussed in the apSTED section). 

2.4.1.2 Raster scan for the micro-stage 

 For the micro-stage, the scanning configuration was similar to the one 

used with NanoPDQ with the following differences. As in the case with the 

nanostage, the microstage was also given a matrix of positions, as shown in 

Figure	   2-‐14. However, the minimum step size for the micro stage was 50 
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microns. The range of the nanoscan was 50 microns in xy axes. Therefore, the 

minimum step size required on the microstage was 50 microns. Furthermore, the 

microstage polls the nanostage for a hand-shake signal. Each time the 

nanostage finishes a scan; the microstage would move to its next position. Unlike 

the nanostage scans, patterns used for microstage scanning were always 

rectangular.  

 

Figure 2-14. Microstage and nanostage have been programmed using 

multiple hand-shake signaling protocol. Once the nanostage finishes a 

scan (shown in blue), it goes back to its original (0,0) position. After it 

reaches the origin, it relays a hand-shake signal to the microstage enabling 

it to move one ‘step’ (of predetermined dimension >50 microns). Repeating 

this over a large area allows the system to reconstruct larger area image.  

2.5 System validation for STED 

Coarse alignment of the system was achieved by utilizing pinholes at 

different points of the system. 1 micron pinholes were placed at different spots in 

the optical paths and the lasers turned on sequentially. In an event of 

misalignment, the laser would not pass through a specific pinhole and the 

absence of laser at any of the checkpoints provided the identification of a 
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problem spot. Beyond the common optical path, there wasn’t enough physical 

space to ensure alignment. To circumvent this shortcoming, we adapted an 

alignment protocol (based on a discussion with Hell lab). Specifically, we 

developed a ~20 inch long alignment tool, Figure	   2-‐15, made with pinholes 

placed at the two ends of the tool. We removed the objective lens and screwed 

the alignment tool in lieu of the objective at the objective holder. Given the length 

of the alignment tool and the size of the two pinholes used, the lasers would pass 

through the tool only if it were aligned reasonably well and was collimated. 

Therefore, a passage through both the pinholes of the alignment tool and 

presence on the other side of the tool on a “screen” was considered positive 

proof for high degree of coarse alignment.  

Following coarse alignment of the two lasers, to achieve alignment with a 

high degree of accuracy, we scanned sub-resolution (~80 nm) gold particle 

samples using both lasers sequentially. Samples were prepared using the 

following protocol: 

1. ~4.5 g PVA 4-88 was dissolved in water 

2. Stirring and heating to ~50 C was used to increase the efficiency of 

dissolution and also to improve the speed significantly 

3. Gold colloids (80 nm, British Biocell) were sonicated for 10 min 

4. 20 uL of gold colloid was pipetted into an eppendorf cup and diluted with 

200 uL of PVA solution 

5. 100 uL of solution in (4) was dispersed onto a coverslip and spincoated at 

4000 rpm for 30 sec. Spincoating ensured a uniform film of particles 
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6. Sample was allowed to dry in a dessicator overnight 

7. Subsequently the coverslip was mounted with immersion oil onto a 

microscope slide and was glued using nailpolish 

 

Figure 2-15. Alignment tool for coarse alignment of the system. The 

alignment tool is ~20 inches in length. Small diameter pinholes are placed 

at either ends of the pinhole. It is placed in place of the objective lens and 

the lasers are allowed to pass through the two pinholes to confirm optimal 

alignment. 
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Figure 2-16. Images of sub-diffraction gold beads (~80 nm) using both 

lasers sequentially. Line profiles of the center of the images indicate the 

dimensions measured using both lasers. System was aligned to achieve 

super-imposition of the centroids of the two images  

Gold beads were imaged in a reflection mode setting i.e. the fluorescence 

filters were removed from the detection pathway. The target was to image the 

gold beads using the excitation laser as shown on the left in Figure	   2-‐16. 

Subsequently, image the same bead using the toroid shaped depletion beam, as 

shown in the right panel of Figure	   2-‐16, and implement the necessary optical 

alignment adjustments to superimpose the center of the ‘donut’ with the center of 
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the excitation bead scan. This would ensure alignment of the two lasers with a 

high degree of accuracy.  

2.5.1 Toroid engineering 

 One of the primary determinants of the quality of the toroid is the 

polarization of the depletion laser beam. Initial scans revealed that the toroids 

were imperfect at the focal plane. Vortex phase masks essentially function by 

inducing destructive interference at the center of the donut and constructive 

interference on the outer periphery. However, the efficiency of this phenomenon 

depends on circular polarization of the laser beam. To ensure high degree of 

circular polarization, we included a quarter wave plate right underneath our 

objective lens. Furthermore, using the donut scans as a feedback, we 

manipulated the orientation of the quarter wave plate to improve the “circularity” 

of the beam polarization. We also included half wave plates at the output of the 

laser beams to ensure near “perfect” linear polarization of the laser before it hit 

the quarter wave plate placed at the back aperture of the objective lens. 

Scanning sub-diffraction gold beads was used as a feedback to evaluate 

the quality of the torus. To improve the shape and energy distribution across the 

toroid shape, the centering of the laser was adjusted on the phase plate.  

The fluorophore best suited for the laser wavelengths that we had 

selected was Oregon Green 488. Therefore, in order to quantify the resolution of 

STED, we prepared a sample by immobilizing Oregon Green 488 on a cover 

glass with thickness ~170 micron. Sample was prepared using the following 

protocol: 
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1. Sonicate the fluorophore sample for 15 min. Dilute antibody in PBS 

(~1:10000) 

2. Sonicate again for 15 min 

3. Clean a cover slip with ethanol 

4. Coat the coverslip with poly-L-lysine for 10 min 

5. Wash off the cover slip and blow dry using air or nitrogen 

6. Pipette a drop (~20 uL) of the solution on the coveslip 

7. Allow the fluorophores to attach to the surface (~15 min) 

8. Repeat the wash and dry cycle as (5) 

9. Add a drop of TDE (~20 uL), press cover slip on microscope slide and seal 

with nail polish 

Subsequently, we imaged the sample both under a confocal mode and a 

STED mode. A typical set of images is shown in Figure	  2-‐17. The improvement in 

resolution can be better appreciated from the inset, zoomed-in version, of the 

images. Particles that appear as clusters on the confocal scan can clearly be 

differentiated on the STED image. A comparison of full-width-at-half-maximum of 

intensity profiles of a single particle, shown in Figure	   2-‐17(B), reveals the 

resolution achieved by STED to be ~50 nm, a >4-fold improvement over that 

achieved by confocal, ~230 nm.  
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Figure 2-17. Side by side comparison of confocal and STED image data 

from a calibration sample. Samples were prepared by immobilizing Oregon 

green 488 on glass coverslips. Line scans reveal improvement in resolution 

from ~230 nm to ~50 nm, >4-fold improvement. 

2.6 apSTED Microscopy 

 While a STED system does afford a superior resolution compared to 

conventional imaging systems, it achieves this using a high-powered depletion 

laser source. This translates into a need for shorter pixel dwell times in order to 

avoid severe photobleaching and phototoxicity to cells under study. Several 

techniques have been proposed in the past to increase the scanning speed of 

fluorescence microscopes. While each of these strategies has its own set of pros 
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and cons, we endeavored to build a system of our own, affording us the maximal 

flexibility and access to on-the-fly changes to the scanning algorithms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-18. Comparison of fluorescence bead calibration sample without 

and with accelerated piezoelectrically driven stage motion for STED. Left 

image was taken using slow scanning frequency ~170 Hz. The right image 

was collected at high frequency ~10KHz and the image was distorted.  (B) 

Demonstration of the advantage of apSTED. Left is slow scan and right 

image was collected at ~10 KHz with no appreciable difference between the 

two images. 
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To circumvent the challenge of photobleaching at the sample due to high 

depletion laser intensities, a fast scanning strategy was implemented by 

accelerating the piezoelectrically driven sample stage at super-optimum 

operating frequencies. Accelerating the stage, however, introduced system lag. 

This translated into images with shifts between subsequent scan lines as shown 

in Figure	   2-‐18. To overcome this shortcoming, various scanning algorithm 

improvements (accelerations) were implemented (described in subsequent 

sections). Utilizing this strategy, ~10-fold increase in scanning speed for the 

STED system was achieved. Being accelerated through piezoelectric drive, we 

called the system apSTED. Resolution achieved using apSTED was similar to 

the resolution achieved through conventional STED, ~50 nm. However, the 

photobleaching rate, ~10%, was significantly better than the ~80% 

photobleaching rate on conventional STED system.  

2.6.1 Sinusoidal scan algorithm 

 

Figure 2-19. Variation on the scanning algorithm. To avoid system lag in 

responding to command, we modified our rectangular scanning algorithm 

to a sinusoidal scan. 
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In order to increase the scanning speed of the stage, we needed to enable 

smooth, linear motion of the stage at high speed. Detailed analysis revealed that 

the increased speed would have the most detrimental effects on the stage’s 

performance at the end points of a scan line because of the abrupt change in 

direction that it experienced at the two ends. Therefore, to avoid this, as shown in 

Figure	   2-‐19, we adapted our algorithm to use a sinusoidal scanning protocol in 

lieu of the rectangular protocol preferred by conventional STED implementations.  

2.6.2 Uni-directional data collection 

 

Figure 2-20. A unidirectional scanning strategy as opposed to the initially 

implemented bidirectional scanning, circumvented the non-linearity in 

motion that the stage suffered at the end-points of a scan line while 

changing direction of motion. 

An analysis of the stage response corresponding to the command signal 

underscored the linearity of the stage moving forward following the sinusoidal 

curve. However, the stage response on its journey on the “back” path was not 

linear. Broadly, this was because the piezoelectrically stage was driven by 

voltages. Therefore, the forward motion was governed by a signal that went from 

0 to full voltage (full voltage varied by the range of the scan area). The stage had 

to turn around after reaching the end of the scan line (maximum voltage), and 
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travel “back” in the other direction. This turn around event introduced phase lag 

in the stage, which resulted in a non-linearity in its motion in the “back” direction. 

To circumvent this shortcoming, and to quicken the stage motion further, as 

demonstrated by a schematic in Figure	   2-‐20, we decided to record data only 

during the “forward” motion of the stage, and during the “back” motion just 

change the applied voltage to zero, enabling fast stage motion in the “back 

direction”. This allowed us to increase the scanning speed significantly.  

2.6.3 Time based detection in lieu of position based detection 

While sinusoidal scans enabled an increase in scanning speed, it was still 

not able to mitigate the photobleaching challenge completely. To improve the 

scanning efficiency further, we chose time-based detection in lieu of position-

based detection. As described in the previous sections, our raster scanning 

strategy was based on the stage stopping at several intermediate points on a 

scan line and the detector collecting data once the stage had reached steady 

state position i.e. all the transients had died down. However, the settling time for 

the stage would offer a bottleneck to increasing the scanning speed. Therefore, 

we updated the scanning algorithm to enable the stage to move to the end of the 

scan line at high speed. Instead of collecting position-encoded data, we 

implemented time-encoding data protocol. Data was collected at several time 

points while the stage moved from one end to the other on its scan line and the 

data was subsequently assigned to specific spatial coordinates based on its time 

coordinate with respect to the beginning of the scan line. This enabled us to 

collect data at high speed without stopping the stage at any point in its travel.  
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Taken together, all the improvements reported in the previous three 

sections resulted in a scanning speed improvement of >~10-fold. We went from 

about 170 digitizations with a basic raster scanning algorithm to ~10,000 

digitizations once all these upgrades were implemented. This enabled us to 

largely side step the issue of photobleaching, which fell from ~80% to ~10% 

enabling us to perform meaningful biological imaging studies.  

References: 

1. Hell, S. Strategy for far-field optical imaging and writing without diffraction 

limit. Physics Letters A (2004). 

2. Harke, B., Medda, R. & Hell, S. STED microscopy with continuous wave 

beams. Nat Methods (2007). 
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3 Structural and Functional Basis of Primary Cilia 

Despite it’s discovery in 1898, primary cilium had been considered a vestigial 

organ until recently. However, more recent work has identified its role in 

maintenance of several critical homeostatic functions in mammalian biology, 

cellular signaling, as a sensor for various cell types, and a mediator of myriad 

chemo-mechanical signaling pathways.  

Of particular interest is to note the role of primary cilia structure. Typically, 

the morphology of primary cilia, and changes occurring in its morphology, has 

been correlated with its ability to mediate different signaling pathways. 

Specifically, a decrease in length of primary cilium has been correlated with a 

reduction in sodium currents. McGlashan et al. showed that the length of primary 

cilia decreases in response to an overloading of chondrocytes1. Their study 

further demonstrated an increase in primary cilia length corresponding to 

deprivation of this stress on chondrocytes. Resnick et al. reported a 60% 

decrease in epithelial sodium channel (ENaC) current corresponding to a 30% 

decrease in primary cilia length under shaking induced fluid flow conditions2.  

3.1 Imaging primary cilia 

 The first step to developing imaging based assays to study primary cilia 

was to setup a protocol to label various elements of primary cilia. As a first step, 

we adapted an immunolabeling protocol proposed previously. Specifically, we 

used Hoechst labeling to identify the nuclei of the cells. Furthermore, we labeled 

acetylated tubulin (Ac-Tub) to identify the axonemal structure of primary cilia. An 

important factor to consider is the fact that, while it is concentrated higher in the 



	   58	  

	   	  
	   	   	  

axoneme of primary cilia, Ac-Tub is not exclusive to primary cilia. It labels other 

cyto-skeletal structures of the cells as well. Therefore, for definitive identification 

of primary cilia, we also labeled pericentrin, a molecule expressed at high levels 

in centrosome. Given that the basal body of primary cilia originates from the 

mother centriole, a localization of Ac-Tub with pericentrin was considered 

positive identification of primary cilia. Figure 1 shows a typical data set collected 

using this protocol.  

 

Figure 3-1. Immunostaining assay to identify primary cilia on Human 

Foreskin Fibroblast (HFF-1) cells. Hoechst staining (blue) was used to 

identify nuclei of the cells. Ac-Tub (red) labeling identified the axonemal 

structure of primary cilia. Pericentrin (green) labeled the centrioles of the 

cells. Close vicinity localization of Ac-Tub to pericentrin was considered 

positive identification of primary cilia. 

3.1.1 Experimental protocol 

3.1.1.1 Cell culture  

1. Human foreskin fibroblast (Hff-1) cells were cultured on #1.5 glass cover 

slips, at a seeding density of 150,000 cells, using Dubelco’s Minimum 

Essential Media (DMEM) supplemented with 15% Fetal Bovine Serum 
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(FBS), 1.5% Hepes buffer, 1.2% Penicillin-Streptomycin and 1.2% 2mM L-

glutamine at 37 C and 5% CO2.  

2. The above stated media recipe was called serum-enriched media for Hff-1 

cells 

3. Serum-deprived media was prepared following the recipe mentioned 

above with the exception of FBS.  

4. Once the culture reached ~95% confluence, media on the culture was 

changed to serum-deprived state.  

3.1.1.2 Fixation/immunostaining 

1. After serum deprivation either for 24 or 48 hours, cells were perfusion-

fixed using 5% Paraformaldehyde (PFA) for 12 minutes.  

2. Samples were then washed twice with Phosphate Buffer Saline (PBS) 

3. PBS washes were followed up with permeabilization with 0.2% PBS-Triton 

(PBST) for 10 min. 

4. After permeabilization, samples were blocked using 10 % normal donkey 

serum, at room temperature for 1 hour.  

5. Cells were incubated with primary antibodies; mouse monoclonal antibody 

to Acetylated Tubulin (Ac-Tub) (ab24610, Abcam) diluted 1:2000 and 

rabbit polyclonal antibody to pericentrin (ab4448, Abcam) in the blocking 

solution overnight at 4 C 

6. Next day, cover slips were washed with PBST (3x) before being incubated 

with donkey anti-mouse Alexa Fluor 568 secondary (Invitrogen) and 
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donkey anti-rabbit Alexa Fluor 488 antibodies diluted in the same blocking 

solution at room temperature for an hour 

7. Post secondary antibody incubation, the samples were washed with PBST 

(3x) 

8. Subsequently, samples were incubated with Hoechst, 1:100 dilution in 

PBS, for 10 min to label the nuclei of the cells 

9. Hoechst staining was followed by PBS washes (3x)  

3.1.1.3 Imaging  

1. Sample cover slips were mounted on glass slides using, non-fluorescent 

and fast drying nail polish, as a sealant.  

2. Samples were imaged through the coverslip using a 100x, 1.4 NA 

objective (Olympus) on an inverted epi-fluorescence microscope (IX-81, 

Olympus) 

3. Hoechst channel was imaged using EX: 387/11 and EM: 447/60 filter set 

(DAPI-1160A-OMF-ZERO, Semrock Inc.) coupled with a dichroic DM: 409 

(Semrock Inc.) 

4. Pericentrin channel was imaged using EX: 500/24 and EM: 542/27 filter 

set (YFP-2427A-OMF-CUST-ZERO, Semrock Inc.) coupled with a dichroic 

DM: 520 (Semrock Inc.) 

5. Ac-Tub channel was imaged using EX: 562/40 and EM: 624/40 filter set 

(TXRED-4040B-OMF-CUST-ZERO, Semrock Inc.) coupled with a dichroic 

DM: 601 (Semrock Inc.) 
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6. Images were collected using a CCD camera (C8484-05C, Hamamatsu) 

with a 1344 x 1024 sensor chip and a 6.45 µm2 cell size.  

7. Images were collected from individual channels before data from these 

channels were merged to generate overlays.  

8. The plane of focus for individual channels, corresponding to the nucleus, 

axoneme of primary cilia and basal body of the primary cilium, were 

observed to be slightly different from each other.  

9. In order to prevent double counting of cells, if the focal plane varied by 

>10µm, those primary cilia were not considered for analysis. 

 

Figure 3-2. For morphometric analyses, primary cilia images were extracted 

from the multi-dimensional image data sets. Thresholding was used to 

clean the image data set. Shown in the figure are a few representative 
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primary cilia images that were collected from 24 hour serum deprived Hff-1 

cells for further analysis. 

3.1.1.4 Image processing 

1. Images were imported into imageJ 

2. Images were thresholded <5% to improve the signal-to-noise ratio (SNR). 

3. Image overlays were generated in imageJ 

4. Length of primary cilia were measured using a built in imageJ length 

measurement tool  

3.2 Validating the functional state of primary cilia 

One of the most significant tasks of primary cilia is to mediate myriad 

signaling pathways3. Amongst the different pathways mediated by primary cilia, 

hedgehog is one of the more critical pathways4. Sonic hedgehog (Shh), one of 

three prominent members of the hedgehog family, is one of the better-studied 

ligands of the family. Its importance is underscored by the role it plays in 

organogenesis1,5, including in the growth of digits of the limb and the organization 

of the brain. In adults, it has been shown to contribute to cell division and 

differentiation of adult stem cells2,6, and in development of certain types of 

cancers3,7-11. The downstream effect of Shh signaling is the activation of 

transcription factor family, Gli, which in turn coordinates tissue patterning. The 

interaction of Shh with Gli is mediated through a pair of transmembrane proteins, 

Smoothened (Smo) and Patched (Ptc). In the absence of signaling, Smo is 

maintained in an inactive state by Ptc. Furthermore, Gli also remains repressed. 

Conversely, in the presence of signaling, Ptc in unable to suppress Smo, which 
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in turn produced Gli activators, which are responsible for the optimal execution of 

Hh signaling pathway. Details of this pathway have been reported in detail in this 

review4,12. Recent studies have established a prominent role for primary cilia in 

the mediation of this pathway12,13. Specifically, Shh receptors have been shown 

to localize at the base of primary cilia. In the absence of Shh, according to 

models proposed by several studies, Smo is present on intracellular vesicles and 

Gli proteins processed in their repressive forms at the tip of primary cilia. In 

response to Shh signaling, Ptc is pushed out of the primary cilia structure, 

therefore, no longer prohibiting the entry of Smo. Subsequently, Smo enters 

primary cilia and interacts with the Gli protein machinery to activate Gli. Gli 

activators are believed to subsequently leave the cilium and enter the nucleus to 

coordinate the activation of Hh-dependent genes12.  

In order to validate the functional state of primary cilia, we undertook a 

study involving stimulation of primary cilia. Specifically, we used SAG, a potent 

Smoothened (Smo) agonist to simulate the activation of the Shh signaling 

pathway.  

3.2.1 Validation of presence of ptc on primary cilia 

 

1. To validate the presence of primary cilia, cell cultures were prepared as 

described in the previous section. 

2. A modified immunostaining protocol was used to label ptc and ac-tub on 

cells 
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3. Briefly, after serum deprivation either for 24 or 48 hours, cells were 

perfusion-fixed using 5% Paraformaldehyde (PFA) for 12 minutes.  

4. Samples were then washed thrice with Phosphate Buffer Saline (PBS) 

5. Cells were incubated in -20°C methanol for 5 minutes and subsequently 

washed with PBS (3x) 

6. PBS washes were followed up with permeabilization with 0.2% PBS-Triton 

(PBST) for 10 min. 

7. After permeabilization, samples were blocked using PBST containing 2% 

Bovine Serum Albumin (BSA) and 1% normal donkey serum, at room 

temperature for 1 hour.  

8. Cells were incubated with primary antibodies; mouse monoclonal antibody 

to Acetylated Tubulin (Ac-Tub) (ab24610, Abcam) diluted 1:2000 and 

rabbit polyclonal antibody to patched1 (sc-9016, Santa Cruz 

Biotechnology Inc.) in the blocking solution overnight at 4 C 

9. Next day, cover slips were washed with PBST (3x) before being incubated 

with donkey anti-mouse Alexa Fluor 568 secondary (Invitrogen) and 

donkey anti-rabbit Alexa Fluor 488 antibodies diluted 1:2000 in the same 

blocking solution at room temperature for an hour 

10. Post secondary antibody incubation, the samples were washed with PBST 

(3x) 

11. Samples were imaged as described in the previous section 
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Figure 3-3. Hff1 cells were labeled for Ac-Tub and Ptch1. Samples were 

imaged under 100x magnification. This is a representative set of images. 

As demonstrated, Ptch1 stain seemed to completely overlap Ac-Tub, 

implying the presence of Ptch1 in the primary cilia structure.  

 As shown in figure 3-3, our data indicate almost perfect overlap in Ptch1 

and Ac-Tub images. Confirmation of overlap in these two channels was 

consistent with studies reporting the presence of Ptch1 inside the primary cilia 

structure.  

 To confirm the functional state, next we repeated the experiment following 

essentially the same protocol with a few changes. Before fixing cells, we 

stimulated them using 1 µM SAG, a small molecule Smo agonist. Stimulating the 

cells with SAG for 4 hours resulted in a complete removal of Ptch from the 

primary cilia body confirming the functional status of primary cilia.   

3.2.2 Smo in the context of primary cilia 

Functional primary cilia mediate the Shh signaling pathway as described 

in the previous section. As a more stringent validation of the functional status of 

primary cilia and their ability to mediate the said pathway, we also studied the 

localization of Smo inside the axonemal structure of primary cilia. Briefly, we 
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cultured and fixed Hff1 cell samples as described in 3.1.1.1 and 3.1.1.2. Donkey 

anti-rabbit antibody against Smo (sc-13943, Santa Cruz Biotechnologies Inc.) 

and donkey anti-mouse antibody against Ac-Tub were used to label the cells 

following the same immunostaining protocol. When the cells were not exposed to 

SAG, control experiment, we found no localization between Smo and Ac-Tub., as 

shown in figure 3-4. 

 

 

Figure 3-4. Hff-1 cells stained for Smo and Ac-Tub. Cells were imaged in 

their nascent state, no SAG stimulation. Our data suggests, in absence of 

SAG stimulation i.e. in absence of activation of Shh pathway, Smo is 

unable to enter the axonemal structure of primary cilia. Together with data 

shown in figure 3-3, this data confirms the canonical model of 

homeostatically functional primary cilia, i.e. if the Shh pathway is not 

stimulated, Ptch1 is localized inside the axonemal structure of primary 

cilia, which prevents the entry of Smo in, therefore, inhibiting the 

downstream effectors of Shh signaling pathway. 
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 Stimulation of Hff-1 cells with SAG for a period of 4 hours, however, 

resulted in entry of Smo into the axonemal structure of primary cilia. As shown by 

a representative image data set in figure 3-5, Smo localized well with Ac-Tub on 

Hff-1 cells stimulated with SAG for 4 hours. Taken together with the Ptc data, this 

set of experiments underscores the functional status of primary cilia on Hff-1 

cells. It also provides validation for the proposed model of primary cilia 

functionality, which states that when the Shh signaling pathway is activated Ptc is 

pushed out from the primary cilia and Smo is pushed in. In addition to this 

imaging based study, we also undertook a biochemical study to determine 

expression levels of various players participating in Shh mediation pathway. 

Results of that study are reported as a part of chapter 4 in this document.  

 

 

Figure 3-5. After 4 hours of SAG stimulation, labeling Hff-1 cells with Ac-

Tub and Smo reveals almost perfect localization of both. This result is 

indicative of the homeostatic functional status of primary cilia on Hff-1 

cells. 
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3.3 Transition zone  

One of the most prominent structural elements of a primary cilium is the 

transition zone. Briefly, recalling the structure of primary cilia, it originates from 

the mother centriole, the older of the two centrioles in the cell. The process of 

ciliogenesis begins with the attachment of a vesicle to the distal end of the basal 

body. Centriolar distal appendages provide the necessary anchoring to the 

vesicle to dock onto the basal body. In the context of primary cilia, these 

centriolar distal appendages are also sometimes referred to as transition fibers. 

Subsequent to docking of the vesicle, a bud emerges from the basal body. The 

tip of the bud elongates to give rise to the axoneme of primary cilia. However, the 

base of the bud remains structurally different from the tip and goes on to form 

“transition zone”. Details of these structures are more thoroughly reviewed in this 

study12. Structurally, transition zone appears to be one of the most significant 

components of primary cilia. This is a result of the fact that there is no protein 

synthesis inside primary cilia. Therefore, material going in and out of the primary 

cilium is the only mechanism that would ensure structural integrity and functional 

viability of primary cilia. However, the outer membrane of primary cilia is 

contiguous with the plasma membrane of the cell. Therefore, transition zone 

provides the physical site of discriminating against cytosolic proteins and allowing 

only proteins associated with structure/function of primary cilia to enter the ciliary 

body.  

Given that the morphology of primary cilia structure governs its signal 

transduction function, it is necessary to elucidate the structural components of 
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primary cilia. Studying the transition zone would provide first order information 

regarding material going in and out of primary cilia. Therefore, we initiated a 

project to study various transition zone components of primary cilia.  

Abnormalities in the structure of primary cilia have been correlated with 

several tissue-development disorders. Such abnormalities are broadly classified 

as ciliopathies14. Nephronophthisis (NPHP), Joubert Syndrome (JS), and Meckel-

Gruber Syndrome (MKS) are three such ciliopathies. These ciliopathies result in 

devastating effects on the quality of life of an individual15-17. Systematic study18 of 

various components of primary cilia has revealed a family of molecules, NPHP, 

to play a critical role in these ciliopathies. In certain cell types18-21, NPHP has 

been shown to localize exclusively at the transition zone.   

3.3.1 NPHP4 in the context of Hff1 cells 

NPHP4 has been identified as an important member of the NPHP family. 

We undertook an immunostaining study to observe NPHP4 at the transition zone 

of primary cilia. We followed the cell culture and fixation protocols as described in 

3.1.1.1 and 3.1.1.2. Furthermore, we followed the immunostaining protocol as 

described in 3.1.1.3 with the following exception. We used rabbit polyclonal 

antibody against NPHP4 (13812-1-AP) in conjunction with the mouse monoclonal 

antibody against Ac-Tub described previously. Imaging was carried out using an 

Olympus IX-81 following the same protocol as described previously. Given the 

location of transition zone at the base of primary cilia, intuitively, we anticipated 

the presence of NPHP4 at one of the two ends of primary cilia. However, 

counter-intuitive to expectations, our data suggests that in addition to the 
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transition zone, NPHP4 leaks into the axonemal structure of primary cilia on Hff1 

cells. Repeating the experiment with different dilutions of antibodies, or depriving 

the cells of serum for times ranging from 24-48 hours, did not have any effect on 

the qualitative nature of the data. Absolute brightness of the images, a measure 

of the number of fluorophores labeling the cilium structure, changed with 

changes in the dilution of antibodies. But qualitatively the data remained similar.  

While there is strong evidence to underscore the role of NPHP4 at the 

transition zone of primary cilia, we are unaware of any previous studies reporting 

a functional role of NPHP4 in the axonemal structure of primary cilia. While our 

data is exciting, and repeatable, given the counter-intuitiveness of results, we are 

doing follow up work to elucidate completely the implications of this finding. It 

remains to be seen if the leaking of NPHP4 in the axonemal structure of primary 

cilia on Hff1 cells plays a functional role or if some previously unseen molecular 

structural defect at the transition zone unwittingly allows the entry of NPHP4 

inside.  

 

Figure 3-6. Hff1 cells were immunostained with antibodies against Ac-Tub 

and NPHP4. Consistent with previously suggested models, NPHP4 does 

localize at the base of primary cilia i.e. localizes at the transition zone. 
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Additionally, our data suggests, small amounts of NPHP4 “leaks” into the 

axonemal structure of primary cilia.  

3.3.2 TCTN2 and Cep290 – potential targets for apSTED 

Tectonic proteins have very recently been identified as an important and 

integral part of primary cilia transition zone22. Tectonic family proteins are 

evolutionarily conserved and have been identified to be transmembrane. 

Functionally, they have been identified to be necessary for the full activation of 

the Hh signaling pathway. While precise location of members of the tectonic 

family is as yet unclear, it has been hypothesized that tectonic-1 (TCTN-1) may 

be found on the extracellular end of the ciliary necklace. This hypothesis is 

supported by the fact that it interacts with transmembrane protein while at the 

same time has signal peptides. Tectonic-2 and 3 (TCTN-2 and TCTN-3), on the 

other hand, have been hypothesized to be transmembrane elements by 

themselves. Amongst these, TCTN2 has been shown to be an important player 

in the landscape of MKS23.   

Our lab undertook an imaging based study of Tctn2. Cell sample 

preparation followed a protocol described in the previous sections. For 

immunostaining Tctn2, we used mouse monoclonal antibody to Tctn2 

(ab119091, Abcam). Rabbit polyclonal antibody against pericentrin was used to 

label pericentrin on the same sample. As shown in figure 3-7, while one can infer 

the location of Tctn2 to be around the transition zone region, it is hard to decipher 

any structural information of Tctn2 due to the resolution limitation. With transition 

zone proteins such as Tctn2, one is not only interested in the structural detail of 
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the molecule itself but is also interested in the complex dynamic interaction 

between Tctn2 and other members of the transition zone protein complex. This 

would not be possible with the resolution limited conventional imaging systems 

and would need a super-resolution approach to study, such as apSTED 

microscopy.  

 

 

Figure 3-7. Hff1 cells were labeled for pericentrin and Tctn2. Tctn 2 is a 

member of the Tectonic family, a transmembrane protein, demonstrated to 

play a role in ciliopathies such as MKS. The vicinity of TCTN2 to pericentrin 

on the overaly image on the right underscores the transition zone 

localization of Tctn2.   

 Another integral part of transition zone protein complex is Cep290. 

Cep290 enables the localization of MKS-JBTS proteins at the transition zone and 

hence is an important player in maintaining homeostasis of primary cilia. 

Furthermore, they have been shown to be important in the formation of Y links, 

links that connect the microtubule doublets of primary cilia axoneme to the 

plasma membrane of primary cilia. Taken together, data suggests both a 

structural and functional role for Cep290 in maintenance of normal primary cilia 

function.  
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 Our lab conducted an imaging based assay to study Cep290. Following 

the previously described protocol, we labeled Cep290 using rabbit polyclonal 

antibody to Cep290 (ab84870, Abcam). Imaging these samples under 100x epi-

fluorescence revealed Cep290 to localize at the base of primary cilia. This was 

consistent with data reported by other studies. However, the resolution of this 

microscope was neither high enough to elucidate fine structural detail of Cep290 

structure nor high enough to undertake co-localization studies between Cep290 

and other members of the transition zone protein complex. In order to enable 

such studies, we undertook high-resolution apSTED study of Cep290 (results 

reported in chapter 5). 

 

 

Figure 3-8. Ac-Tub and Cep290 were labeled on Hff1 cells. As highlighted in 

the overlay image, Cep290 localized at the base of primary cilia. However, 

the structural detail of Cep290 was beyond the scope of the resolution of 

the microscope used to collect this dataset. 

 In summary, we setup imaging based assays to study several aspects of 

primary cilia, such as their mesoscale structure, relative localizations of different 

molecular components of primary cilia structures, and molecules participating in 

mediation of signaling pathways. While we got some very exciting and insightful 

results, we also came across aspects of primary cilia that were beyond the scope 
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of the resolution limit of conventional epi-fluorescence imaging. We revisited 

some of the aspects described here using our custom-built apSTED nanoscope. 

Results of those studies are reported in chapter 5.  
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4 Effects of cell reprogramming on the characteristics 

of primary cilia 

One of the most significant primary cilia functions is the mediation of cellular 

signaling pathways1. Of particular note is the mediation of sonic hedgehog2 and 

Wnt1 signaling pathways. Both of these pathways have previously been shown to 

be important in maintaining tissue homeostasis in stem cells3.  

Recent work on embryonic stem cells (ESCs) documented the presence of 

primary cilia on ESCs4. While ESCs promise to be one of the most important 

tools in understanding developmental biology and providing an avenue to explore 

the possibility of cell replacement therapy, they have been plagued by ethical, 

political, moral, and technical challenges. Development of induced pluripotent 

stem cell (iPS) technology5 has enabled the circumvention of these challenges. 

Briefly, ectopic expression of transcription factors OCT4, Sox2, Klf4, and c-Myc, 

on somatic (adult) cells results in induction of embryonic stem-like state in these 

cells. The resulting cell line, induced pluripotent stem cell (iPSC), has been 

shown to be phenotypically remarkably similar to embryonic stem cells5-7. Minor 

genetic variations have more recently been reported8. However, iPSCs pass the 

stringent of functional tests, such as tetraploid complementation assay9, 

underscoring their pluripotent state and their complementary applications in stem 

cell biology.  

 Maintenance of pluripotency and controlling the process of differentiation 

could be considered two of the biggest scientific challenges to applications of 

stem cell biology. Given the role of primary cilia in mediation of signaling 
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pathways believed to play significant roles in this context, we endeavored to 

study primary cilia in the context of iPSCs. A complete lack of prior work in the 

field compelled us to start with setting up assays to verify the presence of primary 

cilia on iPSCs. We undertook systematic studies to validate the presence of 

primary cilia, and to confirm its functional status. Furthermore, we undertook 

differential morphometric analyses comparing primary cilia structures on iPSCs 

with those on their somatic cell counterparts. Our results show significant 

morphological differences between these two classes of primary cilia 

underscoring the underlying differences in mediation of cellular signaling 

pathways.  

4.1 Primary cilia are present on reprogrammed human iPSCs 

Immunostaining of acetylated tubulin (ac-tub) and pericentrin was first 

conducted to examine the existence of primary cilia. Briefly, primary human 

fibroblasts (from New York Stem Cell Foundation (NYSCF)) were maintained in a 

37oC humidified incubator at 5% CO2 in 10% Hyclone fetal bovine serum and 

DMEM with 1% HEPES. Cells were passaged with Trypsin. hiPSCs were 

reprogrammed from the abovementioned human fibroblasts by NYSCF using 

lentiviral vectors of Oct4, Sox2, Klf4, and cMyc. This cell line was validated using 

immunostaining against pluripotency markers such as Sox2, Oct4, and Nanog, 

performing a teratoma assay on NSG mice, and through qPCR confirmation of 

expression of stem cell genes and silencing of viral transgenes by NYSCF10. 

These hiPSCs were maintained in our lab in a 37oC humidified incubator at 5% 

CO2 on mouse feeder layer in 15% serum replacement and KO DMEM 
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(Invitrogen) with 1% non-essential amino acid, 1.0 mM L-glutamine, 0.1 mM β-

mercaptoethanol, and 8 ng/mL bFGF. To passage the cells, undifferentiated 

colonies were cut into small pieces by microdissection. The pieces were 

transferred to a plate coated with 0.1% gelatin and fresh mouse feeder layer. 

 

Figure 4-1. Immunofluorescence imaging revealed different morphological 

characteristics of primary cilia between human fibroblasts and 

reprogrammed hiPSCs. (A) Characterization of primary cilia on human 

fibroblast cells. Differentiated cells were identified through nuclear 

localization with Hoechst (blue) and an absence of Nanog (dark in the 

second panel). Localization of ac-tub (red) and pericentrin (yellow) 

confirmed the presence of primary cilia. An overlay displaying the position 

of primary cilia relative to the nuclei (scale bar: 5 µm) (B) Characterization 
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of primary cilia on hiPSCs. Cells were identified by nuclear localization of 

Hoechst (blue). The pluripotent state of the cells was validated by 

expression of Nanog (green). Localization of ac-tub (red) and pericentrin 

(yellow) confirms the presence of primary cilia (scale bar: 2 µm) (C) Sample 

images of primary cilia of human fibroblasts and (D) sample images of 

primary cilia of hiPSCs for morphometric analysis. 

hiPSCs were cultured on a feeder-coated plate with KO-DMEM media 

containing 15% knockout serum replacement for 2 days to reach ~100% 

confluence. These hiPSCs were either fixed right after or cultured for additional 

24 hours without serum replacement before fixing. In addition to the labeling of 

ac-tub and pericentrin, Nanog was also labeled to confirm the pluripotency of 

cells and Hoechst was used to identify nuclei. The following protocol was 

followed to stain these cells:  

Cell samples were transferred to glass bottom plates (Mattek) on which 

they were stained and imaged. Cells were washed in PBS and fixed with 4% 

paraformaldehyde. Cells were permeabilized with 0.2% Triton-X in PBS for 10 

minutes and blocked in a 10% serum solution for 1 hour. The primary antibodies 

used were mouse anti-acetylated a-tubulin (Abcam, 1:1500), rabbit anti-

pericentrin (Abcam, 1:1000), and goat anti-Nanog (R&D Systems, 1:800). 

Primary antibodies were diluted in 10% serum and incubated at 4oC overnight. 

Cells were then washed three times with 0.2% Triton-X in PBS solution. The 

secondary antibodies used were anti-rabbit Alexa Flour 488, anti-mouse Alexa 

Flour 588, and anti-goat Alexa Flour 647. Fixed human fibroblasts and hiPSCs 
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samples were imaged using a motorized inverted microscope (IX-81, Olympus 

America) mounted with a low-noise CCD camera (C8484, Hamamatsu).  

Images were typically collected using a 100x oil immersion 

(UPLSAPO100x-1.4 NA, Olympus) lens with exposure time of 500 ms. Different 

color channel images were collected sequentially. Given the 3D structure of 

hiPSC colonies, z-focus of the microscope was changed slightly to collect 

information from different color channels. In order to avoid double counting 

primary cilia from cells stacked on top of each other, images collected with a 

difference in z-focus >10µm amongst different color channels were ignored. 

Images were imported to MATLAB. Custom-built scripts were developed to false 

color images from different color channels and to combine data from various 

channels. Individual images were thresholded using a MATLAB script. Typically, 

the threshold was placed at 5-10%.  

The immunostaining results showed that Nanog-positive hiPSCs indeed 

possessed primary cilia (Figure 3b), with ac-tub (red) representing the axoneme 

part and pericentrin (yellow) representing the basal body. To study the effects of 

reprogramming on primary cilia, we also labeled the parental human fibroblasts 

with the same set of antibodies. These fibroblasts were grown in DMEM media 

containing 10% fetal bovine serum (FBS) for 2 days to ~100% confluence, 

followed by either immediate fixation or serum starvation for 24 hours before 

fixing them. Comparison of human fibroblasts and hiPSCs illustrated that both 

cell lines possessed primary cilia, while Nanog was absent in fibroblasts but 

present in hiPSCs, as expected in terms of pluripotency (Figures 3A and 3B). To 
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find whether there were any different characteristics of primary cilia between 

these two cell lines, we have imaged a significant number of primary cilia in each 

of these cell lines to sample their morphological features (Figures 3C and 3D). 

4.2 Serum starvation induced ciliogenesis in hiPSCs without 

affecting the expression of pluripotency markers 

Serum starvation is known to promote ciliogenesis in somatic cells, so we 

aimed to use starvation to increase the percentage of cells possessing primary 

cilia. The only concern was that starvation might also affect the pluripotency of 

hiPSCs when cells were not grown in the preferred ESC media. We conducted 

Nanog immunostaining of hiPSCs before and after 24-hour serum starvation and 

the results showed negligible effect of serum deprivation on the pluripotency of 

hiPSCs. Cells after 24-hour serum deprivation were still strongly Nanog positive 

in terms of immunofluorescence signals.  

To corroborate our imaging data, we also performed quantitative reverse-

transcriptase polymerase chain reaction (qRT-PCR) to examine mRNA 

expression levels. Both culture conditions utilized during imaging assays, 

cultures with media enriched with serum and cultures grown for 24 hours in 

serum-deprived conditions, were included on qRT-PCR studies. Briefly, total 

RNA was extracted with the RNeasy Mini kit (Qiagen) and 1 µg of total RNA was 

converted to cDNA using the QuantiTect Reverse Transcription Kit (Qiagen). 

Gene expression was assayed by quantitative real-time PCR using SYBR green 

reagents (Applied Biosystems). The primer sequences are listed: 
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NANOG F 5-ACAACTGGCCGAAGAATAGCA-3; R 5-

GGTTCCCAGTCGGGTTCAC-3  

CRIPTO F 5-CGGAACTGTGAGCACGATGT-3; R 5-

GGGCAGCCAGGTGTCATG-3  

GAPDH F 5-GCACCGTCAAGGCTGAGAAC-3; R 5-

AGGGATCTCGCTCCTGGAA-3  

UBC F 5-ATTTGGGTCGCGGTTCTTG-3; R 5-

TGCCTTGACATTCTCGATGGT-3 

B2M F 5-TGCTGTCTCCATGTTTGATGTATCT-3; R 5-

TCTCTGCTCCCCACCTCTAAGT 

SHH F 5-CCTCGCTGCTGGTATGCTCGGGAC T; R 5-

CTCTGAGTCATCAGCCTGTCCGCTC 

PTCH1 F 5-GCACTACTTCAGAGACTGGCTTC; R 5-

AGAAAGGGAACTGGGCATACTC 

SMO F 5-ACCCCGGGCTGCTGAGTGAGAAG; R 5-

TGGGCCCAGGCAGAGGAGACATC 

GLI1 F 5-GCCGTGTAAAGCTCCAGTGAACACA; R 5-

TCCCACTTTGAGAGGCCCATAGCAAG 

GLI2 F 5-TGGCCGCTTCAGATGACAGATGTT G; R 5-

CGTTAGCCGAATGTCAGCCGTGAAG 

 

Ubiquitin C (UBC) was used as the endogenous reference in the hiPSC 

and fibroblast cells lines. Each sample was run in triplicate. The log-linear phase 
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of amplification was monitored to obtain threshold cycle values. The comparative 

threshold method was used to determine levels of expression. Briefly, the 

number of cycles required to for the fluorescent signal to cross the threshold (i.e. 

exceed background level of fluorescence) is defined as the cycle threshold (CT) 

in PCR parlance. CT levels are inversely proportional to the level of nucleic acid 

material present in the sample, i.e. if a specific gene is expressed at a high level 

in a specific cell type, it will require fewer cycles to reach the threshold level and 

therefore, lower is it’s CT value and vice versa. Experiments were carried out in 

triplicates and mean CT values (CT mean) were used for quantifications. 

Exponent of negative CT value on 2 was used as quantification for mRNA level in 

a given sample. Exponent of negative standard error of mean of CT values on 2 

were used as SE for the given analyses. 

Our data shows expression levels of pluripotency markers, Nanog and 

Cripto, in hiPSCs to be >103 times those in corresponding fibroblast cell line 

(Figure 4A). Furthermore, when cells were cultured 24 hours in serum deprived 

media conditions, there was negligible effect on expression levels of pluripotency 

markers. This data validated the use of serum deprivation as an experimental 

condition in the context of pluripotent cells. While serum deprivation has been 

extensively used as an experimental condition to study primary cilia in myriad cell 

lines, we established the validity of this approach for use with hiPSCs by 

confirming its negligible effects on expression levels of pluripotency markers.  

While serum condition had no appreciable effect on pluripotency, it had a 

significant effect on the percentage of cells with presence of primary cilia (Figure 
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5). The percentage of hiPSCs cultured with normal serum levels containing 

primary cilia was ~19%, whereas, the percentage of hiPSCs cultured in serum 

deprived conditions for 24 hours was as high as ~32%. In contrast, the 

percentage of fibroblast cells cultured with normal serum levels containing 

primary cilia was ~23%, whereas, the percentage of fibroblast cells cultured in 

serum deprived conditions for 24 hours was as high as ~53%, with the 

percentage rising to ~80% when cultured in serum deprived conditions for 48 

hours (data not shown). Our data suggests that the percentage of cells 

containing primary cilia in hiPSCs is inherently smaller than the percentage of 

their parental somatic cells containing primary cilia. 

4.3 Hedgehog signaling pathways were active in hiPSCs 

To test whether Shh pathways were functional or not in the primary cilia of 

reprogrammed cells, we conducted RT-PCR to establish the expression levels of 

hedgehog signaling pathway molecules in fibroblasts and reprogrammed 

hiPSCs, including Shh, Smo, Ptch1, Gli1, and Gli2. Consistent with the results 

found in hESCs11 expression levels of Smo, Ptch1, Gli1 and Gli2 were higher in 

reprogrammed cells (p<0.001) as compared to fibroblasts (Figure 4b). 

Specifically, Gli1 was expressed ~80-fold higher in hiPSCs than in parental 

human fibroblasts, and Ptch1 was expressed ~25-fold higher in hiPSCs 

compared to fibroblasts. Expression levels of Shh did not change as a result of 

reprogramming (null-hypothesis not rejected – two-sample t-test). This result 

indicated that molecules in Shh pathways were active in hiPSCs, potentially 

demonstrating functional states of primary cilia in reprogrammed cells.   
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Figure 4-2. Expression profiling of pluripotency markers and elements in 

Shh signaling pathways for human fibroblasts and reprogrammed hiPSCs. 

(A) Expression levels of pluripotency genes for human fibroblasts and 

reprogrammed hiPSCs in two different serum conditions. High expression 

levels of pluripotency markers Nanog and Cripto were observed for 

reprogrammed cells. 24-hour serum starvation (shown as ‘-‘) had little 

effect on the expression levels of Nanog and Cripto, where the expression 

levels of hiPSCs were consistently >103 times higher than corresponding 

levels of the parental fibroblasts both in serum enriched  and serum 
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starved conditions. (B) Expression levels of hedgehog signaling pathway 

molecules in human fibroblasts and hiPSCs. Expression levels of Smo, 

Ptch1, Gli1, and Gli2 showed ~101-102 times higher than those in the 

corresponding parental fibroblasts. Ubiquitin C (UBC) was used as the 

reference gene. 

 

Figure 4-3. Effect of reprogramming and culture conditions on the 

populations of primary cilia. Reprogramming resulted in a decrease in 

percentage of cells displaying primary cilia morphology, from ~23% to 

~19%. Serum starvation for 24 hours resulted in an increase in primary cilia 

population, to ~53% for fibroblast cells and ~32% for reprogrammed 

hiPSCs. Regardless of the culture conditions, reprogrammed cells 

consistently displayed a lower population of primary cilia. 



	   88	  

	   	  
	   	   	  

4.4 Reprogramming resulted in a decrease in the length of primary 

cilia 

Assured our reprogrammed cells possessed primary cilia, we examined 

the similarities and differences in mechanical characteristics between human 

fibroblasts and reprogrammed hiPSCs. Specifically we utilized home built scripts 

in imageJ to measure the length characteristic of primary cilia. Reprogramming 

fibroblasts resulted in a decrease in the length of primary cilia both with and 

without serum deprivation (Figure 6). The mean length of primary cilia found on 

fibroblast cells decreased from ~2.2 microns to ~1.1 microns after 

reprogramming when cultured with serum (p<0.001), and from ~2.6 microns to 

~1.45 microns when cultured in serum starved condition. These measurements 

suggested that primary cilia may be inherently shorter in reprogrammed hiPSCs 

than their counterparts in somatic cells from which they were derived from. 

Shorter primary cilia may impact the chemo-mechanical sensing capabilities of 

hiPSCs12,13.  

4.5 Reprogramming altered morphological characteristics of primary 

cilia 

 In addition to the length, we have also examined the reprogramming 

effects on other structural characteristics of primary cilia. Based on the 

classification of bending shapes used for primary cilia14, we have categorized 

them into two different sets: straight ones, where the cilia had negligible bend 

along the axoneme axis, and kinked ones, where at least one abrupt curvature 

change was observed. An example of a kinked primary cilium is shown in (Figure 
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7 inset). We have also observed certain bright spots, or puncta, of ac-tub signals 

along axonemes, where cells before and after reprogramming seemed to 

possess different populations of puncta. Though it is still unclear the physical 

compositions of these puncta, a statistical analysis of the presence of these 

puncta would be important and were conducted in this study. 

 

 

Figure 4-4. Effect of reprogramming and culture conditions on the length of 

primary cilia. The length of primary cilia decreases as a result of 

reprogramming. Under serum enriched conditions, the mean length 

decreased from ~2.15 microns to ~1.1 microns after reprogramming, 

whereas under serum starved culture conditions, mean length decreased 

from ~2.38 microns to ~1.45 microns (p<0.001) after reprogramming. 
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 The percentage of primary cilia displaying kinked geometries (Figure 7) in 

conventionally grown fibroblasts, with serum, was ~40%. While serum 

deprivation increases the percentage of primary cilia with kink geometry to ~60%, 

reprogramming resulted in a decrease in percentage of primary cilia with kink 

geometries. 30% of primary cilia on reprogrammed hiPSCs displayed kink 

geometry when cultured in conventional culture conditions, with serum, as 

opposed to 40% when cultured in serum-starved conditions for 24 hours.  

 We quantified punctations along the axonemes of primary cilia. To analyze 

the spatial distribution of puncta, “tips” and “bases” of primary cilia were defined. 

The end of primary cilia proximal to pericentrin was defined as the primary 

cilium’s bases and the distal end was defined as tips. We found puncta to be 

randomly distributed across tips, bases, and even the rest of the axoneme 

structure. This data suggested punctations to be independent of the orientation of 

primary cilia.   

We analyzed the population of punctations on primary cilia for both cell types 

across different serum conditions (Figure 8). When cultured in serum enriched 

conditions, ~67% of primary cilia found on fibroblasts were punctated as opposed 

to ~44% in the case of hiPSCs. On the other hand, when cultured in serum 

deprived conditions, ~80% of primary cilia found both on fibroblasts and hiPSCs 

were punctated. These results suggested that serum conditions could change the 

percentage of primary cilia possessing puncta, while the difference between 

fibroblasts and hiPSCs was negligible. 
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Figure 4-5. Effect of reprogramming on kinks (sharp bends) of primary cilia. 

Regardless of the culture condition, a lesser percentage of primary cilia on 

hiPSCs displayed “kink” morphology. Under regular culture conditions, 

~32% of hiPSC primary cilia displayed “kink” morphology as opposed to 

~43% in fibroblasts. Under serum starved culture conditions, ~41% of 

primary cilia on hiPSCs displayed “kink” morphology as opposed to ~55% 

in fibroblast cells.  

4.6 Reprogramming resulted in increase in curvature of primary cilia 

 Next, we analyzed the curvature of primary cilia on both cell types. To 

measure the curvature of primary cilia, coordinates for the two end-points as well 

as for the mid-point of each primary cilium were recorded. A MATLAB script was 

developed to fit a circle through these three points and the inverse of the radius 
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of the circular fit was considered the curvature of the primary cilium. In order, to 

find a circular fit, Newton-Pratt least squares were utilized.  

 

 

Figure 4-6. Effect of reprogramming on the populations of primary cilia 

possessing punctated aggregates of ac-tub. Reprogramming resulted in a 

slight decrease in the percentage of primary cilia displaying punctated 

morphology. 

Our analysis revealed that reprogramming resulted in an increase in 

curvature of primary cilia from ~0.01 µm-1 to ~0.047 µm-1 (p<0.02) when cultured 

in serum enriched conditions, and from ~0.016 µm-1 to 0.063 µm-1 (p<0.01) when 

cultured in serum starved conditions (Figure 9). Using a beam model for the 

obtained curvatures assuming the same diameter for primary cilia of both cell 

lines, we estimated that reprogramming changed Young’s modulus by up to ~5-

fold.  
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Figure 4-7. Effect of reprogramming on the curvature of primary cilia. 

Morphometric analysis of primary cilia on reprogrammed cells 

demonstrated an increase in the curvature of primary cilia as a result of 

reprogramming. Serum deprivation in culture further accentuated this 

difference (p<0.001). 

Discussion  

 In this study, we have demonstrated the presence of primary cilia on 

reprogrammed hiPSCs. Through multi-color high-resolution immunofluorescence 

imaging, we performed a comparative study of primary cilia on parental somatic 

cell line and corresponding pluripotent reprogrammed cells. Data from these 

comparative studies show a decrease in percentage of cells containing primary 

cilia as a result of reprogramming. To validate the functional status of these 

primary cilia, we conducted qRT-PCR assays to check for expression levels of 

molecules participating in hedgehog signaling. Hedgehog signaling has 
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previously been shown to occur at the site of, and be dependent on the optimal 

functioning of, primary cilia15. We demonstrate higher expression levels for 

almost all the molecules, with the exception of Shh, participating in hedgehog 

signaling as a result of reprogramming. The important roles of mechanosensing 

of primary cilia led us to conduct comparative mechanical analyses of primary 

cilia on parental and reprogrammed cells lines. Our data show a decrease in 

length of primary cilia resulting from reprogramming. Morphometric analyses of 

primary cilia structures further indicate a significant increase in curvature of 

primary cilia resulting from reprogramming. While reprogramming resulted in a 

decrease in punctations on primary cilia surface, culturing reprogrammed cells in 

serum-starved conditions for 24 hours recovered the percentage of primary cilia 

displaying punctation geometry on their surface to levels statistically similar to 

those found on parental fibroblast cell lines. A reduction in percentage of primary 

cilia displaying kink geometries resulting from reprogramming could not be 

recovered by manipulation of culture conditions. 

 Under normal culture conditions, we have found that the percentage of 

reprogrammed hiPSCs displaying primary cilia morphology was ~19%. Previous 

studies have shown that H1 hESCs cultured in serum enriched conditions 

displayed primary cilia morphology on ~33% of cells4. 24 hour serum starved 

culture conditions resulted in ~32% of hiPSCs developing primary cilia 

morphology, while under comparable culture conditions, ~50% of H1 hESCs 

displayed primary cilia morphology4. One of the possibilities for the differences in 

primary cilia population in the hESCs and hiPSCs may be the differences in 
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culture conditions utilized by the two studies. Whereas the H1 cells were cultured 

for 5 days, this study studied hiPSCs cultured for 2 days.  

To compare the primary cilia population on reprogrammed cells with their 

parental fibroblast cell line, we performed immunofluorescence imaging studies 

on fibroblasts. Under two comparable culture conditions, i.e. serum enriched and 

serum starved for 24 hours, population percentages of primary cilia on fibroblasts 

were ~23% and ~53% respectively. A possible explanation is different 

populations of cells in the G0 phase between pluripotent cells and differentiated 

cells, and further studies will be needed to test this statement. A 48 hour serum 

starvation experiment on fibroblasts did result in a high ~80% cells displaying 

primary cilia morphology (data not shown). However, anticipating potential 

negative effects of prolonged serum starvation on pluripotency of reprogrammed 

cells, we did not implement this condition on hiPSCs.  

 To establish the functional status of primary cilia on reprogrammed cells, 

we conducted RT-PCR studies. Our data indicate higher expression levels of 

Smo, Ptch1, Gli1, and Gli2 in reprogrammed cells when compared to their 

parental fibroblast lines. These expression levels of hiPSCs are in agreement 

with the expression levels reported on hESCs4. The importance of the hedgehog 

signaling pathway in stem cell differentiation and pattern formation has been 

extensively studied earlier12,13,16-18.  These roles of hedgehog signaling in stem 

cells and development imply potentially active functions of this signaling pathway 

in hiPSCs. Consistently, we observed the upregulation of several downstream 

effectors of sonic hedgehog including Smo, Ptch1, Gli1 and Gli2. The one 
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exception we found was that the level of Shh did not significantly alter as a result 

of reprogramming. This is actually consistent with the finding of a low expression 

level of Shh in hESCs, indicating the possible roles of Shh in differentiation19.  

Studies have shown changes in mechanosensory landscape occurring on the 

site of primary cilia to be influenced by the morphology of primary cilia, in 

particular by the length of primary cilia20-22. This motivated us to study the effect 

of reprogramming on the length of primary cilia. Our data suggests a systematic 

decrease in the length of primary cilia resulting from reprogramming. Specifically, 

under conventional culture conditions, the length decreased from ~2.15 microns 

to ~1.1 microns; and under serum starved culture conditions, it decreased from 

~2.38 microns to ~1.45 microns. Chemo-mechanical sensory landscape of 

reprogrammed cells may be influenced by this decrease in primary cilia length. 

For example, recent studies have demonstrated a decrease in length of primary 

cilia to correlate with a decrease in sensitivity to Na+ signaling20-22. A high density 

of cells in hiPSC colonies growing in 3D geometries may compound this effect. 

To undertake chemo-induced differentiation, de-differentiation or transverse 

reprogramming, physical access to primary cilia would be important. The short 

length of primary cilia combined with low percentage of cells containing primary 

cilia and the underlying 3D growth of hiPSCs together highlight a significant 

challenge to such endeavors. Detailed structural and morphological 

measurements of primary cilia may provide with an avenue to address this 

challenge. 
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Morphometric analyses of primary cilia geometries revealed a decrease in 

primary cilia displaying kink geometries from ~55% to ~41% as a result of 

reprogramming. The reason behind= this difference remains to be explored. It 

would be interesting to investigate any structural differences between kinks and 

the rest of the primary cilium. While the size of such kinks was beyond the 

resolution limit of the microscope used for these studies, recent developments in 

the field of superresolution imaging may make exploring such questions possible. 

An analysis of punctations found on primary cilia revealed them to be almost 

immune to the process of reprogramming.  While the percentage of primary cilia 

with punctations on their surface decreased from ~57% to ~50%, ~52% to ~48% 

after serum deprivation, these differences were not statistically significant. While 

the structural variations of the primary cilia structure resulting in punctations are 

not clear, it is of interest to note that despite all the other morphometric 

differences reported here, surface punctations remain immune to 

reprogramming, perhaps underlying the significance of this structural peculiarity.  

Reprogramming resulted in increase in curvature of primary cilia, ~4.4-fold 

increase under serum enriched culture conditions and ~4-fold under serum 

starved culture condition for 24 hours. This increase in curvature may indicate an 

underlying difference in the rigidities of primary cilia occurring on the two cell 

lines. A possible implication of higher rigidities of primary cilia on reprogrammed 

cells may be molecular differences in the structure of primary cilia occurring as a 

result of reprogramming. Studies have shown that binding of microtubule 

associated proteins (MAP) correlate with an increase in flexural rigidity of primary 
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cilia14,23, although it is unclear what molecule plays similar roles in affecting the 

rigidity of primary cilia in hiPSCs. Another possible explanation for the difference 

in rigidities may be a difference in Ca2+ binding, a mechanism previously 

demonstrated to have a significant impact on stiffness of stereocilia24. The size of 

the primary cilia coupled with the diffraction-limited resolution of our microscope 

implies fewer pixels per cilia of measurement. Performing circular fits with three 

points might have resulted in an over-estimation of the curvature of primary cilia. 

Future studies using so-called super-resolution microscopes may be able to offer 

most accurate estimates of curvature. 
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5 apSTED imaging of primary cilia 

5.1 Primary cilia – need for super-resolution 

The primary cilium has been shown to mediate these pathways not only 

through perceiving chemical changes but also by responding to mechanical 

stimuli. Specifically, recent work has suggested that changes in available 

mechanical stimuli to primary cilia result in a change in their length, thereby 

resulting in reduction in sodium currents.  Binding of microtubule-associated 

protein (MAP) has been shown to correlate with an increase in flexural rigidity of 

primary cilia1. As discussed in chapter 3, several such morphological parameters 

of primary cilia play an important role in modulating its homeostatic function. 

However, resolution limit of conventional microscopes inhibit a detailed study of 

primary cilia morphology through direct visualization. Therefore, to circumvent 

this problem we implemented super-resolution apSTED nanoscopy. We wanted 

to utilize the power of apSTED to directly visualize structural detail of primary cilia 

morphology, previously unattainable by any other far-field optical imaging 

technique. In particular, we focused on imaging structural aspects of two different 

regions of primary cilia, i.e. members of transition zone of primary cilia and the 

ciliary component (axoneme) of primary cilia. 

5.2 apSTED imaging of the ciliary component of primary cilia 

To image primary cilia using apSTED, we prepared cell culture samples 

and immunostained Hff1 cells against Ac-Tub and Hoechst using the protocol 

described in chapter 3.  
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5.3 Validation of primary cilia immunostaining 

 Samples were first imaged under the Olympus microscope to confirm the 

presence of and optimal labeling of primary cilia before transferring them to the 

main scope for apSTED imaging. As shown in Figure	   5-‐1, we were able to 

identify primary cilia on Hff-1 cells. While our STED system was not equipped to 

image Hoechst, to avoid any background noise, after establishing our ability to 

identify primary cilia, all subsequent samples for apSTED imaging were labeled 

only for Ac-Tub. 

 

Figure 5-1. Epi-fluorescence images of primary cilia on Hff1 cells. Hoechst 

staining was utilized the identify the location of nuclei. Ac-Tub was used to 

identify the location of primary cilia axoneme.  Scale bar: 5 µm 

5.3.1 apSTED imaging 

 Once the sample was placed on the apSTED system, confocal microscopy 

was performed to find a region of interest before switching to the STED mode to 

collect apSTED data. For each region of interest, confocal and STED frames 
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were collected side by side with identical parameters to compare the resolution 

enhancement achieved by STED.  

 

Figure 5-2. Side by side comparison of confocal and apSTED imaging data 

of primary cilia found on Hff-1 cells. The image sequence particularly 

stresses the improvement in resolution that translates into an improvement 

in estimates of morphological parameters of primary cilia structures. 

Arrows show regions of interest with significant improvement in resolution.  

 One of the primary goals of this study was to establish the advantages of 

imaging primary cilia using STED. In particular, we aimed to demonstrate the 

ability of apSTED to improve estimates of various morphological characteristics 
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of primary cilia. An improved estimate of morphological parameters would in turn 

enable more accurate mechanical models of primary cilia. 

 

Figure 5-2 shows a couple of representative images of Ac-Tub stained primary 

cilia on Hff-1 cells. We did a side by side comparison of confocal and apSTED 

frames of these structures to underscore the improvement in resolution. In 

particular, the white arrows show the regions of highest improvement in 

resolution.  

5.3.2 Morphometric feature extraction 

 In order to quantify these image datasets, we developed a custom-built 

software library in MATLAB. Following is a brief description of the protocol that 



	   106	  

	   	  
	   	   	  

we followed in developing the software library: 

1. Read in confocal-STED image pairs 

2. Clean and filter images for first order improvement in signal to noise ratio 

3. Implement appropriate thresholding i.e. pixels with 5% intensity levels 

compared to the highest intensity pixels in a given image were 

thresholded to ground level.  

4. Crop primary cilia sections out of each image in the image pair 

5. Find the maximum intensity pixels from each scan line on both images 

6. Interpolate the maximum intensity pixels found on primary cilia. The 

central maximum intensity pixel would correspond to the midpoint of 

primary cilia from the perspective of a given scan line 

7. Spline fit the centerline to generate a line with 106 pixels.  

8. For each pixel found in step 6, find a orthogonal vector using two adjacent 

pixels found in step 7. These orthogonal vectors would provide cross 

sections that are locally orthogonal to primary cilia.  

9. Calculate the length of the orthogonal vector covered by primary cilia 

structure.  

10. Plot the calculated lengths on the y axis with the coordinates of the given 

scan line as the x axis of a graph.  
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 Figure 5-3 shows the various stages of the implementation of the 

algorithm explained earlier. Comparing data from confocal and STED images, we 

found the mean cross section of primary cilia as determined from apSTED 

images was consistently lower than confocal reported cross sections. As shown 

in Figure 5-4, mean cross sections determined from confocal data was ~290 nm 

as opposed to a mean size determined from apSTED to be ~175 nm. 

Furthermore, the cross sections reported from apSTED data was found to be 

closer to those reported in the literature using electron microscopy, further 

supporting the idea that apSTED estimated morphological dimensions were 

tighter than those determined from confocal microscopy alone.  

  

Figure 5-3. Sketch representing details of the development of image 

processing module that enabled extraction of morphometric features of 

primary cilia. (A) Extraction of primary cilia from the large scan area, 

cleaning and thresholding to enhance contrast (B) Determination of  

highest intensity pixel across each scan line. Highest intensity pixels 
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corresponded to the central maximum of primary cilia structures. (C) Spline 

fitting the central pixels to generate closely spaced pixels. These pixels 

were subsequently used to calculate orthogonal vectors, which in turn 

enabled calculation of cross sectional areas of primary cilia 

  

Figure 5-4. Comparison of cross section areas of primary cilia as calculated 

by confocal microscopy and apSTED microscopy. apSTED systematically 

reported a lower estimate of these cross sections in close agreement to 

data reported by electron microscopy studies. 

 We also quantified local structural variations in primary cilia using apSTED. 

Like the determination of cross sections, confocal image data was compared with 

STED data. We aimed to calculate local curvature on primary cilia on structural 

defects called local “kinks”. We determined the border of primary cilia and picked 

3 points locally on the border. We developed a custom built script in Matlab to 
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undertake a circular fit through 3 arbitrarily assigned spatial coordinates. Radii of 

these circle fits were estimated using Newton-Pratt least squares. Subsequently, 

we utilized this script to fit a circle through the points determined on the local 

“kinks” of primary cilia. The inverse of the radius of these circle fits provided an 

estimate for the local curvature of primary cilia “kinks”. As shown in Figure 5-5, 

there was a significant difference between "kink" curvatures calculated using the 

two modalities further underscoring the usefulness of the superresolution 

approach. 

5.4 apSTED imaging of transition zone components of primary cilia 

 Structurally, transition zone is one of the most important components of 

primary cilia. Not only does it provide the necessary physical anchoring to the 

ciliary component but it also provides the necessary barrier differentiating the 

internal environment of primary cilia from the rest of the cytosolic materials in the 

cell. Various biochemical and electron microscopy studies have demonstrated 

the transition zone to be composed of myriad structural and functional protein 

complexes. Some of these complexes have been shown to be necessary 

structurally i.e. if they are knocked down, ciliogenesis is disrupted altogether. 

Other complexes play a more functional role, such as Tctn-2, disruption of which 

contributes to ciliopathies, such as MKS. We focused our attention on studying 

functional complexes such as Tctn-2 and Cep290. 
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Figure 5-5. (A) Image data set comparing confocal and STED images of 

local curvature of primary cilia. (B) Quantification of these images reveals 

significant differences in curvature as measured by the two techniques 

underscoring the advantages of using apSTED to quantify morphometric 

parameters of primary cilia. 

 The existence of a family of transmembrane proteins, Tectonic, was 

identified in 20062. Several members of the family have been identified, such as 

Tctn-1, Tctn-2, and Tctn-3, to play significant roles in maintenance of structural 

integrity of primary cilia, as a part of the machinery that transduces Hh signaling 
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pathway, and also contributing to ciliopathies, such as MKS. In particular, we 

focused on studying Tctn-2.   

5.4.1 apSTED imaging  

 Sample coverslips were mounted on microscope slides using PBS as 

mounting media. Proper positioning of the cover slips on the slide was assured 

by sticking them using nail polish. Samples were briefly imaged using epi-

fluorescence, following the protocol described in chapter 3, to validate adequate 

labeling of Tctn-2. Subsequently, the sample was placed on the apSTED sample 

holder.  

 Large area confocal scans were performed to identify the location of Tctn-2 

on samples before switching to apSTED mode. As shown in Figure 5-6, STED 

reveals a two-dot distribution of Tctn-2. Because a thin z-section of the image, 

the two-dot distribution represents a cross-section of the Tctn-2 proteins in a thin 

slice of the z-focal plane. That is, it is likely a projection view of a ring-shaped 

structure in this plane. This supports the hypothesis of cylindrical distribution of 

Tctn-2, as a transmembrane protein located on the transition zone membrane.  

 We collected line scan profiles of Tctn-2 particles imaged using both the 

confocal and apSTED modes. As shown in Figure 5-7, the line profile allowed 

quantification of the distance between specific intensity peaks corresponding to 

the center of Tctn-2 particle. Such line scans provided two important pieces of 

information. The first and the most important piece of information was the 

elucidation of the underlying structure of Tctn-2. This is the first set of 
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unequivocal far-field fluorescence based images that allow us to visualize Tctn-2 

structure to this level of detail. The ~150 nm inter-peak distribution provides first 

order clues about the spatial distribution of Tctn-2 within the transition zone. 

Tctn-2 is a transmembrane protein. Therefore, in conjunction with the diameter of 

the Tctn-2 distribution, the inter-peak distance provides upper bound for the size 

scale of transition zone. The second piece of information is the fact that it 

underscores the applicability of apSTED not only in studying primary cilia 

components but, more broadly, to study myriad problems in macromolecular 

structural biology, heretofore not amenable to prevailing imaging tools.  

  

Figure 5-6. Side by side comparison of confocal and STED images for Tctn-

2 on Hff1 cells. The two-dot distribution of Tctn-2 supports the 

hypothesized amorphous cylindrical distribution of Tctn-2 within the 

transition zone. Scale bar: 500 nm. 

 Next, we focused our attention on Cep290. Cep290 plays an important 

structural and functional role in mammalian primary cilia. In particular, its role has 
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been highlighted in complex disorders, such as NPHP, MKS, and JBTS. It has 

also been highlighted as a part of the MKS-JBTS complex. In terms of structural 

role, in Chlymidomonas reinhardtii, it has been shown to be necessary for the 

formation of Y-links. Y-links are structural elements that hold the axonemal 

micro-tubule doublets in place by anchoring them to the pericilliary membrane.  

 

  

Figure 5-7. Line scan profile of a representative confocal and STED scan of 

Tctn-2 on Hff1 cells. As the confocal profile in black indicates, it could not 

decipher the underlying structure of Tctn-2. On the other hand, as the 

STED profile in red indicates, it could clearly elucidate two independent 

peaks, a level of detail completely beyond the scope of conventional 

confocal microscopy.   
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 In order to study Cep290, cell cultures were prepared as explained in the 

previous section. However, the fixation/immunostaining protocol was modified. 

The following is the protocol that was used for Cep290: 

5.4.1.1 Fixation/immunostaining protocol 

1. After serum deprivation either for 24 or 48 hours, cells were fixed using 

methanol chilled at -20 C for 5 minutes.  

2. Samples were then washed thrice with Phosphate Buffer Saline (PBS) 

3. Cells were incubated in -20°C methanol for 5 minutes and subsequently 

washed with PBS (3x) 

4. PBS washes were followed up with permeabilization with 0.2% PBS-Triton 

(PBST) for 10 min. 

5. After permeabilization, samples were blocked using PBST containing 2% 

Bovine Serum Albumin (BSA) and 1% normal donkey serum, at room 

temperature for 1 hour.  

6. Cells were incubated with primary antibody; mouse monoclonal antibody 

to Tctn2 (ab119091, Abcam), in the blocking solution overnight at 4 C 

7. Next day, cover slips were washed with PBST (3x) before being incubated 

with donkey anti-rabbit Alexa Fluor 488 antibody diluted 1:2000 in the 

same blocking solution at room temperature for an hour 

8. Post secondary antibody incubation, the samples were washed with PBST 
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(3x) 

 As shown in Figure 5-8, similar to the approach with Tctn-2 and Ac-Tub 

imaging previously, we did side-by-side comparisons of confocal and STED 

image data for Cep290. apSTED provided better resolution and a tighter estimate 

of the size of Cep290 distribution. Given the finite resolution of our apSTED 

system, ~50 nm, we believe any structural variation in Cep290 distribution to be 

at a length scale smaller than that figure.  

 

Figure 5-8. apSTED imaging of Cep290 in the transition zone of primary 

cilia. A comparison with confocal underscores the tighter estimate that one 

gets imaging Cep290 using apSTED. Scale bar: 500 nm. 

 Next, we quantified both the Cep290 and Tctn-2 data collected using 

apSTED. In particular we measured the diameter of the distribution of both the 

macromolecular complexes. We did a circular fit to the boundary of each 
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Figure 5-9. (A) Schematic of a model proposing the structural composition 

of Y-links on primary cilia. The model schematic was originally published in 

this study3. (B) Quantification of diameters of Tctn-2 and Cep290 estimated 

using apSTED images. It provides the first set of visual evidence to study 

the model proposed in (A). 

structure and estimated the diameter of the fit. Our data suggests the diameter of 

Tctn-2 distribution, ~160 nm, to be smaller (p<0.05) than that of Cep290, ~180 

nm. Taken together, our data helps verify a recent model of Y-link structure 
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proposed by the Reiter group3. According to the proposed model, shown in 

Figure 5-9, Cep290 and Tctn-2 were hypothesized to be a part of the Y-link at 

the transition zone of primary cilia. Given the larger diameter of Cep290, as 

estimated from our data, as compared to Tctn-2, we believe this is the first set of 

visual evidence that indicates that Cep290 may be structurally present to the 

"outside" of Tctn-2. 

 In summary, we demonstrate the resolution enhancement achieved on 

biologically relevant samples using apSTED nanoscopy. We developed image-

processing tools enabling high-fidelity quantification of apSTED data, enabling us 

to tease out structural information of axonemal structure of primary cilia. 

Furthermore, we studied components of the transition zone, namely, Tctn-2 and 

Cep290, and verified a model of structural composition of Y-links of primary cilia 

using our imaging based assay.  
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6  Summary and future work  

 This project benefited largely from development of a superresolution 

apSTED nanoscopy system. During our development of the system, we faced 

many vexing challenges, which while affect optical systems in general get 

amplified at the resolution scale afforded by STED. For example, in order to keep 

the two lasers aligned over appreciable lengths of time, we had to reverse 

engineer the design of our lab to include extra air-conditioning to maintain the 

temperature with minimal to no fluctuations in temperature. Given the resolution 

regime at which we were operating, ~1°C variations in temperature resulted in 

misalignment of the lasers, hampering rapid progress on the system.  

 Our first major achievement was overcoming this and several other subtle 

challenges in order to successfully implement a STED system. We were able to 

develop STED nanoscopy system affording a resolution of ~50 nm on biological 

samples. We were able to implement apSTED enhancements that enabled 

circumventing challenges of photobleaching reducing photobleaching levels from 

~80% to ~10%. We engineered several optical alignment fine-tuning strategies 

for high-speed alignment of a STED system. All software used for control, data 

collection, image processing, and quantification, along with data analyses were 

custom-built by our lab. Note: In a few exceptional cases, ImageJ was used for 

image visualization and processing. 

 The biological system of interest to us was primary cilia, a hair-like 

appendage emanating from most mammalian cell types. As described in chapter 

3, we developed a series of imaging based assays to study primary cilia on Hff1 
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cells from myriad different perspectives. Specifically, we looked at mesoscale 

aspects of primary cilia through imaging Ac-Tub and pericentrin, providing us 

with a tool to probe morphological parameters of primary cilia. We studied the 

molecular components of primary cilia structure, such as NPHP4, Tctn2, and 

Cep290. We probed molecular components of the cilium that participate in 

transduction and activation of Hh signaling pathway, such as Ptch1 and Smo. 

Undertaking perturbation study using a Smo agonist, SAG, we validated the 

functional status of primary cilia.   

 In chapter 4, following up on recent work highlighting the role of primary 

cilia on embryonic stem cells, we studied primary cilia on hiPSCs. Using a 

combination of imaging based assays and biochemical analysis, our group was 

the first to systematically study and report the presence of primary cilia on 

hiPSCs. Our data confirmed not only structural presence of primary cilia on 

hiPSCs but also their functional status. We highlight several morphological 

differences between primary cilia occurring on hiPSCs as opposed to those on 

somatic cells, such as, a decrease in length and an increase in curvature of 

primary cilia occurring as a resulting of cellular reprogramming. These 

differences may be indicative of differences in modulation and perception of 

external signals by hiPSCs.  

 The applicability of apSTED imaging in studying morphological details of 

primary cilia structure was detailed in chapter 5. We reported subtle differences 

in primary cilia structure that were deciphered based on apSTED imaging, which 

were beyond the ability of any diffraction limited imaging system. Our data 
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indicate estimates of morphological parameters of primary cilia using apSTED 

system to be closer to estimates offered by electron microscopy. Features such 

as local curvatures on primary cilia, which sometimes misrepresented by 

confocal microscopy, were amenable to quantification using apSTED imaging. 

Furthermore, we probed the structural detail of Tctn2 distribution within the 

transition zone. Our data support the hypothesis of a ring shaped distribution of 

Tctn2 at the transition zone.  

6.1 Potential future work 

 The tighter estimate of morphological parameters of primary cilia afforded 

by STED makes it possible to model primary cilia behavior with a much higher 

accuracy. Primary cilia models, proposed thus far, have relied on data from EM 

and have not been successful at capturing dynamics of variations in primary cilia 

morphology. This technique provides a tool to enable this research. 

 Furthermore, here we have looked at components of transition zone from 

a structural perspective. apSTED could also be used to undertake imaging 

assays to study the dynamics of intraflagellar transport, the mechanism that 

carries material in and out of the ciliary component. In particular, one could knock 

down transition zone components studied here to study dynamics of 

corresponding changes resulting on intraflagellar transport. 

 Another avenue worth exploring is to expand the current apSTED system 

to two colors. This would enable (co)localization based studies. Coupled with the 

superior resolution, being able to do multi-color imaging would make apSTED 

universally appealing to any biology lab.  
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 The STED system described here could also benefit if implemented in a 

multi-focal configuration. The parallelization achieved by using, for instance, 4 

beamlets instead of a single beam would increase the imaging speed even 

further enabling studies of biological systems with faster dynamics. 

 

 

 

 


