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ABSTRACT

Advanced Integration of Devices Enabled
by Laser Crystallization of Silicon

Vincent W. Lee

The push for higher levels of performance drives research and innovation in all areas

of electronics. Thus far, shrinking circuit sizes and development of new material

systems have satisfied this need. Continued scaling and material improvements have

become increasingly difficult; simultaneously, more functionality is needed in smaller

spaces. Advanced integration techniques provide a solution by engineering together

previously incompatible systems.

The fabrication of high-performance devices typically requires high temperature

processing steps. Since fabrication occurs sequentially, the high temperature prevents

the direct integration of two high-performance layers, as completed devices cannot

withstand the processing temperatures of subsequent steps. There are significant

challenges to integrating process-incompatible systems, and techniques such as wafer

bonding, heteroepitaxial growth, and various thin film technologies have shown lim-

ited success.

In this work, advanced integration is achieved through laser crystallization pro-

cesses. Unique to laser methods is the ability to locally heat the surface of a material

while keeping the underlying substrate at room temperature. This property allows

for high performance electronic materials to be integrated with substrates of different

functionalities. This thesis focuses on three key components for advanced integration:

1. Laser-crystallized electronic devices, 2. Relevant substrates for integration, and

3. The feasibility of integrating of laser-crystallized devices with low-temperature



substrates.

Two types of laser-crystallized devices are explored. Thin-film, laser-crystallized

silicon transistors are fabricated at low-temperatures and exhibit high mobilities

above 400 cm2/V s. Vertical structure diodes built from laser-crystallized silicon out-

performed epitaxially-grown diodes of the same geometry.

Light emitting diode (LED) arrays are fabricated from compound semiconductor

substrates and tested for display applications. These LED arrays are envisioned to

sit underneath the laser-crystallized devices, enabling new applications where both

high brightness and high performance transistors are needed. Substrates of low-κ

dielectric material are also of interest, as they are widely used for their low capacitance

properties. Preliminary results suggest that laser crystallization of silicon can be

successfully performed on a low-κ dielectric.

In addition to enabling new device architectures, it is important for laser crystal-

lization methods to leave the underlying layers unaffected. Simulations of the laser

irradiation process predict substrate temperatures to reach only 70◦C even when the

surface reaches the melting temperature of silicon (1400◦C). Integration feasibility is

further investigated with measurements on conventional front-end field effect transis-

tors. When comparing properties from wafers with and without laser processing, no

changes in transistor characteristics are observed.

In all three components of work, proof-of-principle devices and concepts lay out

the groundwork for future investigation. The developed technologies have promising

applications in both the microelectronics and display industry. In particular, the inte-

gration of LEDs and laser-crystallized silicon enables a high-brightness microdisplay

platform for head-mounted displays, pico projectors, and head-up displays.
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Chapter 1

Introduction

1.1 Background and Motivation

Much of the advancement in the electronics and semiconductor industry can be at-

tributed to the shrinking of transistor gate lengths and resulting increase of transistor

density and performance. While significant efforts continue on fulfilling Moore’s Law,

the doubling of transistor density every two years, shrinking is increasingly difficult,

motivating research in alternative technologies such as advanced integration tech-

niques [1][2][3][4].

Many categories of semiconductors are widely utilized for various applications, in-

cluding silicon, compound semiconductors, oxide semiconductors, amorphous silicon,

and organic semiconductors. Each group has distinct performance advantages, lead-

ing to their adoption in different industries. For example, crystalline silicon has been

strongly optimized for high performance computing, while III-V compound semicon-

ductors have a direct band gap, making them very efficient light emitters. Organic

and oxide semiconductors have very low process temperatures and are compatible

with many substrates such as plastic and glass.

Advanced integration of different materials enables new platforms by allowing for

more functionality in the same space. However, integration of different material sys-
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tems is difficult because of incompatible fabrication processes and substrates, as well

as material issues such as lattice matching and chemical compatibility. Various in-

tegration techniques have been demonstrated for limited systems through the use of

shape self-assembly [5], wafer bonding [6], and heteroepitaxy growth [7][8]. Several

of these have been demonstrated in the laboratory, but with limited yields and no

commercial success to date. Wafer bonding and gluing of compound semiconductor

wafers to apertured and thinned silicon wafers has also recently been demonstrated

[9], but suffers from a range of practical problems including poor bonding due to the

limited thermal budget and mismatched coefficients of thermal expansion. Heteroepi-

taxial growth of compound semiconductor devices on pre-fabricated silicon circuitry

is a promising approach, but it is limited by the availability of compatible growth

processes. Metal alloy bump bonding is used to make small arrays of IR detectors on

transparent substrates, but the general applicability of this strategy is limited [10].

Perhaps the most encouraging strategy is recent work showing the use of small indium

bonds to attach a silicon wafer with an LED array [11]. However, like metal alloy

bump bonding, the ultimate level of integration and device yield is limited by the size

and reliability of the bonding process.

In many cases, the significant challenge to integration is making processes com-

patible. Many of the high performance materials such as silicon and compound semi-

conductors require high temperature processes (600-1000◦C) during growth or device

fabrication, but cannot withstand these temperatures in post-processing. For exam-

ple, silicon transistors typically have several high temperature growth and dopant

activation steps (up to 1000◦C), but after these initial steps, temperatures cannot

exceed 400◦C or the device characteristics may shift. This is problematic when a

post-processing step such as growing a second layer of silicon or growing other mate-

rials (III-Vs) is desired, since all of these processes will exceed the 400◦C threshold.

One promising technique allowing for better process compatibility is laser crystal-

lization. A high power laser can shoot short pulses or a continuous wave at a material,
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exposing it to energies high enough to induce phase transitions or crystallize amor-

phous material at the surface, but leaving the underlying substrate at about room

temperature and unaffected. In a typical laser crystallization process, the irradiated

film can reach melting temperatures for the film (1400◦C for silicon), but because

the exposure area is localized and the pulse duration is short, only the top surface is

transformed.

Laser crystallization is proposed as a means to monolithically integrate multiple

high performance materials. This is significant for currently incompatible systems

such as silicon on compound semiconductors and multi-layered high performance

silicon. New devices fabricated monolithically with these systems can enable break-

throughs in both displays and microelectronics.

1.2 Diodes, Light Emitting Diodes, and Field Ef-

fect Transistors

Three devices are discussed throughout this thesis: diodes, light emitting diodes

(LEDs), and field effect transistors (FETs) [12][13].

1.2.1 Diodes

A diode is a two-terminal electronic device which allows electrical current to pass in

only one direction. Modern day diodes are built from n-type and p-type semiconduc-

tor materials. To produce n-type materials, silicon is doped with a group V donor

element. When the group V element is activated within the silicon lattice, it donates

an extra electron to the silicon, and the electron freely moves around and conducts

electricity. Phosphorus and arsenic are typical donor atoms for silicon. For p-type

material, silicon is doped with a group III acceptor element, typically boron. Within

a silicon lattice, the group III element is missing an electron and can accept an elec-

tron from silicon. This creates a void in the silicon where an electron is missing, also
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Figure 1.1: Schematic drawing of p-n junction showing its depletion region and drift

and diffusion currents.

known as a hole. Holes are positively charged due to lack of an electron, and can

also conduct electricity. As electrons hop from a filled state to a hole, it can appear

as if the hole is moving in the opposite direction of the electron. Thus, both n-type

and p-type materials can conduct electricity, but n-type preferentially conducts with

electrons and p-type preferentially conducts with holes.

Figure 1.2: Band diagram for a p-n junction diode in (a) equilibrium state, (b) reverse

bias, and (c) forward bias.

Placing p-type and n-type materials together forms a p-n junction, and the semi-

conductor diode. Because one side of the junction has a high concentration of delocal-

ized of holes, and the other side has a high concentration of delocalized of electrons,
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the mobile electrons and holes diffuse across the junction and recombine to form a

depletion region, fig. 1.1. As more of these electrons and holes recombine, an electric

field forms within the depletion region and induces a drift current in the opposite

direction of the diffusion current. In equilibrium, the diffusion current and the drift

current are in equal and opposite directions. Schematically, the p-n junction has a

band diagram similar to fig. 1.2a.

When biased with an external potential, the equilibrium between diffusion current

and drift current is disturbed. In reverse bias, a negative voltage is applied to the

p-side of the diode causing the depletion width widens and no current is allowed

to pass except for a very small component caused by thermal generation, 1.2b. In

forward bias, the depletion width shrinks and the electrons and holes on the n-side

and p-side now have enough energy to pass through the depletion region and conduct

current, fig. 1.2c. A typical current-voltage characteristic of a diode is shown in fig.

1.3, governed by the following equations [12]:

Figure 1.3: Typical Current-Voltage characteristic of a semiconductor diode. Adapted

from reference [12]
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ID = I0(e
VD/Vth − 1)

where I0 = qn2
iA[(Dp/NdWn)+(Dn/NaWp)] for short-base diodes, where minority

carriers crossing the p-n junction do not recombine before reaching the contacts,

and I0 = qA[(Dppn0/Lp) + (Dnnp0/Ln)] for long-base diodes, where minority carriers

crossing the p-n junction do recombine before reaching the contacts.

The non-linear characteristics of diodes can be used in simple switching applica-

tions, rectifying applications such as the conversion of alternating current signals to

direct current, or clamping circuits such as electrostatic discharge circuits.

1.2.2 Light Emitting Diodes

Light emitting diodes (LEDs) are a subset of diodes, which as the name implies,

emit light. Instead of silicon, LEDs are typically fabricated from III-V compound

semiconductor materials, such as aluminum gallium arsenide, or indium gallium ni-

tride. When compared to silicon, which has an indirect band gap, aluminum gallium

arsenide (AlGaAs) and indium gallium nitride(InGaN) have the direct band gaps

required for efficient light output. Modern LEDs are heterojunctions, consisting of

multiple AlGaAs or InGaN films. By adjusting the ratio of aluminum to gallium or

indium to gallium in these materials the band gap can be adjusted. The Al/Ga or

In/Ga ratios in the multilayer heterojunction structure of the LED is engineered to

confine and induce recombination in a specific layer and thus control the wavelength

of light output. Fig. 1.4 shows the band diagram for an LED heterojunction. This

is similar to the diode band diagram in the previous section, except electrons and

holes are now confined in a layer between the p-type and n-type layers, the intrinsic

active layer. This active layer is engineered for a particular band gap to produce a

particular peak light emission wavelength.

A representative cross sectional image of a LED is shown in fig. 1.5. Each layer in

the heterojunction is annotated in the image. The n-AlGaAs and p-AlGaAs confine

electrons and holes to the intrinsic-AlGaAs where recombination occurs and photons
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Figure 1.4: Band diagram of LED heterojunction. Electrons and holes are confined

within the middle region where recombination occurs and photons are emitted.

Figure 1.5: Cross sectional scanning electron micrograph of LED heterojunction.

The n-AlGaAs and p-AlGaAs have a larger band gap. Electrons and holes in the

intrinsic-Al0.3GaAs layer where light emission occurs.
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are emitted.

LEDs are commercially available with wavelengths from ultraviolet to infrared and

used in an ever-increasing range of applications. Some of these applications include

display backlights, camera flash lighting, solid-state lighting, and water purification.

1.2.3 Metal Oxide Semiconductor Field Effect Transistors

Figure 1.6: Standard n-channel MOSFET structure in (a) equilibrium, (b) accumu-

lation when a negative gate bias is applied, and (c) inversion when a positive gate

bias is applied.
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Metal Oxide Semiconductor Field Effect Transistors (MOSFETs) are the most

ubiquitous electronic device, appearing in almost all electronics. In a standard n-

channel MOSFET, fig. 1.6, the source and drain regions are heavily n-doped in a

p-type semiconductor. Above the p-type channel region is a gate dielectric and gate

metal. When the MOSFET is off, electrical conduction between the source and drain

is blocked by the back-to-back p-n junctions. When a negative bais is applied to the

gate, accumulation of holes occurs in the channel as these holes are attracted to the

semiconductor/dielectric interface. Again, because of the back-to-back p-n junction,

current cannot conduct between the source and drain even with this accumulated

hole layer.

As a positive bias is applied, the depletion region underneath the channel expands,

shown in fig. 1.6c. After a certain threshold voltage, an inversion layer of mobile

electrons is formed in the channel. An electrical conduction path between the source

and drain appears in this inversion scenario, and can be controlled with the bias at

the gate.

Figure 1.7: Typical current-voltage characteristics of an n-channel MOSFET.

Adapted from reference [12]
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At small biases between the source and drain, the current increases linearly with

the applied voltage. In the linear region, the channel behaves similar to a resistor. As

the bias increases between the source and drain, the channel on the drain side becomes

smaller as the gate has less of an effect. Eventually, this reaches the saturation region

of device operation where increases in source and drain bias do not change the current.

Fig. 1.7 shows a typical n-channel MOSFET current-voltage characteristic with the

regions of operation marked [12]. The source-drain current can be calculated with

the equations below for the different regions.

Cutoff: IDS = 0

when (VGS ≤ VTn)

Linear: IDS = (W/L)µnCox[VGS − VTn − (VDS/2)]VDS

when (VGS ≥ VTn, VDS ≤ VGS − VTn)

Saturation: IDS = (1/2)(W/L)µnCox(VGS − VTn)2

when (VGS ≥ VTn, VDS ≥ VGS − VTn)

Similarly, p-channel devices can be fabricated by changing the substrate to n-type

doping, and the source and drain contacts to heavily doped p-type material. The

device operation voltages are then opposite. Instead of applying a positive voltage

at the gate for inversion, a negative voltage past the threshold voltage is applied

and the inverted, mobile charges are now holes. The regions of operation, linear and

saturation, are similar for p-channel and n-channel, and the p-channel FET equations

are given below.

Cutoff: ISD = 0

when (VSG ≤ |VTp|)

Linear: ISD = (W/L)µpCox[VSG − |VTp| − (VSD/2)]VSD

when (VSG ≥ |VTp|, VSD ≤ VSG − |VTp|)

Saturation: ISD = (1/2)(W/L)µpCox(VSG − |VTp|)2

when (VSG ≥ |VTp|, VSD ≥ VSG − |VTp|)
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When both n-channel and p-channel devices are fabricated on the same substrate

and used together in circuit designs, this is called Complementary Metal Oxide Semi-

conductor (CMOS) technology. MOSFETs and more specifically CMOS technologies

appear in essentially all electronic devices and are the basic building block for digital

circuits as switches and for analog circuits as amplifiers.

1.3 Objectives and Approach

This thesis focuses on monolithically-integrating normally process-incompatible ma-

terials to make systems with extended functionality. Reconciling the low process

temperatures of certain materials with the necessity for high quality crystalline mate-

rials makes laser crystallization an attractive route towards this advanced integration.

Chapter 2 discusses a specific laser crystallization method (sequential lateral solidifi-

cation), the fabrication of high mobility thin film silicon transistors using this method,

and characterization of these devices. Chapter 3 covers the fabrication of LED ar-

rays, their potential uses in display and non-display applications, and their eventual

integration with laser crystallized silicon transistors to form active-matrix circuits.

Three dimensional integrated circuits, specifically the building and characterization

of vertical diode devices, and the effects of laser crystallization on underlying de-

vices are examined in chapter 4. Finally, chapter 5 discusses the application of laser

annealing to other material systems, in particular sequential lateral solidification on

low-κ dielectrics and its relevance to back-end three dimensional integrated circuits,

and laser crystallization of copper for reduced wire resistivity.
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Chapter 2

Sequential Lateral Solidification of

Silicon for Thin Film Transistors

2.1 Introduction

Single crystal silicon is the predominant semiconductor material used in microelec-

tronics due to its high performance and extensive optimization history. However, the

methods of obtaining single crystals are limited; both the float-zone and Czochralski

processes grow ingots from molten silicon. This poses a challenge to integration with

other substrates if a single crystal silicon layer is desired on top of another material.

What is needed is a method of growing the highest quality silicon possible without

effect to the underlying substrate.

The use of laser energy as a means to crystallize amorphous silicon has long been

established given the success in obtaining highly crystalline silicon through a low

temperature process [14][15][16][17]. The laser energy can be adjusted to create partial

melting conditions or fully melted amorphous films [18][19]. In partial melting, the

laser melts only the top surface, leaving the lower material solid. The solid amorphous

film then nucleates the crystallization, resulting in very small grains. In the complete

melting regime, the laser fully melts the amorphous silicon film. Nucleation and
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grain growth occur at random at the molten silicon/substrate interface, and again

only produces small grains. In a narrow energy window between partial melting

and complete melting is the regime called super lateral growth [18]. Here, the laser

energy density is just below what is necessary for complete melting, and the scattered,

non-molten, solid seeds at the bottom of the molten silicon film act as preferential

nucleation sites, leading to larger grains upon cooling. Excimer Laser Annealing

(ELA) takes advantage of this regime and offers fairly large crystal sizes and electron

mobilities of approximately 100 cm2/V s, but relies on this non-equilibrium process

and narrow energy density window.

Sequential Lateral Solidification (SLS) is a laser crystallization method which

operates in the complete melting regime where process tolerances are much larger,

and at the same time can produce large grains of polycrystalline silicon with electron

mobilities up to 500 cm2/V s.

2.2 Sequential Lateral Solidification Methods

Sequential Lateral Solidification (SLS) is a pulsed-laser crystallization method which

combines laser irradiation through a patterned mask with precise submicrometer

translations of a sample stage [21][22][23]. The shape of the laser irradiation is con-

trolled by a reticle in the beam path and affects the microstructural quality of the

laser-crystallized material. Three popular types of SLS are two-shot SLS, line-scan

SLS, and dot-SLS. Of the three, two-shot SLS makes polycrystalline silicon material

with the lowest mobility, but covers a large area with two laser shots versus the thou-

sands of laser shots required for other laser annealing methods [24][25]. Line-scan SLS

produces material with high mobility in a directional manner, and transistors with

channels in the correct orientation have much higher mobilities [26][27][28]. Dot-SLS

makes an area of nearly single crystal material with electron mobilities above what

is achievable by line-scan SLS [29]. However, with dot-SLS, only the single crystal
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Figure 2.1: Scanning electron micrographs of defect-etched samples following laser

annealing. (a) Excimer Laser Annealing method. (b) Line-Scan SLS. (c) Two-Shot

SLS. (d) Dot SLS. [20]

regions in the total area are useful. The resulting materials obtained from these meth-

ods are compared in fig. 2.1 where the scanning electron microscope images show the

relative microstructures [25]. For electronic devices, electron mobility is an important

characteristic of a material and can be partially determined from the microstructure

quality, fig. 2.2 [30]. For comparison, the mobility of amorphous silicon devices is

approximately 1 cm2/V s, and devices fabricated with excimer laser annealing have

mobilities of approximately 100 cm2/V s.

Line-scan SLS offers the best option in advanced integration work since it produces

a uniform, high mobility material over a large area. Fig. 2.3 shows the process flow

for line-scan SLS. The process begins with a thin-film of amorphous silicon which is

then irradiated with a long and thin laser beam. This 30-300 ns beam is typically

2-3 µm wide and can be as long as 1 meter. The exposed amorphous silicon is fully

melted into a liquid state and allowed to cool. As the cooling proceeds, the interfaces

to the liquid region cool faster and thus crystallize first. The grains nucleate from
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Figure 2.2: Electron mobilities of materials prepared with different SLS methods.

Grain boundary location controlled, or Two-Shot SLS. Directionally Solidified, or

Line-Scan SLS. Single Crystal Region, or Dot SLS. [30]

the edges and grow to meet in the middle, fig. 2.3, step 3. There is now a small

area of polycrystalline silicon. The sample stage is then translated less than half the

laser width, and the sample is exposed to a second laser pulse. This time, the laser

melts half of the polycrystalline silicon formed in the first step, and half of the original

amorphous silicon film. As the newly formed liquid area cools, grains are again seeded

from the solid edges. Because this region overlaps with the previous laser pulse, one

edge of the liquid area seeds directly from the polycrystalline silicon, fig. 2.3, step

5. The crystals grow preferentially in the direction of the stage translation, forming

elongated grains, fig. 2.3, step 6. This process repeats until the whole area has been

transformed from amorphous silicon to polycrystalline silicon. Fig. 2.4 and 2.5 show

line-scan SLS material before and after a grain boundary defect etch to highlight the

grain boundaries. Fig. 2.6, a transmission electron micrograph, shows the directional

elongation of the grains.

Another important aspect of laser crystallization is the refractory layer, placed be-



CHAPTER 2. SEQUENTIAL LATERAL SOLIDIFICATION OF SILICON FOR
THIN FILM TRANSISTORS 16

Figure 2.3: Cross section (left column) and top view (right column) of line-scan

sequential lateral solidification (SLS) process flow.
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Figure 2.4: Micrograph of line-scan SLS method. Bottom of micrograph shows a

single laser beam with a width of around 3.5 µm. Top of micrograph shows typical

Line-Scan SLS material.

tween the substrate and laser crystallization layer. This refractory layer can withstand

the heat of the molten top film and buffers the heat from the underlying substrate,

fig 2.7. Typically 500 nm to 1 µm of silicon dioxide is used to protect the substrate

and keep it cool throughout the laser process.

2.3 Laser Crystallization Simulations

Sequential lateral solidification becomes particularly interesting when applied to a

stack of multiple materials such as silicon on top of a III-V substrate. In order to

use SLS on silicon with lower temperature substrates, the bottom layers must stay

cool enough to maintain their properties and avoid damage of the substrate. SLS on
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Figure 2.5: Micrograph of line-scan SLS method after a 5 second SECCO defect etch

to highlight grain boundaries.

silicon is currently commercialized for glass substrates which can support up to 600◦C

[31][32][33], and laser processes have also been demonstrated on a variety of substrates

including polymers which have a temperature limit of only 150-200◦C [34][35][36].

Simulations of the laser process were performed using a finite-difference model

method [37]. The simulated structure, shown in fig. 2.8, contains 1 µm of silicon

dioxide and 100 nm of amorphous silicon. The two planes of interest are the surface

temperature at the very top of the amorphous silicon, and the interface temperature

between the SiO2 buffer and the underlying substrate. As discussed in later chapters,

the underlying substrate, containing devices such as III-V LEDs or and completed

front-end CMOS transistors, cannot withstand high temperature processing.

The simulation begins with a 308nm laser pulse with 30 ns pulse duration starting

at time = 0 seconds. The results of this simulation are shown in fig. 2.9, 2.10 and
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Figure 2.6: Transmission electron micrograph of high aspect ratio grains in a typical

line-scan SLS material. Total size of the micrograph is 9.89 µm x 6.95 µm.

Figure 2.7: Schematic cross section showing the importance of the buffer layer between

the laser-crystallized film and the substrate for heat dissipation.
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Figure 2.8: Simulated structure of 100 nm of silicon on top of 1 µm of silicon dioxide.

Schematic points to the two points of interest: the surface temperature and the

interface temperature between the SiO2 buffer and the underlying substrate.

Figure 2.9: Surface temperature of silicon film during laser processing. Temperature

quickly reaches the silicon melt temperature and cools to below 200◦C after 2 µs.
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Figure 2.10: Interface temperature between SiO2 and substrate. The substrate sees

a maximum temperature of 70◦C during the entire crystallization process.

2.11. As expected at the surface, fig. 2.9, the silicon film reaches its melting point

very quickly when exposed to the laser. At a wavelength of 308nm, 99.995% of the

laser energy is absorbed by the 100 nm of silicon [38][39]. This prevents the laser from

heating the substrate and prevents ultraviolet exposure of the substrate. This also

implies that the substrate is only heated by diffusive heat energy through the buffer

layer from the molten silicon. The film then cools; the second observed increase in

temperature, just before 2 µs can be attributed to the release in latent heat as the

film solidifies from liquid to solid. After solidification, the surface cools very quickly

and reaches 200◦C after 2 µs.

The simulated interface temperature, shown in fig. 2.10, reaches a maximum of

70◦C at around 1.5 µs. This is the maximum temperature that the substrate encoun-

ters during the laser crystallization process. Again, the materials cool exponentially

and reach about 40◦C by 15 µs. Experimentally, the laser is pulsed at 100 Hz, or 10
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Figure 2.11: Temperature profile of simulated sample up to 3500 ns during laser

processing. Most of the heat used to melt the amorphous-Si is dissipated in the SiO2

buffer layer before it reaches the substrate below.

ms. This gives the substrate ample time to return to room temperature before the

subsequent laser pulse. In industrial systems, laser pulses are around 5000 Hz, or 200

µs, again enough time for the substrate to cool back to room temperature between

laser pulses.

2.4 Thin Film Transistors using Sequential Lateral

Solidification

2.4.1 Fabrication of TFTs

The thin film transistor fabrication process begins with an electron beam deposition

of 1 µm of SiO2 and 100 nm of Si. The deposition chamber has a base pressure of

10−7 torr to ensure low gas incorporation and the substrate is held at 400◦C during
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Figure 2.12: Process flow for fabrication of lateral thin film transistors. (a) Laser

crystallization of amorphous silicon. (b) Ion implantation for source and drain elec-

trodes. (c) Activation of ion implanted dopants. (d) Definition of silicon active area.

(e) Deposition of source and drain electrodes. (f) Deposition of gate dielectric. (g)

Deposition of gate metal for completed transistor device.
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deposition for improved film quality. Next, line-scan sequential lateral solidification

(SLS) laser processing is performed with a 308 nm XeCl excimer laser, fig. 2.12a.

In the experimental setup, the laser beam is 6 cm x 1.5 µm, with energies above

300mJ/cm2 for complete melting. Each translation of the stage is half the width of

the beam, or 0.75 µm. This allows the melted silicon to seed crystal growth from the

grains grown in the previous pulse. More information on the line-scan SLS process

can be found above and in Sposili, et.al. [21]

Select areas are ion implanted with 1x1015 cm−2 of phosphorus at 10 keV to form

contact areas for the source and drain, fig. 2.12b. These dopants are then activated

with a 1000◦C, 2 second, rapid thermal annealing process to ensure all implanted

dopants are activated, fig. 2.12c. The silicon active areas are then patterned and

etched with a SF6 plasma, fig. 2.12d. Aluminum source and drain contacts are

thermally evaporated and patterned using a lift-off process, fig. 2.12e. Contacts are

then annealed at 350◦C in argon for 1 hour. A 200 nm film of parylene-C is used as

a gate dielectric, fig. 2.12f, and finally an aluminum gate metal is evaporated and

patterned, fig. 2.12g. A micrograph of the completed devices is shown in fig. 2.13.

2.4.2 Characterization of TFTs

With line-scan SLS, grain growth propagates in the direction of the sample stage

translation, and thus transistor characteristics are dependent on the orientation of

the transistor channel with respect to the grain boundaries. The two extremes are

tested, one where the grain boundaries are parallel to the channel conduction path,

and the second where the grain boundaries are perpendicular to the conduction path.

All electrical tests are performed on an Agilent 4155C semiconductor analyzer.

Fig. 2.14 and 2.15 show current-voltage characteristics for two SLS transistors of

different sizes with grain boundaries parallel to the direction of current conduction.

The extracted mobility for these two devices is approximately 400 cm2/V s to 450

cm2/V s. These mobility numbers agree with results in the literature for devices
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Figure 2.13: Micrograph of completed thin film silicon transistors.

Figure 2.14: Drain current vs drain voltage (IDS vs. VDS) and transfer characteris-

tics (IDS vs. VGS) of SLS TFT device with grain boundaries parallel to conduction

channel. Device length and width is 20 µm x 100 µm.
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Figure 2.15: Drain current vs drain voltage (IDS vs. VDS) of SLS TFT device with

grain boundaries parallel to channel. Device length and width is 20 µm x 50 µm.

made from this type of sequential lateral solidification.

Fig. 2.16 shows the current-voltage characteristics for an SLS transistor with

the grain boundaries perpendicular to the direction of current conduction. In this

case, there are many grain boundaries between the source and drain which results in

lower current levels [40]. The extracted mobility for this transistor with perpendicular

grain boundaries is about 180 cm2/V s, about 2.5 times lower than the mobility in

the parallel case.

Even though the ion implant dose is designed to produce highly doped ohmic

contacts, it is clear from the electrical characteristics of all devices that the contact

resistance is much higher than expected. Van der Pauw measurement structures are

fabricated to investigate the effectiveness of the source and drain doping to correct

this problem.
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Figure 2.16: Drain current vs drain voltage (IDS vs. VDS) and transfer characteristics

(IDS vs. VGS) of SLS TFT device with grain boundaries perpendicular to channel.

Device length and width is 20 µm x 100 µm.

2.4.3 Van der Pauw Sheet Resistance

The van der Pauw method takes measurements on an arbitrarily-sized square of semi-

conductor material that is electrically contacted at the four corners. Fig. 2.17a shows

a micrograph of this structure and 2.17b provides a labeled schematic. The designed

van der Pauw test uses a 150 µm x 150 µm square of doped semiconductor with

four 100 µm x 100 µm metal pads in each of the four corners. To perform the mea-

surement, an electrical current is pushed between contacts 1 and 2, and voltage is

measured between contacts 3 and 4. Next, a current is pushed between contacts 3

and 4, and voltage is measured between contacts 1 and 2. This is repeated for the

six other combinations and the sheet resistance is calculated based on the equations

below.

R12,34 = V34/I12

R34,12 = V12/I34
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Figure 2.17: (a) Micrograph of test structures incorporated on SLS TFT samples

including alignment marks, capacitance test structures, via etch test structures, and

van der Pauw test structures. (b) Schematic of van der Pauw test structure showing

the placement and numbering of the four metal pads.

Rvert = (R12,34 +R34,12 +R21,43 +R43,21)/4

Rhoriz = (R23,41 +R41,23 +R32,14 +R14,32)/4

When Rvert = Rhoriz = R

Rs = πR/ln(2)

A low-temperature method can improve the contact resistance and serve as an

alternative to the high temperature rapid thermal anneal (RTA). Past work has

shown laser activation [41][42][43][44] and flash lamp annealing [45][46][47][48] as vi-

able methods for dopant activation.

In this work, a non-melt laser process is developed for activating the implanted

dopants, fig. 2.12c. The laser energy is set just below the melting point for polycrys-
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Table 2.1: Van der Pauw Sheet Resistance Data (Ohms/Square)

Implant Dose Activation Sheet Resistance Sheet Resistance

(cm−2) Method Along Grains Perpendicular to Grains

1015 RTA 104 632

1015 Laser 15X 150 250

1015 Laser 30X 120 280

1015 Laser 45X 132 263

1016 RTA 140 332

1016 Laser 10X 72 126

1016 Laser 20X 64 117

talline silicon, but causes explosive crystallization for amorphous silicon. In this case,

the surface temperature reaches approximately 1300◦C. Each area is irradiated be-

tween 15-45 times with the pulsed laser to allow the dopants enough time to activate

with minimal diffusion. Each of these laser-pulsed samples is then measured using

the van der Pauw method to obtain the sheet resistance and the relative amount of

activation, and the properties are compared against those of samples prepared with

rapid thermal annealing. Results are summarized in table 2.1.

Using the van der Pauw measurement, expected improvements in the sheet resis-

tance are observed as the ion implant dose is increased, and significant improvements

in sheet resistance are realized when switching from RTA activation to a non-melt

laser activation. The modified process with a higher ion implant dose of 1016 cm−2

and a non-melt laser activation step with 20 pulses per area is expected to improve

transistor characteristics.
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2.5 Conclusions

Sequential lateral solidification is a process that creates high quality silicon at low

process temperatures. Simulations of the desired device structure show that even as

the top layer of amorphous silicon melts, the underlying substrate stays below 70◦C.

Further, a transistor process is developed to fabricate lateral devices with mobili-

ties above 400 cm2/V s along a conduction path parallel to the SLS-induced grain

boundaries. These transistors suffer from problems with contact resistance, which

is investigated with the van der Pauw method and improved with a non-melt laser

dopant activation method. Overall, a thin film of high-mobility silicon transistors was

fabricated at temperatures below 400◦C in a process compatible with low-temperature

compound semiconductors and back-end-of-line silicon substrates.
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Chapter 3

Light Emitting Diode Array

3.1 Introduction

Light emitting diodes (LEDs) have luminous efficiencies that surpass virtually all

other light sources [49]. Consequentially, discrete LEDs have been applied to a range

of applications in which non-structured illumination is required, such as solid-state

lighting [50] and display backlights [51][52][53]. Today, the majority of commercial

applications for LEDs do not require patterning at a chip level. However, some

applications, such as outdoor billboards or LCD-TV backlights, use discrete LEDs as

the light source as well as the image source by stringing together rows and columns of

discrete LEDs to create an image. The objective is to photolithographically pattern

the LEDs on the wafer level to achieve high resolution structured light sources in the

microscale for use as a microdisplay platform.

Monolithically patterned LED arrays have been demonstrated for several appli-

cations including microdisplays [54][55][56][57][58][59][60], fluorescence detection [61],

directly powered high voltage AC solid state lighting [62][54][63], mask-free lithog-

raphy [64], other display concepts [65][66], and biomedical applications [67]. The

LED arrays fabricated by Gong et al. have been demonstrated in the visible and

ultraviolet wavelengths in form factors up to 64 x 64 pixels in a passively addressed
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Figure 3.1: Light path of typical projection systems. (a) Liquid crystal on silicon

based system. (b) Digital micromirror based system

scheme, and up to 32 x 32 pixels in a flip-chip bonded actively addressed scheme [61].

A representative blue device from Gong et al. has a maximum power density of 43

W/cm2 at a current density of 4000 A/cm2. Combining the high brightness of LEDs

and the ability to pattern them into dense arrays enables opportunities in a variety

of display applications (microdisplays, head-mounted displays, head-up displays, pico

projectors, and projectors) and non-display applications (real-time three dimensional

scanning, depth mapping, three-dimensional printing, and new user interfaces).

Projection displays are a good example of where LED arrays can be used as both

the light and image source. Modern projection systems, fig. 3.1, typically have three

parts: a light source, a spatial light modulator (SLM), and a system of projection

lenses. The spatial light modulator rejects light from regions of the image which are

intended to be dark, structuring the light into the desired pattern. This light rejection

reduces the overall system efficiency; the light source operates at full intensity at all

times, regardless of the image being projected.

In larger projectors, the light source is typically a high intensity discharge (HID)
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lamp, which is able to provide the high illuminance required. HID lamps have also

been used in smaller projectors, but recent improvements in LED brightness and

efficiency has allowed the use of three high power LEDs (red, green, and blue) as

the light source. The higher efficiency, smaller size, and sequential color selectivity

of LEDs has enabled the development of more efficient smaller projectors and pico-

projectors. A liquid crystal display (LCD), digital micromirror device (DMD), or

liquid crystal on silicon (LCoS) engine typically provides the light modulation and

either transmits or rejects light for a given pixel. The varying degrees of light blocking

and time modulation allow for grayscale and also defines the contrast ratio. The

modulated light is then projected through a series of lenses to reimage the SLM onto

a screen.

As an alternative to these traditional projection systems, we demonstrate the use

of structured LED arrays as both the light source and image generator, in which each

individual LED serves as a pixel. Through monolithic integration, we can fabricate a

dense, high resolution LED array to serve as our image source. Light is then generated

by individual LEDs in the array only when and where it is needed for the image. This

results in less wasted light and higher energy efficiency. An additional advantage of

LED arrays compared to current projection technologies is the elimination of color

filters and polarizing optics. This can increase the overall light path efficiency by

up to 300%. Finally, by physically combining the light source and image generator

into one component, the total number of system components is significantly reduced,

shrinking the overall form factor and allowing for even smaller projectors.

Grossmann et al. has proposed the use of organic LED (OLED) displays as a

projection light source [68][69]. Using OLED displays offers many of the same ad-

vantages as LED arrays, including increased contrast and higher system efficiency

versus traditional spatial light modulator based systems. Organic LED systems have

a unique ability to display full color on one substrate. However, they cannot compete

with inorganic LEDs on luminous efficiencies and peak brightness. State-of-the-art
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Figure 3.2: Cree EZ1000 LED in a projection format. Left: Simple two optic magni-

fying setup. Right: Projected image with 100X linear magnification, easily viewable

in ambient light.

OLED devices have a brightness up to 6,000 cd/m2 whereas state-of-the-art com-

pound semiconductor LED devices can have brightnesses above 20,000,000 cd/m2.

This chapter describes the fabrication, characterization, and advantages of inor-

ganic, compound semiconductor based LED arrays.

3.2 Design

Advances in heatsinking and device design have allowed the development of large area,

high drive power LEDs capable of both high efficiency and high luminance. Based

on the brightness levels achieved by commercial discrete LEDs, we can estimate the

viability of using LED pixels as a projection source can be estimated. Cree‘s XLamp

has a current density of 35 A/cm2 and a luminous intensity of 17.2 cd in a 980 µm

x 980 µm emissive area, which corresponds to a brightness of 17,000,000 cd/m2 [70].

Assuming an array of pixels with a 15 µm x 15 µm pitch and a 50% fill factor, it is
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possible to make a 1920 x 1080 array in an area of 29 mm x 16 mm. Given a source

brightness of 17,000,000 cd/m2, an image can be magnified by 120X and achieve a

projected display size of 13 feet with a brightness of 500 cd/m2.

Figure 3.3: Drawing of Cree EZ1000 LED. Bond pad structure and LED size shown.

[70]

Fig. 3.2 shows the use of a Cree EZ1000 LED in a projection format. The LED

is wirebonded onto a package and placed in front of a simple two optic magnifying

setup. This setup re-focus the LED features shown in the data sheet, fig. 3.3 left,

obtaining a linear magnification of 100X, fig. 3.2 right.

The spectrum of the Cree Green EZ1000 is shown in fig. 3.4, with a peak wave-

length of 520 nm. Optical power was measured with a calibrated Newport 818-UV

silicon photodetector approximately 2 mm from the device to obtain the optical power

density at the source, and later measured at the projected image to obtain the optical

power density of the projection. Fig. 3.5 shows the optical power density both at

the source and magnified 100X. Because the magnification is 100X, the optical power

density decreases by 10000X. The optical coupling loss is approximately 10X due to

the optics setup.
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Figure 3.4: Spectrum of Cree Green EZ1000 with a peak wavelength of 520nm.

3.3 Fabrication

The LED array fabrication process starts with a commercially obtained GaAs wafer

from Bandwidth Semiconductor with the epitaxially grown layers shown in Table 3.1.

The design is the same as used by Kim et al. [71][72]. A semi-insulating AlAs layer of

1500 nm is grown on a 1018 cm−3 n-doped GaAs wafer. Next, a 100 nm p+ GaAs layer

is grown to serve as a current spreading layer for the LED stack. The next layer of

2500 nm, 1018 cm−3 p-type doped AlGaAs serves as the p-confinement and p-contact.

This p-type AlGaAs layer has ample thickness to allow for process tolerances when

etching the mesa structure to define the LED. The n-confinement is provided by the

700 nm of 1018 cm−3 n-type AlGaAs layer which is above the undoped AlGaAs active

layer. A 100 nm n+ GaAs layer provides the required current spreading and a good

ohmic contact to subsequent metal depositions.

The fabrication was performed using a five mask process. The top and cross

section views are shown in fig. 3.6 and 3.7. The first mask pattern (Etch 1) defines
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Figure 3.5: Optical power density of the source LED and optical power density of

100X magnified LED image.

Table 3.1: LED Layer Structure

Layer Thickness (nm) Type and

Concentration (cm−3)

GaAs 100 N+ 1019

Al0.4GaAs 700 N 1018

Al0.3GaAs 100 Undoped

Al0.4GaAs 2500 P 1018

GaAs 100 P+ 1019

AlAs 1500 Undoped

GaAs Substrate N+ 1018
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Figure 3.6: First three steps of LED array fabrication process. Left side shows cross

section, right side shows top view of the respective step.

the mesa etch areas which are then etched with a 24:1 citric acid to a 30% hydrogen

peroxide solution [73][74][75]. The etch solution was prepared by dissolving 12g of

citric acid monohydrate into 12mL of deionized water. Since the dissolution of citric

acid monohydrate into water is an endothermic reaction, the solution was allowed

enough time to cool to room temperature before performing the etch. The hydrogen

peroxide is mixed into the citric acid solution 15 minutes prior to the etching of the

patterned wafer. After the etch solution is prepared, the patterned sample is etched

for 13 minutes resulting in an etch depth of approximately 1.4 µm. A cross sectional
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Figure 3.7: Final three steps of LED array fabrication process. Left side shows cross

section, right side shows top view of the respective step.

scanning electron micrograph of this first etch is shown in fig. 3.8.

A layer of 50 nm chromium / 500 nm gold (Metal 1) was thermally evaporated

and patterned with a standard lift-off process to define the n and p contacts. The

p-contact is on the bottom of the mesa and also defines the rows. The n-contact is

on the top of the mesa and allows for testing of individual devices.

A second etch step (Etch 2) cuts a trench between each row to electrically isolate

individual rows using the same citric acid and hydrogen peroxide solution as the first

mesa etch. Without careful control of this etch process, the resulting device will
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Figure 3.8: Cross sectional scanning electron micrograph of sample after the first etch

process. This shows the different epitaxial layers and the correct etch depth.

be a directly-addressed LED array rather than the desired passive-matrix. In the

directly-addressed case, each column is addressed as a single element; the LEDs in

each column cannot be electrically separated because of cross-talk through the highly

doped p+ GaAs layer. Essentially, all of the LEDs share a common p-side electrode.

This can be seen in fig. 3.9 where the perimeter of the bond pads light up as well,

showing the severity of the cross-talk. [76]

Because of photoresist cleaning steps between mask levels, a gallium oxide film

is likely formed, preventing the continued etching of the row isolation trench. By

performing a 20 second buffered oxide etch (20:1) before etching, the gallium oxide

layer can be cleared allowing the row isolation etch to complete properly. Fig. 3.10

shows the cross section of a sample where the row isolation etch has reached the

desired level. This can also be verified optically by using a short depth of focus
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Figure 3.9: (a) Schematic of LED array with row cross-talk issues. The rows are

all connected together through the p+ GaAs layer. (b) Micrograph of LED array

with cross-talk issue. Each column is addressed as a single element rather than 10

individual elements. Cross-talk extends to the bond pads shown by the perimeter of

the bond pad lighting up.

microscope objective and seeing a change in focus on each layer, fig. 3.11.

To complete the passive matrix device, 500 nm of SiO2 is sputtered and patterned

as an interlayer dielectric, and a second metal layer is deposited and patterned to

form column lines and bond pads. A micrographs of the final device is shown in fig.

3.12 and fig. 3.13 shows a circuit schematic and four arbitrary pixels in the passive-

matrix.. These devices are then wire-bonded to a dual in-line package for ease of

measurement and coated with parylene-C, a polymer layer, to protect and strengthen

the wirebonds, fig. 3.14. [77]

The dimensions of the LED array are conservatively designed. Each pixel is 50

µm x 50 µm, and the metal square p-contact surrounding the mesa has a width of 15
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Figure 3.10: Cross sectional scanning electron micrograph of sample after second etch

process. This shows the different epitaxial layers and the correct etch depth, right

past the p+ GaAs to isolate each row.

µm. The rectangular n-contact is 15 µm x 30 µm and the via holes and column lines

are patterned on top of that area. The center to center pitch dimension is 75 µm in

the rows and 105 µm in the columns, corresponding to a fill factor of 19%. These

numbers can be improved with use of a higher resolution lithography system and less

conservative pixel design.

3.4 LED Characterization

All electrical measurements were taken using an Keithly 2400 source measure unit.

Optical power was measured with a calibrated Newport 818-UV silicon photodetector

approximately 2mm from the device.
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Figure 3.11: Three micrographs showing shift in focus on each of the etched layers.

This provides a rough quick check of etch depth.

A typical current-voltage characteristic is shown in fig. 3.15 with a turn-on voltage

around 7 V at a current of 2 mA. The higher turn-on voltage is partially due to the

small size of the LED [56][78]. The optical power-current characteristics, figure 3.16,

are nearly linear at the source after 100 A/cm2 with each column driven as high as

1000 A/cm2. Corresponding optical power density at the maximum current density is

1.14 W/cm2. The maximum current density is limited by the resistivity of the metal

lines and the contact resistance to the devices. The heat generated from these series

resistances eventually causes the column of devices to fail before reaching the limits

of individual LEDs. These issues can be solved with further refinement of processing

and choosing metals with matching work functions.

The spectral characteristics of an LED pixel, measured with an Ocean Optics

USB4000 spectrometer, are shown in fig. 3.17. The undoped AlGaAs active region
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Figure 3.12: Micrograph of 10 x 10 LED array fabricated with a five photomask

process. Each LED is 50 µm x 50 µm.

has a peak emission wavelength at 694 nm with a full width half max of 18 nm. This

spectral output is a highly saturated red and has 1931 CIE coordinates of x = 0.71,

y = 0.29. The secondary peaks at 660 nm and 890 nm do not have a noticeable

effect on color point. These minor peaks can be attributed to direct band-to-band

recombination of GaAs and the other AlGaAs materials.

3.5 Projection Methods

The LEDs are placed in an optical setup (fig. 3.18) to assess their projection capa-

bilities. The LED light is focused through two plano-convex lens and projected onto

a screen approximately 12 inches away. This setup produces a linear magnification
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Figure 3.13: A 10x10 passive-matrix. Each LED is individually controlled by ad-

dressing the associated row/column. (a) Circuit schematic of the passive-matrix. (b)

Photographs of LED passive-matrix array with four arbitrary pixels addressed.

Figure 3.14: Photograph of LED array in a dual-in-line package for testing.



CHAPTER 3. LIGHT EMITTING DIODE ARRAY 46

Figure 3.15: Typical current-voltage characteristic of a 50 µm x 50 µm LED pixel.

Figure 3.16: Typical optical power density vs input current density characteristics of

a 50 µm x 50 µm LED pixel at the source and projected through optics.
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Figure 3.17: Spectrum of the LED pixel. The peak wavelength is 694nm, governed

by the undoped AlGaAs recombination layer.

Figure 3.18: Schematic drawing of LED experimental setup which consists of the

LED passive matrix focused through two optics onto an image plane.
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Figure 3.19: Photograph of four LED pixels magnified by 20X and projected onto a

screen. On the array, these four pixels are spaced is approximately 400 µm x 150 µm

of the pixels by 20X. The optical power density projected through the lens versus

current density is shown by the blue dotted lines in fig. 3.16. At 1000 A/cm2, we

have an optical power density of 0.055 mW/cm2. In this scenario, the optical coupling

loss is approximately 5X due to the non-optimized optics setup. Fig. 3.19 shows four

pixels magnified and projected.

To achieve full color projection, more complex optical setups are required. Fortu-

nately, these methods have been well established with existing projection technolo-

gies. Two proposed schemes for using three monolithically integrated LED arrays

are shown in fig. 3.20. The first scheme, similar to many three liquid crystal display

(3LCD) designs, uses a crossed dichroic prism with the RGB LED arrays on three

of the four sides. The beam is combined in the dichroic cube and then projected

through lenses in the front. The second scheme uses a prism originally designed for

3CCD cameras and later adopted by LCoS projection technologies.

In both of these structures, the dichroic filters can transmit 90% to 95% of the

desired light and reflect nearly 100% of the undesired light. With these efficient op-

tical systems, most of the light emitted from the LED array can be captured and

projected onto the screen. Also important in both these systems is the relative align-

ment of each LED array. The convergence of RGB pixels is required along all six-axes
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Figure 3.20: Two proposed projection schemes using three separate LED arrays, red,

green, and blue. (a) Projection scheme commonly used for 3LCD projectors. (b)

Projection scheme commonly used for LCoS projectors.

(x, y, z, θ, φ, ψ), similar to the requirements for 3LCD and LCoS projection technolo-

gies. Many mechanisms are already in production for 3LCD and LCoS and can be

applied to these LED arrays.

Both full color schemes require three separate LED arrays which can add to total

cost and size. By using a single LED array, the size of the total device can be made

much smaller to enable new applications, such as embedded pico projectors. Starting

with a blue or ultraviolet LED array fabricated in a similar way to the red LED array

described above, a full color LED array can be produced by adding a conversion layer.



CHAPTER 3. LIGHT EMITTING DIODE ARRAY 50

Figure 3.21: Proposed projection scheme using a single LED array and a color down-

conversion layer consisting of red, green, and blue phosphors.

The color conversion layer can be several phosphors with individual color filters as

pixels, or individually patterned red, green, and blue down-conversion phosphors.

With either of these color conversion layers, a single chip, full color LED array can be

fabricated. Keeping within the theme of projection technologies, this full-color LED

array can be integrated into portable devices with a single lens system, fig. 3.21. This

can also be further translated to other application areas where a small, bright, energy

efficient light engine is needed.

3.6 Directly Addressed vs. Passive Matrix vs. Ac-

tive Matrix

Using just the LED array, directly-addressed and passive-matrix displays can be built.

In a directly-addressed display, each LED is directly associated with an external con-

nection. For example, fig. 3.22 shows a directly-addressed clock with 28 LED devices

needing a minimum of 29 external connections. This offers the simplest scheme, but

the number of bonds increases at the same rate as the number of LEDs.
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Figure 3.22: Proposed projection scheme using a single LED array and a color down

conversion layer consisting of red, green, and blue phosphors.

In a passive-matrix display, LEDs are addressed in a row-column scheme and only

a single row is on at a given time, fig. 3.13a. As a passive matrix, the fabricated device

has 100 LEDs and requires 20 external connections. To address the entire display,

each row is flashed sequentially at a refresh rate of 60 Hz. The two primary limitations

of passive matrix drive schemes are lower perceived brightness and resistive losses in

the row lines. Because a row is only on for a small portion of the entire frame time,

the perceived brightness is the peak brightness divided by the number of rows. For

example, an LED display with a 20M cd/m2 starting brightness and 1000 rows would

have a perceived brightness of only 20,000 cd/m2. The second issue is the resistive

loss across the row lines. As the number of columns increases, the resistive losses in

a row line increases proportionally. With several hundred columns, the power lost in

the row lines becomes higher than the power used to drive the LEDs.

An active matrix drive scheme solves both of these problems, but materials which

are efficient light emitters do not form high performance transistors, and mate-

rials that make high performance transistors typically do not emit light. Thus,

many integration methods have been proposed for joining LEDs and transistors

[11][79][80][81][82]. These however suffer from a range of problems including poor
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bonding, mismatched thermal expansion coefficients or lattice constants, or size con-

straints limiting the ultimate level of integration.

The combination of the LED array from this chapter and the silicon circuitry from

chapter 2 addresses all of these issues and allows us to fabricate a very high brightness

microdisplay platform which is fundamentally different from other display technolo-

gies. Other emissive displays, such OLED microdisplays, offer many of the same

efficiency benefits, but do not offer the absolute brightness achievable by compound

semiconductor LEDs.

3.7 Conclusions

In this chapter, commercial LEDs were used to demonstrate the feasibility of high

brightness display made from compound semiconductors. The green LED in sec-

tion 3.2 easily achieved a 100X linear magnification in normal ambient lighting con-

ditions. Directly-addressed and passively-addressed monolithically integrated LED

arrays were fabricated and demonstrated as monochrome display elements.

Using higher power devices and improved coupling from the source to the optics,

a brightness of 100,000,000 cd/m2 is possible, allowing the formation of large screen

image sizes directly from an emissive light source. A full color microdisplay platform

using three LED arrays can be realized using currently available projector optics and

the described architecture platform, and full color from a single LED array can be

realized using color filters or down-conversion phosphors.

The LED array developed in this chapter will be integrated with the laser crystal-

lized silicon transistors discussed in chapter 2 to form an active-matrix microdisplay

capable of achieving very high brightnesses and efficiencies.
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Chapter 4

Laser Crystallization for

Three-Dimensional Integrated

Circuits

4.1 Introduction to Three Dimensional Integrated

Circuits

Scaling of conventional CMOS circuits becomes increasingly expensive and difficult as

devices are pushed towards fundamental physical limits. As this limit is approached,

three dimensional integrated circuits (3DIC) are being explored as a way to augment

the functionality of traditional CMOS devices [83][84]. Broadly defined, 3DICs are

microchips which contain two or more active layers of devices on a single chip. In

contrast, in traditional CMOS design, only a single transistor layer is built on the

silicon wafer in front-end-of-line (FEOL) processes. After fabricating these transis-

tors, many layers of wiring are required to connect the circuit components, which are

commonly referred to as back-end-of-line (BEOL) processes. The goal of 3DICs is

to integrate multiple active device layers on a single chip by making new devices in
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back-end processes while keeping front-end processes unchanged.

Integrating devices on the back-end can alleviate space constraints on the front-

end, reduce the number of long wire runs, and perform functions that may not be

otherwise possible. For example, back-end devices can be used to interface with ex-

ternal components either through high-voltage switches or photodetectors for optical

interconnects. 3DICs are currently being explored through two methods: 1. Wafer

bonding using Through Silicon Vias [85][86][87] or Through Chip Interfaces [88], or 2.

Monolithic integration of thin film transistors using low-temperature polycrystalline

silicon [89], carbon nanotubes [90], or oxide semiconductors [91]. Wafer bonding can

offer high quality CMOS devices, but also increases costs and complexity by requiring

a second CMOS chip and processes such as wafer thinning and alignment.

Three dimensional integrated circuits built monolithically can be more cost effec-

tive, but require high performance devices and processes compatible with back-end-

of-line tolerances. Developed in this chapter is a vertical via structure which is laser

crystallized to produce large grain polycrystalline material and then used to fabri-

cate diodes. Additionally, in the context of 3DICs, front-end transistors processed

with and without laser processing are compared to determine the effects of the laser

irradiation on the front-end.

4.2 Laser Crystallization of Via Structures

In contrast to the more traditional lateral devices described in chapter 2, this chapter

focuses on a vertical semiconductor structure. The fabrication of this structure begins

by depositing a film of silicon dioxide. The SiO2 is then etched to form via holes which

are then filled with amorphous silicon. Fig. 4.1 and 4.2 show a schematic cross section

and scanning electron micrograph of this structure. The cross sectional SEM image

also shows possible voids in the amorphous silicon from the deposition process.
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Figure 4.1: Schematic cross section of initial via structure on tungsten. Via holes are

etched into silicon dioxide and filled with amorphous silicon.

Figure 4.2: Cross section scanning electron micrograph of an amorphous silicon-filled

via hole.
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4.2.1 Laser Crystallization of Silicon Via on Tungsten

Figure 4.3: Process flow for fabrication of vertical structures. (a) Amorphous silicon

deposited in silicon dioxde vias. (b) Laser crystallization of amorphous silicon.

In typical silicon CMOS back-end, the vertical structures described above would

likely be built on copper. However, copper has a lower melting temperature than

silicon. During the laser crystallization step, as the silicon in the via hole melts

and crystallizes, the copper underneath would also melt with unknown consequences.

Tungsten is an alternative back-end compatible material with a higher melting tem-

perature than copper, and in the overall process flow would be deposited and pat-

terned before the deposition of the silicon diode and amorphous silicon. As a proof

of concept for laser crystallization on tungsten, test samples consisting of a blanket

tungsten film on a silicon wafer were used. Silicon dioxide is deposited and etched to

form via holes, and amorphous silicon is deposited to fill the via hole, fig. 4.3a.

The vertical column of amorphous silicon and the overburden, the extra amor-

phous silicon covering the surface, is irradiated with a single laser shot, fig. 4.3b.

The laser used is a XeCl excimer laser with a wavelength of 308 nm. The pulse

length can be adjusted through a pulse duration extender from roughly 30 ns to 300

ns. The laser beam is shaped through projection optics and a quartz photomask with
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Figure 4.4: Cross sectional scanning electron micrographs of laser crystallized vias

with two laser energies, (a) lower 800mJ/cm2 laser energy, (b) higher 1800 mJ/cm2

laser energy.

a 1 mm x 1 mm opening. The sample is exposed 1 mm x 1 mm at a time and a

high precision motorized stage stitches together individual 1 mm x 1 mm squares to

cover the entire area of interest. As described in chapter 2, the silicon oxide serves as

a buffer layer, keeping the laser energy and most of the heat at the top surface. In

addition, the short pulse duration and limited exposure area allows the wafer to cool

back to room temperature before the next laser shot.

The laser energy can be adjusted to melt the entire vertical column of amorphous

silicon. At a lower laser dose of 800 mJ/cm2, the amorphous silicon column is melted

about half of the way down, fig. 4.4a. This cross sectional SEM image shows extensive

nucleation of very small grains that propagate through to the surface. This type of

explosive crystallization is undesirable since it leaves behind amorphous silicon in

the via hole and generates a small grain microstructure, which typically leads to low

carrier mobility.

At a higher 1800 mJ/cm2 dose, the amorphous silicon via is melted the full depth

of the hole, fig. 4.4b. In the nanoseconds after the amorphous silicon melts, crys-
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tallization begins at the bottom of the via hole. Because the underlying tungsten

does not offer a seed template, the molten silicon begins crystallizing randomly at the

bottom of the via hole, forming small polycrystalline grains. As the silicon continues

to cool, grain growth propagates to the surface, with visibly larger grains at the top

of the via hole. This is also evident in the microstructure of the top surface where

there are much larger grains in 4.4b versus the lower laser energy sample, fig. 4.4a.

Figure 4.5: Transmission electron micrograph of laser crystallized via on tungsten.

Selected-area-diffraction shows small polycrystalline grains near the bottom which

merge into larger grains near the top of the via.

Transmission electron microscopy also verifies the information from the SEM im-

age, fig. 4.5. The selected-area-diffraction (SAD) images provides information on the

crystalline state of each area. At the bottom of the via hole, SAD3, a polycrystalline

small-grain microstructure is observed. Further up at the top of the via hole, SAD6,

and at the surface, SAD1, similar microstructures are observed, suggesting this is

one continuous crystal. SAD2, another region at the top of the via, has a similar
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diffraction pattern to SAD6 and SAD1, but has an extra reflection from the top right

of the via hole where there is a different grain. These selected-area-diffraction images

verify the microstructure observed with SEM of smaller polycrystalline grains at the

bottom of the via hole which then merge into larger grains seen through SEM.

4.2.2 Laser Crystallization of Silicon Via on Silicon Wafer

A similar proof-of-concept can be done with a silicon wafer underneath the amorphous

silicon via instead of the tungsten. This starting structure is not as relevant for 3DIC

since the vertical via structure would not be built in the back-end. However, using

a silicon wafer as a seed layer allows the laser crystallized-via hole to inherit the

crystallinity of the wafer. Similar methods are also being pursued by other groups

[92][93].

Fig.4.6 of a silicon via on a silicon wafer tells a similar story to the previous SEM

images of silicon via on tungsten. Fig.4.6a and 4.6b shows vias exposed to two laser

energies, both of which are below the energy required to fully melt the silicon-filled

column. In both images, there are small polycrystalline grains which begin to merge

on the way up to the surface. This is in contrast to the silicon in the via hole in fig.

4.6c, which has been melted to the bottom. In this case, the molten silicon has a

single crystal silicon wafer as a seed layer and thus grows with the same crystallinity

as the wafer. Here, fewer grain boundaries are observed on the top surface since each

via hole is made up of a single grain.

The crystal structures of the via holes are further studied through transmission

electron microscopy in fig. 4.7 and 4.8. In fig. 4.7, we see a bright field image of

the via hole along with several diffraction patterns. These diffraction patterns are

measured on the silicon wafer, within the via hole, and at the surface. All three of the

diffraction patterns are the same and verify that the silicon in the via hole is seeded

from the silicon wafer.

A high resolution transmission electron micrograph in fig. 4.8 zooms in on the
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Figure 4.6: Cross sectional scanning electron micrographs of laser crystallized silicon

vias on a silicon wafer produced with varying laser energies. (a) 675 mJ/cm2 (b) 1350

mJ/cm2 (c) 1800 mJ/cm2. At energy (c) the laser melts the silicon all the way to

the bottom of the via and seeds crystallization from the single crystal silicon wafer.
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Figure 4.7: Transmission electron micrograph of laser crystallized silicon via, on a

silicon wafer. Selected-area-diffraction shows that all regions have the same crystal

orientation, seeded from the silicon wafer.

silicon wafer and silicon via interface. Again, from the bright field and diffraction

images, we see a direct seeding of the silicon via from the single crystal wafer.

4.3 Fabrication of Version One Diodes

Using the laser crystallized via holes seeded directly from a single crystal silicon

wafer, high quality electronic devices are expected since the via holes also have good

crystallinity. Diodes devices are fabricated on a p-doped silicon wafer. This serves as

both the p-side of the diode device and the silicon seed. The amorphous silicon via

holes are then formed using the process described in section 4.2 and laser-crystallized

to form the active area of the diode. After a chemical mechanical polishing, the diodes

are implanted with arsenic as the n-dopant and rapid thermal annealed to activate
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Figure 4.8: A high resolution transmission electron micrograph of laser crystallized

via on tungsten. TEM diffraction images on the left show that the via region is seeded

directly from the silicon wafer.

the dopants. Finally, a large aluminum contact is thermally deposited to allow for

electrical contact to the diodes. The aluminum contact is 150 µm in diameter and

covers approximately 25,000 diodes. A schematic cross section is shown in fig. 4.9

and a top view micrograph is shown in fig. 4.10.

4.3.1 Characterization of Version One Diodes

Samples were prepared with varied ion implant energies of arsenic between 50 keV and

150 keV. Changing the energy of the ion implantation changes the depth to which the

arsenic ions are deposited and thus also the length of diode. Electrical characterization

of the diodes was performed on an Agilent 4155 semiconductor analyzer. Preliminary

current-voltage characteristics of these diodes are shown in fig 4.11. As expected, the

higher implant energy results in an increase in current due to the shortened diode
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Figure 4.9: Schematic cross section of version one laser crystallized diodes formed

in via holes. Diodes are electrically probed through the aluminum contact and the

silicon wafer.

length. However, the high turn-on voltage and low currents imply there is poor

electrical contact to the diodes.

4.4 Fabrication of Version Two Diodes

Building upon the preliminary diode results from the previous section, a second itera-

tion of diodes was fabricated, achieving improvements in contacting individual diodes

and electrical contact to the diodes. Fig. 4.12 shows the full process flow for this sec-

ond iteration of diodes. The process begins similarly to previous described work with

a layer of silicon dioxide on a silicon wafer, fig. 4.12a. The height of the silicon dioxide

defines the height of the vertical structure. Following an etch of the silicon dioxide

and deposition of amorphous silicon, laser energy transforms amorphous silicon to

large grain polycrystalline silicon, seeded from the single crystal wafer, fig. 4.12b and

4.12c. The overburden polycrystalline silicon which protected the underlying layers
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Figure 4.10: Micrograph of version one diodes formed in via holes contacted by a

large aluminum metal layer. The 150 µm diameter aluminum pad has contact with

approximately 25,000 diodes.

from laser exposure is now chemically mechanically polished leaving only the laser

crystallized silicon in the via holes, fig. 4.12d. An etch-back of the via hole is then

performed to open space for a metal contact, fig. 4.12e. Finally, an implant of boron

forms the p-doped side of the diode, and tungsten metal contacts are deposited for

electrical contact, fig. 4.12f and 4.12g. Following these steps, the first copper layer is

deposited to contact the tungsten metal on top, and separately, the n+ doped layer

underneath the vertical structure. This allows for testing solely from the top surface.
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Figure 4.11: Current-Voltage characteristics of version one diodes. Aluminum metal

layer is approximately 150 µm in diameter, contacting 25,000 diodes. Curves shift

with changes in the arsenic implant energy.

4.4.1 Characterization of Version Two Diodes

Multiple diode devices are measured from two different wafers. Fig. 4.13 shows

the current-voltage characteristics for these diodes. Based on the mask design, each

measurement probes two diodes in parallel. We can see from the I-V characteristics

that the turn-on voltage is around 0.7 V, and the laser crystallized diodes show very

consistent behavior across each wafer and across multiple wafers. In addition, the

high on-currents point to high quality material within the via structure.

For comparison, epitaxial diodes are fabricated using the same structure as de-

scribed above. Instead of laser crystallization, the epitaxial diodes use a high tem-



CHAPTER 4. LASER CRYSTALLIZATION FOR 3DIC 66

Figure 4.12: Process flow for fabrication of version two vertical diodes. (a) Ion im-

plantation and silicon dioxide deposition. (b) Via opening etch for vertical structures

and amorphous silicon deposition. (c) Laser crystallization. (d) Chemical mechanical

polishing. (e) Etch back of laser crystallized silicon. (f) Ion implantation of p+ side.

(g) Deposition of tungsten contacts.
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Figure 4.13: Current-Voltage characteristics of version two laser crystallized diodes

compared with epitaxially grown diodes. Laser crystallized diodes are more consistent

and exhibit a much higher on-current.

perature process to grow silicon through the via hole, seeded from the wafer. When

characterized electrically, the epitaxially grown diodes are 100 to 10,000 times lower

in current, and have little consistency across multiple devices. Additionally, the high

temperature epitaxial growth method would be difficult to integrate into a 3DIC

structure since the thermal cycles will cause drastic changes in previously fabricated

devices.
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4.5 Front-End CMOS devices

Figure 4.14: Cross sectional schematic of laser crystallized diodes integrated directly

on standard NFET and PFET front-end transistors.

The goal of three dimensional integrated circuits is to integrate devices built on

the back-end along with traditional front-end devices. Building additional devices

on the back-end requires special processing methods such as laser crystallization,

during which it is important to ensure that the laser will not change or damage

the circuits fabricated in the front-end. In chapter 2, simulations showed that a 1

µm silicon dioxide thermal buffer kept the underlying substrate below 70◦C during

laser processing. Past literature has also shown laser crystallization to work without

damage to low-temperature substrates, such as polymers [94][95][96].

Building full front-end devices offers the most direct method of characterizing the

effects of laser exposure. The device structure in fig. 4.14 is similar to previous

diode device structures, except full front-end n-channel and p-channel field effect

transistors are fabricated beneath the silicon dioxide layer. Front-end transistors

which do and do not see laser processing are directly compared to check whether

transistor characteristics have shifted.
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Six wafers are fabricated, three without laser processing and three with laser

processing. On each of the wafers, twenty n-channel transistors and twenty p-channel

transistors are measured. Three significant characterization parameters are extracted

for each of the measured transistors: oxide thickness (tox), threshold voltage (VT −

Sat), and drain current in saturation (ID−Sat). These three parameters are used to

track the uniformity and shifts in characteristics, if any.

Figure 4.15: Fundamental device characteristics (tox, VT − Sat, ID − Sat) measured

across six wafers with and without laser anneal. Twenty NFET devices were measured

for each wafer. Each vertical line marks the median and two end-points of the twenty

devices. Black lines are wafers without laser annealing. Red lines are wafers with

laser annealing.
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Fig. 4.15 shows the three tracked parameters across all six wafers. The black

lines reference wafers which have not been laser processed, and red lines reference

to wafers with laser processing. Each of the lines represents the range of all twenty

measured transistors, marking the median and two end points. Given equivalent

spreads in the data for the wafers with and without laser processing, laser annealing

does not show any measurable effects on NFET transistors. With and without laser

annealing, the tox, VT − Sat, and ID − Sat parameters all fall in the same expected

range. Additionally, we can consider the six wafers in pairs, where each pair undergoes

thermal processes distinct from the other two pairs. Wafers 1 and 2, 3 and 4, and 5

and 6 are paired. In each pair, there is one wafer which has not been laser crystallized

(wafers 1, 3, 5), and one wafer that is laser crystallized (wafers 2, 4, 6). When looking

at the VT − Sat and ID − Sat parameters in fig. 4.15, it is clear that the thermal

parameters cause a shift in the tracked parameters, while the laser crystallization has

no observable effect.

The same parameters, tox, VT −Sat, and ID −Sat, are also tracked for p-channel

transistors (PFET) in fig. 4.16. As expected, the p-channel devices are less uniform

than the n-channel devices, but the parameters with and without laser annealing

show similar trends. In the tox parameter, wafers 1 and 2, 3 and 4, and 5 and 6 are

very similar. Again, these pairs of wafers have slightly different thermal conditions,

but in all cases, the laser annealing does not have any noticeable impact. The data

spread across wafers is larger for VT − Sat and ID − Sat and individual device data

points are plotted in figures 4.17 and 4.18.

Fig. 4.17 shows VT − Sat for the twenty measured PFET transistors from each

wafer. Although the threshold voltage parameter is spread across 0 V to -0.3 V, the

difference between non-laser crystallized (black) and laser crystallized (red) devices

is negligible. A similar plot for ID − Sat of PFET transistors is shown in fig. 4.18.

The ID−Sat for PFETs parameter exhibited the largest spread of data across all the

n-channel and p-channel devices measured. Removing one or two of the outliers puts
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Figure 4.16: Fundamental device characteristics (tox, VT − Sat, ID − Sat) measured

across six wafers with and without laser annealing. Twenty PFET devices are mea-

sured for each wafer. Each vertical line shows marks median, and two end-points

of the twenty devices. Black lines are wafers without laser annealing. Red lines are

wafers with laser annealing.
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Figure 4.17: VT − Sat of PFET devices measured across six wafers, with twenty

transistors per wafer. Black lines are wafers without laser annealing. Red lines are

wafers with laser annealing. Wafers show a similar spread of data points with and

without laser annealing.
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Figure 4.18: ID − Sat of PFET devices measured across six wafers, with twenty

transistors per wafer. Black lines are wafers without laser annealing. Red lines

are wafers with laser annealing. There are several outliers in the wafers with laser

annealing, but the majority of devices fall within the same range.
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wafer 2 and 6 in a similar range to the non-laser crystallized wafers, but wafer 4 still

falls outside of the expected range. This may be caused by other fabrication issues

unique to this wafer and specific to its p-channel devices.

Through the direct measurement of both n-channel and p-channel front-end tran-

sistors, the laser crystallization process overall showed no effect on the front-end char-

acteristics. For 3DIC, the measured oxide thickness (tox), threshold voltage (VT−Sat),

and drain current in saturation (ID − Sat) parameters show that the process devel-

oped for the laser crystallized diodes is compatible for adding active layers above

standard CMOS.

4.6 Conclusions

To commercialize monolithically-integrated 3DICs, a method of fabricating high qual-

ity devices directly on conventional CMOS is needed. Laser crystallization serves this

functionality by enabling high quality materials with low-temperature process win-

dows. Building upon the lateral devices demonstrated in chapter 2, vertical devices

were fabricated and tested in this chapter. The crystallinity of laser-crystallized

polycrystalline silicon is characterized using scanning electron microscopy and trans-

mission electron microscopy on two different substrates, tungsten and single crystal

silicon. In both cases, amorphous silicon in the via hole is melted to the bottom of

the hole and is seeded from the underlying substrate. When using the single crystal

silicon wafer as the substrate, the silicon via holes seeded from the wafer exhibit single

crystal growth throughout the via.

Two iterations of diodes are fabricated within this vertical structure and charac-

terized. Both versions of diodes show rectification behavior, and the second iteration

of diodes outperform the epitaxially grown diodes of the same device geometry.

Simulations from chapter 2 and past literature have shown the compatibility of

laser processes with 3DIC designs. In this chapter, this conclusion is tested directly
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using conventional front-end devices. Both n-channel and p-channel front-end de-

vices are fabricated, and characteristic parameters of the transistors are compared for

wafers with and without laser annealing. All device parameters fall within the ex-

pected range, and there are no significant changes in front-end device characteristics

even with upper layers are exposed to laser irradiation.

Diode characteristics and front-end uniformity prove that laser crystallization is

a suitable method for 3DIC. This paves the way for new architectures and designs,

including fabrication of vertical transistors, where devices with different functions or

size constraints can be placed on the back-end without disturbing conventional front-

end devices. In addition, since laser crystallization methods are available and fully

developed for flat panel display manufacturing, industrial tools up to 1.3 m x 1.5 m

are readily available and can be adapted to uniformly process 300 mm or even 400

mm wafers.
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Chapter 5

Laser Crystallization of Alternative

Material Systems

5.1 Introduction

Laser crystallization is a unique processing methodology that can induce highly local-

ized and drastic transformations to a material in very short time frames. Energy from

the laser heats only the top surface of the exposed material to very high temperatures,

leaving the bottom layers at temperatures well within process tolerances. This was

shown in chapters 2 and 4 with the successful crystallization of a topmost silicon layer

without damage to underlying devices. The same principle of laser annealing can be

applied to other material stacks where localized crystallinity is desired, using different

buffer materials or crystallizing materials other than silicon. Two particular systems

of interest to microprocessor foundries are crystallized silicon on low-κ dielectrics,

and crystallized copper for low resistivity interconnects.
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5.2 Laser Crystallization on Low-κ Dielectrics

In modern microprocessors, the back-end-of-line processes serve as wiring layers to

connect front-end transistors. There are two materials in back-end processes: metal

for the wiring, and interlayer dielectric to electrically separate the wires. As front-end

devices shrink, the back-end wire separation must scale correspondingly to interface

with the front-end. The decrease in distance between two neighboring wires increases

the capacitance, which affects the speed of the circuit, power consumption, and ca-

pacitive cross talk.

Capacitance, the measure of a material’s ability to store charge, is given by

C = κε0A/d

where κ is the relative dielectric constant of a material, ε0 is the permittivity of free

space, A is the area that is shared between the two conductors, and d is the distance

between them.

There are two options to decrease capacitance based on the equation above. The

area can be reduced, but this also significantly increases the resistance of the wires.

The only other option is to reduce the dielectric constant, κ, which is the path taken

by the semiconductor industry. While SiO2 was used in the past, low-κ dielectrics,

which have dielectric constants below silicon dioxide (3.9ε0), are now ubiquitous in

modern day back-end CMOS processes [97][98]. The question at hand is whether

low-κ dielectric materials are compatible with laser crystallization processes and can

replace SiO2 as a buffer layer.

Industry-relevant low-κ dielectric wafers are obtained from IBM Research and

Tokyo Electron. A 100 nm thick amorphous silicon film is deposited using electron

beam evaporation with the substrate at 400◦C. The final test stack consists of silicon

wafer, 300 nm - 500 nm of low-κ dielectric, and 100 nm of amorphous silicon.

Laser-crystallized amorphous silicon on low-κ dielectrics is shown for a non-porous

film with κ = 3.1, in fig. 5.1, and a porous film with κ = 2.4 - 2.6, in fig. 5.2. Both mi-

crographs show good crystallization of the amorphous silicon and the expected grain
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Figure 5.1: Micrograph of SLS of silicon on a low-κ dielectric wafer. The non-porous

dielectric material is 300 - 500 nm thick and has a κ = 3.1.

structure from the line-scan SLS method described in chapter 2 [99]. Based on past

work, the highly crystalline microstructure is expected to produce good transistors.

SLS on other low-κ films was also attempted but resulted in film explosion during the

laser crystallization process. This explosion is due to gas trapped during deposition

of either the low-κ dielectrics or amorphous silicon.

The use of low-κ dielectrics as the thermal buffer layer in laser crystallization is

advantageous over SiO2 because the lower dielectric constants result in lower capac-

itance. Assuming the properties of the entire material system behave as expected,

no additional layers are needed in the material stack. Like other 3DIC techniques,

this allows for more devices on the back-end which can relieve the burden on the

front-end. Several aspects of the low-κ system require further studies, including the

low-κ/amorphous silicon interface, the effect of laser process on the dielectric prop-

erties of the low-κ material, and the thermal buffering properties of low-κ dielectrics
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Figure 5.2: Micrograph of SLS of silicon on a low-κ dielectric wafer. The porous

dielectric material is 300 - 500 nm thick and has a κ = 2.4 - 2.6.

and their effect on front-end transistor characteristics.

5.3 Laser Crystallization of Copper Interconnects

Aside from the low-κ dielectrics described in section 5.2, the back-end processes in-

clude metal lines which connect the front-end transistors. In recent years, copper has

replaced aluminum as the metal of choice due to its higher conductivity and thus

the ability to make narrower lines of the same resistance [100][101][102]. However,

as front-end transistors get smaller and the dimensions of back-end copper inter-

connects scale proportionally, resistivity increases exponentially, deviating from bulk

properties, fig. 5.3 [103][104][105][106].

The exponential increase in resistivity with decreasing line width can be attributed

to microstructural changes at small dimensions. The transmission electron micro-
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Figure 5.3: Resistivity of 50 nm height copper lines versus width. As lines become

narrower, the experimentally measured resistivity in the wires increases dramatically.

Fig. from reference [104].

graphs in fig. 5.4 show how the microstructure changes from a columnar form to small

grains as the line narrows, which dramatically increases the resistivity [107]. This in-

creased resistivity is a problem for circuit designers as higher resistivity lines need

to be compensated with additional signal repeater circuits, which take up additional

area on the front-end. Increased resistivity also has implications on transmission

delays and the overall microprocessor speed.

Like silicon described in previous chapters, the microstructure of the copper can be

modified using a laser recrystallization process. Changing the microstructure affects

the resistivity; larger grains are desired for decreased resistivity.

Copper is deposited using industry standard tools and chemistries, then exposed to

a 1 mm x 1 mm XeCl excimer laser shot for approximately 300 ns. As in previous chap-

ters where amorphous silicon is exposed to the laser, the copper overburden absorbs

nearly all of the laser energy, locally melting only the top film [108][109][110][111].

After laser crystallization, the process was interrupted to analyze the copper mi-

crostructure. A cross sectional schematic is shown in fig. 5.5. The device is similar

to the vertical structures fabricated in chapter 4, but here the vertical structures
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Figure 5.4: Diffraction Scanning Transmission Electron Microscopy (D-STEM) im-

ages adapted from reference [107]. Shows images for four copper line widths (1800

nm, 180 nm, 120 nm, and 70 nm), and the effect of line width on the copper mi-

crostructure.

are filled with copper instead of silicon. The next process steps would be a chem-

ical mechanical polish of the overburden copper film and continuation of back-end

processing.

Promising initial results, fig. 5.6, demonstrate the ability of the laser to fully

melt the copper film and change its grain structure. The micrographs show elongated

grains which begin at the edge of the laser-irradiated region, extending 5.9 µm - 8.1

µm in length depending on the energy of the laser, between 850 - 1000 mJ/cm2. In

addition, the center of the laser irradiated region contains randomly scattered nucle-

ation sites, forming a pebble-like microstructure. The final copper microstructures

obtained show many similarities to laser crystallized silicon.

With these preliminary results, samples are being fabricated to test the electrical

properties of the laser-recrystallized copper in different line widths. The attainment

of elongated grains from a single laser shot suggests that a stepped laser process

such as line-scan SLS could further induce preferential grain growth along a single
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Figure 5.5: A simplified schematic cross section of copper interconnect lines with

overburden. This structure is laser recrystallized to change the microstructure within

the interconnect lines.

direction. A line-scan process paired with design rules for wire run direction could

yield significant improvement in resistivity, especially in the narrowest interconnect

line widths.
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Figure 5.6: Single shot laser recrystallization of copper on a wafer. Laser energy

varies from lowest (a) to highest (d). (a) Below melting threshold. (b)-(d) Above

melting threshold, 850 - 1000 mJ/cm2. The formation of elongated grains from the

edge of the laser exposure area is observed.
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Chapter 6

Conclusions and Future Work

6.1 Contributions of This Work

This thesis successfully demonstrates the three key components required for using

laser crystallization as a method for advanced integration: 1. Laser-crystallized de-

vices, 2. Relevant substrates for integration, and 3. Results showing the viability of

integration of the two without damage to the substrate.

Lateral and vertical silicon devices are fabricated using laser crystallization pro-

cesses. The lateral transistors exhibit high mobilities of above 400 cm2/V s, and are

fabricated at process temperatures compatible with many substrates, including con-

ventional front-end silicon and compound semiconductors. Vertical silicon structures

demonstrate the ability of laser crystallization to enable new device structures using

different substrates as seed material. The diodes fabricated with single crystal silicon

seeded from silicon wafers outperform epitaxially-grown diodes of the same geometry.

Separately, a process for building LED arrays is developed and characterized.

Given of the extreme brightness of LEDs and the ability to structure the light output

using the developed photolithographic method, display applications, in particular

projection displays, are explored. The processes used to fabricate the laser-crystallized

thin film transistors in chapter 2 and the LED arrays in chapter 3 are designed



CHAPTER 6. CONCLUSIONS AND FUTURE WORK 85

to be fully compatible. This allows for the monolithic integration of the brightest

controllable light source, LEDs, with high mobility, line-scan SLS transistors, and

enables applications such as active-matrix displays where both are required.

To investigate the effects of using laser crystallization for all these integration

concepts, finite-difference simulations are performed and show substrate temperatures

to remain well within process tolerances throughout the laser process. A more direct

measurement is also performed on wafers with conventional front-end transistors, 300

nm of SiO2, and 100 nm of amorphous silicon. After the amorphous silicon is laser-

crystallized, the front-end transistor parameters are measured. Several important

device characteristics are tracked across wafers with and without laser processing.

The parameters show no measurable shifts in either n-channel or p-channel front-end

devices, demonstrating the viability of using laser crystallization for three dimensional

integrated circuits.

Finally, new concepts are developed using industry relevant low-k dielectrics as

a thermal buffer instead of silicon dioxide in sequential lateral solidification, and

preliminary work with the crystallization of copper is performed to improve back-end

wiring performance, both of which extend the applicability of laser crystallization.

6.2 Future Work

The technology developed in this thesis has been explored in several key application

areas, with future work planned for all of these areas.

6.2.1 Lumiode: High Brightness Microdisplays

Work from chapter 2 on laser crystallized thin film transistors and chapter 3 on in-

tegrated LED arrays is being integrated to form the base of a new startup company,

Lumiode. The core innovation is the ability to build a microdisplay platform which

when fully developed can achieve both a very small form factor and very high bright-
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ness. This can then be used towards display applications (head-mounted displays,

projectors, head-up displays) and non-display applications (3D scanning, new user

interfaces). The focus is on fully developing an integrated process for fabrication of

high performance silicon circuitry with optoelectronic III-V compound semiconduc-

tors, fig. 6.1, combining the advantages from both material sets. This method is

uniquely suited to transform the display industry by enabling the integration of LED

arrays and control circuits on a single substrate.

Figure 6.1: Integration of SLS thin film transistor process, from chapter 2, with LED

array process, from chapter 3. The monolithically integrated system incorporates

advantages of both systems.

The LED work presented in chapter 3 is built on an aluminum gallium arsenide

wafer which emits red light. However, green, blue, and ultraviolet LEDs rely on the

gallium nitride system of materials. Planned future work is based on indium gallium
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nitride wafers which emit in the green and ultraviolet wavelengths. A facility with

chlorine-plasma based etch chemistry has been identified and work with these wafers

has started [112][113][114]. Fig. 6.2 shows a cross section of the first etched wafer.

Further characterization and optimization is being performed.

Figure 6.2: Cross sectional scanning electron micrograph of green LED wafer.

Other key technical questions include:

• What combination of laser annealing energy and contact metal minimizes con-

tact resistance?

• How does the LED array process scale with pixel size and increasing resolution?

• How do transistor device characteristics scale with size?

• What is the minimum transistor length that can be fabricated?

• What is the uniformity of the SLS transistors after the laser process?
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• How do grain boundary defects affect transistor performance?

6.2.2 Three-Dimensional Integrated Circuits

The work on three-dimensional integrated circuits shows promise and will be contin-

ued through active collaborations between the Columbia Laboratory for Unconven-

tional Electronics and IBM. Chapter 4 discussed the use of laser crystallized silicon

material for diodes, and showed no effect of the laser process on standard front-end

CMOS devices. Work going forward will continue optimization of the diode process

and integration of this vertical device architecture with other front-end CMOS devices

to form a fully functional system.

Having diode devices enables applications where simple rectification is needed,

but the vertical architecture concept can be further advanced by fabricating field

effect transistor devices. Starting with the same vertical column structure of laser

crystallized silicon, a wrap-around gate dielectric and gate electrode can be fabricated.

With a wrap-around gate, the transistor channel length is defined by the height of the

vertical structure, and the transistor channel width is defined by the diameter of the

vertical structure. The beginning of the process would be very similar to the vertical

diodes described in chapter 4, where amorphous silicon is deposited in via holes etched

into silicon dioxide. The amorphous silicon will then be laser crystallized into the

polycrystalline material, which will form the active material for the transistor. After

chemical mechanical polishing of the polycrystalline silicon surface, the supporting

silicon dioxide is etched away, leaving only the laser crystallized polycrystalline pillars.

A gate dielectric is then grown around the diameter and a gate electrode deposited.

Finally, a last electrode can be deposited on the top surface to form the drain electrode

of the device. The full transistor is then complete with a gate electrode wrapping

around the vertical laser crystallized silicon and source and drain electrodes on the

top and bottom.

Other possible device architectures include building lateral transistor structures
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from chapter 2 further into the back-end, for example, directly on low-k dielectrics

for non-critical integrated circuits. This concept can be extended to building many

stacked active layers with the proper thermal buffer between each layer. When de-

signed properly, this could offer a virtually unlimited number of active layers with

high mobility transistors, leaving the front-end area to be used only for the functions

which require very high mobilities. In addition, other specialized functionality can

be built into the back-end such as transistors which support high voltage switching

or photo-detecting devices for interfacing with the external environment.

6.2.3 Crystallization of Copper

Investigations on laser recrystallization of copper will continue at GlobalFoundries.

Early work shows the viability of laser annealing as a method to change the copper

microstructure. Future work includes examination of the change in microstructure

caused by the laser melting and recrystallization through cross sectional microscopy

techniques. Direct measurements of resistivity in copper wires of varying widths

will be made to determine the electrical characteristics of the new microstructure.

Investigation of heat transfer to the front-end transistor devices, similar to work

described in Chapter 4, will be performed to ensure there are no adverse effects on

standard CMOS transistors. Finally, work will continue on varying parameters in the

laser crystallization method, such as using scanning laser techniques to preferentially

grow long grains along the direction of electrical conduction.
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Appendix A

Integration of Foundry CMOS with

Organic Light Emitting Diodes

A.1 Introduction

Integrated circuit design has become increasingly complex to meet the demands of

expanded functionality, smaller transistor sizes, and increased levels of integration.

This trend is apparent in microchip design and manufacturing where multi-core pro-

cessors, integrated memory controllers, graphics processing unit, etc., all fit on a single

die [115]. In the design phase, there are many simulation, layout, and error-checking

software tools to help troubleshoot errors, but debugging a failure after fabrication is

a much more challenging problem.

Ideally, when debugging a CMOS chip, the exact state of each signal within the

chip is known. With knowledge of all the internal states, chip designers can apply a

software patch or revise a processor design to find and fix any issues. In addition to

debugging problems, knowing the signal states is a means of verifying the authenticity

of the original design. With global outsourcing of fabrication facilities, there is a

chance that designs can be modified maliciously and if undetected, can lead to security

issues.
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A traditional CMOS debugging technique is scan-design, which attempts to probe

as many internal states as possible. In this technique, long strings of registers operate

in two modes. In scan-mode, the registers are connected in a long chain as initial

condition data is inputted into the chip. In run-mode, the clock signal is run once,

and the registers feed the initial conditions to the logic circuits and simultaneously

store the output data from the logic circuits. The registers are then placed again in

scan-mode, and the output data is read-out as the next set of initial conditions are

inputted. [116]

This method does not use many input/output pads, but these circuits are built

directly on the front-end and utilizes valuable active device area. Additionally, since

this is a serial process, the initial conditions and data need to be scanned in and out.

This ultimately limits the speed at which this test can run and the number of internal

states that can be probed.

By integrating organic LEDs with silicon circuits, we can use the light emitted

from organic LEDs to optically probe many internal signals at once in a parallel fash-

ion. This offers a means of high-throughput testing as thousands of points can be read

at a single time. The overall device is similar to the organic LED-based microdisplays

from eMagin and MicroOLED where OLEDs are built directly on CMOS circuits.

In this work, a microchip was designed and fabricated with a commercial foundry

service to investigate opportunity for using OLEDs as a chip testing platform. Test

boards were built, and preliminary fabrication work of OLEDs on the custom CMOS

chip was executed.

A.2 Circuit Design and Layout

A test chip was taped out in 65 nm technology fabricated at UMC. Various test circuits

were built to test the functionality of the chip and the viability of using OLED as

a method for debug testing. Fig. A.1 shows a micrograph of the completed custom
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Figure A.1: Micrograph CMOS chip which supports direct integration with Organic

Light Emitting Diodes.

designed CMOS chip. The periphery consists of 39 wirebond pads for connection

with external circuits. The center of the chip consists of an 8 x 10 array of bond pads

which interface with the organic LED materials later deposited.

Fig. A.2 and A.3 annotate each part of the chip layout and the different test

circuits for each section. The CMOS chip has five different test circuits, three OLED

test circuits and two tests of individual current mirrors. The orange, red, and blue

outlines highlight the 8 x 8 array driven using current mirrors, 2 x 5 array driven

using a digital NAND gate, and 2 x 3 array directly-addressed from corresponding

wirebond pads, respectively. The light blue and green outlines highlight the two

individual current mirror test circuits.

The CMOS chip is wirebonded into a standard 40-pin quad-flat no-leads (QFN)

package based on the bonding digram in fig. A.4. The designed CMOS chip has 39

bond pads, each with its own electrostatic discharge (ESD) protection circuits. The

bottom row has 9 bond bads versus 10 for all other rows to allow for easy identification
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Figure A.2: Full layout with outlines for each section of the chip. Fabricated chip

includes test circuits, and three different driving schemes.

Figure A.3: Full symbol with all parts and input/output pins marked.
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Figure A.4: Bonding diagram matching CMOS chip with pins on a 40-pin QFN

package. Missing pin on bottom left corner is used as an orientation marker.
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of chip orientation.

Pin definitions and corresponding numbers on the QFN package are given in table

A.1. The chip is designed with two separate power domains, roughly split left side

and right side. Power domain 1 supplies power for the 8 x 8 current mirror drive

circuits, and one of the individual test circuits. Power domain 2 supplies power for

the 2 x 5 digital drive, 2 x 3 directly addressed drive, and the second individual test

circuit. A typical supply voltage of 2.5 V is required. When testing, power is only

supplied to one side of the chip.

A.2.1 Directly Addressed

The first of three OLED driving schemes is the simplest. Bond pads 15-20 are directly

wired to an OLED opening, labeled O69-71 and O77-79. These allow for direct elec-

trical testing of a single OLED and collection of important electrical characteristics,

such as current-voltage characteristics. Each of the bond pads, including the OLED

openings, have ESD protection circuits. The directly addressed pads are in power

domain 2.

A.2.2 Current Mirror

The second of three OLED driving schemes is based on an analog current mirror.

This driving technique runs the 8 x 8 array which occupies the majority of the chip.

This type of circuit is similar to OLED active-matrix display driving techniques. For

each OLED opening, there are two inputs (Current Drive In, and Digital In) and

one output (OLEDout). Digital In is an enable bit which turns on the switches to

activate the current mirror circuit. This input is connected across the entire row,

labeled Drive 0-7 on pin definitions. Setting this enable pin to high (2.5 V) turns

on the current mirror circuit for the whole row and allows an analog current to be

programmed into the mirror circuit.

The current mirror is designed with a 40:2 ratio. This is designed for a 5 µA input
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Table A.1: Pin Definitions of CMOS Chip

Pin Name Pin Number Definition

on QFN Package

DVDD1 1 VDD power domain 1 (typically 2.5 V)

DVSS1 10 & 12 VSS power domain 1 (typically 0 V)

Drive 0 - 7 2 - 9 Digital row input for current mirror

switches

Current 0 - 7 40 - 33 Current column inputs for current

mirrors

CurrentMirror2DriveIn 13 Test current mirror without switches

or capacitor (Current Drive Input)

CurrentMirror2OLEDout 14 Test current mirror without switches

or capacitor (Current Drive Output)

DVDD2 30 VDD power domain 2 (typically 2.5 V)

DVSS2 24 & 26 VSS power domain 2 (typically 0 V)

Col 1 - 2 32 - 31 Digital column signal for NAND gates

Dec 2 0 MSB 29 Most significant bit of decoder input

Dec 2 1 28 2nd bit for decoder input

Dec 2 2 27 Least significant bit of decoder input

O69 - 71, O77 - 79 15 - 20 Direct Drive OLED inputs

CurrentMirrorVDD 25 Test circuit for current mirror

(VDD input)

CurrentMirrorDecIn 23 Test circuit for current mirror

(Digitial switch input)

CurrentMirrorDriveIn 22 Test circuit for current mirror

(Current Drive input)

CurrentMirrorOLEDout 21 Test circuit for current mirror

(Current output)
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Figure A.5: Layout of current mirror circuit (left). Circuit schematic of current mirror

(right).

current which outputs a 250 nA current for the OLED. This number was chosen as

the optimal OLED current density for the size of the OLED opening.

Finally, an inverter delay chain is placed between the switches to ensure the ca-

pacitor stays charged when the switches are toggled.

The designed usage for the 8 x 8 current mirror array is as follows:

1. Current 0-7 is set to desired values for the first row.

2. Drive 0 is enabled (set to high, 2.5 V). This enables the first row to accept

current input data.

3. Current 0-7 is set to desired values for each of the pixels. This programs the

pixels and stores the desired current value in the pixel storage capacitor.

4. Drive 0 is disabled (set to 0 V), and Current 0-7 is set to the desired values for
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the next row of pixels.

5. Drive 1 is enabled, and the values of Current 0-7 is programmed into the second

row of pixels.

6. This continues for all following rows to program the entire 8 x 8 array. Drive

0-7 are pulsed continuously to supply new pixel values to the array.

In addition to the current mirrors used for driving the 8 x 8 OLED matrix, there

are two individual current mirrors to verify functionality. These two circuits are on

pins 12-14 and pins 21-25. As noted in the symbol drawing (Fig. A.3) and the

pin definition table (Table A.1), pins 12-14 include only the current mirror without

supporting switch transistors or storage capacitor, whereas pins 21-25 include the

exact circuit used on the OLED openings.

A.2.3 NAND Digital Drive

The third OLED driving scheme uses all digital signals to turn the OLEDs on and off.

This serves to simulate the environment on a standard CMOS chip where the signals

of interest being probed are signals from a logic gate. Fig. A.6 shows the layout

and circuit schematic for this NAND digital driving scheme. The circuit schematic

consists of a single AND gate and an inverter. The AND gate emulates a debug logic

signal. The inverter serves as a buffer between the logic signal and the output for the

OLED. This drive scheme allows input of two digital signals to turn the OLED on or

off.

A decoder was also designed and incorporated to reduce the number of wirebonds

required. The decoder layout and schematic is shown in fig. A.7. The decoder uses

3 inverters and 8 AND gates. There are three inputs, Dec 2 0, Dec 2 1, and Dec 2 0

corresponding to the three binary bits and five outputs (in-use) corresponding to the

five rows in the 2 x 5 NAND Drive matrix.

The designed usage for the 2 x 5 current mirror array is as follows:
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Figure A.6: Layout of NAND circuit (top). Abstracted circuit schematic of NAND

with OLED bond pad (bottom).
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Figure A.7: Layout of decoder circuit (top). Circuit schematic of decoder circuit

(bottom).

1. Col 1-2 is set to the desired digital values for the first row, either 0 V or 2.5 V.

2. Decoder bits, Dec 2 0 MSB, Dec 2 1, and Dec 2 2 are set to (0, 0, 0) switching

the first row on.

3. Decoder bits are then set to (1, 1, 1) and Col 1-2 is set to desired digital values

for second row.

4. Deocder bits are set to (0, 0, 1), enabling the second row.

5. This sequence continues for the five available rows.

Parts of this circuit can be tested using a probe station to probe the OLED
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openings and apply the desired voltage stimulus to Col 1-2 and the decoder inputs.

A.3 Test Circuit Board Design

A test bed was designed to test each of the different drive techniques described in

the section above. The test bed is based around the Arduino Mega microcontroller

platform. The Arduino platform offers a simple programming interface and the Mega-

version offers the necessary number of outputs to control each section of the designed

CMOS chip.

Figure A.8: Printed Circuit Board as designed. PCB interfaces with Arduino control

and connects through a 40-pin Zero-Insertion-Force socket to interface with CMOS

chip. On the right are four QFN to DIP printed circuit boards.

A custom printed-circuit-board (PCB), shown as designed in fig. A.8, interfaces

the Arduino Mega with a 40-pin Zero-Insertion-Force (ZIF) socket. A ZIF socket was

used to allow for fast changes between test samples. Many of the components on the



APPENDIX A. INTEGRATION OF FOUNDRY CMOS WITH ORGANIC
LIGHT EMITTING DIODES 102

Figure A.9: Photograph of test board. CMOS chip in QFN package shown at top,

soldered to a DIP interface board. Electronics are fully controlled with an Arduino

Mega microcontroller.

PCB are surface mounted to reduce the space required and there are several areas

where jumpers are used to select certain test options. A PCB was designed to convert

the QFN packaged CMOS chip to a dual-in-line (DIP) package. This board design is

again shown in fig. A.8, on the right side of the layout.

A photograph of the full test bed, fig. A.9, displays all three pieces. The Arduino

Mega lies underneath a custom PCB for power and interface controls, and a 40-pin

QFN to 42-pin DIP adapter with a fully processed CMOS chip is soldered on.
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A.4 Experimental Results

The CMOS chips are wirebonded into the QFN package by an external wirebonding

source. After wirebonding, chips are only handled in the packaged state. The QFN

package is first soldered into the QFN to DIP adapter. Then wirebonds are protected

using an SU-8 process in order to keep the organic materials from shorting the wire-

bond signals. Lastly, the organic materials are deposited across the top of the whole

package.

A.4.1 Wirebond Protection

Figure A.10: (a) Cross sectional schematic of CMOS chip wirebonded into QFN

package. The wirebonds are covered with SU-8 and an opening is defined to expose

the CMOS surface. (b) Micrograph of SU-8 on chip with defined opening.

Because shadow masking and other masking techniques are not possible with

the wirebonds already in place, an encapsulation process is developed to seal the

wirebonds for further processing while keeping the center of the CMOS chip open,

fig. A.10. SU-8 is an epoxy-based photo-imagable polymer which allows for very
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Figure A.11: Micrograph of SU-8 on chip with defined opening.

thick, high aspect ratio features. The SU-8 is first carefully dropped onto the surface

of the chip and allowed to flow around all the wirebonds in a first pre-bake step. The

adapter board - QFN package - CMOS chip stack is then placed in a mask aligner

and exposed with a custom photomask to define the center opening. After a UV

exposure, the SU-8 is developed and the center part of the chip is exposed. Further

bakes are performed to finish curing of the SU-8. Fig. A.11 shows the surface of a

CMOS chip with the SU-8 covering and protecting the surrounding wirebonds.
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Table A.2: Material Stack for Organic LED

Material Thickness (nm) Purpose

Gold 40 Cathode

E105 80 - 100 Hole Transport Layer

Alq3 80 - 100 Electroluminescent Layer

Magnesium/Silver 10 Hole Injection Layer

Aluminum on CMOS bond pad Substrate Anode

A.4.2 Organic LED Fabrication

After wirebond protection, the CMOS chip is placed in a thermal evaporator and

organic materials are deposited to complete the OLED stack. Table A.2 summarizes

a simple OLED stack. At the bottom is the initial aluminum layer on the surface of

the chip. This layer is used as the anode of the OLED. Next, a magnesium and silver

alloy is deposited as a Hole Injection Layer. This is followed by two organic layers

which makes up the electroluminescent and hole transport layers. Lastly, a thin layer

of gold is deposited as a transparent cathode.

The organic layers are deposited twice as thick as the typical stack due to initial

shorting issues. Looking at the OLED openings in the optical profilometer, fig. A.12

and A.13, the topography of the aluminum metal is visible. The passivation layer,

as expected, is approximately 800 nm, but the roughness on the OLED openings is

much larger than expected. On most of the OLED openings there are aluminum

spikes which are 100 nm or taller. The thicker organic material layers helps prevent

shorting from these aluminum spikes.

Initial current-voltage curves from the organic devices are shown in fig. A.14.

These device exhibit limited diode characteristics but do not emit light. Further

work is needed to optimize the OLED stack and refine fabrication steps for a fully

integrated OLED and CMOS device.
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Figure A.12: Optical profilometer image of multiple bond pads. Total height differ-

ence is about 2 µm.

Figure A.13: Optical profilometer image of bond pad surface. Total height difference

is about 0.1 µm.
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Figure A.14: Initial current-voltage characteristics of OLED devices.

A.5 Conclusion and Future Work

In this appendix, a custom CMOS chip was designed to test the viability of integrating

OLEDs with conventional CMOS as a means of debugging silicon circuits. The CMOS

chip was designed with several driving methods, emulating the signals typically found

on microprocessors. New processes were developed to protect the wirebonds during

further thermal deposition of materials, and a preliminary OLED stack was integrated

and tested.

Further improvements can be made on both the OLED material stack and process

steps. The final electrode is currently a transparent gold layer, which has issues

in covering the topology of the CMOS chip. This can be improved by adding a

transparent conductor, such as Indium Tin Oxide, following the gold layer. A second

improvement can be made by adding a chemical mechanical polishing step to remove

the passivation layer and smooth out the 100nm spikes on the aluminum bond pads.

Both additional steps will help improve the yield and uniformity of results of this

concept.
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