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ABSTRACT 

Simulating Network Structure, Layering Multi-layer Network Systems 

and Developing Network Block Configuration Models to Understand 

and Improve Energy Conservation in Residential Buildings 

Jiayu Chen 

The building sector is a major contributor to total energy consumption in most countries. 

Traditionally, researchers have focused on leveraging energy efficiency by improving 

building materials, in-house facilities and transmission equipment. More recently, 

however, there has been increased focus on research concerning demand-side energy 

consumption behavior. Current research suggests that energy efficient behavior of a 

building’s occupants can be extensively enhanced through the sharing of energy 

consumption information among residents in a peer network. However, most of this 

research relies on experimental tests and does not theorize concepts related to peer 

network energy efficiency systematically. My dissertation addresses this research gap on 

two levels. First, I examined if and how the structure of peer networks can impact 

residents’ conservation behaviors through network analysis by employing agent-based 

simulation techniques. Following confirmation of the impact that network structure has 

on user behavior, I created a layered network model to integrate information from various 

network layers and a block configuration model to reconstruct increasingly reliable 

random networks. In contrast to controlled energy efficiency experiments, real-world 

networks are large in size, heterogeneous in nature and regularly interact with other 

networks. By utilizing models developed in this dissertation, we are able to estimate the 



 

 

contribution of network structural coefficients to the energy consumption performance of 

peer networks. By comparing the layered network and block configuration model I 

developed with other conventional models, I prove the efficiency, accuracy and reliability 

of these improved models. These findings have implications for assessing network 

performance, creating accurate complex random networks for large-scale research, and 

developing strategies for network design to improve building energy efficiency. This 

research establishes a system to study residents’ energy efficient behaviors from the 

perspective of peer networks and proposes some instructive models for further energy 

feedback system design.  
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Chapter 1 

1. INTRODUCTION  

 “The central act of the coming era is to connect everything to everything. All 

matter, big and small, will be linked into vast webs of networks at many levels. 

Without grand meshes there is no life, intelligence, and evolution; with networks 

there are all of these and more.”(Kelly, 1994, p.201) 

Kevin Kelly 

“The idea is to populate virtual markets with artificially intelligent agents who 

trade and interact and compete with one another much like real people. These 

‘agent based’ models do not simply proclaim the truth of market equilibrium, as 

the standard theory complacently does, but let market behavior emerge naturally 

from the actions of the interacting participants…”(Buchanan, 2008, p.1) 

Mark Buchanan 

On March 22nd 2012, social game giant Zynga purchased OMGPOP, the creator of the 

mobile drawing game Draw Something, for $210 million in cash and an employee 

retention payment. This popular game had been launched only 6 weeks prior, but it was 

downloaded over 30 million times and users created more than 1 billion drawings. 

Developed from 2001 to 2006, one of the most famous game series in history, Final 

Fantasy XIII, cost Square-Enix approximately 35 million USD to develop. Square-Enix 

had to sell 0.8 million copies of the game in order to cover these high development costs. 

Unlike traditional video games like Final Fantasy XIII, mobile applications normally only 
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cost $10k to $250k and may take only several weeks to develop. This is one major factor 

that essentially differentiates these two games, and it is also the core idea of this 

dissertation – How do peer networks make a difference? 

During the past few decades, modern society has experienced a tremendous revolution in 

its “connectedness of….” This revolution has spurred a new trend in scientific research. 

This trend manifests itself in many incarnations: in research related to the development of 

the Internet and World Wide Web, the study of global communication, the exploration of 

information spreading within the financial system, and the epidemics that diffuse within 

human communities. Through all of these phenomena, we have investigated networks, 

interactions and the aggregate behavior of groups of people. We have also examined their 

decisions in a network setting and their consequences based on the links between them 

and others. In his book Out Of Control, Kevin Kelly (1994) predicts that current and 

future networks will embed themselves even more in our daily life, business and society. 

Network logic not only shapes our businesses and products, but also affects human 

behavior profoundly. In this dissertation, I will examine the question of how networks 

affect people’s decision-making in the context of energy conservation.  

  



3 

 

1.1 Energy Efficiency and Peer Networks 

In the presence of alarming climate change trends and dwindling natural energy resources, 

there is much interest around the world in improving the energy efficiency of buildings. 

Such interest arises in response to concerns about energy cost, resource scarcity, and 

environmental deterioration. The building sector is responsible for 41% of the energy use 

in the US and 36% of the energy related carbon dioxide (CO2) emissions (US Energy 

Information Administration 2010). According to the Natural Resources Defense Council, 

improvements in energy efficiency have the potential to deliver more than 700 billion 

dollars in savings in the US alone.  Studies have also shown that on average, the US 

consumers spend 6 minutes every year thinking about their energy efficiency. It is 

essential to enhance building energy efficiency not only to tackle CO2 emission and 

climate change but also to balance the energy budget. Energy efficiency related to the 

goal of reducing energy consumption while maintaining an acceptable level of quality in 

services and products. An example of a common and effective energy efficiency action is 

the installation of additional wall insulation, which reduces heating and cooling loads 

while achieving a similar comfort level as with air conditioning. There are three major 

approaches to improve energy efficiency: cutting energy demand by using more energy 

efficient equipment, producing energy locally and reducing transmission wastes, and 

creating buildings that can self-supply or generate surplus energy (World Business 

Council for Sustainable Development 2012). However, sometimes buildings are not 

capable of equipment upgrading or the associated cost is prohibitively high. 

As people become more aware of the importance of energy use in buildings, their 

behavior provides researchers with a relatively untouched domain for energy efficiency 
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research (McMakin et al. 2002; Saelens et al. 2011; Stern 1992). Especially in residential 

buildings, building occupants have a high degree of control over their energy 

consumption (e.g. heating, cooling, lightning and plug-loads).  

An illuminating study at Oberlin College (Petersen et al. 2007) suggests that providing 

building occupants with high resolution energy consumption feedback effectively 

incentivizes residents to substantially reduce their energy consumption. Fischer (Fischer 

2008) proposed the idea of eco-feedback systems to distribute energy consumption 

information to end users as well as their peers, and presents a psychological model to 

illustrate how and why feedback is an effective tool to encourage households to save 

energy. Eco-feedback systems can provide building occupants with information regarding 

their own and their friends’ consumption and behaviors in order to encourage adoption of 

energy efficient behaviors. At the same time, attempts to increase energy conservation 

through the modification of human behaviors have focused on exploring the rationale 

behind decisions (Wilson and Dowlatabadi 2007), the process of practice adaptation that 

influence human behaviors (Dalamagkidis et al. 2007; Haldi and Robinson 2008) and the 

social-psychological relationship between individuals and their peers. Recent 

experiments show the effectiveness of eco-feedback systems (Jain et al. 2012) and the 

importance of peer networks in encouraging energy conservation (Peschiera and Taylor 

2012). Despite findings in formal experiments that indicate energy efficiency is related to 

residents’ peer networks, theoretical network analyses have not yet been conducted. This 

leads me to ask: “If these empirical peer network studies exhibit an impact on building 

energy efficiency, do other networks also have similar impacts? What traits of networks 

substantially contribute to these impacts?” In this dissertation, I aim to answer these 
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questions anew by exploring the influences of network structure and its mechanisms in 

arbitrary networks. Before answering these questions, I will provide a brief introduction 

about the context of this research.   
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1.2 Theoretical Background 

1.2.1 Network Theory  

Network theory treats networked systems as collections of nodes and edges. The nodes 

within networks can represent individuals or organizations. The edges connect nodes in 

many ways; they can prepresent physical proximity, friendship or partnership. The 

research on these network properties allows new modalities for answering social and 

behavioral science and engineering research questions. Network theory originated from 

the research of social science research in the 1930s and was systematically developed by 

pioneers from sociology and social psychology. Early sociometricians such as Moreno, 

Jennings, Cartwright and Harary (Cartwright and Harary 1956; Moreno and Jennings 

1938), advanced network theory through the combination of graph theory and 

mathematics. A significant advance in network research came in the 1950s and 1960s 

with the theory of random graphs founded by Erdős and Rényi (Erdős and Rényi 1959; 

Erdős and Rényi 1960). Statistical models are also used to test theoretical propositions 

about networks. During 1970s, Davis, Holland, and Leinhardt introduced a wide variety 

of random directed graph distribution into social network analysis, in order to test 

hypotheses about various structural tendencies (Davis et al. 1971). In 1998, Watts and 

Strogatz (Watts and Strogatz 1998) identified the Small-World phenomenon and 

proposed a mathematical explanation. Combining all of this research and its associated 

methodologies, network theory “provides a precise way to define important social 

concepts, a theoretical alternative to the assumption of independent social actors, and a 

framework for testing theories about structured social relationships” (Wasserman and 
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Faust 1994, p. 17). The core principles of network theory are relatively straightforward to 

understand, although most of its models are based on complex mathematical 

computations. Modern network theory has been widely applied in many different 

domains, from computer networks, to biological ecosystems, to business management. 

One of the most important types of networks is known as the social network, or peer 

network. Commonly, peer network systems contain the knowledge of connections and 

interactions between peers. The idea of “peer network” was widely used by scholars for 

almost a century to connote complex sets of relationships between members within the 

social network system across all scales of analysis from macro to micro and from local to 

global. The distinction between peer network research from other network research is the 

assumption of the importance of relationships among interacting units. Actors within a 

network and their actions are viewed as interdependent rather than independent; the 

linkages between actors serve as channels for transferring resources or information. 

Researchers have studied whether the psychological state of individuals within a group is 

related to the relationship between group members, which provides validity for the 

analysis of social networks (Moreno 1953). Since these earlier network studies, networks 

have been used to study human community (Wellman 1979), diffusion and adoption of 

innovations (Coleman et al. 1957), corporate interlocking (Levine 1972; Mintz and 

Schwartz 1981; Mizruchi and Schwartz 1992) and consensus and social influence 

(Doreian 1980; Friedkin 1986; Friedkin and Cook 1990; Marsden 1990). However, 

experiments linking peer networks and energy efficiency feedback have only begun to 

develop in the past decade. This is due, in part, to the fact that data collection is difficult 

on a large scale because of budgets and time limitation. At the same time, research on 
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network feedback mechanisms calls for a more general and reliable way to extrapolate to 

data input on larger scales.  

1.2.2 Random Networks  

In general, a random network is a network generated by some random process with some 

specific set of parameters. The theory of random networks can be traced back to the 

random graph theory first defined by Paul Erdős and Alfréd Rényi (Erdős and Rényi 

1959) and Gilbert (Gilbert 1959) in 1959. In their model, Erdős and Rényi considered a 

probability space of graphs and viewed graph invariants as random variables. The Erdős-

Rényi model is one of the simplest examples of random graph models. Later, 

developments in network theory showed that the degree distribution of real-world social 

networks follow a power law distribution. These networks are called scale-free networks 

(Barabási and Albert 1999). Following Albert and Barabási, other researchers have 

proposed models to resolve inconsistencies between random networks and real-world 

networks. For example, Buckley and Osthus defined the ‘LCD model’ (Buckley and 

Osthus 2004); Kumar and colleagues presented the ‘copying’ model (Kumar et al. 2000) 

and Cooper and Frieze proposed a mixed model (Cooper and Frieze 2003). Although 

these researchers resolve some of the structural limitations of the Erdős and Rényi model, 

some fundamental discrepancies, such as network clustering and network transitivity 

(Watts and Strogatz 1998), still exist.  

A more recent development of random graph theory is the generating function model 

proposed by Newman and colleagues in 2001 (Newman et al. 2001). The generating 

function model allows us generate random networks with specified degree distribution. 
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However, the mode still fails to capture the transitivity and clustering of a network, and is 

unable to handle large complex muli-layer networks systems. Considering the fact that 

current random network models only address a piece of the puzzle, in this dissertation I 

propose a system that combines the multi-layer network model and the block 

configuration model to explore and construct a more accurate network structure that is 

specifically designed for research on peer network effects and energy efficiency .   

1.2.3 Agent-based Simulation 

Agent-based modeling is a computational method that enables creation, analysis, and 

experimentation with models composed of agents that interact within an environment 

(Gilbert 2008). In agent-based simulation, each agent individually assesses its situation 

and makes its own decision based on a set of rules. Agent-based simulation has become 

increasingly popular in research because it enables one to build models with 

heterogeneous entities and interactions.  

There are three major advantages of agent-based simulation over other models. First, 

agent-based modeling is simulation that can ensure isolation of the human system and 

remove ethical problems related to human experimentation. These are not present in 

virtual or computational systems (Gilbert 2008). Second, derived agent-based simulation 

models are flexible (Bonabeau 2002). They are able to behave in a given range of inputs, 

when an analytical solution or experiment is not possible. In other words, agent-based 

simulation is a cost-effective way to study when an experiment is not practicable or 

expensive to conduct. For example, it is easy to add more agents to a simulation, but 

difficult to add additional subjects to real experiments without affecting the environment. 
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A crucial feature of agent-based simulation is that the agents can interact, or pass 

information to each other. This feature makes agent-based simulation a powerful tool to 

study peer networks, whose analysis focuses on node to node interaction. 

I will use agent-based simulation models to examine how decisions are made and 

behavior can spread from one person to another via networks. Examples of such a 

process include the classical diffusion model and various opinion transmission models 

(Deffuant 2006; Hegselmann and Krause 2002; Lorenz 2006; Stauffer et al. 2004).  I 

utilize agent-based simulation to study diffusion of energy consumption information and 

conservation behaviors within peer networks.  
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1.3 Research Questions and Format of Dissertation 

Previous research has established a robust experimental understanding of an eco-

feedback system’s effectiveness in energy conservation. Eco-feedback systems have three 

major components which contribute to energy saving behaviors: availability and 

resolution of feedback, format and content of feedback, and feedback networks. Previous 

researchers have identified the importance of the first two components (Jain et al. 2012; 

Petersen et al. 2007). However, little research has investigated networks exposed to eco-

feedback systems, which directly carry feedback information. End users only respond to 

the information they have access to, and that information is shared through network 

interconnections. At the same time, the topology of networks also varies in terms of their 

efficiency and the breadth of information pathways through them. Therefore, studies on 

networks exposed to eco-feedback systems are necessary in order to understand changes 

in people’s energy-use patterns that are evoked by information sharing. To fill this 

research gap, my dissertation focuses on the study of networks that expedite peer eco-

feedback information sharing. 

To explore such networks, I follow a decomposing and recomposing process. First, I 

empirically observe the functions of feedback networks and response patterns of 

occupants. Second, I propose models to understand the importance of network structures. 

Lastly, I create a framework to generate and reconstruct random networks, structurally 

similar to experimental networks but on a larger scale. This dissertation addresses the 

following research questions: 
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1. Does peer network structure substantially impact occupants’ decisions on energy 

conservation? If this is true, how do structural parameters contribute to promoting 

energy efficient behaviors? 

2. What impact do networks have on diffusion of energy conservation behavior 

when multiple layers exist? Can an accurate and efficient method that can 

quantitatively understand and model this process in multi-layer network systems 

be developed? 

3. Can an accurate method to generate complex random networks be developed to 

understand energy efficient behaviors in arbitrary networks? 

These three questions cover the major impediments to our understanding of eco-feedback 

systems and the prediction of peer network energy consumption. The resolution of the 

above questions enables researchers and engineers to: 1) estimate the efficiency of energy 

feedback systems and the amount of potential energy savings, 2) understand individual 

energy consumption decision-making mechanisms in complex network systems, and 3) 

simulate and predict residents’ peer network energy consumption. 

To answer the above questions, I structure my dissertation as follows: 
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Figure 1 Structure of Peer Network Models in this Dissertation 

In order to create and validate peer network models, I utilize data from three Columbia 

University experiments conducted over three years. Through investigation of the 2009 

experiment, I proposed a basic model to understand the mechanism of how a network can 

promote energy saving behaviors. The 2010 experiment data then served to validate my 

model quantitatively. I developed a layered network model to complement the network 

decision model by embedding geospatial network information into the basic model to 

refine our knowledge on complex network systems. Then I developed a block 

configuration model aimed at generating more accurate random networks than with the 

basic model. Both the layered network model and the block configuration model have 

been validated by experimental data from 2009, 2010 and 2011.  
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In Chapter 2, I examine the variation in network structures that affect occupant decision 

making and propose a basic decision model. In Chapter 3, based on the results in Chapter 

2, I extend the basic model to general multi-layer systems by considering the impact of 

geospatial networks. Using random graph theory, Chapter 4 presents an accurate model 

capable of generating synthetic networks relating to structural requirements. Chapter 5 

concludes the dissertation by summarizing the contributions of my research to 

understanding energy efficiency in peer networks. In Chapter 6, I propose some potential 

avenues for future research studies. Finally, a reference section is provided with a 

bibliographic list of the publications cited in this dissertation. 
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Chapter 2 

2. MODELING BUILDING OCCUPANT NETWORK 
ENERGY CONSUMPTION DECISION-MAKING: 
THE INTERPLAY BETWEEN NETWORK 
STRUCTURE AND CONSERVATION 

2.1 Abstract 

The exposure and diffusion of energy consumption information in building occupant peer 

networks has been shown to influence an individual’s energy consumption decisions. In 

this paper, we develop an agent-based computational model for individual energy 

consumption behavior based on data collected during an experiment on residential energy 

use. We simulate the building occupants’ decision making and the information 

transmission process. By comparing the impact of several parameters in the network level 

computational model and validating the parameters in a second experimental setting, our 

research serves to clarify how network relations can be leveraged for modifying energy 

consumption behavior. Network degree and weight were identified as the major structural 

parameters that impact building occupants’ conservation decisions, while network size 

was found to have no significant impact. These findings have important implications for 

the design and effectiveness of residential energy feedback systems designed to promote 

energy conservation in residential buildings. 
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2.2 Introduction 

Many countries lack sufficient infrastructure to provision domestic energy needs.  To 

address this critical global problem, local, national, and international governing bodies 

are searching for new energy resources while updating infrastructure to reduce wastes 

caused by inefficient energy distribution and transmission. At the same time, pressure by 

governments to reduce and limit greenhouse gas emission is also increasing. According 

to a 2010 the US Department of Energy report, nearly 41% of energy was consumed by 

the built environment (US Department of Energy 2010). Nearly 21.2% of energy utilized 

in the US was allotted to the residential sector for heating, cooling and lighting. In 

addition, residential energy consumption has increased steadily in the last 20 years, 

especially in regard to electricity use. According to a recent the US Energy Information 

Administration report, nearly 38.5% of national total electricity end use was consumed by 

the residential sector(US Energy Information Administration 2010).  

In residential buildings, occupants generally have a high degree of control over their 

energy consumption. Residential building occupants can control heating, ventilation and 

air conditioning equipment, kitchen and laundry appliances, and lighting and home 

electronics equipment, which are the main sources of home energy consumption (US 

Energy Information Administration 2005).  In commercial buildings, simulation research 

has shown that diverse and dynamic energy use patterns and the interactions among 

building occupants can result in significant variations in energy consumption (Azar and 

Menassa 2012). In other words, individuals’ energy use behaviors can significantly 

reduce end use as identified in building simulation studies (Chung and Hui 2009; 

Richardson et al. 2008) and in survey studies of building occupants (Al-Mumin et al. 
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2003; Seligman et al. 1978). Hence, an increasing number of scholars are attempting to 

reduce energy use and encourage conservation behaviors through solutions derived from 

combinations of social-psychological and technological approaches (Goldstein et al. 2008; 

Hoes et al. 2009; McMakin et al. 2002; Stern 1992; Yu et al. 2011). Although some 

scholars have investigated patterns in energy saving behavior by providing energy 

consumption feedback to users at the social aggregate level, i.e., floor level (Peschiera et 

al. 2010; Petersen et al. 2007), a more comprehensive study on the relationship between 

social networks and energy use is still needed. More specifically, research has yet to 

demonstrate how the structural characteristics of networks affect energy use and how 

energy-efficient behaviors transmit via a building occupant’s social network. The goal of 

the research presented in this paper is to develop a building occupant network energy 

consumption decision-making simulation model to explore how patterns of energy 

consumption relate to the structural properties of peer networks. 
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2.3 Background 

2.3.1 Energy Efficiency Experiments 

In residential buildings, residents’ personal choices have a strong influence on their 

energy use (Allcott and Mullainathan 2010). Previous research has determined the 

amount of energy that individuals can save through behavioral changes (Petersen et al. 

2007) and the reasons and motivations behind individual energy saving practices 

(McMakin et al. 2002; Olsen 1981). In Peterson’s experiment (Petersen et al. 2007) a 2 

week energy saving competition was run between two dormitory groups in which 

residents had sufficient control over their own energy use. During the experiment, 

residents could check their electricity consumption on a website and consumption data 

were expressed in units of average power consumption (kW) during defined time 

intervals. Researchers provided two degrees of energy consumption feedback to residents 

in order to compare the amount of energy saved. In the control group, residents received 

information on their electricity use updated on a weekly basis. In the study group, 

residents could view their consumption in real-time (with data updated every 20 seconds). 

The result of the experiment demonstrated that individuals who received higher-

resolution feedback were more effective at conservation. These individuals had a 55 

percent consumption reduction compared to a 31 percent reduction for individuals who 

received low-resolution information.  

After the results of this experiment were published, a number of universities built similar 

systems to provide real-time information feedback to dormitory residents (e.g. Virginia 

Tech’s “Eco-Olympics,” U.C.-Berkeley’s “Building Energy Dashboard,” and MIT’s 
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“Dorm Electricity Competition,” to name only a few campus initiatives). In 2008, a test-

bed building was instrumented at Columbia University for the study of peer networks and 

energy consumption.  The building was a six-story residential dormitory building which 

was coupled with an electricity consumption feedback information system that revealed a 

participant’s energy usage along with energy usage of others in the individual’s peer 

network (Peschiera et al. 2010). The experiment involved collecting and disseminating 

data to participants in three distinct study groups: 1) the individual group, i.e. students 

who could only view their own consumption, 2) the building average group, i.e. students 

who could view their own consumption and the average consumption across all members 

of the building and 3) the network group, i.e. students who could view their own 

consumption, the consumption of individuals in their peer networks and consumption 

averaged across all individuals in their building. Forty building residents were not 

included in the study and were assigned to a non-participating control group in order to 

account for irregularities in energy consumption.  

The Peschiera et al. study found that, on average, the 37 participants consumed a 

statistically significant 27.3% less electricity than the 40 non-participants over the course 

of the 5 week study period (Peschiera et al. 2010). In addition, the results showed that the 

electricity consumption of participants returned to approximately pre-study levels after 

the experiment was concluded, thus negating the energy use reduction observed during 

the study period. In other words, the impact of information feedback is consistent with 

Peterson et. al.’s finding (Petersen et al. 2007), i.e. that when provided with information 

about their energy use, individual consumers can achieve energy savings. However, the 

Peschiera et al. study demonstrated that conservation behavior can diminish rapidly. One 
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of the study groups used 70% less electricity than non-participants on average; however, 

almost all of this conservation behavior decayed by the end of the study period. The only 

study group to achieve a consistent and statistically robust response pattern was the group 

that shared energy use data across their occupant peer network. These patterns suggest 

that providing individuals with energy use information for their peer network helps to 

sustain energy saving behaviors over time.  In this paper we will utilize a simulation 

algorithm to quantify the energy conservation parameters utilizing data from the 

Peschiera et al. experiment to predict network level energy consumption and conservation 

patterns. 

2.3.2 The Role of Social Psychology and Social Networks in Motivating 

Energy Saving Behaviors 

Energy conservation can be achieved through both modification to energy infrastructure 

and through modification of human behavior. For residential buildings, modifications to 

infrastructure include the installation of energy efficient appliances, modern wall 

insulation and consumption feedback systems. On the other hand, attempts to increase 

energy saving through the modification to human behavior have focused both on the role 

that social networks (Wilson and Dowlatabadi 2007) and practice adaptation 

(Dalamagkidis et al. 2007) play in influencing human behavior, including the social-

psychological relationship between individuals and their peers (DeMeo and Taylor 1984).  

Attempts to promote conservation behaviors must take into account the motivations that 

encourage these types of behaviors. Motivations for energy savings have been explained 

by two models: 1) the attitude model and 2) the rational-economic model (Archer et al. 
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1987). The attitude model assumes that conservation behaviors will follow automatically 

from favorable attitudes toward conservation. The rational-economic model assumes that 

individuals will perform conservation behaviors that are economically advantageous. 

However, several studies indicate users fail to adopt currently available conservation 

techniques even if these techniques are highly cost effective (Ross and Williams 1981; 

Sjöberg and Engelberg 2005). Individuals are likely to make changes when new 

behaviors are easy and convenient to perform, when their resources and technologies 

allow them to conserve, and when their friends and neighbors are taking action to 

conserve (Costanzo et al. 1986; Stern 1992).  

Human behaviors are strongly influenced by peers, especially when peers possess strong 

relationship ties. This fact has been observed by a number of scholars since the mid-

1950s (e.g. (Festinger 1954; Milgram et al. 1969)). For instance, Göckeritz and 

colleagues (Göckeritz et al. 2010) proposed that the energy conservation behaviors of 

others have a strong positive correlation with an individual’s conservation actions. Nolan 

and colleagues (Nolan et al. 2008) also showed that a normative message that contains 

the conservation behavior of the majority of an individual’s neighbors is a strong 

motivator that spurs energy savings. Nolan et al. showed that certain behaviors started by 

individuals spread throughout a building community and to a larger, societal scale. As the 

behavior diffused through the peer network, social norms of conservation were 

established, which promoted individual conservation practices in the home.  
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2.3.3 Simulating Energy Savings in Peer Networks 

Agent-based modeling is a computational method that enables the creation, analysis, and 

manipulation of models composed of agents that interact within a given environment 

(Gilbert 2008). Unlike most mathematical models, agent-based models can include agents 

that are heterogeneous in their features and abilities. Moreover, agent-based models can 

incorporate situations that are far from equilibrium and can deal directly with the 

consequences of interaction between agents. Therefore, this model is particularly well-

suited for studying topics where understanding processes and their consequences are 

important.  

Agent-based simulation is a widely accepted methodology in the social sciences because 

it is particularly apt at reflecting the relationship between human behavior and factors 

present in the environment that can influence human behavior (Epstein 1999; Macy and 

Willer 2002). Thus, since we are interested in modeling the impact of peer networks on 

human energy saving behaviors, agent-based simulation is particularly useful for a 

number of reasons. First, agent-based simulation can predict individuals’ behavior based 

on their personal networks by using computational models. Second, agent-based 

simulations can also predict how opinions and behavior can be spread from one person to 

another via peer networks. Two examples of how opinions are modeled using agent-

based simulation are the classical diffusion model and various opinion and behavior 

transmission models (Ahrweiler et al. 2004; Bonabeau 2002). One of the crucial features 

of agent-based models is that the models can account for the interaction between agents, 

i.e. they can model the exchange of informational messages between individuals in the 

network and how this exchange elicits change in behavior. In agent-based simulation, the 
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environment is the virtual world in which the agents act. The environment could link 

agents together in a network in which the only indication of an agent’s relationship to 

other agents is the list of the agents to which it is connected by network links (Scott 

2000). Usually researchers can choose agents at random and create links between these 

agents. Through these social construction techniques to combine social science and 

technology together we can bridge the communication gaps at the boundaries between 

various groups or individuals during their decision-making process (Elle et al. 2010). 

Moreover, most energy use feedback experiments to date have had relatively short study 

period durations of only a few weeks, so the long term effects on consumption are 

difficult to measure. Agent-based simulation is an inexpensive way to estimate longer 

term consumption patterns (Azar and Menassa 2012). 

In this paper, we introduce a set of algorithms to model how network-level information 

sharing influences energy consumption practices within a peer network. The model is 

aimed at simulating the conservation process and comparing the impact of network 

structural properties on conservation. We are interested in exploring how an individual’s 

energy use is influenced by peers and in how peer networks affect individual energy-

saving behavior. Moreover, our broad goal is to develop a better understanding of how to 

encourage more effective energy saving practices through peer network influence. 
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2.4 Methodology  

2.4.1 Data Resource 

The simulation input data used in this paper was collected from an experiment published 

in 2010 (Peschiera et al. 2010). The pilot study allowed us to acquire a rich set of data to 

construct our simulation model and to incorporate agent decision-making norms based on 

authentic data collected in an experimental setting.  We will describe later how we also 

use the data collected from a later experiment in 2011 to validate the simulation model 

we develop in this manuscript.  We were able to observe some trends in the data sets we 

used for our analysis. 

Residents’ energy consumption can never be negative. At the same time, consumers that 

use very large and very small amounts of energy are rare and the majority of consumers 

fall somewhere in between the extremes of energy use. Therefore, it is reasonable to 

describe individual energy consumption as a restricted distribution. In order to find a 

suitable distribution for individual energy use, we collected all usage statistics for the 

non-participant control group, which consisted of data points for 45 building occupants 

for 46 days, arranged as a 2,070 data point pool of daily individual electricity 

consumption values. After plotting the histogram and testing goodness of fit, we chose a 

lognormal distribution as the initial generating distribution for the consumption data. To 

fit the experimental data, we compared several common distributions and listed the fitting 

parameters in Table 1. 
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Table 1 Distribution Fitting Comparison 

Distribution 
Fitting Tests 

Distribution 
Parameters 

Kolmogorov 
Smirnov* 

Anderson 
Darling*

Chi-
Squared*

Beta 0.1307 58.596 58.59
α1=1.5594  α2=8.8386
a=3.6416  b=1188.1 

Exponential 0.2211 158.33 158.33 λ=0.00596 

Gamma 0.0939 34.25 34.25 α=1.8986  β=88.434 

Lognormal 0.0380 5.75 5.75 σ=0.65468  μ=4.9113 

Normal 0.1705 115.58 115.58 σ=121.85  μ=167.9 

* Lower Value means Higher Accuracy 

The Kolmogorov Smirnov p-value was calculated to be 0.038, which was the parameter 

used to evaluate goodness of fit. Given that a fitted distribution is statistically meaningful 

when the p-value is less than 0.05, this result demonstrates that the chosen distribution 

provides both a reliable and accurate account of the energy consumption observed for the 

non-participant group. Figure 2 shows the distribution fitting and quantile plot. The 

vertical straight lines in the quantile plot indicate the 90% (left line) and 95% (right line) 

confidence interval, respectively. The real data show a fat tail at the extreme values, but 

since we only concentrate on the general situation and the tail is negatively biased, the 

lognormal distribution is reliable enough for the simulation. In the following section, we 

emulate the individual’s initial energy consumption based on this distribution. 
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Figure 2 Energy Consumption Data Fitting and Quantile Plot 

2.4.2 Network Energy Efficiency Decision Influence Model 

Agent Norm 

The networks of agents are generated by the computer according to the Erdős-Rényi (ER) 

model (Erdős and Rényi 1960) and the connectivity is determined by the generated 

network’s adjacency matrix. The agents are assumed to be exposed to all peer 

consumption in their personal network. Based on the information they receive, an 

algorithm was constructed for the individual agent norm. When there is a user in the 

agent’s network whose use is less than the agent, they have a probability to take action to 

reduce electricity use. They will compare their use with each friend and make decisions. 

If they already use less than others or decide not to take action, even if they use more, 

they also have a probability to increase their use or remain the same. For each decision 

making iteration, the probability of whether or not the agents take action to save 

electricity is correlated with the quality of relationship.  Quality of relationship refers to 

the strength of the relationship, or the weight of the connection between agents in the 
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network.  This is determined by how close of friends two agents are in the model.  Closer 

friends have stronger ties, whereas acquaintances have weaker relationship ties.   

For the whole decision making process, 

| | … | |  (2.1)

Where; 

P β  is the probability that an individual will take energy-saving action based on the 
consumption of an individual in their peer network to whom they have the relationship 
β , 

n is the index of neighbors in the agent’s network, and 

τ is a scalar that can convert edge weight to proper probability so that the model 
output can fit the experiment data.   

For the incremental reduction of each agent’s energy use, we employed a Geometric 

Brownian Motion (GBM) process with drift. GBM is a continuous time stochastic 

process that can vary the quantity of drift following the normal distribution (Revuz and 

Yor 1999; Ross and MyiLibrary 2003). According to our model and observations from 

the experiment, residents may increase or decrease their consumption with respect to 

their peers’ consumption.  Parameters for the drifting distribution are drawn from the 

experiment (Table 2): 

exp
1
2

 (2.2)

Where; 

C  is individual’s energy consumption at time t, 

W T  is a normal random error with mean equal to 0, 

σ is the standard deviation of energy use increment/decrement, and 

μ is the mean of energy use increment/decrement. 
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Table 2 Simulation Setting and Results 

  
Baseline 
Network 

Expanded 
Network  

Dense 
Network 

Tight 
Network 

Vertex (|V(G)|) 30 50 30 30
Average Degree for edges (deg(G)) 3 3 5 3
Simulated Mean of Edge Number 95 160.1 150.9 95

Simulated Vertex Degree 3.17 3.20 5.03 3.17
Weight  

(Uniform) 
Max 1 1 1 1
Min 0 0 0 0.5

Energy Use  
(Lognormal) 

Mean 167.91 Watts (daily consumption approximately 4.02 kWh) 

std 122.84 Watts (daily consumption approximately 2.94 kWh) 

 

In the above agent norm, we applied conditional probability with τ  and Geometric 

Brownian Motion to calibrate the simulation result with the experimental data. Since the 

direct correlation between the connection weight (relationship β ) and individual’s 

probability to make decisions is not known, we use τ to calibrate the experimental data 

with the simulated results. In addition, from the experimental results we know even if 

individuals decided to conserve energy, it does not necessarily mean they will reduce 

their energy monotonically. Thus, in order to capture the fluctuation of their energy 

consumption path, we introduced two types of Geometric Brownian Motion (GBM) in 

our simulation agent norm—the GBM that has (1) an upward drift (GBMI) or (2) a 

downward drift (GBMD)—to emulate the consumption increase or decrease. In following 

algorithm, we define u as threshold of whether an agent will make a decision to increase 

their energy consumption.  This number is the percentage of individuals whose energy 

consumption drifts upward during the experiment. 

 
Algorithm (Individual decision making process and Agent Norm) 
Input: A connected social network with weight and the initialized energy 
consumption for each agent within the network. 
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Data Recording Process: Track energy consumption of each agent over a time 
period and record the energy use within this period. 

Output: A matrix that includes the daily energy consumption information of each 
agent and the network average over the whole simulation period.  

 
[Initialization] 
 
Step 1: Each agent ∈ 	 	| |  has an energy consumption of .  
For each agent, find out the neighbors and form as .  ∈ , ∀	
1,2, …  is the neighbor of  and each  also has their own energy consumption 

.  
Step 2: For the total simulation period 
While 	 , record the energy consumption  
If , go to Step 5 
 
Step 3: For j=1: n 
If  , generate random number  
If , , → ,  
Return , 1, go to Step 2 
Elseif , go to Step 4 
 
Step 4:if , generate random number  
If , → ,  
     Elseif  ,   , → ,  
Return , 1, go to Step 2 
 
Step 5: Return  and Print Result 
 

Note:  i is the index of agents; j is the index of agent i's neighbors; t is the index of time period.  
           In Step 2,  comes from Step 3 and Step 4, but for the first iteration, . 
           Neighbors are the agents that are directly connected with a specific agent according to 

adjacency matrix. 
 

Some variables and process are explained in following paragraphs. The following flow 

chart shows the algorithm used to model an individual’s decision making process (Figure 

3). The decision norm of each agent in the simulation follows this decision algorithm. 
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Figure 3 Agent Decision Algorithm Flow Chart 

The algorithm simulates the decision making process of each agent. Each agent will 

compare energy consumption with its connected peers in the network and will have a 

probability to reduce its consumption according to the conditional probability 

synchronized from the quality of relationship across all peer network connections. If the 

agent finds its consumption already less than all of its peers, it will also have a 

probability to remain the same level of consumption or rebound to a higher level of 

consumption.   
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Environment 

In this agent-based simulation, the environment in which residents act is their peer 

network. We assume that one agent’s energy use can affect the energy use of other agents 

with varying degrees of probability. The quantity of consumption by neighbors of an 

agent’s peer network may have a strong influence on modifying a given agent’s energy-

saving behavior. On one hand, the agent’ behaviors can actively change the energy 

consumption patterns in the whole network, i.e. throughout the environment. On the other 

hand, once the environment changes, the feedback of changes will inversely affect the 

agent’s decision-making processes. For example, if one agent sees its energy 

consumption is more than its neighbors, it may take action to reduce energy consumption. 

Once this change occurs, the effect of its reduced energy consumption will be 

incorporated into the usage statistics that are viewed by other agents in the network. This 

new information may provide the catalyst for other network agents to take similar 

energy-saving action. 

Given several basic experiment settings, the primary goal of the analysis presented below 

is to examine the relationship between network structure and conservation behaviors. 

Moreover, we aim to qualitatively describe the degree to which various types of network 

structure influence individual energy-saving behavior.  We use four different 

experimental settings to test how three types of extended network structures impact 

individual behavior (Table 2): 
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 A Baseline Network: This random network was generated by the Erdős-Rényi 

model according to the parameters in Table 1. The other three types of 

networks we will examine are extended from the Baseline Network. 

 An Expanded Network (i.e. a larger size network with a large number of 

vertices): The network has more vertices than the baseline case, which 

indicates a larger network size. 

 A Dense Network (i.e. a network with a high degree measure): The network 

has more connections than the baseline case. This indicates a complex 

relational network.  

 A Tight Network (i.e. a network with a high weight measure): The network has 

a higher weight for each edge compared to the baseline case. Networks with 

high weight measures indicate a closer network. 

The above networks can be achieved through three basic network operations (adding 

vertices, adding edges and increasing weights) to expand a simple network to more 

complex ones. Our goal is to understand how these operations can impact the average 

energy consumption of all individuals in the building occupant network. Figure 4 is the 

sample network plot which is generated randomly for each experimental case. For each 

simulation run, the network is restructured again. Table 2 contains a summary of the 

simulation settings we used to construct the network and then model the agents’ energy 

consumption patterns. 
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Figure 4 Sample Network for Baseline Network, Expanded Network, Dense Network 

and Tight Network 

(*The thickness of each connecting tie represents the quality of relationship between 
pairs of individuals.) 
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2.5 Simulation Results and Validation 

2.5.1 Simulation Results 

The upper left graph in Fig. 4 reflects a single simulation run of all the network agents’ 

dynamic energy consumption. Each agent can make decisions separately based on its 

own network connections, although we assume that these decisions will affect decisions 

made by its neighbors in the peer network. To examine the unique contribution of each 

network property on conservation behavior, we performed 10,000 simulations of distinct 

network configurations and 4 sample scenarios.  These results, are plotted in Figure 5 in 

the upper right, lower left and lower right graphs. These graphs indicate the normalized 

energy use reduction by controlling for network vertex (expanded network), network 

degree (dense network), and network edge weight (tight network). We also ran the 

generalized regression on the major predictors to examine their contribution to network 

energy saving behavior in Table 3, Figure 5 and Figure 6.  

Table 3 Summary of Simulated Results 

Regression on Simulated Energy Saving (%) 

Predictor 
Coefficient 

m1 m2 m3 
Vertex 0.00024 0.00024 0.00024* 
Degree 0.0569** 0.0569** 
Weight 0.1544** 
_cons 0.374** 0.147** 0.0419** 
R-SQUARE 0.0007 0.7356 0.943 
LOG LIKELIHOOD 471.272 680.687 923.285 

                                       * p<0.1 
                        ** p<0.05 
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Figure 5 Energy Conservation Performance for Different Cases 

(*The top left figure represents the output of a single simulation run) 
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Figure 6 Scatter Plot for the Correlation between Vertex, Degree and Weight, and 
Percentage of Energy Conservation in the First Week 

 

2.5.2 Observations 

From Table 3, we observe that vertex only achieves its statistical significance in the full 

model (m3) and has a low R-squared value. The predictors of degree and weight have a 

statistically significant positive impact on energy saving in the network as well as a high 

R-squared value.  Through the 3 models (m1,m2 and m3) we tested in Table 3 and the 

scatter plot of  Figure 6, the coefficient of regression for vertex and the R-squared value 

in model 1 (m1)  indicate that vertex has limited prediction power for individual energy 

conservation decisions. Scaling up the network will not provide additional incentive to 
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reduce consumption if we maintain degree and connection weight at the same level. This 

can be explained by the fractal property of social networks, small networks will repeat 

the pattern when they are located in larger networks. Connecting small networks in same 

consumption level cannot efficiently enhance network energy efficiency. Network energy 

consumption does not decrease or increase with the expansion of the random network, if 

the newly added vertices have a similar level of energy consumption. 

In contrast to the weak connection between network size (extended network) and 

simulated consumption behavior, network degree and weight have a positive relationship 

with energy conservation. Both the results of the regression and a visual inspection of the 

scatter plot illustrate that the distribution observed in the simulation is generalizable to 

larger peer networks. The regression test shows that embedding degree and connection 

weight significantly increased the model R-squared value and the coefficient is large 

enough to impact the value of the regressor. The scatter plot suggests a strong correlation 

between network degree, weight and energy saving. Closer networks are demonstrated to 

have a higher influence on convincing its members to conserve energy. A network with 

closer ties, i.e. those networks where members have a tighter connection to other 

members, can amplify the influence of one member over the decisions made by another 

member. In a more tightly connected network, the normative behaviors of the peer 

network as a whole are likely to diffuse to individual members of the network and 

individuals are more sensitive to aligning their behavior with the behavior of others in 

their peer network. Connection degree and strength of relationship between residents 

each has a positive impact on residents’ energy saving. 
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In summary, with regard to an agent’s simulated energy consumption there are important 

differences in how different network structural properties impact energy efficiency. 

Although network size may be expected as one condition that would lead to increasing or 

decreasing energy saving behavior, the simulation suggests scale of network size does not 

correspond to higher energy savings. In other words, despite the large size of a network, 

more local network clusters were more important in stimulating individual energy saving 

behaviors. Conversely, the simulation results confirm that stronger relationships between 

network participants (i.e. tighter networks) and more robust associations between 

members of a network (i.e. denser networks) can serve to improve energy saving 

behavior. 

2.5.3 Sensitivity Test for Different Initial Energy Consumption 

Distributions 

Although the lognormal distribution best emulates the pre-experiment energy 

consumption, it is still worth extrapolating the impact of different distributions. Four 

additional scenarios were constructed to emulate the initial energy consumption using 

different common distributions. The shape factors of these distributions are derived from 

the distribution fitting of the experiment baseline data and control group data.  
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Figure 7(a) Network Energy Consumption Simulation Based on Beta Distribution 

 

 Figure 7(b) Network Energy Consumption Simulation Based on Gamma Distribution 
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Figure 7(c) Network Energy Consumption Simulation Based on Normal Distribution 

 

Figure 7(d) Network Energy Consumption Simulation Based on Exponential Distribution 

Figure 7 Network Energy Consumption Simulation Based on Different Distributions 

 

Figure 7a through 7d display four energy consumption scenarios utilizing a Beta 

Distribution, Gamma Distribution, Normal Distribution and Exponential Distribution in 

order to simulate pre-experiment energy consumption. Based on the data presented in the 
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figure, the normalized energy consumption in these four scenarios is most similar to 

lognormal simulation results.  The regression tests also confirm the findings as discussed 

in section 2.5.2. Therefore, the fitting distribution selection for the pre-experiment energy 

consumption will not influence the conclusions of our research.         

2.5.4 Validation and Limitations 

The purpose of this simulation was to explore the effect of peer network structure on 

energy saving behavior in residential buildings. In order to achieve this goal, we built an 

agent-based decision model to estimate the influence of different types of network 

structure on energy conservation behavior by using controllable input parameters. 

According to Ziegler, a model’s validity is often thought of as the degree to which a 

model faithfully represents its system counterpart (Zeigler et al. 2000). Zeigler 

characterizes three types of model validity: 1) replicative validity (i.e. whether the model 

fits the data already acquired from a real system), 2) predictive validity (i.e. whether the 

model fits data before data are acquired from a real system), and 3) structural validity (i.e. 

whether the model completely reflects the way in which the real system operates). 

Utilizing data from an experiment to develop the decision influence model for the agent 

norm provides a level of structural validity to the model. The post-simulation statistical 

analysis testifies to the replicative validity of model. However, predictive validity is hard 

to achieve merely through simulation and emulating a single experiment.  Therefore, we 

conducted a replication of the experiment with a second set of building occupants to test 

whether results from the simulation model have similarity with target systems. The 

experiment setting is similar to the pilot experiment in 2008, except participants were 
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asked to respond to a survey designed to establish the strength of their relationship to 

other members of the network, which had not been captured in the earlier experiment. 

The second experiment was conducted from October 24, 2009 through March 31, 2010. 

In this follow-up study, we found similar results to those predicted by the simulation, i.e. 

that the individuals who were provided with consumption information of their network 

peers outperformed both the individuals who did not receive peer network energy 

consumption information and the non-participant control group. Furthermore, we ran a 

logistic regression on the results to test the statistical properties of the networks’ impact 

on resident energy saving behaviors. 

In order to compare the results of the simulation with the results of the follow-up study, a 

regression analysis was employed to confirm whether the parameters that were 

statistically significant in the simulation were also significant for the experimental case. 

In other words, we were interested in whether the results of the simulation were valid for 

another population in that both network density and tie strength between network 

participants were meaningful predictors of an increase in individual energy saving 

behaviors. The results of the regression are presented in Table 4 and are based on a 

binary outcome of the experimental results that a resident will either improve energy 

saving (1) or not (0). 
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Table 4 Summary of Logistic Regression Results 

Logistic Regression on Improvement (yes=1, no=0) 

Predictor 
Odds Ratio (first 

week) 
Odds Ratio (1 month) 

m1 m2 m3 m4 
Network structure 
Explicit 
Quality of Relationship 
(Weight) 

15.478* 
 

1.06 
 

Network Size (Vertex) 1.155 1.034 
Network Level (Degree) 1.939* 1.731 
Implicit (Centrality) 
Degree 0.963 0.707 
Betweenness 1.044 1.086 
Closeness 1.002 0.998 
Energy Group  

Green (more than 20% less 
consumption than average) 

0.585 0.469 0.054** 0.043** 

Red (more than 20% more 
consumption than average) 

3.013 0.637 0.057* 0.047* 

Yellow (neither red nor 
green)     
LOG LIKELIHOOD -11.351 -14.159 -9.976 -10.393 
PROB > CHI2 0.178 0.849 0.308 0.153 

           * p<0.1 
** p<0.05 

 
In Table 4, we separate network structure parameters into two types: the explicit factors 

and implicit factors. Explicit factors are basic factors we normally use to generate a 

random network. The implicit factors are mainly focused on the network centralities 

which depend on all the vertices in the network and network size. Degree centrality 

reflects the effect of direct connected vertices without regard to direction; betweenness 

centrality tells us about the interaction of nonadjacent vertices; closeness centrality 

interprets how close one vertex is connected or how it interacts with all other vertices.  

After regressing on the main explicit factors, we used these implicit measures to test 
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whether network size will have a statistically significant impact on improving energy 

savings. In other words, in addition to directly connected vertex, we wanted to capture 

the non-adjacent vertices’ impacts through the inclusion of these centrality measurements. 

Group type predictors are utilized as mutually exclusive dummy variables in m2 and m4 

to check if the pre-experiment energy consumption pattern will affect their energy 

utilization in the future.   

From the results of the regression, the quality of relationship and network level in the 

short-term test models (m1, m2) achieved statistically significant levels and had a 

relatively higher odds ratio than other predictors. For strength of relationship, a one unit 

increase will have a 15 times escalation effect. However, these patterns do not hold in a 

long term experiment, this may be caused by the cancellation of negative and positive 

change during the response-relapse period observed by (Peschiera et al. 2010). The 

implicit predictors both in the short term and long term tests indicate they do not 

dramatically affect the probability of agents’ energy saving decisions, because the odds 

ratio is nearly 1. In the long term test, both the green and red group achieved significance 

and had odds ratios close to 0.05.  

Thus the previous assertions derived from the simulation can be supported by the 

findings from regression results of the second experiment. First, the quality of 

relationship and connection degree do indeed influence whether individuals modify their 

behavior to save energy in the short term. In fact, we found that relationship quality and 

connection degree act as a positive impetus for change to more energy conserving 

behavior. Second, the size of the network, even for its implicit centrality parameters does 
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not affect the energy saving meaningfully. The previous two findings are also 

qualitatively consistent with the simulation results. 

However, our model also has limitations. First, we simulated the network as regular 

random graphs (Erdős and Rényi 1960). More recent research shows that real social 

networks exhibit scale free (Barabási and Albert 1999) and small-world properties (Watts 

and Strogatz 1998). The reason why we chose regular random graphs is because we had a 

relatively small and tightly connected local network in the experiment, rather than a 

multi-clustered network.  The network in a single building looks like one cluster in a 

large scale free network. We built the real social network of the occupants in the 

experiment and confirmed that they are cluster-less but highly connected.  Second, we do 

not allow the response-relapse saving pattern in our simulation, since we do not fully 

understand the mechanism of energy use relapse. So, to simplify the model, we assumed 

the agent behavior was consistent over a relatively short simulated period. Finally, the 

relational quality is difficult to quantify. Although we asked residents to identify the 

quality of relationship themselves via survey, people may provide discriminate values 

through their various knowledge, characters and self-cognition.  
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2.6 Discussion and Conclusion 

The research described in this paper presents an agent-based simulation model that 

simulates the relationship between peer networks in buildings and energy conservation 

behaviors of building occupants. Energy efficiency is seldom studied at the peer network 

level. Experimental research recently has found that sharing energy use information 

through social networks promotes energy conservation by building occupants (Peschiera 

et al. 2010; Petersen et al. 2007). However, the shape and character of social networks 

vary from building to building, which means that the relationship between peer network 

structure and energy saving behavior is difficult to generalize based solely on 

experimental data without the aid of simulation. Thus, a model that can quantitatively 

explain the residents’ decision making process under various network configurations is 

an important contribution to our understanding of how best to leverage the interpersonal 

relationships in peer networks to encourage energy savings. This model also has practical 

implications for designers of residential energy feedback systems.  The model suggests 

that feedback should be focused on those residents with stronger relationships rather than 

more relationships. Providing feedback for residents with more connections to others in 

their peer network has a limited benefit in terms of enhancing energy efficiency. 

Our research expands and builds upon the conceptual model of the relationship between 

social interaction and individual decision making posited by Wilson and Dowlatabadi 

(Wilson and Dowlatabadi 2007). In order to formalize Wilson and Dowlatabadi’s 

conceptual model, we established an agent norm for their social interactions, which was 

based on data collected on the impact of sharing energy consumption information among 

peer network participants. Our model emulates the distribution of energy consumption 
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and the residents’ decision making processes in the experimental setting, such that we can 

quantitatively explain the relationship between a participant’s rationale for their energy 

consumption behavior and their social interactions with their peer network in the 

dormitory. Our research extends our current understanding of the impact of network 

structure on the energy conservation behavior of individual actors within a building peer 

network to examine networks with more complexity than the experimental case. The 

resulting simulation model utilizes well-established random graph theory (Erdős and 

Rényi 1960) to generate a number of different, realistic random network structures to 

which we have applied the findings from the experimental data collected. Our simulation 

allows us to test, under heterogeneous network conditions, whether certain network 

structures promote more or less energy conservation behavior without the cost or time 

associated with collecting experimental results from a range of buildings. Thus, our 

strategy utilizes a variety of information structures through which we can study ways that 

energy saving behavior disperses throughout a peer network, with the ultimate goal of 

achieving sustained reductions in building energy use. 

Our simulation results indicate that network energy consumption does not predictably 

decrease or increase with the expansion of the random network. At the same time, dense 

and tight networks outperform the regular and expanded networks. From an individual 

resident point of view, more information and trustworthy information are more 

convincing than indirect information, although those indirectly connected residents may 

eventually affect their decisions through their directly connected peers. This provides a 

more nuanced understanding of the impact of both explicit factors (i.e. network size, 

degree and weight) and implicit factors (i.e. network centrality) on energy conservation 
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behaviors of peers within a building occupant network. Our research provides a more 

comprehensive account of the ties between network participants because we consider 

more implicit, indirect interactions of non-adjacent vertices between actors. The odds 

ratio for the logistic regression shows that the interactions between non-adjacent vertices 

have an insignificant impact on the object vertex during the same period. In other words, 

residents are highly impacted by people who are connected directly with them rather than 

by their friends’ friends.  

Our model could be extended in several ways. In the model we utilized a classic random 

graph to make networks emulate the network studied in the experiment.  However, if the 

network is widely connected through a larger area, the scale-free property of social 

networks may impact residents’ decision making about energy consumption.  A 

potentially fruitful approach to linking the geographic distribution of individuals in peer 

networks that may be examined in future research is layered interacting network methods 

(Kurant and Thiran 2006). Networks are also evolving in response to agents’ experiences. 

Former work on network creation focused on static network structures, but the evolution 

of networks over time may provide an analytical explanation for the long-term energy 

conservation performance of dynamic networks.  
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Chapter 3 

3. LAYERING RESIDENTIAL PEER NETWORKS 
AND GEOSPATIAL BUILDING NETWORKS TO 
MODEL CHANGE IN ENERGY SAVING 
BEHAVIORS  

3.1 Abstract  

Complex human or engineered network systems can be examined as a series of 

coexisting layers. A variety of dynamic perturbations, such as information flows across 

computer networks, traffic flows across transportation networks and the spread of energy 

saving practices across human networks, have been treated separately as single networks 

in previous research. However, because these phenomena often consist of human 

networks interacting with engineered networks, analyzing the properties of the multi-

layer network systems provides more nuanced insights into the phenomena. In this paper, 

we examine a multi-layer network system to provide insight into the diffusion of energy 

consumption practices through peer networks within and across residential buildings. To 

this end, we introduce a model that treats a residential peer network and a geospatial 

building network as a single, layered network. We compare this model to a previously 

published multi-layer interactive network model by simulating diffusion through a real 

multi-layer network system consisting of a residential peer network and a geospatial 

building network.  We found our model to be more accurate and efficient, hence 

contributing an efficient mathematical model and set of simulation algorithms that 

accurately capture the post-perturbation response of a layered, residential peer network 

and a geospatial building network. 
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3.2 Introduction 

In the United States, nearly 41.3% of all energy consumption is related to the built 

environment, which is higher than for other sectors (c.f. 30.6% for industry and 28.1% 

for transportation) (US Energy Information Administration 2010). To reduce building 

energy consumption, researchers have integrated sensors and information feedback 

systems into building networks and have used eco-feedback systems to distribute this 

information to peer networks (Fischer 2008; Peschiera et al. 2010; Petersen et al. 2007). 

These eco-feedback systems provide building occupants with information regarding their 

consumption behavior in order to encourage behaviors that lead to energy conservation. 

In these cases, researchers have shown that digitized feedback is the most effective 

delivery mechanism for providing information related to energy consumption (Fischer 

2008).  

Recent research has determined that, through sharing an individual’s energy consumption 

information with that individual and with that individual’s peers, energy conservation can 

be increased in residential buildings (Peschiera et al. 2010; Petersen et al. 2007) and in 

commercial buildings (Azar and Menassa 2012; Chung and Hui 2009; Hoes et al. 2009). 

The amount of conservation is highly dependent on the structural position of individuals 

within their peer network (Chen et al. 2012). A number of energy companies, such as 

OPOWER, Welectricity and Leafully, are providing peer network feedback to consumers 

in an effort to capitalize on peer influence to reduce energy consumption. OPOWER, for 

example, is a leading energy information software company that has set up a platform 

that enables utilities to provide targeted energy data and advice to each customer. 
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Beginning in April 2012, users were provided functionality to track and compare their 

energy consumption and share energy savings accomplishments with their friends.  

In most cases, an individual’s peer network is not isolated from other networks that may 

also impact energy saving behaviors, e.g. an individual’s ability to adopt energy saving 

behaviors is simultaneously conditioned by both their peer network and the network of 

buildings in which an individual’s residence is situated. For instance, the diffusion of a 

particular energy saving practice (e.g. turning off the porch light when not expecting 

visitors) may be more likely to occur when two individuals live in the same neighborhood 

because the potential adopter can directly observe the porch light being turned off by a 

friend who has already adopted the practice. Many scholars have noticed that the spatial 

development of many innovation and practice diffusion processes is characterized by the 

adopters clustered around the original nuclei (Brown and Cox 1971; Hagerstrand 1965; 

Haggett et al. 1977). The geospatial orientation of the two individuals may serve to 

reinforce the adoption of a practice. The abstract of characteristics of space (for example, 

distance and accessibility) significantly influence spatial behavior (Morrill 1970). 

Moreover, temporary and short-distance movements and random communications of 

people may be also helpful to geospatially facilitate practice diffusion. However, if the 

two individuals live in different cities, the potential adopter will still have access to 

information about the energy saving practice (e.g. via telephone) but would not have the 

reminder triggered by a close geospatial relationship. This simple example demonstrates 

how both social networks and geospatial networks can contribute to the adoption of 

energy saving practices, although research to date has treated each network type in 

isolation. Thus, the major objective of our research is to develop a model capable of 
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analyzing how energy consumption information diffuses through multi-layer network 

systems and how this diffusion affects the adoption of energy saving behaviors. 

The topological properties (e.g. the vertex degree distribution, path length, clustering, 

robustness and centrality) of social and engineered networks impact how information is 

transmitted between vertices (Albert and Barabási 2000; Ebel et al. 2002; Faloutsos et al. 

1999; Maslov and Sneppen 2002). Although some researchers have used multigraphs to 

examine multiple types of connections within a network (Flament et al. 1963), most 

research to date has examined the properties of single networks in isolation. However, in 

authentic settings, networked individuals are linked through various channels (Kurant and 

Thiran 2006; Yang et al. 2009). For instance, a computer virus can enter an information 

technology network via an unsecured web site or via emails. Rumors can be spread 

though conversations between individuals in physical spaces or through social media 

applications. Many researchers have observed that network models are heavily affected 

by the connectivity patterns within and between networks (Burt 1980). When analyzing 

multi-layer networks, the randomness and complexity of the constituent single networks 

is increased. In addition, the patterns of diffusion through multi-layer networks will also 

change because perturbations to a single network may trigger perturbations in the other 

networks that constitute the multi-layer network.  

To date, research has not developed quantitative models capable of capturing the 

dynamics of multi-layer network systems under perturbation. We developed a model to 

predict changes in energy saving behaviors in a multi-layer network consisting of a peer 

social network and a geospatial building occupancy network. Our research serves to fill a 
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gap in our understanding of network dynamics by positing a simulation model based on a 

novel algorithm that predicts a response pattern in a perturbed, multi-layer network.  
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3.3 Background 

3.3.1 Studying the Diffusion of Energy Saving Behaviors in Multi-Layer 

Networks 

Previous research has investigated how much energy individuals can save through 

behavioral changes (Petersen et al. 2007) in addition to the reasons and motivations 

behind the adoption of individual energy saving practices(McMakin et al. 2002; Olsen 

1981; Yu et al. 2011). Recent energy experiments have discovered that, through sharing 

energy consumption information through a peer network, we can promote energy 

conservation behaviors  (Peschiera et al. 2010; Petersen et al. 2007). However, this 

research did not consider the geospatial aspects of the building, which, as we noted above, 

can be an important contributor to multi-layer network dynamics.  Previous research has 

shown that the geospatial properties of networks can significantly impact diffusion 

(Hagerstrand 1968; Ryan and Gross 1943; Xu and Harriss 2008). For instance, Moon and 

Carley extended the research on geospatial effects to demonstrate that there is an 

important relationship between social networks and geospatial networks in their study of 

terrorist networks (Moon and Carley 2007). Our work builds on the research of Moon 

and Carley as we incorporate both geospatial and social networks into a single, multi-

layer network to study the diffusion of energy saving practices through networks in 

residential buildings.   

In order to analyze, simulate, and validate the resulting models, we utilized data collected 

from several experiments between 2009 and 2011 from a building occupant network in a 

six story multi-family residential building in New York City.  The 2009 experiment was 
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run from April 1 to May 7, 2009 with the first 10 days (April 1 to April 10) as the pre-test 

baseline energy consumption measurement period.  For this experiment, 19 residents 

participated in the experimental study group and another 46 residents comprised the 

control group. A second experiment which took place in 2010 also provided data for our 

analysis.  That experiment included 23 residents in the experimental study group and 20 

in the control group. The experiment was run from November 17, 2009 to February 4, 

2010 with a pre-study baseline period from October 29 to November 17, 2009. Finally, a 

third set of experimental data was also used from a 2011 experiment which includes the 

energy consumption information of 38 residents in a control group and 22 individuals 

who were part of the experimental study group.  The study period was from March 23 

through May 8, 2011.  These three research data sets included both peer network and 

geospatial network data. During the experimental data collection period for all three 

experiments, residents who participated in the experimental study group had access to 

their own energy consumption and the consumption of their peers. The control group was 

formed as a baseline for comparison, they were not provided with any energy 

consumption information.  

Prior to the experiments, residents in the experimental study group were asked to identify 

their friends. The peer network for the experimental study group was constructed based 

on these responses. The residents in the experimental group were located on 6 different 

floors, which allowed us to incorporate geospatial data into our multi-layer network 

analysis and modeling. During each day of the experimental period, we collected energy 

consumption information for each resident, which contributed to our analytical, 

simulation, and validation procedures.  
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3.3.2 Network Theory and Random Networks 

One of the major limitations of collecting experimental data on energy use in buildings is 

that data collection can only occur on a small scale due to budget, time and privacy 

concerns. When we collect socio-spatial data (e.g. friend relationships for residents in 

different buildings), each building will have a unique peer network structure. Thus, in 

order to overcome these types of limitations, we utilized simulation models based on 

(random) network theory in order to theorize how our relatively small, observed networks 

scale to larger, similarly complex networks.  

The research that has contributed to network theory has grown substantially over the past 

few decades. Research on networks has enabled theoretical advancements in sociology 

(Mullins 1973; Scott 1988; Wellman 1997), organizational theory (Tichy et al. 1979), 

epidemiology (Bailey 1975; Pastor-Satorras and Vespignani 2002), computer network 

security (Bellovin 1993) and energy efficiency (Chen et al. 2012). As a product of this 

work, random network theory (Erdős and Rényi 1959) emerged as an approach that 

posited a probability space for graphs and that viewed the graph invariants as random 

variables. This theoretical work was further developed to account for differences between 

the theoretical network models and complex, real-world networks. This development has 

revealed that the degree distribution of real-world social networks follows a power-law 

distribution (Barabási and Albert 1999) in what has been termed a scale-free network 

(Barabási et al. 1999). This type of model applies numerical simulation to generate 

networks with growth and preferential attachment, which allows expansion of network 

degrees in a power-law distribution.  Because random networks more accurately reflect 
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real-world social network dynamics, we chose to base our simulation of energy 

conservation behavior in a multi-layer network on random network theory.  

3.3.3 Energy Efficient Behavior and the SIS Model 

In order to analyze how feedback information and energy conservation behaviors perturb 

the network, we employ an analogy between energy saving behavior and the spread of 

disease so that we can adopt a susceptible-infected-susceptible (SIS) model to simulate 

the perturbation process. In our analogy, we make an analogy between the adoption of 

energy efficient behavior as a “disease”. According to Peschiera et al.’s research 

(Peschiera et al. 2010), residents show a response-relapse pattern in their energy 

conservation behavior. In their study, residents who conserved energy did not maintain 

their conservation behaviors. Rather, conservation behaviors that were initially adopted 

were later disadopted and then adopted again. Similarly, within epidemic models, when 

an individual is in a position to repeatedly infect others, they are susceptible to being 

repeatedly infected. Thus, the SIS model is the most suitable model to mathematically 

describe the spread of epidemics (Anderson and May 1991; Heesterbeek 2000). In the 

SIS model, there are two states for each potentially infected candidate, namely, infected 

and susceptible. In terms of energy saving behavior, individuals are considered “infected” 

if they adopt energy saving behaviors, while they are “susceptible” when they do not 

adopt energy saving behaviors, because they have the potential to adopt these behaviors. 

At every step, every candidate is either susceptible or infected, with an infection rate ν 

and cured rate δ. Therefore, we define a spreading rate λ	as:  
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λ ν/δ  (3.1)

ν is the probability that a susceptible vertex exhibits energy saving behavior when it is 

connected to one or more vertices that exhibit energy saving behavior;  

δ is the probability that a vertex, which has exhibited energy saving behavior, will revert 

to non-saving state and will thus become a candidate for adopting energy saving behavior 

again (i.e. that the vertex will exhibit an SIS pattern);  

λ is defined as the spreading rate of the energy saving behavior. 

This type of epidemic model is commonly used to mimic the spreading of human 

diseases or computer viruses. It also potentially applies to behavior adaption within social 

networks (Pastor-Satorras and Vespignani 2001). In this paper, this model is applied to 

emulate the diffusion of energy efficient behaviors.  The epidemic threshold λ  can be 

represented as the edge between an adoption phase and a disadoption phase, where a 

spreading rate of less than λ  indicates that the adoption of energy saving behaviors will 

not affect the network at equilibrium.  The energy saving behaviors within the adoption 

phase have a certain level of prevalence and can potentially spread through the whole 

network while the energy saving behaviors will be distinct when the network is at 

equilibrium (i.e. when the network is in the “disadoption phase”) over time. Previous 

studies of this epidemic threshold for SIS models mostly focus on single networks, such 

as on homogenous, lattice and scale-free networks (Pastor-Satorras and Vespignani 2001). 

However, there is a lack of research that applies SIS models to multi-spreading channels 

in layered networks. To expand the basic SIS model, we applied the overlap and 
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convolution method in order to analyze the spreading pattern of energy saving behaviors 

in complex multi-layer networks. 
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3.4 Analytical Model for Layered Networks 

3.4.1 Multi-Layer Network Systems 

A Multi-layer network system is a system that contains multiple network layers. In a 

multi-layer system, we assume that every layer: 1) can be independent or dependent of 

the other layers, 2) can be heterogeneous in structure, and 3) can be composed of nodes 

with various connection types. Each layer can differentiate the network in many ways. 

First, by analyzing multi-layer network systems, we can model how energy saving 

behaviors spread through multiple channels, which may or may not interact with each 

other. Second, we can model the emergence of energy saving behaviors in some network 

communities that are not directly connected to the energy consumption feedback 

information in other layers or areas of the network. This uncertainty makes the diffusion 

of energy efficient practices hard to predict. Thus, by modeling a multi-layer network 

system, we are able to account for the complex properties that occur due to the interaction 

between the various networks layers that cannot be observed in single networks Many 

scholars have utilized multi-layer network systems to study various research issues, for 

example research has investigated the competitive relationship and rivalry between 

industrial markets (Yang et al. 2009) in addition to the design of computer and 

transportation systems (Kurant and Thiran 2006). In the domain of energy efficiency, 

researchers have studied how providing peer network-level energy consumption feedback 

can enhance residential building energy efficiency, but there is currently no research on 

energy saving behaviors that treats residential buildings and occupants as a multi-layer 

network system that reflects both social and geospatial network properties.  



61 

 

For the computation of the topological properties of a multi-layer network, scholars have 

applied different mathematical frameworks. In their research, Leicht and D’Souza view a 

layered network as a correlated, interconnected and interacting network (Leicht and 

D'Souza 2009). Kurant and Thiran (Kurant and Thiran 2006) apply this view of a layered 

network in their work on overlapped, multi-layer transportation networks in order to find 

a more accurate load estimator by comparing the results of their multi-layer approach to 

results generated from a single-layer approach.  

The approach we adopt in this paper processes a multi-layer network system into a 

complex, single network (i.e. a layered network) through weighted overlapping and the 

application of mean-field theory. In our approach, each layer shares the same vertices but 

has different connectivity properties. When vertices only exist on one layer of the 

network, they will be represented as isolated vertices on the other layer. Thus, the size of 

each network is not necessarily the same for different layers, although each layer has the 

same scale on a connectivity adjacency matrix. Figure 8 provides an illustration for how 

we process a multi-layer network system into a single, layered network.  

 

Figure 8 A Sample of Multi-Layer Network System and Layered Network 
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3.4.2 Generating the Function of Random Networks 

The most common configuration for a social network is called a scale-free network, 

which, as we discussed in Section 3.3.2, is based on a power-law distribution. As we note, 

these types of networks are widely used in random network theory to simulate real-world 

networks. However, to account for the possibility that not all social networks follow a 

power-law distribution, we also adopt Newman’s generating function algorithm 

(Newman et al. 2001) to model the properties of arbitrary networks.  

This arbitrary random network generating method is based on a generating function, 

which we define with the following equation, given a known degree distribution: 

G x P k X  (3.2.a)

In equation (3.2.a), P k  is the probability that a node will have a degree of k, and X is a 

random variable.  

For graphs where we do not know the closed form of its degree distribution but know the 

exact number n  of vertices having degree k (e.g. if we have access to experimental data), 

we can create the actual degree function as follows:  

G x
∑ n X
∑ n

 (3.2.b)

Equation (3.2.b) is only suitable for cases where the distribution can be written explicitly. 

For example, in cases where we have access to experimental data, we can calibrate the 



63 

 

resulting distribution based on the experimental data for the purpose of more accurate 

generalization. 

To find the quantitative form of a layered network, we overlap weighted, multiple layers 

into a single-layer network through the following equation: 

S x a X  (3.3)

S 	is	the	random	variable	for	the	overlapped,	layered	network.	

a 	is	the	coefficient	of	weight	we	used	to	adjust	the	biased	overlapping	process.		

X 	is	the	random	variable	of	node	degree	for	the	ith	layer.		

 

3.4.3 Mean-field Theory  

It is difficult to explicitly calculate the interaction between large numbers of network 

vertices because it is impossible to incorporate all connectivity and interactivity 

information into a single analytical model. Thus, we adopt the mean-field theory to 

simplify and convert the networks into a computable system. Mean-field theory is a 

method that analyzes a physical system with multiple bodies, which allows us to replace 

all the interactions within the system with their averages or effective interactions (Weiss 

1907). According to Barabási and colleagues (Barabási et al. 1999) and Pastor-Satorras 

and Vespignani (Pastor-Satorras and Vespignani 2001; Pastor-Satorras and Vespignani 

2001), the mean-field equation for a network system is captured in the following equation 
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and is explained in terms relative to the context of energy saving behavior in multi-layer 

networks: 

dρ t
dt

ρ t λk 1 ρ t Θ ρ t  (3.4)

ρ t 	is	the	relative	density	of	residents	who	are	exhibiting	energy	saving	behaviors.	

In	 other	 words,	 it	 represents	 the	 probability	 of	 one	 node	 having	 energy	 saving	

behavior	when	the	node	is	connected	to	k	other	vertices;	

Θ ρ t 	is	 the	 probability	 that	 a	 link	 is	 connected	 to	 a	 node	 that	 exhibits	 energy	

saving	behavior;	

k	is	the	number	of	connections	that	link	to	a	single	node.		

λ	can	be	refer	to	equation	 3.1 .	

Through equation (3.4), we can convert all the rates of each path of the diffusion of 

energy saving behaviors to a weighted average diffusion rate. From equation (3.4), we 

assume the energy saving behavior network reaches equilibrium when dρ t /dt 0, 

which leads to; 

ρ
kλΘ λ

1 kλΘ λ
 (3.5)

Then,  
The probability that a link connects to a node with k connections is equal to /〈 〉.  

We can then determine; 

Θ λ
1
〈k〉

kP k ρ  (3.6)

And 〈 〉 1  
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Where from equation (3.2.b), 	〈 〉 is the average degree for vertices.  

Finally, we can estimate the steady state of the network by 

ρ P k ρ  (3.7)

ρ is the prevalence rate of energy efficient behaviors within a network at equilibrium. 
More specifically, ρ is the portion of residents who have energy efficient behaviors at 
equilibrium. 

 

3.4.4 An Analytical Solution for Layered Networks  

If we assume that the random variables for each layer are independent but not necessarily 

identical or equally weighted, then the moment generating function for the overlapped 

layered network is, 

G x G a x  (3.8)

To find the probability density distribution, we can apply an Inverse Laplace Transform, 

which we denote as 

P k L G x
1
2πi

lim
→

e G x dt (3.9.a)

However, an Inverse Laplace Transform can only find the analytical solution when the 

denominator of G x  is polynomial and the distribution is continuous. To address these 

constraints, we can determine the polynomial form of G x  through a Taylor expansion 

for the discrete and non-polynomial denominator case. 
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Thus, the probability p  is given by the kth derivative of G according to  

P k
d G x
k! dx

 (3.9.b)

After we solve for Θ λ  through (3.3), (3.4) and (3.8) 

Θ λ
1
〈k〉

kλΘ λ
1 kλΘ λ

∙
d G x
k 1 ! dx

 (3.10)

We can evaluate ρ 

ρ
d G x
k 1 ! dx

∙
λΘ λ

1 kλΘ λ
 (3.11)
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3.5 Computing the Layered Networks 

In order to estimate the properties of the discrete system, we propose a new model. Then, 

in order to operationalize the model, we use a double-layer network system with the same 

structural settings as the data collected from the multi-family residential building energy 

experiments executed in New York City from 2009 to 2011, which we described in 

Section 3.3.1. We then validate the model by comparing simulation results of our new 

model, an existing validated model and the experimental data.  This is described in more 

detail in Section 3.6.2. 

To simulate this double layer network system, we assume the first layer of the network 

(i.e. the peer network of residential building occupants) follows a Zeta distribution, which 

is a more specific type of power-law distribution. The power-law distribution is a series 

of non-negative distributions with a long tail on the right and which is dominated by a 

low value on the left. The second layer (i.e. the geospatial network composed of 

occupants’ residential floors) follows a Poisson distribution, which assumes that 

occupants uniformly fall into each geospatial component. Both Poisson and power-law 

are discrete distributions. To calculate their generating function, we use the following 

equations: 

G	 x k e x
Li xe

Li e
 (3.12)
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G 	 x
N
k

p 1 p x 1 p px e  (3.13)

Li x  is the nth polylogarithm of x. 

Therefore, the probability function of the scale-free social network has the relationship of  

P	 k; τ,m ~	k  

In general, when γ ranges from 2 to 3, networks are resilient to random break-downs 

(Cohen et al. 2002). Thus, we take the Zeta distribution, i.e. the prototypical discrete 

power-law distribution, as an example of a social network. We assume τ 2  in the 

following calculation and m → ∞; ζ s  as the Zeta function. We can also calculate the 

probability mass function of the Zeta distribution as  

P k

1
k
ζ s

 (3.14)

And we can find its probability generating function as  

G x
Li x
ζ τ

 (3.15)

If we elaborate on the assumption that both layers are equally weighted, then we can 

compute the generating function of the layered network as 

G x G a x
Li x
ζ 2

e  (3.16)

Since we cannot find the closed form of the probability distribution function through an 

inverse Laplace transform, we use a Taylor expansion of G x .  
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G x
1

1.645
e x

1
4
e 4λ 1 x

1
36

e 18λ 9λ 4 x O x  (3.17)

Finally, we can find the probability mass function by calculating the derivatives of the 

generating function and estimate the relative density function of vertices through 

equation (3.17). Although we cannot find the closed form of the density function, we can 

still solve the equations numerically through equations (3.10) and (3.11), which produces 

the following results. 

 

Figure 9 Probability Mass Function and Prevalence of ρ within the SIS Model 

From the 40th order Taylor Expansion in equation (3.17), we constructed the probability 

mass function for the simulation in Figure 9. The shape of the layered network 

distribution is completely different from Poisson distribution and the Zeta distribution, 

which validates our assumption that a layered network would have a significant impact 

on network structure for the multi-layer network. The probability mass function is also 

useful to verify the simulated networks that we will present in the next section.  

We can also observe the prevalence of perturbation within the layered network in Figure 

8. In Figure 8, we see the epidemic threshold at equilibrium, which means that the energy 
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saving behavior can spread in the layered network only if the spreading rate λ is greater 

than 0.12. In addition, the results displayed in Figure 8 indicate that the spreading rate of 

energy saving behaviors is cannot be determined directly from the experimental data. For 

the purpose of estimating the diffusion of energy efficient behaviors, ν  and ρ  are 

necessary. However, these two critical parameters are impracticable to collect from 

experiment directly. Therefore, we need to find an analytical solution first. If we assume 

that energy consumption data collected during the experiment achieves equilibrium, then 

we can use the prevalence rate (ρ) of the experimental energy saving behaviors to 

identify the spreading rate (λ ). The prevalence rate we used is the average of the 

percentage of residents who have energy efficient behaviors during the experimental 

periods. We will discuss this process more fully in following section. 

In order to clarify the terms in the analytical model, we define the important terms in 

Table 5. 

Table 5 Network Structure and SIS Model Key Terms 

TERM DEFINITION 
Vertices Points in a network graph that represent a single entity 

Edge A connection between two vertices 
Degree The total number of edges connected to a vertex 
Degree 

Distribution 
The probability distribution for all vertices’ degrees in a network 

Spreading Rate (λ) 
The ratio of the probability that people adopt energy saving 
practices divided by the probability that people disadopt energy 
saving practices 

Prevalence Rate 
( ) 

The relative density of residents who have energy saving behaviors. 
The percentage of people who possess energy saving practices. For 
example, a Prevalence Rate = 1 means everyone contributes to 
energy savings. 
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3.6 Simulating the Networks 

Although we have presented a computational model that captures how energy saving 

behaviors can spread through a layered network at the macro level, a micro level analysis 

is still necessary because our model to this point has been based on mean-field theory, 

which can only capture interactions between vertices as a whole. Thus our model to this 

point incorporates the properties of a multi-layer network in which energy saving 

behavior can spread, but we have not investigated the spread of behavior at the level of 

the individual network node.   

In order to understand how energy saving behavior can spread from node to node (i.e. 

from building occupant to building occupant), we must investigate the interactional 

patterns between vertices. Therefore, we performed simulations for a sample layered 

network based on two different algorithms.  We also validated and compared the 

simulated output for the two models to experimental data which will be described in 

section 3.6.2 and 3.6.3. 

3.6.1 Degree Distribution of Multi-layer Network System  

In the study of graphs and networks, degree distribution is an important concept because 

it carries a large amount of information about networks, e.g. their density and 

connectivity patterns. For our simulation, we developed random networks by 

randomizing the degree distribution and then rebuilt the vertices into connected graphs.  

In order to verify our simulation models, we constructed and simulated random, multi-

layer network systems with one layer based on a scale-free network (to reflect the peer 
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network) and a second layer based on a clustered network (to reflect the geospatial 

network of the residential floors). The settings for the simulation are the same as for the 

energy efficiency experiment we introduced in Section 3.3.1 and for the analytical model 

that we described in Section 3.5.  

Figure 10 shows an example of the output for this random, multi-layer network 

generation process. Figure 10(a) shows an example of a random layout for the peer 

network layer, while Figure 10(b) shows an example of random network structure for the 

geospatial network layer. Figure 10(c) shows the simulated degree distribution for the 

multi-layer networks created by overlapping Figure 10(a) and Figure 10(b). The example 

networks in Figure 10(a) and Figure 10(b) are relatively small for the purpose of 

illustration, but through the simulation, we were able to model a similar multi-layer 

network with 1000 nodes. Note that the layered network distribution in Figure 10(c) has 

the same probability mass function as the analytical models presented in Figure 9. 
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Figure 10 Simulated Multi-layer Network System 

 

3.6.2 Simulation Models 

Our simulation approach utilized two models to simulate the perturbing process, which 

reflects the change in energy saving behavior in the multi-layer network. We used a 

Layered Network model (which we will refer to as Model 1) and a Multi-Layer 

Interactive Network model (which we will refer to as Model 2). The Layered Network 

model is the model we have introduced in this paper.  It is the analytical model we 
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developed in Section 3.4.3 to emulate the multi-layer system. For this Layered Network 

model, we converted the multi-layer networks from our analytical model into single-layer 

networks.  

The Multi-Layer Interactive Network model is the conventional algorithm which has 

been used in previous research (Alam et al. 2009) to simulate multi-layer network 

systems and has been used to validate analytical interactive multi-layer models (Leicht 

and D'Souza 2009). The Multi-Layer Interactive Network model simulates the adoption 

of energy saving behaviors within the network system separately and in parallel for each 

layer.  

The simulation of both Model 1 and Model 2 predicts whether a building occupant will 

adopt energy saving behaviors and captures whether the adoption of energy saving 

behaviors by one occupant influences the adoption by other occupants to whom they are 

connected. Figure 11 shows the mechanisms for the simulation algorithms underlying 

each model. 
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Figure 11 Comparison of Two Simulation Algorithms 

 

3.6.3 Validating the Simulated Model 

The parameters used to run the simulations come from data collected as part of the 

energy efficiency experiments conducted in New York City from 2009 to 2011 as 

discussed in Section 3.3.1.  

In these experiments, residents of a multi-family residential building were exposed to an 

energy feedback system that provided information on their own energy use as well as the 

energy use of their peers located in other apartments in the building.  The introduction of 
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this energy feedback system acts as the system level perturbation in our model from 

which we examine the diffusion of energy conservation.  For each resident, if they 

consumed less energy than the baseline, we assumed that they increased their energy 

conservation behavior. In analogy to the SIS model, we assumed that they are “infected” 

with energy saving behaviors. In Peschiera’s (Peschiera et al. 2010) terms, we 

conceptualized their energy savings as the “response”. If their energy consumption is 

higher than the baseline, we assumed that they did not adopt energy saving behaviors. In 

Peschiera’s (Peschiera et al. 2010) terms, this state is considered to be a “relapse”, while 

we consider it as an “uninfected” state in analogy to the SIS literature. Because our 

simulations are based on the experimental data, we are able to determine the average 

prevalence rate of energy saving behaviors as well as the corresponding rate of spread 

through the analytical solution of multi-layer network.  

The input for the simulation is: 1) the network structure, 2) the interconnection between 

layers, and 3) the spreading rate λ	, which we derived from our analytical model. After 

the simulation process, we calculated the efficiency and accuracy for both models by 

comparing the prevalence rate of energy efficient behaviors in order to assess their 

theoretical value.  

Accuracy 

Since the input parameter of our SIS model is derived from three separate experimental 

data-sets from 2009 to 2011, we are able to compare the experimental data with the 

results of the simulation for each year. From Figure 12, we can determine visually that 

the Layered Network model (Model 1) is more accurate than the Multi-Layer Interactive 
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Network model (Model 2). The Multi-Layer Interactive Networks Model has a higher 

error and underestimates the prevalence of the energy saving behaviors across all three 

experimental data-sets. The top of Figure 12 is the comparison of energy efficient 

behavior prevalence rate at equilibrium for both models. The bottom of Figure 12 

includes sample simulations of energy efficient behavior prevalence rate. We only plotted 

10 scenarios for each model, but in our simulation we recorded 1,000 scenarios. 

 

Figure 12 (a) Comparison of Model Accuracy (2009 Experiment) 
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Figure 12 (b) Comparison of Model Accuracy (2010 Experiment) 

 

Figure 12 (c) Comparison of Model Accuracy (2011 Experiment) 

Figure 12 Comparison of Model Accuracy (2009-2011 Experiment) 
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Efficiency  

One of the major concerns for simulation is its efficiency, i.e. the “cost” of the simulation 

in terms of how long a particular simulation process takes to run. Complex simulations 

can take weeks. If two simulations produce similar results and one takes half as long to 

run, the shorter-running simulation is said to be more efficient.  In this section, we 

compare the efficiency of our model (Layered Network Model) to that of the previously 

published model (Multi-Layer Interactive Network Model). 

Simulation differs from solving numerical systems in that the asymptotic properties for 

simulation (particularly for agent-based simulations) are difficult to analytically estimate 

because of the uncertainty between two (or more) given agents. Thus, we ran the 

simulations repetitively in order to directly record the time for construction of the 

network and the time to execute the SIS simulation for a network with 1000 vertices.  
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Figure 13 Efficiency Test of Simulation Models for Average Simulation Run 

*Note: LNM = Layered Network Model; MINM = Multi-layer Interactive Network Model 

 

From Figure 13, we observe that the total simulation time for the Layered Network 

Model is less than the Multi-layered Network Model for each of the three data-sets tested.  

On average, the Layered Network Model took 37.59% less total simulation time than the 

Multi-layered Network Model across the experimental data-sets. The time devoted to 

constructing the networks and executing the SIS simulation also suggests the Layered 

Network Model is more efficient than the previously published Multi-layered Interactive 

Network Model in that it takes less time to construct the networks across all three data-

sets.  
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Summary of Model Accuracy and Efficiency Comparison 

Table 6 summarizes our comparison of Model 1 and Model 2 in terms of their accuracy 

and efficiency. In terms of accuracy, we found our proposed model (Layered Network 

Model) to achieve better accuracy across all three experimental data sets compared to the 

previously published Multi-Layer Interactive Network Model. Moreover, obtaining this 

greater accuracy was not achieved by sacrificing efficiency. Our model also took on 

average 37.58% less total simulation time as the Multi-Layer Network Model to run 1000 

simulation runs for a 1000 node network. Based on these simulation outcomes which are 

summarized in Table 6, we conclude that the Layered Network Model we propose in this 

paper is more efficient and accurate than the Multi-layer Interactive Network Model and, 

hence, a valid approach to examining multi-layer network systems. 
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Table 6 Comparison of a Layered Network and a Multi-Layer Interactive Network 

Model in Simulating the Spread of Energy Saving Behaviors in a Multi-Layer Network 

EFFICIENCY (Seconds) 

2009 Experimental Data 2010 Experimental Data 2011 Experimental Data 
Network 

Construction 
Simulation 
Execution 

Network 
Construction 

Simulation 
Execution 

Network 
Construction 

Simulation 
Execution 

Layered 
Network 
Model 

1.27 20.94 1.21 8.40 0.67 6.59 

Multi-
layer 
Interactive 
Network 
Model 

1.86 43.08 1.22 11.34 1.80 10.05 

ACCURACY (Percentage Error) 
2009 Experimental Data 2010 Experimental Data 2011 Experimental Data 

Compared 
to Real 

Data from 
Experiment 

Compared 
to Energy 
Efficient 

Behaviors 
at 

Equilibrium 

Compared 
to Real 

Data from 
Experiment 

Compared 
to Energy 
Efficient 

Behaviors 
at 

Equilibrium 

Compared 
to Real 

Data from 
Experiment 

Compared 
to Energy 
Efficient 

Behaviors 
at 

Equilibrium 
Layered 
Network 
Model 

8.66% 3.03% 10.51% 7.32% 8.23% 1.03% 

Multi-
layer 
Interactive 
Network 
Model 

9.15% 3.88% 11.71% 10.08% 8.67% 3.18% 

 

3.6.4 Limitations 

As for all simulations, our models have limitations. First, we simulated the randomized 

network structure based solely on degree distribution. Although degree distribution is an 

essential component of network structure, other attributes (e.g. network coherence, 

clusterability and transitivity) also contribute to the overall interpretation of a network’s 

structural properties. Our research suggests that the Layered Network model is more 

appropriate for incorporating additional attributes because it has a relatively low 
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construction time, which allows for the construction of larger networks with more 

constrains at relatively low cost.  

A second limitation is based on our assumption that each layer equally impacts the output. 

In real contexts, each layer would likely exhibit a different weight on the output. Because 

it is often difficult to determine the contributing weight of each layer, a scenario analysis 

(by combining network layers at different weight combinations) would be required to 

increase the accuracy of our model and would be a fruitful topic for future research.  

A final limitation is based on our assumption that the networks are static during the 

simulation period. Real-world building occupancy networks are typically dynamic in 

terms of the connections between residents. For example, if a resident moves to another 

location, he or she will lose or alter geospatial ties in addition to potentially losing some 

or all of their social ties.  Creating open system models that enable new connections to 

form and existing connections to dissipate is an interesting model extension for future 

research.    

3.6.5 Model Application 

The simulation can be based on the observed data from experiments or given data source. 

The major network inputs are the peer network connection and geospatial location 

information. These data can be obtained from social network media and geospatial 

information database or pilot experiments. Then, the Layered Network model will 

process this information and derive input parameters for SIS simulation. The SIS 

simulation will predict the energy efficient behaviors diffusion based on the multiple 

networks’ structures. Finally, a prevalence rate at equilibrium and a prevalence curve are 
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constructed for energy consumption forecast. Given various spreading rates of all energy 

saving practices, our model is able to predict the corresponding prevalence rates. 

Incorporated the energy savings from each practice, our model enables engineers to 

estimate the saving amount of energy efficient behaviors through sharing energy 

consumption information via peer network and geospatial network. Our model also 

provides an accurate and efficient algorithm for the energy feedback system designers to 

optimize their efficiency of systems. For example, companies like OPWER and 

Welectricity can benefit from our model by providing selective information through 

multiple coexisting networks.   
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3.7 Discussion and Conclusion  

The purpose of our research was to develop an accurate and efficient model to examine 

energy conservation in layered peer and geospatial networks. The model we introduced in 

this paper is capable of developing a quantitative account of the diffusion of energy 

saving behaviors resulting from the implementation of an energy consumption feedback 

system in a multi-layer network system. To achieve this goal, we utilized random 

network theory and mean field theory to implement an analytical model that converts a 

complex multi-layer network into a single-layer network. We then compared the 

simulated output of two models and found that our model was more efficient and accurate 

than a previously published model.  

Our analytical model expands on Mean Field Theory and a SIS models (Pastor-Satorras 

and Vespignani 2001; Pastor-Satorras and Vespignani 2001) by applying them in the 

context of a layered network. Moreover, we expanded Kurant and Thiran’s (Kurant and 

Thiran 2006) research by generalizing their model to layered networks. The result 

introduces a new method to convert a multi-layer networks system to an equivalent 

single-layer network system, based on  a previously established generating function 

method (Newman et al. 2001).  

Compared to current research on energy conservation behavior in peer networks, which 

narrowly focuses on  social networks (Peschiera et al. 2010), our layered network model 

adds geospatial networks into the analysis. Our model not only analyzes the properties of 

networks, but it also simulates the residents’ energy saving response to energy 

information feedback through the two network layers, even given arbitrary degree 
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distributions. Our work provides a new method for predicting energy saving behavior 

resulting from energy consumption feedback that incorporates these two network layers. 

Crucially, the method is also scalable to larger simulated, multi-layer networks that may 

exist in real multi-layer network systems.  For example, in addition to peer networks and 

geospatial networks we might consider other forms of human networks such as 

communities of practice and hierarchical networks in commercial buildings.  We might 

also model the potential physical infrastructure network interactions such as in residential, 

office, and schools, as well as across public transportation. A large number of network 

types may provide explanatory power on energy conservation practice diffusion which 

requires a scalable methodology to examine.   

We utilized random network theory to generate a number of realistic random network 

structures to which we have applied the findings from the experimental data we collected. 

This type of experimental research has recently found that sharing energy consumption 

information through social networks promotes energy conservation by building occupants 

(Chen et al. 2012; Jain et al. 2012; Peschiera et al. 2010). However, the structure and 

characteristics of social networks vary from building to building, and the adoption of 

energy saving behaviors by residents may be conditioned by their geospatial location in 

particular buildings or on particular floors. This means that predicting the spread of 

energy saving behaviors through both social networks and geospatial networks is 

necessary if we want to develop an accurate account of energy conservation dynamics in 

and across buildings. Our simulation models allow us to test the impact of changes in the 

behaviors of residents in socio-geospatial networks, even in cases where the networks are 

heterogeneous or arbitrary.  
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Moreover, our model allows us to estimate energy saving at the building level as energy 

saving behaviors diffuse through the multi-layer network system. Thus, our models not 

only quantitatively emulate the diffusion of behavior under various network 

configurations and through multiple networks in general, but they also specifically 

contribute to our understanding of how energy saving behaviors diffuse through peer 

networks and geospatial networks to encourage energy savings.  

Our comparison of simulation models indicates that the method we propose for 

converting multi-layer networks into a single, layered network is a valid approach. The 

simulation tests indicate that our proposed layered network model is more efficient and 

accurate than the previously published multi-layer interaction algorithm. Thus, our 

research provides a more comprehensive account of changes in residents’ energy saving 

behaviors when they are exposed to real-time energy consumption feedback information 

through multiple networks.  

The model we develop in this paper can be extended in several ways by future 

researchers. For instance, our model is based on degree distribution to differentiate 

network structures. However, future research can increase the accuracy of the model 

further by capturing the attributes of real-life networks. These attributes would include, 

for example, network coherence, clusterability and transitivity. Another potential 

extension for this research is to develop a methodology capable of identifying each 

influential channel or layer and determining their weight when overlapped in a layered 

network. Finally, future research to expand the layered network model should account for 

the dynamic evolution of relationships between network actors in response to changes in 

their experience, e.g. as building occupants move or have a change in friendship status in 
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their peer network. Thus, while our model has laid the groundwork for understanding the 

diffusion of energy saving behaviors in layered social and geospatial networks, expansion 

on our model will allow for accurate long-term, quantitative prediction of how energy 

feedback can change behavior in large-scale geospatially situated peer networks.  
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Chapter 4 

4. BLOCK CONFIGURATION MODELING: A 
NOVEL SIMULATION MODEL TO EMULATE 
BUILDING OCCUPANT PEER NETWORKS AND 
THEIR IMPACT ON BUILDING ENERGY 
CONSUMPTION  

4.1 Abstract  

Recent research has shown that providing building occupants with eco-feedback 

regarding their own energy consumption and the consumption of others in their peer 

network can lead to substantial energy savings.  While empirical eco-feedback studies 

have provided valuable insights into the dynamics of energy consumption behavior and 

building occupant peer networks, such studies have faced challenges in examining 

consumption behavior in larger and more complex peer networks. Computer simulation 

and random network models offer a solution to this scalability issue, but current random 

network models are limited in their ability to mimic real world building occupant 

networks. In this paper, we propose a refined random network model, the Block 

Configuration Model, and utilize it in an agent-based energy consumption simulation.  

Results indicate that the Block Configuration Model outperforms conventional models 

when compared to empirical data from three different eco-feedback experiments.  The 

Block Configuration Model advances our understanding of the dynamics of occupant 

energy consumption and provides a tool to reduce energy consumption and associated 

emissions.  
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4.2 Introduction 

Energy has become an expensive commodity both economically and environmentally. 

The building sector is one of the largest consumers of energy and accounts for 41.3% of 

consumption and 36% of related CO  emissions (US Energy Information Administration 

2010). Traditionally, research regarding building energy efficiency has mainly focused on 

capital intensive physical improvements and retrofits. Recently researchers have begun to 

explore ways to engage building occupants to encourage energy efficient behavior by 

providing them access to eco-feedback systems. An eco-feedback system is a system that 

provides residents with detailed information regarding their energy consumption. 

Research has shown eco-feedback systems to be an effective method to reduce 

consumption (Fischer 2008) and systems are now being expanded to include normative 

comparison features that enable residents to share their energy consumption information 

with peers in the building (Jain et al. 2012; Peschiera et al. 2010; Petersen et al. 2007). 

The emergence of such normative comparison tools in eco-feedback systems has led 

researchers to examine the impact that connections between users have on energy 

consumption. Such connections can be thought to describe or form a peer or social 

network between users. Recent empirical research has shown that reductions in energy 

consumption are a function of network structure (Chen et al. 2012; Peschiera and Taylor 

2012).  This empirical work provided insight into the impact peer networks have on 

energy consumption, but were restricted to studying small scale networks due to the cost 

limitations of collecting additional data. By combining energy consumption simulation 

and computer generated random networks, researchers can examine the dynamics of 

energy consumption beyond small scales.  Current models to generate random networks 
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are limited in their applicability and do not accurately reflect the observed clustering and 

transitive properties of real building occupant peer networks. Therefore, to accurately 

simulate the energy consumption of users in building occupant peer networks exposed to 

eco-feedback systems, a new model to generate more accurate random networks is 

needed.  

In this paper, we develop a new random network model, the Block Configuration Model, 

and utilize it in an agent-based simulation to emulate the energy consumption behavior of 

users in peer networks exposed to eco-feedback.  
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4.3 Background 

4.3.1 Constraints of Peer Network Eco-feedback System Experiments 

Empirical eco-feedback experiments have been successful in eliciting energy savings 

from building occupants.  Observed savings in numerous empirical studies have ranged 

from 2% to 32% (Allcott 2011; Petersen et al. 2007; Spagnolli et al. 2011; Ueno et al. 

2006).  Normative comparison features have been recently added to eco-feedback 

systems (Jain et al. 2012; Peschiera et al. 2010; Petersen et al. 2007) to provide users with 

socially contextualized feedback.  Specifically, a recent empirical eco-feedback 

experiment (Peschiera and Taylor 2012), examined the impact a user’s position in his/her 

peer network has on their energy consumption and found that the more central and 

connected a user was the less he/she consumed. While this study (Peschiera and Taylor 

2012) provided some insight regarding the impact peer networks have on energy 

consumption, data collection occurred on a small scale due to budget, time and privacy 

concerns. Moreover, a building occupant peer network may have multifarious 

connections as a result of various attributes of residents, community culture and 

geographic location that are difficult to capture in an empirical experiment. Computer 

simulation and generated random networks offer a solution to examine beyond the 

inherent limitations of these empirical studies.  Utilizing simulation and generated 

random networks, we aim to quantify the possible savings that can be achieved from 

larger scale implementations of eco-feedback systems. 
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4.3.2 Energy Consumption Simulation  

Unlike many empirical energy consumption experiments, energy consumption simulation 

allows researchers to quantify consumption savings on a large scale. Simulation models 

are not significantly constrained by size. Input parameters of a simulation can be easily 

modified to reflect different scenarios.  For this reason, simulation has become a valuable 

tool for predicting and forecasting energy consumption. Previous simulations have aimed 

to predict and optimize energy consumption on a facility and appliance level (Hermes et 

al. 2009; Negrão and Hermes 2011) and in regards to the thermodynamic  conditions of a 

building (Pisello et al. 2012).   While such simulations offer valuable insight into energy 

consumption patterns and optimization techniques, they do not incorporate mechanisms 

to account for variation in occupant behavior.  Recent data has shown that occupant 

behavior is an important part of energy consumption(Vassileva et al. 2012) since more 

than 55% of total energy consumption in households can be attributed to occupant 

controlled actions (US Department of Energy 2010).  Hoes et al. (Hoes et al. 2009) made 

strides towards incorporating occupant behavior and proposed an energy consumption 

simulation that allows a building’s design to be optimized to actual user characteristics. 

Olofsson and Mahlia (Olofsson and Mahlia 2012) developed an energy simulation to 

model residents’ energy consumption behavior in response to changes in climate.  Similar 

work has utilized agent-based simulation to model occupant consumption on an 

individual level to characterize energy consumption patterns in commercial buildings 

(Azar and Menassa 2012). However, none of these studies incorporate the impact that 

both eco-feedback and building occupant peer networks have on occupant energy 

consumption and decision making. A recent simulation (Chen et al. 2012)  that 
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incorporated eco-feedback and peer networks found that denser and tighter networks can 

cause reductions in energy consumption.  While this study provided insight into the 

impact that peer network typology has on energy consumption, the simulation was 

limited by the accuracy and applicability of existing random network algorithms utilized 

(discussed further in section 4.3.4).  Therefore, novel random network models that more 

accurately reflect real building occupant peer networks are necessary to refine and 

expand simulations at the intersection of energy consumption behavior and building 

occupant peer networks.   

4.3.3 Parameters of Network Structure  

This paper seeks to introduce the Block Configuration Model, a refined random network 

model that more accurately reflects observed building occupant networks. By definition, 

a network consists of vertices connected together by edges. These vertices or nodes can 

be categorized through the use of metrics such as degree distribution, clustering 

coefficient, and centrality measures.  To understand the limitations of current random 

network generation models, we first introduce and define a few network structure key 

terms in Table 7.  
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Table 7 Network Structure Key Terms 

TERM DEFINITION 
Vertices Points in a network graph that represent a single entity 

Edge A connection between two vertices 
Degree The total number of edges connected to a vertex 

Degree Distribution The probability distribution for all vertices’ degrees in a network 

Clustering Coefficient 
The probability that two vertices (a, b) are connected to each other 
given that both vertices (a, b) are connected to a neighboring vertex (c)  

Degree Centrality The normalized degree of a vertex 
Betweenness 

Centrality 
The extent to which a vertex lies on a path between two other vertices 

Closeness Centrality The normalized distance between vertices 
 

4.3.4 Random Network Algorithms 

The idea of creating randomly generated networks that mimic real world networks was 

introduced by Paul Erdös and Alfréd Rényi in the 1950s and 1960s (Erdős and Rényi 

1959; Erdős and Rényi 1960) and came to be known as the EA Model. The seminal work 

of Erdös and Rényi was expanded by Barabási and Albert with their analysis of the 

theoretical network models and real world networks. Barabási and Albert revealed that 

the degree distribution of real-world social networks follows a power-law distribution 

(Barabási and Albert 1999) in what has been termed a scale-free network (Barabási et al. 

1999). The scale-free network became the basis for a second random network algorithm, 

the Preferential Attachment Model.  More recently, Newman et al. (Cohen et al. 2002) 

proposed a general model that can create random graphs with arbitrary degree 

distribution known as the Configuration Model.  We describe each of these random 

network algorithms in detail below. 

EA Model 
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The EA Model creates a random network by randomly choosing edges between vertices. 

Because each edge exists with an independent probability p, there is not a constraint 

degree distribution across a network created by the EA Model. In practice, the value of p 

is derived from experimental data. Unfortunately, because edges in the EA Model are 

chosen with a constant probability, an EA Model generated random network fails to 

capture properties observed in real world networks such as the scale-free property (Cohen 

et al. 2002) . 

 Preferential Attachment Model 

The Preferential Attachment Model relies on the scale-free property of real world 

networks and therefore operates on the premise that there is a higher probability that a 

vertex will be linked to another vertex that already has a large number of connections. 

Simon (Simon 1955) mathematically demonstrated this “rich-get-richer” effect and found 

that the effect gives rise to a power-law distribution. Barabási and Albert  (Barabási and 

Albert 1999) termed this mechanism preferential attachment and many real-world 

networks have been observed to follow this pattern. For example, researchers have been 

observed to be more likely to cite papers that are already highly cited (Redner 1998).  

The Preferential Attachment Model has two major constraints that limit its effectiveness 

to generate networks that mimic real world networks. The first is that the model can only 

generate a purely connected network, one that is completely connected and therefore has 

only one component.  This assumption of a singular component does not reflect real 

world networks. The second is that the degree distribution cannot be controlled, therefore 

leading to degree distributions that do not mimic real world conditions.  

Configuration Model  
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The Configuration Model was created in response to the degree distribution constraint of 

the Preferential Attachment Model and creates a network with constant degree 

distribution. The Configuration Model algorithm begins by specifying the degree 

distribution for the network and assigns a degree for each vertex based on that 

distribution. Then, it gives each vertex k stubs, k is the degree randomly generated 

according to an arbitrary distribution. A stub is half an edge that is only connected to one 

vertex. Next, the algorithm chooses two stubs uniformly at random and connects these 

two stubs to form an edge between the two vertices. The algorithm then reduces the 

degree of two vertices by one, and repeats this process until all vertices are assembled 

together and no stubs are left.  

The Configuration Model is also constrained in that it only specifies degree distribution 

and does not set any limits on the other structural parameters of a generated network. 

Specifically, the model is not flexible enough to generate networks with structure similar 

to those observed in building occupant peer networks. One major assumption of the 

Configuration Model is that the vertices are drawn uniformly when selecting vertices 

randomly to reconstruct the network. This assumption is likely to result in the model 

missing important structural features of the network. For example, the network can be 

compacted tightly like a fish net or be spread widely like a chain. Furthermore, real-world 

networks show strong clustering and transitivity, where configuration models do not 

(Newman 2003).  

In this paper, we aim to build an improved Configuration Model to generate more 

accurate and realistic networks. We develop a refined model, the Block Configuration 

Model by building a degree correlated block model, separating the adjacency matrix into 
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blocks according to connectivity, and then reconstructing the network.  To validate the 

Block Configuration Model, we utilize it in an agent-based simulation of peer network 

energy consumption and compare the results against the EA Model, the Preferential 

Attachment Model and the Configuration Model. 

   



99 

 

4.4 Methodology  

4.4.1 The Block Configuration Model Algorithm 

Due to the constraints of existing simulation algorithms and empirical eco-feedback 

experiments, the Block Configuration Model algorithm is specifically designed to 

simulate building occupant peer networks. The occupant peer networks during 

experimental periods are small in size, disconnected in components and complex in 

structure. Therefore, the Block Configuration Model aims to create simulated networks 

that mimic the structural traits of the networks observed in empirical eco-feedback 

experiments.  

The basic idea of the proposed Block Configuration Model is to generate a random 

network in blocks so that the generated network is consistent with structural properties of 

an observed network. The simulation process consists of three steps and is shown in 

Figure 14. The first step collects the simulation inputs by parsing an observed network 

for structural information. We adopt the block model from the field of social network 

analysis theory to separate a network into blocks and components. The second step 

simulates the network block by block and then assembles the blocks together. The third 

step functions as a filter to reject networks that do not meet the structural parameters 

collected from the first step.  

Through the network parsing process the following information is determined from the 

observed network: (a) Proportion of the network that is part of the small components and 

giant component, (b) Size distribution of the small components and degree distribution of 

the giant component, (c) Block model and density matrix of the giant component, and (d) 
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Cluster coefficient and centrality coefficients for the entire network. (a), (b) and (c) are 

collected as simulation inputs for the second step; (d) is utilized in the selection of 

qualified networks.  

 

Figure 14 Constructing Networks Using Block Configuration Model 
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4.4.2 Parsing the Input Network for Parameters (Step 1) 

The main objective of a block model is to separate the network into blocks and use 

connections between blocks instead of connections between vertices to describe the 

network. The graph of connections between blocks is called a reduced graph. To separate 

the network into blocks, the idea of structural equivalence was introduced by researchers 

(Everett and Borgatti 1994).  Two vertices are structurally equivalent if they have 

identical ties to and from the same vertices. We use the established factions partitioning 

method (de Amorim et al. 1992) to arrange network vertices into blocks. The factions 

partitioning approach divides a dichotomous network (only have 1 or 0 in adjacency 

matrix) into n groups, then counts the number of missing ties within each group summed 

with the ties between the groups and takes that as measure of the extent to which the 

groups form separate clique like structures. In other words, within one particular faction, 

vertices are more tightly connected to one another than they are to members of other 

factions. The algorithm can form any number of groups that the user inputs by seeking to 

maximize connections within the groups, and minimize connections between the factions. 

As an example, Figure 15 shows the construction of a block model using the faction 

partitioning method for a peer network collected in a previous empirical energy 

experiment.   
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Figure 15 Block Model for a Sample Experiment Peer Network 

 

4.4.3 Constructing the Network using Blocks and Components (Step 2) 

The Block Configuration Model generates and constructs networks by components and 

blocks. In the real world, a network can be any combination of small components and 

giant components and the giant components can be divided into multiple blocks. The size 

of the giant component increases with the expansion of networks, but the size of small 
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components remains same and follows a certain distribution. The heterogeneity in their 

behavior requires us to simulate the giant components and small components separately. 

Small Components Blocks 

In order to generate the small components of a network, we need to determine the 

expression for the distribution of components size. Let  be the probability that a vertex 

has degree  and let  be the probability that a vertex has excess degree . Excess 

degree is the number of stubs that are not connected to the existing generated network 

(Newman 2010).  

Excess degree is a function of degree and probability that a vertex has a certain number 

of degrees.  The formula to calculate excess degree is: 

1
〈 〉

 (4.1)

 is the probability a vertex has 	excess degree; 

 is the probability a vertex has 1 degree 

As a result, the probability generating functions for  and  are: 

	
,  (4.2.a)

For these equations, we know the exact number  of vertices having degree 	for each 

degree  from the network’s adjacency matrix. Therefore, we can write the probability 

generating functions in terms of   as the following: 

∑
∑

,
∑ 1
∑ 1

 (4.2.b)
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As noted earlier in Equation (4.1), there is a direct relationship between degree 

distribution and excess degree distribution, utilizing this relationship we can derive the 

following: 

1
 (4.3)

It is not always possible to find the closed form of  under some conditions, so we 

have to approximate its form numerically.   

In the end, we aim to quantify the probability that a randomly chosen vertex belongs to a 

small component of size  defined as . Doing so will allow us to find the explicit 

expression of component size distributions and implement accurate simulation for small 

components. The small component distribution ( )  given by Newman (Barabási et al. 

1999) is defined as: 

																						 , 1
〈 〉
1 !

, 1 (4.4)

Giant Component Block  

A giant component in a network is a component whose size grows as the size of the 

network increases. Giant components differ from small components whose size is 

deterministic in that giant components can expand in size dynamically. While it is 

common for networks to have a giant component, it is not always the case. The existence 

of a giant component depends on the parameters of the degree distribution of the 

network.  
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In order to create a more accurate random network, our model permutes the giant 

component’s adjacency matrix in order to rearrange the adjacency matrix into blocks 

according to each block’s density.  The density of a block is the proportion of ties in the 

block divided by the total of number of possible ties.  A density matrix is then formed by 

summing the densities for each block. The density matrix enables us to construct 

networks block-by-block rather than uniformly picking connections as is the case in the 

ER Model and Configuration Model.   

Assembling Blocks and Components  

The next step is to calculate a probability for each block by normalizing the vertex degree 

across the block. According to this probability, stubs are selected and connected to form 

the giant component.  The giant component is then combined with the small components 

to create the complete generated network.  

4.4.4 Reject Unqualified Networks (Step 3) 

In order to determine which randomly generated networks most accurately represent the 

observed real network, we need to compare the clustering coefficient and centralities of 

the simulated network and the observed network. The clustering coefficient is the 

parameter to quantify transitivity, which is a network structural parameter we introduced 

in section 4.3.2. After step 2, the clustering coefficients and centralities will be calculated 

for each newly generated network. Generated networks that do not meet the coefficient 

criteria derived from observed networks will be rejected. However, a direct comparison 

of the clustering coefficients of the generated networks and the observed network cannot 

be made because the networks are of different sizes.  If we assume a vertex v has at least 
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two neighbors, which we will denote i and j and i and j are both extended from v, then the 

degree of i and j, denoted as  and , both follow the excess degree distribution of the 

network. Then, the probability that there exists an edge between i and j is  . Based on 

the law of total probability, we can formulate: 

2
,

1
2

 (4.5)

If we substitute Equation (4.4) into Equation (4.5), we can formulate: 

1
2 〈 〉

1
1

2 〈 〉
1

1 〈 〉 〈 〉
〈 〉

 

(4.6)

From Equation (4.6), we observe that  is a function of n (the network size and degree 

distribution). Even if the simulated and observed network have the same degree 

distribution, the value of  can still vary with network size.  is a random output for each 

simulated network. In our model, we calculate   from experimental data as a benchmark 

to determine qualified networks from erroneous randomly generated networks.  To make 

this comparison, we use an adjusted clustering coefficient to account for the variance in 

network size:   

 (4.7)

 is the clustering coefficient derived from experimental or observed network.  is the 

number of vertices in an experimental or objective network.  is the size of the network 
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we are going to simulate.  is the calibrated clustering coefficient we use as a 

benchmark to select qualified networks in our Block Configuration Model.  

4.4.5 Sample Simulated Network 

The computational algorithm developed from the model process and a sample network 

constructed from the algorithm is shown in Figure 16.  

 

Figure 16 Block Configuration Model Algorithm 
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4.5 Simulating and Validating the Block Configuration Model 

4.5.1 Eco-feedback Empirical Experiments 

Previous research has studied how much energy individuals can conserve through the use 

of a normative eco-feedback system. The amount of energy conserved has been observed 

to be highly dependent on the structural position of individuals within their peer network 

(Peschiera and Taylor 2012; Peschiera et al. 2010). The Block Configuration Model is 

utilized to simulate the behavior of networked building occupants when they are exposed 

to eco-feedback. The occupant peer network data used as an input to the simulation was 

collected as part of multiple energy efficiency experiments conducted in a multi-floor 

building in New York City from 2009 to 2011. In the experiments, residents of a multi-

family residential building were exposed to an eco-feedback system that provided 

information on their own energy use as well as the energy use of their peers located in 

other apartments in the building. Prior to the experiments, residents in the experimental 

study group were asked to self-identify their friends so that a peer network for the 

building could be constructed. The experimental data set includes data collected from 

three different studies conducted in a test-bed building between 2009 and 2011.  

4.5.2 Simulating the Networks from the Empirical Experiments 

We executed an agent-based simulation to emulate the energy consumption patterns of 

residents for each of the three experimental data sets. The inputs for the simulation are 

the connectivity and structural information of the observed peer network from each 

experiment.  
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In order to compare the performance of the Block Configuration Model against 

conventional random network generation models we simulated a series of networks using 

four different algorithms (ER Model, Preferential Attachment Model, Configuration 

Model and the Block Configuration Model we introduce in this paper). The simulation 

process of Block Configuration Model follows the process displayed in Figure 16. The 

process begins by deriving and scaling the basic structural information from the peer 

networks observed in the energy efficiency experiment as input for the network 

simulation. Then, by using this information as input, the simulation algorithm is used to 

generate a series of random networks. During the simulation, we generated 1,000 

qualified random networks, each with 1,000 vertices for each random network model. 

Each of the random network models is compared to the energy simulation of the observed 

real network to determine relative performance. 

There are two primary considerations in comparing our random network model with 

conventional models. The first is how close the coefficients of our synthetic networks are 

to the observed network. The second is how these generated networks perform in 

simulating residents’ energy consumption.  
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Table 8 Comparison of Network Structural Parameters between Random Network 
Simulation Models (2011 Experiment) 

Mean 
Values 

Observed 
Network 

ER Model 
Preferential 
Attachment 

Model 

Configuration 
Model 

Block 
Configuration 

Model 
Proportion 
of small 
components  

45.45% 0% 0% 74.96% 45.45%

Proportion 
of giant 
component  

54.55% 100% 100% 25.04% 54.55%

Adjusted 
Clustering 
Coefficient* 

6.6E-3 7.3E-2 1.7E-3 1.4E-3 6.5E-3

Degree 
Centrality  

1.72 69.59 2.00 1.71 1.70

Betweenness 
Centrality 

3.6E-2 1.5E-3 5.4E-2 1.7E-1 2.4E-2

* Adjusted Clustering Coefficient is a scale factor that adjusts the clustering coefficient based on the 

network size in accordance with Equation (4.5). 

 

As can be observed from Table 8, one of the most important advantages of the Block 

Configuration Model is that it generates a random network with structural parameters 

(i.e., proportion of small and giant components) consistent with the observed network. 

Since the Block Configuration Model takes the proportion values as a control variable 

and simulates each block separately, it can more accurately represent the combination of 

component blocks compared to the conventional models. The Block Configuration Model 

also has a higher accuracy for the transitivity property as evidenced by the close 

alignment with the observed network’s adjusted clustering coefficient. This is due that 

fact that the Block Configuration Model rejects unqualified networks that do not meet the 

clustering coefficient criteria relative to the experimental data. While the Block 

Configuration Model is observed here to be more accurate than the conventional models 
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on all metrics, it is still unknown at this point if this improvement will translate into a 

more accurate prediction of energy consumption. 

4.5.3 Simulating Energy Consumption 

Although we have confirmed the structural consistency of the Block Configuration Model 

with the real-world experimental network, it is still necessary to determine how the Block 

Configuration Model performs relative to conventional models in an energy consumption 

simulation. To determine this, we created an agent-based simulation model to emulate the 

energy consumption patterns derived from each of the experimental data sets. In addition 

to simulating the energy consumption in the real experimental network, we also executed 

the simulation using the networks generated by the Block Configuration Model and the 

other three conventional algorithms.  

Based on the observed behaviors of residents in the experiment, we created a decision 

model for all agents as shown in Figure 17. Each agent in the simulation can interact with 

other agents to whom the agent is directly connected to within the peer network. The 

decision flow is based on the comparison of the agents’ energy consumption. We 

differentiate a given agent on the basis of whether the given agent is connected to another 

agent that uses less energy than itself. This assumption is based upon the observation of 

Peschiera and Taylor (Peschiera et al. 2010) that people have a higher probability to take 

actions to save energy when they are connected to a person who uses less energy. Once 

the agents make their decision to save or not save energy, the decrease and increase to the 

amount of energy used follows a Geometric Brownian Motion process. Since the 

Geometric Brownian Motion process is a percentage drift, it is not only able to simulate 
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the increase and decrease amount as random variables, but also assures the energy 

consumption is non-negative value.  

 

Figure 17 Decision Model (Agent-Norm) for Agent-based Simulation 

The simulation inputs are derived from three experiments separately and displayed in 

following Table 9. 
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Table 9 Agent-based Simulation Inputs  

Probabilities for Decision Making 

2009 Experiment 
Probability to 

Decrease Energy 
Consumption  

Probability to Increase 
Energy Consumption 

Connected to a Neighbor Using Less Energy 0.40 0.60
Not Connected to a Neighbor Using Less Energy  0.65 0.35
 

2010 Experiment 
Probability to 

Decrease Energy 
Consumption  

Probability to Increase 
Energy Consumption 

Connected to a Neighbor Using Less Energy 0.64 0.36
Not Connected to a Neighbor Using Less Energy  0.40 0.60

 

2011 Experiment 
Probability to 

Decrease Energy 
Consumption  

Probability to Increase 
Energy Consumption 

Connected to a Neighbor Using Less Energy 0.59 0.41
Not Connected to a Neighbor Using Less Energy  0.37 0.63
 

Parameters for the Geometric Brownian Motion process 

 
2009 Experiment 2010 Experiment 2011 Experiment 

% Increase % Decrease % Increase 
% 

Decrease 
% Increase 

% 
Decrease 

Mean 45.05 18.18 26.99 18.58 23.78 17.21
STD 72.65 16.95 38.91 15.23 30.42 13.13

 

Parameters for Lognormal Distribution 

 
2009 Experiment 2010 Experiment 2011 Experiment 
Mean STD Mean STD Mean STD 

Lognormal Distribution 1.55 1.17 0.79 0.58 0.59 0.27
 

 

4.5.4 Comparison of Models 

Observed peer networks from the 2009, 2010 and 2011 experiments have a small number 

of vertices and are assumed to remain stable during the study period.  To maintain 
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consistency, the networks generated by the Block Configuration Model and the other 

three conventional algorithms all contain the same number vertices for each simulation 

run. The simulation duration is set to 60 days and the initial energy consumption of 

agents is simulated based on the control groups’ energy consumption in each experiment. 

Each simulation algorithm is tested for 1,000 runs and each run rebuilds another random 

network using the same algorithm. One single simulation run simulates all agents’ energy 

consumption and interaction through the whole 60 day period. The normalized simulation 

results are summarized in Figure 18.  
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Figure 18 Energy Consumption Simulation to Compare Models across Three 
Experimental Data-sets 

Figure 18 shows that the EA Model is the least accurate random network model and that 

the Block Configuration Model and Configuration Model are relatively reliable compared 
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to the other two algorithms. While the Configuration Model is stable, it is clearly visible 

that the average energy consumption simulated by the Block Configuration Model is 

closest to the observed network energy consumption and therefore, performs better than 

the other conventional models in terms of accuracy. Detailed error comparisons for each 

random network model are provided in Table 10.  For each of the three experimental 

data-sets, the Block Configuration Model resulted in the lowest percentage error of the 

four models investigated. 

Table 10 Average Errors Compared to the Observed Network  

 
ER Model 

Preferential 

Attachment 

Model 

Configuration 

Model 

Block 

Configuration 

Model 

Error (%) Error (%) Error (%) Error (%) 

2009 
Experiment 

21.05 8.85 15.59 1.39

2010 
Experiment 

0.99 9.53 3.40 0.56

2011 
Experiment 

12.88 3.53 1.74 0.34
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4.6 Discussion 

The goal of this research was to develop an accurate and reliable simulation to emulate 

energy consumption behavior when occupants are exposed to eco-feedback.  To do so, 

we introduced the Block Configuration Model, a new model for generating more accurate 

random networks used in energy consumption simulation. The Block Configuration 

Model expands on the conventional Preferential Attachment Model and Configuration 

Model (Newman et al. 2001) by separating the observed network into blocks and 

reassembling them using the density matrix. The giant components’ structures in the 

observed network (Figure 15(d)) are similar to those generated by the Preferential 

Attachment Model, but because the Preferential Attachment Model does not incorporate 

the disconnectivity in small components it overestimates the network’s potential energy 

savings. At the same time, although the Configuration Model may be capable of 

generating disconnected components, researchers lack the control over the size and 

connectivity of network components. The Block Configuration Model allows researchers 

to control the network size and connectivity thus ensuring that the resulting generated 

network is consistent with each observed network’s clustering and transitivity properties. 

Specifically, in the three observed building occupant networks we can see that 

connectivity and clustering of occupants varies greatly across the three data sets.  We 

postulate that this variance can be attributed to the multifarious connections of a building 

occupant network related to geo-spatial, social and community issues. Therefore, when 

simulating building occupant networks the freedom to control network size and 

connectivity are crucial to generating networks that mimic real life networks.  When 

compared with the conventional random network generation models (ER Model, 
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Preferential Attachment Model and Configuration Model), the Block Configuration 

Model is most consistent with the structural properties of the observed network.  This 

consistency is highlighted the most by the fact that the ratio of small components to giant 

components is almost identical to the observed network (Table 8) and is a direct 

reflection of the Block Configuration Model’s flexibility in controlling connectivity 

parameters.   

The agent-based energy behavior simulation results indicate that the Block Configuration 

Model is the most accurate in predicting the energy consumption of building occupants 

exposed to eco-feedback.  The Block Configuration Model is shown to outperform the 

conventional models for all three experimental data sets.  While one would expect the 

performance of the conventional models to be consistent across each experimental case, 

further analysis of the results in Figure 18 shows this not to be the case.  The simulation 

results for the 2009 experiment indicate the Preferential Attachment Model to be the 

second most accurate at simulating the occupant network’s energy consumption behavior, 

while for the 2010 experiment it was the ER Model.  In the 2011 experiment, the 

Configuration Model is the second most accurate at simulating the consumption behavior.  

This variance in the results further highlights the ability of the Block Configuration 

Model to adapt to different types of building occupant networks and, in turn, yield more 

accurate simulations of occupant energy consumption behavior.     

This research extends current energy efficient behavior simulation literature by 

developing a model that is able to integrate the impact of eco-feedback systems and 

occupant peer networks. Energy consumption simulation allows researchers to quantify 

consumption savings on a large scale, which is not easily implemented in empirical 
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experiments (Azar and Menassa 2012; Hoes et al. 2009). Current behavior simulation 

research (Azar and Menassa 2012; Haas et al. 1998; Hoes et al. 2009) has been limited to 

modeling individual energy consumption behavior by residents and not how the 

interactions between residents impacts consumption behavior. Models that incorporate 

peer network interactions allow us investigate the behavior patterns of people who are 

socially connected to each other.  While these models increase the understanding of 

individual consumption behavior, they do not reflect real world conditions in that a 

person’s conservation decision making is highly dependent on social norms (Goldstein et 

al. 2008). Therefore, our simulation model extends current energy consumption behavior 

research by introducing network theory to account for interactions between residents. 

Rather than simulating each resident’s behavior separately, we model that residents in a 

building are connected to each other and form an occupant peer network. Doing so 

enables us to simulate the energy consumption decision making process on an occupant-

by-occupant basis, which is more robust than previous simulations and simultaneously 

incorporates the impact of socially contextualized eco-feedback.  Results of this 

simulation and the introduction of the Block Configuration Model open up several 

pathways in the field of energy behavior simulation. In our simulation we assume that the 

network we are going to simulate is a single complex network. However, networks in the 

real world can be much more complex. A single-layer network may actually be composed 

of a network system with multiple layers.  Future energy behavior simulations can 

expand upon this work by adding additional layers to the network modeling process using 

the Block Configuration Model. Such an extension of energy behavior simulations will 

also enable researchers to further account for other sociotechnical interactions of building 
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occupant networks and eco-feedback systems and increase the predictive power of energy 

behavior simulations. Moreover, more sophisticated and predictive network based energy 

behavior simulations can be utilized to extend empirical experiments to the city scale and 

yield a deeper understanding of large scale energy consumption patterns. Findings from 

such large scale energy behavior models could have important implications on the 

planning and design of energy policy and infrastructure systems.  
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4.7 Limitations 

While the Block Configuration Model is more accurate than its conventional counterparts, 

it is not without limitations. Similar to the Configuration Model, the generated network 

may contain either loops or multi-edges. When randomly connecting the generated 

vertices, if one vertex cannot find a counterpart to connect, it may connect to itself (loop) 

or connect to a counterpart already connected (multi-edge). However, the average 

number of loops and multi-edges in the configuration model remains constant even when 

the networks grows, which means that the density of loops and multi-edges trends to zero 

when the network is large enough (Itzkovitz et al. 2004).  A second limitation of our 

agent-based energy consumption simulation is the assumption that building occupants’ 

energy consumption is dependent on consumption information sharing.  While this may 

not be the case in all sample populations, previous research (Jain et al. 2012; Peschiera 

and Taylor 2012; Peschiera et al. 2010) has provided statistically significant evidence of 

such dependence in several experiments.  Moreover, to further ensure our simulation 

reflects real life conditions and consumption behavior we utilized inputs derived from 

three different empirical experiments.   
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4.8 Conclusion  

In this paper we proposed a refined model to simulate random networks, the Block 

Configuration Model, and implemented it in an agent-based energy consumption 

simulation. The results of the simulation indicated that the Block Configuration Model 

outperforms the conventional random network generation models in predicting the energy 

consumption of networked users exposed to eco-feedback across three separate 

experimental data-sets. Specifically, the Block Configuration Model was found to be 

more accurate in replicating the structural parameters of an observed real world building 

occupant network by incorporating inputs of transitivity, clustering and centrality 

information.    

The introduction of normative eco-feedback systems has allowed researchers to collect 

data regarding the impact a building occupant peer network has on consumption.  

However, empirical studies that aimed to examine the dynamics of occupant consumption 

behavior in these systems have been limited in their ability to assess such dynamics at 

large scales. Research at the intersection of energy consumption simulation and building 

occupant peer networks can fill this gap by utilizing the flexibility and generalizability of 

computer simulation techniques and random network models.  By gaining a deeper 

understanding of the dynamics occurring between occupants in large networks, 

researchers may be able to formulate behavioral interventions that leverage peer networks 

and maximize energy savings.  Because buildings account for a substantial portion of 

CO2 emissions, such interventions could provide significant and sustainable reductions in 

emissions and help to realize more energy efficient buildings and cities. 
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Chapter 5 

5. CONTRIBUTIONS 

5.1 Theoretical Contributions 

I began this dissertation by pointing out the significance of the role of peer networks in 

our modern society. Later, I outlined the major components of peer network structure that 

impact energy efficiency in residential buildings. I proposed an occupant network 

decision model to emulate the process of information diffusing through peer networks. 

To refine this decision model, I conducted research on multi-layered network systems to 

layer peer networks and research on random networks to develop a block configuration 

model.  In its entirety, the contributions of this research develop a deeper understand and 

build theory regarding Peer Network Energy Efficiency. The findings presented in this 

dissertation provide new knowledge on how networks affect occupant decisions and 

extend the experimental efforts to more general networks that empirical studies have not 

covered before. The theoretical and academic contributions of Chapter 2 through 4 can be 

found in following subsections. 

Chapter 2: Modeling Building Occupant Network Energy Consumption Decision-

Making: The Interplay between Network Structure and Conservation 

Earlier experimental research had found that sharing energy use information through peer 

network promotes energy conservation by building occupants (Fischer 2008; Peschiera et 

al. 2010; Petersen et al. 2007). However, the topology of networks can be different from 

building to building. If researchers want to predict the energy saving behaviors in 



124 

 

buildings where experimentation is not possible, simulation would be an appropriate 

choice. However, before simulation can be used we need an understanding of a network 

structure’s impact on energy conservation behavior.  

In Chapter 2, I proposed an agent-based model and confirmed the validity of peer 

network’s impact on energy saving behavior. The model suggests that feedback should 

focus on those residents with stronger connections rather than more connections. More 

connections have a limited benefit in terms of enhancing energy efficiency.  The odds 

ratios of logistic regression in validation test also indicate that non-adjacent vertices have 

an insignificant impact on the object vertex during the same period. In other words, 

people who are directly connected to residents have higher impact. In all, the goal of 

Chapter 2 was achieved both in the agent-based simulation model and the regression test; 

these models confirmed that the structure of network had a substantial impact on energy 

efficient behaviors. This conclusion is consistent with experimental networks by other 

researchers’ work (Peschiera and Taylor 2012), but may now be applied more broadly to 

other buildings.      

Chapter 3: Layering Residential Peer Networks and Geospatial Building Networks to 

Model Change in Energy Saving Behaviors 

The purpose of Chapter 3 was to build upon the work in Chapter 2 to develop an accurate 

and efficient model to examine energy conservation behaviors in layered peer and 

geospatial networks. In most cases, an individual’s peer network is not isolated from 

other networks and these networks also impact energy saving behavior simultaneously. 

One potential channel for energy efficient behavior adaptation is from neighborhoods. 
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Geospatial networks may co-influence energy efficient practices spreading within peer 

networks. However, previous research in energy efficiency and network theory study 

networks independently and exclusively. My research developed an efficient and accurate 

quantitative model that is able to capture the dynamics of multi-layered network systems 

under perturbation. Expanding the Mean-Field Theory and SIS model (Pastor-Satorras 

and Vespignani 2001, 2002), the model simulates the energy efficient behaviors as 

diseases spreading through multiple channels. The findings in Chapter 3 complement the 

basic model in Chapter 2. The method is also scalable to larger and more complex 

simulated, multi-layer networks. For example, the networks of communities of practices, 

the hierarchical networks in commercial building, transportation networks and internet-

connected networks.    

Chapter 4: Block Configuration Modeling: A Novel Simulation Model to Emulate 

Building Occupant Peer Networks and Their Impact on Building Energy Consumption 

In this chapter I developed an accurate and reliable model that can emulate energy 

efficient peer networks so that the randomly generated networks possess similar attributes 

to the target network. Superior to the Configuration Model (Newman 2010), the Block 

Configuration Model is able to reflect the target network’s clustering and transitivity 

profile. To achieve this goal, we utilized random network theory and block models to 

implement the conventional configuration model, which can construct arbitrary degree 

distribution networks. The comparison between the parameters of the simulated output 

for all three models (the Preference Attached Model (Barabási and Albert 1999), 

Configuration Model (Newman 2010), and Block Configuration Model) to experimental 

data found that the Block Configuration Model I developed is more accurate than the 
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other models. Therefore, my model allows researchers to generate arbitrary random 

networks with a controllable structural coefficient. This effort makes it possible to more 

accurately evaluate the performance of energy efficient feedback systems deployed to 

peer networks.  
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5.2 Practical Contributions 

The models in this dissertation serve as a wind tunnel test for energy feedback system 

design in various networks. The basic decision model in Chapter 2 identifies the most 

significant structural parameters in networks that can help designers of eco-feedback 

systems to find out what information is important and how to distribute this information 

to residents. The layered network model helps designers to create and evaluate multiple 

network feedback channels. The block configuration model assists designers in building 

desired networks for testing energy efficiency interventions in certain peer groups.  

The introduction of network theories allows engineers to collect meaningful and selective 

information that impact building occupants’ energy consumption.  However, studies that 

aimed to examine the dynamics of occupant consumption behavior in these systems have 

been limited by their ability to scale. Research at the intersection of energy consumption 

simulation and building occupant peer networks may fill this gap by combining computer 

simulation techniques with network models. With a deeper understanding of peer 

network dynamics, researchers may be able to formulate behavioral interventions that 

optimize energy savings. Buildings account for a considerable portion of CO2 emissions 

in our society, such interventions could enable significant and sustainable reductions in 

emissions. Multilayer network system modeling and block configuration modeling will 

allow engineers to quantify the savings resulting from energy efficient behaviors through 

sharing energy consumption information via peer networks and geospatial networks. 

These models are also quantitatively accurate and efficient to develop.  
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One potential specific application for my research is the improvement of social media 

energy efficiency applications. Many energy companies are working hard to provide 

more feedback to their consumers. For example, OPOWER, one of the leading energy 

information software companies, set up a platform that enables utilities to provide 

targeted energy data and advice to each customer. Sixty-five utilities partner with 

OPOWER to improve their energy-efficiency feedback system and motivate their 

customers to become more energy efficient. Starting from April 3rd 2012, people can 

access a social media app on Facebook to directly connect with their utility account and 

track their energy consumption and share energy savings accomplishments with their 

friends. The social app can compare energy use to similar homes and among friends and 

automatically import energy data for their providers. Although these companies introduce 

the idea of peer networks into their products and services, we still have limited 

understanding of the role of networks in energy conservation behaviors. In addition, the 

benefits of connecting multiple layers of residency networks (for example, geospatial 

networks and peer networks) may potentially be a new approach to promote energy 

savings. Therefore, our models are able to provide theoretical support for further practical 

development of these feedback systems.   
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Chapter 6 

6. FUTURE RESEARCH 

Although the topic of energy efficiency has been studied for decades, little research has 

been based on the theory of human and spatial networks. At the same time, the 

development of communication and transportation technologies enables more profound 

connections between energy users and significantly influences their daily energy 

consumption. My dissertation has pointed out the importance of the structural topology of 

networks in modeling energy efficient behavior and has proposed a set of numerical and 

simulation models to understand peer network mechanisms. However, this approach only 

addresses a small piece of a very complex puzzle. Thus, future research is still necessary 

on following topics: 

1. Develop geospatial networks research to promote energy efficient behavior 

diffusion 

Many researchers have realized that physical closeness is an important factor  

with the potential to change human behavior. For example, the “neighborhood 

effect” servers as an efficient channel through which to facilitate the diffusion of 

practices and innovations (Cartigny et al. 2004; Hagerstrand 1968; Haggett et al. 

1977; Roberts et al. 2004). However, these empirical studies do not consider the 

geospatial locations of interconnected networks. The concept of “neighborhood” 

in this line of research is too broadly and ambiguously defined to quantify its 

distance and accessibility. In addition, to enable research on a larger scale, it is 

appropriate to model neighborhood relationships as an interconnected geospatial 
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network for computational convenience. Therefore, eco-feedback strategies based 

on geospatial network research can make potential contributions to our 

understanding of the diffusion of energy efficient behavior. 

 

2. Optimize energy efficient practice diffusion in multiple networks 

Building occupants are connected by heterogeneous networks, which are 

characterized by their social status, physical locations and shared activities. 

Energy-saving practices can be transmitted via these networks at various rates. 

Similar to other efforts at network flow optimization, researchers can optimize 

behavior diffusion through selecting, incorporating and manipulating networks by 

their types, structures and breadth. Management of the itemized practices 

diffusion through multiple networks can be a novel practical strategy to promote 

energy efficiency. 

 

3. Conduct experiments and simulations on multiple buildings 

As with building occupants, buildings are also members of network. Measuring 

and sharing the building energy consumption profiles in a building network 

perspective can expand the range and scope of eco-feedback system research from 

the building level to the community level. Moreover, in addition to information 

sharing, buildings may have more complicated physical interactions with each 

other in a network, for instance due to mutual shading and the resultant thermal 

exchange. Studying buildings in networks could increase our knowledge on inter-

building energy consumption relationships.  
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4.  Provide customized feedback by community 

Another potential research opportunity is to anticipate the whole building 

response to eco-feedback systems according to local community features (e.g. the 

educational background, income level and culture diversity of the communities’ 

residents). Community features could differentiate residents’ response to eco-

feedback. Through the research on community features, researchers will be able 

to identify and estimate the role of different types of feedback. In other words, 

customized feedback based on community features is a potential approach to 

enhance energy efficiency at the level of the local community.    
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