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ABSTRACT 

 
P-REX2 PH Domain Inhibition of PTEN Regulates Transformation, Insulin Signaling, and 

Glucose Homeostasis 
 
 

Cindy Hodakoski 
 

PTEN, a tumor suppressor lost in multiple cancers, antagonizes PI3-kinase signaling by 

dephosphorylating the second messenger phosphatidylinositol (3,4,5) trisphosphate.  PTEN 

expression and enzymatic activity is regulated through various mechanisms, including oxidation, 

phosphorylation, and protein-protein interactions.  Our lab has recently identified a PTEN 

interacting protein, the Rac GEF P-REX2, which inhibits PTEN phosphatase activity in a non-

competitive manner.  This thesis focuses on understanding the physiological relevance of this 

interaction in the regulation of PI3K signaling, as well as determining the mechanism of P-REX2 

mediated PTEN inhibition.  The first chapter focuses on the role of P-REX2 overexpression in 

PI3K signaling, proliferation, and transformation.  We first find that P-REX2 Rac GEF activity is 

dispensable for PTEN inhibition by utilizing a P-REX2 GEF dead mutant N212A. Next, we 

determined the effect of P-REX2 overexpression on PI3K signaling in normal mammary 

epithelial cells.  Expression of P-REX2 or the DHPH inhibitory domain increased AKT 

phosphorylation, promoted cellular proliferation, and disrupted acini morphogenesis.  

Furthermore, P-REX2 cooperated with other oncogenes, including the PI3K E545K oncogenic 

mutant, c-MYC, and HER2 to promote proliferation, colony formation in soft agar, and tumor 

formation in mice.  We also analyzed the effects of expression of P-REX2 cancer mutants, and 

discovered two transforming mutants, V432M and R498I that cooperated with PI3K E545K to 

increase anchorage independent growth and cellular proliferation. 



The next chapter examines the role of P-rex2 in PI3K signaling regulation in vivo.  We generated 

Prex2 knockout mice using a gene trap method, and found that baseline signaling and 

proliferation in fibroblasts was not affected by P-rex2 deletion.  However, insulin and IGF-1, but 

not PDGF or EGF stimulated PI3K signaling was reduced in Prex2-/- fibroblasts.  The activity of 

PTEN from Prex2+/+ fibroblasts was reduced following insulin stimulation, but remained 

elevated in Prex2-/- cells, suggesting that insulin stimulated PTEN inhibition is dependent on P-

rex2.  Furthermore, P-REX2 interacted with phosphorylated insulin receptor and recruited PTEN 

to the membrane following insulin stimulation.  Prex2-/- mice are intolerant to insulin and 

glucose, and have reduced PI3K signaling in the fat and liver following insulin stimulation.  

Furthermore, the activity of PTEN from Prex2-/- liver samples is elevated, and correlated with a 

decrease in cellular PIP3 levels. 

 

After uncovering an essential role for P-REX2 in PI3K signal transduction, we next examined 

the mechanism and regulation of P-REX2 mediated PTEN inhibition.  We found that P-REX2 

interacts with two different sites on PTEN.  The PH domain of P-REX2 bound to the 

phosphatase and C2 domains of PTEN, while the inositol polyphosphate-4 phosphatase domain 

interacted with the PDZ-binding domain on the PTEN C-terminal tail.   We discovered that the 

PH domain was the minimal domain that constitutively inhibited PTEN.  However, the DHPH 

domain and full length P-REX2 required phosphorylation of the PTEN C-terminal tail for 

inhibition, suggesting the DH domain of P-REX2 restricts PH domain inhibition of PTEN when 

the C-terminal tail of PTEN is unphosphorylated.  Furthermore, the PH domain of P-REX1 was 

not able to inhibit PTEN, and full length P-REX1 did not interact with PTEN, suggesting that 

there is a level of specificity involved in P-REX2 PH domain mediated phosphatase inhibition 



and binding.  Overall, this thesis identifies P-REX2 as a dynamic inhibitor of PTEN phosphatase 

activity that regulates PI3K mediated cellular transformation, insulin signaling, and glucose 

metabolism.  
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CHAPTER I 

 

INTRODUCTION  
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The regulation of cellular activities occurs through a complex network of signaling events 

that allows cells to respond to changes in their microenvironment and communicate with 

other cells.  Disruption of a cell’s ability to respond to signaling events is often the root of 

many diseases including cancer, diabetes, and neurodegenerative disorders.  Second 

messengers regulate intracellular responses to extracellular stimuli by relaying signals 

received on the cell surface to target molecules inside of the cell.  Phosphoinositides are a 

family of phospholipids whose role as second messengers in signaling transduction has 

been well characterized and also highly implicated in disease.  The phosphoinositide 

phosphatidylinositol (3,4,5) trisphosphate is a critical second messenger, and is 

dephosphorylated by the tumor suppressor PTEN.  In this thesis, we focus on 

understanding how PTEN inhibition by the Rac GEF P-REX2 impacts 

phosphatidylinositol (3,4,5) trisphosphate mediated signaling and disease. 

 

 

PHOSPHOINOSITIDE SIGNALING 

 

Phosphoinositides (PtdIns) are membrane lipids that are phosphorylated at the 3, 4, and 5 

positions of the inositol ring.  Seven different phosphorylated PtdIns exist, and although 

they only make a minor component of membrane phospho-lipids in the cell, they play 

critical roles in many different cellular processes (Cantley, 2002).  PtdIns are made up of 

two acyl groups, a glycerol backbone and a phospho-inositol ring.  Various kinases and 

phosphatases are involved in the conversion of phosphoinositides from one form to 

another.  PtdIns are generated in the endoplasmic reticulum, and then compartmentalized 
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to different membrane surfaces where they perform regulatory roles in cellular processes 

by targeting many different proteins to the membrane surface.   

 

 

Substrate recognition 

Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is the most abundant phophoinositide 

in the cell, comprising 95% of phosphorylated PtdIns, and less selective in its targeted 

domains.  PI(4,5)P2 is found at the plasma membrane and at membranes of trafficking 

vesicles, and many of its target proteins control endocytosis, exocytosis, and cytoskeletal 

rearrangements (Holtz and Axelrod, 2002; Jones et al., 2000; Watt et al., 2002).  

PI(4,5)P2 binds with weak affinity and low specificity to pleckstrin homology (PH) 

domains, with the exception of the phospholipase-C (PLC)-δ1 PH domain, which has 

strong affinity and high specificity for PI(4,5)P2 (Lemmon et al., 1995).   Many 

PI(4,5)P2 target proteins are involved in clathirin-mediated endocytosis.  Several 

examples of target proteins involved in the initial steps of endocytosis include associated 

protein (AP)-2, which interacts through an N-terminal lysine rich domain, AP180, which 

binds through an N-terminal domain termed AP180 N-terminal homology (ANTH), and 

epsin, which also binds through a similar Epsin N-terminal homology (ENTH) domain 

(Ford et al., 2001; Gaidarov and Keen, 1999; Itoh et al., 2001).  Membrane invagination 

and fission of vesicles is also regulated by PI(4,5)P2 by recruiting and activating proteins 

such as dynamin to the membrane through its PH domain (Barylko et al., 1998; Cremona 

et al., 2001; Zheng et al., 1996).  PI(4,5)P2 targets are also involved in cytoskeletal 

rearrangement.  For example, a lysine rich region of the Wiskott-Aldrich syndrome 
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protein (WASP) binds to PI(4,5)P2 and cooperates with cell division cycle (Cdc) 24 to 

activate actin-related protein 2 and 3 (Arp2/3) and actin assembly at the membrane 

(Rohatgi et al., 1999).  

 

Phosphotidylinositol 3-phosphate (PI(3)P) is produced by the kinase vacuolar protein 

sorting 34 (Vps34) as well as by dephosphorylation of PI(3,4,5)P3 by 4- and 5- 

phosphatases.   PI(3)P is a specific marker of endosomes, and thusly plays a role in 

regulating early endocytic trafficking and lysosome/vacuole sorting in the Golgi (Corvera 

et al., 2001; Gillooly et al., 2000).  PI(3)P has the most known specific binding partners, 

and is recognized by most FYVE domain proteins (found in Fab1p, YOTB, Vac1p, and 

EEA1) (Bravo et al., 2001; Misra et al., 2001) and phox homology (PX) domain proteins 

(Cheever et al., 2001; Kanai et al., 2001; Song et al., 2001).  Interaction of these domains 

with PI(3)P is complex and not only involves the phosphorylated inositol head group, but 

other interactions with the membrane as well (Kutateladze et al., 2001).   

 

Phosphotidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3), whose regulation is a major theme 

in this thesis, is found at the plasma membrane at very low concentrations in 

unstimulated cells, however its abundance increases significantly following stimulation 

and phosphorylation by phosphoinositide-3 kinase (PI3K) (Rameh and Cantley, 1999; 

Stephens et al., 1993; Vanhaesebroeck and Waterfield, 1999).  The only domain known 

to bind PI(3,4,5)P3 is the PH domain, and this interaction occurs with a high degree of 

specificity (Kavran et al., 1998).  Although many proteins contain PH domains, only a 

small fraction are able to recognize and bind PI(3,4,5)P3.  The few existing PI(3,4,5)P3 
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targets control many cellular processes including growth, apoptosis, migration, and 

metabolism.  The most thoroughly described PIP3 effector is the threonine (Thr)/serine 

(Ser) kinase AKT (Frech et al., 1997, Klippel et al., 1997), but it is also known to target 

3-phosphoinositide-dependent kinase-1 (PDK1), a kinase for AKT (Anderson et al., 

1997; McManus et al., 2004), Grp1 (general receptor for phosphoinositides, isoform 1), 

which regulates the actin cytoskeleton (Kavran et al., 1998; Venkateswarlu et al., 1998), 

and Btk1 (Bruton's tyrosine kinase), which regulates B-cell development, differentiation, 

and signaling (Fukuda et al., 1996; Salim et al., 1996).  PI(3,4,5)P3 is hydrolyzed at the 3 

position by phosphatase and tensin homolog deleted on chromosome 10 (PTEN) 

(Maehama and Dixon, 1998) and the 5- phosphatases Src homology-2 domain-containing 

inositol 5-phosphatase 1 and 2 (SHIP1 and SHIP2) (Damen et al., 1996; Kavanaugh et 

al., 1996; Lioubin et al., 1996;).  Formation of PI(4,5)P2 by PTEN dephosphorylation 

results in termination of PI(3,4,5)P3 signaling.  Conversely, PI(3,4)P2 targets and 

activates many of the same PH domain proteins as PI(3,4,5)P3, including AKT (Franke et 

al., 1997).  Therefore, PI(3,4)P2 also serves as a second  messenger involved cellular 

growth and proliferation.   

 

Phosphoinositide regulation and disease 

Because specific PtdIns play such critical roles in diverse cellular functions, it is not 

surprising that the dysregulation of enzymes involved in maintaining proper PtdIns levels 

are implicated in many syndromes and diseases. Mutations in gene encoding inositol-5-

phosphatase, which dephosphorylates PI(4,5)P and PI(3,4,5)P3 at the 5 position , are the 

cause of Lowe Syndrome, an X-linked disorder with symptoms including mental 
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retardation neonatal hypotonia, and blindness.  Dent disease is also caused by inositol-5 

phosphatase mutations.  Although still unclear, it is thought that mutations in this 

phosphatase result in defective endocytosis and membrane recycling (Attree et al., 1992; 

Erdmann et al., 2007; Hoopes et al., 2005; Hyvola et al., 2006).  Myotubular myopathy 

and Charcot-Marie-Tooth disease result in part from mutations in myotubularins (MTM) 

or myotubularin-related (MTMR) proteins, inositol-3-phosphatases that specifically 

dephosphorylate PI3P and PI(3,5)P2 (Blondeau et al., 2000; Taylor et al., 2000).  

Mytobularin myopathy, an X-linked disease, is caused by mutations in MTM1, and is 

characterized by severe muscle weakness in newborns (Herman et al., 1999).  Charcot-

Marie-Tooth disease type 4B1 and 4B2 are neurodegenerative diseases caused by 

mutations in MTMR2 and MTMR13 (Azzedine et al., 2003; Senderek et al., 2003).  Due 

to PI3P and PI(3,5)P2 compartmentalization at endosome membranes, it is believed that 

these syndromes are a result of defective endosomal function.  Early onset Alzheimer’s 

disease associated with Down Syndrome may involve synaptojanin-1, an inositide 5- 

phosphatase in neurons that dephosphorylates most of the PI(4,5)P2 in the brain.  It is 

believed that increased Aβ42 in Alzheimer’s patients stimulates PI(4,5)P2 cleavage, 

inhibiting hippocampal long-term potentiation.  Increased synaptojanin-1 may cooperate 

with high levels of Aβ42 to further deplete PI(4,5)P2 levels in Alzheimer’s patients. 

(Voronov et al., 2008).    

 

PI(3,4,5)P3, termed PIP3 from this point on, regulates survival, apoptosis, growth, and 

metabolism in the cell.  Therefore, alterations in the kinases and phosphatases that 

regulate PIP3 levels, including PI3K, PTEN, and SHIP1/2 are highly implicated in cancer 
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and diabetes.  The catalytic subunit of PI3K  phosphorylates PI(4,5)P2 at the 3 position to 

generate PIP3.  Mutations in the gene encoding the catalytic subunit of PI3K have been 

identified in many cancer types including brain, breast, colon, ovary, and lung (Campbell 

et al., 2004; Samuels et al., 2004).   The inositol-3-phosphatase PTEN converts PIP3 back 

to PI(4,5)P2, and therefore inhibits cell growth and survival.   Loss of PTEN occurs in 

many tumor types, and germline mutations in PTEN are associated with cancer 

predisposition syndromes such as Cowden’s disease (Ali et al., 1999; Liaw et al., 1997).  

Furthermore, PIP3 is converted to PI(3,4)P2 by the inositol-5-phosphatase SHIP1, whose 

expression is limited to the hematopoietic system. Mutations in the SHIP1 gene have 

been found in patients with acute myeloid leukemia and acute lymphoblastic leukemia.  

Finally, PTEN and SHIP2 play major roles in glucose metabolism due to the response of 

PIP3 to insulin stimulation.  A 16 base pair deletion of the 3’ untranslated region of 

SHIP2, important in promoting messenger RNA (mRNA) stability and translation, was 

found in patients with Type 2 diabetes (Marion et al., 2002).  Also, a germline 

polymorphism in the 5′ untranslated region of the PTEN promoter was a ssociated with 

Type 2 diabetes in a Japanese cohort (Ishihara et al., 2003). 

 

PHOSPHOINOSITIDE-3 KINASE 

 

Classes of Phosphoinsotide- 3 kinases  

PI3K phosphorylate PtdIns at the 3- position, generating the second messengers PI(3)P, 

PI(3,4)P2 and PI(3,4,5)P3 (Downward, 1998; Toker and Cantley, 1997; Vanhaesebroeck 

et al., 1997).  These kinases are composed of catalytic and regulatory subunits, and 
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various isoforms exist which are divided into several different classes, including Class I, 

II, and III PI3Ks (Wymann et al., 2003).   Class I PI3Ks generate PI(3,4)P2 and 

PI(3,4,5)P3 at the plasma membrane, and are subdivided into two groups: Class IA and 

Class IB PI3Ks.  Class 1A includes the catalytic subunit isoforms p110α, p110β, and 

p110δ which are activated by receptor tyrosine kinases (RTKs) (Hiles et al., 1992; Hu et 

ah, 1993; Vanhaesebroeck et al., 1997).  They are composed of several different domains 

including a catalytic lipid kinase domain, a helical domain, a Ca2+ binding (C2) domain, 

and a Ras (rat sarcoma) binding domain.  Class IA PI3Ks have an N-terminal region that 

interacts with regulatory subunits p85α, p85β or p55γ, to form a heterodimeric complex 

(Djordjevic and Driscoll, 2002; Walker et al., 1999; Zvelebil et al., 1996).  All of the 

Class IA regulatory subunits contain two Src-homology 2 (SH2) domains, and protects 

the catalytic subunit from degredation and inhibits kinase activity (Dhand et al., 1994; Yu 

et al., 1998).  Class IB has one member, p110γ, which is expressed primarily in 

leukocytes and is activated by direct association with G protein Gβγ subunits, dissociated 

by heterotrimeric GTP-binding protein–coupled receptor (GPCRs) activation, and Ras, 

and is regulated by the adaptor subunit p101 (Stoyanov et al., 1995; Stephens et al., 

1997).  Class II has three catalytic subunit isoforms, PI3KC2α, β, and γ, and are 

identified by their C-terminal C2 domain necessary for lipid interaction.  As of yet, no 

regulatory subunits for this class of kinases have been identified.  Class II kinases mainly 

target unphosphorylated PtdIns and PI(4)P, and are activated by integrins and RTKs 

including insulin, epidermal growth factor receptor (EGFR), and platelet derived growth 

factor receptor (PDGFR) (Arcaro et al., 2000; Brown et al., 1999; Domin et al., 1997; 

Zhang et al., 1998).  The Class III kinases are homologous to the yeast PI3K Vps34p, and 
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form a complex with the regulatory myristoylated kinase p150.  It produces a majority of 

PtdIns(3)P in the cell, and therefore regulates protein and vesicular trafficking (Herman 

and Erm, 1990; Panaretou et al., 1997; Schu et al., 1993; Volinia et al., 1995). 

 

Activation of Class IA PI3K 

Class IA PI3Ks are primarily activated by growth factor stimulation of RTKs, including 

insulin receptor (IR), insulin-like growth factor-1 receptor (IGF-1R), and EGFR.  Ligand 

binding leads to receptor activation and autophosphorylation at tyrosine pYxxM motifs.  

The SH2 domain of the regulatory subunits is then recruited directly to pYxxM motifs or 

indirectly through adaptors such and insulin receptor substrate-1 and 2 (IRS-1/2) (Backer 

et al., 1992; Rordorf-Nikolic et al., 1995; Songyang et al., 1993; White, 1998).  Binding 

to phosphorylated receptors releases the PI3K catalytic subunit from inhibition by the 

regulatory subunit, resulting in PIP3 generation.  Furthermore, Ras can activate PI3K 

activity beyond the level achieved by receptor binding alone, and occurs through a direct 

interaction with the catalytic domain of PI3K (Rodriguez-Viciana et al., 1994). 

 

AKT 

 

As mentioned earlier, PI3K activation and consequent phosphorylation of PI(4,5)P2 to 

PIP3 leads to recruitment of PH domain containing proteins to the plasma membrane.  

The most studied PIP3 target is the cellular homolog of the retroviral oncogene v-Akt, 

AKT, also termed protein kinase B (PKB) (Bellacosa et al., 1991).  AKT is a 

serine/threonine kinase that regulates many downstream effectors.  There are three 
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isoforms of AKT that are encoded by different genes, and include AKT1, AKT2, and 

AKT3.  AKT1 and AKT2 are ubiquitously expressed, while AKT3 appears to be more 

limited to the brain, heart, and kidney (Brodbeck et al., 1999; Cheng et al., 1992; Coffer 

and Woodgett, 1991; Jones et al., 1991).  While all three isoforms have identical substrate 

specificity, specific roles for each isoform are emerging.  Akt1 deficient mice are smaller 

than wild-type littermates and exhibit aberrant apoptosis (Chen et al., 2001; Cho et al., 

2001), while Akt2 appears critical for maintaining glucose homeostasis.  Specifically, 

mice deficient for Akt2 have elevated blood glucose and serum insulin levels as well as 

reduced glucose tolerance and increased insulin resistance in skeletal muscle (Cho et al, 

2001; Garofalo et al, 2003).  Futhermore, knockdown of AKT2 specifically results in 

decreased insulin stimulated translocation of glucose transporter type 4 (GLUT4) and 

reduced glucose uptake in cultured adipocytes (Katome et al., 2003; Jiang et al., 2003).  

Despite these differences, mice lacking individual Akt isoforms are viable and only 

display subtle phenotypes, suggesting that the isoforms have compensatory function 

(Chen et al., 2001; Cho et al., 2001; Easton et al., 2005; Yang et al., 2003).  The lethality 

Akt1 and Akt2 or Akt3 double knockout mice provides further evidence for functional 

overlap of AKT isoforms (Dummler et al., 2006; Peng et al., 2003; Yang et al., 2005). 

 

Structure 

AKT is a member of the AGC (related to AMP/GMP kinase and protein kinase C) 

serine/threonine kinase family, and is comprised of an N-terminal pleckstrin homology 

domain, a catalytic kinase domain, and a C-terminal extension region (Peterson and 

Schreiber, 1999).  Among the three isoforms, the PH domains are 80% identical, the 
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catalytic domains are 90% identical, and the C-terminal extension regions are 70% 

identical.  The PH domain binds PIP3 and is therefore critical for AKT membrane 

recruitment and activation. The central kinase domain of AKT is closely related to 

protein kinase C (PKC), protein kinase A (PKA), and serum-and glucocorticoid-induced 

protein kinase (SGK) and phosphorylation of a critical residue within the catalytic 

domain is necessary for kinase activation. The C-terminal extension of AKT is similar to 

PKC and contains a regulatory hydrophobic motif.  Full activation of AKT requires 

phosphorylation at a second site located within this hydrophobic motif (Alessi et al., 

1996; Kumar et al., 2001; Liao and Hung, 2010).  

 

Activation 

AKT activation is a multiple step process that requires phosphorylation at several sites.  

PI3K activation and phosphorylation of PI(4,5)P2 to PIP3 leads to recruitment of AKT to 

the plasma membrane where it binds to PIP3 through its lipid binding PH domain.  At the 

membrane, AKT is then phosphorylated by PDK1, which is also recruited to the 

membrane through its PH domain.  This phosphorylation event occurs at Thr-308, located 

in the activation loop of the kinase domain (Alessi et al., 1997; Stephens et al., 1998).  

Full activation of AKT requires phosphorylation of a second site at Ser-473, located in 

the hydrophobic motif of the C-terminal tail (Alessi et al., 1996).  The rictor- mammalian 

target of rapamycin (mTOR) complex, or mTORC2, has been shown to regulate 

phosphorylation at this site (Guertin et al., 2006; Sarbassov et al., 2005).  Interestingly, 

mTOR is a target of AKT, suggesting that partial AKT activation by phosphorylation at 

Thr-308 can stimulate its own phosphorylation at Ser-473.  AKT is further regulated by 
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dephosphorylation of these residues, which deactivates AKT kinase activity.  

Specifically, protein phosphatase-2A (PP-2A) dephosphorylates AKT mainly at Thr-308 

with minimal activity toward Ser-473, whereas PH domain and leucine rich repeat 

protein phosphatases (PHLPP) dephosphorylate AKT specifically at Ser-473 (Brognard 

et al., 2007; Gao et al., 2005; Kuo et al., 2007). 

 

Biological effects of AKT activation 

Targets of the activated AKT kinase regulate various cellular functions, including 

proteins involved in cell survival.  Studies have shown that expression of constitutively 

active AKT blocks PTEN induced apoptosis, whereas expression of a dominant negative 

form of AKT blocks survival signaling through IGF-1 (Kandasamy et al., 2001; Kulik 

and Weber, 1998).  AKT targets many components of the cell death machinery including 

Bcl-2-associated death promoter (BAD), the forkhead box transcription factors (FOXO), 

and nuclear factor-κB (NF-κB).  BAD induces apoptosis by binding to and inhibiting the 

survival factor B-cell lymphoma 2 and extra large (Bcl-2 and Bcl-xL) in the 

mitochondria.  However, phosphorylation of BAD by AKT results in its cytoplasmic 

localization, disrupting its interaction with Bcl-2 and Bcl-xL and restoring survival (Datta 

et al., 1997; Datta et al., 2000; delPeso et al., 1997).  AKT can also promote cell survival 

by initiating the transcription pro-survival genes through the indirect activation of the 

transcription factor NF-κB.  NF-κB is sequestered to the cytoplasm and inhibited through 

its interaction with inhibitor of κB (IκB).  Activated AKT phosphorylates and activates 

IκB kinase (IκK), which phosphorylates IκB, targeting it for degradation.  This releases 

NF-κB from IκB inhibition, allowing it to enter the nucleus and activate transcription of 
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anti-apoptotic genes (Tanaka et al., 2005).  AKT also phosphorylates the pro-apoptotic 

FOXO transcription factors, resulting in their inactivation and accumulation in the 

cytoplasm (Arden, 2007; Biggs et al., 1999; Brunet et al., 1999). The E3 ubiquitin ligase 

mouse double minute 2 (MDM2) is also phosphorylated by AKT, leading to its 

stabilization and subsequent degradation of the tumor suppressor p53 (Mayo and Donner, 

2001; Zhou et al., 2001). 

 

AKT also targets many proteins involved in cell growth, including Tuberous sclerosis 

protein 2 (TSC2).  Phosphorylation of TSC2 by AKT blocks the formation of the TSC1/2 

complex.  The TSC1/2 complex is a Rheb GTPase activating protein (GAP) and 

deactivates Rheb GTPase activity.  It is known that Rheb activates mTOR, although the 

mechanism is not fully understood.  Therefore, AKT indirectly inactivates mTOR by 

phosphoryating TSC2 (Inoki et al., 2002; Manning et al., 2002; Zhang et al., 2003).  

mTOR is a serine/threonine kinase that interacts with raptor and rictor to form the 

complexes mTORC1 and mTORC2, respectively (Hara et al., 2002; Kim et al., 2002; 

Loewith et al., 2002, Sarbassov et al., 2004).  The mTORC1 complex stimulates protein 

translation by phosphorylating and activating p70 S6 kinase, which then phosphorylates 

ribosomal protein S6 and eIF4B (Burnett et al., 1998; Raught et al., 2004; Wang et al., 

2001).  mTORC1 also activates translation by phosphorylating and inhibiting the 

translational repressor 4E-BP1 (Burnett et al., 1998).  As mentioned above, the mTORC2 

complex has been shown to phosphorylate AKT on Ser-473, and can therefore further 

promote its own phosphorylation and activation. 
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Many AKT targets induce cell cycle progression and proliferation.  The G1 cyclins cyclin 

D and cyclin E activate Gap 1 and stationary phase (G1/S) cell cycle progression, as well 

as mitosis.  Phosphorylation of cyclins by glycogen synthase kinase 3-β (GSK3-β) targets 

them for proteasomal degradation.  However, AKT phosphorylates and inhibits GSK3-β, 

therefore activating cyclins and inducing cell-cycle progression (Alt et al., 2000; Diehl et 

al., 1998).  AKT also promotes cell cycle progression and proliferation by 

phosphorylating the cell cycle inhibitors p21 and p27 (Liang et al., 2002; Shin et al., 

2002; Zhou et al., 2001b).  Phosphorylation of these proteins prevents their nuclear 

localization, therefore blocking the formation of inhibitory complexes with cyclins and 

cyclin dependent kinases. 

 

AKT also phosphorylates proteins involved in regulating cellular metabolism.  It is well 

established that insulin signaling is a key regulator of glucose homeostasis in the cell.  

Insulin regulates glucose uptake in adipose and muscle tissue by activating the membrane 

translocation of glucose transporter 4 (GLUT4).  Studies have shown that AKT mediates 

insulin stimulated glucose uptake, as expression of WT or constitutively active AKT 

increases glucose transport and GLUT4 translocation in 3T3-L1 adipocytes, rat 

adipocytes, and L6 muscle cells (Cong et al., 1997; Kohn et al., 1996; Wang et al., 1999).  

AKT substrate 160 (AS160) has been identified as the AKT target that is responsible for 

GLUT4 translocation.  AS160 is a Rab-GTPase activating protein, and it is thought that 

phosphorylation by AKT results in inhibition of AS160 GAP activity, therefore activating 

Rab and increasing GLUT4 transport (Sano et al, 2003; Welsh et al., 2005).   AKT also 

regulates metabolism by phosphorylating and inactivating the kinase GSK3-β, therefore 
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activating glycogen synthase and stimulating the conversion of stored glucose to 

glycogen (Cross et al., 1995).   

 

PTEN 

 

PI3K activation and downstream AKT phosphorylation is negatively regulated by the 

phosphatase PTEN.  PTEN (phosphatase and tensin homologue deleted on chromosome 

10), also known as MMAC1 (mutated in multiple advanced cancers) and TEP1 

(transforming growth factor [TGF]-b-regulated and epithelial cell-enriched phosphatase) 

is a tumor suppressor located on chromosome 10q23, a region that frequently undergoes 

loss of heterozygosity (LOH) in many different cancer types.  It was identified by three 

independent groups using different techniques.  Li et. al identified PTEN by 

representational difference analysis of brain tumor samples and cell lines followed by 

precise mapping with yeast artificial chromosomes to identify the specific region deleted 

in breast tumor samples (Li et al., 1997).  A second group performed a high-density scan 

of chromosome 10q in glioma cell lines to isolate the PTEN gene, which they termed 

MMAC1 (Steck et al., 1997).  PTEN was later identified by a third group, and named 

TEP1, by screening human cDNA clones for novel protein tyrosine phosphatases that 

were regulated by transforming growth factor-β (TGF-β) stimulation (Li and Sun, 1997). 

 

Mouse models of PTEN loss reveal the importance of PTEN in normal development and 

confirm its tumor suppressive function.  Homozygous loss of Pten results in embryonic 

lethality at embryonic day E9.5.  Mice heterozygous for Pten develop tumors in a variety 
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of tissues and organs systems including the uterus, prostate, thyroid, endometrium, liver, 

adrenal medulla, and breast, among others (Di Cristofano et al., 1998; Podsypanina et al., 

1999; Suzuki et al., 1998; Trotman et al., 2003).   Tissue specific Pten knockout mice 

have been generated to study PTEN function in more detail.  Complete loss of Pten in 

mammary tissue results in disrupted mammary development and high-frequency tumor 

development.  Specific loss of Pten in the prostate results in high-grade prostatic 

intraepithelial neoplasia (HGPIN) which often progresses to become invasive cancer. 

Additionally, Pten loss in hepatocytes results in the onset of fatty liver disease and the 

formation hepatocellular carcinomas.  These examples, as well as many others not 

mentioned, verify the function of PTEN as a tumor suppressor (Backman et al., 2004; 

Horie et al., 2004; Li et al., 2002; Wang et al., 2003). 

 

Genetic alterations of PTEN in cancer 

PTEN is frequently altered at both the message and protein levels in many different 

sporadic cancers.  In breast cancer, somatic mutations in a PTEN are a relatively rare 

event, occuring at a frequency of less than 5%, however LOH and loss of protein 

expression occur more frequently at 40% (Bose et al., 1998; Perez-Tenorio et al., 2007; 

Singh et al., 1998).  Biallelic inactivation of PTEN occurs in about 40% of glioblastomas, 

and is rarely seen in lower-grade glioma tumors.  LOH occurs in more than 70% of 

glioblastoma (Choe et al, 2003; Rasheed et al., 1997; Wang et al., 1997).  PTEN is the 

most commonly mutated gene in endometrial cancer, occurring at a frequency of 50%, 

with mutations in the endometrioid sub-type found in 80% to 90% of patients (Kong et 

al., 1997; Risinger et al., 1997; Tashiro et al., 1997; Terakawa et al., 2003).  In 
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melanoma, LOH occurs at 30–60%, whereas somatic mutations are found at a rate of 10–

20% in metastatic melanoma (Guldberg et al., 1997; Robertson et al., 1998; Tsao et al., 

1998).  Mutations in PTEN are also found in colon, bladder, liver, thyroid and prostate 

cancer (Ali et al., 1999). 

 
In addition to the somatic mutations identified, PTEN mutation have also been found in 

patients with various hereditary cancer susceptibility syndromes, identified as PTEN 

hamaratoma tumor syndromes.  PTEN mutations are found in 80% of Cowden’s 

syndrome patients, which present with hamaratomas of the breast, skin, and mucous 

membranes and often develop carcinomas of the breast, uterus, and thyroid (Carlson et 

al., 1986; Liaw et al., 1997; Marsh et al., 1998).  Mutations in PTEN are also found in 

60% of patients with Bannayan-Riley-Ruvalcaba Syndrome, characterized by 

macrocephaly, lipomatosis, and hemangiomatosis (Gorlin et al., 1992; Marsh et al.,1999).  

Furthermore, PTEN mutations are found in 20% and 50% of patients with Proteus 

syndrome and Proteus-like syndrome, respectively, which present similar symptoms to 

Cowdens disease and Bannayan-Riley-Ruvalcaba syndrome (Zhou et al., 2000; Zhou et 

al., 2001c). 

 
 
 
PTEN structure 
 
PTEN encodes a 403-amino acid cytoplasmic peptide.  The amino acid sequence contains 

the signature motif of the protein-tyrosine and dual specificity phosphatase catalytic 

domain, HCXXGXXRS/T.  However, the amino terminal 190 amino acids resemble the 

sequences of tensin and auxilin rather than the sequence of other protein tyrosine 
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phosphatases (Li et al., 1997). Analysis of the PTEN crystal structure revealed amino 

acids 1-179 make up the phosphatase domain, which contains a deeper and wider 

catalytic pocket to accommodates lipid substrates. The N-terminus also contains a basic 

motif that binds PI(4,5)P2 and is important for lipid recruitment and phosphatase activity. 

Amino acids 186-351 form a C2 domain which lacks the canonical Ca2+ chelating 

residues which binds to phospholipid-membranes independent of calcium.  The 

phosphatase and C2 domains together make up the minimal catalytic region of PTEN 

(Lee et al., 1999).  C-terminal amino acids 353-403 were not included in the crystal 

structure, but are important for PTEN regulation and stability. The C-terminus contains a 

PDZ (PSD-95, Discs-large, ZO-1) binding domain  involved in various protein 

interactions (Vazquez and Devreotes, 2006). 

 

PTEN function 

Based on the presence of the dual specificity phosphatase consensus sequence, it was 

believed that PTEN dephosphorylated protein substrates.  It has been demonstrated that 

PTEN has dual-specificity phosphatase activity, dephosphorylating phosphotyrosine, 

phosphoserine, and phosphothreonine peptides of highly acidic substrates, although the 

level of activity is poor (Li and Sun, 1997; Myers et al., 1997).  In vitro, PTEN can 

dephosphorylate focal adhesion kinase (FAK), but evidence for protein 

dephosphorylation in vivo is poor, suggesting that PTEN has other targets (Tamura et al., 

1999).  A search for non-protein targets revealed that PTEN has high phosphatase activity 

for PIP3 at the 3’ position and reduced activity for PIP(3)P, PI(3,4)P2, PI(1,3,4,5)P4, and 

Ins(1,3,4,5)P4 (Maehama and Dixon, 1998). Due to its high specificity toward PIP3, it 
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was proposed that the PTEN tumor suppressor activity occurs through inhibition of AKT 

activation and PI3K signaling by dephosphorylation of PtdIn(3,4,5) to PtdIn(4,5)P2.  This 

hypothesis was supported through various studies.   One study showed PTEN-/- mouse 

embryonic fibroblasts displayed decreased sensitivity to apoptosis which correlated with 

elevated levels of AKT activation.  Re-introduction of PTEN restored sensitivity to 

apoptotic stimuli and led to reduced levels of activated AKT.  Consistent with this data, 

fibroblasts were rescued from PTEN-induced apoptosis by expression of constitutively 

active AKT, placing PTEN action upstream of AKT (Stambolic et al., 1998).  

Furthermore, transfection of PTEN in HEK293 cells and stable expression of PTEN in 

rat1-fibroblats both resulted in increased AKT activity that was dependent on PTEN 

phosphatase activity. In addition, tumors from PTEN null prostate cancer cell line 

xenografts had higher levels of AKT phosphorylation compared to tumors from xenograft 

PTEN positive cell lines (Wu et a., 1998).  Genetic evidence also supports that the tumor 

suppressive role of PTEN occurs through decreased AKT activation. For instance, Akt 

deficiency inhibits tumor formation in PTEN+/- mice.  Also, in Drosophila, expression of 

an Akt mutant that has reduced affinity for PIP3 rescues flies from lethality induced by 

PTEN loss (Chen et al., 2006; Stocker et al, 2002). 

 

Studies using glioblastoma cell lines identified a role for PTEN in cell cycle regulation.  

In one study, re-introduction of WT and mutant PTEN into U87-MG cells results in 

growth suppression, but not induction of apoptosis.  Furthermore, cell cycle analysis 

under reduced serum conditions revealed that PTEN expression causes a G1 cell cycle 

block that is dependent lipid phosphatase activity, but not protein phosphatase activity.  
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Another study found that transient expression of PTEN in glioblastoma cells by 

adenoviral infection leads to decreased proliferation, reduced growth in soft agar and 

reduced tumorigenicity in nude mice (Cheney et al., 1998; Furnari et al., 1997).  In 

another report, PTEN expression induced G1 cell cycle arrest, decreased anchorage 

independent growth and growth in nude mice that was linked to increased expression of 

the cell cycle kinase inhibitor p27kip1 and decreased activity of G1 cyclin-dependent 

kinases (Li and Sun, 1998).  In addition to cell cycle arrest, PTEN also induces apoptosis 

specifically in breast cancer cell lines. Expression of PTEN in various epithelial cell lines 

inhibits cell growth and is associated with an induction of apoptosis and decreased PI3K 

signaling (Li et al., 1998).  However, it has been suggested that cell-cycle arrest and 

apoptosis induced by PTEN expression may not mutually exclusive.  For instance, in the 

breast cancer cell line MCF-7, inducible expression of PTEN results in decreased 

proliferation and G1 cell cycle arrest 72 hours after PTEN induction.   However, cells 

undergo apoptosis after prolonged induction of PTEN for 120 hours, suggesting that 

PTEN expression initially blocks cell cycle progression that is followed by induction of 

cell death (Weng et al., 1999).  In addition, transient PTEN expression in the glioma cell 

line U251 results in both cell cycle arrest and anoikis (Davies et al., 1998).  

 

Various studies have shown that PTEN is localized to both the cytoplasm and nucleus, 

and specific roles of nuclear PTEN have been identified.  The subcellular localization of 

PTEN appears to be cell cycle dependent, with increased levels of nuclear PTEN found 

during G0 and G1 (Ginn-Pease and Eng, 2003).  Furthermore, PTEN appears to be 

differentially localized between normal tissue and tumor samples.  In normal tissues 
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where cells are predominantly at G0-G1, PTEN is mainly nuclear; however in actively 

proliferating tumor cells, PTEN is more cytoplasmic (Brenner et al., 2002; Depowski et 

al., 2001; Perren et al., 2000; Whiteman et al., 2002).  There are many proposed 

mechanisms for PTEN nuclear import and include simple diffusion (Liu et al., 2005), 

Ras-related nuclear protein (RAN)-mediated or major vault protein (MVP)-mediated 

nuclear import (Gil et al., 2006; Yu et al., 2002) and by monoubiquitination by neural 

precursor cell expressed developmentally down-regulated protein 4-1 (NEDD4-1) 

(Trotman et al., 2007; Wang et al., 2007).  Additionally, phosphorylation of the C-

terminal tail of PTEN has been shown to affect nuclear localization.  Various functions of 

nuclear PTEN have been identified.  While cytoplasmic PTEN decreases AKT activation, 

nuclear PTEN specifically decreases mitogen-activated protein kinase (MAPK) 

phosphorylation and cyclin D1 levels, resulting in cell cycle arrest (Weng et al., 2002; 

Weng et al., 2001).  Nuclear PTEN also plays a role in the maintenance of chromosome 

stability.  In the nucleus, PTEN associates with centromere protein C (CENP-C), and this 

interaction is required for centromere stability.  Furthermore, PTEN null cells exhibit 

more double strand breaks (Shen et al., 2007).  PTEN also induces radiation sensitive 51 

(RAD51) expression, which is involved to double-stranded break repair (Shen et al., 

2007).  

 

By opposing insulin stimulated PI3K signaling, PTEN also regulates glucose metabolism.  

In C.elegans, loss of the PTEN homolog daf-18 partially bypasses the need for signaling 

via ageing alteration family member-1 (AGE-1) and abnormal dauer formation-2 (DAF-

2), homologs of p110 and insulin/insulin like growth factor receptor respectively, to 
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regulate metabolism and energy storage, as well as development, and life span (Ogg and 

Ruvkun, 1998).  Mice haploinsufficient for Pten are protected from diabetes induced by 

loss of Irs2 (Kushner et al., 2005), and loss of Pten by antisense oligonucleotide delivery 

results in increased PI3K signaling in cultured liver cells, and increased insulin sensitivity 

in db/db and ob/ob mice (Butler et al., 2002).  Specific loss of Pten in adipose tissue 

results in increased insulin sensitivity and glucose tolerance, as well as protection from 

streptozotocin-induced diabetes.  Conversely, overexpression of PTEN in cultured 

adipocytes decreases insulin induced AKT phosphorylation, glucose uptake, and GLUT4 

translocation (Nakashima et al., 2000; Ono et al., 2001; Tang et al., 2005).  Pten loss also 

affects insulin signaling in muscle, as mice  deficient for Pten in skeletal muscle are 

protected from  diabetes and insulin resistance induced by a high fat diet (Wijesekara et 

al., 2005; Kurlawalla-Martinez et al., 2005).   

 

PI3K independent functions of PTEN 

There is increasing evidence that PTEN has functions in the cell that are independent of 

PIP3 dephosphorylation.  For example, it has been reported that PTEN expression 

inhibits cellular migration in multiple glioblastoma cell lines.  Furthermore, blocked 

migration occurs through the C2 and C-terminal tail domain and does not require lipid 

phosphatase activity, suggesting that PIP3 dephosphorylation is not involved in PTEN 

inhibited migration (Tamura et al., 1998; Raftopoulou et al., 2004).  It has also been 

reported that nuclear PTEN mediated inhibition of tumor growth cell cycle arrest occurs 

through  p70S6 dephosphorylation by activation of AMP-activated protein kinase and not 

AKT (Liu et al., 2005).  Additionally, it has been reported that PTEN, through a direct 
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interaction, can inhibit the oncogenic potential of microspherule protein-1 (MSP58), and 

does not require PTEN lipid phosphatase activity, providing a PIP3 independent function 

for PTEN in the regulation of cellular transformation (Okumura et al., 2005).   

 

PTEN Regulation 

PTEN expression is critical for normal cellular activity and is regulated through multiple 

mechanisms.  Protein tyrosine phosphatase inactivation by reversible oxidation of the 

catalytic cystein (Cys) has been well documented.  Crystal structure analysis of PTEN 

revealed that Cys71 and Cys124 lie in close proximity to each other, and could therefore 

form disulfide bonds, which was later confirmed by gel shift analysis. PTEN is oxidized 

and inactivated following treatment with hydrogen peroxide (H2O2) in Swiss 3T3 cells.  

Furthermore, primary T-cell acute lymphoblastic leukemia cells have high intracellular 

ROS levels that correlate with detectable levels of oxidized PTEN, which is upregulated 

by addition of H2O2.  Also, (reactive oxygen species) ROS scavengers restore PTEN 

activity and decrease PI3K/Akt signaling in T-ALL cells (Cho et al., 2004; Lee et al., 

2002; Silva et al., 2008).  Oxidation of PTEN seems to be further regulated through its 

interaction with thioredoxin-interacting protein, an inhibitor of the ROS scavenger 

thioredoxin (Hui et al., 2008, Meuillet et al, 2004). 

 

Ubiquitination of PTEN at lysine (Lys) 13 and Lys 289 promotes PTEN protein 

degradation as well as nuclear localization.  NEDD4-1 was the first identified E3 

ubiquitin ligase for PTEN.  NEDD4-1 protein levels inversely correlate with PTEN 

protein levels in bladder cancer, and NEDD4-1 cooperated with Ras to transform cells in 
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PTEN dependent manner (Wang et al., 2007).  Although polyubiquitination at these sites 

of PTEN result in protein degradation, monoubiquitination by NEDD4-1 appears to be 

important in nuclear transport.  Interestingly, K13E and K289E, two mutations found in 

Cowden’s syndrome patients, are defective in nuclear translocation, but retain enzymatic 

activity, further linking PTEN localization and regulation of protein function.  However, 

there is no evidence of increased PTEN protein levels or changes in localization in cells 

from NEDD4-1 knockout mice, suggesting that other E3 ligases are involved in PTEN 

ubiquitination.  X-linked inhibitor of apoptosis (XIAP), a ring domain E3 ligase has also 

been implicated in PTEN poly- and mono ubiquitination.  Knockdown of XIAP reduces 

PTEN ubiquitination, increases PTEN activity and reduces nuclear localization of PTEN.  

Furthermore, XIAP-/- MEFs have decreased levels of ubiquitinated and nuclear PTEN 

compared to XIAP+/+ MEFs.  Another E3 ligase, WW domain-containing protein 2 

(WWP2), has been shown to ubiquitinate PTEN and regulate PTEN dependent apoptosis 

and tumorigenicity (Van Themsche et al., 2009; Maddika et al., 2011).    

 

Acetylation has also been implicated in PTEN regulation.  For example, PTEN seems to 

be acetylated at Lys125–Lys128, located in the catalytic cleft of PTEN, by p300/CREB-

binding protein (CBP)-associated factor (PCAF) and at Lys402 by CBP and SIRT-1. 

Acetylation of PTEN by PCAF results in decreases catalytic activity, increased AKT 

phosphorylation, and decreased PTEN dependent G1 cell cycle arrest (Okumura et al., 

2006).    It has also been reported that PTEN is acetylated on Lys402, located in the PDZ 

binding domain by CBP.  Furthermore, in-vitro experiments showed that the PDZ domain 

containing proteins human discs large protein (hDLG), and membrane-associated 
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guanylate kinase inverted-2 (MAGI-2) bound with higher affinity to acetylated PTEN, 

suggesting that CBP may regulate interactions with the PDZ-binding domain of PTEN 

(Ikenoue et al., 2008). 

 

PTEN is also regulated at the transcriptional level.   Hypermethylation of the CpG islands 

in the PTEN promoter has been observed in many cancers, including those of the ovary,  

breast, lung, and endometrium, among others (Garcia et al., 2004; Ho et al., 2009; 

Salvesen et al., 2001; Soria et al., 2002).  However, promoter hypermethylation and 

decreased PTEN protein level are not always correlative; therefore the role of PTEN 

transcriptional silencing by promoter hypermethylation in cancer is still unclear.    PTEN 

transcription is also regulated by several transcription factors inluding sal-like protein 4 

(SALL4), which represses PTEN transcription by recruiting a chromotin-remodelling 

ATPase and a histone decetylase to the PTEN promoter (Lu et al., 2009).  The 

transcription factors SNAIL and inhibitor of DNA binding 1 (ID1) also repress PTEN 

transcription by binding to the PTEN promoter and blocking binding of the PTEN 

transcriptional activator p53 (Escriva et al., 2008; Lee et al., 2009).  PTEN transcription 

is positively regulated by early growth response factor 1 (EGR-1) in response to ultra 

violet (UV) radiation and IGF-2 stimulation (Moorehead et al., 2003; Virolle et al., 

2001).  Coordinated upregulation of PTEN and EGR-1 protein is associated with poor 

prognosis in non-small cell lung cancer (Ferraro et al., 2005). Proliferator-activated 

receptor γ (PPARγ) also regulates PTEN transcription.  Binding of PPARγ to the PTEN 

promoter in cancer and epithelial cells results in upregulated PTEN expression, reduced 

AKT phosphorylation and decreased cellular proliferation (Chen et al., 2005; Lee et al., 

http://jcs.biologists.org/content/120/23/4071.full#ref-22�
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2007; Patel et al., 2001). However, PPARγ decreases PTEN expression in muscle and 

adipocytes cells, suggesting that its effect on PTEN expression is cell-type specific (Kim 

et al., 2007). Notch1 signaling has also been implicated in PTEN transcriptional 

regulation.  It has been reported that during T-cell development, Notch induces the 

expression of the transcription factor Hes1, which in turn decreases the expression of 

PTEN and activates c-MYC to drive proliferation (Wong el a., 2012).  The PTEN 

promoter also contains a binding element for p53, and induction of p53 results in 

increased PTEN mRNA and protein levels (Stambolic et al., 2001).  Interestingly, PTEN 

is also required for p53 induced apoptosis, suggesting the two tumor suppressors can 

regulate each other. 

 

The C-terminal tail of PTEN, although absent from the crystal structure known to date, is 

critical for PTEN regulation.  Deletion of the PTEN C-terminal tail results in a substantial 

decrease in protein half-life, as well as an increase in enzymatic activity.  Furthermore, 

phosphorylation of the PTEN tail is important in maintaining protein stability and 

reducing enzymatic activity (Vazquez et al, 2000).  The PTEN tail contains many serine 

and threonine residues, and mutation analysis has shown that the majority of 

phosphorylation events occur on Ser-370, as well as at a cluster consisting of Ser-380, 

Thr-382, Thr-383 and Ser-385.  Substitution of alanine at these phosphorylation sites 

results in a reduction of PTEN half-life, as well as a significant increase in enzymatic 

activity.  Casein kinase 2 (CK2) has been implicated in phosphorylation at Ser-370 and 

Ser-385, and although not considered major phosphorylation targets, Ser-362 and Thr-

366 are phosphorylated by CK2 and GSK3 (Al-Khouri et al., 2005; Torres and Pulido, 
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2001).  Mutational analysis of Ser-380, Thr-382, and Thr-383 revealed a role for 

phosphorylation in membrane localization.  Specifically, alanine substitution at these 

three sites did not affect the affinity of PTEN for lipid membranes; however glutamine 

substitutions, which mimic phosphorylation, resulted in an 83 fold reduction in 

membrane localization by interfering with its electrostatic membrane binding (Das et al., 

2002). Further studies have revealed that tail phosphorylation regulates an intramolecular 

interaction that occurs between the tail and the catalytic region of PTEN.  

Phosphorylation of the tail results in a closed PTEN conformation that restricts PTEN 

recruitment to the plasma membrane and PIP3 access (Odriozola et al., 2007; Rahdar et 

al., 2009).  

 

In addition to sites of phosphorylation, the C-terminus of PTEN contains a PDZ-binding 

domain (PDZ-BD), which mediates interactions with proteins containing PDZ domains. 

One such family of proteins is the MAGI proteins, which act as membrane-associated 

scaffold proteins and guanylate kinases.  Identified in a two-hybrid screen for PTEN 

interacting proteins, MAGI-2, MAGI-3, and MAGI-1b contain PDZ domains that interact 

with the PDZ binding domain of PTEN. There is evidence that MAGI proteins increase 

PTEN suppression of Akt activation by aiding its recruitment to the plasma membrane 

and increasing its stability.  Interestingly, phosphorylation of the C-terminal tail at Thr-

382 and Thr-383 reduces the affinity for MAGI-2 (Kotelevets et al.,2005; Tolkacheva et 

al., 2001; Wu et al, 2000; Wu et al. 2000b).  PTEN also interacts with microtubule-

associated serine/threonine kinases (MAST) 205 and MAST3, which phosphorylates and 

stabilizes PTEN protein.  The human homologue of hDlg also interacts with the PTEN 
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PDZ-binding domain, although the implications of this interaction have not been 

thoroughly investigated (Adey et al.,2000; Valiente et al., 2005).  A two-hybrid screen 

identified the interaction between PTEN and Na+/H+ Exchanger Regulatory Factor 1 and 

2 (NHERF1 and NHERF2).   NHERF1 and NHERF2 interact through the PDZ binding 

domain of PTEN, and regulate PDGF stimulated PI3K activity by forming a ternary 

complex with PTEN and PDGFR (Pan et al., 2004; Takahashi et al., 2006).  As 

mentioned previously, PTEN interacts with the oncogene MSP58 through its C-terminal 

tail and inhibits cellular transformation independently of its lipid phosphatase activity.  

Furthermore, phosphorylation at Thr-366 is required for binding of MSP58 (Okumura et 

al., 2005).  . 

 

P-REX2 and RHO GTPASES 

 
Recently, we identified a novel PTEN interacting protein, PI(3,4,5)P3-dependent Rac 

exchanger 2 (P-REX2) (Fine et al., 2009). P-REX2 is a Dbl family guanine-nucleotide 

exchange factor (GEF) for the Rho GTPase Rac (Donald et al., 2004 Rosenfeldt et al., 

2004).  The Dbl family of Rho guanine nucleotide exchange factors consists of 

approximately 70 different proteins which create a highly specific network of Rho-family 

GTPase activation.  GEFs exhibit varying degrees of GTPase selectivity, but a large 

number only activate a single GTPase.  Regulation of GEF activity occurs through 

various mechanisms, including activation by second messengers such as PIP3 and Gβγ, 

intramolecular inhibition, and subcellular localization (Das et al., 2002; Schmidt et al., 

2002; Rossman  et al., 2005; Welch et al., 2002).   
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Rac GTPase function 

Members of the family of Rho-GTPases, including Rac, Rho, Cdc24, RhoBTB, and 

RhoT, are highly involved in cytoskeletal reorganization and therefore regulate many 

biological functions including cellular migration, adhesion, and proliferation (Chimini 

and Chavrier, 2000; Evers et al., 2000).  Rho GTPases cycle between an inactive 

guanosine biphosphate (GDP) bound state and an active guanosine triphosphate (GTP) 

bound state.  The balance between these two states is regulated by several classes of 

proteins including GEFs, which catalyze the exchange of GDP to GTP, GTPase 

activating proteins (GAPs), which increase the rate GTP hydrolysis and turn off GTPase 

signaling, and guanine nucleotide dissociation inhibitors (GDIs), which inhibit GDP 

dissociation as well as GTPase membrane association (Nassar et al., 1998; Olofsson et 

al., 1999;  Rittinger et al., 1997).  The Dbl family of GEFs is named for the Rho-GEF Dbl 

(from diffuse B-cells lymphoma cells), the first mammalian Rho GEF identified (Eva et 

al., 1988; Hart el al., 1991).  Rac activation occurs through binding of Dbl homology 

(DH) domains of GEFs to switch regions 1 and 2 of Rac, which alters the nucleotide and 

magnesium binding pocket resulting in GDP dissociation and binding of GTP to the 

empty nucleotide binding pocket (Rossman et al., 2002).  Activated Rac interacts with 

specific effectors to promote cytoskeletal reorganization, ROS formation, trafficking, and 

transcriptional activation.  Rac1 regulates actin polymerization through interaction with 

proteins such as insulin receptor tyrosine kinase substrate p53 (IRSp53), which forms a 

trimeric complex with WAVE/Scar and leads to Arp2/3 activation (Miki et al., 2000).  

Rac1 also interacts with to Nap125 and PIR121 and disrupts an inactive WAVE/Scar 

complex (Eden et al., 2002; Suetsugu et al., 2006).   Binding of Rac to the effector the 
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p21-activated kinase (PAK) promotes cytoskeleton reorganization, motility, transcription, 

survival, and cell-cycle progression through PAK-mediated phosphorylation of 

downstream targets including, LIM kinase and mysonin light chain kinase (Bokoch et al., 

2003; Edwards et al., 1999; Manser et al., 1994; Sanders et al., 1999).  Activated Rac is 

also part of the NADPH oxidase complex involved in ROS production and actives actin 

remondeling necessary for GLUT4 translocation (Khayat et al., 2000; Diekmann et 

al.,1994; Koga et al., 1999). 

 

P-REX2 function 

The Rac GEF P-REX2 was identified by two different groups through a database search 

for proteins homologous to P-REX1 (Donald et. al., 2004; Rosenfeldt et al., 2004).  P-

REX1, also a Rac-GEF, was purified through a biochemical screen targeting enzymes 

that increase Rac-GEF activited ROS formation from neutrophil cytosolic fractions 

(Welch et al., 2003).  P-REX2 shares 59% homology with P-REX1 and is broadly 

expressed in many different tissue types, while P-REX1 expression is limited to 

neutrophils and cells of the brain and spinal chord. P-REX2 was shown to activate Rac 

and to a lesser degree, Cdc24 in-vitro (Rosenfeldt et al., 2004).  Furthermore, in-vivo 

experiments using Sf9 and HEK293 cells showed that P-REX2, like P-REX1, activates 

Rac in response to both phosphatidylinositol (3,4,5)-triphosphate and the beta-gamma 

subunits of G-proteins (Rosenfeldt et al., 2004).  P-REX2 plays an important role in 

endothelial cell Rac1 activation and migration.  Studies have shown depletion of P-REX2 

by siRNA results in decreased Rac activation as well as reduced migration in response to 

sphingosine-1-phosphate (Li et al., 2005).  P-REX2 has also been implicated in purkinje 
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cell dendrite morphology.  Dendrites of purkinje cells from the cerebellum of Prex2 null 

mice are decreased diameter and length.  Prex2 null mice also display motor coordination 

defects that become more pronounced with co-deletion of Prex1 (Donald et al., 2008). 

 

P-REX2 structure 

P-REX2 shares the same structural domains as P-REX1, which includes the catalytic 

DH/PH domain tandem, two DEP (Disheveled, EGL-10, and pleckstrin homology) 

domains thought to be involved in membrane targeting, two PDZ domains, important for 

protein-protein interactions, and a C-terminal tail that is homologous to an inositol  

polyphosphate-4 phosphatase (IP4P) domain.  However, the phosphatase domain of P-

REX1 shows no activity towards proteins or lipids (Donald et al., 2004 Rosenfeldt et al., 

2004).   A splice variant of P-REX2, named P-REX2b exists which lacks this C-terminal 

phosphatase domain. The DH/PH domain of P-REX2 is important for its Rac GEF 

activity.   The DH domain catalyzes the exchange of GDP to GTP, while the adjacent PH 

domain has many proposed functions including localizing P-REX2 to the plasma 

membrane by binding to phosphoinositides, and well as providing substrate specificity 

and direct binding to Rac (Joseph and Norris, 2005).  Intramolecular interactions between 

domains of P-REX1 have also been implicated in regulation of P-REX1 GEF activity, 

and therefore may also be important for P-REX2 regulation.  For instance, the IP4P 

domain of P-REX1 forms intramolecular interactions between the IP4P domain and the 

second DEP and first PDZ domain of P–REX1 are important for Gβγ mediated activation 

of GEF activity (Urano et al., 2008) 

. 
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Rac activation in disease 

There is evidence of Rac1 overexpression and hyperactivity in breast, lung, and colon 

cancer, and activated Rac1 can also cooperate with p53 loss of function to transform 

normal primary fibroblasts (Boettner et al., 2002; Guo and Zheng, 2004; Jordan et al., 

1999; Schnelzer et al., 2000).  Dysregulation of Rac2 expression has been found in 

cancers of the breast, brain, head and neck, colon, and blood, and somatic mutations in 

Rac2 have been identified in brain tumors (Boettner et al., 2002; Guo and Zheng, 2004; 

Hwang et al., 2005; Jordan et al., 1999; Schnelzer et al., 2000).   Rac target proteins have 

also been implicated in tumorigenesis, including Pak1, which is overexpressed or 

hyperactive in 50% of breast tumors (Balasenthil et al., 2004; Dummler at al., 2009).  

Furthermore, there has been mounting evidence of GEF involvement in cancer.  Vav3 

and Trio are both overexpressed in human breast tumors, and Tiam1 expression 

correlates with high grade breast tumors (Lane et al., 2008; Lee et al., 2008).  P-REX1 is 

overexpressed in breast cancers and derived cell lines, especially in those with elevated 

ErbB2 and estrogen recetor (ER) expression, and also regulates ErbB2 activated cell 

migration and growth (Montero et al., 2011; Sosa et al., 2010).  Furthermore, 

upregulation of P-REX1 in prostate cancer tumors and cell lines has positively correlates 

with metastasis, while overexpression of P-REX1 in normal prostate cells results in 

increased metastasis in mouse xenograft models (Qin et al., 2009).   P-REX1 also 

promotes melanoma metastasis in a manner that requires Rac activation (Lindsay et al., 

2011).  
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Alterations in PREX2 have also been identified in human cancer.  PREX2 is located on 

chromosome 8q13, an area that has increased copy number in breast cancer, and is 

amplified in colorectal and prostate cancers.   Analysis of available genetic expression 

data sets revealed that PREX2 mRNA is significantly elevated in breast, prostate, 

pancreatic, brain and ovarian tumors compared to normal tissues.  By surveying 

publically available cancer mutation data sets, we also found non-synonymous mutations 

in PREX2 in many cancers including those of the pancreas, lung, colon, and kidney (Fine 

et al, 2009).  Furthermore, a recent report found that PREX2 is mutated frequently in 

metastatic melanoma.  Specifically, 44% of metastatic melanoma biopsies had mutations 

in PREX2, and an independent cohort of melanoma samples were mutant for PREX2 at a 

rate of 14%.  Several of these mutations cooperated with N-RASG12D in hTERT-

immortalized melanocytes to form tumors in immunodeficient mice.  Interestingly, the 

mutations identified in PREX2 are not clustered in hot-spots, but rather distributed evenly 

throughout the coding region (Berger et al., 2012).   

 

P-REX2-PTEN interaction 

We have previously reported that P-REX2 is a novel PTEN interacting protein.  This 

interaction was identified by mass spectrometry analysis of PTEN binding proteins from 

cytoplasmic cell lysates purified over a glutathione S-transferase (GST) PTEN affinity 

column.  Mutation analysis revealed that P-REX2 binding occurs in part through the C-

terminal tail of PTEN, and that the DHPH domain of P-REX2 interacts with full-length 

PTEN.  Most important, however, was the finding that P-REX2 inhibits the lipid 

phosphatase activity of PTEN in a non-competitive manner, and that the DHPH domain 
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of P-REX2 is sufficient for inhibition.  P-REX2 rescues levels of phosphorylated AKT 

ablated by PTEN following insulin stimulation, but not EGF stimulation.   Furthermore, 

P-REX2 and PTEN co-localize at the plasma membrane upon stimulation with insulin or 

PDGF, but not EGF.  Knockdown of P-REX2 in PTEN positive breast cancer cells leads 

to decreased PI3K signaling and proliferation.  Furthermore, P-REX2 associates 

significantly with PTEN status and P-REX2 expression was 3 times higher in those 

tumors that express PTEN (Fine et al. 2009).   

 

Overall, these published results suggest that P-REX2 may be a critical regulator of PI3K 

signaling through inhibition of PTEN.  Due to the frequency of P-REX2 mutations and 

genome copy number changes in cancer, it is possible that alterations in P-REX2 can 

disrupt the balance of PTEN regulation and AKT activation, resulting in the 

dysregulation of PI3K activated cellular activities including proliferation, migration and 

metabolism.  This thesis focuses on understanding the importance of the P-REX2/PTEN 

inhibitory interaction in PI3K signaling transduction, in addition to uncovering how P-

REX2 mediated PTEN inhibition itself is regulated.  
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FIGURE LEGENDS 

 

Figure 1.1.  Generation of phosphorylated PtdIns.  Schematic of the interconversion of 

phosphorylated PtdIns by specific kinases and phosphatases. 

 

Figure 1.2. Downstream targets of activated AKT.  Receptor tyrosine kinase activation 

results in recruitment of the p110/p85 complex to either phosphorylated receptor or 

adaptor proteins where the catalytic subunit is activated to generate PIP3.  AKT and 

PDK1 bind to PIP3, resulting in AKT phosphorylation at Thr-308, followed by 

phosphorylation at Ser-473 by the mTORC2 complex.  AKT is now fully activated and 

can phosphorylate target protein including BAD, TSC2, MDM2, and GSK3. 

 

Figure 1.3.  Crystal structure of PTEN.  Crystal structure of the N-terminal phosphatase 

domain, colored in blue, and C2 domain of PTEN, colored in red.   

 

Figure 1.4.  PTEN “open” and “closed” conformations.  Phosphorylation of the C-

terminal PTEN tail induces an intramolecular interaction between the C2/phosphatase 

domain and the C-terminal tail.  This interaction blocks PTEN membrane recruitment and 

PIP3 dephosphorylation. 

 

Figure 1.5.  Dbl-family guanine nucleotide exchange factors.  A phylogenic tree of 

human Dbl proteins based on the alignment of DH domains.  Domain structures and Rho 

specificity is also summarized.  
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Figure 1.6.  Domain structure of P-REX2. P-REX2 shares the same domain structure as 

P-REX1, which includes the DHPH tandem, two DEP domains, two PDZ domains, and 

an inositol-4 polyphosphate phosphatse domain with no known substrate.  P-REX2b, a 

splice variant of P-REX2, has no C-terminal phosphatase domain. 
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FIGURE 1.1 

 

 

 

 

(Lemmon et al., 1995) 
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FIGURE 1.2 

 

 

 

 

(Courtney et al., 2010) 
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FIGURE 1.3 

 

 

 

 

 

(Lee et al., 1999) 
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FIGURE 1.4 
 

 
 
 

 
 
 

 
 
 
 
(Ross and Gericke, 2009) 
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FIGURE 1.5 

 
 
 

 
 

(Rossman et al., 2005) 
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FIGURE 1.6 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(Donald et al., 2004)
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ABSTRACT 

 

PTEN is a tumor suppressor that is lost in many cancers as well as cancer predisposition 

syndromes. PTEN dephosphorylates the second messenger phosphatidylinositol 3,4,5-

triphosphate (PtdIns(3,4,5)P3), therefore antagonizing PI3K signaling, a pathway highly 

disrupted in cancer.  We have recently identified a novel PTEN interacting protein, P-

REX2, which inhibits PTEN phosphatase activity in a non-competitive manner.  Here, we 

determined if P-REX2 Rac GEF activity was required for PTEN inhibition by using the 

GEF dead mutant N212A, and found that is could inhibit PTEN and rescue PTEN 

depleted AKT phosphorylation in culture.  Due to its role in PTEN regulation, we 

determined if P-REX2 overexpression effected PI3K signaling activation in normal 

human epithelial cells.  Expression of P-REX2 and the DHPH domain increased AKT 

phosphorylation and cellular proliferation.  Expression analysis showed that increased 

PREX2 correlated with PIK3CA mutations, Co-expression of P-REX2 and the oncogenic 

mutant PI3K E545K resulted in cellular transformation.  Furthermore, PREX2 and CMYC 

are located on the same chromosomal arm, which is increased in copy number in breast 

cancer.  P-REX2 and c-MYC cooperated to promote proliferation and altered 3-D growth 

without increasing AKT activation.  P-REX2 also cooperated with HER2 to form tumors 

in mice. PREX2 is mutated in many cancer types, and signaling and growth analysis of 

these mutants revealed several transforming P-REX2 cancer mutants.  Overall, these 

results suggest that P-REX2 has oncogenic properties and may cooperate with other 

oncogenes to promote tumorigensis, therefore serving as a potential target for anti-tumor 

therapy. 
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INTRODUCTION 

 

The development of human cancer is a complex process that occurs through the 

accumulation of genetic events, mainly in tumor suppressors and proto-oncogenes, 

resulting in disrupted cell death, proliferation, and differentiation.  One particular signal 

transduction pathway that is activated in many cancer types is the PI3K pathway.   PI3K 

pathway activation occurs through the binding of growth factors to receptor tyrosine 

kinases, resulting in receptor autodephosphorylation and subsequent activation of the 

lipid kinase PI3K (Backer et al., 1992; Rordorf-Nikolic et al., 1995; Songyang et al., 

1993; White, 1998).  PI3K phosphorylates PI(4,5)P2 at the 3’ position to generate PIP3 

P3 (Downward, 1998; Toker and Cantley, 1997; Vanhaesebroeck et al., 1997), a second 

messenger that regulates cellular processes including growth, apoptosis, migration, and 

metabolism by recruiting and activating PH domain-containing proteins (Kavran et al., 

1998).  The most thoroughly described PIP3 effector is the threonine/serine kinase AKT 

(Frech et al., 1997, Klippel et al., 1997), but is PIP3 is also known to target PDK1, Arf 

GEFs including Grp1, and Btk1(Anderson et al., 1997; Fukuda et al., 1996; McManus et 

al., 2004; Salim et al., 1996; Venkateswarlu et al., 1998).  Targets of activated AKT are 

involved in many cell processes including proliferation, survival, and migration.  The 

lipid phosphatase PTEN opposes PI3K signaling by dephosphorylating PIP3 at the 3’ 

position and converting it to PI(4,5)P2, (Maehama and Dixon, 1998),  therefore inhibiting 

AKT activation. 
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Many genomic alterations in the PI3K pathway have been identified in human cancer.  In 

fact, genetic aberrations have been found in all major components of this pathway.  The 

receptor tyrosine kinases involved in PI3K pathway activation are often amplified in 

human cancer.  Human epidermal growth factor receptor 2 (HER2), for example, is 

overexpressed in 25-30% of human breast cancers and ovarian cancers (Moasser, 2007), 

while EGFR is amplified often in gliomas, and mutated in non-small cell lung cancer 

(Arteaga, 2006; Sauter et al., 1996).  PI3KCA, the gene encoding the p110α catalytic 

subunit of PI3K, is mutated in many cancer types including breast, brain, lung, and colon 

(Campbell et al., 2004; Samuels et al., 2004).  These mutations mainly cluster in two 

regions including the kinase domain and helical domain.  These hot spot mutations, 

H1047R, E545K, and E542K, result in constitutive activation of PI3K activity.  

Furthermore, KRAS, which is mutated in many cancers, binds to the p110α subunit of 

PI3K, resulting in increased PI3K activation (Rodriguez-Viciana et al., 1994).   

Amplification and overexpression AKT at both the message and protein level have been 

found in multiple cancers, and a activating missense mutation in the PH domain has been 

discovered in breast, colorectal, and ovarian cancer that increases AKT localization to the 

membrane (Bellacosa et al., 1995; Carpten et al., 2007; Cheng et al., 1992; Cheng et al., 

1996; Miwa et al., 1996; Ruggeri et al., 1998; Stal et al., 2003). PTEN is deleted or 

mutated in many tumor types, such as advanced glial, breast, early endometrial, prostate, 

renal, melanomas, and small cell lung carcinomas (Ali et al., 1999).  Furthermore, 

germline mutations in PTEN are associated with cancer predisposition syndromes such as 

Cowden’s disease (Liaw et al., 1997).  Discovering novel members of the PI3K pathway 



47 
 
that are altered in cancer would provide further insight into the deregulation of this 

pathway as well as new targets for cancer therapy. 

 

We have recently identified a novel PTEN interacting protein, P-REX2, by utilizing an 

in-vitro screen for PTEN binding partners.  Furthermore, we found that P-REX2 directly 

inhibits PTEN phosphatase activity in a non-competitive manner and rescues PI3K 

signaling ablated by PTEN expression in culture.  Furthermore, knockdown of P-REX2 

in PTEN positive breast cancer cell lines resulted in decreased PI3K signaling and 

proliferation (Fine et al, 2009).  P-REX2 is a GEF for the small GTPase Rac, and was 

initially identified through a database search for proteins homologous to the leukocyte 

specific Rac-GEF P-REX1.  P-REX2 is regulated by both PIP3 and the beta-gamma 

subunits of guanine nucleotide-binding proteins (Donald et al., 2004; Rosenfeldt et al., 

2004).  Interestingly, the gene encoding P-REX2 is located on chromosome 8q13, an area 

that is frequently amplified in breast, colorectal, and prostate cancers (Cher et al., 1994; 

Fejzo et al.; 1998, Nakao et at., 2004).  Analysis of available genetic expression data sets 

revealed that PREX2 mRNA was significantly elevated in breast, prostate, pancreatic, 

brain and ovarian tumors compared to normal tissues, and analysis of breast tumor 

samples revealed that P-REX2 associates significantly with PTEN status.  By surveying 

publically available cancer mutation data sets, we also found non-synonymous PREX2 

mutations in many cancers, including those of the pancreas, lung, colon, and kidney (Fine 

et al, 2009).  Furthermore, a recent report found that PREX2 was mutated frequently in 

metastatic melanoma.  Several of these mutations cooperated with N-RASG12D in human 
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telomerase reverse transcriptase (hTERT)-immortalized melanocytes to form tumors in 

immunodeficient mice (Berger et al., 2012).  

 

Overall, these published results suggest that overexpression or mutation of P-REX2 may 

be important for cellular transformation and tumorigenesis through deregulation of PTEN 

inhibition and activation of PI3K signaling.  By utilizing various cellular transformation 

assays, we report here that that overexpression of P-REX2 and the PTEN inhibitory 

DHPH domain activates PI3K signaling and increases proliferation.  Furthermore, P-

REX2 cooperates with oncogenic mutants of p110α, c-myc and Her2 to transform cells. 

We also identified cancer mutants of P-REX2 that increase its transformation potential.  
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EXPERIMENTAL PROCEDURES 

 

Plasmids- NeuT-pBabe-puro expression vectors were a gift from Nancy Hynes, 

P110α(E545K)-pBabe-puro was a gift from Tom Roberts, and c-Myc-pBabe-neo was a 

gift from Ricardo Dalla-Favera.  P-REX2a was cloned into pBabePuro via ligation 

BamHI/XhoI digest from pcDNA3.1 into BamHI/SalI digested pBabePuro. To generate 

MSCV-P-REX2, full length PREX2 was amplified by PCR and ligated into the MSCV-

IRES-GFP vector backbone.  DHPH-V5-pBabe-puro was generated by subcloning into 

the pBabe-puro vector backbone.  To create the P-REX2A GEF inactive mutant, the 

QuikChange II XL Site-Directed mutagenesis kit was used to create the N212A mutation 

in the V5-tagged P-REX2 expression vector as per manufacturer instructions (Agilent, 

Santa Clara, CA).  .  

 

Antibodies- Antibodies against phospho-AKT (Thr308 and Ser473), total AKT, 

Her2/ErbB2 and anti-PTEN 138G6 were purchased from Cell Signaling (Danvers, MA).   

A P-REX2 rabbit polyclonal antibody to amino acids 960-973 was made by Zymed 

Laboratories (San Francisco, CA).  Anti-vinculin and anti-βactin antibody was purchased 

from Sigma (St. Louis, MO), and monoclonal V5 antibody was from Invitrogen 

(Carlsbad, CA).  Anti-c-Myc antibody clone 9E10 was purchased from Santa Cruz, CA, 

and anti-Rac was purchased from Millipore (Billerica, MA). Secondary antibodies 

directed against rabbit and mouse IgG conjugated to HRP were purchased from Pierce 

(Rockford IL).    
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Cell culture- MCF10A cells were grown in Dulbecco's Modified Eagle Medium 

(DMEM): Nutrient Mixture F-12 supplemented with 5% horse serum (Invitrogen), 10 

µg/mL bovine insulin, 20ng/mL EGF, 0.5ug/mL hydrocortisone, 100ng/mL choleratoxin 

(Sigma), plus 100 IU penicillin and 100 µg/mL streptomycin (Cellgro, Herndon, VA).   

U87-MG cells were grown in minimal essential medium eagle supplemented with 10% 

FBS (Invitrogen) and 1% penicillin/streptomycin.  HEK293 cells were grown in DMEM 

supplemented with 10% FBS and 1% penicillin/streptomycin.  Cells were grown at 37 °C 

with 5% CO2. 

 

Transfections and infections – Retrovirus was produced by transfection of either pBabe 

or MSCV-IRES-GFP based constructs into Phoenix HEK293 packaging cell line using 

Lipofecatime 2000 per the manufacturer’s protocol (Invitrogen). Titers were collected 24 

and 48 hours after transfection, filtered and frozen. For infection of cell lines, polybrene 

(Sigma) was added at a concentration of 6 µg/ml to increase infectivity. Cell lines were 

infected for 12 hours with 1:1 titer:growth media.  For cells infected with pBabe puro, 

selection antibiotic was added to the media 48 hours after the initial point of infection. 

Cells expressing MSCV-IRES-GFP were isolated by flow cytometry.  

 

Cell proliferation assay – 4000 cells were plated per well in a 48 well plate in at least 

triplicate for each experiment. Cells were allowed attach overnight, and media was 

changed to the indicated media 24 hours later.  Cells were then allowed to proliferate and 

fixed at indicated time points in 0.05% crystal violet (Sigma) in 10% formalin. Each well 

was then washed multiple times with PBS. For relative quantification of cell density, the 
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crystal violet was re-solubilized in 10% acetic acid and the absorbance at 595nm was 

recorded by a MicroQuant plate spectrophotometer. 

 

Soft Agar Colony Formation Assay - For soft agar colony formation assays, 1 X 105 cells 

from stable MCF10A cell lines were mixed with agar Noble (Becton Dickinson, Franklin 

Lakes, NJ) to form a top layer of 0.3% agarose. This layer was plated into a 35 X 10 mm 

plate on top of a solid layer of 0.5% agarose. Each assay was performed in triplicate. 

Colonies were stained with a 0.005% crystal violet solution after 14 days of incubation, 

and colony number was determined using ImageJ software. 

 

Acini Formation Assay- Matrigel (Trevigen, Gaithersburg, MD) was spread evenly onto 

the bottom of the well of an 8-well chamber. MCF10A stable cell lines were resuspended 

into medium containing 2% Matrigel, 2% horse serum, and 5 ng/mL EGF, and plated at a 

density of 5X103 cells per well. Each assay was performed in quadruplicate. Medium was 

changed every 4 days, and representative photographs were taken after 10 days of 

incubation (Debnath et al., 2003). 

 

Xenograft assay- Mice were housed in the mouse facility of the Irving Cancer Research 

Center and were treated in accordance with IACUC protocol AAAB- 8776. Nude mice 

were obtained from Harlan Laboratories (NJ). Xenograft experiments were performed by 

injection of 1x106 cells in matrigel and were monitored daily.  For collection and staining 

of tumor samples, mice were euthanized via induction with CO2, at which point the 



52 
 
desired tissues were collected and stained with hematoxylin and eosin (H&E) to examine 

tumor histology. 

 

GST-CRIB Preparation- BL21(DE3)pLysD bacteria (Invitrogen) were transformed with 

plasmids encoding GST-CRIB. 5 ml starter cultures were grown at 37°C overnight. 

Starter cultures were used to inoculate 500 ml LB cultures until OD =0.4. Protein 

expression was induced with 0.1 mM IPTG (Sigma) for 4 hours at 37°C. Bacterial 

cultures were centrifuged at 6000 x g and protein was extracted from the bacteria by 

sonication in a lysis buffer containing 400 mM NaCl, 50 mM Tris pH 7.2, 1% Triton X-

100 and 1mM EDTA. Sonicated lysates were centrifuged at 20,000 x g for 45 minutes 

and the supernatant was passed through a 0.45 micron filter. The filtered supernatant was 

incubated overnight at 4°C with 0.5 ml GST-sepharose (GE Healthcare, Piscataway, NJ) 

and was then washed with GST-CRIB buffer containing 50 mM Tris pH 7.6, 50 mM 

NaCl and 5 mM MgCl2. Resin was assessed for purity and protein expression by SDS-

PAGE followed by coomassie staining. 

 

In vivo RAC-GEF assay- HEK293 cells were transfected with a myc-tagged RAC1 

expression vector plus V5-tagged P-REX2A, P-REX2A N212A-V5, or control vector 

using Lipofectamine 2000 as per manufacturer protocol. After 36 hours, cells were lysed 

with buffer (500mM NaCl, 50mM MgCl2, 50mM Tris, 1% Triton X-100, 0.1% SDS and 

protease inhibitor cocktail) and incubated with GST-CRIB beads for 1 hour at 4⁰C to pull 

down GTP-bound RAC1 (Sander et al., 1998).  Beads were washed three times with lysis 

buffer without detergent and resuspended in 2X Laemlli sample buffer (125 mM Tris pH 
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6.8, 10% 2-mercaptoethanol, 4% SDS, 20% glycerol, 0.05% bromophenol blue). Rac was 

immunoblotted and quantitated using ImageJ software (version1.40g). Rac-GTP index is 

calculated by dividing the amount of RAC pulled down with GST-CRIB by the total 

amount of RAC multiplied by 100. 

 

Immunoprecipitation PTEN phosphatase assay- PTEN and P-REX2-N212A were 

transfected into HEK293 cells as per manufacturer protocol at a ratio of 1:3 respectively. 

Cells were lysed 36 hours after transfection in Triton-containing lysis buffer (150 mM 

NaCl, 25 mM Tris pH 7.4, 1% Triton X-100, 1 mM EDTA)  and precleared using agarose 

conjugated to mouse IgG (Santa Cruz, CA) for 1 hour. PTEN was immunoprecipitated 

using 138G6 antibody (Cell Signaling) and 20μl of Protein A/G Plus Agarose (Santa 

Cruz, CA). The sepharose was washed with cold phosphatase buffer (PB) (150 mM 

NaCl, 25 mM Tris-HCl pH 7.5) three times. PB, 1mM EGTA, 1mM EDTA, 5mM DTT 

and 20 µM soluble di-C8-D-myo-Phosphatidylinositol 3,4,5-trisphosphate (Echelon, Salt 

Lake City, UT) in a final volume of 50 μl was added to the beads and incubated for 30 

minutes at 37oC. The reactions were then added to 50μl of Biomol Green Reagent (Enzo, 

Farmingdale, NY) and allowed to incubate at room temperature for 30 minutes. 

Absorption at 620nm was quantitated in a Micro-QUANT microplate spectrophotometer 

(Biotek-Instrument Inc., Winooski, VT). 
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RESULTS 

 

P-REX2 Rac-GEF activity is not required for PTEN inhibition 

P-REX2 is an inhibitor of PTEN phosphatase activity; however, it is not known if P-

REX2 GEF activity is required for PTEN inhibition and PI3K signaling activation.  We 

therefore constructed a P-REX2 GEF-dead expression vector, P-REX2-N212A, based on 

a published P-REX1 GEF-dead mutant as well as the crystal structure of TIAM1 (Hill et 

al., 2005).  First, we confirmed that this mutant was unable to activate Rac1 by 

determining levels of Rac-GTP loading in HEK293 cells overexpressing wild-type (WT) 

or mutant P-REX2. RAC-GTP loading was determined by binding to the CRIB domain 

of p21 activated kinase (PAK).   As expected, P-REX2 expression led to increased Rac-

GTP loading, whereas P-REX2-N212A Rac-GTP loading was comparable to control 

levels, confirming that this mutant was unable to activate Rac (Fig 2.1A).  

 

We next determined if P-REX2-N212A was still able to inhibit PTEN activity.  To test 

this, we transfected HEK293 cells with PTEN alone or in combination with P-REX2-V5 

(WT) or P-REX2-N212A-V5.  PTEN complexes were immunoprecipitated with anti-

PTEN 138G6 antibody, and phosphatase assays were performed.  Both wild-type P-

REX2 and P-REX2-N212A inhibited PTEN phosphatase activity by 70%, suggesting the 

GEF activity is dispensable for PTEN inhibition (Fig 2.1B).  Next, we examined if GEF 

activity was required to restore PI3K signaling blunted by PTEN expression.   PTEN was 

transfected alone or in combination with WT P-REX2 or P-REX2-N212A into the PTEN 

deficient cell line U87-MG.  As with PTEN inhibition, both P-REX2 and P-REX2-
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N212A restored levels of pAKT308 and pAKT473 that were reduced by overexpression 

of PTEN, but had no effect on pAKT levels on their own (Fig 2.1C).  In summary, loss of 

P-REX2 GEF activity does not affect PTEN phosphatase inhibition or PTEN dependent 

PI3K signaling activation.  This suggests that P-REX2 induced transformation is likely 

due to its direct regulation of PTEN rather than through Rac activation. 

 

P-REX2 overexpression results in increased PI3K signaling, proliferation, and 

disrupted morphology 

We have shown that P-REX2 inhibits the activity of PTEN, a negative regulator of PI3K 

signaling and cell proliferation, and this does not require Rac GEF function.  Therefore, 

we hypothesized that increased P-REX2 expression may enhance PTEN inhibition and 

PI3K signaling.  We therefore investigated the effect of P-REX2 overexpression in the 

immortalized human mammary epithelial cell line MCF10A by retroviral infection of P-

REX2, or a V5-tagged P-REX2 DHPH domain (DHPH-V5).  Cells were lysed and PI3K 

signaling was analyzed by western blot analysis.  Expression of both P-REX2 and the 

PTEN inhibitory domain, DHPH, resulted in increased levels of pAKT473, suggesting 

that PI3K activity is increased in these cells (Fig 2.2A).   

 

Next, we determined whether expression of P-REX2 or the DHPH domain altered 

cellular proliferation of MCF10A cells.  Cells were grown for several days in reduced 

growth factor and serum conditions, and proliferation was determined at the indicated 

time points by crystal violet staining.  Indeed, P-REX2 and DHPH-V5 expression led to a 

significant increase in proliferation in growth factor-reduced medium (Fig 2.2B).  We 
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then examined the effect of P-REX2 and DHPH-V5 expression on the 3-dimensional 

growth of MCF10A cells on a reconstituted basement membrane.  Normally, when grown 

on matrigel, MCF10A cells form acini-like spheres with hollow centers resulting from 

the apoptosis of cells that no longer contact the membrane.  However, the introduction of 

oncogenes disrupts the glandular morphology by deregulating proliferation and apoptosis 

(Debnath et at., 2003).  P-REX2 and DHPH-V5 overexpression resulted in the disruption 

of acini morphology that is indicative of an oncogene.  Cells formed large, disorganized 

clusters with no observed apoptosis (Fig 2.2C).  The observed increase in cellular 

proliferation and disruption of 3-D morphology when P-REX2 and DHPH-V5 is 

expressed can be explained by the corresponding increase in PI3K signaling.  However, 

cells expressing P-REX2 were not capable of anchorage independent growth (data not 

shown), suggesting that expression of P-REX2 alone is not sufficient for full cellular 

transformation.  Since P-REX2 overexpression lead to increased AKT activation and 

proliferation in normal mammary epithelial cells, we next determined the levels of P-

REX2 protein in various breast cancer derived cell lines.  High levels of P-REX2, as well 

as the shorter isoform P-REX2b, was observed in many of the cell lines analyzed (Fig 

2.2D), suggesting that upregulation of P-REX2 protein may be important in breast 

tumorigenesis. 

 

P-REX2 cooperates with PI3Kα oncogenic mutants to transform MCF10A cells 

Because P-REX2 overexpression did not fully transform cells, we next determined if P-

REX2 could cooperate with other oncogenes to transform cells.  Quantitative reverse 

transcription polymerase chain reaction (qRT-PCR) of P-REX2 mRNA in a cohort of 
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PTEN-expressing breast tumors showed that increased P-REX2 expression levels 

significantly correlated with the presence of activating mutations in PIK3CA (Fig. 2.3A).  

We therefore expressed P-REX2, a tumor derived mutant of p110α- E545K (PI3K[EK]), 

or both in combination in MCF10A and analyzed the effect of P-REX2 and PI3K[EK] 

expression on PI3K signaling by western blot. We saw that the expression of both 

proteins in combination resulted in increased phosphorylation of pAKT473 (Fig 2.3B).  

 

We next determined the effect of P-REX2 and PI3K[EK] co-expression on cellular 

proliferation in the absence of growth factors and serum.  Cells expressing P-REX2 or 

PI3K[EK] alone did not proliferate during starvation conditions, but over-expression of 

PI3K[EK] and P-REX2 in combination allowed for growth factor-independent cellular 

proliferation (Fig. 2.3C). We again utilized the ability of MCF10A cells to form acini 

during 3-D growth to further analyze the consequence of P-REX2 and PI3K[EK] 

overexpression.   PI3K[EK] in combination with P-REX2 resulted in the formation of 

large, branched structures that resembled cellular invasion, and were significantly more 

disrupted compared to the structures formed with P-REX2 or PI3K[EK] expression alone 

(Fig 2.3D).  We next performed soft agar assays to test whether co-expression of P-REX2 

and PI3K[EK] allows cells to overcome anchorage dependent growth, a hallmark of 

transformation.  While PI3K[EK] expressing cells formed a small number of colonies in 

soft agar, co-expression with P-REX2 resulted in three-times as many colonies formed, 

suggesting that P-REX2 and  PI3K[EK] may cooperate to transform cells by increasing 

PI3K activation (Fig 2.3E).  Surprisingly, injection of these cells into the mammary fat 
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pads of SCID mice did not result in tumor growth, suggesting that further pathway 

activation or activation of additional pathways is needed for tumor formation. 

 

P-REX2 and c-Myc are amplified in cancer and promote cellular proliferation 

The choromosome arm 8q containing PREX2 also contains the MYC gene at 8q24.2, and 

like PREX2, is increased in copy number in breast cancer (Deming et al., 2000).  Copy 

number anaylsis of our own breast tumor samples show increased copy number of 

PREX2 and MYC within the same tumor samples (Fig 2.4A).  Therefore, we hypothesized 

that because P-REX2 and c-Myc are often amplified, they may cooperate to transform 

cells.  To examine this, we overexpressed P-REX2, the DHPH domain, and c-Myc alone 

or in combination by retroviral infection in MCF10A cells.  As hypothesized, P-REX2 

and the DHPH domain cooperated with c-Myc to increase cellular proliferation under 

starvation conditions (Fig 2.4C) and also disrupted normal acini formation when cells 

were grown in a 3-D culture (Fig 2.4D).  Interestingly, western blot analysis of cell 

lysates showed that co-expression of c-Myc and P-REX2 resulted in down regeulation of 

PI3K signaling compared to expression of P-REX2 or the DHPH domain alone (Fig 

2.4A), suggesting that P-REX2 and c-Myc cooperation likely involves other signaling 

pathways in addition to AKT activation. 

 

Co-expression of P-REX2 with activated Her-2 leads to tumor formation 

P-REX2 cooperated with oncogenic PI3K mutants to transform normal cells, but the 

increase in PI3K signaling was not sufficient to promote tumor growth.  We therefore 

examined the oncogenic cooperation of P-REX2 and Her2, a RTK that activates PI3K 
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signaling as well other signaling pathways important for tumor formation.  P-REX2 and 

oncogenic NeuT, the rat homolog of Her2, were expressed alone or in combination by 

retroviral infection in MCF10A cells.  Western blot analysis of cell lysates showed a 

dramatic increase in PI3K signaling with NeuT expression alone and in combination with 

P-REX2 expression compared to P-REX2 alone (Fig 2.5A).  We performed xenograft 

experiments by injecting these cells into the mammary fat pad of immunodeficient mice.  

Injection of P-REX2 or NeuT expressing cells did not result in tumor formation, while all 

mice injected with cells co-expressing P-REX2 and NeuT formed palpable tumors (Fig 

2.5B).  Tumor samples were collected and stained with hematoxylin and eosin to confirm 

tumor histology (Fig 2.5C).   

 

Expression of P-REX2 cancer mutants causes increased proliferation and anchorage 

independent growth in combination with PI3K[EK] 

We have surveyed publically available somatic mutation data sets and found non-

synonymous mutations on PREX2 in many cancers including those of the pancreas, lung, 

colon, and kidney (Fig 2.6A).  We wanted to determine if any of these mutations 

increased the oncogenic potential of P-REX2, and therefore made retroviral expression 

vectors harboring many of these mutations including Y126H, V432M, R498I, K634E, 

S926Y, D1256N, S1488L, and A1571E.  We expressed these mutants in MCF10A cells 

and tested whether these mutations affected protein stability.  Y126H and A1571E were 

not stable, and were therefore not used in subsequent experiments (Fig 2.6B).  Expression 

of stable mutants alone did not lead to any measurable increase in PI3K signaling or 

growth advantage.  Because we previously found that co-expression of P-REX2 and 
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PI3K[EK] by retroviral infection causes cellular transformation, we next decided 

examine the oncogenic potential of wild-type (WT) P-REX2 compared to mutant P-

REX2 in the presence of PI3K[EK].   We decided to express P-REX2 in MCF10A cells 

containing a targeted PI3KCA knock-in allele because they are less transformed 

compared to cells overexpressing PI3K[EK].  This allowed us to observe more subtle 

oncogenic effects that would otherwise be masked by high expression of PI3K[EK].  P-

REX2 expression in knock out cells was observed by western blot (Fig 2.6C).  PI3K[EK] 

knock-in cells formed a few number of colonies in soft agar, and co-expression of WT P-

REX2 did not cooperate to induce colony formation.  However, the mutants V432M and 

R498I, located in the DEP domain tandem, cooperated with PI3K[EK] to increase colony 

formation by 5.5 fold and 2.5 fold, respectively (Fig 2.6D).  Proliferation analysis showed 

the expression of PI3K[EK] increased proliferation in reduced serum 2.3 fold compared 

to control cells.  Co-expression of V432M and R498I mutants further increased 

proliferation 3.8 and 3.5 fold, respectively, while WT P-REX2 had no effect under these 

conditions (Fig 2.6E).  This suggests that these two mutations have greater oncogenic 

potential that WT P-REX2 and may cooperate with other oncogenes to drive tumor 

formation. 
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DISCUSSION 

 

The PI3K pathway is often perturbed in many cancer types through various mechanisms.  

Here, we show that overexpression of P-REX2, an inhibitor of PTEN phosphatase 

activity, increases PI3K signaling in normal cells, and causes increased proliferation and 

disrupted 3-D morphogenesis.  We hypothesize that this increase in PI3K signaling is a 

result of increased PTEN inhibition by P-REX2; however, we cannot eliminate the 

possibility that P-REX2 expression affects other cellular processes that leads to increased 

signaling and proliferation.  It has been reported that P-REX2 and P-REX1 both interact 

with the mTORC2 complex, which phosphorylates AKT on Ser473, and also regulates 

the actin cytoskeleton through activation of Rho-GTPases (Hernández-Negrete et al., 

2007).  It has also been shown that the mTORC2 complex regulates cancer cell 

migration, metastasis, and invasion by activating AKT1 phosphorylation.  Interestingly, 

P-REX1 is necessary for cancer cell invasion through a direct interaction with AKT1 

(Kim et al., 2011).  Because P-REX2 also interacts with mTORC2, it is possible that it 

shares the same function as P-REX1 in mTORC2 activation and cancer cell migration, 

invasion, and metastasis. 

 

P-REX2 is a well-established Rac-GEF, and therefore activation of Rac activity may also 

be playing a role in PI3K signaling activation.  Rac1 controls many cellular functions 

including cellular migration, actin-reorganization, growth, and apoptosis and is therefore 

critical for the migration and invasion of certain cancer cells.  Deregulation of Rac1 and 

Rac2 expression has been found in cancer of the breast, brain, head and neck, colon, and 
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blood, and domatic mutations in Rac2 have been identified in brain tumors (Bokoch, 

2000; Dummler at al., 2009; Hwang et al., 2005; Rayala et al., 2006; Sneltzer et al., 2000; 

Sundaresan et al., 1996).  Furthermore, there has been mounting evidence for the 

importance in GEFs in cancer.  P-REX1 is overexpressed in breast cancers and derived 

cell lines with elevated ErbB2 and ER expression, and upregulation of P-REX1 in 

prostate cancer and melanoma plays a major role in metastasis (Lindsay et al., 2011; 

Montero et al., 2011; Qin et al., 2009; Sosa et al., 2010). Furthermore, other Rac-GEFs, 

including Vav3, Trio, and Tiam1 are overexpressed in human tumors (Lane et al., 2008; 

Lee et al., 2008).  Therefore, it is possible that P-REX2 may drive tumorigenesis and 

metastasis through two cooperating mechanisms: activation of PI3K signaling through 

inhibition of PTEN and Rac1 activation. 

 

Our results suggest that P-REX2 cooperates with other oncogenes, specifically those of 

the PI3K pathway including the PI3K hotspot mutation E545K and activated Her2 to 

transform cells and form tumors.  Although mutations in genes in the same pathway are 

usually mutually exclusive in cancer, there are several cancer types where mutations in 

the PI3K pathway coexist.    In endometrial, breast, and colon cancers, mutations in PI3K 

and PTEN are commonly found in the same tumor (Oda et al., 2005; Od et al., 2008; 

Yuan and Cantley, 2008).  Furthermore, in breast cancer, ErBB2 amplification often 

coexists with PTEN loss or PIK3CA mutations (Fujita et al., 2006; Nagata et al., 2004; 

Saal et al., 2005), whereas Ras mutations and PIK3CA mutations occur together in 

colorectal cancer (Parsons et al., 2005).   There are several explanations as to why these 

mutations coexist, and why P-REX2 cooperates with PIK3CA, c-myc, and Her2 



63 
 
activation.   It is possible that multiple mutations in the same pathway may have a 

potentiating effect on the PI3K pathway by overcoming existing negative feedback loops.  

Indeed, when P-REX2 was co-expressed with a p110α mutant, we observed an additive 

increase in PI3K signaling which resulted in increased cellular proliferation.  However, it 

is also possible that these cooperating mutations are not redundant, but rather activate 

additional pathways that are necessary for full cellular transformation.  P-REX2 

expression results in Rac activation, therefore, cells may require both PI3K pathway 

activated proliferation and Rac activated migration to fully transform.  We observed that 

P-REX2 cooperated with c-Myc to increase cellular proliferation and disrupt acini 

morphogenesis without increasing AKT phosphorylation.   It has previously been 

reported that PI3K and c-Myc cooperate to transform normal epithelial cells and 

fibroblasts through PI3K mediated transcriptional activation of Myc target genes, 

allowing for c-Myc induced transformation (Zhao et al., 2003).  It is possible that 

increased PI3K signaling by P-REX2 also facilitates c-Myc transformation in a similar 

manner.  Furthermore, P-REX2 cooperated with oncogenic Her2 to form tumors in 

mouse xenografts.  In addition to the PI3K pathway, Her2 receptor activation also 

stimulates other signaling pathways, such as the RAS-MAPK pathway (Hendriks et al., 

2003).   Therefore, it is possible that P-REX2 and Her2 activation of PI3K signaling 

cooperates with Her2 stimulated MAPK activation to promote tumor growth.   

 

Mutations in PREX2 have been found in many cancer types, including cancer of the 

kidney, lung, colon, pancreas, and most recently, skin (Fine et al., 2009;  Berger et al., 

2012).  We analyzed the transformation abilities of many of these mutants, and found two 
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mutations that cooperated with knock-in PI3K E545K cells to transform cells.  Although 

these two activating mutations are located in the DEP domain tandem, it is intriguing that 

the mutations identified are distributed evenly across the coding region, and include 

several different truncating mutations.  Furthermore, several of the mutations found in 

melanoma cooperated with an activating N-RAS mutant to form tumors in mouse 

xenograft experiments, yet none of these mutations clustered together (Berger et al, 

2012).   Therefore, because P-REX2 mutations are so varied, it seems that there are 

numerous ways in which P-REX2 can be activated in cancer.  It will be important to 

uncover the mechanism of activation of these P-REX2 mutants in order to fully 

understand the cause of cellular transformation and tumor growth.   

 

In summary, we have shown that P-REX2 increases PI3K signaling and proliferation, 

cooperates with other oncogenes to transform cells and promote tumor growth, and is 

mutated and activated in many different cancers.  Previously published data has also 

shown that PREX2 expression is increased in breast tumor samples that are positive for 

PTEN, as well as in cancers of the pancreas, brain, prostate, and ovary.  Taken together, it 

appears that P-REX2 would be an effective anti-tumor target for tumors positive for 

PTEN.  Furthermore, combining P-REX2 therapy and treatment with PI3K inhibitors 

may serve as an effective therapy in tumors that have coexisting mutations or 

amplifications of PREX2, PIK3CA or ERBB2.   
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FIGURE LEGENDS 

 

Figure 2.1. P-REX2 GEF activity is not required for PTEN inhibition.  A) RAC-GTP 

loading was determined by binding to the CRIB domain of p21 activated kinase (PAK) 

when overexpressed in HEK 293 cells with the indicated plasmids. Protein band intensity 

was quantified using ImageJ software.  B) IP phosphatase assays were performed from 

HEK293 lysates using the 138G6 monoclonal PTEN antibody. The mean phosphatase 

activity is displayed along with +/- standard error (*p<0.05, t-test). C) P-REX2 or P-

REX2-N212A was transfected alone or in combination with PTEN in U87-MG cells.  

Starved lysates were analyzed by western blot to determine levels of phosphorylated 

AKT. 

 

Figure 2.2.  Effect of P-REX2 or the DHPH expression on signaling and 

proliferation.  A) Levels of phosphorylated AKT473 in MCF10A cells expressing P-

REX2 or the DHPH by domain by retroviral infection, as measured by western blotting. 

The phosphorylation status of T308AKT was not detectable under normal growth 

conditions in MCF10A cells. B) Proliferation of MCF10A cells expressing P-REX2 or 

DHPH when cultured in reduced growth factor conditions (0.1% serum). Cell density was 

measured using crystal violet staining. C) Microscopy of acini morphology in MCF10A 

cells expressing P-REX2 or DHPH as indicated when grown in 3-D basement membrane 

culture.  D) P-REX2 protein levels in breast cancer cell lines as determined by western 

blotting. 
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Figure 2.3. P-REX2 cooperates with PI3K mutants.  A) P-REX2 expression levels in 

PTEN wild-type breast tumors without PIK3CA–activating mutations (left) and with 

them (right) (P = 0.014; two-tailed t test). B) Levels of phosphorylated AKT473 in 

MCF10A cells expressing combinations of P-REX2 or PI3K[EK] by retroviral infection 

determined by western blotting. C) Proliferation in the absence of all growth factors and 

serum in MCF10A cells expressing P-REX2 and PI3K[EK], as determined by crystal 

violet staining. D) Quantification of colony formation of MCF10A cells expressing P-

REX2 and PI3K[EK] grown in soft agar after 14 days. (**P < 0.01; t test) (D) 

Microscopy of acini morphology of MCF10A cells expressing combinations of 

PI3K[EK] and P-REX2 as indicated when grown in a 3-D  basement membrane culture.   

 

Figure 2.4. P-REX2 and c-Myc have increased copy number in breast cancer and 

cooperate to increase cellular proliferation. A) Copy number analysis of chromosome 

8q in breast tumor samples. B) Western blot analysis of pAKT473 levels in MCF10A 

cells overexpressing P-REX2 and c-Myc in combination by retroviral infection. C) 

Proliferation of MCF10A cells expressing P-REX2 and c-Myc alone or in combination as 

indicated when cultured in reduced growth factor conditions. Cell density was measured 

using crystal violet staining D) Microscopy of acini morphology of MCF10A cells 

expressing P-REX2 or c-Myc alone or in combination as indicated when grown in 3-D 

basement membrane culture. 

 

Figure 2.5. Cooperation of P-REX2 and NeuT results in tumor formation in 

xenograft experiments.  A) P-REX2 and NeuT were expressed by retroviral expression 
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and protein levels and pAKT473 levels were determined by western blotting.  B) 1X106 

MCF10A cells expressing NeuT, P-REX2, or both in combination were injected into the 

mammary fat pad of immunodeficient mice.  Tumors were allowed to reach and tumor 

samples were collected at that point, n=4.  C) H&E staining of a representative tumor 

sample.   

 

Figure 2.6. Analysis of P-REX2 activating mutants. A) A physical map of the P-REX2a 

mutations and their associated tumors. B) Expression of P-REX2 mutants in MCF10A 

cells determined by western blotting. C) Western blot analysis of P-REX2 mutant and 

pAKT473 expression levels in PI3KCA E545K knock-in MCF10A cells. D) 

Quantification of colony formation of PI3KCA E545K knock-in MCF10A cells 

expressing control vector, WT P-REX2 or P-REX2 mutants grown in soft agar after 14 

days.  E) Proliferation of E545K knock-in or control MCF10A cells expressing control 

vector, WT P-REX2 or mutant P-REX2 after three days of growth in reduced growth 

factor medium. Cell density was measured using crystal violet staining. 
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ABSTRACT 

 

Insulin signaling regulates glucose metabolism by promoting glucose uptake in the 

muscle and fat and glucose production in the liver.  PTEN negatively regulates insulin 

signaling by dephosphorylating PI(3,4,5) to PI(4,5), therefore reducing insulin stimulated 

AKT phosphorylation and activation of downstream targets.  P-REX2 inhibits PTEN 

phosphatase activity, and we  have shown that P-REX2 overexpression results in 

increased PI3K signaling and proliferation.  However, it is not known in P-REX2 has a 

physiological role in insulin signaling.  Here, we report that disruption of P-rex2 in 

fibroblasts results in reduced insulin and IGF-1 stimulated PI3K signaling.  In addition, 

PTEN phosphatase activity is decreased following insulin stimulation, and this is 

dependent on P-rex2.   We identified an interaction between P-REX2 and phosphorylated 

insulin, and observed P-REX2 mediated PTEN membrane localization following insulin 

stimulation.  In vivo, deletion of P-rex2 leads to glucose and insulin intolerance, as well 

as reduced insulin stimulated PI3K signaling in liver and fat tissue.  PTEN activity is 

increased in Prex2 deleted liver samples and corresponds with decreased PIP3 levels.  

These results suggest that P-Rex2 regulates insulin stimulated PTEN inhibition, which in 

turn affects insulin signaling in the fat and liver and glucose metabolism in vivo. 

 
 
 
 
 
 
 
 
 



76 
 
INTRODUCTION 
 
Insulin signaling is a key regulator of glucose homeostasis in the cell.  Insulin stimulates 

glucose uptake in adipose and muscle tissue and regulates glucose production and uptake 

in the liver.  Impaired glucose uptake and reduced insulin sensitivity results when cells do 

not respond to normal levels of circulating insulin, which contributes to the development 

of metabolic diseases such diabetes mellitus type 2 and obesity (White and Kahn, 1994; 

Kruszynska et al., 1996).  After secretion by pancreatic β cells, insulin binds to the 

insulin receptor (IR) which is a member of the family of receptor tyrosine kinases.  The 

PI3K pathway is then activated following receptor autodephophorylation and 

phosphorylation of substrates such as IRS1 and IRS2 (Holman et al., 1997; Shepard et al., 

1998).  

 

Insulin stimulated activation of the of the PI3K pathway results in the phosphorylation 

and activation of the serine/threonine kinase AKT.  AKT has been shown to be a key 

regulator in the maintenance of proper glucose metabolism in the cell.  Mice deficient for 

Akt2 have elevated blood glucose and serum insulin levels and display reduced glucose 

tolerance and insulin resistance in skeletal muscle (Cho et al, 2001; Garofalo et al, 2003).  

Furthermore, loss of AKT1 and AKT2 in cultured adipocytes following expression of  

dominant negative AKT  or siRNA targeting  Akt1 and Akt2 results in decreased insulin 

stimulated translocation of GLUT4, reduced glucose uptake, and impaired glycogen 

synthesis (Katome et al., 2003; Jiang et al., 2003). 
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Insulin signaling and activation of downstream targets is negatively regulated by the dual 

specificity and lipid phosphatase PTEN.  PTEN opposes insulin response by 

dephosphorylating PIP3 to PI(4,5)P2, inhibiting PIP3 mediated recruitment and 

activation of AKT (Maehama and Dixon, 1998; Stambolic et al., 1998).  PTEN is a 

critical regulator of glucose homeostasis.  Pten haploinsufficient mice are resistant to 

diabetes induced by loss of Irs2, as reduced Pten levels in these mice restored normal 

glucose metabolism and β cell islet function (Kushner et al., 2005). Furthermore, loss of 

Pten by antisense oligonucleotide delivery results in increased PI3K signaling in cultured 

liver cells, as well as increased insulin sensitivity in db/db and ob/ob mice (Butler et al., 

2002).  Tissue specific Pten knockout mice have also been utilized to examine the role of 

PTEN in insulin signaling and glucose metabolism.  Specific loss of Pten in adipose 

tissue results in increased insulin sensitivity and glucose tolerance, as well as protection 

from streptozotocin-induced diabetes.  Conversely, overexpression of PTEN in cultured 

adipocytes decreased insulin induced AKT phosphorylation, glucose uptake, and GLUT4 

translocation. However, microinjection of anti-PTEN antibody had the inverse effect, 

increasing GLUT4 translocation (Nakashimi et al., 2000; Ono et al., 2001; Tang et al., 

2005).  Pten loss also affects insulin signaling in muscle.  Specifically, muscle specific 

deletion of Pten protects mice from diabetes and insulin resistance induced by a high fat 

diet (Wijesekara et al., 2005; Kurlawalla-Martinez et al., 2005).   

 

We have previously reported that the Rac-GEF P-REX2 directly interacts with PTEN and 

inhibits its phosphatase activity.  Furthermore, knockdown of P-REX2 in PTEN positive 

cell lines results in decreased PI3K signaling and cellular proliferation, while 
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overexpression of P-REX2 in normal mammary epithelial cells causes increased PI3K 

signaling, increased growth and cellular transformation.  Upon stimulation with serum, 

insulin, and PDGF, PTEN and P-REX2 co-localize at the plasma membrane (Fine et al., 

2009).  Loss of P-REX2 in endothelial cells results in decreased Rac1 activation and 

migration, and deletion of Prex2 in-vivo results in disrupted Purkinje cell morphology 

and motor coordination (Donald et al., 2008; Li et al., 2005).  However, the physiological 

role of P-REX2 mediated inhibition of PTEN in the PI3K pathway has yet to be 

thoroughly examined.  Here, we used a gene-trap method to generate mice deleted for 

Prex2.  We report that deletion of Prex2 results in decreased insulin and IGF-1 stimulated 

PI3K signaling in MEFs and in-vivo, specifically in the liver and adipose tissue.  A 

corresponding increase in PTEN phosphatase activity was also observed after insulin 

stimulation in the absence of P-rex2, and this results in intolerance to glucose and 

resistance to insulin. 
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EXPERIMENTAL PROCEDURES 

 

Antibodies- Antibodies against phospho-AKT (Thr308 and Ser473), total AKT, phospho-

GSK3-β (Ser9), phospho-FOXO1/3a (Thr24/Thr32), phospho-EGFR (Tyr1173), 

phospho-PDGFR (Tyr754), phospho-IGF-IRβ (Tyr1135/1136)/IRβ (Tyr1150/1151) and 

PTEN 138G6 were purchased from Cell Signaling (Danvers, MA).   Anti-V5 antibody 

was obtained from Invitrogen (Carlsbad, CA).  P-REX2 rabbit polyclonal antibody to 

amino acids 960-973 was made by Zymed Laboratories (San Francisco, CA). Vinculin 

antibody and actin antibody were purchased from Sigma (St. Louis, MO), and 

phosphotyrosine 4G10 was obtained from Millipore (Billerica, MA). Secondary 

antibodies directed against rabbit and mouse IgG conjugated to HRP were purchased 

from Pierce (Rockford IL).   

 

Generation of Prex2 knockout mice and genotyping- To generate mice deleted for Prex2, 

the Sanger Institute Gene Trap Resource was utilized.  In brief, the E14 embryonic stem 

cell (ES) line clone AH0440 was purchased from the Wellcome Trust Sanger Institute.  

In brief, this cell line was created by high throughput gene trapping, resulting in the 

insertion of a reporter gene containing a β-galactosidase and neomycin 

phosphotransferase II fusion between exons 4 and 5 of Prex2.  The location of this 

reporter gene in the ES cells was confirmed by RT-PCR.  The mutant allele was 

transmitted through the germline, and mice heterozygous for the mutant allele were 

intercrossed to generate homozygous mutant progeny.  Mutant mice were then 

backcrossed with C57BL/6 mice for eight generations to generate mice of the same 
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background.  Genomic DNA was for genotyping was isolated from tail samples from 

three week old mice.  Genotyping the mutant allele was done by PCR using forward 

primer 5’ TGA TAG GAT GCATGG GAC AA 3’, which anneals to intron 4 outside of 

the reporter gene, and reverse primer 5’ CAA CCT CCG CAA ACT CCT AT 3’, which 

anneals to the reporter gene.  Genotyping the wild-type allele was done using forward 

primer 5’ TCG ACT CCT GAA GAT TTG ACC 3’ and reverse primer 5’ TGA CCA 

CGT TGC CTT GACTA  3’, which amplified a region of intron 4 which is deleted in the 

mutant allele.       

 

Harvest and culture of mouse embryonic fibroblasts- Fetuses were harvested between 

days 12.5-14.5.  The head, which was used for genotyping, liver, and large blood clots 

were removed, and the embryo was washed in 2 mL of PBS.  The tissue was minced with 

a razor blade, and 2 mL of 0.05% tryspin-EDTA (Cellgro, Herndon, VA) was added.   

Minced tissue was incubated at 37 ºC for 10 minutes, and then pipetted vigorously until 

cells were in a single suspension.  I mL of cells was placed in a T25 flask.  MEFs were 

cultured in Dulbecco’s minimal essential medium (DMEM) supplemented with 10% FBS 

(Invitrogen), 1% of 200mM L-glutamine, plus 100 IU penicillin and 100 µg/mL 

streptomycin (Cellgro). 

 

MEF Growth Factor Stimulation, lysate collection, and western blotting- For growth 

factor stimulation, MEFs were starved in DMEM for 3 hours and then incubated with 10 

µg/mL bovine insulin, 20 ng/mL IGF-1, 20 ng/mL PDGF, and 20 ng/mL EGF as 

indicated (Sigma).  Cells were lysed with 2X Laemlli sample buffer (125 mM Tris pH 
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6.8, 10% 2-mercaptoethanol, 4% SDS, 20% glycerol, 0.05% bromophenol blue).  Lysates 

were analyzed by SDS-PAGE on 4-20% or 4-12% Tris-Gylcine gels (Invitrogen) and 

transferred onto PVDF using a semi-dry apparatus (Biorad, Hercules, CA).  Membranes 

were blocked with 5% non fat milk in TBST and incubated with the appropriate antibody 

overnight at 4°C.  Membranes were washed three times with TBST and the appropriate 

secondary antibody was added for 1 hour at room temperature.   Blots were developed 

using ECL (Pierce) and audioradiography film (Denville Scientific). 

 

Cell proliferation assay – 4000 cells were plated per well in a 48 well plate in at least 

triplicate for each experiment. Cells were then allowed to proliferate and fixed at 

indicated time points in 0.05% crystal violet in 10% formalin. Each well was then washed 

multiple times with PBS. For relative quantification of cell density, the crystal violet was 

re-solubilized in 10% acetic acid and the absorbance at 595nm was recorded by a 

MicroQuant plate spectrophotometer. 

 

Transfection and immunoprecipitation of HEK293 cells – HEK293 cells were grown in 

Dulbecco’s minimal essential medium supplemented with 10% FBS plus 100 IU 

penicillin and 100 µg/mL streptomycin.  Transfections were performed using 

Lipofectamine 2000 (Invitrogen) following the protocol of the manufacturer.  24 hours 

after transfection, HEK293 cells were starved in unsupplimented DMEM overnight, and 

stimulated with either insulin (10 µg/mL) or EGF (20 ng/mL) for 15 minutes.  Cells were 

then rinsed with cold PBS and lysed with Triton-containing lysis buffer (150 mM NaCl, 

25 mM Tris pH 7.4, 1% Triton X-100, 1 mM EDTA) supplemented with eukaryotic 
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protease cocktail inhibitor (Sigma) and phosphatase inhibitors sodium orthovanate and 

sodium fluoride. Lysates were vortexed, sonicated, and clarified by high speed 

centrifugation for 30 minutes, and precleared with normal mouse IgG with protein A/G 

PLUS-agarose (Santa Cruz, CA) for 1 hour at 4°C.   Protein complexes were then 

immunoprecipitated with V5-agarose plus 20 µL protein A/G PLUS- agarose overnight at 

4°C and elute in 2X sample buffer. 

 

Immunofluorescence- U87 cells were plated on gelatin coated glass coverslips and 

transfected with Lipofectamine 2000 with FLAG-PTEN plus pCDNA3.1 empty vector or 

PTEN-V5. 18 hours after transfection cells were starved for 6h and stimulated with 

Insulin (final concentration: 10μg/ml) for 15 min. Cells were fixed in 2% 

paraformaldehyde and permeablized/blocked in 0.1% Triton X-100/10% goat 

serum/PBS. Antibody dilutions (Anti-V5 antibody 1:500, and PTEN 1:200) were 

prepared in the permeabilization/blocking solution and incubated overnight. Secondary 

antibodies were used at 1:500 after washing. Coverslips were mounted with Prolong Gold 

Antifade with DAPI and visualized with a Nikon Eclipse 80i with a CoolSnap HQ2 CCD 

camera. 

 

Glucose and insulin tolerance test- For glucose challenge tests, six week old male mice 

were starved overnight.  After measuring fasting blood glucose levels using the 

OneTouch Ultra glucometer, mice were injected intraperitoneally with 30% glucose per 

kg.  Blood glucose was measure at 15, 30, 45, 60, 90, and 120 minute time points.  For 

insulin tolerance tests, eight week old fed male mice were injected intraperitoneally with 
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0.75 U/kg bovine insulin (Sigma), and blood glucose was measured before injection, and 

post injection at 15, 30, 45, 60, 90, and 120 minutes. 

 

In-vivo insulin signaling and western blot analysis- Eight week old male mice were 

fasted overnight.  For collection of starved tissue, fasted mice were sacrificed by cervical 

dislocation and liver, fat, and hind leg skeletal muscle was collected from the starved 

samples.  For insulin stimulation, fasted mice were injected with 0.75 mU/g bovine 

insulin intraperitoneally and liver, fat, and skeletal muscle was collected 2 minutes or 15 

minutes after stimulation.  Tissues were flash frozen and stored at -80 ºC.  For western 

blot analysis, frozen tissue was thawed on ice and homogenized for 30 seconds at high 

speed using a Tissuemiser (Fisher Scientific, Pittsburgh, PA) in Triton-containing lysis 

buffer supplemented with eukaryotic protease cocktail inhibitor. 

 

PTEN phosphatase assays- For analysis of MEFs, cells were starved in plain DMEM for 

three hours and then stimulated with 10 µg/mL insulin for 10 minutes.  Cells were 

washed with cold TBS and lysed with Triton-containing lysis buffer supplemented with 

eukaryotic protease cocktail inhibitor.  For liver analysis, flash frozen liver tissue from 

mice fasted for 16 hours or stimulated with bovine insulin at 10 mU/g and homogenized 

in Triton-containing lysis buffer (150 mM NaCl, 25 mM Tris pH 7.4, 1% Triton X-100, 1 

mM EDTA) for 30 seconds.  Lysates were then sonicated and clarified by high speed 

centrifugation for 30 minutes, and precleared with normal rabbit IgG and protein A/G 

PLUS agarose for 1 hour at 4°C.  1 mg of total protein was next incubated with PTEN 

138G6 antibody overnight at 4°C, and the beads were then washed extensively with 
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phosphatase buffer (PB) (150 mM NaCl, 25 mM Tris-HCl pH 7.5).  The beads were 

preincubated in PB at 37°C for 10 minutes and then collected by centrifugation at low 

speed to remove the supernatant.  Beads were then incubated with 20 µM soluble di-C8-

D-myo-Phosphatidylinositol 3,4,5-trisphosphate (Echelon, Salt Lake City, UT) and PB at 

a final volume of 50 µL and incubated at 37°C for 30 minutes.  The beads were removed 

from the reaction mixture by centrifugation at low speed, and the supernatant was added 

to 100 µL Biomol Green reagent (Enzo, Farmingdale, NY) which stopped the reaction 

and absorbance at 620 nm was read after 15 minutes. 

 

Mass spectrometry measurements of inositol lipids 

Mass spectrometry was used to measure inositol lipid levels essentially as described 

previously (Clark et al, Quantification of PtdInsP3 molecular species in cells and tissues 

by mass spectrometry, Nat Meth (2011),8:3. 267), using a QTRAP 4000 (AB Sciex) mass 

spectrometer and employing the lipid extraction method described for mouse liver tissue. 

Measured C18:0 C20:4 PIP3 signals from each sample were expressed as a ratio of the 

C18:0 C20:4 PIP2 signal to account for cell variation in each sample. 
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RESULTS 

 

Generation of Prex2 knockout mice 

We used a gene trap method to generate a mouse line with a deletion of the Prex2 gene.  

The ES cell clone AH0440 was purchased from the Sanger Institute Gene Trap Resource.  

These cells have a gene trap cassette containing a splice acceptor site, a β-galactosidase 

and neomycin phosphotransferase II fusion ending with a stop codon, and 

polyadenylation sequence.  This cassette is inserted between exons 4 and 5 of Prex2, 

which is in the region that encodes the DH domain of P-rex2 (Fig 3.1A).  The insertion of 

this reporter gene also results in a deletion of exons 5 and 6, as shown by PCR of 

genomic DNA from ES cells (Fig 3.1A).  The mutant allele was transmitted through the 

germline, and heterozygous mutant mice were intercrossed to generate Prex2-/- mice, 

which were then backcrossed with C57BL/6 mice for eight generations.  PCR genotyping 

is shown (Fig 3.1B).  We confirmed loss of P-rex2 protein in various tissue samples by 

western blot analysis (Fig 3.1C).  Alternative splicing may result in a transcript spliced 

directly from exon 4 to exon 7, therefore bypassing the gene-trap vector.  However, the 

absence of a protein band at the predicted size of 170kd suggests that this is likely not 

occuring.  Furthermore, due to the deletion of exons 5 and 6, this truncated protein would 

be expected to be nonfunctional.  Prex2-/- mice were born with the expected mendelian 

frequency, were fertile and appeared healthy. 

 

Insulin and IGF-1 stimulated PI3K signaling is decreased in Prex2-/- MEFs 
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It is well established that PTEN is a negative regulator of PI3K signaling.  Given that P-

REX2 inhibits PTEN function, it may also be important for PI3K regulation.  To test this 

possibility, we generated Prex2+/+ and Prex2-/- MEFs harvested from E12.5-14.5 embryos 

from backcrossed mice.  We first determined the level of P-rex2 expression in MEFs to 

ensure that they were appropriate for the study of P-rex2.  Analysis of lysates from a 

wild-type and mutant pair revealed that P-rex2 was indeed expressed in wild-type cells, 

and confirmed that P-rex2 was lost at the protein level in mutant cells.  Next, to examine 

the effects of Prex2 deletion on baseline PI3K signaling, we collected lysates from 

normally proliferating cells.  Western blot analysis showed that there was no difference in 

the AKT phosphorylation between Prex2+/+ and Prex2-/-MEFs, suggesting that P-REX2 

does not regulate baseline PI3K signaling (Fig 3.2A).  Furthermore, loss of Prex2 in 

MEFs did not affect cellular proliferation in normal growth medium (Fig 3.2B), further 

suggesting that baseline PI3K signaling and proliferation are not altered by Prex2 

deletion .  

 

Next, we decided to look more specifically at PI3K signaling in response to certain 

growth factors over an extended time period.  MEFs were starved for 3 hours in DMEM 

without FBS or L-glutamine, and then stimulated at the indicated time points with 

insulin, IGF-1, PDGF, or EGF.  Western blot analysis revealed that insulin stimulated 

PI3K signaling was diminished in Prex2-/- MEFs.  Specifically, a reduction of 

phosphorylated Akt at Thr308 and Ser473 (pAKT308 and pAKT473) was observed in 

Prex2-/- MEFs at each time point. Phophorlyated Akt levels returned to baseline levels 

after 30 minutes in Prex2-/- MEFs, whereas Akt was still phosphorylated and active 60 
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minutes after stimulation in Prex2+/+ MEFs.  Downstream targets of insulin activated 

AKT were similarly affected by P-rex2 loss.  Reduced phosphorylation of GSK3-B at 

Ser9 and FOXO1 and FOXO3 at Thr24 and Thr32 was observed in Prex2 knockout cells 

compared to wild-type.  However, levels of phosphorylated insulin receptor (IR) were not 

significantly altered, suggesting that PI3K signaling is being affected downstream of 

receptor activation. Similarly, Prex2 loss resulted in disrupted IGF-1 stimulated PI3K 

signaling.  Phosphorylation of AKT308, as well as FOXO1/3a and GSK3-β peaked after 

10 minutes of IGF-1 stimulation in wild-type MEFs, and began to regress at 60 minutes.  

In contrast, knockout MEFs maintained low levels of phosphorylated Akt, GSK3B, and 

FOXO1/3a during all analyzed time points.  IGF-1R phosphorylation remained elevated 

at 60 minutes in  Prex2-/- MEFs, perhaps due to a lack negative feedback regulation.  

Deletion of P-rex2 had no effect on PI3K signaling stimulated by EGF or PDGF (Fig 

3.2C).  Overall, our data suggest that P-REX2 loss results in reduced PI3K signaling 

specifically in response to insulin and IGF-1 in MEFs. 

 

Insulin stimulated PTEN inhibition is dependent on P-rex2 

We have shown that disruption of P-REX2 results in decreased PI3K pathway activation 

only in response to insulin and IGF-1.   We next wanted to determine if reduced signaling 

observed was due to disrupted P-REX2 inhibition of PTEN.  To this end, we collected 

lysates from starved or insulin stimulated primary Prex2+/+ or Prex2-/- MEFs and 

immunoprecipitated PTEN complexes with anti-PTEN 138G6 antibody conjugated to 

Protein A/G beads.  After extensive washes with PB buffer, we performed PTEN 

phosphatase assays by incubating protein-bound beads with soluble di-C8 PIP3 substrate 
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at 37°C for 30 minutes.  After quantifying free phosphate using malachite green, we 

observed that PTEN was equally active in Prex2+/+ or Prex2-/- MEFs under starvation 

conditions.  Interestingly, when MEFs were stimulated with insulin, PTEN activity was 

reduced by 45.3% in Prex2+/+ MEFs, but was unchanged in Prex2-/- MEFs (Fig 3.3A).  

This result provides insight into insulin dependent PTEN regulation in MEFs.  Following 

insulin stimulation, it appears that PTEN activity is reduced, allowing for high PIP3 

levels in the cell and therefore, increased activation of AKT.  Furthermore, this mode of 

regulation is dependent on P-REX2, because this reduction in phosphatase activity does 

not occur when P-REX2 is absent.   

 

P-REX2 interacts with phosphorylated insulin receptor following insulin 

stimulation  

P-REX2 mediated inhibition of PTEN appears to be important for the regulation of 

insulin stimulated PI3K signaling specifically.  To further understand this growth factor 

specificity, we examined the affinity of P-REX2 for activated membrane receptors.   

HEK293 cells were transfected with P-REX2-V5, and then stimulated with insulin or 

EGF following overnight starvation.  Lysates were immunoprecipitated with V5-agarose, 

and eluted protein complexes were analyzed by western blotting.  P-REX2 interacted 

with phosphorylated-IR from insulin stimulated cells, but showed no affinity for 

phospho-EGFR from cells stimulated with EGF (Fig 3.3B).  This result suggests that P-

REX2 interacts with phosphorylated IR following receptor activation, but we cannot rule 

out a possible interaction with unphosphorylated IR as well.   
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To determine if PTEN is transported with P-REX2 to activated IR at the cell membrane, 

we analyzed PTEN localization alone or in combination with P-REX2 following insulin 

stimulation by immunofluorescence. P-REX2 expression led to an increase in the number 

of cells with PTEN membrane localization compared to cells expressing PTEN alone. 

The cell shown is representative of average localization observed (Fig 3.4).  This result 

suggests that following insulin stimulated IR autophosphorylation, the P-REX2-PTEN 

complex is recruited to the membrane through the interaction of P-REX2 with activated 

IR, allowing for P-REX2 inhibition of PTEN and full activation of PI3K signaling. 

 

Deletion of Prex2 leads to decreased glucose uptake and insulin resistance in-vivo 

Increased PTEN phosphatase activity due to P-REX2 deletion results in decreased insulin 

stimulated PI3K downstream signaling in MEFs.  Because insulin signaling tightly 

regulates glucose homeostasis, we next tested whether Prex2 null mice were defective for 

glucose uptake.  Six week old Prex2+/+ and Prex2-/- mice were fasted overnight and then 

injected intraperitoneally with a bolus of glucose.  Blood glucose levels were recorded 

over time and normalized to the levels before glucose injection.  Blood glucose levels 

peaked 15 minutes after glucose delivery, and Prex2-/-  mice exhibited 22% higher blood 

glucose levels compared to Prex2+/+ mice at this time.  Blood glucose levels of Prex2-/-  

remained elevated throughout the entire time course, and after 120 minutes, were 222.6% 

higher than baseline, compared to 11.5% for Prex2+/+  mice (Fig 3.5A).  Insulin tolerance 

tests were also performed.  Eight week old fed mice were injected intraperitoneally with 

insulin and blood glucose levels were measured over time.  As expected, insulin injection 

resulted in an initial drop in blood glucose levels, whcih slowly began to return to 
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baseline levels.  At 120 minutes post injection, Prex2+/+ low blood glucose levels were 

29.6% below baseline, whereas blood glucose levels in Prex2-/- mice were 8.4% above 

baseline (Fig 3.5).  These data suggest that Prex2 loss causes decreased glucose tolerance 

as well as increased insulin resistance.  Despite differences in glucose homeostasis, there 

was no significant difference in body weight between Prex2+/+ and Prex2-/- mice at eight 

weeks.  Furthermore, Prex2-/- mice did not exhibit fasting hyperglycemia, as fasting 

glucose levels were the same (Fig 3.5C). 

 

Prex2 deletion results in decreased insulin stimulated PI3K signaling in liver and 

adipose tissue 

Due to decreased glucose tolerance and insulin resistance observed in Prex2-/- mice, we 

decided to examine if P-rex2 loss disrupted insulin stimulated PI3K signaling in liver and 

adipose tissue, which are highly responsive to insulin and also express high levels of P-

rex2.  We stimulated starved mice with insulin by intraperitoneal injection and collected 

tissue samples at the indicated time points.  There was a marked decrease in 

phosphorylated Akt at Thr308 in Prex2-/- adipose tissue following insulin stimulation.  

There was also a corresponding decrease in the phosphorylation of downstream AKT 

targets, including phosphorylated Foxo1/3a at Thr24/Thr32 as well as phosphorylated 

Gsk3-β at Ser9.  However, despite differences in downstream PI3K signaling, there was 

no difference in IR phosphorylation between Prex2+/+ and Prex2-/- which suggests that 

diminished insulin stimulated PI3K signaling occurs downstream of insulin receptor 

activation (Fig 3.6A).   
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We next examined insulin signaling in the liver, which regulates glucose metabolism by 

increasing glycogen synthesis and decreasing gluconeogenesis in response to insulin, 

resulting in lower circulating blood glucose.  After 15 minutes post insulin injection, 

there was a considerable decrease in phosphorylated Akt at Thr308 in Prex2-/- liver 

during stimulated conditions.  There was also a decrease in the phosphorylation of the 

Akt target protein Gsk3-β at Ser9 in Prex2-/- samples, while levels of phosphorylated IR 

were comparable.  While Akt was robustly activated following 2 minutes of insulin 

stimulation, liver tissue exhibited low levels of Akt activation; however there was still an 

observed decrease in Akt and Gsk3-β phosphorylation Prex2-/- samples.  Interestingly, a 

decrease in phosphorylation was also observed in Prex2-/- starved livers (Fig 3.6C). 

 

PTEN activity is increased and PIP3 levels are decreased in insulin stimulated liver 

from Prex2-/- mice 

P-Rex2 regulates insulin signaling in vivo in specific tissues, however it is unclear 

whether this occurs through inhibition of PTEN phosphatase activity.  We suspected that 

P-Rex2 ablation would release PTEN from inhibition, resulting in higher phosphatase 

activity.  Therefore, we compared the phosphatase activity of PTEN purified from 

Prex2+/+ and Prex2-/- livers harvested during fasted and insulin stimulated conditions.  

Lysates from livers of fasted or insulin stimulated Prex2+/+ and Prex2-/- mice were 

incubated with either normal rabbit IgG (negative control) or anti-PTEN 138G6 antibody 

conjugated to protein A/G beads to immunprecipitate PTEN complexes.  Phosphatase 

assays were then performed on protein-bound beads.  As expected, PTEN purified from 

from Prex2-/- livers displayed significantly higher phosphatase activity relative to Prex2-/- 
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livers.  PTEN activity was increased 52% and 38% during fasted and stimulated 

conditions, respectively (Fig 3.7A).  This correlates with our analysis of PI3K signaling 

in the liver, which showed decreased PI3K downstream signaling in Prex2-/- samples 

during both starvation and stimulation.  We can speculate that disrupted insulin 

stimulation and glucose homeostasis in Prex2-/- mice are due increased PTEN activity. 

To further examine the effects of P-rex2 loss on PTEN activity in liver, we measured 

PIP3 levels in liver samples collected following insulin stimulation.  If PTEN is indeed 

more active, we would expect to see lower levels of PIP3 in Prex2 null tissue samples 

compared to wild-type.  Liver PIP3 levels were measured using high performance liquid 

chromatography–mass spectrometry, and were then normalized to levels of PIP2. There 

was no significant difference in PIP3 levels during fasting conditions (Fig 3.7C); 

however following insulin stimulation, Prex2-/- liver had a 37.4% less PIP3 compared to 

Prex2+/+ liver (Fig 3.7B).  This reduction in liver PIP3 can in part be explained by higher 

PTEN activity, and supports our finding that PTEN in the liver is more active in the 

absence of P-REX2. 
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DISCUSSION 

 

Type II non-insulin dependent diabetes mellitus is a common metabolic disease caused 

mainly by two specific events, including the inability of liver, tissue, and fat to respond to 

normal levels of insulin as well as the lack of insulin production by pancreatic β cells to 

compensate for this insulin resistance (White and Kahn, 1994; Kruszynska et al., 1998).  

Insulin stimulation of PI3K signaling is regulated in part by the PTEN, as loss of PTEN 

in specific tissues, including liver, fat, and muscle results in increased insulin sensitivity 

and glucose metabolism as well as protection from diabetes.  Here, we show that P-REX2 

mediated inhibition of PTEN is important for the regulation of insulin signaling and the 

maintenance of glucose homeostasis. 

 

It is well known that PTEN opposes the action of insulin signaling and PI3K activation 

by converting PIP3 to PIP2.  However, the ability of insulin to regulate PTEN activity 

has not been established.  We show here in Figure 2 that in MEFs, the phosphatase 

activity of PTEN is decreased following insulin stimulation.  Furthermore, this inhibition 

is dependent on P-REX2, as this decrease is not observed in Prex2-/- MEFs.  Insulin 

regulation of PTEN was not observed in the liver, likely due to the presence of circulating 

insulin in the body and PI3K pathway activation by other growth factors including IGF-1 

during fasting conditions.  Insulin stimulated phosphatase regulation has been 

demonstrated for other phosphatases, including the protein tyrosine phosphatase 1B 

(PTP1B).  PTP1B is an established negative regulator of insulin signaling by binding to 

and dephosphorylating IR, inhibiting receptor autophosphorylation.  Following insulin 
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stimulation, activated insulin receptor regulates PTP1B phosphatase activity through 

direct phosphorylation of tyrosine residues, although reports are conflicting as to whether 

this leads to activation or inhibition of PTP1B (Dadke et al., 2001; Tao et al., 2001).  

Therefore, there is precedence for a mechanism of insulin stimulated phosphatase 

regulation. 

 

In addition to our model of insulin simulated PTEN regulation presented here, it has been 

shown that PTEN can also be regulated by the hormone leptin.  Leptin and insulin are 

crucial regulators of food intake and energy expenditure, and disruptions in these 

processes strongly associate with diabetes and obesity. Leptin and insulin bind to 

receptors on arcuate neurons of the hypothalamus that regulate body weight. (Niswender 

et al, 2004; O'Rahilly et al., 2007; Schwartz et al., 2005). Leptin and insulin lead to 

increased PIP3 levels in arcuate neurons and hypothalamic cell lines (Niswender et al, 

2003; Xu et al, 2005), and PI3K inhibition prevents leptin and insulin reduction of food 

intake and neuronal hyperpolarization (Mirshamsi et a1., 2004; Niswender et al, 2001). 

While insulin stimulates PI3K signaling by activating IR, leptin increases PI3K signaling 

specifically by inhibiting the activity of PTEN without affecting IRS-1/2 phosphorylation 

or PI3K activity (Ning et al., 2006).  Moreover, it has been demonstrated that leptin, but 

not insulin, stimulates the phosphorylation and inhibition of PTEN in hypothalamic cell 

lines and pancreatic β cells (Ning et al., 2009).  P-REX2 inhibition of PTEN may 

therefore be regulated by hormone stimulation in a cell-type specific manner, depending 

on which contributes most to PI3K pathway activation.  In hypothalamic neurons, leptin 
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may stimulate P-REX2 inhibition of PTEN, whereas insulin regulates PTEN inhibition in 

the liver and fat. 

 

We have shown in Figure 5 that loss of Prex2 results in decreased glucose uptake and 

insulin tolerance.   Furthermore, in Figure 6 and 7, we show that this is, at least in part, 

due to reduced insulin stimulated PI3K signaling in liver adipose tissue and increased 

PTEN activity.  However, we cannot ignore that P-REX2 is also a Rac GEF, and altered 

Rac activation may contribute to altered glucose metabolism.  Indeed, Rac1 is activated 

by insulin and regulates glucose uptake independent of Akt activation in the muscle.  It 

has been shown that Rac1 is activated in both cultured muscle cells and muscle tissue 

following insulin stimulation (Ishikura et al., 2008; Jebailey et al., 2004).  Furthermore, 

overexpression of constitutively active Rac1 in muscle cells increased GLUT4 

translocation in the absence of insulin, whereas expression of a dominant negative Rac1 

or siRNA depletion of Rac1 resulted in decreased insulin stimulated GLUT4 

translocation and decreased glucose uptake (Jebailey et al., 2007; Ueda et al., 2008).  It 

has also been reported that Rac-GEFs can affect glucose metabolism.  For instance, 

expression of the PI3K activated Rac-GEF FLJ00068 increases insulin stimulated 

GLUT4 translocation in muscle cells, whereas GLUT4 translocation was decreased 

following knockdown of FLJ00068 (Ueda et al., 2008).  These findings suggest that in 

the muscle, Rac1 activation by insulin and the translocation of GLUT4 may be the 

primary mechanism of glucose uptake.  Furthermore, it has been shown that IR deletion 

in muscle results in increased mass, serum free fatty acids, and triglycerides, but does not 

affect glucose metabolism or insulin sensitivity, suggesting that other tissues may be 
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more critical for insulin stimulated glucose uptake (Brüning et al., 1998). Therefore, even 

though muscle does not seem to express appreciable levels of P-rex2, it is not surprising 

that insulin resistance in the liver and fat sufficiently disrupts glucose metabolism.  It is 

also possible that the combination of reduced Rac1 activation in muscle and decreased 

AKT phosphorylation in adipose tissue cooperate to disrupt glucose uptake in Prex2 

deficient mice. 

 

It will also be interesting to analyze insulin signaling and glucose metabolism in older 

Prex2-/- mice.  In many mouse models of diabetes, glucose homeostasis deteriorates as 

mice age.  For instance, mice heterozygous for both Ir and Irs1 show significant increases 

in blood glucose levels and plasma insulin levels from 2 months to 6 months of age (Kito 

et a., 2000).  Therefore, examining diabetic phenotypes at 6 months may reveal a more 

dramatic diabetic phenotype in Prex2-/- mice. 

 

Our results show that P-REX2 mediated PTEN inhibition is an important regulator of 

PI3K signaling in vivo and consequently affects glucose metabolism; however other 

cellular processes not examined here may also be regulated through this manner.   For 

instance, reports have shown that loss of Prex2 in-vivo results in disrupted Purkinje cell 

dendrite morphology as well as motor coordination defects (Donald et al., 2008). This 

phenotype could be explained by the loss of P-REX2 mediated PTEN inhibition.  This is 

supported by reports showing that PTEN is highly expressed in the Purkinje cells of mice 

(Li et al., 2002; Li et al., 2003).  Furthermore, loss of PTEN and activation of AKT 

results in increased dendritic branching and length in cultivated neurons.  Conversely, 
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inhibition of PI3K signaling reduces dendritic growth, similar to the phenotype observed 

when Prex2 is lost (Jaworski et al., 2005, Kumar et al., 2005).  Therefore, it is possible 

that disruption of Prex2 in-vivo releases PTEN from inhibition, allowing it to inhibit 

PI3K pathway dependent dendritic growth. 
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FIGURE LEGENDS 

Figure 3.1. Generation of Prex2 deficient mice.  A) Wild-type and mutant alleles of 

Prex2.  ES cells with with a gene trap containing a splice acceptor site (SA), β-

galactosidase and neomycin phosphotransferase II fusion (βgeo), and polyadenylation 

sequence (pA) in intron 4 were used to generate chimeras.  Primers (p) used for 

genotyping are depicted by arrows (pA-pD), and PCR genotyping using these primers is 

shown.   B) Insertion of the βgeo reporter gene resulted in a deletion of exons 5 and 6, as 

shown by PCR.  C)  Expression of P-REX2 and P-REX2b, a shorter spice variant, in 

various tissue.   

 

Figure 3.2.  PI3K signaling in Prex2 deficient fibroblasts.  A) Western blot analysis of 

P-Rex2 and p-Akt(Thr308) expression in MEFs during normal growth conditions. B) 

Proliferation of Prex2+/+, Prex2+/-, and Prex2-/- MEFs in regular growth medium as 

quantified by crystal violet staining.  C) Analysis of growth factor stimulated PI3K 

signaling.  Prex2+/+ and Prex2-/- MEFs were starved for three hours and then stimulated 

with indicated growth factors.  Levels of phosphorylated Akt and downstream targets 

were analyzed over time by western blot. 

 

Figure 3.3.  P-REX2 interacts with phosphorylated IR to inhibit PTEN following 

insulin stimulation.  A) Prex2+/+ and Prex2-/- MEFs were starved for three hours and then 

stimulated with insulin for 15 minutes.  Lysates were incubated with a rabbit monoclonal 

PTEN antibody conjugated to agarose beads overnight.  Phosphatase assays were 

performed on immunoprecipitated protein complexes by incubating the beads with 20 
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µM soluble di-C8-D-myo-phosphatidylinositol 3,4,5-trisphosphate (PIP3) at 37°C for 30 

minutes.  Levels of immunoprecipitated PTEN were determine by western blot analysis.  

B) The interaction between P-REX2 and activated RTKs was analyzed by co-

immunoprecipitation.  P-REX2-V5 was transfected into HEK293 cells and lysates were 

incubated with V5- agarose beads overnight at 4ºC.  Total lysates and V5-

immunoprecipitated protein complexes were analyzed by western blot.   

 

Figure 3.4. P-REX2 recuits PTEN to the membrane following insulin stimulation.  

U87 cells expressing PTEN alone or with P-REX2 were starved overnight and stimulated 

with 10 µg/mL insulin. PTEN and P-REX2 were visualized using indirect 

immunofluorescence. PTEN was stained with the rabbit monoclonal antibody 138G6 and 

Alexa Fluor-568. P-REX2a was stained the V5 monoclonal antibody and AlexaFluor-

488. Nuclei were stained with 4',6-Diamidino-2-phenylindole dihydrochloride (DAPI) 

(Invitrogen). 

 

Figure 3.5.  Effect of P-rex2 loss on glucose metabolism and insulin sensitivity.  A) 

Intraperitoneal glucose tolerance tests were performed by measuring blood glucose levels 

following intraperitoneal glucose injection at the indicated time points (n=6).  B)  Insulin 

tolerance tests were performed by measuring blood glucose levels following 

intraperitoneal injection of insulin (0.75 mU/g) at the indicated time points.  Red 

diamonds represent Prex2+/+ mice (n=5) and blue squares represent Prex2-/- mice (n=6). 

C) Blood glucose levels from 8 week old Prex2+/+ mice (n=20) and Prex2-/- mice (n=14) 

fasted for 16 hours.   Weights were also determined, (Prex2+/+,n=14; Prex2-/-, n=10 ).  
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Data are presented as means and error bars represent standard error of the mean (SEM). 

**, P < 0.05. 

 

Figure 3.6.  P-REX2 regulates insulin signaling in liver and fat tissue.  A-C) Analysis 

of insulin stimulation in-vivo.  Prex2+/+ and Prex2-/- mice were fasted overnight and then 

injected intraperitoneally with insulin (0.75 mU/g) for 2 minutes or 15 minutes.  Levels 

of phosphorylated Akt, Foxo1/3, Gsk3-β, and IR in collected fat and liver tissue were 

analyzed by western blot. 

 

Figure 3.7.  P-REX2 inhibits PTEN activity in starved and insulin stimulated liver.  

A)  PTEN phosphatase assay from liver samples.  Prex2+/+ and Prex2-/- mice were fasted 

overnight and then injected with insulin (10 mU/g) for 8 minutes.  Lysates from collected 

starved and stimulated livers were incubated with rabbit monoclonal PTEN antibody 

conjugated to agarose beads overnight.  Phosphatase assays were performed on 

immunoprecipitated protein complexes by incubating the beads with 20 µM PIP3 at 37°C 

for 30 minutes.  B) Analysis of PIP3 levels.  Liver samples collected for the above 

phosphatase assays were used to compare PIP3 levels from insulin stimulated mice.  

Lipids were measured using mass spec and PIP3 values are represented as a ratio of 

PIP3/PIP2 to account for cell number variability. 
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ABSTRACT 

 

Appropriate levels of phosphorylation events in the cell are maintained by balancing kinase 

and phosphatase regulation.  Phosphatase activity is dynamically regulated through various 

mechanisms including phosphorylation and protein-protein interaction to control cell cycle 

progression.  The phosphatase activity of the dual-specificity PTEN is inhibited through its 

interaction with P-REX2.  We have shown that P-REX2 regulates cellular transformation, 

and is required for insulin stimulated PTEN inhibition and glucose homeostasis.  Therefore 

it is important to understand how P-REX2 mediated inhibition of PTEN is regulated.  Here, 

we report that P-REX2 interacts with PTEN though multiple interfaces, resulting in highly 

regulated PTEN inhibition.  The pleckstrin homology (PH) domain of P-REX2 inhibits 

PTEN by interacting with the catalytic region of PTEN, whereas the inositol polyphosphate 

4-phosphatase domain of P-REX2 provides high affinity binding to the PDZ-binding 

domain of PTEN.  Regulation of P-REX2 PH domain-dependent inhibition of PTEN 

requires C-terminal phosphorylation of PTEN to unleash the PH domain from its 

neighboring Dbl homology domain.  This suggests that like regulation of phosphatase 

activity during cell cycle progression, P-REX2 inhibition of PTEN may be dynamically 

regulated. 
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INTRODUCTION 

 

Phosphatases are a large and diverse family of enzymes that counteract the action of 

kinases by dephosphorylating specific molecular substrates. Phosphatases are essential 

for the regulation of many signal transduction pathways and altered phosphatase activity 

can result in the disruption of various cellular processes.  Most protein phosphorylation 

events in eukaryotic cells occur on tyrosine, threonine, and serine residues (Olsen et al., 

2006).  Phosphatases that reverse these events are grouped into families based on 

substrate specificity and signature sequences. These families include the serine/threonine 

phosphatases and the tyrosine phosphatases, each of which are further divided into many 

different subfamilies based on specific function.   

 

The serine/threonine phosphatases are the most ancient family of protein phosphatases 

and evolved through the interaction of novel regulatory complexes with an ancestral 

catalytic domain (Moorhead et al., 2009).  The predominant mechanism of 

serine/threonine phosphatase regulation occurs via the formation of these protein 

complexes. For example, protein phosphatase (PP) 1 and PP2B form regulatory 

complexes with inhibitors that block substrate access to the active site.  More 

specifically, PP1 interacts with inhibitors C-kinase-activated PP1 inhibitor of 17 kDa 

(CPI-17), and inhibitor 1, while PP2A interacts with inhibitors including I2PP2A (Endo 

et al., 1996; Eto et al., 1997).  Direct phosphorylation has also been implicated in 

serine/threonine phosphatase regulation. PP1 activity is diminished after phosphorylation 

by multiple cyclin-dependent kinases, and phosphorylation by specific growth factors and 
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tyrosine kinases inactivates PP2A (Chen et al., 1994;  Dohadwala et al., 1994; Kwon et 

al., 1997).  Interestingly, many inhibitory proteins are activated by phosphorylation, 

adding another layer of complexity to phosphatase regulation (Endo et al., 1996; Eto et 

al., 1997; Foulkes et al., 1983).  

 

The family of protein tyrosine phosphatases, which appeared later than the 

serine/threonine phosphatases, first evolved most likely due to promiscuity of 

serine/threonine kinases towards tyrosine residues.  They then diversified after the 

emergence of tyrosine kinases through the fusion of regulatory domains to its ancestral 

catalytic core (Moorhead et al., 2009).  The protein tyrosine phosphatases family includes 

the large subgroup of dual-specificity phosphatase and is regulated largely through the 

reversible oxidation of their catalytic cysteine residue (Ostman et al., 2011). Similar to 

the serine/threonine phosphatases, direct phosphorylation is also a mechanism of 

regulation.  SH2 domain containing protein tyrosine phosphatase-1 and -2 (SHP-1/2) and 

protein tyrosine phosphtase IB (PTP1B) (Dadke et al., 2001; Lu et al., 2001; Tao et al., 

2001; Zhang et al., 2003) exhibit altered phosphatase activity after phosphorylation.  

More specifically, the activity of the S. pombe Cdc14 related dual specificity phosphatase 

Cdc14 like protein-1 (Clp1) is inhibited through direct phosphorylation by Cdk1 in a cell 

cycle dependent manner (Wolfe et al., 2006).   

 

PTEN was discovered by multiple groups through the mapping of homozygous deletions 

in cancer (Li et al., 1997; Steck et al., 1997). PTEN has the conserved PTP catalytic 

motif, a C2 domain which are both required to dephosphorylate its main substrate, PIP3, 



112 
 
to PI(4,5)P2, therefore inhibiting PIP3 mediated recruitment and activation of the 

serine/threonine kinase AKT (Franke et al., 1997; Lee et al., 1999; Maehama and Dixon, 

1998; Stambolic et al., 1998; Wu et al., 1998). Beyond these domains, the C-terminal tail 

of PTEN is also critical for proper protein function.  The C-terminal tail of PTEN is 

phosphorylated mainly on Ser-370 and on a cluster consisting of Ser-380, Thr-382, Thr-

383, and Ser-385.  Dephosphoryation of these sites results in increased phosphatase 

activity and decreased protein half-life (Vazquez et al., 2002).  C-terminal tail 

phosphorylation also regulates an intramolecular interaction that occurs between the tail 

and the catalytic region of PTEN, and this interaction inhibits PTEN membrane 

recruitment and PIP3 access (Odriozola et al., 2007; Rahdar et al., 2009).  In addition to 

sites of phosphorylation, the C-terminus of PTEN contains a PDZ-binding domain (PDZ-

BD) that interacts with proteins containing PDZ domains such as MAGI-1/2/3, 

MAST205, and hDLG.  Interestingly, PTEN interaction with PDZ domains leads to 

increased protein stability and phosphorylation, suggesting that PDZ domain containing 

proteins can directly regulate PTEN function (Kim and Mak, 2006; Valiente et al., 2005).  

PTEN is also inactivated by acetylation by the histone deacetyltransferase p300/CBP-

associated factor (PCAF) (Okumura et al., 2006) and by reversible oxidation of the 

catalytic cysteine (Cho et al., 2004; Lee et al., 2002).  In addition, PTEN regulation by 

nuclear localization is mediated by monoubiquitination by neural precursor cell 

expressed, developmentally downregulated-4-1 (Nedd4-1) (Trotman et al., 2007). 

 

Recently, we identified a novel PTEN interacting protein, P-REX2 (Fine et al., 2009). We 

have reported that P-REX2 interacts with PTEN and directly inhibits its phosphatase 
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activity in a non-competitive manner.  It was also found that PREX2 message levels are 

increased and missense mutations exist in a variety of different cancers.  Furthermore, it 

has been reported that PREX2 is significantly mutated in metastatic melanoma (Berger et 

al., 2012).  Expression leads to increased PI3K signaling and proliferation in normal 

mammary epithelial cells, and loss of P-REX2 in endothelial cells results in decreased 

Rac1 activation and migration.  In mice, deletion of Prex2 results in disrupted Purkinje 

cell morphology and motor coordination (Donald et al., 2008) and disrupted insulin 

signaling and glucose metabolism, as discussed in Chapter III..  Here, we examine the 

mechanism by which P-REX2 inhibits PTEN and find that the pleckstrin homology (PH) 

domain of P-REX2 is responsible for inhibiting PTEN phosphatase activity.  PH domain 

mediated inhibition is highly regulated by the Dbl homology (DH) domain of P-REX2 

and PTEN C-terminal tail phosphorylation.   
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EXPERIMENTAL PROCEDURES  

Plasmids and antibodies - Construction of a majority of the PTEN and P-REX2 plasmids 

used has been reported previously (Fine et al., 2009).  Bacterial expression plasmids 

encoding GST-PTEN domains were made by polymerase chain reaction of the full length 

GST-PTEN plasmid and subcloning into the PGEX-2TK vector.  GST-PTEN-3E and 

FLAG-PTEN-3E mutants were made by amino acid substitution using site directed 

mutagenesis (Agilent, Santa Clara, CA).  FLAG-PTEN deletion mutants were 

constructed by substitution of a stop codon at the desired amino acid by site directed 

mutagenesis.  PTEN antibodies were purchased from Cell Signaling (Danvers, MA). 

Monoclonal M2 FLAG and actin antibodies were purchased from Sigma (St. Louis, MO) 

and a monoclonal V5 antibody was from Invitrogen (Carlsbad, CA). V5-resin was 

obtained from Sigma.  Antibodies against phosphorylated AKT threonine 308 and total 

AKT were purchased from Cell Signaling.   A P-REX2 rabbit polyclonal antibody to 

amino acids 960-973 was made by Zymed Laboratories (San Francisco, CA).  Secondary 

antibodies directed against rabbit and mouse IgG conjugated to HRP were purchased 

from Pierce (Rockford IL). 

 

Cell culture, transfections- HEK293 cells were grown in Dulbecco’s minimal essential 

medium supplemented with 10% FBS plus 100 IU penicillin and 100 µg/mL 

streptomycin (Cellgro, Herndon, VA).   U87-MG cells were grown in minimal essential 

medium eagle (Cellgro) supplemented with 10% FBS and 1% penicillin/streptomycin.  

For signaling experiments, cells were starved in medium without FBS for 16 hours before 
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lysing.  Transfections were performed using Lipofectamine 2000 (Invitrogen) following 

the protocol of the manufacturer.   

 

Immunoblotting- Samples lysed in 2X Laemlli sample buffer (125 mM Tris pH 6.8, 10% 

2-mercaptoethanol, 4% SDS, 20% glycerol, 0.05% bromophenol blue) are boiled for 5 

minutes.  Samples were separated by SDS-PAGE on 4-20% Tris-Gylcine gels 

(Invitrogen) and transferred onto PVDF using a semi-dry apparatus (Millipore, Billerica, 

MA).  Membranes were blocked with 5% non fat milk in TBST and incubated with the 

appropriate antibody overnight at 4°C.  Membranes were washed three times with TBST 

and the appropriate secondary antibody was added for 1 hour at room temperature.   Blots 

were developed using ECL (Pierce) and audioradiography film (Denville, Metuchen, NJ). 

GST fusion proteins- Recombinant GST fusion proteins were transformed into 

BL21(DE3) pLyseE bacterial cells (Invitrogen) and protein was purified as described 

previously (31).  Briefly, expression of protein was induced in bacterial cultures at 

growing at log phase with 0.1mM IPTG (Sigma) at room temperature for 16 hours. 

Protein was extracted by sonication in lysis buffer (400 mM NaCl, 50 mM Tris pH 7.2, 

1% Triton X-100, 1 mM EDTA) and incubated with glutathione sepharose beads (Sigma) 

overnight and washed excessively with either BC200 buffer (25 mm Tris-HCl buffer, pH 

7.4, 200 mm KCl, 0.2% Triton, 1 mm EDTA, and 10% glycerol) or phosphatase buffer 

(150 mM NaCl, 25 mM Tris-HCl pH 7.5) (PB) if it was to be eluted.  To elute, beads 

were incubated with an equal volume of glutathione elution buffer (150 mM NaCl, 25 

mM Tris-HCl, 50 mM glutathione, pH 8.0) for 30 minutes at room temperature.  Purified 

proteins were dialyzed in 5 L elution buffer without glutathione over night at 4°C using 
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SnakeSkin dialysis tubing (Pierce). Proteins conjugated to beads and purified proteins 

were quantified by coomassie staining.   

 

In-vitro transcription and translation- V5-tagged P-REX2 domains were in-vitro 

transcribed and translated using the TnT T7 Quick Coupled Rabbit Reticulocyte Lysate 

Kit (Promega, Madison, WI) per the manufacturer’s protocol. 

 

Protein purification- V5-tagged P-REX2 domains were purified from 293 cells as 

previously described  (Fine et al., 2009) with a few modifications .  Briefly, HEK293 

cells growing in 15 cm dishes were transfected with pCDNA3.1/ V5/His plasmids and 

incubated with MG132 16 hours prior to lysing. 36 hours after transfection, cells were 

washed with cold TBS and lysed with high salt lysis buffer (500 mM NaCl, 25 mM Tris 

pH 7.4, 1% Triton X-100, 1 mM EDTA) plus eukaryotic protease inhibitor cocktail.  

Clarified lysate was precleared with mouse IgG and protein A/G PLUS-agarose for 1 

hour at 4°C and protein was then immunoprecipitated using V5-agarose overnight at 4°C.  

Beads were washed on a poly-prep column (BioRad, Hercules, CA) once with lysis 

buffer and 5 times with PB.   Protein was eluted with V5 peptide in PB at a concentration 

of 150 µg/mL.  Protein was quantified with spectrophotometry A280 and visualized by 

western blot. 

 

Immunoprecipitation- Transfected cells were rinsed with cold PBS and lysed with Triton-

containing lysis buffer (150 mM NaCl, 25 mM Tris pH 7.4, 0.1% Triton X-100, 1 mM 

EDTA) supplemented with eukaryotic protease cocktail inhibitor (Sigma, St.  Louis, MO) 
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36 hours after transfection.  Lysates were vortexed, sonicated, and clarified by high speed 

centrifugation for 30 minutes, and precleared with normal mouse IgG with protein A/G 

PLUS-agarose (Santa Cruz, CA) for 1 hour at 4°C.   Protein complexes were then 

immunoprecipitated using either V5-agarose or FLAG antibody (Sigma) with 20 µL 

protein A/G PLUS- agarose overnight at 4°C.  Beads were washed extensively with lysis 

buffer and eluted in 2X sample buffer (125 mM Tris pH 6.8, 10% 2-mercaptoethanol, 4% 

SDS, 20% glycerol, 0.05% bromophenol blue). 

 

GST-pull down assay– Rabbit reticulocyte lysates (10 µL)  were incubated with purified 

GST sepharose or GST PTEN sepharose  in BC200 (25 mm Tris-HCl buffer, pH 7.4, 200 

mm KCl, 0.2% Triton, 1 mm EDTA, and 10% glycerol) at 4ºC for 4 hours. The sepharose 

was then washed extensively with BC200 and eluted with sample buffer. 

 

PTEN phosphatase assay- Equimolar concentrations of purified V5-tagged P-REX2 

protein and recombinant GST fusion protein were incubated in phosphatase buffer (150 

mM NaCl, 25 mM Tris-HCl pH 7.5) (PB) at a total volume of 48 µL.  The protein 

mixture was pre-incubated at 37°C for 10 minutes before 20 µM soluble di-C8-D-myo-

Phosphatidylinositol 3,4,5-trisphosphate (Echelon, Salt Lake City, UT) was added. The 

reactions were incubated at 37°C for 30 minutes, and stopped with 100 µL Biomol green 

reagent (Enzo, Farmingdale, NY).  The colorimetric reaction developed for 15 minutes 

before being read on a plate reader at an absorbance of 620 nm.  For immunoprecipitation 

phosphatase assays, 10 cm plates of HEK293 or U87-MG cells were co-transfected in 

triplicate with either 5 µg of V5 or FLAG-tagged PTEN plasmid and 15 µg of control or 
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V5-tagged P-REX2 constructs using Lipofectamine 2000 (Invitrogen, Carlsbad, CA).  

After 36 hours, cells were lysed with Triton-containing lysis buffer, vortexed, sonicated, 

and centrifuged at high speed for 30 minutes. Clarified lysates were precleared with 

normal mouse or rabbit IgG and protein A/G PLUS agarose for 1 hour at 4°C.  1 mg of 

total protein was next incubated with either V5-agarose or PTEN 138G6 antibody (Cell 

Signaling, Danvers, MA) overnight at 4°C, and the beads were then washed twice with 

lysis buffer and 4 times with PB.  The beads were preincubated in PB at 37°C for 10 

minutes and then collected by centrifugation at low speed to remove the supernatant.  

Beads were then incubated with 20 µM PIP3 and PB at a final volume of 50 µL and 

incubated at 37°C for 30 minutes.  The beads were removed from the reaction mixture by 

centrifugation at low speed, and the supernatant was added to 100 µL Biomol green 

reagent which stopped the reaction and absorbance was read at 620 nm after 15 minutes.  

Detectible background levels of activity were subtracted from measured levels of PTEN 

activity for both in-vitro and immunoprecipitation phosphatase assays 

 

Stable shRNA infection- Lentirviral Prex1 shRNA knockdown viruses were produced by 

transfection of HEK293T cells with a ratio of 1.3:1:0.1 of shRNA vector to CMVD8.9 

packaging vector to VSV-G envelope vector, using Fugene 6 (Roche, Indianapolis, IN) at 

a ratio of fugene:DNA of 3:2. Lentiviral titers were collected at 48 hours and 72 

hoursafter transfection. For infection MCF7 cells, polybrene (1,5-dimethyl-1,5-

diazaundecamethylene- polymethobromide, hexadimethrine bromide) was added at a 

concentration of 6 µg/ml to increase infectivity. Cell lines were infected for 12 hours with 

1:1 titer:growth media. Selection antibiotic was added to the media 48 hours after the 
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initial point of infection. Cell lines were allowed to select for 1 week and were 

subsequently maintained in selection antibiotic for the course of experiments. 

 

Cell proliferation assay – 4,000 MFC-7 cells were plated per well in a 48 well plate in at 

least triplicate for each experiment. Cells were then allowed to proliferate and fixed at 

indicated time points in 0.05% crystal violet in 10% formalin. Each well was then washed 

multiple times with PBS. For relative quantification of cell density, the crystal violet was 

re-solubilized in 10% acetic acid and the absorbance at 595nm was recorded by a 

MicroQuant plate spectrophotometer. 

 

Soft Agar Colony Formation Assay - For soft agar colony formation assays, 1 X 10^5 

cells from stable MCF7 cell lines were mixed with agarose to form a top layer of 0.3% 

agarose. This layer was plated into a 35 X 10 mm plate on top of a solid layer of 0.5% 

agarose. Each assay was performed in triplicate. Colonies were stained with a 0.005% 

crystal violet solution after 14 days of incubation, and colony number was determined 

using ImageJ software. 
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RESULTS  

 

P-REX2 inhibition of PTEN is regulated by C-terminal tail phosphorylation.  

We have previously reported that the carboxy-terminal 50 amino acids (tail) of PTEN is 

required for interaction with P-REX2 (Fine et al., 2009).  Due to the presence of critical 

phosphorylation sites located on the tail, we were interested in determining if 

phosphorylation of the tail affected P-REX2 binding.  To do this, a FLAG-PTEN mutant 

was constructed containing unphosphorylatable alanine substitutions at amino acids 

T380, T382, and S383 (FLAG-PTEN-3A).  Wild type FLAG-PTEN and FLAG-PTEN-

3A were co-transfected in 293 cells with control vector or P-REX2-V5, and the FLAG-

PTEN/P-REX2-V5 complex was immunoprecipitated using FLAG-M2 antibody.  SDS-

PAGE analysis of eluted proteins showed P-REX2 bound equally to FLAG-PTEN and 

FLAG-PTEN-3A (Fig 4.2A).  This suggested that lack of tail phosphorylation at these 

sites does not affect the physical interaction between P-REX2 and PTEN.  This did not 

rule out the possibility, however, that phosphorylation of the tail regulates P-REX2 

mediated PTEN inhibition. To investigate this, we co-transfected FLAG-PTEN or FLAG-

PTEN-3A with or without P-REX2 into U87-MG cells and immunoprecipitated protein 

complexes with anti-PTEN 138G6 antibody.   Protein-bound beads were incubated with 

soluble di-C8 PIP3 substrate at 37°C for 30 minutes.  After quantifying free phosphate 

using malachite green, we observed that P-REX2 inhibited FLAG-PTEN by 53%, but did 

not inhibit FLAG-PTEN-3A (Fig 4.2B).  This result indicates that PTEN tail 

phosphorylation can regulate P-REX2 inhibition without affecting binding.   
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To verify this result, we construced a recombinant GST-PTEN vector to make a mutant 

containing phospho-mimicking glutamatic acid substitutions at amino acids T380, T382, 

and S383 (GST-PTEN-3E).  We purified recombinant GST-PTEN and GST-PTEN-3E 

from bacteria (Fig. 4.1A) and performed phosphatase assays with equimolar 

concentrations of purified P-REX2-V5 and PTEN protein.  In accordance with our 

previous results, P-REX2-V5 inhibited GST-PTEN-3E by 46%, but did not inhibit GST-

PTEN (Fig. 4.2C).  Taken together, our results strongly suggest that P-REX2 can 

recognize the phosphorylation status of the PTEN tail, and only inhibits when PTEN is 

phosphorylated, despite its ability to interact with the unphosphorylated form of PTEN.   

 

P-REX2 binds to multiple sites on PTEN.   

Because the tail regulates P-REX2 inhibition of PTEN as well as P-REX2 binding, we 

sought to understand the P-REX2-PTEN tail interaction in more detail. To further 

examine this, we created N-terminal FLAG-tagged PTEN constructs containing step-wise 

deletions into the tail of PTEN, including a truncation of the PDZ-BD, in order to 

determine the region of the tail required for P-REX2 binding (Fig 4.1A).  We next co-

transfected V5-tagged P-REX2 with full length FLAG-tagged PTEN or PTEN deletion 

mutants into HEK293 cells.  Cells were lysed and subsequent co-immunoprecipitation 

analysis revealed that a two amino acid deletion at the C-terminus of the PDZ-BD led to a 

major reduction of P-REX2 binding.  Furthermore, as the tail domain mutants became 

progressively shorter, P-REX2 binding increased, but was still significantly weaker than 

binding to full length PTEN  (Fig 4.3A).  This result suggests that P-REX2 binds strongly 

to the PDZ-BD of PTEN, and also binds weakly to a region of PTEN outside of the tail.  
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To confirm that P-REX2 binds to site on PTEN separate of the tail, we performed co-

immunoprecipitation experiments with P-REX2-V5 and FLAG-NC2, containing amino 

acids 1-353 encompassing the phosphatase and C2 domains, and compared their binding 

affinity to that seen with FLAG-Δ361.  SDS-PAGE analysis revealed that P-REX2 bound 

to FLAG-NC2 with higher affinity than FLAG-Δ361 (Fig 4.3B), validating P-REX2 

binding to an additional site on PTEN. Overall, these results suggest that P-REX2 binds 

with high affinity to the PDZ-BD, and also interacts with a region of PTEN located 

outside of the PTEN tail. 

 

The IP4P domain of P-REX2 docks to the PDZ-BD of PTEN.  

The above data suggests that there are multiple binding sites for P-REX2 located on 

PTEN.  One site is the PDZ-BD, and the other site is located N-terminally of the tail.  To 

first determine how P-REX2 interacts with the PDZ-BD, we first performed pull-down 

experiments using recombinant GST-PTEN mutants bound to gluthatione sepharose 

beads and P-REX2-V5 deletion mutants (Fig 4.1A-B) expressed in HEK293 cells.  

Lysates from the transfected cells were incubated with either GST-NC2 or GST-TAIL, 

which only contains the tail region (amino acids 353-403), and eluates were analyzed by 

western blot.  CP-REX2, a mutant lacking the DHPH domain, had strong affinity for the 

tail, but not the phosphatase and C2 domains (Fig. 4.4A), suggesting that this region of P-

REX2 may be interacting with the PDZ-BD of PTEN. 

 

We next wanted to confirm this interaction by co-immunoprecipitation.  CP-REX2-V5 

was expressed in HEK293 cells with FLAG-C2TAIL or FLAG-C2TAILΔ402 (Fig. 4.1A) 
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and complexes were immunoprecipitated with anti-FLAG antibody.  Western blot 

analysis showed that CP-REX2 co-immunoprecipitated well with FLAG-C2TAIL, and 

that this interaction was dependent on the PDZ-BD (Fig. 4.4B).  To further map this 

interaction, we performed similar immunoprecipitation experiments using smaller P-

REX2 fragments.  Specifically, we co-transfected the inositol polyphosphate 4-

phosphatase domain (IP4P-V5) and the DEP PDZ tandem (DEPPDZ-V5) (Fig. 4.1A) 

with FLAG-C2TAIL or FLAG-C2TAILΔ402, and immunoprecipitated protein 

complexes with anti-FLAG antibody.  We had predicted that binding to the PDZ-BD 

would occur through the DEPPDZ domain; however that was not what we observed.  

Surprisingly, it was the IP4P domain that interacted with the C2TAIL domain of PTEN in 

a PDZ-BD dependent manner (Fig. 4.4C).  We therefore conclude that one mechanism of 

P-REX2 and PTEN interaction is through the binding of the IP4P domain of P-REX2 

with the PDZ-BD of PTEN.  

 

The PH domain of P-REX2 directly interacts with the Phosphatase and C2 Domains 

of PTEN.  

We have shown P-REX2 interacts with a region of PTEN separate from the tail and PDZ-

BD.  In addition, prior work showed that the DHPH domain bound to PTEN in-vitro 

(Fine et al., 2009).  To further investigate the nature of the DHPH domain interaction 

with PTEN, we performed pull-down experiments by mixing recombinant GST-PTEN 

mutants bound to gluthatione sepharose beads with DHPH-V5 (Fig 4.1A-B) expressed in 

HEK293 cells.  Cell lysates were incubated with either GST-NC2 (phosphatase and C2 

domain) or GST-TAIL, and eluates were analyzed by western blot.  The DHPH domain 
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bound to GST-NC2, but not to GST-CTAIL (Fig. 4.5A), demonstrating that it interacts 

with PTEN in a different manner from the C-terminal domain.  To determine the region 

of the DHPH domain required for this interaction, DH-V5 and PH-V5 (Fig. 4.1A) were 

in-vitro translated using rabbit reticulocyte lysate.  The translated proteins were incubated 

with various GST-PTEN domain constructs bound to glutathione sepharose and the 

eluates of the resulting pull-down reactions were analyzed by western blot.  We observed 

that the PH domain bound well to GST-NC2 and GST-C2, but not to GST-CTAIL, which 

followed the pattern seen with the DHPH domain.  The DH domain, however, did not 

bind to any region of PTEN (Fig 4.5B).  These results suggest that the PH domain alone 

is necessary for P-REX2 binding to the phosphatase and C2 domains, and that this 

binding is independent of the tail.  To analyze binding of the PH domain in more detail, 

we in-vitro translated DHPH-V5 and PH-V5 and incubated the protein lysates with 

several GST-PTEN deletion constructs, including GST-N (phosphatase domain) and 

GST-C2 (C2 domain) (Fig 4.1A).  SDS-PAGE analysis of pulled-down proteins showed 

that the DHPH and PH domains bound strongly to both GST-N and GST-C2 (Fig. 4.5 C). 

Therefore, the PH domain does not bind exclusively to one particular domain, but rather 

interacts with the interface of both the phosphatase and C2 domain, which together makes 

up the minimal catalytic region of PTEN. 

 

We next confirmed these results by co-immunoprecipitation.  PH-V5 and FLAG-NC2 

were co-transfected into HEK293 cells and complexes were immunoprecipitated using 

anti-FLAG antibody.  SDS-PAGE analysis of protein eluates showed that the PH domain 

of P-REX2 successfully bound FLAG-NC2 (Fig. 4.5D).  We performed similar co-
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immunoprecipitation experiments to validate binding of the DHPH domain to NC2.   Co-

transfection of FLAG-NC2 and DHPH-V5 and subsequent immunoprecipitation using 

anti-V5 antibody revealed that the FLAG-NC2 also interacted with the DHPH domain 

(Fig. 4.4D).  In summary, both the DHPH and PH domains of P-REX2 directly interact 

in- vitro and in culture with the catalytic region of PTEN which includes both the 

phosphatase and C2 domains. 

 

The PH domain of P-REX2 inhibits PTEN phosphatase activity in the absence of the 

tail.  

Because both the DHPH and PH domains of P-REX2 bind to the phosphatase and C2 

domains of PTEN, we hypothesized that these domains could inhibit PTEN in the 

absence of the C-terminal tail.  We assessed this possibility by performing phosphatase 

assays with recombinant GST-NC2 protein and purified V5-tagged P-REX2 domains.  

PH-V5 inhibited GST-NC2 phosphatase activity by 64%, while the DH domain, and 

surprisingly, the DHPH domain did not (Fig. 4.6A).  This suggests that the tail and PDZ-

BD of PTEN is dispensable for PH domain inhibition of PTEN. Next, we determined if 

the PH domain was capable of inhibiting full length unphosphorylated GST-PTEN.  

Again, the PH domain, but not the DH or DHPH domain, was able to inhibit GST-PTEN 

phosphatase activity by 51% (Fig 4.6B), indicating that the PH domain inhibits PTEN 

regardless of its phosphorylation state.   

 

The PH domain is unleashed from DH domain inhibition through the reading of tail 

phosphorylation by the DH domain 
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We suspected that phosphoryation of the tail may be regulating DHPH domain mediated 

PTEN inhibition.  We therefore performed phosphatase assays using the GST-PTEN-3E 

mutant, and in accordance with our hypothesis, DHPH-V5 was now able to inhibit PTEN 

phosphatase activity along with PH-V5, by 27% and 61%, respectively (Fig. 4.6C).  In 

summary, the PH domain is unique in its ability to inhibit PTEN activity independently 

of the tail and its phosphorylation status.  Our results suggest that the DH domain blocks 

the function of the PH domain, as PH-V5 but not DHPH-V5 was able to inhibit 

unphosphorylated PTEN. Furthermore, the DH domain must be “reading” PTEN tail 

phosphorylation, unleashing the PH domain for PTEN inhibition when the tail is 

phosphorylated.   

 

The PH domain inhibits PTEN activity in culture while the C-terminal region 

behaves in a dominant negative manner.  

We next wanted to determine if PH domain inhibition of PTEN occurred under more 

physiological conditions.  Therefore, we determined if the PH domain could inhibit 

PTEN when co-expressed in mammalian cells.  HEK293 cells were co-transfected with 

PTEN-V5 and control vector, PH-V5 or CP-REX2-V5, which served as a negative 

control.  Proteins were immunoprecipitated with anti-V5-agarose, and phosphatase assays 

were performed.  We used a shared V5 epitope to immunoprecipitate protein complexes 

due of the weak interaction between PTEN and the DHPH and PH domains.  The PH 

domain successfully inhibited eukaryotic PTEN activity by 63%, and surprisingly, CP-

REX2 led to a significant 40% increase in PTEN activity (Fig. 4.7A).  Western blotting 

revealed that PTEN was immunoprecipitated at equal levels in each sample (Fig. 4.7A). 
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These results demonstrate that the PH domain can inhibit not only bacterially produced 

PTEN, but also PTEN produced from mammalian cells. Conversely, CP-REX2 may act 

as a dominant negative form of P-REX2, as it caused an increase in PTEN activity.  We 

can therefore speculate that C-P-REX2 may act as a dominant negative mutant by 

blocking the formation of the wild-type inhibitory complex.   

 

Based on our data, we hypothesized that DHPH and PH mediated PTEN inhibition may 

affect signaling to AKT in cells. To examine this, signaling experiments were performed 

in the PTEN deficient cell line U87-MG.  PTEN was expressed in these cells and PI3K 

pathway activation was determined by analysis of phosphorylated AKT (pAKT) levels.  

Expression of PTEN resulted in a significant decrease in pAKT at threonine 308, and 

expression of either the DHPH or PH domain with PTEN rescued pAKT308 levels (Fig. 

4.7B). Furthermore, co-expression of CP-REX2 with PTEN did not result in rescued 

pAKT308 levels, but rather resulted in a greater decrease in  pAKT308 compared to that 

observed with PTEN alone (Fig. 4.7B), supporting our claim that it behaves in a 

dominant negative manner.  These results imply that the PH domain is the minimal 

domain required for PTEN inhibition, and docking of the C-terminal region of P-REX2 to 

the PDZ-BD increases PTEN activity through a dominant negative mechanism. 

 

The PH domain of P-REX2 but not P-REX1 inhibits PTEN phosphatase activity 

We next wanted to determine if inhibition of PTEN activity was specific to the PH 

domain of P-REX2, or if another PH domain, specifically that of its closest homolog P-

REX1, could also inhibit PTEN.  To determine this, we co-transfected PTEN-V5 with 
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control vector, P-REX2 PH-V5, or P-REX1 PH-V5.  Lysates were incubated with anti-

V5 agarose beads to immunoprecipitate the expressed proteins and phosphatase assays 

were performed.  In accordance with our previous data, the PH domain of P-REX2 was 

able to inhibit PTEN phosphatase activity, but interestingly, the PH domain of P-REX1 

was not (Fig. 4.8A). In support of this observation, co-transfection and 

immunoprecipitation of FLAG-PTEN with MYC-P-REX1 revealed that P-REX1 does 

not interact with PTEN, and therefore lacks the ability to dock via the PDZ-BD (Fig. 

4.8B).   

 

In addition, we have previously shown that loss of P-REX2 in the PTEN positive breast 

cancer cell line MCF-7 results in decreased PI3K signaling and cellular proliferation. We 

therefore determined if P-REX1 loss had a similar affect.  P-REX1 expression was 

decreased in MCF-7 cells by stable shRNA infection.  Western blot analysis of cell 

lysates showed no difference in AKT phosphorylation at Thr-308 following P-REX1 

depletion (Fig. 4.8C).  Furthermore, P-REX1 knockdown cells proliferated at the same 

rate as control cells (Fig. 4.8D), and P-REX1 loss did not lead to a reduction in soft agar 

colony formation (Fig. 4.8E).   Taken together, these results suggest that unlike P-REX2, 

P-REX1 does not inhibit PTEN, decrease PI3K signaling or inhibit cellular 

transformation in PTEN positive cells.  Therefore, it is likely that there is a level of 

specificity involved in P-REX2 PH domain mediated phosphatase inhibition and binding.   

 

 

 



129 
 
DISCUSSION  

 

The Dbl family of Rho guanine nucleotide exchange factors consists of approximately 70 

different proteins which create a highly specific network of Rho-family GTPase 

activation.  GEFs exhibit varying degrees of GTPase selectivity, but a large number only 

activate a single GTPase.  This specificity is due to the presence of non-conserved 

residues located at the interface between the DH and GTPase (Rossman et al., 2005).  

Activation of Rho-GTPases by the Dbl family of GEFs is coordinated by the integration 

of various signaling inputs.  P-REX2 and P-REX1, for example, are activated by direct 

interaction with PIP3 and Gβγ generated by GPCR and PI3K signaling (Donald et al., 

2004; Welch et al., 2002).  For other GEFs, phosphorylation of regions outside the DH-

PH domain by various kinases such as receptor tyrosine kinases blocks intramolecular 

autoinhibition and allows for GTPase activation (Aghazadeh et al., 2000; Das et al., 

2000).  Changes in subcellular localization also regulate their ability to activate GTPases.  

For example, the Rho GEF Ect2 is normally sequestered in the nucleus during interphase, 

but is activated by phosphorylation and localized to the cleavage furrow during G2/M 

phase, resulting in activation of Rho GTPases needed for cell division (Schmidt et al., 

2002;  Tatsumoto et al., 1999).  

 

Here we present a novel mechanism of GEF mediated phosphatase inhibition that appears 

to be as highly regulated as GEF activation of Rho-GTPases.  An illustrated model of this 

mechanism can be found in Figure 9.  To summarize, P-REX2 docks to the PTEN PDZ-

BD through its C-terminal domain, determines the phosphorylation site of the tail via the 



130 
 
DH domain, and inhibits PTEN activity through the unleashing of the PH domain, 

allowing for allosteric inhibition of the PTEN catalytic domain.   Previous reports suggest 

that DH and PH domains of GEFs are capable of forming intramolecular auto-inhibitory 

interactions (Aghazadeh et al., 2000).  We therefore hypothesize that negatively charged 

residues within the DH domain can interact with positive charges on the PH domain, 

blocking the phosphatase-inhibitory region of the PH domain (star in Fig. 9) from 

inhibiting PTEN, as demonstrated in Figures 2 and 6.  However, phosphorylation of the 

C-terminal tail of PTEN could create a cluster of negative charges that competes with the 

DH domain for binding to positive charges on the PH domain, thereby unleashing the PH 

domain from the DH domain and allowing for allosteric inhibition of PTEN catalysis 

(Figure 9, bottom panel, and Figures 5 and 6). Docking of the IP4P domain of P-REX2 to 

the PDZ-BD of PTEN (Figure 4) is likely necessary for ensuring that the PH domain is in 

close proximity to PTEN so that it is positioned to inhibit phosphatase activity once 

PTEN is phosphorylated.  Alternative explanations for the mechanism of unleashing the 

PH domain for PTEN inhibition cannot be excluded.  

 

These findings are illuminating in several ways.  First, we had never previously observed 

this secondary interaction between P-REX2 and PTEN using our original 

immunoprecipitation conditions.  However, by lysing the cells in lysis buffer containing 

1% Triton rather than NP-40 and SDS and exposing the immunoblots for longer time 

periods, we were able to see this weaker interaction.  Also, we were surprised to find the 

P-REX2 bound strongly to the PDZ-BD.  We believed that the PDZ-BD was not a 

binding site for P-REX2 based on our previous results that indicated a strong interaction 
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between P-REX2 and a PTEN mutant lacking the last three amino acids.  However, 

deletion of the last three amino acids of PTEN creates another predicted PDZ-binding 

domain, a situation that has been observed to generate a functional PDZ-binding domain 

for PTEN (Valiente et al., 2005).  We therefore used a PTEN mutant lacking the last two 

amino acids, eliminating both PDZ-BDs, to reveal the importance of this domain for 

binding to P-REX2.  We also observed that PTEN phosphatase activity was never 

inhibited 100% by full length P-REX2 or any of the inhibitory domains, but rather 

decreased by approximately half.   This could be due to the fact that not all PTEN is in a 

conformation that is amenable to PREX2 inhibition.  Alternatively, P-REX2 may exhibit 

various degrees of PTEN inhibition based on its own post-translational modifications.  It 

is also possible that there are specific pools of PTEN that are regulated by P-REX2 based 

upon its sub-cellular localization.  For example, PTEN at the membrane may be inhibited 

by P-REX2 through its interaction with insulin receptor, whereas cytosolic and nuclear 

PTEN may not be inhibited.   Performing phosphatase assays on PTEN from different 

cellular fractions would shed light on this possibility.  Measuring the percentage of PTEN 

that is bound to P-REX2 in the cell, as well as determining where this interaction occurs 

will also be informative. 

 

The above mechanism of PTEN regulation is illuminating because it reveals a novel 

function for a PH domain. The PH domain is highly represented in the human genome 

and is found in proteins of various functions (Ingley et al., 1994).  Therefore, phosphatase 

inhibition by a PH domain may be broadly relevant to signaling pathway regulation 

because other PH domains may share a similar function.  Furthermore, we show in Figure 
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6 and 7 that the PH domain of P-REX1, a close homolog of P-REX2 known to bind PIP3, 

does not inhibit PTEN phosphatase activity or effect PI3K signaling and transformation, 

suggesting that a specific PH domain may only be able to regulate the activity of a 

specific phosphatase, similar to GEF regulation of GTPases.  Although P-REX1 did not 

inhibit PTEN, we cannot eliminate the possibility that there are other PH domains that 

share the ability to inhibit PTEN.  In addition, some other PH domains could regulate 

other phosphatases, tightly controlling different signaling pathways.      

 

A family of proteins that functions very similarly to PTEN is the myotubularins.  Like 

PTEN, they contain a PTP active site motif, but mainly dephosphorylate lipid substrates, 

specifically at the 3’ position (Blondeau et al., 2000; Taylor et al., 2000).  All 

myotubularins contain a PH-GRAM domain, which is very similar to the PH domain of 

pleckstrin (Begley et al., 2003), and several, including MTMR13 and MTMR5 have PH 

domains (Begley and Dixon, 2005). Also, many myotubularins contain PDZ-binding 

domains.  Interestingly, about half of the known myotubularins are inactive due to 

mutations in their catalytic domain, and it has been shown that the direct interaction 

between inactive and active myotubularins results in regulation of phosphatase activity 

(Kim et al., 2003; Robinson and Dixon, 2005).   Therefore, it is possible that, similar to 

P-REX2 PH domain regulation of PTEN, myotubularins may also be regulated through 

direct interaction with PH or PH-GRAM domains. 

 

It was originally thought that the maintenance of proper levels of phosphorylation events, 

especially those that direct cell cycle progression, occurred largely through the regulation 
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of kinase activity.  However, it is clear that the activity of both kinases and phosphatases 

are tightly regulated in order to control cell-cycle dependent phosphorylation.  There are 

many cases where phosphatase inhibition is dependent of the cellular environment. For 

instance, Clp1, a Cdc14 family phosphatase in S. pombe with strong homology to PTEN, 

is an activator of mitotic exit through its dephosphorylation and activating Cdk1 

inhibitors.  However, before mitotic exit, Clp1 is inactivated and sequestered to the 

nucleolus until mitotic entry begins. It is then released into the cytoplasm but remains 

inactive until mitotic exit.  During this period of inactivation, Clp1 is phosphorylated by 

Cdk1, however during mitotic exit, Clp1 autodephosphorylates itself, allowing for 

phosphorylation and activation of Cdk1 inhibitor proteins and anaphase-promoting 

complex (Wolfe et al., 2006).  Another example includes the protein phosphatase PP1.  

Like Clp1, PP1 is specifically required during mitotic exit to dephosphorylate mitotic 

phosphoproteins. It has been shown that PP1 is inactivated during early mitosis through 

both phosphorylation at Thr320 by Cdc2 and though the binding of inhibitor-1.  

However, at the onset of mitotic exit, Cdc2 is degraded, allowing for 

autodephosphorylation of PP1 at Thr320 and partial activation of phosphatase activity.  

PP1 then dephosphorylates inhibitor-1 at Thr35, releasing it from inhibitor-1 mediated 

inhibition and allowing for full PP1 activation and progression through mitotic exit (Wu 

et al., 2009).  Therefore, as in the cell cycle, we present a model of PTEN inhibition by P-

REX2 that is regulated by PTEN C-terminal phosphorylation.  Phosphatase activity and 

GEF activation are dynamically regulated by various inputs, and likewise, P-REX2 

inhibition of PTEN is likely not static, but rather responsive to specific cellular cues. 
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FIGURE LEGENDS 

 

Figure 4.1. A) Illustration of deletion mutants used in experiments.  B) Coomassie stain of 

recombinant GST-PTEN WT and mutant vectors purified from BL21(DE3) pLyseE 

bacterial cells using glutathione sepharose beads.  BSA standards were used to quantify 

the protein. 

 

Figure 4.2.  P-REX2 inhibition of PTEN is regulated by PTEN tail phosphorylation.  

A) HEK293 cell lysates co-expressing empty vector, FLAG-PTEN, or FLAG-PTEN-3A 

with empty vector or P-REX2-V5 were incubated with FLAG-M2 antibody conjugated to 

agarose beads.  Immunoprecipitated protein complexes were analyzed by 

immunoblotting.  B) U87-MG cell lysates co-expressing FLAG-PTEN or FLAG-

PTEN3A with empty vector or P-REX2-V5 were incubated with a rabbit monoclonal 

PTEN antibody conjugated to agarose beads.  Phosphatase assays were performed on 

immunoprecipitated protein complexes by incubating the beads with 20 µM soluble di-

C8-D-myo-phosphatidylinositol 3,4,5-trisphosphate (PIP3) at 37°C for 30 minutes.  C) In 

vitro phosphatase assays were performed by incubating equimolar amounts of purified 

GST-PTEN WT or GST-PTEN-3E and purified P-REX2-V5 in the presence of PIP3 at 

37°C for 30 minutes.  Error bars represent standard deviation (SD), n=3, ** P < 0.01.  

 

Figure 4.3.  P-REX2 interacts with multiple sites on PTEN. A) The interaction between 

P-REX2 and PTEN deletion mutants was analyzed by co-immunoprecipitation.  P-REX2-

V5, FLAG- PTEN mutants, or empty vectors were co-transfected into HEK293 cells and 
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lysates were incubated with FLAG-M2 antibody conjugated to agarose beads overnight at 

4ºC.  Total lysates and FLAG-immunoprecipitated proteins were analyzed by western 

blot.   

 

Figure 4.4. The C-terminal region of P-REX2 interacts with the PDZ-BD of PTEN. 

A) HEK293 cell lysates expressing C-P-REX2-V5 was incubated with recombinant GST-

PTEN deletion mutants or control GST sepharose beads. Pulled-down proteins were 

analyzed by immunoblotting. B-C) HEK293 cells co-expressing P-REX2 C-terminal 

domains and FLAG-tagged PTEN deletion mutants were incubated with FLAG-M2 

antibody or normal mouse IgG (control). Immunoprecipitated protein complexes were 

analyzed by immunoblotting. 

 

Figure 4.5. P-REX2 DHPH and PH domains interact with the catalytic domain of 

PTEN. A) HEK293 cell lysates co-expressing DHPH-V5 were incubated with 

recombinant GST-PTEN deletion mutants or GST control sepharose beads.  Pulled-down 

proteins complexes were analyzed by immunoblotting.  B-C) PH-V5, DH-V5, or DHPH-

V5 were in-vitro translated and 10 µL of protein lysate was incubated with GST control 

or GST-PTEN sepharose beads in BC200 buffer.  Pulled-down proteins complexes were 

analyzed by immunoblotting.  D) Immunoprecipitation experiments were performed by 

co-transfection of PH-V5 or DHPH-V5 with FLAG-NC2 into HEK293 cells.  Protein 

lysates were incubated with FLAG-M2 antibody, V5-agarose beads, or normal mouse 

IgG (control) conjugated to agarose beads overnight. Total lysates and FLAG-

immunoprecipitated proteins were analyzed by western blot. 
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Figure 4.6. The PH domain inhibits PTEN in-vitro.  A-C) For in-vitro phosphatase 

assays, purified recombinant GST-PTEN WT or GST-PTEN mutants was incubated with 

equimolar amounts of purified V5-tagged P-REX2 domains as indicated in the presence 

of PIP3 at 37°C for 30 minutes. Error bars represent SD, n=3, ** and *, P < 0.01 and 

P<0.05, respectively. 

 

Figure 4.7. The PH domain inhibits PTEN produced in mammalian cells.  A) Lysates 

from HEK293 cells co-expressing PTEN-V5 with empty vector, PH-V5, or C-P-REX2-

V5 were incubated with V5 agarose beads.  Phosphatase assays were then performed on 

the immunoprecipitated protein.  Levels of immunoprecipitated proteins were analyzed 

by immunoblotting.  Error bars represent SD, n=3, **, P < 0.01 .B) DHPH-V5, PH-V5 or 

CPREX2-V5 and untagged PTEN were transfected alone or in combination into U87MG 

cells.  24 hours after transfection, cells were starved with DMEM without FBS for 16 

hours and then lysed in 2X sample buffer.  Equal concentrations of lysate were resolved 

on SDS-polyacrylamide gels and levels of pAKT-Thr308 were analyzed by western blot. 

 

Figure 4.8.  The PH domain of P-REX1 does not inhibit PTEN and does not affect 

cellular proliferation or transformation.  A) Lysates from HEK293 cells expressing 

PTEN-V5 with empty vector, P-REX2-PH-V5, or P-REX1-PH-V5 were incubated with 

V5-agarose beads, and phosphatase assays were performed on immunoprecipitated 

proteins.  Levels of immunoprecipitated proteins were analyzed by immunoblotting.  

Error bars represent SD, n=3, **, P < 0.01.  B) Immunoprecipitation of PTEN and full 

length P-REX1. FLAG-PTEN and MYC-P-REX1 were transfected into HEK293 cells.  
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Cells were lysed and incubated with FLAG-M2 antibody plus agarose beads overnight 

and eluted proteins were analyzed by western blot.  C) Western blot analysis of 

pAKT308 levels in MCF-7 cells depleted for P-REX1 by shRNA D) Proliferation of 

control or P-REX1 depleted MCF-7 cells, as determined by crystal violet staining.  E) 

Quantification of colony formation of control or P-REX1 depleted MCF-7 cells grown in 

soft agar after 14 days. 

 

Figure 4.9.  Model of PTEN inhibition by P-REX2.  The DH domain of P-REX2 

restricts PH domain inhibition of PTEN phosphatase activity when the C-terminal tail of 

PTEN is unphosphorylated (upper panel).   However, phosphorylation of the tail is “read” 

by the DH domain, switching the ionic interaction to the phospho-tail, and unleashing the 

PH domain inhibitory region (star labeled “I”) of P-REX2 through interaction with the 

phosphatase and C2 domains of PTEN on its non-lipid-binding surface (lower panel). 
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FIGURE 4.6 
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CHAPTER V 
 
Summary and Future Perspectives 
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PTEN is a bona fide tumor suppressor that inhibits PI3K stimulated growth, proliferation, 

survival, and metabolism by dephosphorylating PI(3,4,5)P3 to generate  PI(4,5)P2.  Our 

lab has identified a novel PTEN interacting protein, the Rac-GEF P-REX2, which inhibits 

PTEN in a non-competitive manner.  In this thesis, we examine the role of P-REX2 

mediated PTEN inhibition in PI3K signaling regulation, tumorigenesis, insulin signaling, 

and glucose metabolism and reveal a dynamic mechanism of PTEN inhibition by P-

REX2.    

 

In Chapter II, we explore the role of P-REX2 expression on cellular transformation.  By 

overexpressing P-REX2 and the PTEN inhibitory DHPH domain in normal mammary 

epithelial cells, we show that P-REX2 increases PI3K signaling, promotes cell 

proliferation, and disrupts acini formation.  Furthermore, P-REX2 cooperates with other 

known oncogenes including p110α E545K, c-MYC, and Her2 to transform normal cells 

and form tumors in mice.  We also discovered several transforming cancer mutants of P-

REX2.  These results suggest that P-REX2 has oncogenic properties and may promote 

tumorigenesis. 

 

We also show in Chapter II that P-REX2 Rac GEF activity is dispensable for PTEN 

inhibition.  However, our studies do not address the potential role that P-REX2 Rac GEF 

activity may play in cellular transformation, and it will be important to address this in the 

future.  Studies have shown that Rac regulates migration, growth, and apoptosis through 

various mechanisms, including activation of the transcription factor NFκB.  (Sulciner et 

al., 1996).  Activated Rac can also transform cells and initiate tumor formation in mice 
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(Khosravi-Far et al., 1996).  Overexpression of P-REX2 and the DHPH domain may 

result in increased Rac activation in addition to increased PTEN inhibition and PI3K 

signaling, and we therefore cannot conclude that transformation is exclusively a result of 

increased PTEN inhibition.  Several experiments can be performed to understand the 

contribution of Rac activation to cellular transformation.  Overexpression the GEF dead 

P-REX2 N212A mutant instead of wild-type P-REX2 would allow us to observe the 

effects of P-REX2 expression on signaling and proliferation without affecting Rac 

activation.  Furthermore, Rac deficient cells could also be utilized to determine it Rac 

activation is dispensable for P-REX2 mediated cellular transformation.  In the same 

manner, it is unclear whether PTEN is required for P-REX2 transformation.  We have 

shown previously that loss of P-REX2 in PTEN mutant cell lines does not affect 

proliferation; however there are many PTEN negative tumor samples that have elevated 

P-REX2 expression.  Therefore, expressing P-REX2 in PTEN deficient cell lines and 

analyzing changes in proliferation and 3-D morphogenesis may provide insight into the 

function of P-REX2 in cellular transformation.  

 

We have identified several transforming cancer mutations in PREX2, but we have not yet 

identified the mechanism in which these mutations activate P-REX2.  Interestingly, the 

location of mutations described here and by Berger et. al, are dispersed throughout the 

coding region and are not clustered into “hot spots”, as many oncogenic mutations are, 

suggesting that there may be multiple ways that these mutations can affect P-REX2 

function.  For instance, these mutants may be more effective PTEN inhibitors.  Changes 

in key residues may increase P-REX2 binding to PTEN, or may eliminate regulation by 
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the PTEN C-terminal tail, which is critical for P-REX2 inhibition as discussed in Chapter 

IV.   Therefore, comparative binding assays and PTEN phosphatase assays will be 

performed in the future to determine if P-REX2 mutants are better PTEN inhibitors.   

Cancer mutants may also activate Rac, therefore increasing Rac activated migration, 

growth and apoptosis.  It will be interesting to determine if any cancer mutants activate 

Rac in the absence of PIP3 or Gβγ, exchange GDP more efficiently, or increase Rac 

activated migration.   Furthermore, mutations or deletions in PREX2 may affect 

intramolecular interactions that may inhibit or active P-REX2 enzymatic activity.   In 

Chapter IV, we discuss how an intramolecular interaction between the DH domain and 

PH domain may inhibit PH domain inhibition of PTEN.  Mutations in the DH domain 

may disrupt this interaction, allowing for constitutive inhibition of PTEN.  Also, it has 

been reported that the phosphatase domain of P-REX1 interacts with the DEP and PDZ 

domains, regulating Gβγ activation (Urano et al., 2008).  Therefore, mutations in PREX2 

may also affect intramolecular interactions that regulate Rac activation. 

 

In Chapter III, we more thoroughly analyze the role of P-REX2 in signaling regulation by 

examining changes in PI3K signaling in Prex2 knockout mice.  Analysis of signaling 

activation in Prex2-/- fibroblasts showed that loss of P-rex2 led to decreased PI3K 

signaling activation specifically in response to insulin.  This correlated with an increase 

in PTEN activity following insulin stimulation in Prex2-/- fibroblasts, suggesting that 

decreased PI3K signaling occurs in part due to increased PTEN activity.  We also 

discovered that P-REX2 interacts with phosphorylated insulin receptor and transports 

PTEN to the membrane following insulin stimulation, suggesting that P-rex2 may 
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specifically regulate insulin signaling by forming a complex with PTEN and activated 

insulin receptor.  Furthemore, Prex2-/- mice exhibited decreased glucose uptake and 

reduced insulin tolerance.  We also observed decreased insulin stimulated PI3K signaling 

in liver and fat tissue.  PTEN activity was increased in Prex2-/- liver samples, and this 

correlated with an increase in insulin stimulated PIP3 levels. 

 

Determining the mechanism of insulin stimulated PTEN regulation is an exciting topic 

for future study.  We have shown the P-REX2 interacts with activated insulin receptor 

and brings PTEN to the membrane, but the implications of this interaction are unknown.  

It is possible that insulin stimulates PTEN C-terminal tail phosphorylation, and therefore 

P-REX2 inhibition, as discussed in Chapter IV.  Therefore, it will be important to 

measure levels of PTEN phosphorylation following insulin stimulation.   It will also be 

interesting to determine if P-REX2 inhibition of PTEN is regulated by different growth 

factors in other cell types.   As discussed in Chapter III, leptin is an important regulator of 

PI3K signaling in hypothalamic neurons and stimulates PTEN phosphorylation (Ning et 

al., 2006).  Therefore, leptin, as opposed to insulin, may be the primary regulator of P-

REX2 mediated PTEN in hypothalamic neurons. 

 

We have shown that P-REX2 inhibition of PTEN has important implications for PI3K 

signaling in vivo.  It is therefore possible that deletion of P-REX2 may adversely affect 

tumor formation in mice with decreased PTEN expression.   Mice heterozygous for Pten 

develop tumors in a variety of tissues and organs systems including the uterus, prostate, 

thyroid, endometrium, liver, adrenal medulla, and breast, among others (Di Cristofano et 
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al., 1998; Podsypanina et al., 1999; Suzuki et al., 1998; Trotman et al., 2003).   It is 

possible that deleting Prex2 in Pten heterozygous mice may restore the activity of the 

Pten present and decrease tumor formation. Generating Prex2-/-/PTEN+/- mice and 

comparing the onset of tumor formation in these mice to PTEN+/- mice will allow us to 

answer this question. 

 

Although we have demonstrated a role for P-rex2 in regulating glucose homeostasis and 

insulin sensitivity, we have not studied the long term effects of P-rex2 loss in mice.  It 

will be interesting to document new phenotypes that may present themselves as Prex2-/- 

mice age.  Increased weight and elevated fasting plasma glucose levels are often observed 

in insulin resistant mice at later time points, and this will be documented in the future.   

Furthermore, tissue specific P-REX2 knockout mice could be generated in order to 

determine which tissues are most affected by P-REX2 regulation of insulin signaling and 

glucose metabolism.  It would also be informative to determine if PREX2 expression is 

increased or if mutations exist in patients with Type II diabetes, as this may serve as a 

predictive marker for the disease.   

 

We have shown that P-REX2 is necessary for regulating insulin signaling and glucose 

homeostatsis in vivo by regulating insulin stimulated PTEN inhibition. Therefore, 

uncovering the mechanism of PTEN inhibition by P-REX2 is necessary for 

understanding how this interaction is regulated.  In Chapter IV, we discovered that P-

REX2 binds to two different regions of PTEN.  The inositol 4-polyphosphatase domain 

binds with high affinity to the PDZ binding domain of PTEN, whereas the DHPH domain 
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tandem, via the PH domain, interacts with the catalytic unit of PTEN comprised of the 

phosphatase and C2 domain.  Furthermore, these interactions allow for dynamic 

regulation of PTEN activity.  While the PH domain of P-REX2 can constitutively inhibit 

PTEN activity, inhibition by full length P-REX2 is inhibited by the DH domain.  

Phosphorylation of the C-terminal of PTEN unleashes the PH domain from DH domain 

inhibition, allowing for PH domain-mediated inhibition of PTEN.   We also found that P-

REX1, a close homolog of P-REX2, does not bind to PTEN and its PH domain does not 

inhibit PTEN phosphatase activity, suggesting that GEF related phosphatase inhibition 

may be highly specific. 

 

Discovering that P-REX2 inhibition of PTEN occurs in a dynamic manner is exciting and 

provides many interesting areas of future study.  We have shown that phosphorylation of 

the C-terminal tail controls P-REX2 inhibition, therefore it is necessary to understand 

how phosphorylation of the tail is regulated. CK2 is responsible for a majority of PTEN 

phosphorylation on Ser370, Ser380, Ser385, Thr382, while GSK3 have been shown to 

phosphorylate PTEN at Ser362 and Thr-366 (Al-Khouri et al., 2005; Torres and Pulido, 

2001).  Activation of kinases and regulation of phosphatases that target these sites is 

critical for regulating PTEN tail phosphorylation and PTEN inhibition.  For instance, it 

has been reported that leptin stimulates PTEN phosphorylation in a CK2 dependent 

manner (Ning et al., 2006), as discussed in Chapter III.  It is possible that leptin activates 

CK2 kinase activity, resulting in PTEN phosphorylation and inhibition by P-REX2. We 

have also shown that the C-terminal phosphatase domain of P-REX2 binds to the PTEN 

tail.  Although no substrates of this phosphatase domain have yet been identified, we can 
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hypothesize that this domain could dephosphorylate the PTEN tail, this serving as an 

autoinhibitory domain by shutting off its own PTEN inhibition.  The interaction between 

the phosphatase domain of P-REX2 and the PTEN PDZ-BD was surprising to us, as we 

expected binding to occur through the DEP-PDZ tandem.  It is possible that the 

phosphatase domain forms intramolecular interactions with the PDZ domain, as observed 

with P-REX1 (Urano et al., 2008), which can mediate the interaction of the phosphatase 

domain with the PDZ-BD.  

 

Furthermore, it would not be surprising if post-translational modifications of P-REX2 

were involved in PTEN regulation in addition to PTEN phosphorylation.  Studies have 

shown that P-REX1 can be directly phosphorylated by cyclic AMP-dependent protein 

kinase (PKA) resulting in inhibition of P-REX1 Rac-GEF activity.  Furthermore, it has 

been reported that both P-REX1 and P-REX2 interact with the protein phosphatase PP1α, 

and in the case of P-REX1, leads to dephosphorylation of at least three residues including 

Ser-834, Ser-1001 and Ser-1165, and activation of Rac-GEF activity (Barber et al., 2012; 

Mayeenuddin and Garrison, 2006).  These studies support the theory that the 

phosphorylation status of P-REX2 may be critical to protein function, and thusly may 

regulate its ability to inhibit PTEN.  There may also be other effectors required for P-

REX2 mediated inhibition of PTEN.  P-REX2 binds to both PIP3 and Gβγ, which 

activates its Rac GEF activity.   These two substrates are therefore attractive candidates 

for PTEN-P-REX2 effectors, and their effects on P-REX2 mediated PTEN inhibition will 

be determined. 
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We have also identified a new role for PH domains in phosphatase inhibition.  In the case 

of P-REX2, the PH domain requires PTEN tail phosphorylation to unleash it from the DH 

domain.  We hypothesize that this may be the result of an ionic interaction with the 

phospho-tail, but this hypothesis is not yet proven.  Generating a co-crystal of the PTEN-

DHPH and PTEN-PH would provide insight into how the DH domain regulates PH 

domain mediated PTEN inhibition.  Furthermore, identification of the minimal region of 

the PH domain required for PTEN inhibition would allow us align this sequence to GEFs 

with known crystal structures, including Grp1 and Dbs and gain information on the 3-D 

structures important for inhibition.  This information would also be useful for identifying 

other GEFs that may be potential PTEN inhibitors.   

 

We have shown in Chapter II that expression of wild-type P-REX2 and P-REX2 cancer 

mutants increases PI3K signaling and proliferation, and transforms cells in cooperation 

with various oncogenes, making it a possible target for cancer therapeutics.  By 

identifying the PH domain as the PTEN inhibitory domain, we can develop small 

molecule inhibitors that disrupt the PH-PTEN interaction and therefore block P-REX2 

mediated PTEN inhibition.  This may be a useful anti-cancer therapy for patients with 

PTEN positive tumors with high P-REX2 expression.  Furthermore, using this small 

molecular inhibitor in combination therapy may be an effective treatment for tumors that 

are also mutant for PIK3CA or ERBB2, as discussed in Chapter II. 
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