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ABSTRACT 
 

Investigations of Anomalous Earthquakes at Active Volcanoes 
 

Ashley Elizabeth Shuler 
 
 

This dissertation investigates the link between volcanic unrest and the occurrence of 

moderate-to-large earthquakes with a specific type of focal mechanism. Vertical compensated-

linear-vector-dipole (vertical-CLVD) earthquakes have vertical pressure or tension axes and 

seismic radiation patterns that are inconsistent with the double-couple model of slip on a planar 

fault. Prior to this work, moderate-to-large vertical-CLVD earthquakes were known to be 

geographically associated with volcanic centers, and vertical-CLVD earthquakes were linked to a 

tsunami in the Izu-Bonin volcanic arc and a subglacial fissure eruption in Iceland. Vertical-

CLVD earthquakes are some of the largest and most anomalous earthquakes to occur in volcanic 

systems, yet their physical mechanisms remain controversial largely due to the small number of 

observations. 

Five vertical-CLVD earthquakes with vertical pressure axes are identified near 

Nyiragongo volcano in the Democratic Republic of the Congo. Three earthquakes occur within 

days of a fissure eruption at Nyiragongo, and two occur several years later in association with the 

refilling of the lava lake in the summit crater of the volcano. Detailed study of these events 

shows that the earthquakes have slower source processes than tectonic earthquakes with similar 

magnitudes and locations. All five earthquakes are interpreted as resulting from slip on inward-

dipping ring-fault structures located above deflating shallow magma chambers. The Nyiragongo 

study supports the interpretation that vertical-CLVD earthquakes may be causally related to 

dynamic physical processes occurring inside the edifices or magmatic plumbing systems of 

active volcanoes. 



 

 

Two seismicity catalogs from the Global Centroid Moment Tensor (CMT) Project are 

used to search for further examples of shallow earthquakes with robust vertical-CLVD focal 

mechanisms. CMT solutions for approximately 400 target earthquakes are calculated and 86 

vertical-CLVD earthquakes are identified near active volcanoes. Together with the Nyiragongo 

study, this work increases the number of well-studied vertical-CLVD earthquakes from 14 to 

101. Vertical-CLVD earthquakes have focal depths in the upper ~10 km of the Earth’s crust, and 

~80% have centroid locations within 30 km of an active volcanic center. Vertical-CLVD 

earthquakes are observed near several different types of volcanoes in a variety of geographic and 

tectonic settings, but most vertical-CLVD earthquakes are observed near basaltic-to-andesitic 

stratovolcanoes and submarine volcanoes in subduction zones. Vertical-CLVD earthquakes are 

linked to tsunamis, volcanic earthquake swarms, effusive and explosive eruptions, and caldera 

collapse, and approximately 70% are associated with documented volcanic eruptions or episodes 

of volcanic unrest. Those events with vertical pressure axes typically occur after volcanic 

eruptions initiate, whereas events with vertical tension axes commonly occur before the start of 

volcanic unrest. Both types of vertical-CLVD earthquakes have longer source durations than 

tectonic earthquakes of the same magnitude. 

The isotropic and pure vertical-CLVD components of the moment tensor cannot be 

independently resolved using our long-period seismic dataset. As a result, several physical 

mechanisms can explain the retrieved deviatoric vertical-CLVD moment tensors, including dip-

slip motion on ring faults, volume exchange between two reservoirs, the opening and closing of 

tensile cracks, and volumetric sources. An evaluation of these mechanisms is performed using 

constraints obtained from detailed studies of individual vertical-CLVD earthquakes. Although no 

single physical mechanism can explain all of the characteristics of vertical-CLVD earthquakes, a 



 

 

ring-faulting model consisting of slip on inward- or outward-dipping ring faults triggered by the 

inflation or deflation of a shallow magma chamber can account for their seismic radiation 

patterns and source durations, as well as their temporal relationships with volcanic unrest. The 

observation that most vertical-CLVD earthquakes are associated with volcanoes with caldera 

structures supports this interpretation.  
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1 

Introduction 

 

Understanding how magma ascends through the crust and erupts on the surface is one of the 

fundamental challenges of earth science. Along the mid-ocean ridge system, submarine 

volcanoes create new oceanic crust, and in continental rifts, island arcs, and convergent margins, 

as well as above mantle plumes, thousands of subaerial volcanoes create dramatic landscapes and 

produce fertile soils and rich mineral deposits. Volcanoes shape the surface of our planet, and in 

doing so, threaten the safety and livelihoods of millions of people. Volcanic hazards such as lava 

and pyroclastic flows, lahars, landslides, ash fall, and toxic gases endanger settlements and 

infrastructure in the vicinity of active volcanoes, and hazards such as ash dispersal in the 

atmosphere and climate change can affect the global population. 

 

One of the most reliable techniques for monitoring active volcanoes is volcano seismology. 

Volcanic earthquakes are generated by a wide variety of processes including brittle fracture, fluid 

flow, mass transport and explosions [Chouet, 2003; McNutt, 2005; Kumagai, 2009; Zobin, 2011]. 

By observing, analyzing, and interpreting volcanic earthquakes, we can learn about dynamic 

processes occurring inside the edifices and magmatic plumbing systems of active volcanoes. 

Most volcanic earthquakes are small, and can only be observed by seismometers deployed close 

to the source region. However, on rare occasions, volcanic earthquakes are large enough to be 

detected globally. Often the largest volcanic earthquakes have unusual source properties and are 

linked to magmatic intrusions or volcanic eruptions [Filson et al., 1973; Francis, 1974; 

Kanamori et al., 1993; Nettles and Ekström, 1998; Dreger et al., 2000; Kumagai et al., 2001; 

Minson et al., 2007]. 
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Some of the largest and most anomalous earthquakes to occur near volcanoes are the 1984 MW 

5.6 Tori Shima earthquake, which occurred near a large submarine volcano in the Izu-Bonin 

volcanic arc [Kanamori et al., 1993], and the series of ten 5.1 ≤ MW ≤ 5.6 earthquakes that took 

place near Bárdarbunga volcano in Iceland between 1976 and 1996 [Nettles and Ekström, 1998]. 

These earthquakes have dominant vertical tension axes and moment tensors with large 

compensated-linear-vector-dipole (CLVD) components [Knopoff and Randall, 1970]. In addition 

to having anomalous seismic radiation patterns, these vertical-CLVD earthquakes are linked to 

volcanic activity. The Tori Shima earthquake produced a disproportionately large tsunami 

[Satake and Kanamori, 1991], and the final Bárdarbunga earthquake occurred only days before a 

large subglacial fissure eruption [Nettles and Ekström, 1998].  

 

Moderate-to-large earthquakes with focal mechanisms similar to the Tori Shima and 

Bárdarbunga events occur most frequently near volcanic centers [Ekström, 1994]. However, 

these earthquakes are rare, and prior to this dissertation, only 14 vertical-CLVD earthquakes near 

volcanoes had been studied [Kanamori et al., 1993; Ekström, 1994; Nettles and Ekström, 1998]. 

The azimuthally symmetric seismic radiation patterns of these earthquakes cannot be explained 

by the double-couple model for shear failure on planar faults, and suggested physical 

mechanisms include magma and/or fluid injection [Kanamori et al., 1993; Konstantinou et al., 

2003; Tkalčić et al., 2009] and slip on volcanic ring-fault structures [Ekström, 1994; Nettles and 

Ekström, 1998]. Due to the small number of observations, the links between the occurrence of 

vertical-CLVD earthquakes and volcanic deformation processes remain controversial and poorly 

understood. 
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In this dissertation, we use global seismic data to investigate the relationship between shallow, 

moderate-to-large vertical-CLVD earthquakes and volcanic unrest. In addition to examining 

vertical-CLVD earthquakes with dominant vertical tension axes, such as the Tori Shima and 

Bárdarbunga events, we also consider vertical-CLVD earthquakes with dominant pressure axes. 

This work begins with a case study of five vertical-CLVD earthquakes at a single volcano, after 

which we perform a systematic global search for vertical-CLVD earthquakes located near 

volcanoes with known eruptions in the last ~100 years.  

 

We identify vertical-CLVD earthquakes and describe their source properties by calculating 

centroid-moment-tensor (CMT) solutions [Dziewonski et al., 1981; Arvidsson and Ekström, 

1998; Ekström et al., 2012], modeling teleseismic body waves [Ekström, 1989], and examining 

frequency spectra. We document in detail how vertical-CLVD earthquakes are related spatially 

and temporally to episodes of unrest at nearby volcanoes, and evaluate a variety of potential 

physical mechanisms for producing these earthquakes. This work increases the number of well-

studied vertical-CLVD earthquakes located near volcanoes from 14 to 101 and greatly improves 

our understanding of how these earthquakes are linked to large-scale magma migration and 

volcanic eruptions.  

 

In Chapter 1, we investigate a series of five 4.6 ≤ MW ≤ 5.3 vertical-CLVD earthquakes that took 

place near Nyiragongo volcano in the Democratic Republic of the Congo between 2002 and 

2005. These earthquakes are missing from standard global-seismicity catalogs, and were only 

detected using intermediate-period surface waves [Ekström, 2006]. The first three earthquakes 
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occurred days after a large-scale fissure eruption at Nyiragongo, and the final two earthquakes 

occurred a few years later, as the lava lake in the summit crater of the volcano began to refill. We 

present CMT solutions for these earthquakes and compare the frequency content of their seismic 

radiation with that of tectonic earthquakes with similar magnitudes and locations. We explain our 

observations using a volcano-tectonic mechanism, in which the earthquakes are generated by the 

collapse of the roof of a shallow magma chamber. This work was published in Journal of 

Volcanology and Geothermal Research [Shuler and Ekström, 2009].  

 

In Chapter 2, we perform a systematic global search for additional examples of vertical-CLVD 

earthquakes near active volcanoes. We select approximately 400 target earthquakes from the 

Global CMT catalog, and a catalog of earthquakes detected using surface waves [Ekström, 

2006]. We recalculate CMT solutions for vertical-CLVD earthquakes in the Global CMT catalog 

using additional data and updated methodology, and present the first CMT solutions for target 

earthquakes from the Surface Wave Catalog. In total, we identify 86 shallow vertical-CLVD 

earthquakes with magnitudes 4.3 ≤ MW ≤ 5.8 located near active volcanoes. We examine the 

tectonic settings where these earthquakes occur and search for trends regarding volcano type. 

Approximately 70% of the vertical-CLVD earthquakes are associated with reported volcanic 

unrest, and we document these episodes in detail in order to shed light on the relationships 

between the earthquakes and dynamic volcanic processes. This work has been submitted to 

Journal of Geophysical Research – Solid Earth.  

 

In Chapter 3, we further investigate our dataset of vertical-CLVD earthquakes. We build on our 

work from Chapters 1 and 2, and perform additional analyses in order to gain insight into the 
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physical mechanisms that produce vertical-CLVD earthquakes. We model the teleseismic body 

waves and examine the frequency contents of vertical-CLVD earthquakes. Although vertical-

CLVD earthquakes are defined by the properties of their deviatoric moment tensors, we also 

explore the possibility that these earthquakes may have non-zero isotropic components caused by 

net volume changes. We quantify the tradeoff between the isotropic and pure vertical-CLVD 

components of the moment tensor for our dataset by examining covariance matrices. We 

calculate full moment-tensor solutions and identify a range of physical mechanisms that can 

explain the anomalous seismic radiation patterns of vertical-CLVD earthquakes. Using our 

observations of vertical-CLVD earthquakes, we evaluate a range of potential mechanisms 

including slip on ring-fault structures, volume exchange between two reservoirs, opening and 

closing tensile cracks and volumetric sources. This work has been submitted to Journal of 

Geophysical Research – Solid Earth as a companion paper to the work presented in Chapter 2.  

 

We provide a summary of the major findings from this dissertation and discuss several remaining 

questions regarding vertical-CLVD earthquakes in the Concluding Remarks section. 

 

In Appendix B, we present the results of a study published in Geophysical Journal International 

[Shuler and Nettles, 2012]. The subject of this paper is not vertical-CLVD earthquakes at active 

volcanoes, but rather an intense swarm of earthquakes that took place in the western Gulf of 

Aden beginning on 14 November 2010. This swarm occurred on an ~80-km-long segment of the 

Aden Ridge that is evolving from a continental rift into a mid-ocean ridge. Previously, this 

section of the ridge was characterized by low levels of seismicity and a lack of recent volcanism 

on the seafloor. We present CMT solutions for 110 earthquakes with magnitudes 4.5 ≤ MW ≤ 5.5 
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that occurred between November 2010 and April 2011, and model the body waves for four of the 

largest earthquakes. We interpret the source parameters for this sequence in light of the slow 

spreading rate and oblique style of rifting occurring along the nascent Aden Ridge. Based on the 

similarities between this sequence and dike-induced rifting episodes in continental and oceanic 

settings, we conclude that the swarm was caused by laterally propagating dike intrusions that 

accommodated several meters of opening. The rifting episode demonstrates the westward 

propagation of active seafloor spreading into this section of the Gulf of Aden. 
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Chapter 1 
 

Anomalous earthquakes associated with Nyiragongo volcano:  
Observations and potential mechanisms 

 
A slightly modified version of this work has been published as: 
Shuler, A., and G. Ekström (2009), Anomalous earthquakes associated with Nyiragongo 

volcano: Observations and potential mechanisms, J. Volcanol. Geotherm. Res., 181(3-4), 
219-230, doi:10.1016/j.jvolgeores.2009.01.011. 

 

Abstract 

A series of five unusual earthquakes (4.6 ≤ MW ≤ 5.3) took place near Nyiragongo volcano (D. 

R. Congo) in the Western Rift Valley of the East African Rift. Despite their moderate size, these 

earthquakes are missing from global seismicity catalogs, and were only recently located using 

long-period surface waves primarily recorded on the Global Seismographic Network. Three 

earthquakes occurred in the week following the January 2002 eruption of Nyiragongo, but the 

final two earthquakes, which occurred in 2003 and 2005, are not linked to a major eruption at 

either Nyiragongo or its neighboring volcano, Nyamuragira. Several common techniques were 

used to investigate the characteristics of these seismic sources in the context of the volcanic 

activity in the region. Compared to local earthquakes reported in global seismicity catalogs, the 

newly detected events are depleted in frequencies above 0.1 Hz, and their frequency contents 

suggest that they are slow earthquakes. Each of the newly detected earthquakes was modeled by 

a series of forces and by a centroid-moment tensor. A deviatoric moment tensor was shown to 

provide a better fit to the data. The newly detected earthquakes are highly non-double-couple in 

nature, each having a large compensated-linear-vector-dipole component of the moment tensor. 

Drawing on models based on similar observations from other active volcanoes, we propose that 

the earthquakes are caused by slip on non-planar faults located beneath the volcano. We suggest 

a mechanism in which the newly detected earthquakes are generated by the collapse of the roof 
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of a shallow magma chamber along inward-dipping, cone-shaped ring faults. Diking events, 

which result in magma evacuation from shallow magma chambers, could trigger such 

earthquakes. Our results provide new constraints on the dynamics of the poorly understood 

magma system beneath Nyiragongo, an active volcano that is a significant threat to life and 

property. 

 

1.1. Introduction 

The Virunga Volcanic Complex consists of eight volcanoes aligned in an east-west 

configuration, nearly perpendicular to the axis of the Western Rift Valley of the East African Rift 

(Figure 1.1). Of these, only Nyiragongo and Nyamuragira are active today. While Nyamuragira 

remains one of Africa’s most active volcanoes with regular eruptions every few years, 

Nyiragongo has been the subject of numerous studies for decades. Nyiragongo is renowned for 

containing a semi-permanent lava lake in its summit crater, a feature shared by fewer than a 

dozen volcanoes worldwide.  

 

In 1977, this lava lake was completely drained in a matter of minutes during a lateral eruption 

[Durieux, 2002/2003b]. The lava lake began to refill in 1982, and existed at varying levels inside 

the summit crater until it was emptied once again during the catastrophic eruption on 17 January 

2002. This eruption was characterized by fast-moving lava flows that destroyed roughly 15% of 

Goma, a city of more than half a million people on the banks of Lake Kivu in the Democratic 

Republic of the Congo [Komorowski et al., 2002/2003]. The lava lake reappeared in late 2002, 

and since then, eruptive activity characterized by intermittent lava fountaining has remained 

confined to the summit crater. 
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Figure 1.1. Shaded relief map of the Virunga Volcanic Complex. Eight volcanoes are aligned 
roughly perpendicular to the rift axis. Of these, only Nyiragongo and Nyamuragira are still 
active. The dashed lines indicate political boundaries. Topography is from the Shuttle Radar 
Topography Mission (SRTM). 
 

Between 2002 and 2005, five unusual earthquakes (4.6 ≤ MW ≤ 5.3) occurred near Nyiragongo 

volcano (Table 1.1). Three earthquakes occurred within one week of the January 2002 eruption, 

and the final two earthquakes occurred in 2003 and 2005 and are not linked to a significant 

eruption at either Nyiragongo or its neighboring volcano, Nyamuragira. Although these shallow 

earthquakes are of moderate size, they went unrecorded in global seismicity catalogs, which 

routinely contain information concerning events of lesser magnitudes [Woessner and Wiemer, 

2005]. New techniques involving detailed analysis of long-period surface wave data primarily 

from the Global Seismographic Network (GSN) allowed these events to be located, however. In 

this chapter, we investigate the characteristics of these newly detected events. We present our 

findings in the context of the eruptive history of the volcano, and evaluate a number of potential 



 10 

physical mechanisms to explain these anomalous earthquakes. Ultimately, we work towards 

constraining the geometry and dynamics of the magma system beneath Nyiragongo volcano for 

future mitigation purposes.  

 

Event Date Origin Time (UTC) MW 
1 1/21/2002 21:10:32 5.3 
2 1/22/2002  5:41:44 5.3 
3 1/22/2002 14:22:56 4.6 
4 5/17/2003 11:46:24 4.6 
5 4/15/2005 20:35:36 4.7 

 
 
Table 1.1. Newly Detected Events. The origin time is determined by the maximum of the peak 
in the stacked waveforms when there is a 0.25-degree grid of target locations. The values of MW 
are from the CMT inversions. 
 

1.2. Background 

1.2.1. Regional Setting  

Nyiragongo and Nyamuragira are located in the Kivu Rift Basin, which is one of a series of 

extensional basins that comprise the Western Rift Valley. While Nyamuragira (elevation of 3058 

m) is a symmetrical shield volcano, Nyiragongo (3470 m) is a stratovolcano that extends roughly 

2 km above the elevation of Lake Kivu. As these volcanoes are located in the axis of one of the 

world’s largest continental rifts, they are sensitive to regional tectonics. In general, volcanism at 

Nyiragongo and Nyamuragira is believed to be directly related to the opening of the Western Rift 

Valley, and the creation of a new plate boundary there [Kasahara et al., 1992]. The volcanoes 

are located in accommodation zones where deep faults presumably reach magmatic reservoirs 

[Ebinger and Furman, 2002/2003]. The 2002 eruption of Nyiragongo is interpreted as being 

synchronous with fracturing and fault slip in the rift valley, and it has been suggested that a 

significant rifting event in the Nyiragongo-Lake Kivu area fractured the edifice of Nyiragongo, 
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leading to a massive fissure eruption that emptied magma stored in the upper conduit and lava 

lake [Komorowski et al., 2002/2003; Tedesco et al., 2007]. 

 

1.2.2. January 2002 Eruption of Nyiragongo 

Although more complete descriptions of the 17 January 2002 eruption of Nyiragongo can be 

found in a number of references [Allard et al., 2002; Komorowski et al., 2002/2003; Tedesco et 

al., 2007], we provide a short description of key features here.  

 

Eruption Overview 

A number of precursory signals were observed in the weeks and months leading up to the 17 

January 2002 eruption of Nyiragongo. These signals included fracturing and fumarolic activity 

on the southern slopes of the volcano and escalating seismicity beginning on 4 January. Volcanic 

long-period earthquakes increased in both magnitude and frequency prior to the eruption. These 

were often followed by several minutes of volcanic tremor, indicating that magma was moving at 

depth [Kavotha et al., 2002/2003]. 

 

The eruption started on the morning of 17 January, when the extensive fracture system of the 

1977 eruption reopened on the southern flank of the volcano. The initial fractures ruptured the 

edifice of the volcano, triggering the eruption of highly fluid, largely degassed magma that had 

been stored in the lava lake and upper conduit since a period of vigorous lava-lake activity in 

1994-1995. An eruptive plume did not develop until 25-45 min after the start of the eruption 

[Carn, 2002/2003]. This is taken to indicate that the eruption was not caused by gas overpressure 
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in the shallow magma chamber, but was instead a result of fracturing caused by a regional rifting 

event.  

 

Over the next few hours, additional north-south-trending parallel fractures opened, and a series 

of grabens propagated downwards from the base of the volcano towards the city of Goma. This 

extensive system of radial fractures propagated for a distance of 20 km from the top of the 

volcano, significantly further than the fracture system of the 1977 eruption [Allard et al., 2002].  

The later fractures, which erupted gas-rich magma in forceful lava fountains, are believed to 

have been caused by magma ascent resulting from depressurization of the shallow magmatic 

system caused by the initial fracturing of the volcanic edifice [Tedesco et al., 2007]. Lava flows 

from these later fractures inundated the city of Goma, dividing it in two. It is estimated that 

between 14 and 34 million cubic meters of lava were erupted over a period of 12 hours or less 

during the January 2002 eruption [Tedesco et al., 2007]. Lava continued to flow towards Lake 

Kivu for several days following the end of the eruption. 

 

Crater Collapse 

Although the eruption on 17 January drained magma from the lava lake and upper conduit, the 

surface of the lava lake, which had been solidified since 1995, did not collapse. A helicopter 

flight over the summit of the volcano confirmed that the solidified lava lake floor was still in 

place on 21 January. The surface, however, was cut by a series of concentric fractures and 

fumaroles [Smithsonian Institution, 2002; Tedesco et al., 2007]. The weakened lava-lake surface, 

along with several solidified terraces, evidently collapsed during the night of 22 January. The 

start of the collapse was marked by a series of felt earthquakes, and was followed by four hours 
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of continuous seismic tremor and ashfall over the immediate area [Komorowski et al., 

2002/2003]. The intense tremor is attributed to phreatomagmatic explosions caused by the 

interaction of groundwater with the high-temperature volcanic material below. Despite the 

occurrence of these explosions, no significant emissions of sulfur dioxide were observed in 

association with the collapse, indicating that negligible magma was degassed during this process 

[Carn, 2002/2003]. A flight over Nyiragongo on 24 January revealed that the previously flat 

solidified lava-lake surface, which had persisted at an elevation of 280 m beneath the rim of the 

volcano since 1995, had collapsed to form an inverted conical crater with a maximum depth of 

approximately 900 m [Tedesco et al., 2007].  

 

Post-Eruption Seismicity 

One of the most striking features of the 2002 eruption was the intense seismic activity that 

followed. Approximately 100 tectonic earthquakes (M > 3.5) were located in the region within 

five days of the eruption [Tedesco et al., 2007]. The number of located earthquakes increased 

following the eruption, and although seismicity levels declined with time, they remained 

anomalously high for several weeks following the eruption. 

 

Figure 1.2 shows the temporal distributions of the newly located earthquakes as well as 

earthquakes described in the National Earthquake Information Center (NEIC) catalog from 16 to 

25 January 2002. All of these earthquakes occurred between the beginning of the eruption and 

the collapse of the summit crater. The number of earthquakes occurring each day increased from 

17 to 22 January, reaching a maximum on the same day that the crater collapsed. No earthquakes 

were located near Nyiragongo in the 13 days leading up to the eruption, or in the 8 days 
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following the crater collapse. This pattern is very unusual, as seismicity typically decreases 

rapidly after an eruption removes local stresses [Zobin, 2003]. The duration and intensity of the 

post-eruption seismicity cannot be explained by ground compaction and lava drainage alone, and 

is believed to be one of the chief pieces of evidence that a local rifting event caused the 2002 

eruption [Komorowski et al., 2002/2003]. 

 

Figure 1.2. Temporal distribution of seismicity associated with the 2002 eruption of 
Nyiragongo. The red dots denote earthquakes described in the NEIC catalog, and the green dots 
denote the newly detected events. The magnitude of completeness, MC, was calculated by 
assuming standard Gutenberg-Richter relationships for seismicity within a 100-kilometer radius 
of Nyiragongo as described in the NEIC catalog. The blue bars in the background show the 
number of earthquakes that occurred each day. The two green lines indicate the beginning and 
end of the eruption. The first blue line indicates when the collapse of the summit crater is 
assumed to have taken place from seismic observations and local reports. The last blue line 
indicates when the crater collapse was confirmed by a helicopter survey. Times are UTC. 
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The spatial distribution of the earthquakes was also quite atypical. The majority of long-period 

events were located in the Nyamuragira area, northwest of Nyiragongo [Kavotha et al., 

2002/2003]. These are attributed to inflation of Nyamuragira’s magma chamber prior to its 

eruption in the summer of 2002. The majority of short-period events, however, were located 

south of Nyiragongo, in the area between the volcano and Lake Kivu. These events occur in 

roughly the same location as the majority of fractures and fissures produced in the eruption. This 

same area also experienced significant subsidence following the eruption, up to ~80 cm in some 

areas [Tedesco et al., 2007]. Modeling of radar interferograms suggests that the rift valley 

experienced deformation related to a period of horizontal extension, which lasted no longer than 

one month following the eruption [Poland and Lu, 2004]. These observations further support the 

hypothesis that the eruption was caused by a regional rifting event, which most likely involved 

continued injection of dikes below the rift graben for several days after the eruption. We 

investigate the relationship between the collapse of the summit crater and the cessation of 

seismicity later in this chapter.  

 

1.2.3. Nyiragongo’s Post-Eruption Activity (2002-2005) 

The presence of the lava lake in Nyiragongo’s summit crater enables changes in the dynamics of 

the magmatic system to be discerned. Decades of observations of the lava lake indicate that 

Nyiragongo has experienced several cycles of crater collapse followed by refilling of the lava 

lake and finally lateral eruptions [Durieux, 2002/2003]. Following a period of vigorous activity 

in 1994-1995, the surface of the lava lake began to crust over, forming a solid layer that 

remained in place until 2002. The presence of this layer indicates that the system remained rather 

stable, and was not significantly recharged during this period.  



 16 

 

After the January 2002 eruption and subsequent collapse of the summit crater, lava fountaining 

reappeared in the crater in the summer of 2002. This activity was intense at times, sending 

volcanic material several hundred meters into the air and generating dense ash plumes 

[Smithsonian Institution, 2003]. The refilling of the lava lake coincided with a period of intense 

degassing confirmed by the satellite measurement of sulfur dioxide emissions [Carn, 

2002/2003]. The days of peak emissions were accompanied by long-period earthquakes 

attributed to magma migration [Smithsonian Institution, 2003]. The fourth event in this study 

occurred during this period of especially vigorous degassing as the lava lake was recharged from 

a deeper source [Carn, 2002/2003].  

  

Following this period of intense degassing, Nyiragongo entered a phase of steady-state 

convection marked by a decrease in sulfur dioxide emission concentrations [Sawyer et al., 2008]. 

The fifth newly detected event occurred during this relatively calm period, when the lava lake 

was not convecting vigorously. The final two earthquakes occurred during periods of greatly 

contrasting degassing activity, and therefore seem essentially unrelated to shallow magmatic 

processes. These observations suggest a deeper source for these events. Interferograms provide 

no evidence of significant surface deformation associated with the final two earthquakes 

[Poland, 2008, personal communication], and no local earthquakes are reported in the NEIC 

catalog. 
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1.3. Seismic Observations 

1.3.1. Method of Detection 

Global seismicity catalogs, such as the bulletins of the International Seismological Centre (ISC) 

and the NEIC, contain earthquakes that are detected and located using the arrival times of short-

period body-wave phases. While this method is appropriate for most earthquakes, seismic 

sources that are deficient in high-frequency energy may go undetected. The five earthquakes in 

our study were located using the method of Ekström [2006], which detects events using long-

period (35-150 s) surface-wave data. This method uses vertical-component data collected from 

the GSN and a global grid of target locations. For each target location, a surface-wave 

propagation operator is deconvolved from the seismograms from each station to remove effects 

such as dispersion and geometric spreading. The envelopes of these signals are cross-correlated 

with a theoretical source-pulse shape to determine the likelihood that a seismic event occurred at 

a given place and time. Envelopes are stacked to improve visualization (Figure 1.3).  

 

The application of the method of Ekström [2006] to seismic data from 1991-2006 has resulted in 

the location of over 1700 seismic events that are not described in the NEIC or ISC catalogs 

[Ekström, 2007, personal communication]. Many of the newly detected seismic events have 

anomalous source characteristics, and some have been shown to be associated with newly 

observed or unusual seismogenic processes. For example, subsets of these events are related to 

landslides [Ekström, 2007] and to the movement of glaciers [Ekström et al., 2003]. The five 

earthquakes we investigate in this chapter are another subset of the Surface Wave catalog. An 

example record section for one of the newly detected Nyiragongo events is shown in Figure 1.4. 

It clearly shows the moveout of long-period body and surface wave phases with distance away 
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from the well-located source. We investigate potential physical mechanisms for these 

earthquakes, in an attempt to illuminate changes in the dynamics of Nyiragongo volcano. 

 

 

 

Figure 1.3. Long-period seismograms (35-150 s period) for the first newly detected event (21 
January 2002). Each waveform shows seismograms after propagation effects from the target 
location, Nyiragongo, have been deconvolved and the envelope calculated. The station and 
azimuth is indicated to the right of each waveform. The lowest trace is a stack of the waveforms 
above. The clear peak in the stack indicates that a Rayleigh wave-producing seismic event 
occurred near Nyiragongo at approximately 21:10 UTC. 
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Figure 1.4. Record section of the first newly detected event (21 January 2002). This diagram 
shows seismograms from the GSN organized by distance from Nyiragongo. The seismograms 
have been bandpass filtered from 25 to 75 s period. Long-period body and surface wave phases 
are clearly visible. The red line shows the average velocity of surface waves. 
 
 

1.3.2. Frequency Content and Spectral Analysis 

Because the five Nyiragongo earthquakes do not appear in global seismicity catalogs, the 

frequency content of each earthquake was investigated using spectral analysis. To explore 

differences between the newly detected earthquakes and earthquakes that were detected using 

high-frequency body waves, we collected data from the nearest GSN station, the borehole 

seismometer in Mbarara, Uganda (MBAR). We examined seismograms for four of the five 

newly detected earthquakes as well as several earthquakes with similar locations and magnitudes 
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described in the ISC catalog. Unfortunately, the second Nyiragongo earthquake was not recorded 

by MBAR.  

 

Visual inspection of the seismograms reveals that the newly detected events are greatly depleted 

in the high-frequency energy typical of standard tectonic earthquakes (Figure 1.5). Seismograms 

for earthquakes described in the ISC catalog have the expected characteristics for regional 

tectonic events, and show clearly defined P and S-wave phases. Newly detected events, on the 

other hand, seem to have little or no P-wave energy and are composed mainly of low-frequency 

surface waves. 

  

We also observe differences in the seismograms that correspond to eruptive activity. The 

seismograms for the newly detected earthquakes associated with the 2002 eruption of 

Nyiragongo (Events 1 and 3) are similar to each other, but quite different from events not 

associated with an eruption (Events 4 and 5). Events 1 and 3 have more short-period energy 

compared to the smooth, longer-period seismograms of Events 4 and 5. We applied a number of 

bandpass filters to the seismic data and found distinct differences between these two sets of 

newly detected earthquakes. Additionally, cross-correlation analysis indicates that waveforms 

from Events 4 and 5 are similar in a variety of frequency bands. This parity was not seen with 

earthquakes associated with the 2002 eruption, and could be an indication that Events 4 and 5 

have similar source locations and processes, perhaps different from the earlier events. 
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Figure 1.5. Unfiltered seismograms (counts/second) from the nearest GSN station, MBAR. The 
ISC event is an MW 5.1 earthquake that took place on 20 January 2002 a few kilometers from 
Nyiragongo. The zero time for each newly detected event corresponds to the origin time as 
determined by the method of Ekström [2006], which uses a 0.25-degree grid of target locations. 
The events do not align because the initial locations differed slightly. 
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To evaluate these differences further, we used spectral analysis. We corrected each seismogram 

for instrument response, and calculated the single-sided displacement spectrum from a 400-s 

time window beginning at the origin time and including the entire earthquake signal. To 

investigate differences in spectral shape between different groups of earthquakes located near 

Nyiragongo, the frequency spectra were shifted to have equal amplitude at long periods (100 s). 

Average spectra were calculated for earthquakes described in the ISC catalog, as well as for the 

two subsets of newly detected earthquakes, to highlight the differences between these groups 

(Figure 1.6). These differences can also be seen by comparing spectrograms for a newly detected 

event with an earthquake in the ISC catalog (Figure 1.7). 

 

Figure 1.6. Average single-sided displacement spectra for newly detected events and 
earthquakes described in the ISC catalog. Frequency spectra were first calculated for each 
individual event. The spectra were then shifted to have equal amplitude at long period to account 
for differences in magnitude. Finally, average spectra were computed for the three groups. The 
newly detected events are greatly depleted in high frequencies, above approximately 0.1 Hz. 
Newly detected events have very similar frequency spectra at periods longer than five seconds, 
but those not associated with the 2002 eruption have a broad peak at roughly 0.1 Hz. 
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Figure 1.7. Spectrograms for Event 5 and the MW 5.1 event featured in Figure 1.5. Each 
spectrogram was calculated from a 700-s timeseries with a 2-s sliding data window. The colors 
show the amplitude of the power spectra at each frequency for each time slice. The top plot 
shows frequencies from 0 to 2 Hz while the bottom plot shows frequencies from 0 to 10 Hz. The 
newly detected earthquake is dominated by energy at frequencies less than 1 Hz. The earthquake 
from the ISC catalog, however, has energy at frequencies up to 5Hz. The clear arrival of two 
phases (P and S-waves) can be seen for the ISC event, whereas this feature is not observed in the 
spectrogram of the newly detected earthquake.  
 

 

As seen in Figure 1.6, the corrected amplitude spectrum for events in the ISC catalog has a slope 

that gradually decreases for frequencies over approximately 0.1 Hz. Spectra for the newly 

detected events, however, have amplitudes that decay rapidly in this same frequency band. At 1 

Hz, the difference in amplitude between the two groups is nearly three orders of magnitude. 

Furthermore, the average corner frequency for earthquakes in the ISC catalog is higher than the 
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average corner frequencies for the newly detected earthquakes at Nyiragongo. The source 

duration of an earthquake is inversely related to its corner frequency [Beresnev, 2002 and 

references therein], so this is an indication that the newly detected earthquakes have longer 

source durations. Since all of the earthquakes have approximately the same long-period 

amplitude, the longer source duration implies that the newly detected events are slow 

earthquakes. The lack of seismically radiated high-frequency energy likely prevented these 

earthquakes from being detected using traditional methods.  

 

Whereas the two sets of newly detected earthquakes have nearly identical spectra for their 

highest frequencies, at periods of 5 s and longer there are differences between events associated 

with the 2002 eruption of Nyiragongo and events that are not associated with eruptive activity. 

Newly detected events not associated with the 2002 eruption have a broad spectral peak at 

approximately 10 s period, which is also the dominant period in the unfiltered seismograms for 

these events. These spectral differences and the temporal association of the two subsets of newly 

detected events with changes in Nyiragongo’s eruptive behavior suggest that more than one 

physical mechanism may be needed to explain these unusual events. Therefore, it is important to 

interpret our observations in the context of Nyiragongo’s eruptive activity. 

 

1.4. Source Models 

1.4.1. Centroid-Moment-Tensor Models 

To constrain the physical mechanisms of the newly detected earthquakes, we compared synthetic 

seismograms from a variety of source models to our data. Centroid-moment-tensor (CMT) 

solutions were calculated for each earthquake using standard methods [Dziewonski et al., 1981; 
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Arvidsson and Ekström, 1998]. We mainly used data recorded on the GSN, although data from 

the Ethiopia and Kenya broadband seismic experiments [Nyblade and Langston, 2002] were also 

used to calculate CMT solutions for the first three earthquakes. The CMT solutions were 

primarily constrained by long-period surface-wave data, but body-wave data were also included 

in the inversion whenever possible. Care was taken to ensure that the CMT solutions were based 

on waveforms from many azimuths and distances.  

 

Because the newly detected events occurred in a volcanic setting where diking events 

presumably could cause earthquakes with net volume changes, we also calculated full moment-

tensor solutions. However, the existence of an isotropic component was difficult to constrain due 

to the shallow depths of the earthquakes. For long-period surface-wave data, it is impossible to 

independently resolve the isotropic and pure vertical-CLVD components of shallow earthquakes 

[Kawakatsu, 1996]. As the introduction of an isotropic component did not significantly improve 

the fit to the data or alter the CMT solutions, the trace of each moment tensor was constrained to 

be zero for our preferred solutions (Table 1.2). 

 

The likely location for the newly detected earthquakes is Nyiragongo volcano, based on the 

temporal association of the first three events with the 2002 eruption.  Although the best-fitting 

centroid locations for the earthquakes are several kilometers away from Nyiragongo, they are not 

inconsistent with the source being located at the volcano. The CMT solutions were determined 

from long-period seismic data, which results in location uncertainties of several kilometers, and a 

comparable fit is achieved if the events are constrained to occur at Nyiragongo. To verify that all 

five newly detected events occurred in approximately the same location, waveforms for pairs of 
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newly detected events were cross-correlated at stations within 30° distance of Nyiragongo. At a 

given station, for event pairs with high correlation coefficients, the time lags between events 

were within 2 s of each other, which indicates that the earthquakes occurred within ~6 km of one 

another. As Nyamuragira is located ~14 kilometers away from Nyiragongo, it is unlikely that a 

subset of the newly detected events occurred there. 

 

 

Earthquake Source Parameters and CMT Solutions 
Event Time Shift (s) Latitude Longitude Depth (km) MW Epsilon 

1   -3.77±0.17 -1.43±0.01 29.07±0.01 15.00f 5.3 -0.38 
2   -1.79±0.32 -1.44±0.02 29.05±0.02 19.83±0.60 5.3 -0.38 
3    8.35±0.41 -1.58±0.03 29.22±0.05 12.00f 4.6 -0.23 
4       -11.61±0.44 -1.34±0.03 29.40±0.03 18.20±0.97 4.6 -0.33 
5 -10.74±0.51 -1.34±0.03 29.31±0.04 20.77±0.70 4.7 -0.37 

 
Moment Tensor Elements (Trace = Mrr+Mθθ+Mφφ = 0) 

Event Exp. Mrr Mθθ Mφφ Mrθ Mrφ Mθφ 

1 17 -1.35±0.02 0.80±0.01 0.55±0.02  0.14±0.05 -0.06±0.06 0.11±0.01 
2 17 -1.60±0.01 0.95±0.04 0.65±0.04  0.02±0.07 -0.02±0.08 0.11±0.03 
3 15 -8.73±0.07 8.54±0.06 0.02±0.09  -2.03±1.40 -5.88±1.64 0.66±0.42 
4 16 -1.10±0.08 0.66±0.06 0.44±0.05   0.05±0.09 -0.62±0.99 0.25±0.04 
5 16 -1.75±0.01 0.84±0.07 0.91±0.07  0.03±0.08 -0.28±0.11 0.23±0.05 

 

Table 1.2. Earthquake source parameters for the deviatoric CMT solutions at the best-fitting 
locations. The time shift corresponds to the time difference between the origin time defined by 
the detection grid search (Table 1.1) and the centroid time as determined in the inversion. Fixed 
depths are indicated by the letter ‘f’. Although formal uncertainties are given for depths, these 
are most likely underestimated due to the lack of body wave phases. As with any standard CMT 
solution for a shallow event, we can only say that the events most likely occurred at a depth of 15 
kilometers or less. Elements of the moment tensor are given in Nm. All parameters were allowed 
to vary for these solutions with the constraint that the trace of the moment tensor was zero. 
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The focal mechanisms for the newly detected earthquakes are robust and stable, even when 

parameters such as centroid depth and location are slightly perturbed. The CMT solutions 

provide excellent fits to the seismic data (average residual misfit of 0.42). Comparisons of 

observed and synthetic seismograms for Event 1 can be found in Figure 1.8.  

 

Figure 1.8.  A comparison of observed and synthetic vertical-component seismograms for Event 
1 (dashed and solid black, respectively). Waveforms have been filtered between 30 and 150 s. 
Synthetic seismograms were calculated using the parameters for the best-fitting CMT solution 
(see Table 1.2). The time window is the same for each waveform (332 s). Seismograms are 
aligned on the extrema in this time range.  Station names and network codes appear on the top 
left of each waveform. The number on the lower left side is the maximum amplitude in microns. 
The numbers on the right side are the azimuth and the distance in degrees from the original 
surface wave location.  
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The five newly detected earthquakes at Nyiragongo are highly non-double-couple. Each 

earthquake has a large compensated-linear-vector-dipole (CLVD) component of the moment 

tensor, as reflected by the focal mechanisms in Figure 1.9, as well as by the values of the 

parameter epsilon in Table 1.2. Epsilon is a measure of the departure of a source from a pure 

double-couple. A pure double-couple event would have an epsilon value of zero, whereas pure 

CLVD events would have epsilon values of ± 0.50. Four out of five of the newly detected 

earthquakes have epsilon values lower than –0.30, which is rare for shallow earthquakes 

[Ekström, 1994]. Although earthquakes with significant non-double-couple components have 

been observed in volcanic regions, this particular type of focal mechanism is highly unusual 

[Miller et al., 1998]. Furthermore, the newly detected events are not representative of seismicity 

in the area. Focal mechanisms of large local tectonic events show an overall pattern of east-west 

extension, as expected for the nearly north-south trending rift zone [Tanaka, 1983]. For example, 

an MW 5.0 earthquake that took place on 21 January 2002, just a few hours prior to the first 

newly detected event, has a nearly perfect double-couple normal-faulting solution [Ekström et 

al., 2005]. The fact that double-couple and non-double-couple earthquakes are observed at the 

same time suggests that the anomalous focal mechanisms of the newly detected events are 

unlikely to be due to instrument errors or propagation through a heterogeneous structure. Instead, 

these focal mechanisms likely represent an anomalous earthquake source.  
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Figure 1.9. Focal mechanisms of five newly detected earthquakes overlain on SRTM 
topography. Nyiragongo is indicated to be the location for all the events because a solution with 
comparable fit is obtained when the location is constrained to be the volcano. The earthquakes 
are highly non-double couple. 
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1.4.2. Time-Varying Force Solutions   

In addition to CMT solutions, the newly detected earthquakes were modeled with a time-varying 

force model. Similar models have been have been applied to sources such as landslides and 

cavern collapses, which cannot be explained by the double-couple force system typically used to 

represent a shear dislocation. Time-varying force models have also been used to explain seismic 

events originating inside and beneath volcanoes where gravitational energy is released instead of 

elastic strain energy [Takeo et al., 1990; Takei and Kumazawa, 1994]. Recently, time-varying 

forces were used to model long-period seismic waves associated with the caldera collapse of 

Miyakejima volcano in 2000 [Kikuchi et al., 2001], an event that also produced numerous slow 

earthquakes that were detected using long-period surface waves [Ekström and Nettles, 2002]. 

Collapse events produce long-period seismic energy because the source duration is limited by 

gravitational acceleration instead of the speed of elastic rupture propagation [Fukao, 1995]. As 

the first three newly detected events occurred just prior to the collapse of Nyiragongo’s summit 

crater, such a source model seemed possible for these slow, non-double couple events.  

 

The source of each newly detected event was parameterized by a force system composed of 

overlapping triangular basis functions subject to a zero-net-force constraint. To reduce the 

number of free parameters, each event was constrained to take place at Nyiragongo (-1.52º, 

29.25º) at a depth of fifteen kilometers. This depth indicates that the source was shallow, and has 

little effect on the results of the inversion. For each earthquake, an iterative method was used to 

solve for the time-varying amplitudes and directions of the forces. We included both long-period 

and intermediate-period seismic data to ensure that the solution provided a good fit to the data in 
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a variety of frequency bands. A CMT solution at the same fixed location was determined for the 

same dataset to enable direct comparison of the two types of source models.  

 

Because the results of the inversions depend on the number of modeled forces and their source 

durations, and since many combinations of these parameters can produce synthetic seismograms 

with approximately equal fit to the data, multiple inversions were performed to produce a family 

of solutions.  A representative source model consists of six triangular basis functions with a half-

duration of 15 s. At the same location and depth, time-varying force models have an average 

residual misfit of 0.72, whereas CMT solutions have an average residual misfit of 0.68. 

 

The time-varying force model for each earthquake consists primarily of an upward vertical force 

followed by a longer-duration downward vertical force. Although significant horizontal 

components exist, they are much smaller than the vertical forces and tend to oscillate around zero 

for the later part of the solution. The pattern of an upward force followed by a downward force is 

thought to arise from collapse events [Takei and Kumazawa, 1994]. For example, the collapse of 

the roof of a magma chamber generates an upward force as the rest of the volcano rebounds from 

the loss of mass. When the roof impacts the magma below, a downward force is transferred to 

the solid earth. A time-varying force solution is investigated for Nyiragongo since the first three 

newly detected events took place just prior to the catastrophic collapse of the summit crater. We 

investigate the possibility that these events were caused by incremental collapse of the solidified 

lava lake crust or a shallow magma chamber. 
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1.5. Physical Mechanisms 

1.5.1. Gravitational Collapse 

Based on our observations, we formulated two potential mechanisms for the physical mechanism 

of the newly detected events, one based on gravitational collapse, and one involving slip on a 

non-planar fault. In the gravitational-collapse model, the earthquakes are caused by incremental 

collapse of a portion of the volcano. Because the first three earthquakes occurred only a few 

hours before the crater collapse associated with the 2002 eruption, we investigate the possibility 

that those events could have been caused by repeated collapse of fractions of the solidified lava 

lake surface, which was weakened by the removal of its support below. We also explore cases 

where the newly detected events are caused by the collapse of the roof of a shallow magma 

chamber. Both of these interpretations are consistent with our observations that the earthquakes 

can be modeled by time-varying force solutions consisting of an upward force followed by a 

downward force.   

 

Although each earthquake can be modeled using time-varying forces, the moment tensor models 

provide a better fit to the data, despite the fact that they have fewer free parameters. Furthermore, 

a model based solely on time-varying forces seems physically implausible when the magnitude 

of the modeled forces is considered. Assuming that vertical forces are dominant, we obtain the 

product of mass (m) and the displacement of the center of mass (D(t)) of the rock involved in the 

seismic event if we twice integrate the vertical force calculated in our force model (F(t)on Earth),  

F(t)on Earth = !F(t)collapse !
d(mv(t))collapse

dt
= !

dp(t)

dt
    (1.1) 

F(t)dt = !p(t)dt =""" ! mD(t) .      (1.2) 
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The product of mass and displacement corresponding to the time-varying force model for the 

first newly detected event is 9.2 x1014  kg-m.  

 

If we consider the possibility that this event was caused by gravitational collapse of the solidified 

lava lake surface, the maximum displacement is constrained by the 620 m increase in the depth 

of the summit crater following the collapse. Using this value for the maximum displacement, we 

can determine the thickness of the solidified lava lake required to generate such forces. If the 

entire solidified lava lake surface, of radius 300 m, fell this distance in a single collapse event, an 

unrealistic thickness of nearly 2 km is required to generate the forces required by our model.  

 

Likewise, we can evaluate the possibility that the events were caused by collapse of the roof of a 

shallow magma chamber. Such a mechanism seems favorable for the first three newly detected 

events considering their proximity to the 2002 eruption. During the eruption, magma originated 

from several locations including shallow and deeper reservoirs [Tedesco et al., 2007]. The 

evacuation of magma from shallow magma chambers decreases the pressure in these reservoirs, 

making them susceptible to collapse. Currently, there are few constraints on the depths of magma 

bodies beneath Nyiragongo volcano. Past studies of seismicity interpreted an aseismic region 

beneath Nyiragongo as a plastic zone occupied by a magma complex [Tanaka, 1983]. This 

aseismic zone ranged from the ground surface to a depth of 14 km. There have been no recent 

studies to further constrain the depths of magma reservoirs beneath the volcano. Because we 

used long-period seismic data in our analysis, we can only state that the newly detected events 

are shallow and most likely occurred at a depth of 15 km or less.  
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If we assume, arbitrarily, that the roof of the shallow magma chamber can be approximated by a 

2-km thick cylinder of rock with a radius of 1 km, the roof of the shallow magma chamber would 

have to collapse a distance of roughly 50 m to generate the forces required by Event 1. This 

estimate was made assuming perfect seismic efficiency, whereby all of the potential energy of 

the collapse is available for creating seismic disturbances. In reality, this is very unlikely. A 

study of the caldera collapse at Fernandina volcano in the Galápagos Islands showed a large 

discrepancy between the potential energy of the caldera collapse in 1968 [Francis, 1974] and the 

seismic energy released by a swarm of earthquakes believed to be caused by the collapse of the 

roof of a shallow magma chamber [Simkin and Howard, 1970]. The seismic efficiency during the 

caldera collapse of Fernandina is estimated to be between 0.25% and 3.6 % [Francis, 1974]. 

Considering these observations, we conclude that gravitational collapse alone cannot explain the 

occurrence of the newly detected events, although it may have played a role in their generation. 

 

1.5.2. Slip on Non-Planar Faults 

Faults and dikes that are circular or elliptical in plan view are commonly observed at eroded 

volcanoes [Cole et al., 2005; Gudmundsson and Nilsen, 2006]. At active volcanoes, they are 

sometimes indicated by a distribution of earthquakes creating a conical shape at depth [Mori and 

McKee, 1987; Saunders, 2001]. These ring faults are shear fractures that form at steep angles, 

either towards or away from the center of the volcano. The inward-dipping ring faults are normal 

faults associated with tensile stresses, while the outward-dipping faults are reverse faults 

associated with compressive stresses [Julian et al., 1998]. Both types may be present in the same 

volcano, each formed during different inflation and deflation periods.  
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The formation of new ring faults, as well as slip on pre-existing ring-fault structures is rare, and 

requires very specific conditions. Experimental and modeling work indicates that slip on pre-

existing ring faults can be triggered by the presence of a shallow, sill-like magma chamber 

subject to tension and/or doming from a deep magma reservoir [Gudmundsson and Nilsen, 2006; 

A. Gudmundsson et al., 1997]. While there are no constraints on the shape or depths of the 

magmatic plumbing system beneath Nyiragongo, the presence of shallow and deeper magma 

reservoirs was verified from studies of short-lived isotopes in lavas from the 2002 eruption 

[Tedesco et al., 2007].  Currently, there is no evidence of crustal doming from the deep magma 

reservoir, however, the Virunga Volcanic Complex is subject to significant regional extension 

associated with active continental rifting, and thus the area is favorable for the existence of ring 

faults. Although slip on pre-existing ring faults is believed to be strongly dependent on the 

history of individual volcanoes, slip can be triggered by the evacuation of magma from a shallow 

magma chamber [Druitt and Sparks, 1984; Folch and Marti, 2003]. In this case, the roof of an 

underpressured magma chamber, which is no longer supported from below, can subside into the 

evacuating magma chamber along ring faults [Druitt and Sparks, 1984; Cole et al., 2005]. 

Indeed, the presence of Nyiragongo’s large summit crater is likely related to multiple roof 

collapses of the shallow magma chamber [Platz et al., 2004].  

 

As we explored a ring-faulting mechanism, we drew on models based on similar observations 

from other volcanoes. Slip on conical ring faults has been used to explain a number of highly 

non-double-couple earthquakes in volcanic locations such as Tori Shima, Japan and Bárdarbunga 

volcano in Iceland [Ekström, 1994]. Nettles and Ekström [1998] worked towards determining the 

physical mechanism that generated 10 shallow earthquakes that took place at Bárdarbunga prior 
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to a lateral eruption in 1996. There is no indication that the Bárdarbunga earthquakes were slow 

events, however the moment tensor of each earthquake is dominated by the pure vertical-CLVD 

component. The events we are investigating have vertical pressure axes, and the Bárdarbunga 

events have vertical tension axes, but the focal mechanisms are very similar. The Bárdarbunga 

earthquakes are interpreted as slip on an outward-dipping cone-shaped ring fault located beneath 

Bárdarbunga’s edifice. Nettles and Ekström [1998] reason that as the volcano inflated over a 

period of twenty years, increased pressure in a shallow magma chamber led to incremental slip 

on a deeper pre-existing ring fault. At Nyiragongo, however, the timing of the first three events 

in relation to the 2002 eruption supports the association of the newly detected events with a 

deflating magma chamber. The focal mechanisms suggest that the newly detected events may 

have been caused by slip on an inward-dipping cone-shaped ring fault [Ekström, 1994], most 

likely located above an underpressured shallow magma chamber. 

 

The caldera collapse of Miyakejima volcano in Japan was accompanied by numerous moderate-

sized, slow earthquakes with focal mechanisms similar to the newly detected events in this study 

[Ekström and Nettles, 2002]. Like Nyiragongo and Bárdarbunga, Miyakejima is a stratovolcano 

that erupts in fissure eruptions. In mid-2000, a massive dike intrusion began beneath Miyakejima 

and migrated northwestward at a rate of 5 km per day, producing intense seismicity [Fujita et al., 

2001].  A collapsed caldera began to grow in the summit of the volcano a few weeks later, 

following a brief eruption, and subsidence and widening continued for over a month [Kikuchi et 

al., 2001; Kumagai et al., 2001]. During the incremental caldera collapse, sequences of step-like 

inflation followed by slower deflation were recorded by local tiltmeters, generally once or twice 

per day [Yamamoto et al., 2001]. These tilt steps are associated with very-long-period (50 s) 
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seismic pulses that were recorded globally [Ekström and Nettles, 2002]. The VLP seismic signals 

have been modeled as explosive sources, having dominant volumetric components of the 

moment tensor [Kikuchi et al., 2001; Kumagai et al., 2001]. Interestingly, the VLP events are not 

well-modeled by a series of time-varying forces, despite the fact that the initial collapse of the 

summit crater was well characterized by a single-force directed upwards and then downwards 

[Kikuchi et al., 2001]. 

 

Several source mechanisms have been suggested for the VLP events associated with the caldera 

collapse of Miyakejima. Kumagai et al. [2001] explains the VLP events as a vertical piston of 

solid materials in the conduit being intermittently pulled into the evacuating magma chamber. As 

magma flows out of the chamber during dike injection, the pressure in the magma chamber 

decreases, causing the piston to slide down into the magma chamber. The VLP signal is 

generated as magma chamber expands during the intrusion of the piston and then gradually 

deflates as magma continues to flow out of the chamber. Filson et al. [1973] suggests that the 

caldera collapse earthquakes at Fernandina were also caused by intermittent slip of a cylindrical 

block into an evacuating magma chamber. These mechanisms can be interpreted as repeated slip 

on a vertical ring fault with radius smaller than the magma chamber below. Geshi et al. [2002] 

proposed a comparable mechanism for subsidence at Miyakejima, in which a stoping column of 

brecciated rock subsides into a deflating magma reservoir. On the other hand, Kikuchi et al., 

[2001] explains the VLP signals using a buried geyser model, in which steam pushes a lower 

conduit piston into the magma reservoir.  
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Considering these models, we explored cases in which the newly detected events were generated 

by incremental slip on ring-fault structures. We initially considered the possibility that the first 

three events were caused by incremental slip of the solidified lava lake surface. This process 

releases elastic energy, and the scalar moment, M0, can be calculated by multiplying the rigidity 

(µ) by the area (A) and the average slip (d ) in each event: 

 

M
o

= µAd       (1.3) 

The scalar moment determined in the CMT solution for Event 1 was 1.1x1017 Nm. Using this 

simple relationship, we determined that a solidified lava lake thickness of 100 m requires an 

average slip of 18 m. However, this is a minimum estimate because the ring fault geometry 

results in the partial cancellation of seismically radiated long-period moment. For example, the 

scalar moment for Event 1 is also consistent with over 130 m of displacement caused by 360º 

failure on a ring-fault with a dip angle of 85º [Ekström, 1994]. It is highly unlikely that the lava 

lake surface could have survived three consecutive large falls, and thus we rule out this 

explanation. Slip on a ring fault beneath the edifice, however, is plausible. If we assume a fault 

geometry approximated by a cylinder 1 km in radius with a height of 2 km, the required average 

displacements are between 0.26 and 2 m. 

 

Based on our observations, and comparisons to other active volcanoes, we suggest that the five 

newly detected earthquakes at Nyiragongo were caused by slip on pre-existing ring faults located 

above deflating shallow magma chambers (Figure 1.10). The first three newly detected events 

occurred within days of the 2002 fissure eruption of Nyiragongo, which was caused by a local 

rifting event. Considering that there was heightened seismicity and ongoing ground deformation 

following the eruption, we can infer that the rifting event endured longer, and that there was 
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continued dike injection in the rift graben for several days following the eruption. These diking 

events resulted from evacuation of magma from a shallow magma chamber beneath the volcanic 

edifice. Continued diking reduced the pressure in the shallow magma chamber, leading it to 

collapse along pre-existing ring faults. Motion along the ring fault most likely further 

destabilized the solidified lava lake surface, leading to the collapse of the summit crater. The 

crater collapse compacted the plumbing system of the volcano, which could have cut off the flow 

of magma to the dikes. This could provide an explanation for the sudden cessation in seismicity 

following the crater collapse. 

 

Fig. 1.10. Schematic diagram of ring-faulting mechanisms. Slip on a pre-existing inward-dipping 
ring-fault can be triggered by the depressurization of a shallow magma chamber. This could 
occur following a diking event (left panel), or after the injection of magma from a deeper 
reservoir to a more shallow reservoir (right panel).  Both panels show north-south cross-sections, 
parallel to the strike of the rift.  The left panel shows the mechanism preferred for the first three 
newly detected events. A vertical dike, oriented parallel to the rift valley, propagates from the 
volcano towards Lake Kivu. The evacuation of magma causes the shallow magma chamber to 
become underpressured, and leads to incremental slip along an inward-dipping ring fault. This 
ring fault may extend to the surface (indicated by dashed lines). The right panel shows the 
mechanism given for the final two newly detected events. The injection of magma into a shallow 
magma reservoir causes a deeper magma reservoir to become underpressured, which triggers slip 
on a deeper inward-dipping ring fault. The figure is vertically exaggerated, and is not to scale. 
Figure by L. Starin.  
 



 40 

The final two newly detected events can also be explained by slip on a ring fault. It is unlikely 

that these events were preceded by dike injection events, as there are no reports of elevated 

seismicity or deformation during these time periods. A more likely explanation is that the final 

two events were triggered by the injection of magma from a deeper source. Following the 2002 

eruption of Nyiragongo, vigorous degassing accompanied the refilling of lava lake in the summit 

crater. This indicates the addition of undegassed magma from below [Durieux, 2002/2003a; 

Tazieff, 1994; Harris et al., 1999; Harris, 2008]. The added weight and pressure of this magma 

in the upper conduit and shallow magma chamber could have lead to collapse along a pre-

existing ring fault deeper in the volcano. This deeper location may explain why the last two 

events have slightly different frequency characteristics from the first three newly detected events. 

 

1.6. Conclusions 

Detailed analysis of long-period seismic data has demonstrated that five previously undetected 

earthquakes of moderate size occurred in the vicinity of Nyiragongo volcano between 2002 and 

2005. These earthquakes have long source durations and unusual source characteristics. 

Modeling has shown that these events cannot be explained by gravitational collapse alone. 

Instead, seismic data from these events are modeled well by highly non-double-couple centroid-

moment tensors. We interpret these events as being generated by slip on inward-dipping conical 

ring faults located under the volcano. This slip is triggered by the deflation of a shallow magma 

chamber beneath the ring fault, following diking events or magma injection into a shallower 

reservoir. The presence of ring-fault structures could be verified by the precise location of long-

period seismicity at the volcano. However, this would require the installation of a dense seismic 
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array to monitor the volcano. A discussion of how this mechanism results in slow earthquakes is 

beyond the scope of this chapter, and remains to be investigated.  

  

Nyiragongo is one of Africa’s most active volcanoes, and based on its recent eruptive history, it 

is also one of the volcanoes posing the greatest risk to its local population. Nyiragongo has had 

two catastrophic eruptions in the last 50 years. During the 1977 eruption, highly fluid lava flows 

traveled down the volcano’s flanks at speeds up to 60 km per hour, resulting in over 100 deaths, 

the highest number of people killed by a single lava flow [Durieux, 2002/2003b]. Lava flows 

from the 2002 eruption traveled further south to the city of Goma, resulting in even more damage 

and loss of life. As the populations of the villages and cities on the banks of Lake Kivu swell, the 

risk posed by Nyiragongo continues to grow. If the two previous eruptions are any indication of 

what may happen in the future, it is easy to see why there is a great need for understanding the 

dynamics of Nyiragongo volcano, and of the rift in general. This study of previously undetected 

seismicity has allowed us to infer the existence of ring faults underneath the volcano, and to 

suggest that slip on these structures may be initiated by volcanic activity. It is only one example 

of how we can use seismology to learn more about the dynamics of an active volcano. 

Considering the volatility of the region, indirect methods of observation like seismology are 

especially useful, and these must be utilized to their full potential. 
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Chapter 2 
 

Global observation of vertical-CLVD earthquakes at active volcanoes 
 

This work has been submitted for publication: 
Shuler, A., Nettles, M., and G. Ekström, Global observation of vertical-CLVD earthquakes at 

active volcanoes, submitted to J. Geophys. Res., 2012. 
 

Abstract 

Some of the largest and most anomalous volcanic earthquakes are those with dominant vertical 

compensated-linear-vector-dipole (vertical-CLVD) components. Here we use both the standard 

and surface-wave catalogs of the Global Centroid Moment Tensor Project to search for vertical-

CLVD earthquakes near active volcanoes in order to evaluate the link between these earthquakes 

and dynamic processes occurring inside volcanic edifices or magmatic plumbing systems. We 

determine focal mechanisms for 313 target earthquakes and identify 86 shallow 4.3 ≤ MW ≤ 5.8 

vertical-CLVD earthquakes located near volcanoes that have erupted in the last ~100 years. The 

majority of vertical-CLVD earthquakes occur in subduction zones, in association with basaltic-

to-andesitic stratovolcanoes or submarine volcanoes, although vertical-CLVD earthquakes are 

also located in continental rifts and in regions of hot-spot volcanism. Vertical-CLVD 

earthquakes are associated with a wide variety of confirmed or suspected eruptive activity at 

nearby volcanoes, including volcanic earthquake swarms as well as effusive and explosive 

eruptions and caldera collapse. Approximately 70% of all vertical-CLVD earthquakes studied 

occur during episodes of documented volcanic unrest at a nearby volcano. Given that volcanic 

unrest is underreported, most shallow vertical-CLVD earthquakes near active volcanoes are 

likely related to magma migration or eruption processes. Vertical-CLVD earthquakes with 

dominant vertical pressure axes generally occur after volcanic eruptions, whereas vertical-CLVD 

earthquakes with dominant vertical tension axes generally occur before the start of volcanic 
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unrest. The occurrence of these events may be useful for identifying volcanoes that have recently 

erupted and those that are likely to erupt in the future. 

 

2.1. Introduction 

Most shallow earthquakes have seismic radiation patterns that are consistent with the double-

couple model for shear failure on planar faults [Sykes, 1967; Isacks et al., 1968; Dziewonski and 

Woodhouse, 1983; Frohlich, 1995]. However, in volcanic and geothermal areas, other processes 

such as the migration of magmatic and/or hydrothermal fluids or rupture on non-planar faults can 

produce earthquakes with significant non-double-couple components. Although the majority of 

these anomalous earthquakes are small (M < 3) and only recorded by seismometers deployed 

close to the source regions [Takeo, 1990; Foulger and Julian, 1993; Ross et al., 1996; Miller et 

al., 1998b; Ohminato et al., 1998, 2006; Foulger et al., 2004; Kumagai et al., 2005; Nakano and 

Kumagai, 2005; Ohminato, 2008], non-double-couple earthquakes with magnitudes up to M~6 

have been observed near a small number of volcanoes around the world [Julian, 1983; Julian 

and Sipkin, 1985; Kanamori et al., 1993; Ekström, 1994; Dziewonski et al., 1997; Nettles and 

Ekström, 1998; Dreger et al., 2000; Kumagai et al., 2001; Templeton and Dreger, 2006; Minson 

and Dreger, 2008; Shuler and Ekström, 2009].  

 

In this study, we investigate ‘vertical-CLVD’ earthquakes, which are a specific type of non-

double-couple earthquake that has been shown to occur near volcanic centers [Ekström, 1994]. 

Notable examples of vertical-CLVD earthquakes include the 1984 Tori Shima earthquake 

[Kanamori et al., 1993], and the two series of earthquakes that occurred near Bárdarbunga 

volcano between 1976 and 1996 [Nettles and Ekström, 1998] and near Nyiragongo volcano 
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between 2002 and 2005 [Shuler and Ekström, 2009]. In addition to having anomalous source 

properties, these earthquakes are associated with documented episodes of volcanic unrest, and 

their occurrence and unusual focal mechanisms are interpreted to result from active volcanic 

processes. However, it is not clear how widespread the association between vertical-CLVD 

earthquakes and active volcanism may be.  

 

The focal mechanisms for earthquakes like those observed at Tori Shima, Bárdarbunga, and 

Nyiragongo have unusually large non-double-couple components. The size of the non-double-

couple component is typically quantified by examination of the eigenvalues of the moment 

tensor. In the principal axis coordinate system, earthquakes are described by three eigenvectors 

with eigenvalues ordered λ1  ≥  λ2  ≥  λ3, where λ1 is the tension axis and λ3 is the pressure axis. 

For double-couple earthquakes, the value of the intermediate eigenvalue, λ2, is zero and λ3 = -λ1, 

whereas for non-double-couple earthquakes, λ2 assumes a non-zero value due to isotropic or 

compensated-linear-vector-dipole (CLVD) components of the moment tensor [Knopoff and 

Randall, 1970; Frohlich, 1990a; Julian et al., 1998]. The isotropic component, (Mrr + Mθθ + 

Mφφ)/3 , represents a net volume change, which is expected to be small for tectonic earthquakes. 

In routine moment tensor inversions, the isotropic component is typically constrained to be zero 

[Dziewonski et al., 1981; Dufumier and Rivera, 1997]. The CLVD component accounts for the 

portion of the moment tensor that can be explained by three orthogonal dipoles, two that have the 

same polarity and magnitude, and a third that is twice as large with opposite polarity.  
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The deviatoric component of the moment tensor can be decomposed into double-couple and 

CLVD components by assuming that the principal stress axes for these components are parallel. 

The non-double-couple component is described by the parameter ε, which is defined as  

                                         ε = -λ2/max (|λ1|, |λ3|),                                          (2.1) 

where ε = 0 for a double-couple earthquake and ε = ± 0.5 for earthquakes that are pure CLVDs. 

In this framework, each earthquake can be described by a deviatoric moment tensor that is 

200*|ε|% non-double-couple and (100-200*|ε|)% double-couple. In the Global Centroid Moment 

Tensor (GCMT) catalog, ~18% of earthquakes with centroid depths less than 50 km have 

moment tensors with 40% or more non-double-couple component. 

 

In this chapter, we focus on vertical-CLVD earthquakes, which have large non-double-couple 

components and approximately vertical pressure or tension axes like those previously reported at 

active volcanoes [Kanamori et al., 1993; Ekström, 1994; Nettles and Ekström, 1998; Shuler and 

Ekström, 2009]. We identify two types of vertical-CLVD earthquakes depending on whether the 

dominant dipole is dilatational or compressional. ‘Vertical-T’ earthquakes have dominant tension 

axes that plunge more steeply than 60° with ε > 0.20, and ‘vertical-P’ earthquakes have dominant 

pressure axes that plunge more steeply than 60° with ε < -0.20 (Figure 2.1). Our definitions are 

similar, but not identical, to the PV and TV designations given by Frohlich [1995]. Earthquakes 

meeting our criteria represent less than 3% of all shallow (h < 50 km) earthquakes documented in 

the GCMT catalog.  
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Figure 2.1. Criteria for the two types of vertical-CLVD earthquakes. Vertical-T events have 
dominant tension axes that plunge more steeply than 60° and ε values greater than 0.20, and 
vertical-P events have dominant pressure axes that plunge more steeply than 60° and ε values 
less than -0.20. The focal mechanisms shown are for pure vertical-CLVD earthquakes, which 
have vertical dominant tension or pressure axes (plunges of 90°) and |ε| = ±0.50. 

 

 

Ekström [1994] performed a search for vertical-T earthquakes in the Harvard CMT catalog (now 

known as the GCMT catalog), and identified 18 shallow MW  > 5.0 earthquakes with ε  > 0.33 

and tension axes that plunge more steeply than 60°. Ten of the vertical-T earthquakes are located 

in close proximity to volcanic centers, which demonstrates an association between these 

earthquakes and volcanism. Vertical-T earthquakes reported by Ekström [1994] include the Tori 

Shima earthquake and six Bárdarbunga earthquakes in addition to events in North Honshu, the 

Volcano Islands and the South Sandwich Islands. 

 

The Tori Shima earthquake is an MW 5.6 vertical-T earthquake that occurred on 13 June 1984 

between Smith Rock and Bayonnaise Rocks volcanoes in the Izu-Bonin volcanic arc southeast of 

Honshu. In the GCMT catalog, the Tori Shima earthquake has an ε value of 0.33 and a tension 
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axis that plunges 87°. Rayleigh waves from this earthquake were radiated with nearly equal 

amplitude and phase in all directions, whereas Love waves were either absent or of very low 

amplitude [Kanamori et al., 1993]. The Tori Shima earthquake also generated a 

disproportionately large tsunami given its moderate magnitude. Whereas typically tsunamis have 

tsunami magnitudes, Mt, that are comparable to the MW estimates for the source earthquake, the 

Tori Shima earthquake produced an Mt 7.3 tsunami [Abe, 1988; Satake and Kanamori, 1991]. 

 

Several physical mechanisms have been proposed to explain the Tori Shima earthquake. In the 

model of Kanamori et al. [1993], the vertical-T earthquake is generated by rapid expansion of 

supercritical water following horizontal injection of magma into water-filled sediments. 

However, Ekström [1994] suggests that the Tori Shima earthquake may be better explained by 

dip-slip motion on a volcano ring fault. Ring-fault structures are observed in eroded volcanoes 

[Cole et al., 2005 and references therein] and their presence can be inferred beneath some active 

volcanoes by dense cone-shaped patterns of microearthquakes [Mori and McKee, 1987; Mori et 

al., 1996]. In analog and numerical models, slip on ring-fault structures is directly related to the 

inflation or deflation of shallow magma chambers (see Marti et al., [2008], Acocella [2008] and 

Gudmundsson [2008] for review). Dip-slip motion on cone-shaped ring faults can generate 

earthquakes with vertical-CLVD focal mechanisms [Frohlich et al., 1989; Frohlich, 1990a/b, 

1995; Ekström, 1994; Julian et al., 1998], and slip on curved faults results in the partial 

cancellation of long-period seismic moment, which could account for the discrepancy between 

seismic and tsunami magnitudes [Ekström, 1994].  
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The non-double-couple earthquakes at Bárdarbunga and Nyiragongo volcanoes have also been 

explained as resulting from slip on ring-fault structures. In total, 10 vertical-T earthquakes with 

magnitudes 5.1 ≤ MW ≤ 5.6 occurred near Bárdarbunga volcano in Iceland between 1976 and 

1996 [Nettles and Ekström, 1998]. The last earthquake occurred only days before a large, 

subglacial fissure eruption between Bárdarbunga and Grimsvötn volcanoes [M.T. Gudmundsson 

et al., 1997], which suggests that, at least in this case, vertical-T earthquakes are associated with 

the inflation of a shallow magma chamber. According to the faulting model presented by Nettles 

and Ekström [1998], the vertical-T earthquakes are generated by slip on an outward-dipping ring 

fault located below an inflating shallow magma chamber. 

 

Five vertical-P earthquakes with magnitudes 4.6 ≤ MW ≤ 5.3 took place near Nyiragongo volcano 

in the Democratic Republic of the Congo between 2002 and 2005. The first three vertical-P 

earthquakes occurred several days after a catastrophic fissure eruption of Nyiragongo in January 

2002, and are attributed to slip on inward-dipping ring faults located above a deflating shallow 

magma chamber [Shuler and Ekström, 2009]. The final two earthquakes occurred in 2003 and 

2005 as the lava lake in Nyiragongo’s summit crater refilled, and are explained as slip on a 

deeper inward-dipping ring fault triggered by the upward flux of magma into shallow levels of 

the magmatic plumbing system.  

 

Although there is still controversy over the physical mechanisms that generate vertical-CLVD 

earthquakes [e.g., Konstantinou et al., 2003; Tkalčić et al., 2009], the Tori Shima, Bárdarbunga 

and Nyiragongo events illustrate that vertical-CLVD earthquakes are closely linked to dynamic 

processes occurring inside volcanic systems. The Tori Shima and Bárdarbunga events suggest 
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that, in some cases, vertical-CLVD earthquakes may be triggered by the ascent of magma 

through the shallow crust, and the occurrence of these earthquakes may signal that a nearby 

volcano is likely to erupt in the future. The Nyiragongo events suggest that some vertical-CLVD 

earthquakes may be a response to magma migration, which would make these earthquakes useful 

for identifying the locations of recent eruptions.  

 

In this study, we explore the relationship between vertical-CLVD earthquakes and volcanic 

unrest. Using two global seismicity catalogs and seismic data from many regional and global 

seismic networks, we perform a systematic global search for additional examples of moderate-

sized vertical-CLVD earthquakes located near active volcanoes. We quantify where and how 

often vertical-CLVD earthquakes occur near these volcanoes, and investigate whether vertical-

CLVD earthquakes are preferentially associated with particular tectonic settings or categories of 

volcanoes, or with specific types of eruptive activity. We characterize these earthquakes and 

document their relationships to volcanic unrest in detail in an effort to learn how vertical-CLVD 

earthquakes are linked to active deformation and eruption processes. Chapter 3 investigates the 

physical mechanisms that may be responsible for generating vertical-CLVD earthquakes at 

volcanoes. 

 

2.2. Data and Methods 

We search for vertical-CLVD earthquakes near volcanoes using two catalogs from the Global 

CMT Project (www.globalcmt.org). The first catalog is the standard GCMT catalog [Dziewonski 

et al., 1981; Ekström et al., 2012], which contains centroid times, locations and moment tensors 

for over 30,000 earthquakes since 1976. We investigate target earthquakes that have centroid 
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locations near volcanoes and vertical-CLVD moment tensors in the GCMT catalog. To identify 

those earthquakes that have robust vertical-CLVD focal mechanisms, we recalculate CMT 

solutions for the target earthquakes using additional data and updated methodology. The second 

catalog is the Surface Wave catalog, which contains epicenters, times and magnitude estimates 

for earthquakes that are detected using intermediate-period surface waves following the method 

of Ekström [2006]. Although the Surface Wave catalog has reported approximately 2000 

earthquakes each year since 1991, we only investigate those earthquakes occurring near 

volcanoes that were not reported in other seismicity catalogs, or that have surface-wave 

magnitudes significantly larger than reported elsewhere. We calculate CMT solutions for these 

earthquakes in the same manner as for events from the GCMT catalog. We also model 

teleseismic body waves to constrain the depths of shallow earthquakes we find to have vertical-

CLVD focal mechanisms.  

 

2.2.1. Selection of Target Earthquakes 

In order to assess the link between vertical-CLVD earthquakes and volcanic unrest, we 

investigate target earthquakes from the GCMT and Surface Wave catalogs that are located within 

100 km of a recently active volcano. We restrict our search to the 429 D1 and D2 volcanoes in 

the Smithsonian Institution’s Global Volcanism Program (GVP) database [Siebert and Simkin, 

2002-], which have last known eruptions later than 2000 and 1900, respectively. This list is 

biased towards subaerial eruptions, and represents only a fraction of volcanoes that are active or 

potentially active worldwide. However, since our primary goal is to explore the relationships 

between vertical-CLVD earthquakes and active volcanic processess, we limit our scope to those 

volcanoes with recently documented eruptions. The distance threshold of 100 km accounts for 
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the uncertainty in locations from the GCMT [Smith and Ekström, 1997; Hjórleifsdöttir and 

Ekström, 2010] and Surface Wave catalogs, as well as the size and spacing of volcanic centers 

[de Bremond d’Ars et al., 1995; Schmincke, 2004]. A map of the recently active volcanoes and 

the target earthquakes is shown in Figure 2.2. 

 

Figure 2.2. Map showing the locations of the 429 recently active volcanoes (maroon triangles) 
and 395 target earthquakes (blue circles) studied here. Recently active volcanoes have last 
known eruptions later than 1900. The target earthquakes include 135 earthquakes from the 
Global CMT catalog and 261 earthquakes from the Surface Wave catalog (71 and 190 
earthquakes from Category 1 and Category 2, respectively). Category 1 earthquakes are reported 
in the ISC catalog, but have surface-wave magnitudes, MSW [Ekström, 2006], that are at least one 
magnitude unit larger than the mb estimates provided by the ISC.  Category 2 earthquakes are 
newly detected earthquakes that were were detected and located using intermediate-period 
surface waves [Ekström, 2006], but which are missing from the ISC and NEIC bulletins. An 
earthquake on 26 May 2009 is a Category 1 earthquake that is also described in the GCMT 
catalog. Plate boundaries are from Bird [2003]. 
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The Global CMT Catalog (1976-2009) 

The GCMT catalog contains moment-tensor and location information for most earthquakes 

larger than MW 5.0-5.5 since 1976 [Dziewonski et al., 1981; Ekström et al., 2012]. The vast 

majority of GCMT solutions are calculated using initial hypocentral parameters provided by the 

National Earthquake Information Center (NEIC) of the United States Geological Survey 

(USGS), and long-period data primarily recorded on the IRIS-USGS Global Seismographic 

Network (GSN) or its historical equivalent. Prior to 2004, CMT solutions for earthquakes with 

MW < 5.5 were constrained using long-period (T > 45 s) body-wave seismograms, whereas long-

period surface-wave (T > 135 s, ‘mantle wave’) seismograms were included for larger 

earthquakes [Dziewonski et al., 1981; Dziewonski and Woodhouse, 1983]. Since 2004, 

intermediate-period (35 < T< 150 s) surface-wave data have also been incorporated in source-

parameter inversions for shallow and intermediate-depth MW < 7.5 earthquakes [Arvidsson and 

Ekström, 1998; Ekström et al., 2012]. Because intermediate-period surface waves are the largest 

seismic phases in long-period seismograms for shallow earthquakes, their use in CMT inversions 

has allowed smaller-magnitude earthquakes to be analyzed by the Global CMT Project. The 

inclusion of surface waves also improves the quality of GCMT solutions in general since the 

number of waveforms available for analysis is greatly increased.  

 

Because most GCMT solutions were calculated without intermediate-period surface-wave data, 

we recalculate CMT solutions for vertical-CLVD earthquakes located near recently active 

volcanoes. Intermediate-period surface waves have different frequency contents and leave the 

source at different angles than body waves, and including these data allows us to obtain more 

robust source parameters. Target events from the GCMT catalog are identified using the 
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following criteria: ε > 0.20 and plunge of tension axis > 50°, or ε < -0.20 and plunge of pressure 

axis > 50°. We restrict our search to those earthquakes with centroid depths less than 50 km that 

are also located within a 100-km radius of a recently active volcano. Focal mechanisms for the 

earthquakes near Bárdarbunga were recalculated by Nettles and Ekström [1998] using 

methodology similar to that employed here, and we do not include those earthquakes as target 

events in our study. A total of 134 target earthquakes meet our criteria. We also identify as a 

target earthquake an MW 5.8 vertical-T earthquake that occurred on 17 February 2009 in the 

Kermadec Islands. Although this earthquake did not occur within 100 km of a recently active 

volcano, it may be associated with volcanic activity at Curtis Island, a remote volcano for which 

the time of last eruption is unknown [Smithsonian Institution, 2009].  

 

The Surface Wave Catalog (1991-2009) 

Additional target earthquakes are identified from the Global CMT Project’s catalog of surface-

wave event locations. The Surface Wave catalog includes most shallow M > 4.8 earthquakes 

reported by global seismicity catalogs, such as the bulletins of the International Seismological 

Centre (ISC) and the USGS NEIC, for which event detection is based on the arrival times of 

high-frequency body-wave phases. The Surface Wave catalog also contains information about 

other earthquakes that are missing from the ISC and NEIC catalogs due to their small body-wave 

magnitudes or unusual source properties [Ekström, 2006]. Focal mechanisms have so far been 

calculated for only a small number of earthquakes from the Surface Wave catalog that are not 

reported in the ISC or NEIC catalogs. 
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We limit our scope to two categories of earthquakes from the Surface Wave catalog. Category 1 

events are earthquakes that are reported in the ISC catalog, but which have surface-wave 

magnitudes, MSW [Ekström, 2006], that are at least one magnitude unit larger than the mb 

estimates provided by the ISC. Seventy-four Category 1 earthquakes have surface-wave 

detections with Quality C or better [Ekström, 2006] and initial locations within 100 km of a 

recently active volcano. Excluding three earthquakes that have non-vertical-CLVD solutions in 

the GCMT catalog, we identify 71 target earthquakes between 1991 and 2009. We note that one 

target event from Category 1, an earthquake in the Fiji Islands region on 26 May 2009, has a 

vertical-CLVD solution in the GCMT catalog. This earthquake is especially unusual because it is 

listed as an mb 4.5 earthquake with a hypocentral depth of 100 km in the weekly listing of the 

NEIC’s Preliminary Determination of Epicenters (PDEW), while in the GCMT catalog, it is 

listed as an MW 5.5 earthquake with a centroid depth fixed to 12 km. With the exception of the 

May 2009 event, no focal mechanisms are available for the target earthquakes in Category 1.  

 

The second category of earthquakes that we investigate from the Surface Wave catalog are ‘new’ 

earthquakes that are missing from the ISC and NEIC bulletins, but which were detected and 

located using intermediate-period surface waves using the method of Ekström [2006]. We restrict 

our search to newly detected earthquakes from 1991 to 2009 that have surface-wave detections 

with Quality C or better [Ekström, 2006] and initial locations within 100 km of a recently active 

volcano. The Nyiragongo earthquakes from Shuler and Ekström [2009] are examples of 

Category 2 events. Excluding those five events, which have focal mechanisms that were 

recalculated using methodology similar to that employed here, we identify 190 target 

earthquakes. No focal mechanisms are available for target earthquakes from Category 2. 
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2.2.2. Centroid-Moment-Tensor Solutions 

For each of our target earthquakes, we collect three-component long-period and very-long-period 

seismic data from global and regional networks archived by the IRIS Data Management Center 

(DMC). The data sources vary depending on the year, but include stations from the following 

networks: the Modified High Gain Long Period Observatory (AS), the Black Forest Observatory 

(BF), the China Digital Seismic Network (CD), the Canadian National Seismic Network (CN), 

the Czech Seismic Network (CZ), the Digital World-Wide Standardized Seismograph Network 

(DW), GEOSCOPE (G), GEOFON (GE), the High-Gain Long-Period Network (HG), MEDNET 

(MN), the Singapore Seismological Network (MS), the Regional Seismic Test Network (RS), the 

Seismic Research Observatory (SR), TERRAscope (TS), and the IRIS-USGS Global 

Seismographic Network (GSN), which is a cooperative partnership between the following 

networks: the IRIS/IDA network (II), the IRIS/USGS Network (IU), the IRIS China Digital 

Seismic Network (IC), the Global Telemetered Southern Hemisphere Network (GT), and the 

CariUSGS Caribbean Network (CU). For target earthquakes from the GCMT catalog, the new 

data sets are typically more complete than those used for the original analysis. 

 

We calculate centroid moment tensors, locations and times for each target earthquake generally 

following the standard GCMT approach [Dziewonski et al., 1981; Dziewonski and Woodhouse, 

1983; Arvidsson and Ekström, 1998; Ekström et al., 2005], and specifically the methods 

employed since 2004 [Ekström et al., 2012]. We manually select and edit seismograms from 

three frequency bands and time windows. CMT solutions for events with MW < 5.5 are 

calculated using body-wave data filtered from 40 to 150  and surface-wave data filtered from 50 

to 150 s, while solutions for larger earthquakes also include mantle-wave data filtered from 125 
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to 350 s. For the smallest earthquakes, we filter the surface-wave data from 40 to 100 s or 35 to 

75 s on a case-by-case basis to increase the signal-to-noise ratio. The CMT inversions are based 

on data from 14 to 163 stations, depending on the year and magnitude of individual target 

earthquakes.  

 

As in the GCMT catalog, we constrain the sum of the diagonal elements of the moment tensor to 

equal zero (Mrr + Mθθ + Mφφ = 0), which is equivalent to imposing the condition that the moment 

tensor has no volumetric component. We recognize that exclusion of the isotropic component 

can result in deviatoric moment tensors with dominant vertical-CLVD components for 

earthquakes that have net volume changes [Strelitz, 1989; Frohlich, 1990b; Kawakatsu, 1996]. 

We discuss this issue in detail in Chapter 3. 

 

We assess the quality of each CMT solution, and only report solutions that meet the Global CMT 

Project’s quality standards. In particular, we reject unstable solutions, solutions based on a small 

number of waveforms and solutions with high residual misfit. We classify earthquakes as 

‘vertical-CLVD’ if their moment tensors have 40% or more non-double-couple component and 

dominant tension or pressure axes that plunge more steeply than 60° (Figure 2.1). Because we 

are concerned with vertical-CLVD earthquakes associated with volcanic processes, we restrict 

our discussion to those events with centroid depths shallower than 25 km.  

 

2.2.3. Teleseismic Body-Wave Modeling 

The vertical-CLVD earthquakes that we identify near active volcanoes are shallow and their 

depths cannot be determined accurately using the long-period seismic data required for standard 
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GCMT analysis. To constrain the focal depths of these earthquakes, we attempt to model the 

broadband teleseismic body waves for vertical-CLVD earthquakes with magnitudes MW ≥ 5.0. 

We follow the method of Ekström [1989], and invert teleseismic P and SH waveforms for focal 

mechanism, focal depth and moment-rate function. For this analysis, we collect broadband 

seismic records from the IRIS DMC and deconvolve the instrument response to obtain 

displacement records filtered from 1 to 100 s period. Following the method of Harvey and Choy 

[1982], broadband records for the oldest earthquakes are constructed from digital long- and 

short-period seismograms, as in Ekström [1989]. Synthetic seismograms are calculated using ray 

theory and the Preliminary Reference Earth Model [PREM; Dziewonski and Anderson, 1981]. 

Reflections and conversions near the source are modeled using a layer-matrix method for a 

regional velocity model. For a small number of subaerial volcanoes, we construct the regional 

velocity models using the local crustal structure from CRUST2.0 [Bassin et al., 2000]. However, 

for those earthquakes near island arc or submarine volcanoes, we use the CRUST2.0 model for a 

Japanese island arc (J1) and adjust the thickness of the water layer to match the summit elevation 

of the nearest volcano. We include the CMT estimate of the point-source moment tensor as a soft 

constraint in the inversions to ensure that focal mechanisms calculated from the broadband data 

are compatible with the long-period seismic data used in the CMT analysis.  

 

2.3. Results 

Of the 395 target earthquakes investigated, we obtain robust CMT solutions for 313 earthquakes. 

Focal mechanisms are plotted in Figure 2.3 and source-parameter information is available in the 

Appendix A as well as on our website (www.globalcmt.org). We report updated CMT solutions 

for 124 earthquakes from the GCMT catalog (Tables A1 and A2) and new CMT solutions for 
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190 earthquakes from the Surface Wave catalog, including 59 Category 1 earthquakes (Tables 

A3 and A4) and 131 Category 2 earthquakes (Tables A5 and A6). We note that the 26 May 2009 

earthquake is reported in both the GCMT and Surface Wave catalogs.  

 
(Figure caption on next page)
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Figure 2.3. Focal mechanisms for all of the target earthquakes for which we were able to obtain 
robust CMT solutions, plotted against their ε values. Shallow vertical-CLVD earthquakes are 
plotted in black, and the dashed lines indicate ε = ±0.20. The top panel shows focal mechanisms 
for 124 earthquakes from the Global CMT catalog after reanalysis. The middle panel shows focal 
mechanisms for 59 Category 1 earthquakes from the Surface Wave catalog, and the bottom panel 
shows focal mechanisms for 131 Category 2 earthquakes from the Surface Wave catalog. The 
event numbers correspond to the event numbers reported Tables A1-A6. The 43 vertical-P 
earthquakes associated with the caldera collapse of Miyakejima in 2000 are indicated in the 
middle and bottom panels. 
 

 

From this group of 313 earthquakes, we identify 86 shallow vertical-CLVD earthquakes located 

near recently active volcanoes. We are able to model teleseismic body waves from 18 of these 

events. Along with the 15 vertical-CLVD earthquakes already documented at Bárdarbunga 

[Nettles and Ekström, 1998] and Nyiragongo volcanoes [Shuler and Ekström, 2009], this study 

increases the number of well-documented moderate-sized shallow vertical-CLVD earthquakes 

known to occur near volcanic centers to 101. 

 

2.3.1. All Target Earthquakes 

The recalculated CMT solutions for target events from the GCMT catalog are based on both 

body and surface-wave data that were manually selected and edited. Because the new solutions 

described in Tables A1 and A2 were calculated using additional data and updated methodology, 

we prefer them over those reported in the standard GCMT catalog. Compared to the original 

GCMT solutions, the recalculated moment tensors changed by ~0.1 magnitude units, and the 

centroid locations moved ~30 km on average. As expected, differences between the original and 

recalculated CMT solutions are smaller for earthquakes that occurred after 2004, when the 

Global CMT Project began to use surface-wave data routinely. 
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For most target earthquakes from the GCMT catalog, we find that the addition of surface-wave 

data reduces the size of the non-double-couple component, resulting in new moment tensors that 

are approximately double couple. Recalculated moment tensors for most vertical-T and vertical-

P earthquakes are typical of reverse- and normal-faulting earthquakes. In many cases, the new 

focal mechanisms are consistent with those reported in the GCMT catalog for other nearby 

earthquakes. Only 26 of the earthquakes considered, 18 vertical-T and 8 vertical-P earthquakes, 

have vertical-CLVD moment tensors and centroid depths less than 25 km after the addition of 

surface-wave data. Included in this dataset are the four vertical-T earthquakes identified by 

Ekström [1994] that did not occur near Bárdarbunga. In Figure 2.4, we illustrate how the addition 

of surface-wave data affects the CMT solutions for one earthquake that became more double-

couple and one that remained vertical-CLVD. 

 

Target earthquakes from the Surface Wave catalog have a wide variety of focal mechanisms, 

reflecting the diversity of tectonic settings located with a 100-km radius of recently active 

volcanoes. In Tables A3-A6, we provide CMT solutions for these earthquakes. For both 

Category 1 and Category 2 events, we find that moment tensors for most of the target 

earthquakes are close to double-couple. The most commonly observed earthquake types are 

strike-slip and normal-faulting earthquakes along the ridge-transform systems near Tonga, 

Vanuatu, Samoa, Fiji, and the Mariana Islands. Shallow strike-slip earthquakes in the southern 

oceans are particularly difficult to detect using traditional methods due to their nearly nodal 

teleseismic P-wave radiation patterns, their remoteness from seismic stations and the presence of 

strong microseismic noise [Rouland et al., 1992; Shearer, 1994], and some go unreported in 

standard global seismicity catalogs. 
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Figure 2.4. A comparison between the original CMT solutions (left), calculated using body 
waves, and new CMT solutions (right), calculated in this study using body and surface waves, 
for two earthquakes. The moment magnitude and ε value associated with each CMT solution are 
indicated below the focal mechanisms. Thin solid lines show the double-couple part of the focal 
mechanisms. The top panel is for the Tori Shima earthquake. The original solution was 
calculated using body-wave data from 15 stations, and the new solution was calculated using 
body-wave data from 20 stations, mantle-wave data from 6 stations, and surface-wave data from 
22 stations. The bottom panel is for an earthquake in the Vanuatu Islands. The original solution 
was calculated using body-wave data from 22 stations, and the new solution was calculated using 
body-wave data from 15 stations, mantle-wave data from 12 stations, and surface-wave data 
from 27 stations. The Tori Shima earthquake remained vertical-CLVD after the addition of 
surface-wave data whereas the Vanuatu earthquake became approximately double-couple. 
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Of the 190 target earthquakes investigated from the Surface Wave catalog, 61 have vertical-

CLVD moment tensors. Eight earthquakes have vertical-T moment tensors and 53 have vertical-

P moment tensors. We find that CMT solutions for vertical-CLVD earthquakes are based on a 

greater number of waveforms compared to other target earthquakes with similar MW magnitudes 

from the Surface Wave catalog. This suggests that some aspect of the source properties of 

vertical-CLVD earthquakes, other than small magnitude, prevents them from being detected and 

located using high-frequency body waves.  

 

We were not able to calculate CMT solutions for several Category 2 target earthquakes that are 

spatially and temporally associated with explosive eruptions that produced large-scale 

pyroclastic density currents. These events include the sector collapse and lateral blast event at 

Soufrière Hills volcano in the West Indies on 26 December 1997 [Calder et al., 2002; Druitt et 

al., 2002; Ritchie et al., 2002; Sparks et al., 2002; Voight et al., 2002; Woods et al., 2002; Young 

et al., 2002], and several pre-climactic eruptions at Pinatubo volcano in the Philippines on 14 and 

15 June 1991 [Harlow et al., 1996; Hoblitt et al., 1996; Lynch and Stephens, 1996; Power et al., 

1996; Wolfe and Hoblitt, 1996]. If the seismic signals that we observe are produced by gravity-

driven flows, it may be more appropriate to model these events using time-varying forces.  

 

2.3.2. Vertical-CLVD Earthquakes 

In total, we have identified 101 shallow vertical-CLVD earthquakes with centroid locations near 

recently active volcanoes. In Figures 2.5 and 2.6, we show the locations and focal mechanisms of 

vertical-CLVD earthquakes from the GCMT and Surface Wave catalogs. Figure 2.7 shows a 

map of the vertical-P earthquakes associated with Miyakejima volcano. In these three maps, red 
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focal mechanisms denote earthquakes that are associated with volcanic unrest at a volcano within 

~60 km (Section 2.4). For each of the 86 vertical-CLVD earthquakes analyzed in this study, in 

Table 2.1, we provide a summary of source parameters including centroid times and locations, 

mb values from the NEIC, as well as MW values, ε values and plunges of the dominant principal 

axes derived from the CMT solutions. 

 

Figure 2.5. Map showing focal mechanisms for the 26 shallow vertical-CLVD earthquakes 
identified from the Global CMT catalog. Red focal mechanisms indicate that the earthquakes are 
associated with a documented episode of volcanic unrest at a nearby volcano (see text for 
details). The dates of the earthquakes are listed above the focal mechanisms. Maroon triangles 
indicate the locations of the 429 recently active volcanoes. A yellow star indicates the location of 
Bárdarbunga volcano, where 10 vertical-T earthquakes occurred between 1976 and 1996 [Nettles 
and Ekström, 1998]. Bathymetry and topography are from the ETOPO1 dataset.  
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Figure 2.6. Map showing focal mechanisms for 18 shallow vertical-CLVD earthquakes after 
CMT analysis of events in the Surface Wave catalog. The vertical-T earthquake on 26 May 2009 
is repeated from Figure 2.5. Red focal mechanisms indicate that the earthquakes are associated 
with a documented episode of volcanic unrest at a nearby volcano (see text for details). The dates 
of the earthquakes are listed above the focal mechanisms. Maroon triangles indicate the locations 
of the 429 recently active volcanoes. Yellow stars indicate the locations of Miyakejima volcano, 
where another 43 vertical-P earthquakes occurred in 2000 (Figure 2.7), and Nyiragongo, where 5 
vertical-P earthquakes occurred between 2002 and 2005 [Shuler and Ekström, 2009]. 
Bathymetry and topography are from the ETOPO1 dataset.  
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Figure 2.7. Map showing focal mechanisms for the 43 vertical-P earthquakes associated with the 
caldera collapse of Miyakejima volcano between 7 July and 18 August 2000. Focal mechanisms 
are plotted at their centroid locations. The earthquake with the centroid location that is farthest 
away from Miyakejima occurred on 18 August 2000 at 9:09 UTC. Grey dots show the locations 
of earthquakes associated with the dike intrusion that began at Miyakejima on 26 June 2000. 
Epicenters for earthquakes from June to December 2000 are provided by the Japan 
Meteorological Agency. The grid-like pattern is due to the reported precision of the epicenters. 
Topography is from the Shuttle Radar Topography Mission (SRTM). Bathymetry is from the 
Japan Oceanographic Data Center J-EGG500 dataset.  
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In Tables A7 and A8 in the Auxiliary Material, we provide detailed information about the CMT 

solutions for vertical-CLVD earthquakes, including estimates of the standard errors for the 

source parameters. The standard errors associated with the latitude and longitude components are 

~3 km on average, although due to uneven station distributions, the presence of noise and 

unmodeled structural heterogeneity [Nakanishi and Kanamori, 1982; Dziewonski and 

Woodhouse, 1983; Dziewonski et al., 1983; Dziewonski et al., 1984; Smith and Ekström, 1997; 

Hjörleifsdóttir and Ekström, 2010], the actual uncertainties are likely larger. For example, the 

centroid locations for vertical-CLVD earthquakes linked to specific episodes of volcanic unrest 

are sometimes tens of kilometers from their source volcanoes. 

 

We assess the quality of each CMT solution based on the station coverage, the variance 

reduction, and the percentage of available waveforms used in the inversion (Table 2.1). A-quality 

CMT solutions have variance reductions of 50% or more and are calculated using data from 75% 

or more of the available stations. CMT solutions that have variance reductions of 40-50%, 

azimuthal gaps greater than 90°, and those that are calculated using data from 50-75% of the 

available stations are assigned B quality. We assign the two earthquakes that have fixed centroid 

locations to be C quality, in addition to those solutions that are calculated using less than 50% of 

the available stations, or those that have variance reductions less than 40%. We find that 47 

earthquakes have A-quality solutions, 26 have B-quality solutions, and 13 have C-quality 

solutions. However, all of the solutions meet the quality standards of the Global CMT Project. 

Our confidence in the significance of the vertical-CLVD component is a function of both the 

CMT solution quality and the magnitude of the non-double-couple component.  
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We do not report the centroid depths of vertical-CLVD earthquakes in Table 2.1 because they 

were all fixed to 12 km during the inversion process, as is standard for shallow earthquakes. To 

obtain better constraints on focal depth, we attempted to model the broadband teleseismic body 

waves for vertical-CLVD earthquakes with magnitudes MW ≥ 5.0. However, we were only able 

to model 18 earthquakes, all from the GCMT catalog. Body waves for earthquakes in the Surface 

Wave catalog are of lower amplitude than the background noise across the frequency band we 

examine. 

 

Earthquakes in this magnitude range typically show clear, impulsive direct arrivals and surface 

reflections. In contrast, we find that the body waves for vertical-CLVD earthquakes are 

dominated by low-frequency energy. Figure 2.8 shows an example body-wave solution for the 

MW 5.7 vertical-T earthquake that occurred South of Honshu on 4 September 1996. We find that 

focal-depth estimates depend on the weight of the soft constraint of the long-period moment 

tensors from the CMT inversions, and there is a tradeoff between focal depth and source 

duration. Despite the uncertainties associated with modeling body waves for earthquakes 

depleted in high-frequency energy, the character of the waveforms for all 18 earthquakes is 

consistent with focal depths in the top 10 km of the crust.  
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Figure 2.8.  Focal-depth analysis for the MW 5.7 earthquake that occurred on 4 September 1996 
near Smith Rock volcano in the Izu-Bonin volcanic arc. Solid lines are broadband teleseismic P 
and SH waveforms, and dashed lines are synthetic seismograms. Brackets across the waveforms 
show the portions of the seismograms that were used in the inversion, and arrows indicate the 
picked first arrivals. The station name, data type and maximum amplitude (in microns) are 
printed above each waveform. The focal mechanism and moment-rate function determined in the 
body-wave inversion are plotted in the center of the figure. Black dots on the focal mechanism 
show where the plotted waveforms exited the focal sphere. The estimated focal depth of the 
earthquake is ~5.2 km below sea level. 
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2.4. Links to Volcanic Activity 

Our target earthquakes were selected because they occurred near active volcanoes, but there were 

no restrictions on volcano type or location. In our dataset of shallow vertical-CLVD earthquakes, 

we observe events near active volcanoes in a wide variety of geographical locations and tectonic 

settings. In Table 2.2, we list the three closest volcanoes to each vertical-CLVD earthquake. We 

report the distances from the centroid location of each earthquake to the three closest volcanoes 

using the latitude and longitude coordinates provided by the GVP [Siebert and Simkin, 2002-]. 

The length scales of volcanic systems, which range from a few hundred meters to tens of 

kilometers, should be considered when interpreting these distances. We also report the volcano 

type, or morphology, of the closest volcanoes and indicate whether the earthquakes occurred 

during documented episodes of volcanic unrest. Most vertical-CLVD earthquakes are located 

within ~30 km of arc volcanoes in subduction zones in the Pacific, Indian and Southern Oceans 

and the Mediterranean Sea. However, vertical-CLVD earthquakes also occur in the East African 

Rift, along a mid-ocean ridge segment in the northeastern Pacific Ocean, and near hotspot 

volcanoes in Hawaii, the Galápagos Islands and Samoa Islands. This result suggests that many 

types of volcanoes are capable of generating vertical-CLVD earthquakes, and strengthens the 

link between volcanoes and these anomalous earthquakes.   
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We wish to assess not only the spatial but also the temporal relationships between the vertical-

CLVD earthquakes and volcanism. To assess the likelihood that the earthquakes result, directly 

or indirectly, from active magma transport in the crust, we evaluate whether each vertical-CLVD 

earthquake in our dataset is associated with known eruptive or other volcanic activity. Below, we 

summarize the location of each vertical-CLVD earthquake and its temporal relationship to 

volcanic unrest at nearby volcanoes. First, in chronological order by the first earthquake at each 

volcano, we discuss the 61 vertical-CLVD earthquakes that are spatially and temporally 

associated with volcanic unrest, using eruption reports from the literature. We then summarize 

the locations of the remaining 24 vertical-CLVD earthquakes by geographic location. Unless 

otherwise indicated, the CMT solutions discussed are A-quality and the information about 

specific volcanoes is from the GVP [Siebert and Simkin, 2002-]. 

 

2.4.1. Smith Rock 

Three MW 5.6-5.7 vertical-T earthquakes in the Izu-Bonin volcanic arc have centroid locations 

that are ~10-20 km from Smith Rock, a basaltic pinnacle that forms the southern flank of a 20-

km-wide seamount with an 8-9 km-wide submarine caldera. The first earthquake in the sequence 

is the 13 June 1984 Tori Shima earthquake discussed in Section 2.1. The Tori Shima earthquake 

produced an Mt=7.3 tsunami [Abe, 1988; Satake and Kanamori, 1991], and was followed within 

hours by earthquakes with T-wave trains, which are characteristic for submarine volcanic 

activity [Talandier and Okal, 1987]. The second and third earthquakes occurred on 4 September 

1996 and 1 January 2006. Similar to the Tori Shima earthquake, the 1996 earthquake produced 

an Mt = 7.5 tsunami and is associated with a swarm of low-frequency earthquakes that produced 

T-waves [Sugioka et al., 2000], again suggesting volcanic activity. Both the 1984 and 1996 
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earthquakes are likely associated with magma ascent processes at Smith Rock. The 2006 

earthquake, which has the smallest non-double-couple component, is not linked to any known 

volcanic unrest.  

 

2.4.2. Ol Doinyo Lengai 

An MW 5.4 vertical-P earthquake with a B-quality CMT solution took place in Tanzania on 15 

May 1990. The centroid location is ~25 km from Ol Doinyo Lengai, one of the most active 

volcanoes in the East African Rift. Ol Doinyo Lengai is a stratovolcano, and the only known 

active volcano to erupt natrocarbonatite, a silica-poor, low-temperature, and low-viscosity lava 

[Oppenheimer, 1998]. Before erupting explosively in 2007, Ol Doinyo Lengai erupted effusively 

for nearly 25 years, producing lava flows and spatter cones that were confined to the summit 

crater. Effusive activity was observed both before and after the 15 May earthquake, during 

overflights on 2 May and 9 July 1990  [Smithsonian Institution, 1990a/b], suggesting that the 

vertical-P earthquake is related to this effusive eruption. 

 

2.4.3. Rabaul 

Four MW 5.0 vertical-T earthquakes took place north of New Britain in Papua New Guinea 

between 1991 and 1996. These earthquakes occurred on 6 September 1991, 25 January 1994, 17 

February 1995 and 15 February 1996. The vertical-CLVD earthquakes have A or B-quality CMT 

solutions, and focal mechanisms that are remarkably similar between events. The centroid 

locations are tightly clustered near the tip of the Gazelle Peninsula, ~35 km north of Tavui, a 10-

by-12-km submarine caldera, and ~50 km north of Rabaul, an active pyroclastic shield volcano 

with a nested 9-by-14-km caldera complex surrounded by several small volcanic cones. The last 
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eruption of Tavui occurred approximately 7000 years ago [Nairn et al., 1995; Wood et al., 1995], 

although recent seismic tomography studies indicate the presence of a low-velocity zone beneath 

the submarine caldera [Bai and Greenhalgh, 2005; Itikarai, 2008 as referenced in Johnson et al., 

2010]. Rabaul, on the other hand, has erupted frequently in the last several hundred years. 

Seismic tomography indicates that Rabaul is underlain by two magma chambers, one extending 

from 2-4 km depth, and a deeper chamber extending from 12-18 km depth [Finlayson et al., 

2003; Bai and Greenhalgh, 2005; Itikarai, 2008; Johnson et al., 2010]. 

 

The most recent episode of volcanic unrest at Rabaul began in 1971, and was characterized by 

uplift of the caldera interior and increased seismicity concentrated along an annular structure 

[McKee et al., 1984]. Beginning in September 1983, Rabaul experienced a seismic crisis during 

which tens of thousands of small magnitude, high-frequency earthquakes occurred along an 

outward-dipping ring-fault structure extending to 4-5 km [McKee et al., 1984; Mori and McKee, 

1987; Mori et al., 1989; Jones and Stewart, 1997; Itikarai, 2008; Johnson et al., 2010]. The 

seismic crisis was accompanied by ~80 cm of uplift in the central part of the caldera, although it 

is debated whether the deformation was due to the pressurization of shallow magmatic or 

hydrothermal sources in the caldera block [McKee et al., 1984; Mori and McKee, 1987; Geyer 

and Gottsman, 2010], overpressure of a deep magma reservoir [De Natale and Pingue, 1993], or 

the partial intrusion of a dike along the ring-fault structure [Saunders, 2001; 2005]. After May 

1985, seismicity decreased at Rabaul, and the volcano did not erupt until 1994. 

 

On 19 September 1994, Rabaul began an explosive phase that continues today. Initially, the 

explosive eruption occurred simultaneously at two volcanic cones, Tavurvur on the northeast 
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side, and Vulcan on the west side of the caldera. Activity at Vulcan ceased by 2 October 1994, 

although explosive eruptions at Tavurvur continue to occur intermittently. The first two vertical-

CLVD earthquakes occur before the start of explosive activity in September 1994, and are not 

associated with increases in the rate of seismicity or other unusual activity at the volcano. The 

remaining two vertical-CLVD earthquakes occur after the start of the 1994 eruption, and are 

associated with elevated seismicity and explosions at Tavurvur [Smithsonian Institution, 1995a; 

1996]. Leveling measurements indicate that the 1995 earthquake is associated with deflation, 

whereas the 1996 earthquake is associated with slight inflation of the central caldera block 

[Smithsonian Institution, 1995; 1996b]. All four vertical-CLVD earthquakes at Rabaul are 

temporally associated with volcanic unrest. However, the events do not seem to be linked to a 

specific type of shallow eruptive activity in the caldera itself. This suggests that the earthquakes 

are linked to deformation occurring at deeper levels of the volcano. 

 

2.4.4. Vailulu’u 

Four MW 4.8-4.9 vertical-P earthquakes with B or C-quality CMT solutions took place in the 

Samoa Islands on 10 and 11 January 1995 (Figure 2.9). These earthquakes have centroid 

locations within 10 km of Vailulu’u, a recently discovered massive submarine volcano with a 2-

km-wide caldera. Vailulu’u is believed to mark the current location of the Samoan hotspot [Hart 

et al., 2000]. The vertical-P earthquakes are spatially and temporally associated with an 

anomalous swarm of mb < 5.0 earthquakes that occurred northwest of the volcano from 9-29 

January 1995. Acoustic T-waves were also recorded by a local hydrophone array from 8 January 

through early February 1995 [Smithsonian Institution, 1995b]. Besides the January 1995 swarm, 

a search of the NEIC catalog (1973-present) finds no other examples of teleseismically-detected 
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earthquakes located within 100 km of Vailulu’u. Both the unusual locations of the January 1995 

earthquakes, and the fact that all of the earthquakes have similar magnitudes, suggest that the 

swarm is associated with magmatic activity [Konter et al., 2004]. Indeed, radiometric ages of 

dredge samples from a 1999 cruise confirm that a volcanic eruption occurred in the summit 

crater of Vailulu’u within the prior 5-10 years [Hart et al., 2000]. The four events for which we 

have obtained CMT solutions show a clear association with this volcanic activity. 

 

 

Figure 2.9. Map showing focal mechanisms for the four vertical-P earthquakes associated with 
an anomalous earthquake swarm that occurred at Vailulu’u volcano in January 1995. Red dots 
show the locations of M > 4 earthquakes from the NEIC catalog that occurred between 9 and 129 
January 1995. Bathymetry is from the Global Multi-Resolution Topography (GMRT) synthesis 
[Ryan et al., 2009] used in GeoMapApp (http://www.geomapapp.org). 
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2.4.5. Loihi 

An MW 4.9 vertical-T earthquake with a C-quality CMT solution occurred in Hawaii on 27 July 

1996. The centroid location for this earthquake is ~20 km from Loihi, the youngest volcano in 

the Hawaiian chain. Loihi is a submarine volcano with a well-defined summit platform that 

contains several pit craters and an active hydrothermal system. Eleven days prior to the vertical-

T earthquake, on 16 July 1996, the largest earthquake swarm ever recorded in the Hawaiian 

Islands began at Loihi. The following description of the swarm is a summary of results from 

Duennebier et al. [1997] and Caplan-Auerbach and Duennebier [2001].  

 

The 1996 swarm can be divided into two distinct phases. The initial phase lasted from 16 to 18 

July, and was characterized by 170 ML > 1 high-frequency volcano-tectonic earthquakes. After a 

brief hiatus on 19 July, when there were no locatable earthquakes at Loihi, the second phase 

commenced and the cumulative seismic moment increased dramatically. Thousands of 

earthquakes with magnitudes up to ML 4.9 were located near Loihi through 9 August. The 

second phase of the swarm, which consisted of predominantly long-period earthquakes, had two 

main pulses of activity, the first occurring between 20 and 25 July, and the second occurring 

between 26 July and 5 August. The vertical-T earthquake occurred during the second pulse of 

seismic activity in Phase 2. 

 

Beginning on 6 August, submersible dives and bathymetry surveys confirmed that Pele’s Peak, 

formerly the locus of Loihi’s hydrothermal activity, had collapsed to form a new pit crater, 

Pele’s Pit, with a diameter of 600 m and a depth of 300 m [Duennebier et al., 1997]. Although 

high-temperature hydrothermal plumes were observed, and popping noises were detected by 
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sonobuoys, evidence of an ongoing eruption was not observed, and fresh lava recovered from the 

summit has been shown to predate the earthquake swarm by several months [Duennebier et al., 

1997; Garcia et al., 1998, 2006]. The cause of the 1996 collapse of Pele’s Pit is unknown, 

although it may have been triggered by a rapid draining of a shallow magma chamber, either into 

a volcanic rift zone or a deeper magma reservoir [Davis and Clague, 1998; Caplan-Auerbach 

and Duennebier, 2001]. The vertical-T earthquake was likely triggered by rapid magma 

migration or the collapse of the pit crater.  

 

2.4.6. Miyakejima 

Forty-three 4.4 ≤ MW ≤ 5.6 vertical-P earthquakes occurred in the Izu-Bonin volcanic arc 

between 7 July and 18 August 2000 (Figure 2.7). Most of the earthquakes have A-quality CMT 

solutions, although a few CMT solutions have B- or C-quality CMT solutions due to their small 

magnitudes or interference from other earthquakes. With the exception of the final earthquake, 

centroid locations for all of the vertical-P earthquakes are tightly clustered within ~10 km of 

Miyakejima, an 8-km-wide volcanic island formed by a basaltic stratovolcano with several small 

summit calderas. In the summer of 2000, the most intense swarm of earthquakes ever observed 

in Japan began at Miyakejima and migrated northwestwards to Kozushima, signaling the lateral 

propagation of a massive dike intrusion. Following a small submarine eruption, the summit 

crater of Miyakejima began to collapse on 8 July 2000. The collapse continued incrementally 

over a period of ~40 days, producing unusual tilt signals and vertical-P earthquakes. We 

summarize this eruptive activity below. 
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On 26 June 2000, a swarm of small volcanic earthquakes was observed beneath Miyakejima’s 

southwestern flank. Over a period of a few hours, seismicity intensified and migrated westwards 

from the island, resulting in a small submarine eruption of basaltic andesite from four craters off 

the west coast of Miyakejima on 27 July [Fujita et al., 2001; Sakai et al., 2001; Amma-Miyasaka 

et al., 2005; Kaneko et al., 2005; Uhira et al., 2005]. Following the eruption, the swarm 

continued to migrate ~30 km northwestward, and reached the area between Kozushima and 

Niijima islands by 1 July [Sakai et al., 2001; Fujita et al., 2001]. Intense seismicity was observed 

in the area between Miyakejima and Kozushima through September 2000, and over 600 M ≥ 4 

earthquakes, and five M ≥ 6 earthquakes were observed in total [Ito and Yoshioka, 2002; Toda et 

al., 2002; Minson et al., 2007]. Analysis of data from island GPS stations indicates that 1-2 km3 

of magma was intruded during this episode [Nishimura et al., 2001; Toda et al., 2002; Ozawa et 

al., 2004]. Crustal extension northwest of Miyakejima was coincident with contraction of the 

island, which indicates that a large portion of the magma was sourced from crustal magma 

chambers beneath the volcano, although additional magma may have been sourced from sub-

crustal magma reservoirs located between Miyakejima and Kozushima [Nishimura et al., 2001; 

Ozawa et al., 2004; Yamaoka et al., 2005; Murase et al., 2006].  

 

Beginning on 4 July, seismicity beneath the summit area of Miyakejima was reactivated as the 

roof of the magma reservoir began to collapse [Nakada et al., 2005; Sakai et al., 2001]. As 

confirmed by gravity and electromagnetic data, shallowing seismicity resulted from the upward 

migration of a stoping column and the formation of a shallow cavity beneath the summit area 

[Kikuchi et al., 2001; Geshi et al., 2002; Sasai et al., 2002; Furuya et al., 2003]. On 8 July, 

coincident with a small phreatic eruption, an 800-m-wide area of the summit collapsed ~200 m, 
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producing a caldera with an initial volume of 5.6x107 m3 [Nakada et al., 2005]. Miyakejima’s 

caldera continued to collapse incrementally through mid-August, resulting in a 1.6-km-wide 

caldera with an average depth of 450 m [Nakada et al., 2005]. Small phreatic or 

phreatomagmatic eruptions took place along the southern rim of the volcano on 14-15 July, 10 

August and 13 August [Nakada et al., 2005; Geshi and Oikawa, 2008]. On 13 August, the 

composition of the erupted magma changed from basaltic andesite sourced from a shallow 

magma chamber at 3-5 km depth to basalt sourced from a deeper magma reservoir between 8-10 

km depth [Amma-Miyasaka et al., 2005; Kaneko et al., 2005; Saito et al., 2005]. On 18 August, a 

vulcanian to subplinian eruption produced a 16-km-high eruption column [Nakada et al., 2005]. 

After this eruption, extremely large amounts of volcanic gases began to be emitted from the 

summit crater of Miyakejima, and the island was evacuated [Kazahaya et al., 2004]. 

 

The caldera collapse of Miyakejima is believed to have been accommodated by slip on inward- 

and outward-dipping ring-fault structures [Geshi et al., 2002; Geshi, 2009]. Individual collapse 

episodes produced simultaneous tilt changes [Ukawa et al., 2000; Yamamoto et al., 2001] and 

variations in the electric and magnetic fields [Sasai et al., 2001; 2002], as well as, in most cases, 

very-long-period (VLP) seismic signals [Kikuchi et al., 2001; Kumagai et al., 2001]. In total, 46 

major tilt steps were identified between the first explosive eruption on 8 July and the largest 

explosive eruption on 18 August [Yamamoto et al., 2001]. These tilt steps, which are 

characterized by an abrupt uplift of the summit area [Ukawa et al., 2000], have been variably 

explained by the opening of sill-like tensile cracks [Fujita et al., 2002; 2004] and the elastic 

response of the edifice to downward motion of the caldera block [Michon et al., 2009; 2011]. 

Thirty-nine of these tilt steps were also accompanied by regionally recorded VLP seismic pulses 
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with durations of ~30-65 s [Kikuchi et al., 2001; Kumagai et al., 2001; Ohminato and Kumagai, 

2001]. In several cases, the VLP pulses were preceded by swarms of shallow M1-2 earthquakes 

that increased in frequency before each event [Kobayashi et al., 2003]. Full-moment-tensor 

solutions for the VLP signals calculated by Kikuchi et al. [2001] and Kumagai et al. [2001] are 

dominated by positive volumetric components, and those events with larger volumetric changes 

tend to have longer recurrence intervals. So far, the VLP signals have been explained by piston 

collapse [Kumagai et al., 2001; Stix and Kobayashi, 2008] and a hydrothermal expansion model 

[Kikuchi et al., 2001]. However, a source process consisting of dip-slip motion on a caldera ring 

fault may be a viable alternative [Ekström and Nettles, 2002]. 

 

Of the 43 vertical-P earthquakes we identify in this study, 39 correspond to the VLP signals 

described in Kikuchi et al. [2001]. The four additional events we study occurred on 7 July, 9 

July, 30 July and 18 August. The 7 July event is an MW 4.4 earthquake that took place before the 

start of the caldera collapse, and the remaining three events are associated with tilt steps [Fujita 

et al., 2004]. The 18 August earthquake occurred during the climax of the Miyakejima’s largest 

explosive eruption [Nakada et al., 2005]. The centroid location for the 18 August earthquake is 

~25 km away from Miyakejima, whereas all of the other events are within ~10 km of the 

volcano. CMT solutions with the centroid location fixed to the volcano provide a poorer fit to the 

data, which may suggest that the final earthquake has a slightly different location or source 

process. All of the vertical-P earthquakes are closely linked to volcanic activity at Miyakejima, 

and specifically to the collapse of the caldera roof block into the deflating shallow magma 

reservoir.  
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2.4.7. Nyiragongo 

As discussed in Section 2.1, Shuler and Ekström [2009] identified five 4.6 ≤ MW ≤ 5.3 vertical-P 

earthquakes near Nyiragongo, a stratovolcano in the Democratic Republic of the Congo, between 

2002 and 2005. The first three vertical-P earthquakes occurred on 21 and 22 January 2002, days 

after a regional rifting episode reopened fractures on Nyiragongo’s southern flanks and ruptured 

the volcanic edifice resulting in a catastrophic fissure eruption on 17 January [Allard et al., 2002; 

Komorowski et al., 2002/2003; Tedesco et al., 2007]. These three vertical-P earthquakes 

occurred between the end of the 12-hr effusive eruption and the collapse of Nyiragongo’s 

summit crater, which had previously contained a solidified lava lake. These earthquakes are 

attributed to dip-slip motion along an inward-dipping ring fault located above a deflating shallow 

magma reservoir [Shuler and Ekström, 2009].  

 

The five earthquakes identified by Shuler and Ekström [2009] are Category 2 events from the 

Surface Wave catalog. Analysis of Category 1 earthquakes in this study allowed us to identify 

one additional vertical-P earthquake associated with the 2002 eruption, an MW 5.1 earthquake 

that took place on 20 January 2002. This earthquake has a C-quality CMT solution and a 

centroid location ~15 km from Nyiragongo. This earthquake occurred before the three previously 

identified vertical-P earthquakes, between the end of the effusive eruption and the collapse of the 

summit crater, and can likely be explained by the same physical mechanism. 

 

2.4.8. Stromboli 

An MW 4.3 vertical-T earthquake with a C-quality CMT solution took place on 5 April 2003. 

The centroid location for this earthquake is ~15 km from Stromboli, the northernmost 
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stratovolcano in the Aeolian Islands near Sicily, Italy. This earthquake occurred during a 

paroxysmal explosion, the largest vulcanian eruption at Stromboli since 1930. The so-called 

‘paroxysm’ was recorded by the local multiparametric monitoring network and directly observed 

from a helicopter. We summarize the main results from the literature below. 

 

The 2003 paroxysm occurred during an effusive eruption at Stromboli that began in December 

2002. Although the paroxysm was not preceded by any obvious precursors, in hindsight, 

increased release of magmatic gases was observed in the month before the event, which may 

have indicated that gas-rich magma had ascended in the shallow plumbing system [Aiuppa and 

Federico, 2004; Carapezza et al., 2004; Rizzo et al., 2008]. Ash emission and temperature 

increase at the bottom of the obstructed summit craters were also observed immediately before 

the paroxysm [Calvari et al., 2006]. Three minutes before the explosion, on 5 April 2003 at 

7:10:25 UTC, the temperature of one summit crater increased dramatically and a thick gas plume 

was erupted [Calvari et al., 2006]. At 7:13:05, reddish ash was emitted and a dark cloud with a 

cauliflower-shape grew above the crater [Calvari et al., 2006; Rosi et al., 2006; Harris et al., 

2008]. After the initial explosion expanded to a second summit crater, an extremely powerful 

blast produced a shock wave that was observed on a local seismic station at 7:13:37 [Calvari et 

al., 2006; Harris et al., 2008]. The 2003 paroxysm, which lasted 9 min, launched meter-sized 

ballistic blocks from the summit crater and produced an eruptive column that collapsed into 

pyroclastic flows [Calvari et al., 2006]. Like other paroxysms at Stromboli, the 2003 paroxysm 

erupted aphyric golden pumice, likely caused by the rapid ascent of undegassed basaltic magma 

[Bertagnini et al., 2003; Métrich et al., 2005; Francalanci et al., 2008; Allard, 2009]. 
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The 2003 paroxysm was recorded by broadband seismometers deployed on and around 

Stromboli. At 7:12:42, a high-frequency signal likely associated with vesiculation began, and at 

7:13:35, a powerful 12-s VLP event was observed in association with the main blast [D’Auria et 

al., 2006; Ripepe and Harris, 2008]. A source inversion of the main blast signal retrieved a 

combination of a vertical-CLVD earthquake and a downward force with an equivalent magnitude 

of MW 3.7 [Cesca et al., 2007]. Additionally, an ultra-long-period (ULP) signal starting 4 min 

before and terminating 1 min after the main blast was also observed [Cesca et al., 2007]. The 

ULP signal has been variably interpreted as tilt caused by the rapid ascent and ejection of magma 

[D’Auria et al., 2006] and as an MW 3.0 slow thrust-faulting event [Cesca et al., 2007]. This 

signal is unlikely to be source of the vertical-T earthquake that we identify in this study because 

the amplitude of the ULP signal on the vertical component is more than an order of magnitude 

lower than the amplitude of the horizontal components. The vertical-T earthquake at Stromboli 

has a centroid time of 7:13:45.5, which suggests that the earthquake is associated with the VLP 

event and the main blast of the paroxysmal explosion.  

 

2.4.9. Sierra Negra 

An MW 5.5 vertical-T earthquake took place in the western Galápagos Islands on 22 October 

2005. The centroid location for this event is immediately south of Isabela Island, ~30 km from 

Sierra Negra, the largest shield volcano in the Galápagos Islands. Sierra Negra has a subaerial 

extent of 60-by-40 km, and contains a shallow 7-by-10-km summit caldera. The interior of Sierra 

Negra’s caldera contains a 14-km-long C-shaped sinuous ridge composed of normally-faulted 

blocks with steep outward-dipping fault scarps [Reynolds et al., 1995]. It has been suggested that 

this fault system was formed by a series of repeated trapdoor-faulting events driven by magma 
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accumulation [Reynolds et al., 1995; Amelung et al., 2000; Jónsson et al., 2005; Chadwick et al., 

2006; Jónsson, 2009] in Sierra Negra’s ~2-km deep sill-like magma chamber [Amelung et al., 

2000; Yun et al., 2005]. During a trapdoor-faulting event, the crust above the magma chamber 

hinges upwards like a trapdoor on one side of the caldera [Amelung et al., 2000]. 

 

Trapdoor-faulting events in 1997-1998 and on 16 April 2005 are characterized by maximum 

uplift just north of the sinuous ridge in the southern part of the caldera [Amelung et al., 2000; 

Jónsson et al., 2005; Chadwick et al., 2006; Jónsson, 2009]. An mb 4.6 earthquake is associated 

with the April 2005 trapdoor-faulting event, during which a GPS station located near the sinuous 

ridge was uplifted 84 cm within 10 s [Chadwick et al., 2006]. Although the 1997-1998 trapdoor-

faulting event was originally attributed to slip along steep outward-dipping normal faults 

[Amelung et al., 2000], a revised faulting model consisting of 67-74° inward-dipping thrust faults 

is compatible with the deformation data from both the 1997-1998 and April 2005 trapdoor-

faulting events [Chadwick et al., 2006; Jónsson, 2009].  

 

On 22 October 2005 at 23:30 UTC, Sierra Negra began erupting after a repose period of 26 

years. The start of the eruption was accompanied by a 13-km-high plume of ash and steam, after 

which the eruption transitioned to a 2-km-long curtain of fire fountains inside the northern rim of 

the caldera [Geist et al., 2008]. Over the next 8 days, ~150x106 m3 of basalt were erupted and the 

center of the caldera subsided over 5 m [Yun, 2007; Geist et al., 2008]. No precursors to the 

eruption were observed, except for the MW 5.5 vertical-T earthquake that occurred at 20:34 on 22 

October, approximately 3 hours before the start of the eruption. Unfortunately, the GPS network 

failed 16 hours prior to the start of the eruption so deformation associated with this event is 
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poorly constrained [Geist et al., 2008]. Yun [2007] modeled interferograms that span the 

earthquake and the eruption, and found that the deformation can be explained by a model that 

includes a trapdoor-faulting event centered on the western part of the sinuous ridge.  The 1.5 m 

of maximum dip-slip at the surface estimated by Yun [2007] is consistent with field 

measurements of dip-slip displacements on vertical fault scarps in the southern and western parts 

of the sinuous ridge [Geist et al., 2008]. The vertical-T earthquake is closely associated with this 

period of eruptive activity, and may be associated with a trapdoor-faulting event. 

 

2.4.10. Tungurahua 

An MW 4.4 vertical-P earthquake with a C-quality CMT solution took place in Ecuador on 17 

August 2006. The centroid location for this earthquake is ~25 km from Tungurahua, one of the 

most active volcanoes in the Andes [Hall et al., 1999]. Tungurahua is a large andesitic 

stratovolcano that has been erupting intermittently since 1999. In 2006, explosive eruptions on 

14 July and 16-17 August produced widespread pyroclastic flows, resulting in loss of life and 

evacuation of settlements along the flanks of the volcano. The vertical-P earthquake occurred 

during the paroxysmal phase of the VEI 3 (Volcanic Explosivity Index, Newhall and Self, 1982) 

16-17 August eruption, Tungurahua’s most violent eruption since activity began in 1999. 

 

The August 2006 eruption was preceded by the growth of a bulge on the northern flank of the 

volcano between 11 and 16 August [Smithsonian Institution, 2006], and by 16 hours of 

uninterrupted, escalating seismic tremor and tephra fallout [Arellano et al., 2008]. The eruption 

began on 16 August at 19:30 UTC, and by 22:00, lava fountains reached a height of 100-200 m 

above the vent [Barba et al., 2006]. Around 03:00 on 17 August, numerous pyroclastic density 
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currents were observed [Barba et al., 2006] and the ash plume rose to a height of 13.25 km [Fee 

et al., 2010]. Between 04:00 and 05:00, the lava fountains reached ~1.5 km, and at ~05:30 the 

start of the paroxysmal phase of the eruption began [Barba et al., 2006; Fee et al., 2010]. The 

vertical-P earthquake took place shortly thereafter, at 05:37 UTC. 

 

The paroxysmal phase of the 16-17 August eruption lasted 50 minutes, and was characterized by 

a dramatic increase in acoustic power, as well as a shift in the infrasonic jetting spectrum 

towards lower frequencies [Matoza et al., 2009; Fee et al., 2010]. The height of the ash cloud 

grew to over 24 km, and ash was injected into the stratosphere while lava fountaining continued 

at heights of over 1 km  [Fee et al., 2010; Steffke et al., 2010]. Numerous pyroclastic density 

currents and heavy ashfall were observed [Barba et al., 2006]. At 06:20, the eruptive activity 

dropped off sharply and by ~07:30, the tremor was at background levels [Fee et al., 2010]. In 

total, the eruption lasted 11 hours, and produced 2x107 m3 of magma and 35,000 tons of SO2 

[Arellano et al., 2008; Carn et al., 2008; Fee et al., 2010]. Hours after the end of the eruption, 

the effusion of slow-moving blocky lava flows was observed [Arellano et al., 2008; Hanson et 

al., 2011; Samaniego et al., 2011]. It has been suggested that the end of the August 2006 

eruption may have resulted from the slow ascent of a more-viscous magma [Hanson et al., 

2011].  

 

A series of VLP events was observed during the August 2006 eruption [Kumagai et al., 2007a/b; 

Kumagai et al., 2010]. These events started at 05:30 UTC on 17 August, and are characterized by 

impulsive signatures with dominant periods of 20-50 s [Kumagai et al., 2007b]. The vertical-P 

earthquake that we identify in this study is likely the same event as ‘VLP2’ from Kumagai et al. 
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[2010]. In a waveform inversion using seismic data from two local broadband stations, Kumagai 

et al. [2010] modeled this event as an isotropic source at 3 km depth, and hypothesized that the 

volumetric change was caused by bubble growth due to newly supplied magma. However, it 

seems possible that the vertical-P earthquake could have been generated by a collapse inside the 

magmatic plumbing system, as at Nyiragongo and Miyakejima. 

 

2.4.11. Curtis Island 

On 17 February 2009, the largest well-documented vertical-CLVD earthquake, an MW 5.8 

vertical-T event took place in the Kermadec Islands north of New Zealand. The centroid location 

is ~2 km from Curtis Island. Together with Cheeseman Island, Curtis Island is the subaerial 

portion of a submarine dacitic volcano located along the Kermadec Ridge [Doyle et al., 1979; 

Smith et al., 1988]. Curtis Island has a subaerial extent of 500-by-800 m and contains a crater 

with active fumaroles. Although uplift of 7 m was documented at Curtis Island between 1929 

and 1964 [Doyle et al., 1979], the date of Curtis Island’s last eruption is unknown. One month 

prior to the vertical-T earthquake, from 17 to 19 January 2009, earthquakes with T-wave phases 

were recorded on the Polynesian seismic network [Smithsonian Institution, 2009], suggesting a 

possible eruption near the volcano. As Curtis Island is a remote volcano, this activity was not 

confirmed. Because no thermal alerts were issued by the MODVOLC system [Wright et al., 

2002, 2004] through April 2009 [Smithsonian Institution, 2009], the vertical-T earthquake is 

likely associated with magma migration within the volcanic edifice or magmatic plumbing 

system of Curtis Island rather than a volcanic eruption. 
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2.4.12. NW Rota-1 

On 19 April 2009, an MW 4.9 vertical-P earthquake with a C-quality CMT solution took place in 

the Mariana Islands. The centroid location for this earthquake is ~60 km from NW Rota-1, a 

recently detected submarine volcano with an active hydrothermal system [Embley et al., 2006]. 

NW Rota-1 is a steep-sided basaltic to basaltic-andesitic cone with a diameter of 16 km and a 

summit depth of ~500 m [Embley et al., 2006; Chadwick et al., 2008]. In 2004, the first 

explosive submarine eruptions ever to be observed were witnessed at NW Rota-1 [Embley et al., 

2006]. Repeated dives indicate eruptive activity is characterized by nearly continuous 

Strombolian eruptions [Chadwick et al., 2008].  

 

In mid-April 2009, an unusual sequence of earthquakes near NW Rota-1 was detected by both 

the NEIC and by a hydrophone moored in the summit of the volcano [Chadwick et al., 2012]. 

The peak seismicity was observed on 17 April, the first day of the 4-day swarm, when the 

hydrophone recorded a continuous broadband acoustic signal that lasted for ~24 hours 

[Chadwick et al., 2012]. The April 2009 swarm closely resembles another earthquake sequence 

that occurred near NW Rota-1 in 1997 [Heeszel et al., 2008; Chadwick et al., 2012]. Both 

swarms have been attributed to magmatic sources [Heeszel et al., 2008; Chadwick et al., 2012].  

The seismic swarm and the vertical-P earthquake may be associated with a magmatic intrusion or 

the inflation of a shallow magma chamber. A large volcanic eruption and subsequent landslide 

took place at NW Rota-1 in August 2009 [Chadwick et al., 2012]. 
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2.4.13. Other Vertical-CLVD Earthquakes 

The remaining 24 vertical-CLVD earthquakes identified in this study are not associated with 

documented episodes of volcanic unrest at nearby volcanoes. Several of these earthquakes occur 

in spatial clusters near individual volcanoes. We summarize the locations of the vertical-CLVD 

earthquakes, starting in Cascadia and moving counterclockwise around the Pacific Ocean. Unless 

otherwise indicated, the earthquakes have A-quality CMT solutions. 

 

An MW 4.7 vertical-P earthquake with a B-quality CMT solution took place on 19 March 1994 

along the Gorda Ridge, north of the Mendocino Fracture Zone off the coast of Oregon. This 

earthquake occurred near the boundary between the Central and Phoenix ridge segments, and is 

not associated with any unusual earthquake swarms or reported eruptions along either segment.  

 

On 4 December 1999, an MW 5.1 vertical-P earthquake with a B-quality CMT solution occurred 

in the Andreanof Islands in the central Aleutians. The centroid location for this earthquake is ~40 

km from Tanaga, Takawangha and Gareloi volcanoes. All three of these volcanoes are 

stratovolcanoes. Tanaga last erupted in 1914, and Gareloi last erupted in 1989. Takawangha has 

no known historical eruptions, although radiocarbon data indicates that explosive eruptions have 

occurred there in the past several hundred years. 

 

Four vertical-CLVD earthquakes that are not associated with volcanic unrest took place in Japan. 

The first earthquake is an MW 5.3 vertical-T earthquake that occurred on 16 May 1978 in 

Northern Honshu near Hokkaido. This earthquake is not located near any recently active 
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volcanoes, but the centroid location is ~40 km from Osore-yama, a historically active 

stratovolcano with a 5-km-wide caldera.  

 

An MW 5.7 vertical-P earthquake occurred on 9 September 1996 in the Ryukyu Islands near 

Kyushu. The centroid location for this earthquake is ~70 km from Kuchinoerabu-jima and Kikai 

volcanoes. Kikai is a 19-km-wide caldera that erupted in 1997 and 1998. Kuchinoerabu-jima is a 

group of young stratovolcanoes that produces frequent explosive eruptions. The vertical-P 

earthquake occurred during a seismic swarm at Kuchinoerabu-jima [Iguchi et al., 2001]. 

However, an earthquake aftershock survey by Sekitani et al. [1997] confirms that the earthquake 

we study occurred on Tanegashima Island, ~60 km east of the volcanic arc. Therefore, it seems 

unlikely that this earthquake is associated with the Kuchinoerabu-jima magmatic activity. 

 

Two MW 5.2-5.3 vertical-T earthquakes have centroid locations ~15 km from Kita-Iwo-Jima, a 

deeply eroded stratovolcano in Japan’s Volcano Islands. The first earthquake occurred on 20 

August 1992 and the second earthquake occurred on 12 June 2008. Numerous eruptions have 

been reported from Funka-Asane, a submarine vent located 2 km northwest of Kita-Iwo-Jima, 

but no eruptions were reported during the times of the vertical-T earthquakes. 

 

An MW 4.7 vertical-P earthquake with a C-quality CMT solution took place on 11 April 2008 in 

the Mariana Islands. The centroid location for this earthquake is ~110 km west of the volcanic 

arc and is likely associated with the Mariana Trough, an actively spreading back-arc basin 

separating the Mariana Ridge, a remnant volcanic arc, from the active volcanoes of the Mariana 
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Arc. No specific volcanic activity has been reported at this location near the time of the 

earthquake. 

 

On 25 February 2005, an MW 4.9 vertical-P earthquake with a B-quality CMT solution occurred 

in Luzon in the Philippines. The centroid location for this earthquake is ~75 km from Masaraga 

and Mayon volcanoes. Masaraga is a Holocene stratovolcano, and Mayon is a stratovolcano that 

has frequent explosive eruptions. Mayon had small-scale explosive eruptions from June to 

September 2004, but was not erupting during the time of the vertical-P earthquake. 

 

An MW 5.6 vertical-P earthquake with a B-quality CMT solution took place on 29 June 1999 in 

East Papua New Guinea. The centroid location for this earthquake is ~35 km from an active 

hydrothermal field called Musa River, ~60 km from Madilogo, a Holocene pyroclastic cone, and 

~70 km from Managlase Plateau, a Holocene volcanic field. The earthquake is also located ~75 

km from Lamington, a stratovolcano that last erupted in 1956. The vertical-P earthquake is not 

linked to unrest at any of these volcanoes. 

 

Two vertical-CLVD earthquakes with C-quality CMT solutions occurred in the Vanuatu Islands 

region in 2008. The first earthquake is an MW 4.9 vertical-T earthquake that took place on 22 

July 2008. The centroid location for this earthquake is ~90 km from North Vate, a Holocene 

stratovolcano.  The second earthquake is an MW 5.0 vertical-T earthquake that occurred on 18 

November 2008. The centroid location for this earthquake is ~35 km from Traitor’s Head, a 

historically active stratovolcano, and ~85 km from Yasur, a stratovolcano that was producing 

continuous strombolian and vulcanian eruptions during this time. We do not link the 18 
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November 2008 earthquake to the volcanic activity at Yasur due to the large distance between 

the centroid location and the volcano. 

 

Eight vertical-CLVD earthquakes, three vertical-P and five vertical-T events, are located in the 

Tonga and Fiji Islands region. The vertical-P earthquakes occurred between 1994 and 2002. The 

first event is an MW 4.8 earthquake with a B-quality CMT solution that occurred near the 

Mangatolo Triple Junction on 8 November 1994. The centroid location for this earthquake is ~30 

km from Tafahi, a Holocene stratovolcano, and ~45 km from Curacoa, a submarine volcano that 

last erupted in 1979. The second event is an MW 4.8 earthquake with a C-quality CMT solution 

that occurred on 9 September 1995 along the Fonualei Rift and Spreading Center (FRSC). The 

third event is an MW 4.7 earthquake with a C-quality CMT solution that occurred on 16 August 

2002. The centroid location for this earthquake is ~60 km from Falcon Island, a submarine 

volcano that last erupted in 1936, and ~70 km from Hunga Tonga-Hunga Ha’apai, a submarine 

volcano that erupted in 1988 and 2009. None of the vertical-P earthquakes are linked to 

documented episodes of volcanic unrest. 

 

The five vertical-T earthquakes that took place in the Tonga and Fiji Islands regions occurred 

over a 20 year period between 1979 and 2009. The northernmost earthquake is an MW 5.3 

earthquake that took place on 16 January 1994. The centroid location for this earthquake is ~20 

km from Hunga Tonga-Hunga Ha’apai, a submarine volcano with a 4-5-km-wide caldera that 

experienced a Surtseyan eruption in March 2009 [Vaughan and Webley, 2010]. The remaining 

four events are MW 5.5 earthquakes that occurred on 1 October 1979, 7 August 1999, 10 

November 2004, and 26 May 2009. The 1979 earthquake has a B-quality CMT solution and the 



 96 

three other earthquakes have A-quality CMT solutions. All four of these vertical-T earthquakes 

have centroid locations clustered ~10-15 km from an Unnamed submarine volcano (0403-01 in 

IAVCEI’s Catalog of Active Volcanoes of the World). The last confirmed eruption from 

Unnamed volcano (0403-01) was in 1932. The centroid locations for these earthquakes are also 

~20 km from Unnamed volcano (0403-011), a Holocene submarine volcano, and ~45-50 km 

from Unnamed volcano (0403-03), a submarine volcano that last erupted in 1999. None of these 

vertical-T events are associated with documented eruptive activity. 

 

Finally, five vertical-T earthquakes are located in the remote South Sandwich Islands. Three MW 

5.3-5.4 earthquakes took place in the northern South Sandwich Islands on 9 September 1978, 5 

September 1997 and 18 January 2001. These earthquakes have A- or B-quality CMT solutions 

and centroid locations that are clustered within ~15 km of Zavodovski, the northernmost 

subaerial volcano in the South Sandwich Islands. Zavodovski is a stratovolcano with active 

fumaroles that last erupted in 1819. Centroid locations for these earthquakes are also ~40 km 

from Hodson, a Holocene stratovolcano. The remaining two vertical-T earthquakes took place in 

the southern South Sandwich Islands on 23 and 31 August 2005. Centroid locations for these MW 

5.1 and MW 5.5 earthquakes are located ~30 and ~55 km from Thule Islands volcanoes. The 

Thule Islands consist of a group of stratovolcanoes and calderas that have produced several 

explosive eruptions in the last hundred years. The 2005 earthquakes also have centroid locations 

~50 and ~85 km from Bristol Island, a historically active stratovolcano that last erupted in 1956. 

None of the vertical-T earthquakes in the South Sandwich Islands are associated with 

documented volcanic unrest, although visual observations of the South Sandwich Islands are 

limited to a few days each year [LeMasurier et al., 1990]. 
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2.5. Discussion 

After investigating 395 target earthquakes located within ~100 km of volcanoes with 

documented eruptions in the last ~100 years, we have identified 86 shallow vertical-CLVD 

earthquakes with magnitudes 4.3 ≤ MW ≤ 5.8. We find that the vast majority of the vertical-

CLVD earthquakes are located, within error, at volcanoes. Of the vertical-CLVD earthquakes 

investigated in this study, we find that ~80% are located within 30 km and ~90% are located 

within 50 km of a known volcanic center. For those earthquakes that are linked to documented 

episodes of volcanic unrest at active volcanoes, ~90% are located within 30 km of the source 

volcano, and the farthest earthquake is located ~60 km away. Even for vertical-CLVD 

earthquakes that are not linked to episodes of volcanic unrest, ~50% are located within 30 km of 

a known volcano. The vertical-CLVD earthquakes are associated with more than 20 active 

volcanoes around the world. 

 

The vertical-CLVD earthquakes identified in this study all have shallow depths. During the CMT 

inversion process, all of the centroid depths were fixed by the inversion process to 12 km to 

prevent them from moving shallower, and body-wave modeling suggests that the vertical-CLVD 

earthquakes occur in the top 10 km of the crust. Given that most vertical-CLVD earthquakes are 

tightly clustered around active volcanoes, the shallow depth estimates suggest that they are likely 

associated with deformation inside or immediately beneath volcanic edifices.  

 

Overall, ~70% of the vertical-CLVD earthquakes identified in this study are spatially and 

temporally associated with documented volcanic unrest. Breaking this down by earthquake type, 

~40% of vertical-T earthquakes and ~85% of vertical-P earthquakes are linked to volcanic 
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unrest. If the earthquakes associated with the Miyakejima caldera collapse are excluded, ~45% of 

the remaining vertical-P earthquakes occur during documented episodes of volcanic unrest at a 

nearby volcano. Volcanic unrest is underreported, especially in remote regions and in cases 

where unrest is not soon followed by an eruption [Moran et al., 2011], so the percentage of 

vertical-CLVD earthquakes associated with volcanic activity is likely to be even higher than is 

documented here. Most shallow vertical-CLVD earthquakes located near volcanoes are thus 

likely related to some type of volcanic unrest.  

 

Shallow vertical-CLVD earthquakes near recently active volcanoes represent a small fraction of 

earthquakes described in the GCMT and Surface Wave catalogs. Including events analyzed by 

Nettles and Ekström [1998], only ~0.1% of earthquakes described in the GCMT catalog from 

1976 to 2009 are shallow vertical-CLVD earthquakes located near recently active volcanoes. 

Likewise, including events analyzed by Shuler and Ekström [2009], only ~2% of Category 1 and 

2 earthquakes in the Surface Wave catalog from 1991 to 2009 are shallow vertical-CLVD 

earthquakes located near recently active volcanoes. Considering that at least 20 volcanoes around 

the world are erupting at any given time, it is clear that not all volcanic activity generates 

vertical-CLVD earthquakes. Certain stress and/or structural conditions may be required to 

generate this type of earthquake. Below we examine potential correlations between vertical-

CLVD earthquakes and tectonic setting as well as volcano type.  

 

Shallow vertical-CLVD earthquakes are located near volcanoes in many tectonic and geographic 

settings. The majority of vertical-CLVD earthquakes are located near arc volcanoes in 

subduction zones, mostly in the circum-Pacific region. Although many vertical-CLVD 
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earthquakes are located in subduction zones along the western rim of the Pacific Ocean, and few 

vertical-CLVD earthquakes are located in South or Central America, or in the Cascade, Aleutian 

or Kurile-Kamchatka arcs, there does not seem to be an obvious link between the age, geometry, 

or velocity of subducting slabs reported by Syracuse and Abers [2006] and the occurrence of 

vertical-CLVD earthquakes. Vertical-CLVD earthquakes are also associated with hot-spot 

volcanoes in Iceland, Hawaii, the Samoa Islands, and the Galápagos Islands, as well as with 

volcanoes in the East African Rift.  

 

Only a very small number of vertical-CLVD earthquakes, all of the vertical-P type, are located 

along mid-ocean ridge segments. Included in this category are the 19 March 1994, 9 September 

1995 and 11 April 2008 earthquakes. The centroid locations of these earthquakes are over 80 km 

away from the nearest recently active volcano. The locations of these earthquakes, which are 

along back-arc or mid-ocean ridge segments, suggest that these events may be associated with 

extension processes rather than directly with volcanic processes. The small number of vertical-

CLVD earthquakes located along mid-ocean ridges is partly the result of the fact that we 

identified target earthquakes using the database of the GVP, which contains few submarine 

volcanoes located along divergent plate boundaries. However, there is some evidence that 

vertical-CLVD earthquakes may be less likely to occur in the ridge environment. A search 

through the entire GCMT catalog for shallow vertical-CLVD earthquakes with |ε| > 0.33 and 

dominant P or T axes that plunge more steeply than 60° finds only 15 earthquakes located along 

the mid-ocean ridge system. All of the earthquakes are vertical-P events. Given our experience 

with how the addition of surface-wave data affects CMT solutions (Section 2.3.1, Figure 2.4), it 

is possible that many of these events are poorly resolved normal-faulting earthquakes.  
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Vertical-CLVD earthquakes are most commonly associated with submarine volcanoes and 

stratovolcanoes (Table 2.2). Additionally, most of the submarine volcanoes and stratovolcanoes 

closest to vertical-CLVD earthquakes have pre-existing calderas [Siebert and Simkin, 2002- ]. In 

fact, the largest sequence of vertical-CLVD earthquakes is associated with the development of a 

new caldera at Miyakejima. Vertical-CLVD earthquakes are also associated with unrest at 

Rabaul, a pyroclastic shield volcano, and Sierra Negra, a shield volcano. Both of these shield 

volcanoes have calderas with well-documented ring-fault structures. Since ring faults are 

produced during the caldera collapse process, the fact that we observe most vertical-CLVD 

earthquakes at volcanoes with calderas may indicate that vertical-CLVD earthquakes are 

generated by slip on ring-fault structures. 

 

Most volcanoes associated with vertical-CLVD earthquakes erupt basaltic and/or andesitic lavas 

[Siebert and Simkin, 2002-]. Nyiragongo and Ol Doinyo Lengai, the two volcanoes associated 

with vertical-CLVD earthquakes in the East African rift, erupt lavas with some of the lowest 

known silica contents on Earth [Sahama, 1973; Bailey, 1993; Demant et al., 1994]. The 

correlation between vertical-CLVD earthquakes and basaltic-to-andesitic volcanoes may suggest 

that vertical-CLVD earthquakes preferentially occur at volcanoes that erupt low-viscosity 

magmas. However, this observation may also be a consequence of the relatively short time 

period covered by our study since basaltic volcanoes tend to erupt small volumes of lava 

frequently, whereas silicic volcanoes have longer repose periods and larger, less frequent 

eruptions [White et al., 2006].  
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Vertical-CLVD earthquakes are observed during many different types of volcanic unrest. Half of 

all the vertical-CLVD earthquakes identified in this study are associated with the caldera 

collapse of Miyakejima. Vertical-CLVD earthquakes are also associated with a subglacial fissure 

eruption at Bárdarbunga, a fissure eruption at Nyiragongo, elevated seismicity and explosive 

eruptions at Rabaul, an effusive eruption at Sierra Negra, and explosive eruptions at Stromboli 

and Tungurahua. At submarine volcanoes, vertical-CLVD earthquakes are associated with 

anomalous earthquake swarms at Vailulu’u, Loihi, NW-Rota-1 and Curtis Island, as well as 

disproportionately large tsunamis at Smith Rock.  

 

In Figure 2.10, we examine the temporal relationships between vertical-CLVD earthquakes and 

volcanic unrest at 10 volcanoes. We plot vertical-CLVD earthquakes that occurred within five 

years of the start of volcanic eruptions or episodes of unrest at each volcano. For some 

volcanoes, defining the start of an episode of unrest is arbitrary, but we use the following dates 

and times: 1) Bárdarbunga – 30 September 1996, 23:30 UTC [Smithsonian Institution, 1996a], 2) 

Loihi – 17 July 1996, 7:54 UTC, 3) Miyakejima – 26 June 2000, 9:00 UTC [Nishimura et al., 

2001], 4) NW Rota-1 – 17 April 2009, 4:43 UTC, 5) Nyiragongo – 17 January 2002, 6:25 UTC 

[Tedesco et al., 2007], 6) Rabaul 18 September 1994, 20:00 UTC [Smithsonian Institution, 

1994], 7) Sierra Negra – 22 October 2005, 23:30 UTC [Geist et al., 2008], 8) Stromboli – 5 April 

2003, 7:13 UTC [Calvari et al., 2006], 9) Tungurahua – 16 August 2006, 19:30 UTC [Fee et al., 

2010], and 10) Vailulu’u – 9 January 1995, 14:13 UTC.  For Loihi, NW Rota-1 and Vailulu’u, 

we use the NEIC catalog and define the start of volcanic unrest as the time of the first 

teleseismically-detected earthquake in each swarm.  
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Vertical-P earthquakes occur hours to years after the start of eruptions or episodes of unrest, 

whereas vertical-T earthquakes occur both before and after eruptive activity. At Sierra Negra, a 

vertical-T earthquake preceded the 2005 eruption by 3 hours, while at Bárdarbunga, a series of 

vertical-T earthquakes took place over 20 years, with the last occurring 1-2 days before the 1996 

subglacial eruption. These results suggest that vertical-CLVD earthquakes may be used to infer 

the eruptive states of volcanoes. In particular, vertical-P earthquakes may be used to identify 

volcanoes where eruptions or large-scale magmatic intrusions have recently occurred. This may 

be especially useful for remote or submarine volcanoes. In addition, vertical-T earthquakes may 

be used to identify volcanoes that are likely to erupt in the near future.  Clusters of vertical-T 

earthquakes are located at Kita-Iwo-Jima, Unnamed (0403-01) and Zavodovski volcanoes, and 

these earthquakes may be indicative of magma ascent and increased potential for eruptions at 

these volcanoes. 
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Figure 2.10. Plot showing the temporal relationships between vertical-CLVD earthquakes and 
volcanic unrest at 10 volcanoes. We plot five years of time (in min) before and after the start of 
eruptions or episodes of unrest. Vertical lines indicate one hour (h), one day (D), one month (M) 
and one year (Y). Vertical-P earthquakes are plotted as grey circles and vertical-T earthquakes 
are plotted as black circles. Earthquakes from Bárdarbunga are from Nettles and Ekström [1998], 
and earthquakes from Nyiragongo are from Shuler and Ekström [2009]. See the text for details 
on the dates and times of eruptions and episodes of volcanic unrest. Note that the vertical-T 
earthquake at Stromboli is plotted at 1 minute after the start of the eruption, although it actually 
occurred only a few seconds later.  
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2.6. Conclusions 

Through an in-depth analysis of two global seismicity catalogs and the calculation of over 300 

CMT solutions, we have identified 86 shallow vertical-CLVD earthquakes occurring near 

recently active volcanoes. These earthquakes have depths in the upper 10 km of the crust, and 

80% are located within 30 km of a volcano. Additionally, ~70% of the vertical-CLVD 

earthquakes studied are spatially and temporally associated with volcanic unrest at a nearby 

volcano. Half of the vertical-CLVD earthquakes are associated with the caldera collapse of 

Miyakejima in 2000, and another 20% are linked to documented volcanic unrest or eruptions at 

other volcanoes. In addition to caldera collapse, vertical-CLVD earthquakes are associated with 

effusive and explosive eruptions and volcanic earthquake swarms. There is thus a clear link 

between the occurrence of vertical-CLVD earthquakes and volcanic activity. Our observations 

suggest that these unusual earthquakes likely occur within the edifices or magmatic plumbing 

systems of active volcanoes.  

 

Vertical-CLVD earthquakes do not occur at all volcanoes, or even during all episodes of unrest 

at volcanoes where they are observed, so specific stress or structural conditions must be required 

to trigger these earthquakes. We have identified several correlations between the occurrence of 

vertical-CLVD earthquakes and specific tectonic settings and volcano types. Vertical-CLVD 

earthquakes are predominantly located in subduction zones, though they also occur in continental 

rifts and in areas of hotspot volcanism. Most vertical-CLVD earthquakes are associated with 

volcanoes with caldera structures. Additionally, most vertical-CLVD earthquakes are associated 

with volcanoes that erupt silica-poor magmas.  These correlations may indicate that low-
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viscosity magmas and/or ring-fault structures are required to generate vertical-CLVD 

earthquakes. 

 

We examined the temporal relationships between vertical-CLVD earthquakes and volcanic 

unrest at 10 volcanoes, and found that vertical-P earthquakes occur after the start of volcanic 

unrest, whereas vertical-T earthquakes generally occur before volcanic eruptions. The occurrence 

of vertical-P earthquakes may be useful for identifying remote or submarine volcanoes that have 

recently erupted, and the occurrence of vertical-T earthquakes may signal that a source volcano 

is likely to erupt in the future. Vertical-CLVD earthquakes provide information about the stress 

and strain conditions internal to active volcanoes, and by studying these rare and unusual 

earthquakes, we may learn more about the deformation processes occurring inside active 

volcanoes during eruptions and magma ascent and migration. Because vertical-CLVD 

earthquakes are associated with many different types of volcanic unrest, it is likely that these 

events can be produced by multiple physical processes. Constraining the physical mechanisms 

that may be responsible for generating vertical-CLVD earthquakes will enable us to interpret 

these events in terms of related volcanic hazards.  
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Chapter 3 
 

Physical mechanisms for vertical-CLVD earthquakes at active volcanoes 
 

This work has been submitted for publication: 
Shuler, A., Ekström, G., and M. Nettles, Physical mechanisms for vertical-CLVD earthquakes at 

active volcanoes, submitted to J. Geophys. Res., 2012. 
 
 
Abstract 

Occasionally volcanoes generate earthquakes that are large enough to be detected globally. Many 

of these moderate-to-large volcanic earthquakes have anomalous focal mechanisms and 

frequency contents. In a previous study, we searched for shallow, non-double-couple earthquakes 

with approximately vertical tension or pressure axes that took place near active volcanoes 

between 1976 and 2009. We identified 101 vertical compensated-linear-vector-dipole (vertical-

CLVD) earthquakes with magnitudes 4.3 ≤ MW ≤ 5.8, and found that the majority of these events 

occurred during episodes of volcanic unrest. Here, we explore the physical mechanisms that 

generate vertical-CLVD earthquakes. We model teleseismic body waves and examine the 

frequency contents of vertical-CLVD earthquakes, and find that they have longer source 

durations than tectonic earthquakes of similar magnitudes. Although vertical-CLVD earthquakes 

are identified based on the properties of deviatoric moment tensors, we explore the possibility 

that these earthquakes may have significant non-zero isotropic components. We examine the 

covariance matrix for one of the best-recorded events and confirm that the isotropic and pure 

vertical-CLVD components cannot be independently resolved using long-period seismic data. 

We explore several potential physical mechanisms that may generate earthquakes with deviatoric 

vertical-CLVD moment tensors, including slip on ring faults, volume exchange between two 

reservoirs, the opening and closing of tensile cracks, and volumetric changes. We evaluate these 

mechanisms using seismological, geological, and geodetic constraints from detailed studies of 
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individual earthquakes. Although none of the investigated physical mechanisms can explain all 

of our observations, a ring-faulting mechanism is preferred for most vertical-CLVD earthquakes. 

 

3.1. Introduction 

As magmas ascend from depth to intrude the crust or erupt on the surface, many different types 

of volcanic earthquakes are produced by processes such as brittle fracture, fluid flow, mass 

transport and volumetric changes [e.g., Chouet, 2003; McNutt, 2005; Kumagai, 2009; Zobin, 

2011]. By observing, analyzing and interpreting these earthquakes, we can learn about the 

internal dynamics of volcanic systems, and better forecast volcanic eruptions and assess volcanic 

hazards. Because most volcanic earthquakes have small magnitudes (MW < 2-3), much of 

volcano seismology is concerned with analyzing seismic signals recorded on local monitoring 

networks. However, in extraordinary cases such as during volcanic eruptions or caldera collapse, 

moderate and strong earthquakes with magnitudes up to MW 6 or 7 have been observed [McNutt, 

2000; Zobin, 2011]. In these cases, regional and global seismic data can be used to gain insight 

into the stress and strain conditions inside the edifices and magmatic plumbing systems of active 

volcanoes. Many moderate and large earthquakes associated with volcanic processes have been 

shown to have anomalous source properties, such as unusual radiation patterns or frequency 

contents [Filson et al., 1973; Francis, 1974; Dreger et al., 2000; Kumagai et al., 2001; Minson et 

al., 2007].   

 

In this chapter and in Chapter 2, we investigate a specific type of earthquake linked to volcanoes, 

those with vertical compensated-linear-vector-dipole (vertical-CLVD) moment tensors. By 

definition, vertical-CLVD earthquakes have deviatoric moment tensors with large non-double-
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couple components that are dominated by vertical compression or extension. Although rarely 

observed, vertical-CLVD earthquakes are some of the largest and most anomalous earthquakes 

to occur near volcanoes. Prior to our study in Chapter 2, MW ≥ 5 vertical-CLVD earthquakes had 

been identified near six volcanic centers around the world [Kanamori et al., 1993; Ekström, 

1994; Nettles and Ekström, 1998; Shuler and Ekström, 2009]. At Smith Rock, a submarine 

volcano in the Izu-Bonin arc, a vertical-CLVD earthquake produced a disproportionately large 

tsunami [Kanamori et al., 1993], and at Bárdarbunga volcano in Iceland [Nettles and Ekström, 

1998] and Nyiragongo volcano in the East African Rift [Shuler and Ekström, 2009], vertical-

CLVD earthquakes are associated with damaging fissure eruptions. 

 

In order to assess the relationship between vertical-CLVD earthquakes and volcanic unrest, we 

searched in Chapter 2 for additional examples of shallow, moderate-sized vertical-CLVD 

earthquakes located near volcanoes with documented eruptions in the last ~100 years. We 

investigated nearly 400 target earthquakes from the Global Centroid Moment Tensor catalog 

(GCMT, 1976-2009) and the Surface Wave catalog (1991-2009) of Ekström [2006], and applied 

well-defined criteria to the deviatoric moment tensors to classify earthquakes as vertical-CLVD. 

We considered events with dominant pressure or tension axes that plunge more steeply than 60°, 

and moment tensors that are distinctly non-double-couple with |ε| > 0.20, where 

 ε = -λ2/max (|λ1|, |λ3|),                                          (3.1) 

and λ1, λ2 and λ3 are the diagonal elements of the moment tensor in the principal axes coordinate 

system, ordered such that λ1 ≥ λ2 ≥  λ3. Vertical-P earthquakes have dominant pressure axes (|λ3| 

> |λ1|, |λ2|) and vertical-T earthquakes have dominant tension axes (|λ1| > |λ3|, |λ2|).  
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In total, we identified 101 vertical-CLVD earthquakes located near active volcanoes. This 

number includes 86 vertical-CLVD earthquakes reported in Chapter 2 and 15 vertical-CLVD 

earthquakes previously reported in Nettles and Ekström [1998] and Shuler and Ekström [2009]. 

The largest vertical-CLVD earthquake we identified has a magnitude of MW 5.8, and the smallest 

a magnitude of MW 4.3. These earthquakes have shallow focal depths, and over 80% have 

centroid locations within ~30 km of a known volcano. Approximately two-thirds of these events 

are vertical-P earthquakes, and one-third are vertical-T earthquakes. A map of the earthquakes, 

color-coded by type, is shown in Figure 3.1.  

 

Figure 3.1. Map showing the locations of 101 vertical-CLVD earthquakes identified in Chapter 
2, including those from Nettles and Ekström [1998] and Shuler and Ekström [2009]. Vertical-P 
earthquakes are plotted as green circles and vertical-T earthquakes are plotted as blue circles. 
Maroon triangles indicate the locations of 429 volcanoes with eruptions later than 1900 that are 
documented by the Global Volcanism Project [Siebert and Simkin, 2002-]. Plate boundaries are 
from Bird [2003]. 
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As described in Chapter 2, vertical-CLVD earthquakes are associated with several different types 

of volcanoes located in a variety of tectonic and geographical settings. Most vertical-CLVD 

earthquakes are located near arc volcanoes in subduction zones, although a small number are 

located in continental rifts, along mid-ocean ridges, and in regions of hot-spot volcanism. 

Vertical-CLVD earthquakes occur most frequently at stratovolcanoes and submarine volcanoes 

with pre-existing caldera structures. Additionally, vertical-CLVD earthquakes are predominantly 

associated with volcanoes that erupt basaltic and/or andesitic lavas, which may suggest that low-

viscosity magmas promote the occurrence of these events. 

 

The vast majority of vertical-CLVD earthquakes occur during documented volcanic eruptions or 

episodes of unrest at nearby volcanoes, which suggests that these earthquakes are generated by 

magmatic and/or volcano-tectonic processes. As detailed in Chapter 2, vertical-CLVD 

earthquakes are spatially and temporally linked to 1) abnormally large tsunamis followed by 

volcanic T-wave events near Smith Rock volcano [Kanamori et al., 1993], 2) anomalous 

volcanic earthquake swarms near Curtis Island, Loihi, NW Rota-1 and Vailulu’u volcanoes, 3) 

effusive eruptions at Nyiragongo [Shuler and Ekström, 2009], Ol Doinyo Lengai and Sierra 

Negra volcanoes, 4) explosive eruptions at Rabaul, Stromboli and Tungurahua volcanoes, 5) a 

subglacial eruption near Bárdarbunga volcano [Nettles and Ekström, 1998], and 6) caldera 

collapse at Miyakejima volcano. Most vertical-P earthquakes occur after the start of volcanic 

eruptions or episodes of unrest at nearby volcanoes, which suggests that these earthquakes occur 

in response to volcanic eruptions or large-scale magmatic intrusions. Vertical-T earthquakes 

generally occur before eruptive activity and may be indicative of magma-ascent processes. As 

vertical-CLVD earthquakes take place at different types of volcanoes, in association with many 
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different types of volcanic unrest, it is possible that these earthquakes are produced by more than 

one physical mechanism.  

 

To date, two main classes of physical mechanisms have been presented to explain vertical-

CLVD earthquakes. The first class is composed of faulting mechanisms, in which vertical-CLVD 

earthquakes are produced by dip-slip motion on volcano ring faults [Ekström, 1994; Nettles and 

Ekström, 1998; Shuler and Ekström, 2009]. While motion along the ring fault is triggered by the 

inflation or deflation of shallow magma chambers, the earthquakes are generated by shear failure 

on curved or cone-shaped fault structures. No net volume change is expected for earthquakes 

produced by ring-faulting mechanisms, so these events should be modeled well using deviatoric 

moment tensors, as in Chapter 2.  

 

The second class is composed of mechanisms related to fluid flow and volumetric changes. 

Examples of mechanisms in the second class include rapid magma injection [Kanamori et al., 

1993; Konstantinou et al., 2003] or withdrawal, rapid expansion or contraction, and volume or 

mass exchange between two magma chambers [Tkalčić et al., 2009]. Volume changes associated 

with fluid flow mechanisms can be either compensated or uncompensated. In the first case, 

deviatoric moment tensors are appropriate, but, in the second case, the earthquakes are expected 

to have moment tensors with non-zero isotropic components. In Chapter 2 and in our previous 

studies [Nettles and Ekström, 1998; Shuler and Ekström, 2009], we followed standard GCMT 

methodology and constrained the isotropic component to equal zero. For shallow earthquakes, 

there is a known tradeoff between the isotropic and pure vertical-CLVD components of the 

moment tensor [Kawakatsu, 1996], so it is possible that some earthquakes we have described 
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with vertical-CLVD focal mechanisms were generated by physical mechanisms with net volume 

changes.   

 

Several earthquakes that we identified as having vertical-CLVD moment tensors in Chapter 2 

have also been studied by other authors using different types of data, including local and regional 

seismic data and radar interferograms. Several models representing both of the main classes of 

physical mechanisms have been presented to explain these earthquakes. A vertical-P earthquake 

at Tungurahua volcano has been explained as the result of volumetric changes associated with 

bubble growth in magma [Kumagai et al., 2010], and a vertical-T earthquake at Sierra Negra 

volcano has been explained using a trapdoor-faulting mechanism [Yun, 2007]. Multiple scenarios 

of caldera collapse involving the downward displacement of a rock piston into an underlying 

magma chamber have also been presented to explain dozens of vertical-P earthquakes at 

Miyakejima [Kikuchi et al., 2001; Kumagai et al., 2001]. For the Tungurahua and Miyakejima 

earthquakes, full moment-tensor solutions calculated using local seismic data are dominated by 

isotropic components [Kikuchi et al., 2001; Kumagai et al., 2001, 2010]. Clearly, a discussion of 

the physical mechanisms of vertical-CLVD earthquakes requires consideration of the isotropic 

component of the moment tensor.  

 

The complexity of the vertical-CLVD events and the tradeoff between the pure vertical-CLVD 

and isotropic components of the moment tensor means additional constraints are needed to 

evaluate possible source mechanisms. From previous studies, there are several indications that 

vertical-CLVD earthquakes have unusually long source processes. For example, in order to 

model the teleseismic body waves of vertical-CLVD earthquakes at Smith Rock [Kanamori et 
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al., 1993] and Bárdarbunga [Nettles and Ekström, 1998] volcanoes, source durations exceeding 

the average magnitude-duration relationship for tectonic earthquakes [Ekström et al., 1992] are 

required. Additionally, the frequency spectra of vertical-CLVD earthquakes at Nyiragongo 

volcano indicate that these events are depleted in high-frequency energy, and have lower corner 

frequencies than tectonic earthquakes with similar magnitudes and locations [Shuler and 

Ekström, 2009]. Likewise, waveforms from local and regional seismic stations indicate that the 

vertical-CLVD earthquakes associated with the incremental caldera collapse of Miyakejima have 

smooth source-time functions lasting ~30-65 s [Kikuchi et al., 2001; Kumagai et al., 2001; 

Ohminato et al., 2001]. Azimuthal variations in the broadband waveforms for the Bárdarbunga 

earthquakes suggest that some vertical-CLVD earthquakes may be caused by multiple subevents 

[Nettles and Ekström, 1998]. A systematic analysis of source duration and frequency content 

could provide useful constraints on the physical mechanisms of vertical-CLVD earthquakes. 

 

In this chapter, we explore a range of physical processes that may produce earthquakes with 

deviatoric vertical-CLVD moment tensors. We perform additional detailed analysis on the 

dataset of 86 shallow vertical-CLVD earthquakes located near active volcanoes identified in 

Chapter 2, and combine these results with those from Nettles and Ekström [1998] and Shuler and 

Ekström [2009]. We begin by systematically examining the broadband body waves of vertical-

CLVD earthquakes to gain additional constraints on their source durations and frequency 

contents. We investigate the tradeoff between the isotropic and pure vertical-CLVD components 

of the moment tensor for our dataset, and calculate full moment-tensor solutions for vertical-

CLVD earthquakes. We then examine several potential physical mechanisms that have been 

suggested to explain the anomalous seismic radiation patterns of vertical-CLVD earthquakes, 
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including slip on ring faults, volume exchange between two reservoirs, opening and closing of 

tensile cracks, and volumetric sources. Finally, we evaluate these mechanisms in light of our 

source-duration observations and the temporal relationships between vertical-CLVD earthquakes 

and volcanic unrest.  

 

3.2. Data and Analysis 

In Chapter 2, we used long-period seismic data from regional and global networks to identify 86 

shallow vertical-CLVD earthquakes located near active volcanoes. Source parameters were 

calculated using the standard GCMT methodology [Dziewonski et al., 1981; Ekström et al., 

2012]. The depths of shallow earthquakes are poorly resolved using long-period seismic data, 

and the centroid depths of all the vertical-CLVD earthquakes were fixed to 12 km during the 

CMT inversions. Similarly, long-period data have weak sensitivity to event duration, and 

earthquake durations in the CMT inversions are based on an empirical moment-duration 

relationship [Ekström et al., 2012]. For long-period teleseismic data, there also exists a tradeoff 

between the isotropic and pure vertical-CLVD components, neither of which generates 

azimuthally varying seismic radiation [Mendiguren and Aki, 1978; Kanamori and Given, 1981; 

Kawakatsu, 1996; Dufumier and Rivera, 1997]. The isotropic component is expected to be small 

for tectonic earthquakes, but, in volcanic and geothermal areas, earthquakes with statistically 

significant isotropic components have been observed [e.g., Miller et al., 1998a; Dreger et al., 

2000; Foulger et al., 2004; Minson and Dreger, 2008]. In GCMT analysis, the isotropic 

component of the moment tensor is typically constrained to zero.  
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In Section 3.2.1, we model the teleseismic body waves of vertical-CLVD earthquakes in order to 

obtain estimates of their source durations, and in doing so, we also obtain better constraints on 

their depths. We gain additional insight into the source processes of vertical-CLVD earthquakes 

by examining variations between the frequency contents and magnitude distributions of 

earthquakes reported in the GCMT and Surface Wave catalogs.  In Section 3.2.2, we evaluate the 

tradeoff between the isotropic and vertical-CLVD components of the moment tensor for our 

dataset and calculate full moment-tensor solutions for the vertical-CLVD earthquakes reported in 

Chapter 2. 

 

3.2.1. Earthquake Source Duration and Magnitude Distribution 

In order to obtain additional constraints on the source processes of vertical-CLVD earthquakes, 

we attempt to model the teleseismic body waves for the 63 earthquakes from Chapter 2 that have 

MW ≥ 5.1. We collect broadband seismic records from the Data Management Center of the 

Incorporated Research Institutions for Seismology (IRIS), and deconvolve the instrument 

response to obtain displacement records filtered from 1 to 100 s period. Broadband records for 

the oldest earthquakes are constructed from digital long- and short-period seismograms, as in 

Ekström [1989] and Kanamori et al. [1993]. We manually pick arrival times for P and SH 

phases, and invert broadband waveforms for focal mechanism, moment-rate function and focal 

depth using the method of Ekström [1989]. This analysis provides estimates of the source 

durations of vertical-CLVD earthquakes as well as better constraints on their depths.  

 

Synthetic seismograms are calculated using ray theory and the Preliminary Reference Earth 

Model [PREM; Dziewonski and Anderson, 1981]. Reflections and conversions near the source 
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are modeled using a layer-matrix method for a regional velocity model that varies depending on 

the location of the earthquake. For earthquakes in Tanzania and East Papua New Guinea, we use 

local velocity models X5 and K2 from CRUST2.0 [Bassin et al., 2000]. For the remaining 

earthquakes, which are near island-arc or submarine volcanoes, we use the CRUST2.0 model for 

a Japanese island arc (J1), adding a water layer on top, if necessary, to match the summit 

bathymetry of the nearest submarine volcano.  

 

We include the point-source moment tensors from Chapter 2 as soft constraints to ensure that 

focal mechanisms calculated from broadband data are compatible with the preferred focal 

mechanisms calculated using long-period data during the CMT inversions. We experiment with 

different weights of the soft constraint, and select the solutions that provide the best fit to the 

broadband data as our preferred solutions. We assign each solution a quality based on the fit to 

the data and the number of waveforms used in the broadband body-wave modeling. Solutions 

with A quality have the best fit to the data, especially for the initial P waves and the first crustal 

reflections. Solutions with B and C qualities have poorer fits and therefore greater uncertainties 

associated with estimates of depth and source duration. In Table 3.1, we list our preferred 

estimates of depth and source duration and describe the quality of each broadband solution. An 

example of an A-quality solution is shown in Figure 3.2 for an MW 5.5 vertical-T earthquake that 

occurred in the Fiji Islands region near an Unnamed submarine volcano (0403-01 in IAVCEI’s 

Catalog of Active Volcanoes of the World) on 7 August 1999.  
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Figure 3.2. Focal-depth analysis for the MW 5.5 vertical-T earthquake that occurred on 7 August 
1999 near an Unnamed volcano (0403-01) in the Fiji Islands region. Solid lines are broadband 
teleseismic P and SH waveforms, and dashed lines are synthetic seismograms. Brackets across 
the waveform show the portions of the seismograms that were used in the inversion. Arrows 
indicate the picked first arrivals. The station name, data type and maximum amplitude (in 
microns) are printed above each waveform. The focal mechanism and moment-rate function 
determined by the body-wave inversion are plotted in the center of the figure. Black dots on the 
focal mechanism show the locations where the plotted waveforms exited the focal sphere. The 
focal depth of the earthquake is ~5.2 km below sea level. This is an example of an A-quality 
broadband body wave solution. 
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For most of the vertical-CLVD earthquakes we study (MW ≥ 5.1), we find that the broadband 

body waves are of lower amplitude than the background noise. However, we are able to model 

the body waves for 18 earthquakes, 3 of which are vertical-P earthquakes and 15 of which are 

vertical-T earthquakes. Eight solutions are A quality, 6 are B quality, and 4 are C quality. In 

general, we find the body waves to be emergent and dominated by low-frequency energy. We do 

not observe the impulsive direct arrivals and surface reflections typically observed for 

earthquakes in this magnitude range. Source durations range from ~4 to ~10 s, and depth 

estimates range from ~4 to ~8 km. For the same location, we find that focal-depth estimates for 

multiple vertical-CLVD earthquakes vary ~1-2 km. Our estimates of focal depth and source 

duration are consistent with those of Nettles and Ekström [1998], who reported focal depths of 

~3-7 km and source durations of ~4-7 s for ten 5.1 ≤ MW ≤ 5.6 vertical-T earthquakes near 

Bárdarbunga volcano. We find that all of the vertical-CLVD earthquakes have moment-rate 

functions with smoothly varying, approximately triangular shapes, except for the MW 5.6 

vertical-P earthquake that occurred in East Papua New Guinea on 29 June 1999. This earthquake 

has the longest source duration, 10 s, and appears to be composed of several subevents. For the 

inversion weightings we choose, broadband estimates of MW are up to 0.3 magnitude units 

higher than CMT estimates for individual earthquakes. 

 

Due to the long source durations and partial overlap of direct and reflected phases, there is a 

tradeoff between focal depth and source duration. Our preferred solutions are listed in Table 3.1, 

but for most earthquakes, the broadband data can be fit nearly as well using shallower focal 

depths and slightly longer source time functions. We estimate that the uncertainties associated 

with focal-depth and source-duration estimates are at least 2 km and 1 second, respectively.  
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In Figure 3.3, we plot the source duration of each vertical-CLVD earthquake as a function of the 

scalar moment calculated from the CMT solutions in Chapter 2. We compare these results to the 

global average relationship between source duration and scalar moment, as derived from 

broadband body-wave modeling using the same method for moderate-to-large shallow 

earthquakes, 

    τ = 4.52 x 10-6 (M0)1/3 ,         (3.2) 

where τ is the source duration in seconds and M0 is the scalar moment in Nm [Ekström et al., 

2012]. All of the vertical-CLVD earthquakes we are able to model have longer-than-average 

source durations for their moment magnitudes. For example, MW 5.8 earthquakes, on average, 

have source durations of ~4 s, whereas we observe a source duration of ~8 s for the MW 5.8 

vertical-T earthquake that occurred near Curtis Island in the Kermadec Islands on 17 February 

2009. The vertical-CLVD earthquakes in Table 3.1 are thus all characterized by slower-than-

average source processes.  
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Figure 3.3. Log-log plot of the scalar moment (in Nm) and source duration (in seconds) of 18 
vertical-CLVD earthquakes. The estimates of scalar moment are from the CMT solutions in 
Chapter 2, and the estimates of source duration are from broadband body-wave modeling. The 
color of the circles indicates the quality of the broadband body-wave solutions. Black circles are 
for A-quality solutions, grey circles are for B-quality solutions, and white circles are for C-
quality solutions. The thick black line shows the global average relationship between scalar 
moment and source duration for shallow, moderate-to-large earthquakes [Ekström et al., 2012].  
 

 

Although we are unable to model the broadband body waves for most of the vertical-CLVD 

earthquakes, we can assess their source durations by examining the general frequency contents of 

earthquakes reported in the GCMT and Surface Wave catalogs. Our lack of success in modeling 

more of the vertical-CLVD earthquakes is consistent with the pattern of longer-than-usual source 

durations. Twenty-six of the vertical-CLVD earthquakes from Chapter 2 are reported in the 

GCMT catalog. Before 2006, the GCMT Project used initial hypocentral parameters provided by 

the United States Geological Survey (USGS) National Earthquake Information Center (NEIC), 

where event detection is based on the arrival times of high-frequency body waves. Since 2006, 
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hypocentral parameters from the intermediate-period surface-wave event-detection algorithm of 

Ekström [2006] have been used for a small number of moderate-to-large earthquakes not 

detected by the USGS. However, fewer than 3% of earthquakes in the GCMT catalog since 2006 

are based on surface-wave detections [Ekström et al., 2012], so nearly all earthquakes in the 

GCMT catalog have high-frequency body-wave phases. All of the earthquakes that we are able 

to model using broadband body-wave analysis are from the GCMT catalog, with initial 

detections from the NEIC. 

 

The remaining 60 vertical-CLVD earthquakes from Chapter 2 are from two subsets of events 

reported in the Surface Wave catalog of Ekström [2006]. Category 1 earthquakes have surface-

wave magnitudes, MSW [Ekström, 2006], that are at least one magnitude unit larger than the mb 

magnitudes reported in the International Seismological Centre (ISC) Bulletin. Body-wave 

magnitudes are calculated at a period of ~1 s, and surface-wave magnitudes, MSW, are calculated 

between periods of 30 and 150 s. The discrepancy between these two magnitudes suggests that 

Category 1 earthquakes are slow earthquakes. 

 

Category 2 earthquakes from the Surface Wave catalog are missing from the ISC and NEIC 

global seismicity catalogs, but were detected and located using intermediate-period surface 

waves and the method of Ekström [2006]. Compared to body waves, teleseismic surface waves 

are dominated by lower-frequency energy. Since the amplitudes of high-frequency body-wave 

phases were too small to be detected by the ISC and NEIC, despite the fact that they have 

magnitudes up to MW 5.6, Category 2 vertical-CLVD earthquakes likely have slow source 

processes. Observations of Category 2 vertical-CLVD earthquakes at Miyakejima, Stromboli and 
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Nyiragongo support this interpretation. The 39 largest vertical-P earthquakes associated with the 

caldera collapse of Miyakejima, which are either Category 1 or 2 events, have, on average, 

source durations of ~50 s [Kikuchi et al., 2001; Kumagai et al., 2001; Ohminato et al., 2001], 

which is ~20 times longer than expected considering their moment magnitudes of 5.0 ≤ MW ≤ 

5.6. A Category 2 MW 4.3 vertical-T earthquake at Stromboli is described as a very-long-period 

event that lasted ~12 s [D’Auria et al., 2006]. Likewise, Category 2 vertical-P earthquakes at 

Nyiragongo are depleted in high-frequency energy, and have lower corner frequencies than 

tectonic earthquakes with similar magnitudes and locations, also suggesting slower source 

processes [Shuler and Ekström, 2009]. 

 

Figure 3.4 shows the distributions of MW for vertical-CLVD earthquakes by source catalog. 

Included are the 10 vertical-T earthquakes from Bárdarbunga [Nettles and Ekström, 1998], which 

are reported in the GCMT catalog, and the 5 vertical-P earthquakes from Nyiragongo [Shuler 

and Ekström, 2009], which are reported in the Surface Wave catalog. The GCMT catalog 

includes vertical-CLVD earthquakes in this group having magnitudes 4.8 ≤ MW ≤ 5.8, and we are 

able to model the teleseismic body waves for nearly all earthquakes with magnitudes MW ≥ 5.1. 

The Surface Wave catalog includes vertical-CLVD earthquakes with magnitudes 4.3 ≤ MW ≤ 5.6, 

and we are not able to model any of these earthquakes, even the largest events from Nyiragongo 

[Shuler and Ekström, 2009] and Miyakejima. The fact that we are unable to model the 

teleseismic body waves from any vertical-CLVD earthquakes in the Surface Wave catalog 

provides another indication that these events have long source durations, and suggests that they 

may have even slower source processes than vertical-CLVD earthquakes in the GCMT catalog. 

Since vertical-P earthquakes are predominantly from the Surface Wave catalog and vertical-T 
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earthquakes are predominantly from the GCMT catalog, we infer that vertical-P earthquakes may 

have slower source processes than vertical-T earthquakes. 

 

 

Figure 3.4. Distribution of vertical-CLVD earthquakes by source catalog and moment 
magnitude. Earthquakes are binned by 0.1 units of moment magnitude. Red dots and lines 
represent earthquakes from the Global CMT catalog, and black dots and lines represent 
earthquakes from the Surface Wave Catalog of Ekström [2006]. Included are vertical-CLVD 
earthquakes from Nettles and Ekström [1998], Shuler and Ekström [2009] and Chapter 2, and the 
MW values are taken from these studies. We draw a dashed black line at MW 5.1 because we are 
able to model the body waves for nearly all MW ≥ 5.1 vertical-CLVD earthquakes from the 
Global CMT catalog, while we are not able to model any MW ≥ 5.1 vertical-CLVD earthquakes 
from the Surface Wave catalog.  
 

 

The distributions of MW for vertical-CLVD earthquakes reported in the GCMT and Surface 

Wave catalogs closely resemble each other (Figure 3.4), except the distribution for the GCMT 
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catalog is shifted ~0.2 magnitude units higher than the distribution for the Surface Wave catalog. 

The low number of small-magnitude vertical-CLVD earthquakes reported in each catalog is 

likely due to the magnitude of completeness, which varies as a function of time and geographical 

location. However, the small number of large-magnitude vertical-CLVD earthquakes is 

surprising. In 34 years of observations from the GCMT catalog (1976-2009) and 19 years of 

observations from the Surface Wave catalog (1991-2009), we have observed ~75 earthquakes 

with magnitudes MW ≥ 5.0, but no earthquakes with MW ≥ 6.0. This observation suggests that 

vertical-CLVD earthquakes do not follow the Gutenberg-Richter magnitude-frequency 

distribution [Gutenberg and Richter, 1944] with the global average b-value of 1.0 [Frohlich and 

Davis, 1993]. Since our catalog of vertical-CLVD earthquakes ends below MW 6.0, this may 

indicate that there is an upper limit on the source size for vertical-CLVD earthquakes at active 

volcanoes. 

 

3.2.2. Tradeoff Between Isotropic and Pure Vertical-CLVD Components 

For long-period teleseismic data, there is a tradeoff between the isotropic and pure vertical-

CLVD components of the moment tensor [Mendiguren and Aki, 1978; Kanamori and Given, 

1981; Kawakatsu, 1996; Dufumier and Rivera, 1997]. Below, we investigate this tradeoff for our 

dataset of vertical-CLVD earthquakes following the method of Kawakatsu [1996].  

 

To begin, we consider the vector-matrix equation:  

d = G m,       (3.3) 
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where d  is a vector composed of seismograms from several stations, m is a vector containing the 

moment tensor elements (Mrr, Mθθ, Mφφ, Mrθ, Mrφ, Mθφ) and G is a matrix containing the Green 

functions for each moment-tensor element. The normal-equation matrix for this system is: 

    GT d = GTG m,      (3.4) 

which we can rewrite as  

    A m = b,       (3.5) 

where A is the inner product matrix and b is GTd. The covariance matrix for the moment-tensor 

elements, Cm, is related to the inner product matrix by a scalar, Cm = σ2
d A-1, where σ2

d is the 

variance of the data. The matrix A-1 can be calculated from synthetic waveforms using the 

centroid location of an earthquake and a distribution of available stations. 

 

Since we are concerned with the tradeoff between the isotropic and pure vertical-CLVD 

components of the moment tensor, we rotate the diagonal elements of the moment tensor into a 

new basis, redefining them as the Isotropic (I), pure vertical-CLVD (C) and Difference (D) 

components, where   

    I  = 
1

3
 (M

rr
 + M!!  + M"" )      (3.6) 

    C  = 
1

3
 (M!!  + M""  - 2M

rr
)      (3.7) 

D = 
1

2
 (M!!  - M"" ) .      (3.8) 

As an example, we calculate A-1, for one of the best-recorded vertical-CLVD earthquakes, an 

MW 5.6 vertical-P earthquake that took place at Miyakejima on 2 August 2000. We use the 

centroid location and the same station locations, time windows and frequency bands that were 
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used to calculate the CMT solution in Chapter 2. We include two datasets, body waves from 134 

stations that were predominantly filtered from 40 to 150 s, and surface waves from 150 stations 

that were predominantly filtered from 50 to 150 s. Synthetic seismograms are calculated 

following the standard GCMT procedure [Dziewonski et al., 1981; Arvidsson and Ekström, 

1998], and specifically the methods employed since 2004 [Ekström et al., 2012].  

 

We calculate the eigenvalues and eigenvectors of A-1, and the relative standard deviation of each 

element, !̂
i
, where 

    !̂
i
= A

ii

"1
/!

max
      (3.9)  

and !
i
= A

ii

"1 . We also calculate the correlation matrix, X, where 

    Xij = Aij
!1
/" i" j .      (3.10)  

Our results are plotted in Figure 3.5. On the left, we plot a graphical representation of the 

eigenvectors. We plot these in descending order of relative eigenvalue, such that top eigenvector 

indicates the moment-tensor elements with maximum covariance, which are therefore the least 

well constrained. On the right, we plot the relative standard deviations of the moment tensor 

elements, !̂ , and the correlation matrix, X.  

 

We find that the eigenvector with the largest eigenvalue is (-0.87I + 0.49C). We also find that the 

isotropic and pure vertical-CLVD components of the moment tensor have the largest relative 

standard deviations. Additionally, the isotropic and pure vertical-CLVD components have a 

correlation coefficient of XIC = -0.91, which demonstrates a strong linear dependence between 

the two components. Other combinations of the moment-tensor elements have small-to-

negligible correlation coefficients. All of these pieces of information demonstrate that, even for 
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the best-recorded earthquakes in our dataset, the isotropic and pure vertical-CLVD components 

of the moment tensor cannot be independently resolved using long-period seismic data. 

 

 
 
 
Figure 3.5. Results of an examination of the covariance matrix for the MW 5.6 vertical-P 
earthquake that occurred at Miyakejima on 2 August 2000.  On the left, we plot eigensolutions 
for A-1, which is related to the covariance matrix, Cm, by Cm = σ2

d A-1, where σ2
d is the variance 

of the data. Vertical lines in each row indicate the contributions of moment-tensor elements for 
each eigenvector, whose relative eigenvalue is given on the left. Positive contributions are 
plotted above the horizontal lines in each row, and negative contributions are plotted below. The 
eigenvectors are ordered by decreasing relative eigenvalue such that the top eigenvector shows 
the combination of moment-tensor elements that is the least well-constrained. Focal mechanisms 
for the six elements of the moment tensor are plotted below the eigenvectors. On the right, we 
plot the relative standard deviations of the moment-tensor elements and the correlation matrix. In 
the correlation matrix, the moment-tensor elements are ordered (I, C, D, Mrθ, Mrφ, Mθφ). The size 
and color of the circles plotted in the upper right of the correlation matrix represent the 
magnitude and sign of the correlation coefficients, which are printed in the bottom left of the 
correlation matrix. White circles indicate positive correlation coefficients and black circles 
indicate negative correlation coefficients. 
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To explore the tradeoff between the isotropic and vertical-CLVD components further, we 

calculate full moment tensor solutions for the 86 vertical-CLVD earthquakes reported in Chapter 

2. We use the same data selections as in the preferred CMT analysis, but allow the six 

independent elements of the moment tensor to vary freely. With the additional free parameter, 

full moment tensor solutions provide slightly better fits to the data, improving the variance 

reduction by 1% on average.  

 

We decompose the full moment tensor, M, into isotropic and deviatoric (M′) components, where 

    M '
ij
= M

ij
!
1

3
(M

rr
+ M"" + M## )$ ij .    (3.11) 

We define the isotropic moment, MISO, as 

    M
ISO

=
1

3
(M

rr
+ M!! + M"" ) ,     (3.12) 

and the deviatoric moment, MDEV,  as 

    M
DEV

=
1

2
(!

1

'
" !

3

'
) ,      (3.13) 

where λ1’ and  λ3’ are the maximum and minimum eigenvalues of M′ . We also describe each 

earthquake in terms of two quantities, the ε value of the deviatoric fraction of the moment tensor, 

and k, which describes the relative contributions of the isotropic and deviatoric components. We 

define k as: 

    k =
M

ISO

M
ISO

+ M
DEV

.      (3.14) 

Because we follow GCMT convention to define the deviatoric moment, our definition of k 

differs slightly from that given by Hudson et al. [1989].  
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Figure 3.6. At left, we plot focal mechanisms for the deviatoric fraction of the full moment-
tensor solutions for the 86 vertical-CLVD earthquakes analyzed here according to their k and ε 
values. On the right, we plot the locations of a variety of end-member seismic sources in k-ε 
space. Dashed lines in both panels illustrate the tradeoff between isotropic and vertical-CLVD 
components. See text for details. 
 

In the left panel of Figure 3.6, we plot the deviatoric focal mechanisms (M′) for each earthquake 

on axes corresponding to the k and ε values of the full moment-tensor solutions. On the right 

panel, we provide a key to illustrate the k and ε values of different types of earthquakes. Moment 

tensors for earthquakes with explosive and implosive components have positive and negative k 

values, respectively, and moment tensors for earthquakes with no net volume change plot along 

the line k = 0. Black circles indicate the k and ε values of double-couple earthquakes, pure 

implosions and explosions, positive and negative CLVDs, positive and negative dipoles, opening 

and closing tensile cracks, and radially expanding and contracting cylinders, assuming that the 

Lame constants, λ and µ, are equal [Chouet, 1996;  Kawakatsu and Yamamoto, 2007; Kumagai, 

2009].  
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We find that the full moment-tensor solutions for the vertical-CLVD earthquakes from Chapter 2 

plot roughly along two lines that span wide ranges of k-ε space. Vertical-P earthquakes plot close 

to the line joining closing tensile cracks with pure explosions, and vertical-T earthquakes plot 

close to the line joining opening tensile cracks with pure implosions. Given that the dominant 

principal stress axes are close to vertical, the focal mechanisms are consistent with tensile cracks 

that are oriented approximately horizontally. Focal mechanisms for vertical positive and negative 

dipoles would also plot close to these lines.  

 

The dashed lines in Figure 3.6 are drawn for illustrative purposes based on visual inspection of 

the trends of the full moment-tensor solutions for vertical-CLVD earthquakes in k-ε space. 

However, we also performed a numerical experiment for the MW 5.6 vertical-P earthquake 

described in Figure 3.5 in order to examine the impact of the tradeoff between the isotropic and 

pure vertical-CLVD components of the moment tensor on our full moment-tensor solutions. We 

began with the deviatoric moment tensor presented in Chapter 2, and calculated a suite of 

additional moment tensors by adding combinations of the isotropic and pure vertical-CLVD 

components (Equations 3.6 and 3.7) in the proportions described by (-0.87I + 0.49C), the 

eigenvector of the covariance matrix with the largest relative eigenvalue. We find an 

approximately linear relationship between the k and ε values for this suite of moment tensors, 

extending from -0.55 < k < 0.55 and -0.5 < ε  < 0. The slope of this line is slightly lower than the 

dashed lines drawn in Figure 3.6, but approximates the observed trends of the full moment-tensor 

solutions for vertical-CLVD earthquakes well.  
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3.3. Discussion 

In this section, we examine the two main classes of physical mechanisms that have been 

presented to explain vertical-CLVD earthquakes, ring-faulting mechanisms and mechanisms 

involving fluid flow and/or volumetric changes, using the constraints and understanding 

developed in Section 3.2. We describe the proposed physical mechanisms in detail, and use 

published results from field geology and analog and numerical models as further constraints on 

physical parameters such as the geometry of ring faults and the propagation velocity of fluid-

filled tensile cracks.  

 

Because we cannot constrain the relative contributions of the isotropic and pure vertical-CLVD 

components in our waveform inversions, we do not interpret individual full moment-tensor 

solutions. Instead, we choose to interpret the range of potential mechanisms allowed by the 

solution space for the full dataset of earthquakes. In particular, we consider ring-faulting 

mechanisms and volume exchange between two reservoirs, which do not require net volume 

changes. We also consider the opening and closing of subhorizontal tensile cracks and dominant 

isotropic sources, which do require net volume changes. Given that the isotropic and pure 

vertical-CLVD components of the moment tensor cannot be independently resolved for our 

dataset, all of these mechanisms are permissible if one only considers information from the CMT 

analysis. Additional data are required to assess which mechanisms are the most likely. 

 

In Chapter 2 and in this study, we have identified several additional constraints that can be used 

to evaluate potential physical mechanisms for producing vertical-CLVD earthquakes. First, 

vertical-CLVD earthquakes have slower source processes than tectonic earthquakes of the same 
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magnitude. Additionally, vertical-P earthquakes appear to have longer source processes than 

vertical-T earthquakes. Vertical-T earthquakes have durations of ~10 s or less, whereas vertical-

P earthquakes can have durations as long as ~60 s. Second, vertical-P earthquakes typically 

occur after volcanic eruptions or the start of volcanic unrest, whereas vertical-T earthquakes 

most often occur beforehand. Third, although seismic radiation from vertical-CLVD earthquakes 

is dominated by Rayleigh waves that are radiated in approximately equal amplitude in all 

directions, we do observe small-amplitude Love waves for many events. As demonstrated by the 

broadband body-wave modeling example in Figure 3.2, horizontally polarized shear (SH) waves 

are also observed for many vertical-CLVD earthquakes. Finally, vertical-CLVD earthquakes are 

most commonly associated with volcanoes that erupt basaltic and/or andesitic lavas, as well as 

volcanoes that have calderas. We search for physically plausible mechanisms that can explain 

these observations.  

 

3.3.1. Ring-Faulting Mechanisms 

Ring faults are curved or cone-shaped dip-slip faults that are circular to elliptical in plan view. 

These faults are formed by the inflation and deflation of shallow magma chambers, and can be 

either inward- or outward-dipping, as shown schematically in Figure 3.7. In nature, ring faults 

are inherently difficult to observe because they are often covered by pyroclastic flow deposits, 

lava flows, or crater lakes after forming during episodes of caldera collapse. However, both 

inward- and outward-dipping ring faults have been mapped at eroded volcanoes, where they 

occasionally are intruded with magma. Summaries of results from field studies on calderas are 

provided in Lipman [1997] and Cole et al. [2005], and a database of collapse calderas is provided 

by Geyer and Marti [2008].  At volcanoes such as Rabaul [Mori and McKee, 1987], Pinatubo 
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[Mori et al., 1996], Mt. Spurr [Jolly et al., 1994], Mt. St. Helens [Scandone and Malone, 1985], 

Mammoth Mountain in Long Valley Caldera [Prejean et al., 2003], and Mauna Kea [Wolfe et 

al., 2004], the presence of ring faults has been inferred from circular or elliptical patterns formed 

by the locations of microearthquakes. Although the geometries of ring faults are difficult to 

measure, most ring faults are believed to have steep, approximately subvertical, dip angles 

[Gudmundsson and Nilsen, 2006 and references therein].  

 

 

 

Figure 3.7. Schematic diagram for inward- and outward-dipping ring faults located above a 
shallow magma chamber/melt lens. The ring faults are cone shaped in three dimensions. Dashed 
lines indicate that the ring faults may terminate below the surface.  
 

 

Ring faults and collapse calderas have been studied in detail through analytical and numerical 

models [e.g., Anderson, 1936; Druitt and Sparks, 1984; Burov and Guillou-Frottier, 2003; Folch 

and Marti, 2004; Gray and Monaghan, 2004; Gudmundsson, 1988, 1998, 2007; 2008; A. 

Gudmundsson et al., 1997; Roche and Druitt, 2001; Pinel and Jaupart, 2005; Gudmundsson and 

Nilsen, 2006; Hardy, 2008; Kinvig et al., 2009; Kusumoto and Gudmundsson, 2009; Marti et al., 

2009; Holohan et al., 2011; Pinel, 2011], as well as analog models [e.g., Marti et al., 1994, 
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2008; Acocella et al., 2000; Roche et al., 2000, 2001; Troll et al., 2002; Kennedy et al., 2004; 

Holohan et al., 2005, 2008; Aizawa et al., 2006; Geyer et al., 2006; Acocella, 2006, 2007, 2008; 

Walter, 2008; Burchardt and Walter, 2010; Howard, 2010]. Although each type of modeling has 

its own assumptions, simplifications and limitations, together they provide insight into how ring-

fault structures develop and evolve. Numerical models indicate that sill-like magma chambers 

are a requirement for the formation of inward-dipping ring faults, in addition to specific stress 

conditions such as magma chamber underpressure or overpressure, extension or regional doming 

[Marti et al., 2008 and references therein]. As described below, analog models of caldera 

collapse and dome resurgence suggest that slip on outward- and inward-dipping ring faults is 

triggered by the deflation and inflation of shallow magma chambers.  

 

In general, analog models suggest that the caldera collapse process can be described by four 

stages of progressive subsidence [Acocella, 2006]. During the first stage, the surface gently 

subsides as the deflation of a shallow magma chamber results in the upward propagation of 

outward-dipping reverse ring faults. In the second stage, well-defined caldera fault scarps form 

when the reverse ring faults reach the surface. The outer rim of the caldera moves outwards as 

additional subsidence produces multiple sets of reverse ring faults that become progressively 

steeper. In the third stage, the outer periphery of the reverse ring faults tilts inward due the 

upward propagation of steep, inward-dipping, normal ring faults. Finally, in the last stage, two 

nested collapse structures are produced when the normal ring faults reach the surface and begin 

to accommodate the majority of later subsidence. Dome resurgence following caldera collapse 

reverses the kinematics of pre-existing ring faults such that magma chamber inflation following 

deflation is accommodated by slip on inward-dipping, reverse ring faults and outward-dipping 
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normal ring faults. In scaled analog models, the dips of ring faults produced during caldera 

collapse vary as a function of depth. In Roche et al. [2000], both the outward-dipping reverse 

ring faults and the inward-dipping normal ring faults are subvertical at depth and more shallowly 

dipping near the surface. Depending on the aspect ratio of the roof (thickness/width) for a given 

model, the dips of the reverse faults range from ~45° to ~85°, and the dips of the normal faults 

vary from ~50° to ~65° at the surface. 

 

Dip-slip motion on ring-faults can produce vertical-CLVD earthquakes with source parameters 

that depend on the geometry and kinematics of the ring fault, as well as the scale and speed of 

rupture. Slip on curved normal faults can produce vertical-P earthquakes, whereas slip on curved 

reverse ring faults can produce vertical-T earthquakes [Ekström, 1994]. Below, we model the 

moment tensors of theoretical ring-faulting earthquakes in order to determine how ring fault 

geometry and rupture extent influence earthquake size, the magnitude of the non-double-couple 

component and the plunge of the dominant principal stress axis. We explore reasons that ring-

faulting earthquakes might have longer source processes than tectonic earthquakes, and evaluate 

the ring-faulting model using the observations of vertical-CLVD earthquakes presented in 

Chapter 2 and Section 3.2. 

 

Because long-period seismic radiation patterns only depend on the final distribution of slip along 

a fault, we approximate the moment tensors of reverse and normal ring-faulting earthquakes by 

summing the contributions of moment tensors for planar faults with constant dip and smoothly 

varying strike angles, similar to the approach taken by Ekström [1994]. We fix the rake to ±90° 

and, for constant dip angles ranging from 45° to 90°, we vary the strike angles from 0° to 360° to 
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simulate earthquakes rupturing different arc angles of a conical ring fault. We calculate 

hypothetical moment tensors following Box 4.4 of Aki and Richards [2002]. For each 

combination of ring-fault dip and arc angle, we calculate the value of ε, the plunge of the 

dominant pressure or tension axis, and the normalized scalar moment, which is the ratio between 

the scalar moment of the composite moment tensor and the sum of the scalar moments for 

individual subfaults. Variations of these three parameters with arc and dip angle are plotted in 

Figure 3.8. Except for vertically symmetric sources, which are produced when the entire arc of 

the ring fault is ruptured in a single earthquake, small-amplitude SH and Love waves will be 

generated, as observed for our dataset of vertical-CLVD earthquakes.  

 

We find that the value of |ε| is largely controlled by the arc angle of the ring fault. Earthquakes 

that rupture small portions of the ring fault are approximately double-couple and, in general, 

earthquakes that rupture greater arc angles have higher non-double-couple components. 

However, for ruptures extending past ~180° of arc, the non-double-couple component does not 

always increase with arc angle. The plunge of the dominant principal stress axis for a ring-

faulting earthquake is largely controlled by the dip angle of the ring fault. For equal arc angles, 

earthquakes on more steeply dipping ring faults have dominant principal stress axes with 

shallower plunges. Earthquakes that rupture the entire circumference of a ring fault are pure 

vertical-CLVD events with ε = ±0.5 and vertical pressure or tension axes.  
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(Figure caption on next page)
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Figure 3.8. Source parameters for the composite radiation patterns resulting from different slip 
distributions along cone-shaped ring faults. Ring-fault dip is plotted on the y-axis and the 
ruptured arc angle on the x-axis. All simulated earthquakes are pure dip-slip events. The top 
panel shows |ε|, which represents the strength of the non-double-couple component of the 
composite moment tensor. The middle panel shows the plunge of the dominant principal stress 
axis. The bottom panel shows the normalized scalar moment, which is the ratio between the 
scalar moment for the composite moment tensor and the sum of the scalar moments for 
individual subfaults. 
 

As demonstrated in the bottom panel of Figure 3.8, dip-slip motion on ring-fault structures also 

results in the partial cancellation of seismically radiated long-period moment [Ekström, 1994]. 

For some combinations of dip and arc angle, the sum of the scalar moments (product of shear 

modulus, fault area, and displacement) resulting from slip on individual subfaults will be larger 

than the scalar moment of the composite moment tensor determined by CMT analysis. As a 

consequence, the actual displacement during a ring-faulting earthquake will also be larger than 

expected from empirical relationships between average displacement and MW like those 

developed by Wells and Coppersmith [1994]. In the end-member case, slip on a cylindrical fault 

surface will not produce any long-period seismic radiation. Ekström [1994] suggests that the 

partial cancellation of long-period seismic moment resulting from slip on ring-fault structures 

could explain why vertical-T earthquakes near Smith Rock volcano are associated with 

disproportionately large tsunamis. 

 

If we consider a ring fault circumscribing a conical crustal block, four distinctly different 

moment tensors can be produced for the same combination of dip and arc angles, depending on 

whether the ring fault dips inward or outward, and whether the central crustal block moves up or 

down relative to the rest of the volcano. In Figure 3.9, we show composite moment tensors for 

earthquakes generated by dip-slip motion along the same 120° of arc for ring faults dipping 65°. 
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Following the convention of Aki and Richards [2002], in which the fault dips down to the right 

of the strike direction, we use strike angles varying between 0° and 120° for inward-dipping ring 

faults, and strike angles varying between 180° and 300° for outward-dipping ring faults. We set 

the rake to ±90° to simulate pure normal and reverse ring-faulting earthquakes. 

 

 

 

Figure 3.9. A comparison of the composite moment tensors that result from dip-slip motion 
along a fixed arc segment. In each quadrant, we plot a schematic indicating the direction of the 
ring fault (inward or outward) and the relative motion of the central crustal block (up or down) as 
well as the matching focal mechanism. Details of the fault parameters are listed at the top of each 
quadrant.  
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As illustrated in Figure 3.9, for cases in which the ring fault is inward-dipping and the crustal 

block moves downward, either due to the deflation of an underlying magma chamber or the 

inflation of an overlying magma chamber, vertical-P earthquakes are produced. Vertical-T 

earthquakes are produced if the kinematics are reversed and the crustal block moves upward due 

to the inflation of an underlying magma chamber. Similarly, the upward motion of an outward-

dipping crustal block can produce vertical-P earthquakes, whereas the downward motion of the 

crustal block produces vertical-T earthquakes. For inward-dipping ring faults, the azimuth of the 

dominant principal stress axis bisects the ring fault slip distribution, whereas for outward-dipping 

ring faults, the midpoint of the ruptured arc segment is offset by 180° from the azimuth of the 

dominant principal stress axis.  

 

With the expected behavior for ring-faulting earthquakes outlined above, we use our 

observations of vertical-CLVD earthquakes to evaluate the ring-faulting mechanism. If vertical-

CLVD earthquakes are generated by slip on ring faults, deviatoric moment-tensor solutions 

should contain information about the ring-fault geometry and the extent of rupture. In Figure 

3.10, assuming that the rupture patterns can be approximated by uniform slip along a conical ring 

fault as in Figure 3.8, we use the values of ε and the plunges of the dominant principal stress 

axes retrieved from the CMT solutions in Chapter 2 to plot estimated ring-fault dip and arc 

angles. For most earthquakes, the values of ε and the plunges of the pressure or tension axes 

result in unique estimates of arc and dip angles. However, because the ε patterns become 

complicated for ruptures extending past 180° of arc, the source parameters for a small number of 

earthquakes with |ε| > 0.40 are consistent with several possible combinations of dip and arc 
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angles. For these earthquakes, we prefer solutions with the smallest arc angles in order to be 

consistent with the results for the majority of the other earthquakes.  

 

 

Figure 3.10. Application of the conical ring-faulting model from Figure 3.7 to the 86 vertical-
CLVD earthquakes from Chapter 2.  We invert the values of |ε| and the plunges of the dominant 
principal stress axes to obtain estimates of the dip and arc angles of ring faults. Green circles 
represent vertical-P earthquakes and blue circles represent vertical-T earthquakes. Black lines 
show contours of |ε| and dashed lines show contours of the plunge of the pressure or tension 
axes. 
 

Overall, we find that the source parameters of the 86 vertical-CLVD earthquakes identified in 

Chapter 2 are consistent with slip along ~100°-250° of arc on ring faults that dip 45°-80°. The 

vast majority of vertical-CLVD earthquakes cluster between arc angles of 100°-160° and dip 

angles of 50°-70°, and we do not observe systematic differences between the ring-fault 

parameters estimated for vertical-P and vertical-T earthquakes. In cases where multiple vertical-
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CLVD earthquakes are associated with the same volcano, we find that the estimated ring-fault 

parameters are similar. For example, the 39 largest vertical-P earthquakes at Miyakejima have 

CMT solutions that are consistent with slip along ~110°-125° of arc on ring faults dipping ~55°-

60°. The dip angles that we retrieve in Figure 3.10 are relatively shallow compared to the 

subvertical dip angles observed for ring faults in nature and in analog models. In fact, slip on 

subvertical ring faults should produce non-double-couple earthquakes with dominant principal 

stress axes that plunge 45°-60°, and those earthquakes would not be considered vertical-CLVD 

earthquakes according to our criteria, which require the plunge of the dominant principal stress 

axis to be greater than 60°. We estimate that the uncertainties associated with the plunges of the 

dominant stress axes are on the order of 5-10°, and the uncertainties associated with the ε values 

are ~0.05-0.10, which translates to uncertainties of ~30° in arc angle and ~10° in dip angle.  

 

Some of the steepest estimates of ring-fault dip are retrieved for vertical-T earthquakes at Sierra 

Negra and Rabaul, two volcanoes with known ring-fault structures. Although the estimates of 

ring-fault dip obtained from our CMT solutions are reasonably consistent with geophysical 

observations at these volcanoes, as outlined below, the relationships between vertical-CLVD 

earthquakes and deformation is not clear.  

 

Sierra Negra is a shield volcano with a large summit caldera located in the Galápagos Islands. 

The interior of Sierra Negra’s caldera contains a 14-km-long sinuous ridge formed by a series of 

repeating trapdoor-faulting events driven by magma accumulation in the volcano’s sill-like 

magma chamber [Figure 3.11; Reynolds et al., 1995; Amelung et al., 2000; Jónsson et al., 2005; 

Chadwick et al., 2006; Jónsson, 2009]. On 22 October 2005 at 23:40 UTC, an MW 5.5 vertical-T 
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earthquake took place at Sierra Negra, three hours prior to the start of an explosive and effusive 

eruption sourced from the northern rim of the caldera [Geist et al., 2008]. Yun [2007] interpreted 

InSAR data spanning the 2005 eruption to suggest that the precursory earthquake was generated 

by uplift of the caldera floor along the sinuous ridge located along the southern and western rims 

of the caldera. Vertical fault scarps measured along the sinuous ridge [Geist et al., 2008] support 

this model (Figure 3.10). Although Yun [2007] modeled the earthquake as dip-slip motion along 

a vertical fault, InSAR and GPS data from several other trapdoor-faulting episodes that were not 

followed by eruptions suggest that these events are generated by slip on curved, steeply inward-

dipping (~71°) thrust faults located along the southern and western rims of the caldera [Jónsson, 

2009]. 

 

From our CMT analysis, the MW 5.5 earthquake at Sierra Negra has an ε value of 0.37 and a 

tension axis that plunges 62°, which is consistent with dip-slip motion along ~220° of arc on a 

ring fault dipping ~78° (Figures 3.9 and 3.10). As demonstrated in Figure 3.9, vertical-T focal 

mechanisms are consistent with either the subsidence of a caldera block bounded by an outward-

dipping reverse ring fault, or uplift of a caldera block bounded by an inward-dipping reverse ring 

fault. The latter scenario is similar to that suggested by Yun [2007]. However, if the vertical-T 

earthquake took place on an inward-dipping reverse ring fault located along the southern and 

western rims of the caldera, the tension axis should plunge to the southwest. According to our 

CMT solution, which is A-quality and well constrained, the tension axis has an azimuth of 60°, 

which is consistent with uplift along an inward-dipping reverse ring fault located along the 

northern and eastern rims of the caldera, or subsidence along an outward-dipping reverse ring 

fault located on the southern and western rims of the caldera.  
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Figure 3.11. A map of the caldera of Sierra Negra volcano is plotted in the left panel. The 
dashed line indicates the location of the initial fissure for the 2005 eruption and the black line 
indicates the location of the vertical fault scarp reported in Geist et al. [2008]. Topography is 
from the Shuttle Radar Topography Mission. The focal mechanism for the MW 5.5 vertical-T 
earthquake that occurred 3 hours prior to the start of the 2005 eruption is plotted on the right. 
 

We note similar inconsistencies when we attempt to apply the ring-faulting model to four MW 

5.0 vertical-T earthquakes that took place at Rabaul between 1991 and 1996. Rabaul is a 

pyroclastic shield volcano in Papua New Guinea that entered an explosive phase in September 

1994 following a 23-year seismic crisis. At Rabaul, the locations of microearthquakes delineate a 

steeply outward-dipping (~80°) elliptical ring fault extending to depths of 4-5 km [McKee et al., 

1984; Mori and McKee, 1987; Mori et al., 1989; Itikarai et al., 2008 as referenced in Johnson et 

al., 2010]. The four vertical-T earthquakes from Rabaul have ε values of 0.34-0.39 and tension 

axes that plunge 63°-70°, which are consistent with dip-slip motion along ~170°-185° of arc 

along a ring fault dipping ~68°-75°. The first two vertical-T earthquakes took place during a 

period of caldera uplift prior to the 1994 eruption, which is a scenario that should produce 

vertical-P earthquakes provided the uplift is accommodated by slip on the observed outward-
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dipping ring fault. As above, the vertical-T focal mechanisms for the Rabaul earthquakes are 

consistent with subsidence of a caldera block bounded by an outward-dipping reverse ring fault 

or uplift of a caldera block bounded by an inward-dipping reverse ring fault. If a shallow 

magmatic or hydrothermal system was inflating before the 1994 eruption [McKee et al., 1984; 

Mori and McKee, 1987; Geyer and Gottsman, 2010], it could have triggered subsidence along 

the outward-dipping ring fault. The vertical-T earthquakes could also have been caused by slip 

on antithetic inward-dipping ring-fault structures [Saunders, 2001, 2005]. 

 

As demonstrated in Section 3.2.1, vertical-CLVD earthquakes have slow source processes, and 

there are several reasons ring-faulting earthquakes may have lower rupture velocities, and 

therefore slower source processes, than standard tectonic earthquakes. The velocity of rupture 

propagation during an earthquake is limited by the shear modulus of fault rocks. At volcanoes, 

the effective shear modulus of near-surface, fractured basalt is significantly lower than 

laboratory values [Rubin and Pollard, 1987], and as a result, the shear-wave velocity is lower 

and the rupture velocity is slower. Volcanic earthquakes with low rupture velocities were 

observed at Mt. St. Helens in association with the incremental extrusion of brittle rock spines 

during the 2004 eruption [Harrington and Brodsky, 2007]. Additionally, the rupture velocity 

along ring faults may be affected by unusual frictional and mechanical properties associated with 

hydrothermal circulation, magmatic intrusions, and the effects of repeated collapse events. 

Finally, ring faults may have complicated geometries composed of several approximately planar 

fault segments instead of one smooth cone-shaped fault surface. Rupture velocity is known to 

decrease near regions of slip transfer from one fault segment to the next [e.g., Wald and Heaton, 
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1994]. Any combination of these factors could explain why vertical-CLVD earthquakes have 

slower source processes than tectonic earthquakes. 

 

In Chapter 2, we demonstrated that vertical-T earthquakes usually occur before volcanic 

eruptions or the start of episodes of volcanic unrest, whereas vertical-P earthquakes occur after 

the initiation of eruptive activity. Additionally, vertical-T earthquakes generally have shorter 

source processes than vertical-P earthquakes. If vertical-CLVD earthquakes are generated by 

dip-slip motion on ring faults, this may indicate that the inflation of shallow magma chambers 

generates earthquakes with faster rupture velocities than post-eruption deflation processes. 

Moderate-sized vertical-CLVD earthquakes are most commonly observed at basaltic and/or 

andesitic volcanoes with caldera structures, which may indicate that both ring faults and low-

viscosity magmas are required to generate these events.  

 

For equal dip and arc angles, the largest magnitude vertical-CLVD earthquakes are expected to 

occur on ring faults with the largest dimensions, or in cases where rapid changes in the volume 

of shallow magma chambers trigger large vertical displacements along ring-fault systems. The 

fact that we do not observe any vertical-CLVD earthquakes with magnitudes over MW 5.8 could 

be due to the dimensions of ring faults at source volcanoes. Small calderas, and therefore small 

ring faults, are formed at volcanoes located in Mariana-type subduction zones or in oceanic crust, 

as well as at volcanoes that erupt tholeiite or alkaline magmas, which have low silica contents  

[Sobradelo et al., 2010]. In Chapter 2, we found that moderate-sized vertical-CLVD earthquakes 

most commonly occur at basaltic-to-andesitic stratovolcanoes and submarine volcanoes located 
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in subduction zones, which suggests that vertical-CLVD earthquakes may be generated by dip-

slip motion on relatively small ring-fault structures. 

 

The ring-faulting model can explain many characteristics of vertical-CLVD earthquakes, 

including their anomalous radiation patterns and frequency contents, as well as their magnitudes. 

However, it is difficult to relate the source parameters of vertical-CLVD earthquakes to specific 

faulting scenarios, even in cases where the earthquakes occur at volcanoes where deformation 

and the geometries of ring-fault systems are reasonably well constrained. If the deviatoric 

moment-tensor solutions for vertical-CLVD earthquakes can be directly related to slip 

distributions on ring faults, these structures must have shallower dips than expected from field 

studies and analog models. On the other hand, if vertical-CLVD earthquakes are caused by slip 

on steeply dipping ring faults, we must explain the discrepancies between expected and observed 

source parameters. Small differences may be attributed to uncertainties in our CMT solutions. 

Larger differences could be the result of complexity associated with the ring-fault geometry or 

the rupture process. For example, the conical ring fault geometry and the ±90° rake angles used 

in Figures 3.8-3.10 may not be appropriate. These discrepancies may also be artifacts introduced 

by the existence of unmodeled, non-zero isotropic components generated by the inflation or 

deflation of shallow magma chambers. Below, we evaluate this possibility.  

 

3.3.2. Fluid-Transport and Volumetric-Change Mechanisms 

In volcano seismology, small earthquakes are routinely attributed to sources with net volume 

changes. Common sources associated with magma or fluid transport include spherical isotropic 

sources, opening or closing tensile cracks, and radially expanding or contracting cylinders 
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[Figure 3.6; Chouet, 1996; Kawakatsu and Yamamoto, 2007; Kumagai, 2009].  Below, we 

present the moment tensors for volume-change mechanisms of these end-member reservoir types 

[Kawakatsu and Yamamoto, 2007]. In each case, ΔV is the stress-free volumetric strain that 

characterizes the amount of fluid that is injected or withdrawn from the reservoir [Aki and 

Richards, 2002]. Due to the confining pressure of the medium and the geometry of the reservoir, 

the actual volume change of the reservoir, or Mogi volume ΔVm, may be smaller than ΔV 

[Richards and Kim, 2005; Kawakatsu and Yamamoto, 2007]. 

 

In standard spherical coordinates (r, θ, φ), the moment tensor for a spherical reservoir is given 

by: 
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The moment tensor corresponding to a horizontal tensile crack that opens or closes vertically is: 
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In this case, 
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where S is the crack area and Δu is the crack opening or closing width.  

 

The moment tensor corresponding to the radial expansion of a cylinder with a vertical symmetry 

axis is: 

Mcylinder = !V
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By applying a rotation matrix to Equations 3.17 and 3.19, we can obtain moment tensors for 

tensile cracks or cylindrical sources of any orientation. As demonstrated by Kawakatsu and 

Yamamoto [2007], the isotropic component of spherical sources, opening and closing tensile 

cracks and radially expanding or contracting cylinders are all the same when expressed in terms 

of ΔV: 
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where ! is the bulk modulus, or incompressibility, of the surrounding medium.  

 

Volume Exchange 

When fluid is transported from one reservoir to another, perhaps due to asperity failure, 

composite seismic sources are generated by the expansion and contraction of two reservoirs. 

These volumetric sources have equal magnitude and opposite sign, so the composite moment 

tensor is a pure CLVD with no net isotropic component. Depending on the orientations and types 
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of the reservoirs, vertical-CLVD earthquakes can be produced by a mass or volume exchange 

process. For example, pure vertical-P moment tensors can be produced by the transport of fluid 

from a horizontal tensile crack into a vertical cylinder. Likewise, pure vertical-T moment tensors 

can be produced by fluid flow from a vertical cylinder into a horizontal tensile crack [Chouet, 

1996].  Vertical-CLVD moment tensors can also be produced by volume exchange between 

reservoirs that are not perfectly spherical, cylindrical or planar. In these cases, the radiation 

pattern of Rayleigh waves is not azimuthally isotropic and SH and Love waves are produced. 

Theoretically, larger vertical-CLVD earthquakes should be produced when greater amounts of 

mass or volume are exchanged between two reservoirs. Likewise, the frequency contents of the 

earthquakes caused by mass or volume exchange processes should be influenced by the duration 

of the exchange process, such that longer exchanges produce slower, lower-frequency 

earthquakes.  

 

A volume-exchange process has been investigated as a way to explain the MW 5.6 vertical-T 

earthquake that occurred in Iceland prior to a subglacial eruption between Bárdarbunga and 

Grimsvötn in September 1996. Tkalčić et al. [2009] calculated a full moment-tensor solution for 

this event using regional seismic data and found it to have a statistically insignificant isotropic 

component, which they attempted to replicate using volume exchange between two magma 

chambers separated by varying vertical distances. After calculating moment tensors for synthetic 

data generated by various configurations of inflating and deflating magma chambers with full 

volume compensation, Tkalčić et al. [2009] concluded that a mass exchange mechanism is likely 

to result in a statistically significant observed isotropic component, even using long-period 

seismic data. The volume exchange mechanism is unlikely to explain the Bárdarbunga 
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earthquake, and we consider it an unlikely mechanism to explain most vertical-CLVD 

earthquakes because it requires very special conditions. Furthermore, as we discuss below, the 

volumes of fluids and the rates of fluid flow that would be required to generate vertical-CLVD 

earthquakes with the observed magnitudes and source durations are extremely large. Below, we 

consider mechanisms that do not require volume compensation. 

 

Tensile Cracks  

In volcanic and geothermal areas, at depths of up to several km, high fluid pressure can force 

open tensile cracks. As illustrated in Figure 3.6, the opening and closing of subhorizontal tensile 

cracks can produce earthquakes with deviatoric vertical-CLVD moment tensors. Horizontal 

tensile cracks have seismic radiation patterns with several unusual characteristics. In addition to 

having first motions that are all up or down, depending on whether the crack is opening or 

closing, horizontal tensile cracks radiate Rayleigh waves with equal amplitude in all directions 

and they do not excite SH or Love waves.  Small amplitude SH and Love waves can be produced 

by tensile cracks that are not perfectly horizontal, but which are tilted slightly, so a tensile-crack 

mechanism could explain the anomalous seismic radiation patterns of vertical-CLVD 

earthquakes.  

 

The observation that most vertical-T earthquakes occur before volcanic eruptions is consistent 

with the idea that the opening of subhorizontal tensile cracks may generate earthquakes with 

deviatoric vertical-T moment tensors. Likewise, the observation that most vertical-P earthquakes 

occur after the start of volcanic unrest is consistent with the idea that the closing of subhorizontal 

tensile cracks may generate earthquakes with deviatoric vertical-P moment tensors. However, if 



 

 

152 

vertical-CLVD earthquakes can be explained by such a mechanism, the process of opening 

subhorizontal tensile cracks must be faster than the process of closing them in order to explain 

our observation that vertical-P earthquakes have longer source durations than vertical-T 

earthquakes. Below, we evaluate this mechanism by considering the volumes of fluid injection or 

withdrawal and the propagation velocities of tensile cracks that are required to generate the 

vertical-CLVD earthquakes reported in Chapter 2. 

 

The magnitude of an earthquake generated by the opening or closing of a tensile crack is 

dependent on the elastic properties of the surrounding matrix and the volume of emplaced fluid. 

Using the range of scalar moments from the CMT solutions in Chapter 2, 3.8 x 1015 Nm – 6.5 x 

1017 Nm, we can estimate the fluid volumes that would be required to match our observations. 

We calculate the Mogi volumes and tensile-crack dimensions using Equations 3.17 and 3.18, 

assuming that 62.5% of the scalar moment is due to the isotropic component and 37.5% is due to 

the deviatoric remainder as in Equations 3.12-3.14. Assuming λ = µ = 3.0 x 1010 N/m2, vertical-

CLVD earthquakes are consistent with subhorizontal tensile cracks with volume changes ranging 

from ~5 x 104 m3 to  ~8 x 106 m3. These volumes are equivalent to the opening or closing of 

square tensile cracks with side lengths of ~200 m to ~ 3 km and widths of 1 m. These estimates 

will be larger for smaller values of λ.  

 

Generally, it is assumed that fluid-driven tensile cracks cannot propagate faster than the fluid can 

flow following the crack tip. The propagation velocity of fluid-driven tensile cracks is therefore 

limited by the crack width and the fluid viscosity, among other factors. Typical dike propagation 

velocities range from 0.01 to 10 m/s [Rubin, 1995], which is far too slow to radiate seismic 
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waves. Tensile cracks driven by hydrothermal fluids, however, can propagate fast enough to 

generate seismic waves [Miller et al., 1998b Ross et al., 1999; Foulger et al., 2004]. Mechanisms 

involving the opening of tensile cracks due to the rapid injection of high-pressure, non-magmatic 

fluids have been used to explain several MW > 4.5 earthquakes, including CLVD events at Long 

Valley Caldera [Dreger et al., 2000; Templeton and Dreger, 2006; Minson and Dreger, 2008], 

the MW 5.6 vertical-T earthquake that occurred in Iceland in September 1996 before a subglacial 

eruption between Bárdarbunga and Grimsvötn [Konstantinou et al., 2003], and the MW 5.6 

vertical-T earthquake that generated a disproportionately large tsunami near Smith Rock in Japan 

in 1984 [Kanamori et al., 1993].  

 

Under certain conditions, it may be possible for tensile cracks to propagate ahead of the driving 

fluid at elastic wave speeds, generating earthquakes. It has been suggested that tensile cracks 

may propagate unstably as they approach the free surface or other tensile cracks, and when they 

initially propagate outwards from magma chambers [Sammis and Julian, 1987]. Three MW 5-6 

CLVD earthquakes at Long Valley caldera in 1980 have been attributed to dike propagation 

[Julian, 1983; Aki, 1984; Julian and Sipkin, 1985], although this interpretation is controversial. 

The data can also be explained using a composite faulting model consisting of normal and strike-

slip subfaults [Ekström and Dziewonski, 1983]. Given that vertical-T earthquakes have source 

dimensions of at least several hundred meters and source time functions ranging from a few 

seconds to a few tens of seconds, our observations require propagation velocities of at least ~100 

m/s. Some special condition would be required to allow faster-than-normal crack propagation in 

order to explain vertical-T earthquakes by the opening of magma-filled tensile cracks.  
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Although fluid-driven tensile cracks can open rapidly, they are generally expected to close 

slowly and not radiate seismic waves [Julian et al., 1998]. At mines, however, the sudden 

collapse of cavities has produced earthquakes with full moment tensors that closely resemble 

closing horizontal tensile cracks [Pechmann et al., 1995; Bowers and Walter, 2002; Ford et al., 

2008; Pechmann et al., 2008], some with magnitudes up to M~5 [Knoll, 1990; Pechmann et al., 

1995; Gibowicz and Lasocki, 2001]. At shallow depths, a moment tensor representing a closing 

horizontal tensile crack [Day and McLaughlin, 1991; Bowers and Walter, 2002] produces 

approximately the same waveforms as a single vertical force representing the downward motion 

of a crustal block [Taylor, 1994]. Below, we consider this mechanism for the special case of 

caldera collapse. 

 

In Chapter 2, we describe 43 vertical-P earthquakes that took place at Miyakejima volcano. 

These earthquakes occurred between 7 July and 18 August 2000, and were associated with the 

~40-day incremental collapse of the summit caldera, which began  ~12 days after the start of a 

massive submarine dike intrusion between the volcano and Kozushima and Niijima islands. 

During most discrete collapse episodes, the downward motion of the caldera block produced 

very-long-period (VLP) earthquakes with deviatoric vertical-P moment tensors, and 

simultaneous outward tilt-steps [Kikuchi et al., 2001; Kumagai et al., 2001; Ukawa et al., 2000; 

Yamamoto et al., 2001]. There is a strong correlation between the caldera volume changes, the 

magnitudes of VLP earthquakes, and the amplitude of tilt-steps produced during individual 

caldera collapse episodes [Michon et al., 2011]. Together the 43 vertical-P earthquakes have a 

combined scalar moment of ~5.1 x 1018 Nm. Assuming λ = µ = 3.0 x 1010 N/m2, these 

earthquakes are consistent with a closing subhorizontal tensile crack with a combined volume of 
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~6.4 x 107 m3.  The final volume of the Miyakejima’s caldera is ~6 x 108 m3 [Geshi et al., 2002; 

Nakada et al., 2005], so our estimate would represent only ~10% of the total volume change. 

However, this estimate is only based on collapse episodes that produced VLP signals, and does 

not include the initial and largest collapse episode that took place on 8 July. Given that λ may be 

significantly lower than 3.0 x 1010 N/m2 in volcanic environments [Rubin and Pollard, 1987], it 

is possible that a source model resembling a closing subhorizontal tensile crack or downward 

single force could explain some characteristics of the Miyakejima earthquakes, and perhaps other 

shallow vertical-P earthquakes as well.  

 

The opening and closing of tensile cracks is a physical mechanism that is most plausible for 

small earthquakes with depths in the upper few hundred meters of the crust. Due to overburden 

pressures, sizable voids cannot exist at depths greater than ~1 km, and high fluid pressures are 

required to open tensile cracks at greater depths [Rubin, 1995]. From teleseismic body-wave 

modeling, we know that some vertical-CLVD earthquakes have focal depths of ~4-8 km. Given 

the magnitudes, depths and source durations of the vertical-CLVD earthquakes, we consider the 

opening and closing of tensile cracks to be an unlikely physical mechanism for most events. 

 

Volumetric Changes 

Rapid volume changes can also produce seismic signals with deviatoric vertical-CLVD moment 

tensors. If the deforming reservoir has a sill-like or oblate ellipsoidal shape, the seismic radiation 

pattern will resemble a subhorizontal tensile crack [Davis, 1986; Fialko et al., 2001; Amoruso 

and Crescentini, 2009]. We consider the rapid expansion or contraction of a sill-like magma 

chamber due to the injection of withdrawal of magma to be an unlikely mechanism for most 
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vertical-CLVD earthquakes due to the large magma volume fluxes that would be required to 

explain the observed magnitudes and source durations. For example, the MW 5.8 vertical-T 

earthquake that took place in the Kermadec Islands on 17 February 2009 has a source duration of 

~8 s (Table 3.1). A volume change of ~8 x 106 m3 and, therefore, a magma volume flux of ~1 x 

106 m3/s, would be required to explain this earthquake using a physical mechanism consisting of 

an opening tensile crack. This estimate for the magma volume flux exceeds the estimated mass 

eruption rates for Pinatubo and Tambora [Self, 2012] and several flood-basalt eruptions [Self et 

al., 1998]. It is possible that some vertical-CLVD earthquakes are generated by volumetric 

changes of sill-like reservoirs filled with non-magmatic fluids. High-pressure hydrothermal 

fluids such as water or carbon dioxide have lower viscosities that would be consistent with faster 

volume fluxes. However, it is not clear why the injection or withdrawal of hydrothermal fluids 

should occur preferentially at volcanoes with low silica contents, or at volcanoes with caldera 

structures.  

 

If the deforming reservoir is spherical, rapid volume changes can produce seismic signals that 

resemble spherical isotropic sources. As illustrated in Figure 3.6, vertical-P earthquakes may be 

consistent with sources that are predominantly explosive, whereas vertical-T earthquakes may be 

consistent with sources that are predominantly implosive. Just as we estimated the volume 

changes for tensile cracks, we can also estimate the isotropic volume changes that would be 

required to generate vertical-CLVD earthquakes with our observed scalar moments. As above, 

we use the minimum and maximum scalar moments, 3.8 x 1015 Nm – 6.5 x 1017 Nm, and 

calculate the Mogi volume changes using Equations 3.15 and 3.16 assuming λ = µ = 3.0 x 1010 

N/m2. The magnitudes of our vertical-CLVD earthquakes are consistent with spherical sources 
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with Mogi volumes ranging from ~4 x 104 m3 to ~7 x 106 m3, which is equivalent to spheres with 

radii between ~20 m and ~120 m. To explain the frequency content of our vertical-CLVD 

earthquakes, implosive processes would have to be faster than explosive processes. Since we 

believe it is unlikely that implosive processes would precede volcanic eruptions and explosive 

processes follow, we consider spherical isotropic source mechanisms unlikely to explain vertical-

CLVD earthquakes. 

 

3.4. Conclusions 

Moderate-sized vertical-CLVD earthquakes are some of the most anomalous earthquakes to 

occur in volcanic systems. In Chapter 2, and Nettles and Ekström [1998] and Shuler and Ekström 

[2009], we identified 101 shallow vertical-CLVD earthquakes that occurred near active 

volcanoes. The majority of vertical-CLVD earthquakes are associated with basaltic and/or 

andesitic stratovolcanoes and submarine volcanoes located in subduction zones, although a small 

number of vertical-CLVD earthquakes are located in continental rifts, in areas of hotspot 

volcanism, and along mid-ocean ridges. Approximately 70% of vertical-CLVD earthquakes 

occur during episodes of volcanic unrest at nearby volcanoes, which suggests that these events 

are closely related to magma migration and eruption processes. Vertical-P earthquakes occur 

after the start of volcanic eruptions or episodes of unrest, whereas vertical-T earthquakes 

generally occur before volcanic eruptions.  

 

In this study, we performed additional analysis of the teleseismic body waves of 5.1 ≤ MW ≤ 5.8 

vertical-CLVD earthquakes and determined that these earthquakes have longer source durations 

than tectonic earthquakes of the same magnitude. We find that vertical-CLVD earthquakes from 
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the GCMT catalog have source durations up to ~10 s. We are unable to model any vertical-

CLVD earthquakes detected only by analysis of surface waves [Ekström, 2006], but the inferred 

frequency contents of these earthquakes suggest that they have even longer source durations, up 

to approximately one minute. Most vertical-CLVD earthquakes identified originally from the 

GCMT catalog are vertical-T events and most vertical-CLVD earthquakes from the Surface 

Wave catalog are vertical-P events, leading us to infer that vertical-P earthquakes may have 

slower source processes than vertical-T events. Currently, it is unknown whether both types of 

vertical-CLVD earthquakes have a range of source durations extending from a few seconds to a 

few tens of seconds, or whether vertical-T and vertical-P earthquakes are produced by slightly 

different physical mechanisms that result in different frequency contents and source durations.  

 

We also explored the possibility that the vertical-CLVD earthquakes may have significant non-

zero isotropic components generated by net volume changes. We examined the covariance 

matrix of one of the best-recorded vertical-CLVD earthquakes to illustrate that, even for large 

earthquakes with excellent data coverage, there is a tradeoff between the isotropic and pure 

vertical-CLVD components of the moment tensor. As a result, many physical mechanisms can 

produce earthquakes with deviatoric vertical-CLVD moment tensors, including slip on ring 

faults, volume exchange between two reservoirs, the opening and closing of tensile cracks and 

volumetric changes.  

 

We evaluated proposed physical mechanisms using additional constraints obtained from our 

detailed studies of vertical-CLVD earthquakes, and found that no single physical mechanism 

could explain all of our observations. In general, physical mechanisms involving only fluid 
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transport or volumetric changes seem unlikely to explain most vertical-CLVD earthquakes. 

Mechanisms involving isotropic volumetric changes cannot explain the temporal relationships 

between vertical-CLVD earthquakes and volcanic eruptions. Likewise, the source durations of 

vertical-CLVD earthquakes preclude mechanisms involving magma transport through tensile 

cracks. Even for basaltic or andesitic magmas, which have relatively low viscosities, the 

propagation velocities and volume fluxes required to explain our observations are physically 

implausible. It is possible that some vertical-CLVD earthquakes are caused by tensile cracks 

filled with less viscous hydrothermal fluids, such as water or carbon dioxide, although it is not 

clear why this mechanism should occur preferentially at basaltic stratovolcanoes and submarine 

volcanoes. In the special circumstance of caldera collapse, a mechanism resembling the closing 

of a subhorizontal tensile crack may explain the occurrence of vertical-CLVD earthquakes.  

 

Ring-faulting mechanisms can explain many characteristics of vertical-CLVD earthquakes, 

including their anomalous seismic radiation patterns and source durations. The partial 

cancellation of long-period seismic moment that results from slip on curved fault structures can 

also explain why vertical-CLVD earthquakes near Smith Rock volcano are associated with 

disproportionately large tsunamis. Most vertical-CLVD earthquakes are associated with basaltic-

to-andesitic volcanoes with calderas that are located in oceanic island arcs. Calderas with small 

dimensions, and therefore ring faults with small dimensions, are preferentially observed at 

volcanoes in these environments [Sobradelo et al., 2010], and basaltic volcanoes erupt more 

frequently than silicic volcanoes [White et al., 2006]. The geodynamic environments of the 

source volcanoes may thus explain why we have observed ~75 vertical-CLVD earthquakes with 
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MW ≥ 5.0 in the last ~35 years, yet we have not observed any vertical-CLVD earthquakes larger 

than MW 5.8.  

 

It remains difficult to interpret the deviatoric moment tensors of vertical-CLVD earthquakes in 

terms of specific ring-faulting scenarios. At Sierra Negra and Rabaul, two volcanoes with known 

ring faults, the patterns of ring-fault slip suggested by our deviatoric moment tensors do not 

match inferences from geodetic studies. Additionally, the plunges of the dominant stress axes 

and the ε values for vertical-CLVD earthquakes in Chapter 2 are consistent with ring faults with 

dip angles of ~50°-70°, though observations from field geology and models of caldera collapse 

suggest that ring faults are subvertical. These discrepancies cannot be explained by uncertainties 

in the CMT solutions alone.  

 

The dip angles of volcano ring faults are not well constrained. Field studies of active calderas 

cannot constrain deep structures, and it is not clear that the surface expressions of ring faults are 

representative of deeper seismogenic zones. Similarly, the inferred geometries of ring faults 

outlined by microseismicity are dependent on local velocity models and seismic station 

distributions. Additionally, numerical and analog models of caldera collapse are simplified, and 

in most cases, the effects of heterogeneity, pre-existing faults, and magma intrusion and 

extrusion are not considered. Such factors may influence the stress field and affect the dip angles 

of the volcano ring faults. More work will be required to evaluate whether active volcanoes may 

have ring faults with shallower dip angles, consistent with our seismological observations. 
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Alternatively, vertical-CLVD earthquakes may be generated by a mechanism that is a hybrid of 

ring faulting and fluid flow. If dip-slip motion on ring faults is triggered by the inflation or 

deflation of a shallow magma chamber, rapid volume changes might contribute to the seismic 

wavefield and the recovered moment tensors. The tradeoff between the isotropic and pure 

vertical-CLVD components in CMT analysis means that, if we combine the moment tensors 

resulting from dip-slip motion on a steeply inward-dipping ring fault and either a closing tensile 

crack or an implosion, the composite moment tensor will fall close to the line in k-ε space that 

represents our solution space (Figure 3.6). If contributions from the isotropic component 

influence the deviatoric moment tensors we retrieve for vertical-CLVD earthquakes generated by 

ring faulting, it may not be possible to interpret the plunges and azimuths of the dominant stress 

axes and the ε values in terms of patterns of ring-fault slip without additional constraints. 

 

Despite these ambiguities, it is clear that vertical-CLVD earthquakes are generated by large-scale 

deformation occurring inside the edifices and magmatic plumbing systems of active volcanoes. 

Vertical-T earthquakes are likely caused by inflation processes leading up to volcanic eruptions, 

whereas vertical-P earthquakes are likely caused by deflation processes that begin after the start 

of volcanic unrest. However, before vertical-CLVD earthquakes can be interpreted in terms of 

specific deformation processes at source volcanoes, it will be necessary to use other types of 

geophysical data, such as data from local seismic and GPS networks and interferograms, to 

constrain the precise physical mechanisms that generate vertical-CLVD earthquakes at individual 

volcanoes.  
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Concluding Remarks 
 
 

In this dissertation, we investigated a rarely observed and poorly understood type of earthquake 

associated with volcanic centers. Using openly accessible global seismic data and two seismicity 

catalogs from the Global CMT Project, we were able to identify 91 shallow vertical-CLVD 

earthquakes located near volcanoes. By studying the source parameters and characteristics of 

these earthquakes, as well as their temporal relationships to volcanic unrest, we were able to gain 

insight into how these events are linked to deformation occurring inside the edifices or magmatic 

plumbing systems of active volcanoes. Below, we summarize our major findings by chapter and 

discuss a number of outstanding research questions. 

 

In Chapter 1, we examined a series of five earthquakes that took place near Nyiragongo volcano 

in the Democratic Republic of the Congo between 2002 and 2005. Compared to tectonic 

earthquakes with similar magnitudes and locations, we find that these earthquakes are depleted in 

high-frequency energy, which prevented them from being detected using traditional methods. 

We find that each earthquake can be modeled using a time-varying force model consisting of an 

upward force followed by a downward force, which is typical for a collapse event. However, 

unrealistically large vertical forces are required to generate seismic events with the observed 

magnitudes. We find that better fits to the data can be achieved with vertical-P moment tensors. 

The first three earthquakes occurred days after a regional rifting episode ruptured the edifice of 

the volcano, resulting in a fissure eruption that inundated the city of Goma, ~20 km away. Hours 

after these three earthquakes, the summit crater collapsed ~600 m. We interpret these events as 

slip on inward-dipping ring faults triggered by the deflation of an underlying shallow magma 

chamber. The final two earthquakes took place one and three years later, respectively, when the 
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lava lake in Nyiragongo’s summit crater was refilling. These events can be explained using a 

similar mechanism, in which magma ascent into shallow levels of the magmatic plumbing 

system triggers the collapse of a deeper magma reservoir. Depending on the size and geometry of 

the ring faults, displacements on the order of centimeters to meters are required to generate the 

observed vertical-P earthquakes.  

 

In Chapter 2, we performed a systematic global search for shallow vertical-CLVD earthquakes 

located near volcanoes with documented eruptions in the last ~100 years. Of the nearly 400 

target earthquakes investigated from the Global CMT catalog and the Surface Wave catalog of 

Ekström [2006], we identified 86 earthquakes with robust vertical-CLVD focal mechanisms. All 

of these earthquakes have shallow depths, and ~80% are located within 30 km of a volcano. The 

majority of vertical-CLVD earthquakes are associated with stratovolcanoes and submarine 

volcanoes in subduction zones, although a small number of events are associated with volcanoes 

located in continental rifts, along mid-ocean ridges, and above mantle plumes. Vertical-CLVD 

earthquakes occur preferentially at volcanoes with caldera structures, and at volcanoes that erupt 

magmas with low silica contents.  

 

Half of all vertical-CLVD earthquakes are associated with caldera collapse at Miyakejima in 

2000, and another 20% are associated with documented episodes of unrest at other volcanoes. 

Vertical-CLVD earthquakes are associated with effusive and explosive eruptions as well as 

anomalous tsunamis and submarine seismic swarms. Vertical-P earthquakes occur hours to years 

after the start of volcanic unrest, and vertical-T earthquakes occur before and after the start of 

eruptive activity. Our results suggest that vertical-P earthquakes may be useful for identifying 
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volcanoes where eruptions or large-scale magmatic intrusions have recently occurred, whereas 

vertical-T earthquakes may signal that a particular volcano is likely to erupt in the future. Given 

that volcanic unrest is underreported, we suspect that most vertical-CLVD earthquakes are 

related to some type of volcanic unrest. We observe series of vertical-T earthquakes at 

Zavodovski and an Unnamed volcano in the Tonga Islands. These volcanoes have no confirmed 

eruptions in the last ~80-200 years, but we suspect that the earthquakes may be indicative of 

magma ascent and increased potential for future eruptions, as at Bárdarbunga [Nettles and 

Ekström, 1998]. 

 

In Chapter 3, we explored the physical mechanisms that generate vertical-CLVD earthquakes at 

active volcanoes. In order to obtain further constraints on source processes, we performed 

several types of additional analysis. We attempted to model the body waves for the largest 

vertical-CLVD earthquakes and found we were only able to model 18 earthquakes, all of which 

are reported in the Global CMT catalog. These vertical-CLVD earthquakes have source 

durations of up to ~10 seconds, longer than tectonic earthquakes of the same magnitude. 

Vertical-CLVD earthquakes from the Surface Wave catalog likely have even longer source 

processes as they are depleted in high-frequency energy. As most vertical-T earthquakes are 

included in the Global CMT catalog and most vertical-P earthquakes are reported only in the 

Surface Wave catalog, we can infer that, on average, vertical-T earthquakes have faster source 

processes than vertical-P earthquakes. It is not clear why these two types of vertical-CLVD 

earthquakes have different frequency contents and source durations. 
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Additionally, we examined the magnitude distributions of vertical-CLVD earthquakes, and found 

that vertical-CLVD earthquakes do not follow the Gutenberg-Richter frequency-magnitude 

distribution with the global average b-value of 1.0. Whereas we have documented ~75 

earthquakes with MW ≥ 5.0, there are no reported cases of volcanic vertical-CLVD earthquakes 

larger than MW 5.8. This may indicate that there is a limiting factor on the source size for these 

earthquakes.  

 

In Chapters 1 and 2, we defined vertical-CLVD earthquakes by the properties of their deviatoric 

moment tensors. However, as earthquakes with significant isotropic components have been 

observed in volcanic regions, we explored the possibility that vertical-CLVD earthquakes may 

have net volume changes. Through an examination of the covariance matrix for one of the best-

recorded vertical-CLVD earthquakes, we confirmed that the isotropic and pure vertical-CLVD 

components cannot be independently resolved using long-period seismic data. Full moment-

tensor solutions for vertical-CLVD earthquakes further demonstrated the tradeoff between 

isotropic and vertical-CLVD components, revealing that several different physical mechanisms 

can account for the anomalous seismic radiation patterns of vertical-CLVD earthquakes. We 

evaluated a range of potential physical mechanisms including dip-slip motion along ring faults, 

volume-exchange processes, opening and closing of tensile cracks and volumetric sources. Of 

these, only the ring-faulting mechanism can explain the observed source durations (~60 s or less) 

and the temporal relationships between vertical-CLVD earthquakes and volcanic unrest. 

 

Ring faults are curved dip-slip faults that form as a result of inflation and deflation of shallow 

magma chambers. Motion along ring faults can produce vertical-CLVD earthquakes with source 
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parameters that depend on the geometry and kinematics of the ring fault, as well as the scale of 

rupture. Vertical-T earthquakes are caused by slip on curved reverse faults, and vertical-P 

earthquakes are caused by slip on curved normal faults. The magnitude of the non-double-couple 

component, the plunge of the dominant stress axis and the cancellation of long-period seismic 

moment are influenced by the dip angle of the ring fault and the arc angle of rupture. The rupture 

velocity along ring faults may be affected by unusual frictional and mechanical properties 

associated with nearby high-temperature magma bodies or hydrothermal fluids.  

 

The ring-faulting model can explain many characteristics of vertical-CLVD earthquakes, 

including their anomalous seismic radiation patterns and frequency contents, and their temporal 

relationship to volcanic unrest. According to Sobradelo et al. [2010], the smallest calderas, and 

therefore the smallest ring faults, are formed at volcanoes that erupt magmas with low-silica 

contents, and at volcanoes located in oceanic crust or in Mariana-type subduction zones. Most of 

the source volcanoes for vertical-CLVD earthquakes meet these conditions, and this could 

explain why we do not observe MW ≥ 6.0 vertical-CLVD earthquakes. 

 

The ring-faulting model cannot explain all of our observations, however. For example, it is 

difficult to interpret the source parameters of vertical-CLVD earthquakes directly in terms of 

specific faulting patterns. The deviatoric CMT solutions for vertical-CLVD earthquakes are 

consistent with slip on ring-fault structures dipping ~50-70º, whereas field geology studies, as 

well as analog and numerical models of caldera collapse suggest that most ring faults are 

subvertical. Also, as demonstrated for Sierra Negra and Rabaul, the source parameters of some 

vertical-CLVD earthquakes also appear inconsistent with geological and geophysical 
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observations of deformation. These differences cannot be explained by uncertainties in our CMT 

solutions.  

 

If vertical-CLVD earthquakes are caused solely by slip on ring faults, our results suggest that 

these structures may be less steep than expected from field geology and modeling of caldera 

collapse. This possibility cannot be ruled out, as the dip angles of ring faults are poorly 

constrained. At active volcanoes, ring faults are often covered by lava and pyroclastic flows or 

crater lakes, and deep structures cannot be observed at the surface. Likewise, the dip angles of 

ring faults determined from microseismicity structures are dependent on the chosen velocity 

model and the azimuthal distribution of local seismic stations. Analog and numerical models are 

often oversimplified, and do not consider the effects of magma intrusion and extrusion, 

heterogeneity and pre-existing structures. Better constraints on the dip angles of ring faults 

would allow us to assess the ring-faulting model more thoroughly. 

 

Alternatively, vertical-CLVD earthquakes may be generated by a mechanism that is a hybrid of 

ring faulting and fluid flow. If dip-slip motion on ring faults is triggered by rapid inflation and 

deflation of shallow magma chambers, net volume changes may influence the deviatoric 

moment-tensor solutions we retrieve. In the special case of caldera collapse, vertical-CLVD 

earthquakes may also be generated by a mechanism resembling the closing of subhorizontal 

tensile cracks.  

 

Although our work suggests that vertical-T earthquakes are likely caused by inflation processes 

leading up to volcanic eruptions, and vertical-P earthquakes are likely caused by deflation 
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processes that occur after the start of volcanic unrest, it is currently not possible to interpret these 

earthquakes in terms of specific deformation processes. Multidisciplinary studies using 

complementary data, such as local seismic, GPS, and InSAR data, will be required to determine 

the physical mechanisms that produce vertical-CLVD earthquakes in specific locations. In the 

future, the occurrence of vertical-CLVD earthquakes may be combined with other data to assess 

hazards at source volcanoes.  
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Appendix A 
 

 

This appendix contains Supplementary Information for Chapter 2. These data tables have been 

submitted as Auxiliary Material for: 

Shuler, A., Nettles, M., and G. Ekström, Global observations of vertical-CLVD earthquakes at 
active volcanoes, submitted to J. Geophys. Res., 2012. 
 
 
Table A1. Centroid-moment-tensor solutions for 124 target earthquakes in the Global CMT 

catalog (1976-2009). The number in the first column is the event number for each earthquake. 

An asterisk next to the event number indicates that the earthquake is a shallow vertical-CLVD 

earthquake (see text). The event number is followed by the year, month, day and origin time of 

the earthquake. The origin time listed is that of the centroid solution, where δt0 indicates the time 

shift (in seconds) with respect to the time reported by the NEIC in its Preliminary Determination 

of Epicenters (PDE) or the Global CMT Project’s Surface Wave Catalog. 

 

The hypocentral coordinates are for the centroid locations, and δλ0 and δφ0 indicate the 

perturbations in latitude and longitude obtained with respect to the original epicenter.  

 

The half duration (Half Drtn) of the earthquake is a fixed parameter in the inversion, estimated 

from the scalar moment using the empirical relationship 

Half Drtn = 2.26 x 10-6 M0
1/3,      (A1) 

where the half duration is measured in seconds and M0 is the scalar moment measured in Nm 

[Ekström et al., 2012]. The moment-rate function is modeled as a triangle. 
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The scale factor (10ex) is the number by which the scalar seismic moment and moment-tensor 

elements must be multiplied to obtain a result in Nm. The scale factor entries in the table 

represent the exponent (ex) values. The scalar moment (M0) is defined as  

   M0 = (σmax - σmin)/2,        (A2) 

where σmax and σmin are the maximum and minimum eigenvalues of the moment tensor. 

 

The elements of the moment tensor are given in the standard spherical coordinate system 

[Gilbert and Dziewonski, 1975]. In Cartesian coordinates, Mrr = Mzz, Mθθ = Mxx, Mφφ = Myy, Mrθ 

= Mxz, Mrφ = -Myz, and Mθφ = -Mxy [Aki and Richards, 2002]. The CMT solutions are constrained 

to have no isotropic component, so that Mrr + Mθθ + Mφφ = 0. Each element of the moment tensor 

is followed by its estimated standard error. 

 

Table A2. Moment tensors expressed in principal-axis system and best-double couple 

parameters for the 124 target earthquakes from the Global CMT catalog. As in Table A1, the 

number in the first column is the event number, and an asterisk next to the event number 

indicates that the earthquake is a shallow vertical-CLVD earthquake. The scale factor (10ex) is 

the number by which the scalar seismic moment and eigenvalues must be multiplied to obtain a 

result in Nm. Each principal axis is described by an eigenvalue, plunge and azimuth. The scalar 

moment (M0) is repeated from Table A1. The strike, dip, and rake of the nodal planes of the best-

double-couple mechanism are listed, following the convention of Aki and Richards [2002].  
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Table A3. Centroid-moment-tensor solutions for 59 Category 1 target earthquakes in the Surface 

Wave catalog (1991-2009). Columns are as in Table A1, except the origin time listed is that of 

the centroid solution, where δt0 indicates the time shift (in seconds) with respect to the time 

reported by the Global CMT Project’s Surface Wave Catalog. 

 

Table A4. Principal axes and best double-couple parameters for 59 Category 1 target 

earthquakes in the Surface Wave catalog (1991-2009). Columns are as in Table A2. 

 

Table A5. Centroid-moment-tensor solutions for 131 Category 2 target earthquakes in the 

Surface Wave catalog (1991-2009). Columns are as in Table A1, except the origin time listed is 

that of the centroid solution, where δt0, indicates the time shift (in seconds) with respect to the 

time reported by the Global CMT Project’s Surface Wave Catalog. 

 

Table A6. Principal axes and best double-couple parameters for 131 Category 2 target 

earthquakes in the Surface Wave catalog (1991-2009). Columns are as in Table A2. 

 

Table A7. Centroid-moment-tensor solutions for 86 target earthquakes in the Global CMT 

catalog (1976-2009) and the Surface Wave catalog (1991-2009). This table is a compilation of 

all of the shallow vertical-CLVD earthquakes described in Tables A1, A3 and A5. Columns are 

as in Table A1. Because all of the earthquakes are shallow, their centroid depths were 

constrained by the inversion to be 12 km, so no standard error in depth is given. 

 



 198 

Table A8. Principal axes and best double-couple parameters for 86 target earthquakes in the 

Global CMT catalog (1976-2009) and the Surface Wave catalog (1991-2009). This table is a 

compilation of all the shallow vertical-CLVD earthquakes described in Tables A2, A4 and A6. 

Columns are as in Table A2. 
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Appendix B 
 

Earthquake source parameters for the 2010 western Gulf of Aden rifting episode 
 

This is the final accepted manuscript for work that has been published as: 
Shuler, A. & Nettles, M. 2012. Earthquake source parameters for the 2010 western Gulf of Aden 

rifting episode, Geophys. J. Int., 190, 1111-1122, doi:10.1111/j.1365-
246X.2012.05529.x. 

 
 
Abstract  

On November 14, 2010, an intense swarm of earthquakes began in the western Gulf of Aden. 

Within a 48-hour period, 82 earthquakes with magnitudes between 4.5 and 5.5 were reported 

along an ~80-km-long segment of the east-west trending Aden Ridge, making this swarm one of 

the largest ever observed in an extensional oceanic setting. In this study, we calculate centroid-

moment-tensor solutions for 110 earthquakes that occurred between November 2010 and April 

2011. Over eighty percent of the cumulative seismic moment was due to earthquakes that 

occurred within one week of the onset of the swarm. We find that this sequence has a b-value of 

~1.6 and is dominated by normal-faulting earthquakes that, early in the swarm, migrate 

westwards with time. These earthquakes are located in rhombic basins along a section of the 

ridge that was previously characterized by low levels of seismicity and a lack of recent 

volcanism on the seafloor. Body-wave modeling demonstrates that the events occur in the top 2 

to 3 km of the crust. Nodal planes of the normal-faulting earthquakes are consistent with 

previously mapped faults in the axial valley. A small number of strike-slip earthquakes observed 

between two basins near 44°E, where the axial valley changes orientation, depth and width, 

likely indicate the presence of an incipient transform fault and the early stages of ridge-transform 

segmentation. The direction of extension accommodated by the earthquakes is intermediate 

between the rift-orthogonal and the direction of relative motion between the Arabian and 
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Somalian plates, consistent with the oblique style of rifting occurring along the slow-spreading 

Aden Ridge. The 2010 swarm shares many characteristics with dike-induced rifting episodes 

from both oceanic and continental settings. We conclude that the 2010 swarm represents the 

seismic component of an undersea magmatic rifting episode along the nascent Aden Ridge, and 

attribute the large size of the earthquakes to the combined effects of the slow spreading rate, 

relatively thick crust and recent quiescence. We estimate that the rifting episode was caused by 

dike intrusions that propagated laterally for 12 to 18 hours, accommodating ~1-14 m of opening 

or ~85-800 years of spreading along this section of the ridge. Our findings demonstrate the 

westward propagation of active seafloor spreading into this section of the western Gulf of Aden 

and illustrate that deformation at the onset of seafloor spreading may be accommodated by 

discrete episodes of faulting and magmatism. A comparison with similar sequences on land 

suggests that the 2010 episode may be only the first of several dike-induced rifting episodes to 

occur in the western Gulf of Aden. 

 

B1. Introduction 

The Gulf of Aden is a young ocean basin that stretches from the Afar depression in East Africa 

to the Carlsberg Ridge in the Indian Ocean (Figure B1). Here, northeastward motion of the 

Arabian plate relative to the Somalian plate is accommodated by oblique spreading on a system 

of approximately east-west trending rift zones (Bosworth et al. 2005; Manighetti et al. 1997; 

Cochran et al. 1981; Courtillot 1980). Beginning in mid-November 2010, the western Gulf of 

Aden between 43.75° and 44.5°E experienced an intense swarm of earthquakes. Within a 48-

hour period, 24 earthquakes with magnitudes between 5.0 and 5.5, and 58 earthquakes with 

magnitudes between 4.5 and 5.0, were reported in this area. The magnitudes of these  
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Figure B1. Map of the western Gulf of Aden and surroundings. The Carlsberg Ridge lies east of 
the Shukra al Sheik discontinuity, outside the frame of the figure. Maroon dots mark the 
locations of earthquakes in the NEIC catalog (1973-2010). Focal mechanisms are from the 
Global CMT catalog (1976-2010). All seismic data plotted covers the entire period of the 
catalogs prior to the start of the earthquake swarm. Plate boundary information is from Bird 
(2003). The plate motion vector for the Arabian plate relative to the Somalian plate (1.6 cm/yr at 
N34°E) is from MORVEL (DeMets et al. 2010). Topography and bathymetry is plotted from the 
GEBCO_08 Grid, version 20100927, http://www.gebco.net. 
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earthquakes, as well as the large number of earthquakes in a short time, make this swarm one of 

the largest ever observed in an extensional oceanic setting. Teleseismically detected earthquakes 

continued to occur for several months after the onset of the swarm, although at a much lower 

rate. The earthquake sequence occurred on a tectonically complex section of the Aden Ridge, 

crossing structural and mechanical boundaries (Dauteuil et al. 2001; Hébert et al. 2001). In this 

chapter, we use data from the Global Seismographic Network to estimate source parameters for 

110 earthquakes in the sequence in order to characterize the swarm and better constrain the 

tectonics of this nascent spreading center. Comparison with seismic and volcanic activity in other 

regions suggests the swarm represents the seismic component of an undersea rifting episode, the 

first documented in this area. 

 

B2. Tectonic Background 

The impingement of the Afar mantle plume on the base of the African lithosphere ~31 Ma 

triggered continental rifting in the Gulf of Aden (Baker et al. 1996; Hoffmann et al. 1997; 

Rochette et al. 1997; Ukstins et al. 2002; Bosworth et al. 2005). This event, combined with 

regional extension due to subduction of Africa beneath Eurasia (Malkin & Shemenda 1991; 

Courtillot et al. 1999; Jolivet & Faccenna 2000; Bellahsen et al. 2003; Bosworth et al. 2005) 

resulted in the initiation of seafloor spreading in the eastern Gulf of Aden. Extension propagated 

westwards over time, reaching the Shukra al Sheik discontinuity, and the eastern edge of the 

Afar plume, approximately 10 Ma (Bosworth et al. 2005). Rifting stalled there, and propagated 

into the central and western Gulf of Aden only within the last 2-3 Ma (Cochran 1981; Bosworth 

et al. 2005). Gravity and magnetic data have indicated that the western boundary of active 

seafloor spreading is currently at approximately 44°E (Hébert et al. 2001). East of the Shukra al 
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Sheik discontinuity, the crust is oceanic with a mean thickness of 6 km, and extension is 

accommodated by faulting and oceanic accretion along a well-developed ridge-transform system 

(Dauteuil et al. 2001). In the area of the 2010 earthquake swarm, however, the crustal thickness 

ranges from 6 to 13 km, and although an axial trough is present, ridge-transform segmentation is 

poorly developed (Dauteuil et al. 2001). This section of the Aden Ridge is part of a ~130 km-

long transition between oceanic lithosphere in the east and stretched continental lithosphere in 

the west (Dauteuil et al. 2001; Hébert et al. 2001). 

 

The Aden Ridge spreads at a rate of 1.6 cm/yr in the direction N34°E (DeMets et al. 2010; 

Figure B1). The spreading direction is oblique to the rift axis, which trends N90°E between the 

Shukra al Sheik discontinuity and ~44°E longitude, and N70°E as it approaches the Gulf of 

Tadjoura. East of 44°E the axial valley is between 1000 and 1500 m deep and has a mean width 

of 20 km. Acoustic reflectivity surveys have shown that this portion of the ridge consists of 

overlapping rhombic basins oriented N120°E (Manighetti et al. 1997; Dauteuil et al. 2001). The 

axial valley is bounded by east-west trending normal faults while the center of the valley 

contains left-stepping en echelon faults oriented N100-120°E that accommodate both extension 

and right-lateral strike-slip motion (Manighetti et al. 1997; Dauteuil et al. 2001). West of 44°E, 

the axial valley changes orientation, deepens to 1650 meters and narrows to a width of 10-15 km. 

There the ridge is composed of several basins containing linear to sigmoidal normal faults 

striking N80°-N120°E (Tamsett & Searle 1988; Taylor et al. 1994; Tuckwell et al. 1996; 

Dauteuil et al. 2001). Backscatter images from a 1995 cruise showed no recent lava flows or 

volcanic cones between 43.3° and 44.3°E (Dauteuil et al. 2001). 
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B3. Seismic Overview 

The section of the Aden Ridge that ruptured during the 2010 swarm was previously characterized 

by low levels of seismicity (Figure B1). Prior to 2010, the area between 43.9°E and 45°E had not 

ruptured in a M5+ earthquake in at least the last 38 years, the era of modern seismic 

instrumentation and the time-span covered by the catalogs of the USGS National Earthquake 

Information Center (NEIC, 1973-present) and Global Centroid Moment Tensor Project (GCMT, 

1976-present, Dziewonski et al. 1981; Ekström et al. 2005). This contrasts with other sections of 

the ridge, including the Gulf of Tadjoura near the Afar triple junction and the Sheba Ridge east 

of the Shukra al Sheik discontinuity, where moderate-sized earthquakes occur frequently.  

 

The 2010 western Gulf of Aden earthquake sequence was preceded by an MW 4.5 earthquake on 

13 November at 18:26 GMT. The main part of the sequence began 12 hours later on 14 

November at 06:32 with an MW 5.4 earthquake. Over the next 48 hours, 82 earthquakes with 

magnitudes 4.5 and greater were located by the NEIC and/or by the Global CMT Project using 

surface waves (Ekström 2006; see Figure B2). The number of moderate-sized earthquakes in this 

sequence is extraordinary, and is comparable to the number of similarly sized earthquakes 

expected in the aftershock sequence of an MW 7-8 main shock (Shcherbakov & Turcotte 2004; 

Shcherbakov et al. 2005), even though the largest earthquake was only MW 5.5. Seventy percent 

of the cumulative seismic moment of the swarm is due to earthquakes occurring the first day, and 

83% to earthquakes occurring the first week (Figure B3). Earthquakes were detected in the area 

through August 2011, although they occurred at a much lower rate than during the swarm. 

 

 



 225 

 

Figure B2.  Centroid locations for 110 earthquakes analyzed in this study (November 2010-April 
2011). Red dots denote earthquakes with well-constrained locations while grey dots denote 
earthquakes with less-well-constrained locations. Focal mechanisms, plate boundary 
information, bathymetry and topography are as in Figure B1. 
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Figure B3. Top: Fractional cumulative seismic moment during the first week of the 2010 Gulf of 
Aden earthquake sequence. The cumulative seismic moment is estimated by summing the scalar 
moments for earthquakes analyzed in this study. The cumulative seismic moment through April 
2011 is 3.5x1018 Nm, which is equivalent to a single MW 6.3 earthquake.  
 
Bottom: Times and magnitudes of earthquakes. Red dots show moment magnitudes for 
earthquakes analyzed in this study. Blue dots show times and magnitudes for additional 
earthquakes reported by the USGS NEIC; these are not included in the moment sum.  
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B4. Data and Methods 

We use data from the IRIS-USGS Global Seismographic Network (GSN), Geoscope, GEOFON, 

MEDNET and the Canadian Regional Seismic Network to calculate centroid moment tensors, 

locations and times for earthquakes in the western Gulf of Aden between November 2010 and 

April 2011, the first six months after the start of the swarm. We calculate centroid-moment-

tensor solutions generally following the standard GCMT approach for earthquakes with MW < 

5.5 (Dziewonski et al. 1981; Arvidsson & Ekström 1998; Ekström et al. 2005), which 

incorporates long-period body waves filtered from 40-150 s and intermediate-period surface 

waves filtered from 50-150 s. Solutions for the smallest earthquakes are constrained primarily by 

surface-wave data, and in this case, we adjust the filter to shorter periods (40-100 or 35-75 s) on 

a case-by-case basis to increase the signal-to-noise ratio. Data from 30-100 stations are used for 

each solution, with the nearest station being FURI-IU, located ~675 km away near Addis Ababa, 

Ethiopia.  

 

Because all of the earthquakes in the western Gulf of Aden swarm are shallow, their depths 

cannot be resolved well with the long-period seismic data used in standard GCMT analysis. 

Likewise, depth estimates could not easily be read from depth phases because the direct and 

reflected teleseismic P waves for shallow normal-faulting earthquakes typically have opposite 

polarity and occur very close together in time. To obtain accurate estimates of focal depth, we 

model the broadband teleseismic body waves of the largest earthquakes of the sequence (MW ≥ 

5.2) using the method of Ekström (1989). We perform an inversion of P and SH waveforms for 

focal mechanism, focal depth and moment-rate function. For this analysis, we deconvolve the 

instrument response to obtain broadband displacement records filtered from 1-100 s period. 
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Synthetic seismograms are calculated using ray theory and the Preliminary Reference Earth 

Model (PREM; Dziewonski & Anderson 1981). Reflections and conversions near the source are 

modeled using a layer-matrix method for a regional velocity model. We use the CRUST2.0 

velocity model for the Red Sea (Y0 – thinned continental crust with 1.0 km thick sediment layer; 

Bassin et al. 2000), adding a 1.25 km thick water layer on top to match local bathymetry. The 

CMT estimate of the point-source moment tensor is included as a soft constraint in the inversion 

to ensure that focal mechanisms calculated from the broadband data are compatible with the 

long-period data used in CMT analysis. 

 

B5. Results 

We are able to obtain CMT solutions for 110 earthquakes of the western Gulf of Aden sequence 

and broadband body-wave estimates of depth for four of the larger events. These results are 

summarized in Figures B4-B7, and source parameters are provided in Tables B1, C1 and C2 (see 

Appendix C), and in electronic format on our web site (www.globalcmt.org). Below, we examine 

the source parameters retrieved in the context of known geology, and, in Section B6, consider 

implications of the sequence in light of the tectonic setting and ongoing evolution of the Gulf of 

Aden. 

 

B5.1. Centroid-Moment-Tensor Solutions 

We attempted to analyze all 198 earthquakes with initial magnitudes of 4.0 or larger as reported 

by the NEIC and/or the GCMT Project, and were able to obtain CMT solutions for 110 

earthquakes with magnitudes 4.5 ≤ MW ≤  5.5. (Figure B3). Solutions for the 25 largest 

earthquakes, those with MW ≥ 5.0, have been adopted as the preferred solutions of the Global 
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CMT catalog, which has a minimum magnitude threshold of M~5. We consider both these and 

our additional 85 solutions for smaller events here. Focal mechanisms are presented in Figure 

B4. The solutions are generally robust and well constrained. In the figures and tables, we identify 

18 earthquakes as having less well-constrained focal mechanisms. This designation is given to 

events with the smallest number of usable data, which is due to small magnitude and/or the 

presence of large amplitude waveforms from other earthquakes. Nonetheless, focal mechanisms 

for the least well-constrained earthquakes are consistent with those of the best-constrained events 

(Figures B4 and B6), and we do not distinguish between them in the discussion below.  

 

Although we report complete deviatoric moment tensors for the western Gulf of Aden 

earthquakes in Table C1, we plot only the double-couple components of the focal mechanisms in 

Figure B4 because we are unable to constrain the non-double-couple component well using the 

existing data. This is due to the fact that there are few close stations, and many of the 

earthquakes are near the magnitude threshold of GCMT analysis. The largest normal-faulting 

earthquakes have small non-double-couple components, and are consistent with rupture on 

planar faults. Larger non-double-couple components are retrieved for the least well-constrained 

earthquakes and earthquakes with strike-slip focal mechanisms, but for these events we find that 

double-couple moment tensors fit the data nearly as well as the full solutions. The strikes and 

dips of the nodal planes for the two types of solutions are nearly identical.  
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Figure B4. Focal mechanisms for the western Gulf of Aden. Black focal mechanisms are pre-
swarm earthquakes from the Global CMT catalog. Focal mechanisms for the sequence that began 
on November 13, 2010 are plotted in red and grey, with only the double-couple component 
shown. The best-constrained focal mechanisms are plotted in red, and the less well-constrained 
focal mechanisms are plotted in grey. Black lines show fault traces from Dauteuil et al. (2001). 
Bathymetry from GEBCO is plotted in 100-meter contours.  
 

The standard errors for the latitude and longitude components of the centroid locations are 

between three and five kilometers on average (Table C1). Due to uneven station distributions, the 

presence of noise and unmodeled structural heterogeneity (Nakanishi & Kanamori 1982; Smith 

& Ekström 1997; Hjörleifsdóttir & Ekström 2010), we believe that the actual errors are likely to  

be larger. The good correspondence between the centroid locations and the axial valley, 

however, suggest that absolute location errors are typically less than 20 km. Because the 

distances between individual earthquakes in the sequence are small, and because we use a similar 

station distribution for each CMT solution, the relative location errors are expected to be smaller, 

approximately 5-10 km.  
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The western Gulf of Aden swarm is dominated by normal-faulting earthquakes located in the 

axial valley between 43.75° and 44.5°E (Figure B4). These earthquakes have WNW-ESE 

striking nodal planes that are oriented N109°E on average, or ~75° from the direction of relative 

plate motion (DeMets et al. 2010). The rotation of the nodal planes with respect to the spreading-

orthogonal direction is consistent with fault populations at other oblique rifts around the world 

(Taylor et al. 1994; Tuckwell et al. 1996). The normal-faulting earthquakes have dip angles that 

are close to 45°, with the average dip angles of the shallow and steep nodal planes being 42° and 

51°, respectively. For these events, there is excellent agreement between the distribution of 

retrieved strike angles of the nodal planes and observed fault orientations measured using 

acoustic reflectivity data (Dauteuil et al. 2001). Though the vast majority of the earthquakes 

show normal faulting, a small fraction of the earthquakes have strike-slip focal mechanisms with 

NE-SW and NW-SE striking nodal planes, consistent with the extension direction.  

 

The western Gulf of Aden earthquakes are clustered in both space and time. Spatially, the 

centroid locations are divided into two elongated groups, which are offset from one another by 

10-15 kilometers (Figure B4). These groups correspond to mapped basins inside the axial valley, 

east and west of 44°E (Dauteuil et al. 2001). While normal-faulting earthquakes are distributed 

throughout the basins, strike-slip earthquakes are predominantly located near the offset between 

two of the basins near 44°E. At the beginning of the sequence, the basins east of 44°E were 

active, producing four of the ten largest earthquakes observed during the entire sequence within 

the first six hours. Beginning at 12:49 on November 14, activity shifted to the western basin for 

approximately ten hours and produced the remaining six of the ten largest earthquakes. From 

November 15 onwards, seismicity continued at a lower rate and was concentrated east of 44°E. 
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We do not find any evidence for uniform migration of the centroids with time. However, we do 

observe a westward propagation of the onset of seismicity for the first 12 hours of the swarm, as 

shown in Figure B5. We find that seismicity migrated at a rate no higher than ~1.1 m/s, which is 

consistent with earthquake swarms from Iceland and Afar (Brandsdóttir & Einarsson 1979; 

Belachew et al. 2011). 

 
Figure B5. Spatial and temporal distribution of earthquakes for the first 48 hours of the swarm. 
Earthquakes are plotted as black circles at the longitude of their centroid locations. The time 
plotted in this figure is relative to the start of the swarm, 14 November at 06:32 GMT. For 
reference, a propagation rate of 1.1 m/s is indicated by the dashed line. This is a maximum 
estimate for the propagation rate of the onset of seismicity. 
 

The principal axes of the moment tensor provide information about the strain accommodated by 

fault movements  (McKenzie 1969; Townend 2006). The tension axes indicate the direction of 

maximum extension during an earthquake. Tension axes are close to horizontal for both normal-

faulting and strike-slip earthquakes in the western Gulf of Aden sequence, and the azimuths of 

the tension axes we determine are plotted in Figure B6. For normal-faulting earthquakes, the 

average azimuth of the tension axes is N19°E, which is intermediate between the spreading 

direction from global plate motion vectors, N34°E (DeMets et al. 2010), and the normal to the 

ridge trend in this area, N20°W-N0°E. These observations are consistent with earthquake focal 
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mechanisms at other oblique rifts around the world (Fournier & Petit 2007), as well as with the 

orientations of normal-fault structures observed in analog models of oblique rifting (Withjack & 

Jamison 1986; Tron & Brun 1991; Clifton et al. 2000). The tension axes of the strike-slip 

earthquakes near 44°E are rotated counter-clockwise relative to those of the normal-faulting 

earthquakes, as expected for a left-stepping transform fault connecting two ridge segments. The 

full deviatoric moment tensors for these earthquakes are also consistent with composite focal 

mechanisms resulting from earthquakes with subevents on both ridge and transform segments 

with this left-stepping geometry (Frohlich 1994). The strike-slip earthquakes likely indicate that 

the offset between basins near 44°E is a transfer zone (Dauteuil & Brun 1993; Bellahsen et al. 

2006; Autin et al. 2010), in the process of developing into a transform fault, as has already 

occurred east of the Shukra al Sheik discontinuity. 

 
Figure B6. Azimuths of tension axes for the western Gulf of Aden earthquakes. Tension axes are 
plotted at the centroid locations, and are drawn in blue for earthquakes with large strike-slip 
components, and red or grey for the best-constrained and less well-constrained normal-faulting 
earthquakes. The double-headed black arrow shows the spreading direction from the global plate 
motion model MORVEL (DeMets et al. 2010). Black lines show fault traces from Dauteuil et al. 
(2001). Bathymetry from GEBCO is plotted in 100-meter contours. Tension axes are plotted in 
chronological order, and a single, early strike-slip event at 12.09ºN, 44.2ºE is obscured by later 
normal-faulting events. 
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B5.2. Teleseismic Body Wave Modeling  

We are able to model the teleseismic body waves of four earthquakes, all occurring on 

November 14, 2010. The first of these earthquakes occurred east of 44°E, while the remaining 

earthquakes are located in the western basin. Although the focal depth estimates depend on the 

particular choice of crustal model, we find that, for reasonable choices of sediment thickness 

ranging from 0-1 km, the waveforms can be fit well and the differences between focal depth 

estimates are well within the 1 to 2 km uncertainty associated with the Ekström (1989) method. 

An example of the waveform fits achieved is shown in Figure B7. In Table B1, we present focal 

depths that were calculated using a velocity model that includes a 1.25-km layer of water and a 

1-km layer of sediments. This model was chosen to account for the fact that the sediment 

thickness in the western Gulf of Aden ranges from essentially zero near the ridge axis to 2 km 

outside the rift (Khanbari 2000 as cited in Hébert et al. 2001). The focal depths we retrieve are 

shallow, ranging from 1.6 to 2.6 km below the seafloor. If we use a sediment thickness of zero 

km, the focal depth estimates range from 1.4 to 2.4 km below the seafloor. These depth estimates 

are consistent with other earthquakes from mid-ocean ridges with similar spreading rates (Huang 

& Solomon, 1988). For MW 5.5 normal-faulting earthquakes, empirical scaling relationships 

estimate the down-dip fault width to be ~5 km (Wells & Coppersmith 1994), so it is likely that 

some of the earthquakes in this sequence ruptured the surface of the seafloor. If indeed 1 km of 

sediments is present, our depth estimates suggest that the earthquakes occurred only ~0.5-1.5 km 

into the crystalline crust. Such shallow depth estimates suggest either the earthquakes had 

unusually high stress drops, unlikely if the earthquakes occurred on pre-existing faults, or that 

seismogenic rupture continued into the sediment layer. 



 235 

 

Figure B7. Focal-depth analysis for the MW 5.5 earthquake on November 14, 2010 at 17:02 
GMT. Solid lines are broadband teleseismic P and SH waveforms, and dashed lines are synthetic 
seismograms. Brackets across the waveforms show the portions of the seismograms that were 
used in the inversion, and arrows indicate the picked first arrivals. The station names and 
maximum amplitude (in microns) are printed for each waveform. The focal mechanism and 
moment-rate function determined by the body-wave inversion are plotted in the center of the 
figure. Solid black lines on the focal mechanism show nodal planes for the double-couple part of 
the moment tensor. Black dots on the focal mechanism show where the plotted waveforms exited 
the focal sphere. The focal depth of the earthquake is 3.5 km below the sea surface, or 2.3 km 
below the seafloor. 
 

Earthquake Date 
and Time MW Depth 

(km) 
11/14/10 06:32 5.4 1.6 
11/14/10 13:50 5.2 2.6 
11/14/10 17:02 5.5 2.3 
11/14/10 22:22 5.3 1.8 

 
Table B1.  Focal depth estimates determined by broadband analysis. The depths are relative to 
the seafloor. 
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B6. Discussion  

The western Gulf of Aden earthquake sequence occurred beneath more than a kilometer of water 

in one of the most dangerous shipping routes in the world (Smith et al. 2011). Thus, there are no 

independent observations of the deformation that took place during this episode, either from 

satellite interferometry or from ship-based surveys. However, the character of the seismic 

activity is similar to dike-induced earthquake sequences observed in both continental and oceanic 

settings, and we infer that this sequence is the seismic component of a magmatic rifting episode. 

We base this interpretation on the swarm-like nature of the sequence, and the dominance of 

normal-faulting earthquakes clustered around the ridge axis. With this interpretation, we estimate 

the duration of the diking event and the amount of opening that took place along this section of 

the ridge. We use published analog models to interpret our observations in the context of the 

evolution of the Gulf of Aden and other oblique rifts around the world. 

 

B6.1. Comparison to Other Dike-Induced Rifting Episodes 

During rifting episodes along mid-ocean ridges and magma-rich segments of continental rifts, 

both dikes and faults accommodate plate boundary separation. As dikes propagate laterally 

though the crust, they trigger slip on faults located above and ahead of the intrusions (Rubin & 

Pollard 1988; Rubin 1992; Rubin & Gillard 1998). After propagation ceases, earthquakes 

continue to occur on pre-existing faults close to failure due to changes in Coulomb stress caused 

by the dike injection and related faulting and thermal stressing, although these earthquakes are 

generally fewer in number (Toda et al. 2002; Ayele et al. 2009; Kulpinski et al. 2009; Ebinger et 

al. 2010). Dike-induced rifting episodes in both continental and oceanic settings are 

characterized by earthquake sequences that have neither a single large mainshock nor a decrease 
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in magnitude with time (Abdallah et al. 1979; Brandsdóttir & Einarsson 1979; Tolstoy et al. 

2001; Wright et al. 2006; Rowland et al. 2007; Ayele et al. 2009; Keir et al. 2009; Ebinger et al. 

2008, 2010; Riedel & Schlindwein 2010). Such swarms have elevated b values, which are 

typically attributed to high thermal gradients and the presence or migration of magmatic and/or 

hydrothermal fluids  (Brandsdóttir & Einarsson 1979; King 1983; Hill et al. 1990; Wiemer & 

McNutt 1997; Wiemer et al. 1998; Toda et al. 2002; Farrell et al. 2009).  

 

For the western Gulf of Aden sequence, we estimated the b-value by examining the frequency-

magnitude distribution. The magnitude of completeness (Mc) was defined as the magnitude 

below which the data depart from a linear trend by more than one standard deviation (Zúñiga & 

Wyss 1995). Using the maximum likelihood approach (Utsu 1965; Aki 1965; Bender 1983; 

Wiemer 2001) with a Mc of MW 4.8 and calculating the uncertainty by bootstrapping, we 

estimate the b-value for the western Gulf of Aden sequence to be 1.6 +/- 0.18, which is 

significantly higher than the global average value of ~1.0 (Frohlich & Davis 1993). The estimate 

of b-value remains well above 1.0 for choices of Mc larger than 4.8. 

 

Although there is some debate over whether particular earthquake swarms on mid-ocean ridges 

are due to episodes of tectonic extension or magmatism (Bergman & Solomon 1990), dike-

induced earthquake swarms have now been observed directly on many mid-ocean ridges. Along 

fast and intermediate-spreading mid-ocean ridges, dike intrusions produce short-lived swarms of 

MW ≤ 4.0 earthquakes that are observed primarily by ocean-bottom seismometers (Fox et al. 

1995; Tolstoy et al. 2006; Dziak et al. 1995, 2007, 2009), while larger, teleseismically-detected 

swarms of dike-induced earthquakes are generally only located on slow and ultra-slow spreading 
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ridges such as the Mid-Atlantic Ridge and the Gakkel Ridge (Müller & Jokat 2000; Tolstoy et al. 

2001; Dziak et al. 2004; Riedel & Schlindwein 2010; Schlindwein & Riedel 2010; Korger & 

Schlindwein 2011). For normal-faulting earthquakes along mid-ocean ridges, an inverse 

relationship between maximum earthquake size and spreading rate has been observed, and is 

attributed to thermal limitations on the depth of the seismogenic zone (Soloman & Burr 1979; 

Huang & Solomon 1988; Bird et al. 2009). 

 

The mid-ocean ridge swarm that is most similar to the swarm investigated in this study is the 

1999 Gakkel Ridge swarm, which lasted nine months and produced 20 normal-faulting 

earthquakes with MW ≥ 5.0 (Müller & Jokat 2000; Tolstoy et al. 2001; Ekström et al. 2003; 

Riedel & Schlindwein 2010). In that case, sonar images and bathymetric data suggest that the 

swarm was associated with a volcanic eruption on the seafloor (Edwards et al. 2001). As at the 

Gakkel Ridge, the large magnitudes of the earthquakes in this study can likely be attributed in 

part to the slow spreading rate in the western Gulf of Aden.  

 

The regional crustal structure and tectonic history of the western Gulf of Aden may also help 

explain the large magnitudes of the earthquakes. The area of the earthquake swarm has thick 

crust, which is transitional from oceanic to continental (Dauteuil et al. 2001; Hébert et al. 2001), 

and thicker sections of brittle crust can support larger earthquakes (Rubin 1990). Large 

earthquakes have also been associated with dikes that are the first to intrude host rift zones after 

long periods of quiescence (Rubin & Gillard 1998). Based on the seismic history and on the 

seafloor observations of Dauteuil et al. (2001), this rifting episode is the first in the western Gulf 
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of Aden in a minimum of several decades, and may represent westward propagation of active 

seafloor spreading into a new section of the Aden Ridge.  

 

This interpretation of rift propagation is consistent with the fact that the earthquake swarm that 

most closely resembles the western Gulf of Aden sequence, continental or oceanic, occurred on 

an incipient mid-ocean ridge in neighboring Afar. The September 2005 diking episode in Afar 

was characterized by hundreds of teleseismically-detected, shallow earthquakes located in a 120-

km-long by 25-km-wide area of the Dabbahu segment of the Red Sea rift over a period of three 

weeks. These earthquakes were predominantly normal faulting and 17 had MW ≥ 5.0 (Ebinger et 

al. 2008, 2010; Ayele et al. 2009). Like the western Gulf of Aden sequence, the largest 

magnitude earthquake in the 2005 Afar rifting episode was MW
 5.5 and the cumulative seismic 

moment was equivalent to a single MW 6.3 earthquake (Ebinger et al. 2008; Grandin et al. 2009). 

InSAR studies confirm that a magma volume of 1.5-2.5 km3 was injected along a 65-km-long 

shallow dike during the 2005 Afar rifting episode (Wright et al. 2006; Grandin et al. 2009).  

 

Because the western Gulf of Aden sequence has elevated b-value and is dominated by shallow, 

normal-faulting earthquakes that migrate over time, closely resembling well-documented dike-

induced earthquake sequences in both oceanic and continental settings, we conclude that this 

swarm represents the seismic component of a magmatic rifting episode along the nascent Aden 

Ridge. The large size of the earthquakes is likely due to the combined effects of the slow 

spreading rate, relatively thick crust, and recent quiescence. 
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B6.2. Rifting Episode Duration and Opening Estimates 

The similarities between the earthquakes in this study and those associated with the well-

documented Afar rifting episodes enable us to make a rough estimate of the duration of the dike 

intrusion, as well as the amount of opening that took place during the 2010 rifting episode. 

Belachew et al. (2011) performed a detailed analysis of local seismic data from nine dike 

intrusions in Afar, and concluded that the largest earthquakes in each sequence were caused by 

faulting and graben formation above laterally propagating dike intrusions. Based on cumulative 

seismic moment curves, they conclude that the vast majority of seismic moment is accumulated 

during the dike propagation phase, after which seismicity decreases significantly, and the slope 

of the cumulative seismic moment curve flattens. Interpreting our cumulative seismic moment 

curve (Figure B3) in the same way, we estimate that the main dike intrusion in the western Gulf 

of Aden propagated for less than 18 hours. This result is consistent with our observation that 

seismicity migrated westwards for approximately 12 hours during the beginning of the swarm. 

Combining these results, we conclude that the dike propagation phase during the 2010 western 

Gulf of Aden rifting episode likely lasted between 12 and 18 hours. This is shorter than the dike 

propagation phase for the 2005 rifting episode in Afar, which lasted several days (Ayele et al. 

2009).  

 

Using our CMT solutions, and assuming that all extension occurs on planar normal faults, we 

estimate the amount of spreading accommodated by the earthquakes using the following 

expression: 

∑M0=µLhd/(sin(θ)cos(θ)),                     (B1) 
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modified from Solomon et al. (1988). Here, ∑M0 is the cumulative seismic moment of the 

normal-faulting earthquakes, µ is the shear modulus, h is the thickness of the seismogenic layer, 

θ is the dip of the fault planes, L is the total along-axis length of the ridge segments that slipped 

in the earthquakes, and d is the total amount of horizontal opening. We use values of 3.0x1010 

N/m2 for µ, and 10 km for h (Dauteuil et al. 2001), and calculate the remaining parameters from 

the CMT solutions. ∑M0 is 3.4x1018 Nm, and we estimate L from the distance between the 

easternmost and westernmost earthquake centroids, finding a value of 80 km. We use 51° for θ, 

which is the average dip angle for the steeply dipping nodal planes. Because all of the retrieved 

nodal-plane dips are close to this value, the result depends little on the details of this choice. 

Solving for the horizontal displacement, we obtain a value of d≈7 cm, which is equivalent to ~4 

years of spreading assuming that opening occurs solely by seismogenic extension of the brittle 

lithosphere at a rate of 1.63 cm/yr, the full spreading rate predicted by MORVEL for 12°N, 44°E 

(DeMets et al. 2010). If instead we constrain h to be 5 km, the down-dip width for the largest 

earthquakes based on our depth and scalar moment estimates and scaling relationships of Wells 

& Coppersmith (1994), the estimate of horizontal opening is twice as large, d≈14 cm, which is 

equivalent to ~8 years of spreading. 

 

However, the amount of opening that occurred during the western Gulf of Aden rifting episode is 

likely to be much higher. Along slow-spreading mid-ocean ridges, earthquakes account for no 

more than 10-20% of plate separation (Solomon et al. 1988). Rifting episodes in continental 

settings are also generally dominated by aseismic deformation. In Iceland, the Asal Rift and 

Afar, field measurements of fault offsets from rifting episodes are much larger than the amount 

of slip required to generate the observed earthquake swarms (Brandsdóttir & Einarsson 1979; 
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Doubré & Peltzer 2007; Rowland et al. 2007). Additional aseismic opening may occur due to the 

volume change associated with the dike intrusion. The discrepancy between seismogenic and 

total opening can also be demonstrated by comparing the cumulative seismic moment to 

estimates of the combined geodetic moment, which accounts for dip slip on normal faults and 

volume change due to magma intrusions. For the September 2005 rifting episode in Afar, the 

geodetic moment was at least an order of magnitude larger than the cumulative seismic moment 

(Wright et al. 2006; Grandin et al. 2009). Belachew et al. (2011) compared the seismic and 

geodetic moments for nine rifting episodes in Afar between 2006 and 2009, and found that 

earthquakes accounted for only ~0.1-3.5% of the total deformation. Following Solomon et al. 

(1988) and Belachew et al. (2011), if we assume that 1-5% of the total deformation was 

accommodated by earthquakes, we estimate that this discrete rifting episode may have 

accommodated ~1-14 m of opening, or ~85-800 years of spreading, in this section of the western 

Gulf of Aden.  

 

B6.3. Evolution of the Western Gulf of Aden  

The Gulf of Aden is a transtensional setting where rift formation occurs due to oblique 

divergence. The relative amounts of extension and shear, and therefore the faulting patterns that 

are produced along a given section of the rift, depend on the obliquity angle, α, which is the 

angle between the rift trend (N70-90°E) and the direction of relative plate motion (N34°E, 

DeMets et al. 2010). The obliquity angle in the western Gulf of Aden varies between ~35° and 

55° in the area of the recent earthquake swarm, with the highest value of α being found east of 

44°E where the rift trends east-west. For similar values of α, analog models show that oblique 

rifting produces en echelon arrays of normal faults in the axial valley (Withjack & Jamison 1986; 
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Tron & Brun 1991; Dauteuil & Brun 1993; McClay & White 1995; Clifton et al. 2000; Mart & 

Dauteuil 2000; Clifton & Schlische 2001; Corti et al. 2001, 2003; Agostini et al. 2009; Autin et 

al. 2010). In the models, these normal faults strike in a direction intermediate between rift-

parallel and perpendicular to the spreading direction (Withjack & Jamison 1986; Clifton et al. 

2000; Corti et al. 2001, 2003; Autin et al. 2010). The orientations of the nodal planes from our 

CMT solutions support these results. For normal faulting earthquakes, the average strike angle of 

the nodal planes is N109°E, which is intermediate between N70-90°E and N124°E. Analytical 

models demonstrate that these fault patterns arise because the combination of extension and 

shear in oblique rifts results in the principal extensional strain being oriented approximately 

halfway between the normal to the rift trend and the spreading direction (Withjack & Jamison 

1986). The strain pattern we find in the western Gulf of Aden provides observational validation 

of this explanation. The mean orientation of the tension axes we observe in the swarm is N19°E, 

intermediate between north-south and the direction of relative plate motion, N34°E.  

 

Overall, there is excellent agreement between the results of our seismic analysis and models of 

oblique rifting, which allows us to remark on the both the current and future states of the rift 

system in the western Gulf of Aden. Recent scaled analog models by Autin et al. (2010) suggest 

that the oblique rifting in the Gulf of Aden was not initiated on a pre-existing weak zone, so that 

the structures that develop are not influenced by previous geometry. Their work, as well as other 

analog models (Clifton & Schlische 2001; Agostini et al. 2009), indicate that the western Gulf of 

Aden is in the late stages of oblique rifting, where deformation is largely controlled by slip on 

pre-existing fault segments. The similarities between the orientations of faults mapped prior to 

the earthquake swarm (Dauteuil et al. 2001) and the nodal planes of the normal-faulting 
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earthquakes supports the interpretation that the 2010 swarm occurred on pre-existing faults in the 

axial valley. Based on the analog models, we expect that further extension will result in 

additional slip and lengthening of optimally oriented en echelon normal faults (Clifton et al. 

2000; Clifton & Schlische 2001; Agostini et al. 2009). In addition, we expect that some of the 

transfer zones between individual basins may evolve towards transform faults (Dauteuil & Brun 

1993; Bellahsen et al. 2006; Autin et al. 2010), and segmentation of the ridge will increase as 

seafloor spreading develops in the western Gulf of Aden. The occurrence of strike-slip 

earthquakes in the 2010 swarm, near a step-over between basins and a change in ridge 

orientation at 44°E, may indicate the presence of an incipient transform fault.  

 

In analog models of oblique rifts, normal faults in the axial valley control the emplacement of 

magmatic intrusions and define the locations of ocean accretion centers (Clifton & Schlische 

2001; Agostini et al. 2009; Autin et al. 2010). This progression has already been documented 

within basins east of the recent swarm, where seafloor spreading is more developed and there are 

linear chains of volcanoes oriented N110°-120°E (Tamsett & Searle 1988; Dauteuil et al. 2001). 

Prior to 2010, the section of the rift where the swarm is located was characterized by low levels 

of seismicity and a lack of recent volcanism, and gravity and magnetic surveys indicated that 

seafloor spreading had not yet been initiated (Dauteuil et al. 2001; Hébert et al. 2001). We 

believe that the earthquakes in the 2010 swarm are the seismic component of a dike-induced 

rifting episode, which provides evidence for westward propagation of seafloor spreading into this 

area. As in Afar, this swarm confirms that deformation at the onset of seafloor spreading is 

achieved by intense episodes of dike intrusion and faulting. For now it is unknown whether this 

rifting episode will consist of a single diking episode, like in the Asal Rift in 1978 (Abdallah et 
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al. 1979), or whether additional dike intrusion episodes will follow as in Afar and Iceland. If the 

latter, we expect additional dike intrusions to become progressively more effusive, leading to 

eruptions on the seafloor (Buck et al. 2006; Hamlin et al. 2010).  

 

B7. Conclusions 

In the western Gulf of Aden, the east-west trending boundary between the Arabian and Somalian 

plates is transitioning from a continental rift to a mid-ocean ridge. Until recently, the section of 

the nascent Aden Ridge near 44ºE was characterized by low levels of seismicity and a lack of 

recent volcanism on the seafloor, and has been believed to lie west of the boundary of active 

seafloor spreading. However, our analysis of a swarm of moderate to large earthquakes that 

began on November 14, 2010 in this area indicates that the early stages of seafloor spreading 

have now propagated into this section of the rift. The swarm closely resembles dike-induced 

earthquake swarms from both continental and oceanic settings, and was likely triggered by the 

lateral propagation of a shallow dike intrusion. Though the sequence was dominated by shallow, 

normal-faulting earthquakes, we also find evidence for an incipient transform fault and the early 

stages of rift-transform segmentation. The direction of extension accommodated by the normal-

faulting earthquakes of the sequence is intermediate between the rift-orthogonal and the 

spreading direction predicted by global plate motion vectors, validating analog and analytical 

models of oblique rifting. Our findings indicate that deformation at the onset of seafloor 

spreading is achieved by discrete episodes of faulting and magmatism.  
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Appendix C 

 

This appendix contains Supplementary Information for Appendix B. These data tables have been 

published as Supporting Information for Shuler and Nettles (2012), and are reprinted with 

permission. 

Shuler, A. & Nettles, M. 2012. Earthquake source parameters for the 2010 western Gulf of Aden 
rifting episode, Geophys. J. Int., 190, 1111-1122, doi:10.1111/j.1365-
246X.2012.05529.x. 

 

Table C1: Centroid-moment-tensor solutions for 110 earthquakes occurring in the western Gulf 

of Aden from 2010 November to 2011 April. The number in the first column is the event number 

for each earthquake. An asterisk next to the event number indicates that the earthquake is less-

well constrained (see text). The event number is followed by the year, month, day and origin 

time of the earthquake. The origin time listed is that of the centroid solution, where δt0 indicates 

the time shift (in seconds) with respect to the time reported by the NEIC in its Preliminary 

Determination of Epicenters (PDE) or the Global CMT Project’s Surface Wave Catalog.  

 

The hypocentral coordinates are for the centroid location, and δλ0 and δφ0 indicate the 

perturbations in latitude and longitude obtained with respect to the original epicenter. Because all 

of the earthquakes are shallow, their centroid depths were constrained by the inversion to be 12 

kilometers, so no standard error in depth is given.  

 

The half duration (Half Drtn) of the earthquake is a fixed parameter in the inversion, estimated 

from the scalar moment using an empirical relationship. The moment-rate function is modeled as 

a triangle.  
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The scale factor (10ex) is the number by which the scalar seismic moment and moment-tensor 

elements must be multiplied to obtain a result in Nm. The entries in the table represent the 

exponent (ex) values. The scalar moment (M0) is defined as M0 = (σmax - σmin)/2, where σmax and 

σmin are the maximum and minimum eigenvalues of the moment tensor.  

 

The elements of the moment tensor are given in the standard spherical coordinate system (Gilbert 

& Dziewonski 1975). In Cartesian coordinates, Mrr = Mzz, Mθθ = Mxx,   Mφφ = Myy, Mrθ = Mxz, Mrφ 

= −Myz, and Mθφ = −Mxy (see Aki & Richards 2002). The CMT solutions are constrained to have 

no isotropic component, so that Mrr + Mθθ + Mφφ = 0. In some cases, the elements of Mrθ and Mrφ 

are also constrained to zero because of the instability of the solution. In these cases, the 

corresponding values and standard errors are omitted in the table. Each element of the moment 

tensor is followed by its estimated standard error. 

 

Table C2: Moment tensors expressed in principal-axis system and best-double-couple 

parameters. As in Table S1, the number in the first column is the event number, and an asterisk 

next to the event number indicates that the solution is less-well constrained. The scale factor 

(10ex) is the number by which the scalar seismic moment and eigenvalues must be multiplied to 

obtain a result in Nm. Each principal axis is described by an eigenvalue, plunge and azimuth. 

The scalar moment (M0) is repeated from Table S1. The strike, dip, and rake for the nodal planes 

of the best-double-couple mechanism are listed, following the convention of Aki & Richards 

(2002). 

 



 256 

References: 

Aki, K. & Richards, P. G., 2002. Quantitative Seismology, 2nd edn, University Science Books, 
Sausalito, California. 

 
Gilbert, F., Dziewonski, A. M., 1975. An application of normal mode theory to the retrieval of 

structural parameters and source mechanisms from seismic spectra. Philos. Trans. R. 
Soc., Lond. Ser. A, 278, 187-269. 

 



 257 

 



 258 

 



 259 

 



 260 

 

 

 

 

 



 261 

 

 

 

 



 262 

 

 

 


	Dissertation_Beginning_Pages
	Dissertation_Chapter_1
	Dissertation_Chapter_2
	Dissertation_Chapter_3
	Dissertation_Conclusions
	Dissertation_References
	Dissertation_Appendices
	Dissertation_Appendix_A
	Dissertation_Appendix_B
	Dissertation_Appendix_C


