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ABSTRACT
Investigations of Anomalous Earthquakes at Active Volcanoes

Ashley Elizabeth Shuler

This dissertation investigates the link between volcanic unrest and the occurrence of
moderate-to-large earthquakes with a specific type of focal mechanism. Vertical compensated-
linear-vector-dipole (vertical-CLVD) earthquakes have vertical pressure or tension axes and
seismic radiation patterns that are inconsistent with the double-couple model of slip on a planar
fault. Prior to this work, moderate-to-large vertical-CLVD earthquakes were known to be
geographically associated with volcanic centers, and vertical-CLVD earthquakes were linked to a
tsunami in the Izu-Bonin volcanic arc and a subglacial fissure eruption in Iceland. Vertical-
CLVD earthquakes are some of the largest and most anomalous earthquakes to occur in volcanic
systems, yet their physical mechanisms remain controversial largely due to the small number of
observations.

Five vertical-CLVD earthquakes with vertical pressure axes are identified near
Nyiragongo volcano in the Democratic Republic of the Congo. Three earthquakes occur within
days of a fissure eruption at Nyiragongo, and two occur several years later in association with the
refilling of the lava lake in the summit crater of the volcano. Detailed study of these events
shows that the earthquakes have slower source processes than tectonic earthquakes with similar
magnitudes and locations. All five earthquakes are interpreted as resulting from slip on inward-
dipping ring-fault structures located above deflating shallow magma chambers. The Nyiragongo
study supports the interpretation that vertical-CLVD earthquakes may be causally related to
dynamic physical processes occurring inside the edifices or magmatic plumbing systems of

active volcanoes.



Two seismicity catalogs from the Global Centroid Moment Tensor (CMT) Project are
used to search for further examples of shallow earthquakes with robust vertical-CLVD focal
mechanisms. CMT solutions for approximately 400 target earthquakes are calculated and 86
vertical-CLVD earthquakes are identified near active volcanoes. Together with the Nyiragongo
study, this work increases the number of well-studied vertical-CLVD earthquakes from 14 to
101. Vertical-CLVD earthquakes have focal depths in the upper ~10 km of the Earth’s crust, and
~80% have centroid locations within 30 km of an active volcanic center. Vertical-CLVD
earthquakes are observed near several different types of volcanoes in a variety of geographic and
tectonic settings, but most vertical-CLVD earthquakes are observed near basaltic-to-andesitic
stratovolcanoes and submarine volcanoes in subduction zones. Vertical-CLVD earthquakes are
linked to tsunamis, volcanic earthquake swarms, effusive and explosive eruptions, and caldera
collapse, and approximately 70% are associated with documented volcanic eruptions or episodes
of volcanic unrest. Those events with vertical pressure axes typically occur after volcanic
eruptions initiate, whereas events with vertical tension axes commonly occur before the start of
volcanic unrest. Both types of vertical-CLVD earthquakes have longer source durations than
tectonic earthquakes of the same magnitude.

The isotropic and pure vertical-CLVD components of the moment tensor cannot be
independently resolved using our long-period seismic dataset. As a result, several physical
mechanisms can explain the retrieved deviatoric vertical-CLVD moment tensors, including dip-
slip motion on ring faults, volume exchange between two reservoirs, the opening and closing of
tensile cracks, and volumetric sources. An evaluation of these mechanisms is performed using
constraints obtained from detailed studies of individual vertical-CLVD earthquakes. Although no

single physical mechanism can explain all of the characteristics of vertical-CLVD earthquakes, a



ring-faulting model consisting of slip on inward- or outward-dipping ring faults triggered by the
inflation or deflation of a shallow magma chamber can account for their seismic radiation
patterns and source durations, as well as their temporal relationships with volcanic unrest. The
observation that most vertical-CLVD earthquakes are associated with volcanoes with caldera

structures supports this interpretation.
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Introduction

Understanding how magma ascends through the crust and erupts on the surface is one of the
fundamental challenges of earth science. Along the mid-ocean ridge system, submarine
volcanoes create new oceanic crust, and in continental rifts, island arcs, and convergent margins,
as well as above mantle plumes, thousands of subaerial volcanoes create dramatic landscapes and
produce fertile soils and rich mineral deposits. Volcanoes shape the surface of our planet, and in
doing so, threaten the safety and livelihoods of millions of people. Volcanic hazards such as lava
and pyroclastic flows, lahars, landslides, ash fall, and toxic gases endanger settlements and
infrastructure in the vicinity of active volcanoes, and hazards such as ash dispersal in the

atmosphere and climate change can affect the global population.

One of the most reliable techniques for monitoring active volcanoes is volcano seismology.
Volcanic earthquakes are generated by a wide variety of processes including brittle fracture, fluid
flow, mass transport and explosions [Chouet, 2003; McNutt, 2005; Kumagai, 2009; Zobin, 2011].
By observing, analyzing, and interpreting volcanic earthquakes, we can learn about dynamic
processes occurring inside the edifices and magmatic plumbing systems of active volcanoes.
Most volcanic earthquakes are small, and can only be observed by seismometers deployed close
to the source region. However, on rare occasions, volcanic earthquakes are large enough to be
detected globally. Often the largest volcanic earthquakes have unusual source properties and are
linked to magmatic intrusions or volcanic eruptions [Filson et al., 1973; Francis, 1974;
Kanamori et al., 1993; Nettles and Ekstrom, 1998; Dreger et al., 2000; Kumagai et al., 2001;

Minson et al., 2007].



Some of the largest and most anomalous earthquakes to occur near volcanoes are the 1984 My
5.6 Tori Shima earthquake, which occurred near a large submarine volcano in the Izu-Bonin
volcanic arc [Kanamori et al., 1993], and the series of ten 5.1 < My < 5.6 earthquakes that took
place near Bardarbunga volcano in Iceland between 1976 and 1996 [Nettles and Ekstrom, 1998].
These earthquakes have dominant vertical tension axes and moment tensors with large
compensated-linear-vector-dipole (CLVD) components [Knopoff and Randall, 1970]. In addition
to having anomalous seismic radiation patterns, these vertical-CLVD earthquakes are linked to
volcanic activity. The Tori Shima earthquake produced a disproportionately large tsunami
[Satake and Kanamori, 1991], and the final Bardarbunga earthquake occurred only days before a

large subglacial fissure eruption [Nettles and Ekstrom, 1998].

Moderate-to-large earthquakes with focal mechanisms similar to the Tori Shima and
Bérdarbunga events occur most frequently near volcanic centers [Ekstrom, 1994]. However,
these earthquakes are rare, and prior to this dissertation, only 14 vertical-CLVD earthquakes near
volcanoes had been studied [Kanamori et al., 1993; Ekstrom, 1994; Nettles and Ekstrom, 1998].
The azimuthally symmetric seismic radiation patterns of these earthquakes cannot be explained
by the double-couple model for shear failure on planar faults, and suggested physical
mechanisms include magma and/or fluid injection [Kanamori et al., 1993; Konstantinou et al.,
2003; Tkalcic et al., 2009] and slip on volcanic ring-fault structures [Ekstrom, 1994; Nettles and
Ekstrom, 1998]. Due to the small number of observations, the links between the occurrence of
vertical-CLVD earthquakes and volcanic deformation processes remain controversial and poorly

understood.



In this dissertation, we use global seismic data to investigate the relationship between shallow,
moderate-to-large vertical-CLVD earthquakes and volcanic unrest. In addition to examining
vertical-CLVD earthquakes with dominant vertical tension axes, such as the Tori Shima and
Bardarbunga events, we also consider vertical-CLVD earthquakes with dominant pressure axes.
This work begins with a case study of five vertical-CLVD earthquakes at a single volcano, after
which we perform a systematic global search for vertical-CLVD earthquakes located near

volcanoes with known eruptions in the last ~100 years.

We identify vertical-CLVD earthquakes and describe their source properties by calculating
centroid-moment-tensor (CMT) solutions [Dziewonski et al., 1981; Arvidsson and Ekstrém,
1998; Ekstrom et al., 2012], modeling teleseismic body waves [Ekstrom, 1989], and examining
frequency spectra. We document in detail how vertical-CLVD earthquakes are related spatially
and temporally to episodes of unrest at nearby volcanoes, and evaluate a variety of potential
physical mechanisms for producing these earthquakes. This work increases the number of well-
studied vertical-CLVD earthquakes located near volcanoes from 14 to 101 and greatly improves
our understanding of how these earthquakes are linked to large-scale magma migration and

volcanic eruptions.

In Chapter 1, we investigate a series of five 4.6 < My < 5.3 vertical-CLVD earthquakes that took
place near Nyiragongo volcano in the Democratic Republic of the Congo between 2002 and
2005. These earthquakes are missing from standard global-seismicity catalogs, and were only

detected using intermediate-period surface waves [Ekstrom, 2006]. The first three earthquakes



occurred days after a large-scale fissure eruption at Nyiragongo, and the final two earthquakes
occurred a few years later, as the lava lake in the summit crater of the volcano began to refill. We
present CMT solutions for these earthquakes and compare the frequency content of their seismic
radiation with that of tectonic earthquakes with similar magnitudes and locations. We explain our
observations using a volcano-tectonic mechanism, in which the earthquakes are generated by the
collapse of the roof of a shallow magma chamber. This work was published in Journal of

Volcanology and Geothermal Research [Shuler and Ekstrom, 2009].

In Chapter 2, we perform a systematic global search for additional examples of vertical-CLVD
earthquakes near active volcanoes. We select approximately 400 target earthquakes from the
Global CMT catalog, and a catalog of earthquakes detected using surface waves [Ekstrom,
2006]. We recalculate CMT solutions for vertical-CLVD earthquakes in the Global CMT catalog
using additional data and updated methodology, and present the first CMT solutions for target
earthquakes from the Surface Wave Catalog. In total, we identify 86 shallow vertical-CLVD
earthquakes with magnitudes 4.3 < My < 5.8 located near active volcanoes. We examine the
tectonic settings where these earthquakes occur and search for trends regarding volcano type.
Approximately 70% of the vertical-CLVD earthquakes are associated with reported volcanic
unrest, and we document these episodes in detail in order to shed light on the relationships
between the earthquakes and dynamic volcanic processes. This work has been submitted to

Journal of Geophysical Research — Solid Earth.

In Chapter 3, we further investigate our dataset of vertical-CLVD earthquakes. We build on our

work from Chapters 1 and 2, and perform additional analyses in order to gain insight into the



physical mechanisms that produce vertical-CLVD earthquakes. We model the teleseismic body
waves and examine the frequency contents of vertical-CLVD earthquakes. Although vertical-
CLVD earthquakes are defined by the properties of their deviatoric moment tensors, we also
explore the possibility that these earthquakes may have non-zero isotropic components caused by
net volume changes. We quantify the tradeoff between the isotropic and pure vertical-CLVD
components of the moment tensor for our dataset by examining covariance matrices. We
calculate full moment-tensor solutions and identify a range of physical mechanisms that can
explain the anomalous seismic radiation patterns of vertical-CLVD earthquakes. Using our
observations of vertical-CLVD earthquakes, we evaluate a range of potential mechanisms
including slip on ring-fault structures, volume exchange between two reservoirs, opening and
closing tensile cracks and volumetric sources. This work has been submitted to Journal of

Geophysical Research — Solid Earth as a companion paper to the work presented in Chapter 2.

We provide a summary of the major findings from this dissertation and discuss several remaining

questions regarding vertical-CLVD earthquakes in the Concluding Remarks section.

In Appendix B, we present the results of a study published in Geophysical Journal International
[Shuler and Nettles, 2012]. The subject of this paper is not vertical-CLVD earthquakes at active
volcanoes, but rather an intense swarm of earthquakes that took place in the western Gulf of
Aden beginning on 14 November 2010. This swarm occurred on an ~80-km-long segment of the
Aden Ridge that is evolving from a continental rift into a mid-ocean ridge. Previously, this
section of the ridge was characterized by low levels of seismicity and a lack of recent volcanism

on the seafloor. We present CMT solutions for 110 earthquakes with magnitudes 4.5 <My < 5.5



that occurred between November 2010 and April 2011, and model the body waves for four of the
largest earthquakes. We interpret the source parameters for this sequence in light of the slow
spreading rate and oblique style of rifting occurring along the nascent Aden Ridge. Based on the
similarities between this sequence and dike-induced rifting episodes in continental and oceanic
settings, we conclude that the swarm was caused by laterally propagating dike intrusions that
accommodated several meters of opening. The rifting episode demonstrates the westward

propagation of active seafloor spreading into this section of the Gulf of Aden.



Chapter 1

Anomalous earthquakes associated with Nyiragongo volcano:
Observations and potential mechanisms

A slightly modified version of this work has been published as:

Shuler, A., and G. Ekstrom (2009), Anomalous earthquakes associated with Nyiragongo
volcano: Observations and potential mechanisms, J. Volcanol. Geotherm. Res., 181(3-4),
219-230, doi:10.1016/j.jvolgeores.2009.01.011.

Abstract

A series of five unusual earthquakes (4.6 < My < 5.3) took place near Nyiragongo volcano (D.

R. Congo) in the Western Rift Valley of the East African Rift. Despite their moderate size, these

earthquakes are missing from global seismicity catalogs, and were only recently located using

long-period surface waves primarily recorded on the Global Seismographic Network. Three
earthquakes occurred in the week following the January 2002 eruption of Nyiragongo, but the
final two earthquakes, which occurred in 2003 and 2005, are not linked to a major eruption at
either Nyiragongo or its neighboring volcano, Nyamuragira. Several common techniques were
used to investigate the characteristics of these seismic sources in the context of the volcanic
activity in the region. Compared to local earthquakes reported in global seismicity catalogs, the
newly detected events are depleted in frequencies above 0.1 Hz, and their frequency contents
suggest that they are slow earthquakes. Each of the newly detected earthquakes was modeled by

a series of forces and by a centroid-moment tensor. A deviatoric moment tensor was shown to

provide a better fit to the data. The newly detected earthquakes are highly non-double-couple in

nature, each having a large compensated-linear-vector-dipole component of the moment tensor.

Drawing on models based on similar observations from other active volcanoes, we propose that

the earthquakes are caused by slip on non-planar faults located beneath the volcano. We suggest

a mechanism in which the newly detected earthquakes are generated by the collapse of the roof



of a shallow magma chamber along inward-dipping, cone-shaped ring faults. Diking events,
which result in magma evacuation from shallow magma chambers, could trigger such
earthquakes. Our results provide new constraints on the dynamics of the poorly understood

magma system beneath Nyiragongo, an active volcano that is a significant threat to life and

property.

1.1. Introduction

The Virunga Volcanic Complex consists of eight volcanoes aligned in an east-west
configuration, nearly perpendicular to the axis of the Western Rift Valley of the East African Rift
(Figure 1.1). Of these, only Nyiragongo and Nyamuragira are active today. While Nyamuragira
remains one of Africa’s most active volcanoes with regular eruptions every few years,
Nyiragongo has been the subject of numerous studies for decades. Nyiragongo is renowned for
containing a semi-permanent lava lake in its summit crater, a feature shared by fewer than a

dozen volcanoes worldwide.

In 1977, this lava lake was completely drained in a matter of minutes during a lateral eruption
[Durieux, 2002/2003b]. The lava lake began to refill in 1982, and existed at varying levels inside
the summit crater until it was emptied once again during the catastrophic eruption on 17 January
2002. This eruption was characterized by fast-moving lava flows that destroyed roughly 15% of
Goma, a city of more than half a million people on the banks of Lake Kivu in the Democratic
Republic of the Congo [Komorowski et al., 2002/2003]. The lava lake reappeared in late 2002,
and since then, eruptive activity characterized by intermittent lava fountaining has remained

confined to the summit crater.
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Figure 1.1. Shaded relief map of the Virunga Volcanic Complex. Eight volcanoes are aligned
roughly perpendicular to the rift axis. Of these, only Nyiragongo and Nyamuragira are still
active. The dashed lines indicate political boundaries. Topography is from the Shuttle Radar
Topography Mission (SRTM).

Between 2002 and 2005, five unusual earthquakes (4.6 < My < 5.3) occurred near Nyiragongo

volcano (Table 1.1). Three earthquakes occurred within one week of the January 2002 eruption,
and the final two earthquakes occurred in 2003 and 2005 and are not linked to a significant
eruption at either Nyiragongo or its neighboring volcano, Nyamuragira. Although these shallow
earthquakes are of moderate size, they went unrecorded in global seismicity catalogs, which
routinely contain information concerning events of lesser magnitudes [Woessner and Wiemer,
2005]. New techniques involving detailed analysis of long-period surface wave data primarily
from the Global Seismographic Network (GSN) allowed these events to be located, however. In
this chapter, we investigate the characteristics of these newly detected events. We present our

findings in the context of the eruptive history of the volcano, and evaluate a number of potential
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physical mechanisms to explain these anomalous earthquakes. Ultimately, we work towards
constraining the geometry and dynamics of the magma system beneath Nyiragongo volcano for

future mitigation purposes.

Event Date Origin Time (UTC) My
1 1/21/2002 21:10:32 53
2 1/22/2002 5:41:44 53
3 1/22/2002 14:22:56 4.6
4 5/17/2003 11:46:24 4.6
5 4/15/2005 20:35:36 4.7

Table 1.1. Newly Detected Events. The origin time is determined by the maximum of the peak
in the stacked waveforms when there is a 0.25-degree grid of target locations. The values of My
are from the CMT inversions.

1.2. Background

1.2.1. Regional Setting

Nyiragongo and Nyamuragira are located in the Kivu Rift Basin, which is one of a series of
extensional basins that comprise the Western Rift Valley. While Nyamuragira (elevation of 3058
m) is a symmetrical shield volcano, Nyiragongo (3470 m) is a stratovolcano that extends roughly
2 km above the elevation of Lake Kivu. As these volcanoes are located in the axis of one of the
world’s largest continental rifts, they are sensitive to regional tectonics. In general, volcanism at
Nyiragongo and Nyamuragira is believed to be directly related to the opening of the Western Rift
Valley, and the creation of a new plate boundary there [Kasahara et al., 1992]. The volcanoes
are located in accommodation zones where deep faults presumably reach magmatic reservoirs
[Ebinger and Furman, 2002/2003]. The 2002 eruption of Nyiragongo is interpreted as being
synchronous with fracturing and fault slip in the rift valley, and it has been suggested that a

significant rifting event in the Nyiragongo-Lake Kivu area fractured the edifice of Nyiragongo,
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leading to a massive fissure eruption that emptied magma stored in the upper conduit and lava

lake [Komorowski et al., 2002/2003; Tedesco et al., 2007].

1.2.2. January 2002 Eruption of Nyiragongo
Although more complete descriptions of the 17 January 2002 eruption of Nyiragongo can be
found in a number of references [Allard et al., 2002; Komorowski et al., 2002/2003; Tedesco et

al., 2007], we provide a short description of key features here.

Eruption Overview

A number of precursory signals were observed in the weeks and months leading up to the 17
January 2002 eruption of Nyiragongo. These signals included fracturing and fumarolic activity
on the southern slopes of the volcano and escalating seismicity beginning on 4 January. Volcanic
long-period earthquakes increased in both magnitude and frequency prior to the eruption. These
were often followed by several minutes of volcanic tremor, indicating that magma was moving at

depth [Kavotha et al., 2002/2003].

The eruption started on the morning of 17 January, when the extensive fracture system of the
1977 eruption reopened on the southern flank of the volcano. The initial fractures ruptured the
edifice of the volcano, triggering the eruption of highly fluid, largely degassed magma that had
been stored in the lava lake and upper conduit since a period of vigorous lava-lake activity in
1994-1995. An eruptive plume did not develop until 25-45 min after the start of the eruption

[Carn, 2002/2003]. This is taken to indicate that the eruption was not caused by gas overpressure
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in the shallow magma chamber, but was instead a result of fracturing caused by a regional rifting

event.

Over the next few hours, additional north-south-trending parallel fractures opened, and a series
of grabens propagated downwards from the base of the volcano towards the city of Goma. This
extensive system of radial fractures propagated for a distance of 20 km from the top of the
volcano, significantly further than the fracture system of the 1977 eruption [4/lard et al., 2002].
The later fractures, which erupted gas-rich magma in forceful lava fountains, are believed to
have been caused by magma ascent resulting from depressurization of the shallow magmatic
system caused by the initial fracturing of the volcanic edifice [Tedesco et al., 2007]. Lava flows
from these later fractures inundated the city of Goma, dividing it in two. It is estimated that
between 14 and 34 million cubic meters of lava were erupted over a period of 12 hours or less
during the January 2002 eruption [Tedesco et al., 2007]. Lava continued to flow towards Lake

Kivu for several days following the end of the eruption.

Crater Collapse

Although the eruption on 17 January drained magma from the lava lake and upper conduit, the
surface of the lava lake, which had been solidified since 1995, did not collapse. A helicopter
flight over the summit of the volcano confirmed that the solidified lava lake floor was still in
place on 21 January. The surface, however, was cut by a series of concentric fractures and
fumaroles [Smithsonian Institution, 2002; Tedesco et al., 2007]. The weakened lava-lake surface,
along with several solidified terraces, evidently collapsed during the night of 22 January. The

start of the collapse was marked by a series of felt earthquakes, and was followed by four hours
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of continuous seismic tremor and ashfall over the immediate area [Komorowski et al.,
2002/2003]. The intense tremor is attributed to phreatomagmatic explosions caused by the
interaction of groundwater with the high-temperature volcanic material below. Despite the
occurrence of these explosions, no significant emissions of sulfur dioxide were observed in
association with the collapse, indicating that negligible magma was degassed during this process
[Carn, 2002/2003]. A flight over Nyiragongo on 24 January revealed that the previously flat
solidified lava-lake surface, which had persisted at an elevation of 280 m beneath the rim of the
volcano since 1995, had collapsed to form an inverted conical crater with a maximum depth of

approximately 900 m [7edesco et al., 2007].

Post-Eruption Seismicity

One of the most striking features of the 2002 eruption was the intense seismic activity that
followed. Approximately 100 tectonic earthquakes (M > 3.5) were located in the region within
five days of the eruption [7edesco et al., 2007]. The number of located earthquakes increased
following the eruption, and although seismicity levels declined with time, they remained

anomalously high for several weeks following the eruption.

Figure 1.2 shows the temporal distributions of the newly located earthquakes as well as
earthquakes described in the National Earthquake Information Center (NEIC) catalog from 16 to
25 January 2002. All of these earthquakes occurred between the beginning of the eruption and
the collapse of the summit crater. The number of earthquakes occurring each day increased from
17 to 22 January, reaching a maximum on the same day that the crater collapsed. No earthquakes

were located near Nyiragongo in the 13 days leading up to the eruption, or in the 8 days
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following the crater collapse. This pattern is very unusual, as seismicity typically decreases
rapidly after an eruption removes local stresses [Zobin, 2003]. The duration and intensity of the
post-eruption seismicity cannot be explained by ground compaction and lava drainage alone, and
is believed to be one of the chief pieces of evidence that a local rifting event caused the 2002

eruption [Komorowski et al., 2002/2003].
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Figure 1.2. Temporal distribution of seismicity associated with the 2002 eruption of
Nyiragongo. The red dots denote earthquakes described in the NEIC catalog, and the green dots
denote the newly detected events. The magnitude of completeness, MC, was calculated by
assuming standard Gutenberg-Richter relationships for seismicity within a 100-kilometer radius
of Nyiragongo as described in the NEIC catalog. The blue bars in the background show the
number of earthquakes that occurred each day. The two green lines indicate the beginning and
end of the eruption. The first blue line indicates when the collapse of the summit crater is
assumed to have taken place from seismic observations and local reports. The last blue line
indicates when the crater collapse was confirmed by a helicopter survey. Times are UTC.



15

The spatial distribution of the earthquakes was also quite atypical. The majority of long-period
events were located in the Nyamuragira area, northwest of Nyiragongo [Kavotha et al.,
2002/2003]. These are attributed to inflation of Nyamuragira’s magma chamber prior to its
eruption in the summer of 2002. The majority of short-period events, however, were located
south of Nyiragongo, in the area between the volcano and Lake Kivu. These events occur in
roughly the same location as the majority of fractures and fissures produced in the eruption. This
same area also experienced significant subsidence following the eruption, up to ~80 cm in some
areas [Tedesco et al., 2007]. Modeling of radar interferograms suggests that the rift valley
experienced deformation related to a period of horizontal extension, which lasted no longer than
one month following the eruption [Poland and Lu, 2004]. These observations further support the
hypothesis that the eruption was caused by a regional rifting event, which most likely involved
continued injection of dikes below the rift graben for several days after the eruption. We
investigate the relationship between the collapse of the summit crater and the cessation of

seismicity later in this chapter.

1.2.3. Nyiragongo’s Post-Eruption Activity (2002-2005)

The presence of the lava lake in Nyiragongo’s summit crater enables changes in the dynamics of
the magmatic system to be discerned. Decades of observations of the lava lake indicate that
Nyiragongo has experienced several cycles of crater collapse followed by refilling of the lava
lake and finally lateral eruptions [Durieux, 2002/2003]. Following a period of vigorous activity
in 1994-1995, the surface of the lava lake began to crust over, forming a solid layer that
remained in place until 2002. The presence of this layer indicates that the system remained rather

stable, and was not significantly recharged during this period.
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After the January 2002 eruption and subsequent collapse of the summit crater, lava fountaining
reappeared in the crater in the summer of 2002. This activity was intense at times, sending
volcanic material several hundred meters into the air and generating dense ash plumes
[Smithsonian Institution, 2003]. The refilling of the lava lake coincided with a period of intense
degassing confirmed by the satellite measurement of sulfur dioxide emissions [Carn,
2002/2003]. The days of peak emissions were accompanied by long-period earthquakes
attributed to magma migration [Smithsonian Institution, 2003]. The fourth event in this study
occurred during this period of especially vigorous degassing as the lava lake was recharged from

a deeper source [Carn, 2002/2003].

Following this period of intense degassing, Nyiragongo entered a phase of steady-state
convection marked by a decrease in sulfur dioxide emission concentrations [Sawyer et al., 2008].
The fifth newly detected event occurred during this relatively calm period, when the lava lake
was not convecting vigorously. The final two earthquakes occurred during periods of greatly
contrasting degassing activity, and therefore seem essentially unrelated to shallow magmatic
processes. These observations suggest a deeper source for these events. Interferograms provide
no evidence of significant surface deformation associated with the final two earthquakes
[Poland, 2008, personal communication], and no local earthquakes are reported in the NEIC

catalog.
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1.3. Seismic Observations

1.3.1. Method of Detection

Global seismicity catalogs, such as the bulletins of the International Seismological Centre (ISC)
and the NEIC, contain earthquakes that are detected and located using the arrival times of short-
period body-wave phases. While this method is appropriate for most earthquakes, seismic
sources that are deficient in high-frequency energy may go undetected. The five earthquakes in
our study were located using the method of Ekstrém [2006], which detects events using long-
period (35-150 s) surface-wave data. This method uses vertical-component data collected from
the GSN and a global grid of target locations. For each target location, a surface-wave
propagation operator is deconvolved from the seismograms from each station to remove effects
such as dispersion and geometric spreading. The envelopes of these signals are cross-correlated
with a theoretical source-pulse shape to determine the likelihood that a seismic event occurred at

a given place and time. Envelopes are stacked to improve visualization (Figure 1.3).

The application of the method of Ekstrém [2006] to seismic data from 1991-2006 has resulted in
the location of over 1700 seismic events that are not described in the NEIC or ISC catalogs
[Ekstrom, 2007, personal communication]. Many of the newly detected seismic events have
anomalous source characteristics, and some have been shown to be associated with newly
observed or unusual seismogenic processes. For example, subsets of these events are related to
landslides [Ekstrém, 2007] and to the movement of glaciers [Ekstrom et al., 2003]. The five
earthquakes we investigate in this chapter are another subset of the Surface Wave catalog. An
example record section for one of the newly detected Nyiragongo events is shown in Figure 1.4.

It clearly shows the moveout of long-period body and surface wave phases with distance away
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from the well-located source. We investigate potential physical mechanisms for these

earthquakes, in an attempt to illuminate changes in the dynamics of Nyiragongo volcano.

ISP-GE 1
KvV-1 13

Kv=1 13

N
A
~
- s
—
M

TLY-n 37
WMO-IC 41
FURI-IU 42
ATD-G 45
ENH-IC 59
- KMI-=IC 63
WAKE-IU 64
—Ama/A\—-\A BTOF-MS 88
CASY-IU 156
PTGA-IU 269
TAM-G 317
SSB-G 337
VSL-MN 338
BFO-I 342
KEV-IU 359

—t
-
...F"JIL
/—k STACK

L L 1 1 1 1 1 L 1
02.01.21 02.01.21 02.01.21 02.01.21 02.01.22
20:00:00 21:00:00 22:00:00 23:00:00 00:00:00

Figure 1.3. Long-period seismograms (35-150 s period) for the first newly detected event (21
January 2002). Each waveform shows seismograms after propagation effects from the target
location, Nyiragongo, have been deconvolved and the envelope calculated. The station and
azimuth is indicated to the right of each waveform. The lowest trace is a stack of the waveforms
above. The clear peak in the stack indicates that a Rayleigh wave-producing seismic event
occurred near Nyiragongo at approximately 21:10 UTC.
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Figure 1.4. Record section of the first newly detected event (21 January 2002). This diagram
shows seismograms from the GSN organized by distance from Nyiragongo. The seismograms
have been bandpass filtered from 25 to 75 s period. Long-period body and surface wave phases
are clearly visible. The red line shows the average velocity of surface waves.

1.3.2. Frequency Content and Spectral Analysis

Because the five Nyiragongo earthquakes do not appear in global seismicity catalogs, the
frequency content of each earthquake was investigated using spectral analysis. To explore
differences between the newly detected earthquakes and earthquakes that were detected using
high-frequency body waves, we collected data from the nearest GSN station, the borehole
seismometer in Mbarara, Uganda (MBAR). We examined seismograms for four of the five

newly detected earthquakes as well as several earthquakes with similar locations and magnitudes
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described in the ISC catalog. Unfortunately, the second Nyiragongo earthquake was not recorded

by MBAR.

Visual inspection of the seismograms reveals that the newly detected events are greatly depleted
in the high-frequency energy typical of standard tectonic earthquakes (Figure 1.5). Seismograms
for earthquakes described in the ISC catalog have the expected characteristics for regional
tectonic events, and show clearly defined P and S-wave phases. Newly detected events, on the
other hand, seem to have little or no P-wave energy and are composed mainly of low-frequency

surface waves.

We also observe differences in the seismograms that correspond to eruptive activity. The
seismograms for the newly detected earthquakes associated with the 2002 eruption of
Nyiragongo (Events 1 and 3) are similar to each other, but quite different from events not
associated with an eruption (Events 4 and 5). Events 1 and 3 have more short-period energy
compared to the smooth, longer-period seismograms of Events 4 and 5. We applied a number of
bandpass filters to the seismic data and found distinct differences between these two sets of
newly detected earthquakes. Additionally, cross-correlation analysis indicates that waveforms
from Events 4 and 5 are similar in a variety of frequency bands. This parity was not seen with
earthquakes associated with the 2002 eruption, and could be an indication that Events 4 and 5

have similar source locations and processes, perhaps different from the earlier events.
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Figure 1.5. Unfiltered seismograms (counts/second) from the nearest GSN station, MBAR. The
ISC event is an My 5.1 earthquake that took place on 20 January 2002 a few kilometers from
Nyiragongo. The zero time for each newly detected event corresponds to the origin time as
determined by the method of Ekstrom [2006], which uses a 0.25-degree grid of target locations.
The events do not align because the initial locations differed slightly.
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To evaluate these differences further, we used spectral analysis. We corrected each seismogram
for instrument response, and calculated the single-sided displacement spectrum from a 400-s
time window beginning at the origin time and including the entire earthquake signal. To
investigate differences in spectral shape between different groups of earthquakes located near
Nyiragongo, the frequency spectra were shifted to have equal amplitude at long periods (100 s).
Average spectra were calculated for earthquakes described in the ISC catalog, as well as for the
two subsets of newly detected earthquakes, to highlight the differences between these groups
(Figure 1.6). These differences can also be seen by comparing spectrograms for a newly detected

event with an earthquake in the ISC catalog (Figure 1.7).
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Figure 1.6. Average single-sided displacement spectra for newly detected events and
earthquakes described in the ISC catalog. Frequency spectra were first calculated for each
individual event. The spectra were then shifted to have equal amplitude at long period to account
for differences in magnitude. Finally, average spectra were computed for the three groups. The
newly detected events are greatly depleted in high frequencies, above approximately 0.1 Hz.
Newly detected events have very similar frequency spectra at periods longer than five seconds,
but those not associated with the 2002 eruption have a broad peak at roughly 0.1 Hz.
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Figure 1.7. Spectrograms for Event 5 and the My 5.1 event featured in Figure 1.5. Each
spectrogram was calculated from a 700-s timeseries with a 2-s sliding data window. The colors
show the amplitude of the power spectra at each frequency for each time slice. The top plot
shows frequencies from 0 to 2 Hz while the bottom plot shows frequencies from 0 to 10 Hz. The
newly detected earthquake is dominated by energy at frequencies less than 1 Hz. The earthquake
from the ISC catalog, however, has energy at frequencies up to SHz. The clear arrival of two
phases (P and S-waves) can be seen for the ISC event, whereas this feature is not observed in the
spectrogram of the newly detected earthquake.

As seen in Figure 1.6, the corrected amplitude spectrum for events in the ISC catalog has a slope
that gradually decreases for frequencies over approximately 0.1 Hz. Spectra for the newly
detected events, however, have amplitudes that decay rapidly in this same frequency band. At 1
Hz, the difference in amplitude between the two groups is nearly three orders of magnitude.

Furthermore, the average corner frequency for earthquakes in the ISC catalog is higher than the
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average corner frequencies for the newly detected earthquakes at Nyiragongo. The source
duration of an earthquake is inversely related to its corner frequency [Beresnev, 2002 and
references therein], so this is an indication that the newly detected earthquakes have longer
source durations. Since all of the earthquakes have approximately the same long-period
amplitude, the longer source duration implies that the newly detected events are slow
earthquakes. The lack of seismically radiated high-frequency energy likely prevented these

earthquakes from being detected using traditional methods.

Whereas the two sets of newly detected earthquakes have nearly identical spectra for their
highest frequencies, at periods of 5 s and longer there are differences between events associated
with the 2002 eruption of Nyiragongo and events that are not associated with eruptive activity.
Newly detected events not associated with the 2002 eruption have a broad spectral peak at
approximately 10 s period, which is also the dominant period in the unfiltered seismograms for
these events. These spectral differences and the temporal association of the two subsets of newly
detected events with changes in Nyiragongo’s eruptive behavior suggest that more than one
physical mechanism may be needed to explain these unusual events. Therefore, it is important to

interpret our observations in the context of Nyiragongo’s eruptive activity.

1.4. Source Models

1.4.1. Centroid-Moment-Tensor Models

To constrain the physical mechanisms of the newly detected earthquakes, we compared synthetic
seismograms from a variety of source models to our data. Centroid-moment-tensor (CMT)

solutions were calculated for each earthquake using standard methods [Dziewonski et al., 1981;
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Arvidsson and Ekstrom, 1998]. We mainly used data recorded on the GSN, although data from
the Ethiopia and Kenya broadband seismic experiments [Nyblade and Langston, 2002] were also
used to calculate CMT solutions for the first three earthquakes. The CMT solutions were
primarily constrained by long-period surface-wave data, but body-wave data were also included
in the inversion whenever possible. Care was taken to ensure that the CMT solutions were based

on waveforms from many azimuths and distances.

Because the newly detected events occurred in a volcanic setting where diking events
presumably could cause earthquakes with net volume changes, we also calculated full moment-
tensor solutions. However, the existence of an isotropic component was difficult to constrain due
to the shallow depths of the earthquakes. For long-period surface-wave data, it is impossible to
independently resolve the isotropic and pure vertical-CLVD components of shallow earthquakes
[Kawakatsu, 1996]. As the introduction of an isotropic component did not significantly improve
the fit to the data or alter the CMT solutions, the trace of each moment tensor was constrained to

be zero for our preferred solutions (Table 1.2).

The likely location for the newly detected earthquakes is Nyiragongo volcano, based on the
temporal association of the first three events with the 2002 eruption. Although the best-fitting
centroid locations for the earthquakes are several kilometers away from Nyiragongo, they are not
inconsistent with the source being located at the volcano. The CMT solutions were determined
from long-period seismic data, which results in location uncertainties of several kilometers, and a
comparable fit is achieved if the events are constrained to occur at Nyiragongo. To verify that all

five newly detected events occurred in approximately the same location, waveforms for pairs of
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newly detected events were cross-correlated at stations within 30° distance of Nyiragongo. At a
given station, for event pairs with high correlation coefficients, the time lags between events
were within 2 s of each other, which indicates that the earthquakes occurred within ~6 km of one
another. As Nyamuragira is located ~14 kilometers away from Nyiragongo, it is unlikely that a

subset of the newly detected events occurred there.

Earthquake Source Parameters and CMT Solutions

Event  Time Shift (s) Latitude Longitude Depth (km) My  Epsilon
1 -3.77+0.17 -1.43+0.01 29.07+0.01 15.00f 5.3 -0.38
2 -1.79+0.32 -1.44+0.02 29.05+0.02 19.83+0.60 5.3 -0.38
3 8.35+0.41 -1.58+0.03 29.22+40.05 12.00f 4.6 -0.23
4 -11.61+0.44 -1.34+0.03 29.40+0.03 18.20+0.97 4.6 -0.33
5 -10.74+0.51 -1.34+0.03 29.31£0.04  20.77+0.70 4.7 -0.37

Moment Tensor Elements (Trace = M +Mge+M,, = 0)

Event Exp. M Mg M,, Mg M;, M,
1 17 -1.35+0.02 0.80+0.01  0.55+0.02  0.14+0.05 -0.06+0.06 0.11+0.01
2 17  -1.60+0.01 0.95+0.04 0.65+0.04  0.02+0.07 -0.02+0.08 0.11+0.03
3 15 -8.73+0.07 8.54+0.06  0.02+0.09 -2.03£1.40 -5.88+1.64 0.66+0.42
4 16 -1.10+0.08 0.66+£0.06  0.44+0.05 0.05£0.09 -0.62+0.99 0.25+0.04
5 16 -1.75+0.01 0.84+0.07 0.91+0.07  0.03+0.08 -0.28+0.11 0.23+0.05

Table 1.2. Earthquake source parameters for the deviatoric CMT solutions at the best-fitting
locations. The time shift corresponds to the time difference between the origin time defined by

the detection grid search (Table 1.1) and the centroid time as determined in the inversion. Fixed
depths are indicated by the letter ‘f°. Although formal uncertainties are given for depths, these
are most likely underestimated due to the lack of body wave phases. As with any standard CMT
solution for a shallow event, we can only say that the events most likely occurred at a depth of 15
kilometers or less. Elements of the moment tensor are given in Nm. All parameters were allowed
to vary for these solutions with the constraint that the trace of the moment tensor was zero.
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The focal mechanisms for the newly detected earthquakes are robust and stable, even when
parameters such as centroid depth and location are slightly perturbed. The CMT solutions
provide excellent fits to the seismic data (average residual misfit of 0.42). Comparisons of

observed and synthetic seismograms for Event 1 can be found in Figure 1.8.

Figure 1.8. A comparison of observed and synthetic vertical-component seismograms for Event
1 (dashed and solid black, respectively). Waveforms have been filtered between 30 and 150 s.
Synthetic seismograms were calculated using the parameters for the best-fitting CMT solution
(see Table 1.2). The time window is the same for each waveform (332 s). Seismograms are
aligned on the extrema in this time range. Station names and network codes appear on the top
left of each waveform. The number on the lower left side is the maximum amplitude in microns.
The numbers on the right side are the azimuth and the distance in degrees from the original
surface wave location.
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The five newly detected earthquakes at Nyiragongo are highly non-double-couple. Each
earthquake has a large compensated-linear-vector-dipole (CLVD) component of the moment
tensor, as reflected by the focal mechanisms in Figure 1.9, as well as by the values of the
parameter epsilon in Table 1.2. Epsilon is a measure of the departure of a source from a pure
double-couple. A pure double-couple event would have an epsilon value of zero, whereas pure
CLVD events would have epsilon values of £+ 0.50. Four out of five of the newly detected
earthquakes have epsilon values lower than —0.30, which is rare for shallow earthquakes
[Ekstrom, 1994]. Although earthquakes with significant non-double-couple components have
been observed in volcanic regions, this particular type of focal mechanism is highly unusual
[Miller et al., 1998]. Furthermore, the newly detected events are not representative of seismicity
in the area. Focal mechanisms of large local tectonic events show an overall pattern of east-west
extension, as expected for the nearly north-south trending rift zone [Tanaka, 1983]. For example,
an My 5.0 earthquake that took place on 21 January 2002, just a few hours prior to the first
newly detected event, has a nearly perfect double-couple normal-faulting solution [Ekstrom et
al., 2005]. The fact that double-couple and non-double-couple earthquakes are observed at the
same time suggests that the anomalous focal mechanisms of the newly detected events are
unlikely to be due to instrument errors or propagation through a heterogeneous structure. Instead,

these focal mechanisms likely represent an anomalous earthquake source.
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Figure 1.9. Focal mechanisms of five newly detected earthquakes overlain on SRTM
topography. Nyiragongo is indicated to be the location for all the events because a solution with
comparable fit is obtained when the location is constrained to be the volcano. The earthquakes
are highly non-double couple.
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1.4.2. Time-Varying Force Solutions

In addition to CMT solutions, the newly detected earthquakes were modeled with a time-varying
force model. Similar models have been have been applied to sources such as landslides and
cavern collapses, which cannot be explained by the double-couple force system typically used to
represent a shear dislocation. Time-varying force models have also been used to explain seismic
events originating inside and beneath volcanoes where gravitational energy is released instead of
elastic strain energy [Takeo et al., 1990; Takei and Kumazawa, 1994]. Recently, time-varying
forces were used to model long-period seismic waves associated with the caldera collapse of
Miyakejima volcano in 2000 [Kikuchi et al., 2001], an event that also produced numerous slow
earthquakes that were detected using long-period surface waves [Ekstréom and Nettles, 2002].
Collapse events produce long-period seismic energy because the source duration is limited by
gravitational acceleration instead of the speed of elastic rupture propagation [Fukao, 1995]. As
the first three newly detected events occurred just prior to the collapse of Nyiragongo’s summit

crater, such a source model seemed possible for these slow, non-double couple events.

The source of each newly detected event was parameterized by a force system composed of
overlapping triangular basis functions subject to a zero-net-force constraint. To reduce the
number of free parameters, each event was constrained to take place at Nyiragongo (-1.52°,
29.25°) at a depth of fifteen kilometers. This depth indicates that the source was shallow, and has
little effect on the results of the inversion. For each earthquake, an iterative method was used to
solve for the time-varying amplitudes and directions of the forces. We included both long-period

and intermediate-period seismic data to ensure that the solution provided a good fit to the data in
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a variety of frequency bands. A CMT solution at the same fixed location was determined for the

same dataset to enable direct comparison of the two types of source models.

Because the results of the inversions depend on the number of modeled forces and their source
durations, and since many combinations of these parameters can produce synthetic seismograms
with approximately equal fit to the data, multiple inversions were performed to produce a family
of solutions. A representative source model consists of six triangular basis functions with a half-
duration of 15 s. At the same location and depth, time-varying force models have an average

residual misfit of 0.72, whereas CMT solutions have an average residual misfit of 0.68.

The time-varying force model for each earthquake consists primarily of an upward vertical force
followed by a longer-duration downward vertical force. Although significant horizontal
components exist, they are much smaller than the vertical forces and tend to oscillate around zero
for the later part of the solution. The pattern of an upward force followed by a downward force is
thought to arise from collapse events [Takei and Kumazawa, 1994]. For example, the collapse of
the roof of a magma chamber generates an upward force as the rest of the volcano rebounds from
the loss of mass. When the roof impacts the magma below, a downward force is transferred to
the solid earth. A time-varying force solution is investigated for Nyiragongo since the first three
newly detected events took place just prior to the catastrophic collapse of the summit crater. We
investigate the possibility that these events were caused by incremental collapse of the solidified

lava lake crust or a shallow magma chamber.
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1.5. Physical Mechanisms

1.5.1. Gravitational Collapse

Based on our observations, we formulated two potential mechanisms for the physical mechanism
of the newly detected events, one based on gravitational collapse, and one involving slip on a
non-planar fault. In the gravitational-collapse model, the earthquakes are caused by incremental
collapse of a portion of the volcano. Because the first three earthquakes occurred only a few
hours before the crater collapse associated with the 2002 eruption, we investigate the possibility
that those events could have been caused by repeated collapse of fractions of the solidified lava
lake surface, which was weakened by the removal of its support below. We also explore cases
where the newly detected events are caused by the collapse of the roof of a shallow magma
chamber. Both of these interpretations are consistent with our observations that the earthquakes
can be modeled by time-varying force solutions consisting of an upward force followed by a

downward force.

Although each earthquake can be modeled using time-varying forces, the moment tensor models
provide a better fit to the data, despite the fact that they have fewer free parameters. Furthermore,
a model based solely on time-varying forces seems physically implausible when the magnitude
of the modeled forces is considered. Assuming that vertical forces are dominant, we obtain the
product of mass (m) and the displacement of the center of mass (D(?)) of the rock involved in the

seismic event if we twice integrate the vertical force calculated in our force model (F(2)on £arin),

—F(l) _ d(mv(t))collapse - _ dp(t) (1 ) 1)

F(l) collapse dt dt

on Earth =

[[¥@)dr = [-p@)dt =—mD(r). (1.2)
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The product of mass and displacement corresponding to the time-varying force model for the

first newly detected event is 9.2 x10'* kg-m.

If we consider the possibility that this event was caused by gravitational collapse of the solidified
lava lake surface, the maximum displacement is constrained by the 620 m increase in the depth
of the summit crater following the collapse. Using this value for the maximum displacement, we
can determine the thickness of the solidified lava lake required to generate such forces. If the
entire solidified lava lake surface, of radius 300 m, fell this distance in a single collapse event, an

unrealistic thickness of nearly 2 km is required to generate the forces required by our model.

Likewise, we can evaluate the possibility that the events were caused by collapse of the roof of a
shallow magma chamber. Such a mechanism seems favorable for the first three newly detected
events considering their proximity to the 2002 eruption. During the eruption, magma originated
from several locations including shallow and deeper reservoirs [Tedesco et al., 2007]. The
evacuation of magma from shallow magma chambers decreases the pressure in these reservoirs,
making them susceptible to collapse. Currently, there are few constraints on the depths of magma
bodies beneath Nyiragongo volcano. Past studies of seismicity interpreted an aseismic region
beneath Nyiragongo as a plastic zone occupied by a magma complex [Tanaka, 1983]. This
aseismic zone ranged from the ground surface to a depth of 14 km. There have been no recent
studies to further constrain the depths of magma reservoirs beneath the volcano. Because we
used long-period seismic data in our analysis, we can only state that the newly detected events

are shallow and most likely occurred at a depth of 15 km or less.
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If we assume, arbitrarily, that the roof of the shallow magma chamber can be approximated by a
2-km thick cylinder of rock with a radius of 1 km, the roof of the shallow magma chamber would
have to collapse a distance of roughly 50 m to generate the forces required by Event 1. This
estimate was made assuming perfect seismic efficiency, whereby all of the potential energy of
the collapse is available for creating seismic disturbances. In reality, this is very unlikely. A
study of the caldera collapse at Fernandina volcano in the Galapagos Islands showed a large
discrepancy between the potential energy of the caldera collapse in 1968 [Francis, 1974] and the
seismic energy released by a swarm of earthquakes believed to be caused by the collapse of the
roof of a shallow magma chamber [Simkin and Howard, 1970]. The seismic efficiency during the
caldera collapse of Fernandina is estimated to be between 0.25% and 3.6 % [Francis, 1974].
Considering these observations, we conclude that gravitational collapse alone cannot explain the

occurrence of the newly detected events, although it may have played a role in their generation.

1.5.2. Slip on Non-Planar Faults

Faults and dikes that are circular or elliptical in plan view are commonly observed at eroded
volcanoes [Cole et al., 2005; Gudmundsson and Nilsen, 2006]. At active volcanoes, they are
sometimes indicated by a distribution of earthquakes creating a conical shape at depth [Mori and
McKee, 1987; Saunders, 2001]. These ring faults are shear fractures that form at steep angles,
either towards or away from the center of the volcano. The inward-dipping ring faults are normal
faults associated with tensile stresses, while the outward-dipping faults are reverse faults
associated with compressive stresses [Julian et al., 1998]. Both types may be present in the same

volcano, each formed during different inflation and deflation periods.
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The formation of new ring faults, as well as slip on pre-existing ring-fault structures is rare, and
requires very specific conditions. Experimental and modeling work indicates that slip on pre-
existing ring faults can be triggered by the presence of a shallow, sill-like magma chamber
subject to tension and/or doming from a deep magma reservoir [Gudmundsson and Nilsen, 2006;
A. Gudmundsson et al., 1997]. While there are no constraints on the shape or depths of the
magmatic plumbing system beneath Nyiragongo, the presence of shallow and deeper magma
reservoirs was verified from studies of short-lived isotopes in lavas from the 2002 eruption
[Tedesco et al., 2007]. Currently, there is no evidence of crustal doming from the deep magma
reservoir, however, the Virunga Volcanic Complex is subject to significant regional extension
associated with active continental rifting, and thus the area is favorable for the existence of ring
faults. Although slip on pre-existing ring faults is believed to be strongly dependent on the
history of individual volcanoes, slip can be triggered by the evacuation of magma from a shallow
magma chamber [Druitt and Sparks, 1984; Folch and Marti, 2003]. In this case, the roof of an
underpressured magma chamber, which is no longer supported from below, can subside into the
evacuating magma chamber along ring faults [Druitt and Sparks, 1984; Cole et al., 2005].
Indeed, the presence of Nyiragongo’s large summit crater is likely related to multiple roof

collapses of the shallow magma chamber [Platz et al., 2004].

As we explored a ring-faulting mechanism, we drew on models based on similar observations
from other volcanoes. Slip on conical ring faults has been used to explain a number of highly
non-double-couple earthquakes in volcanic locations such as Tori Shima, Japan and Bardarbunga
volcano in Iceland [Ekstrém, 1994]. Nettles and Ekstrom [1998] worked towards determining the

physical mechanism that generated 10 shallow earthquakes that took place at Bardarbunga prior
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to a lateral eruption in 1996. There is no indication that the Bardarbunga earthquakes were slow
events, however the moment tensor of each earthquake is dominated by the pure vertical-CLVD
component. The events we are investigating have vertical pressure axes, and the Bardarbunga
events have vertical tension axes, but the focal mechanisms are very similar. The Bardarbunga
earthquakes are interpreted as slip on an outward-dipping cone-shaped ring fault located beneath
Bardarbunga’s edifice. Nettles and Ekstrom [1998] reason that as the volcano inflated over a
period of twenty years, increased pressure in a shallow magma chamber led to incremental slip
on a deeper pre-existing ring fault. At Nyiragongo, however, the timing of the first three events
in relation to the 2002 eruption supports the association of the newly detected events with a
deflating magma chamber. The focal mechanisms suggest that the newly detected events may
have been caused by slip on an inward-dipping cone-shaped ring fault [Ekstrém, 1994], most

likely located above an underpressured shallow magma chamber.

The caldera collapse of Miyakejima volcano in Japan was accompanied by numerous moderate-
sized, slow earthquakes with focal mechanisms similar to the newly detected events in this study
[Ekstrom and Nettles, 2002]. Like Nyiragongo and Bardarbunga, Miyakejima is a stratovolcano
that erupts in fissure eruptions. In mid-2000, a massive dike intrusion began beneath Miyakejima
and migrated northwestward at a rate of 5 km per day, producing intense seismicity [Fujita et al.,
2001]. A collapsed caldera began to grow in the summit of the volcano a few weeks later,
following a brief eruption, and subsidence and widening continued for over a month [Kikuchi et
al., 2001; Kumagai et al., 2001]. During the incremental caldera collapse, sequences of step-like
inflation followed by slower deflation were recorded by local tiltmeters, generally once or twice

per day [Yamamoto et al., 2001]. These tilt steps are associated with very-long-period (50 s)
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seismic pulses that were recorded globally [Ekstréom and Nettles, 2002]. The VLP seismic signals
have been modeled as explosive sources, having dominant volumetric components of the
moment tensor [Kikuchi et al., 2001; Kumagai et al., 2001]. Interestingly, the VLP events are not
well-modeled by a series of time-varying forces, despite the fact that the initial collapse of the
summit crater was well characterized by a single-force directed upwards and then downwards

[Kikuchi et al., 2001].

Several source mechanisms have been suggested for the VLP events associated with the caldera
collapse of Miyakejima. Kumagai et al. [2001] explains the VLP events as a vertical piston of
solid materials in the conduit being intermittently pulled into the evacuating magma chamber. As
magma flows out of the chamber during dike injection, the pressure in the magma chamber
decreases, causing the piston to slide down into the magma chamber. The VLP signal is
generated as magma chamber expands during the intrusion of the piston and then gradually
deflates as magma continues to flow out of the chamber. Filson et al. [1973] suggests that the
caldera collapse earthquakes at Fernandina were also caused by intermittent slip of a cylindrical
block into an evacuating magma chamber. These mechanisms can be interpreted as repeated slip
on a vertical ring fault with radius smaller than the magma chamber below. Geshi et al. [2002]
proposed a comparable mechanism for subsidence at Miyakejima, in which a stoping column of
brecciated rock subsides into a deflating magma reservoir. On the other hand, Kikuchi et al.,
[2001] explains the VLP signals using a buried geyser model, in which steam pushes a lower

conduit piston into the magma reservoir.
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Considering these models, we explored cases in which the newly detected events were generated
by incremental slip on ring-fault structures. We initially considered the possibility that the first
three events were caused by incremental slip of the solidified lava lake surface. This process

releases elastic energy, and the scalar moment, M, can be calculated by multiplying the rigidity

(1) by the area (A4) and the average slip (d) in each event:

M, =uAd (1.3)
The scalar moment determined in the CMT solution for Event 1 was 1.1x10'7 Nm. Using this
simple relationship, we determined that a solidified lava lake thickness of 100 m requires an
average slip of 18 m. However, this is a minimum estimate because the ring fault geometry
results in the partial cancellation of seismically radiated long-period moment. For example, the
scalar moment for Event 1 is also consistent with over 130 m of displacement caused by 360°
failure on a ring-fault with a dip angle of 85° [Ekstrom, 1994]. It is highly unlikely that the lava
lake surface could have survived three consecutive large falls, and thus we rule out this
explanation. Slip on a ring fault beneath the edifice, however, is plausible. If we assume a fault
geometry approximated by a cylinder 1 km in radius with a height of 2 km, the required average

displacements are between 0.26 and 2 m.

Based on our observations, and comparisons to other active volcanoes, we suggest that the five
newly detected earthquakes at Nyiragongo were caused by slip on pre-existing ring faults located
above deflating shallow magma chambers (Figure 1.10). The first three newly detected events
occurred within days of the 2002 fissure eruption of Nyiragongo, which was caused by a local
rifting event. Considering that there was heightened seismicity and ongoing ground deformation

following the eruption, we can infer that the rifting event endured longer, and that there was
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continued dike injection in the rift graben for several days following the eruption. These diking
events resulted from evacuation of magma from a shallow magma chamber beneath the volcanic
edifice. Continued diking reduced the pressure in the shallow magma chamber, leading it to
collapse along pre-existing ring faults. Motion along the ring fault most likely further
destabilized the solidified lava lake surface, leading to the collapse of the summit crater. The
crater collapse compacted the plumbing system of the volcano, which could have cut off the flow
of magma to the dikes. This could provide an explanation for the sudden cessation in seismicity

following the crater collapse.
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Fig. 1.10. Schematic diagram of ring-faulting mechanisms. Slip on a pre-existing inward-dipping
ring-fault can be triggered by the depressurization of a shallow magma chamber. This could
occur following a diking event (left panel), or after the injection of magma from a deeper
reservoir to a more shallow reservoir (right panel). Both panels show north-south cross-sections,
parallel to the strike of the rift. The left panel shows the mechanism preferred for the first three
newly detected events. A vertical dike, oriented parallel to the rift valley, propagates from the
volcano towards Lake Kivu. The evacuation of magma causes the shallow magma chamber to
become underpressured, and leads to incremental slip along an inward-dipping ring fault. This
ring fault may extend to the surface (indicated by dashed lines). The right panel shows the
mechanism given for the final two newly detected events. The injection of magma into a shallow
magma reservoir causes a deeper magma reservoir to become underpressured, which triggers slip
on a deeper inward-dipping ring fault. The figure is vertically exaggerated, and is not to scale.
Figure by L. Starin.
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The final two newly detected events can also be explained by slip on a ring fault. It is unlikely
that these events were preceded by dike injection events, as there are no reports of elevated
seismicity or deformation during these time periods. A more likely explanation is that the final
two events were triggered by the injection of magma from a deeper source. Following the 2002
eruption of Nyiragongo, vigorous degassing accompanied the refilling of lava lake in the summit
crater. This indicates the addition of undegassed magma from below [Durieux, 2002/2003a;
Tazieff, 1994; Harris et al., 1999; Harris, 2008]. The added weight and pressure of this magma
in the upper conduit and shallow magma chamber could have lead to collapse along a pre-
existing ring fault deeper in the volcano. This deeper location may explain why the last two

events have slightly different frequency characteristics from the first three newly detected events.

1.6. Conclusions

Detailed analysis of long-period seismic data has demonstrated that five previously undetected
earthquakes of moderate size occurred in the vicinity of Nyiragongo volcano between 2002 and
2005. These earthquakes have long source durations and unusual source characteristics.
Modeling has shown that these events cannot be explained by gravitational collapse alone.
Instead, seismic data from these events are modeled well by highly non-double-couple centroid-
moment tensors. We interpret these events as being generated by slip on inward-dipping conical
ring faults located under the volcano. This slip is triggered by the deflation of a shallow magma
chamber beneath the ring fault, following diking events or magma injection into a shallower
reservoir. The presence of ring-fault structures could be verified by the precise location of long-

period seismicity at the volcano. However, this would require the installation of a dense seismic
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array to monitor the volcano. A discussion of how this mechanism results in slow earthquakes is

beyond the scope of this chapter, and remains to be investigated.

Nyiragongo is one of Africa’s most active volcanoes, and based on its recent eruptive history, it
is also one of the volcanoes posing the greatest risk to its local population. Nyiragongo has had
two catastrophic eruptions in the last 50 years. During the 1977 eruption, highly fluid lava flows
traveled down the volcano’s flanks at speeds up to 60 km per hour, resulting in over 100 deaths,
the highest number of people killed by a single lava flow [Durieux, 2002/2003b]. Lava flows
from the 2002 eruption traveled further south to the city of Goma, resulting in even more damage
and loss of life. As the populations of the villages and cities on the banks of Lake Kivu swell, the
risk posed by Nyiragongo continues to grow. If the two previous eruptions are any indication of
what may happen in the future, it is easy to see why there is a great need for understanding the
dynamics of Nyiragongo volcano, and of the rift in general. This study of previously undetected
seismicity has allowed us to infer the existence of ring faults underneath the volcano, and to
suggest that slip on these structures may be initiated by volcanic activity. It is only one example
of how we can use seismology to learn more about the dynamics of an active volcano.
Considering the volatility of the region, indirect methods of observation like seismology are

especially useful, and these must be utilized to their full potential.
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Chapter 2
Global observation of vertical-CLVD earthquakes at active volcanoes
This work has been submitted for publication:
Shuler, A., Nettles, M., and G. Ekstrom, Global observation of vertical-CLVD earthquakes at
active volcanoes, submitted to J. Geophys. Res., 2012.
Abstract
Some of the largest and most anomalous volcanic earthquakes are those with dominant vertical
compensated-linear-vector-dipole (vertical-CLVD) components. Here we use both the standard
and surface-wave catalogs of the Global Centroid Moment Tensor Project to search for vertical-
CLVD earthquakes near active volcanoes in order to evaluate the link between these earthquakes
and dynamic processes occurring inside volcanic edifices or magmatic plumbing systems. We
determine focal mechanisms for 313 target earthquakes and identify 86 shallow 4.3 <Mw<5.8
vertical-CLVD earthquakes located near volcanoes that have erupted in the last ~100 years. The
majority of vertical-CLVD earthquakes occur in subduction zones, in association with basaltic-
to-andesitic stratovolcanoes or submarine volcanoes, although vertical-CLVD earthquakes are
also located in continental rifts and in regions of hot-spot volcanism. Vertical-CLVD
earthquakes are associated with a wide variety of confirmed or suspected eruptive activity at
nearby volcanoes, including volcanic earthquake swarms as well as effusive and explosive
eruptions and caldera collapse. Approximately 70% of all vertical-CLVD earthquakes studied
occur during episodes of documented volcanic unrest at a nearby volcano. Given that volcanic
unrest is underreported, most shallow vertical-CLVD earthquakes near active volcanoes are
likely related to magma migration or eruption processes. Vertical-CLVD earthquakes with
dominant vertical pressure axes generally occur after volcanic eruptions, whereas vertical-CLVD

earthquakes with dominant vertical tension axes generally occur before the start of volcanic
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unrest. The occurrence of these events may be useful for identifying volcanoes that have recently

erupted and those that are likely to erupt in the future.

2.1. Introduction

Most shallow earthquakes have seismic radiation patterns that are consistent with the double-
couple model for shear failure on planar faults [Sykes, 1967; Isacks et al., 1968; Dziewonski and
Woodhouse, 1983; Frohlich, 1995]. However, in volcanic and geothermal areas, other processes
such as the migration of magmatic and/or hydrothermal fluids or rupture on non-planar faults can
produce earthquakes with significant non-double-couple components. Although the majority of
these anomalous earthquakes are small (M < 3) and only recorded by seismometers deployed
close to the source regions [Takeo, 1990; Foulger and Julian, 1993; Ross et al., 1996; Miller et
al., 1998b; Ohminato et al., 1998, 2006; Foulger et al., 2004; Kumagai et al., 2005; Nakano and
Kumagai, 2005; Ohminato, 2008], non-double-couple earthquakes with magnitudes up to M~6
have been observed near a small number of volcanoes around the world [Julian, 1983; Julian
and Sipkin, 1985; Kanamori et al., 1993; Ekstrom, 1994; Dziewonski et al., 1997; Nettles and
Ekstrom, 1998; Dreger et al., 2000; Kumagai et al., 2001; Templeton and Dreger, 2006; Minson

and Dreger, 2008; Shuler and Ekstrom, 2009].

In this study, we investigate ‘vertical-CLVD’ earthquakes, which are a specific type of non-
double-couple earthquake that has been shown to occur near volcanic centers [Ekstrom, 1994].
Notable examples of vertical-CLVD earthquakes include the 1984 Tori Shima earthquake
[Kanamori et al., 1993], and the two series of earthquakes that occurred near Bardarbunga

volcano between 1976 and 1996 [Nettles and Ekstrom, 1998] and near Nyiragongo volcano
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between 2002 and 2005 [Shuler and Ekstrém, 2009]. In addition to having anomalous source
properties, these earthquakes are associated with documented episodes of volcanic unrest, and
their occurrence and unusual focal mechanisms are interpreted to result from active volcanic
processes. However, it is not clear how widespread the association between vertical-CLVD

earthquakes and active volcanism may be.

The focal mechanisms for earthquakes like those observed at Tori Shima, Bardarbunga, and
Nyiragongo have unusually large non-double-couple components. The size of the non-double-
couple component is typically quantified by examination of the eigenvalues of the moment
tensor. In the principal axis coordinate system, earthquakes are described by three eigenvectors

with eigenvalues ordered A; > A, > A3, where A, is the tension axis and A; is the pressure axis.
For double-couple earthquakes, the value of the intermediate eigenvalue, A,, is zero and A3 = -A4,
whereas for non-double-couple earthquakes, A, assumes a non-zero value due to isotropic or
compensated-linear-vector-dipole (CLVD) components of the moment tensor [Knopoff and
Randall, 1970; Frohlich, 1990a; Julian et al., 1998]. The isotropic component, (M + Mg, +
M,,)/3 , represents a net volume change, which is expected to be small for tectonic earthquakes.

In routine moment tensor inversions, the isotropic component is typically constrained to be zero
[Dziewonski et al., 1981; Dufumier and Rivera, 1997]. The CLVD component accounts for the
portion of the moment tensor that can be explained by three orthogonal dipoles, two that have the

same polarity and magnitude, and a third that is twice as large with opposite polarity.
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The deviatoric component of the moment tensor can be decomposed into double-couple and
CLVD components by assuming that the principal stress axes for these components are parallel.

The non-double-couple component is described by the parameter & which is defined as

€ = -Ay/max (|A1], [As]), (2.1)
where € = 0 for a double-couple earthquake and €=+ 0.5 for earthquakes that are pure CLVDs.
In this framework, each earthquake can be described by a deviatoric moment tensor that is
200*|&% non-double-couple and (100-200%*|£)% double-couple. In the Global Centroid Moment

Tensor (GCMT) catalog, ~18% of earthquakes with centroid depths less than 50 km have

moment tensors with 40% or more non-double-couple component.

In this chapter, we focus on vertical-CLVD earthquakes, which have large non-double-couple
components and approximately vertical pressure or tension axes like those previously reported at
active volcanoes [Kanamori et al., 1993; Ekstrom, 1994; Nettles and Ekstrom, 1998; Shuler and
Ekstrom, 2009]. We identify two types of vertical-CLVD earthquakes depending on whether the
dominant dipole is dilatational or compressional. ‘Vertical-T” earthquakes have dominant tension

axes that plunge more steeply than 60° with £> 0.20, and ‘vertical-P’ earthquakes have dominant
pressure axes that plunge more steeply than 60° with £ <-0.20 (Figure 2.1). Our definitions are

similar, but not identical, to the Py and Ty designations given by Frohlich [1995]. Earthquakes
meeting our criteria represent less than 3% of all shallow (2 < 50 km) earthquakes documented in

the GCMT catalog.
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Vertical-T
Plunge of T—axis > 60°
e>0.20

Vertical-P
Plunge of P-axis > 60°
e<-0.20

Figure 2.1. Criteria for the two types of vertical-CLVD earthquakes. Vertical-T events have
dominant tension axes that plunge more steeply than 60° and & values greater than 0.20, and
vertical-P events have dominant pressure axes that plunge more steeply than 60° and & values
less than -0.20. The focal mechanisms shown are for pure vertical-CLVD earthquakes, which
have vertical dominant tension or pressure axes (plunges of 90°) and |¢g = +0.50.

Ekstrom [1994] performed a search for vertical-T earthquakes in the Harvard CMT catalog (now
known as the GCMT catalog), and identified 18 shallow My > 5.0 earthquakes with £ > 0.33
and tension axes that plunge more steeply than 60°. Ten of the vertical-T earthquakes are located
in close proximity to volcanic centers, which demonstrates an association between these
earthquakes and volcanism. Vertical-T earthquakes reported by Ekstrom [1994] include the Tori

Shima earthquake and six Bardarbunga earthquakes in addition to events in North Honshu, the

Volcano Islands and the South Sandwich Islands.

The Tori Shima earthquake is an My 5.6 vertical-T earthquake that occurred on 13 June 1984
between Smith Rock and Bayonnaise Rocks volcanoes in the Izu-Bonin volcanic arc southeast of

Honshu. In the GCMT catalog, the Tori Shima earthquake has an € value of 0.33 and a tension
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axis that plunges 87°. Rayleigh waves from this earthquake were radiated with nearly equal

amplitude and phase in all directions, whereas Love waves were either absent or of very low
amplitude [Kanamori et al., 1993]. The Tori Shima earthquake also generated a
disproportionately large tsunami given its moderate magnitude. Whereas typically tsunamis have
tsunami magnitudes, M, that are comparable to the My estimates for the source earthquake, the

Tori Shima earthquake produced an M; 7.3 tsunami [Abe, 1988; Satake and Kanamori, 1991].

Several physical mechanisms have been proposed to explain the Tori Shima earthquake. In the
model of Kanamori et al. [1993], the vertical-T earthquake is generated by rapid expansion of
supercritical water following horizontal injection of magma into water-filled sediments.
However, Ekstrom [1994] suggests that the Tori Shima earthquake may be better explained by
dip-slip motion on a volcano ring fault. Ring-fault structures are observed in eroded volcanoes
[Cole et al., 2005 and references therein] and their presence can be inferred beneath some active
volcanoes by dense cone-shaped patterns of microearthquakes [Mori and McKee, 1987; Mori et
al., 1996]. In analog and numerical models, slip on ring-fault structures is directly related to the
inflation or deflation of shallow magma chambers (see Marti et al., [2008], Acocella [2008] and
Gudmundsson [2008] for review). Dip-slip motion on cone-shaped ring faults can generate
earthquakes with vertical-CLVD focal mechanisms [Frohlich et al., 1989; Frohlich, 1990a/b,
1995; Ekstrom, 1994; Julian et al., 1998], and slip on curved faults results in the partial
cancellation of long-period seismic moment, which could account for the discrepancy between

seismic and tsunami magnitudes [Ekstrom, 1994].



48

The non-double-couple earthquakes at Bardarbunga and Nyiragongo volcanoes have also been
explained as resulting from slip on ring-fault structures. In total, 10 vertical-T earthquakes with
magnitudes 5.1 < My < 5.6 occurred near Bardarbunga volcano in Iceland between 1976 and
1996 [Nettles and Ekstrom, 1998]. The last earthquake occurred only days before a large,
subglacial fissure eruption between Bardarbunga and Grimsvotn volcanoes [M.T. Gudmundsson
et al., 1997], which suggests that, at least in this case, vertical-T earthquakes are associated with
the inflation of a shallow magma chamber. According to the faulting model presented by Nettles
and Ekstrom [1998], the vertical-T earthquakes are generated by slip on an outward-dipping ring

fault located below an inflating shallow magma chamber.

Five vertical-P earthquakes with magnitudes 4.6 <My < 5.3 took place near Nyiragongo volcano
in the Democratic Republic of the Congo between 2002 and 2005. The first three vertical-P
earthquakes occurred several days after a catastrophic fissure eruption of Nyiragongo in January
2002, and are attributed to slip on inward-dipping ring faults located above a deflating shallow
magma chamber [Shuler and Ekstrém, 2009]. The final two earthquakes occurred in 2003 and
2005 as the lava lake in Nyiragongo’s summit crater refilled, and are explained as slip on a
deeper inward-dipping ring fault triggered by the upward flux of magma into shallow levels of

the magmatic plumbing system.

Although there is still controversy over the physical mechanisms that generate vertical-CLVD
earthquakes [e.g., Konstantinou et al., 2003; Tkalcic¢ et al., 2009], the Tori Shima, Bardarbunga
and Nyiragongo events illustrate that vertical-CLVD earthquakes are closely linked to dynamic

processes occurring inside volcanic systems. The Tori Shima and Bardarbunga events suggest
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that, in some cases, vertical-CLVD earthquakes may be triggered by the ascent of magma
through the shallow crust, and the occurrence of these earthquakes may signal that a nearby
volcano is likely to erupt in the future. The Nyiragongo events suggest that some vertical-CLVD
earthquakes may be a response to magma migration, which would make these earthquakes useful

for identifying the locations of recent eruptions.

In this study, we explore the relationship between vertical-CLVD earthquakes and volcanic
unrest. Using two global seismicity catalogs and seismic data from many regional and global
seismic networks, we perform a systematic global search for additional examples of moderate-
sized vertical-CLVD earthquakes located near active volcanoes. We quantify where and how
often vertical-CLVD earthquakes occur near these volcanoes, and investigate whether vertical-
CLVD earthquakes are preferentially associated with particular tectonic settings or categories of
volcanoes, or with specific types of eruptive activity. We characterize these earthquakes and
document their relationships to volcanic unrest in detail in an effort to learn how vertical-CLVD
earthquakes are linked to active deformation and eruption processes. Chapter 3 investigates the
physical mechanisms that may be responsible for generating vertical-CLVD earthquakes at

volcanoes.

2.2. Data and Methods

We search for vertical-CLVD earthquakes near volcanoes using two catalogs from the Global
CMT Project (www.globalecmt.org). The first catalog is the standard GCMT catalog [Dziewonski
et al., 1981; Ekstrom et al., 2012], which contains centroid times, locations and moment tensors

for over 30,000 earthquakes since 1976. We investigate target earthquakes that have centroid
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locations near volcanoes and vertical-CLVD moment tensors in the GCMT catalog. To identify
those earthquakes that have robust vertical-CLVD focal mechanisms, we recalculate CMT
solutions for the target earthquakes using additional data and updated methodology. The second
catalog is the Surface Wave catalog, which contains epicenters, times and magnitude estimates
for earthquakes that are detected using intermediate-period surface waves following the method
of Ekstrom [2006]. Although the Surface Wave catalog has reported approximately 2000
earthquakes each year since 1991, we only investigate those earthquakes occurring near
volcanoes that were not reported in other seismicity catalogs, or that have surface-wave
magnitudes significantly larger than reported elsewhere. We calculate CMT solutions for these
earthquakes in the same manner as for events from the GCMT catalog. We also model
teleseismic body waves to constrain the depths of shallow earthquakes we find to have vertical-

CLVD focal mechanisms.

2.2.1. Selection of Target Earthquakes

In order to assess the link between vertical-CLVD earthquakes and volcanic unrest, we
investigate target earthquakes from the GCMT and Surface Wave catalogs that are located within
100 km of a recently active volcano. We restrict our search to the 429 D1 and D2 volcanoes in
the Smithsonian Institution’s Global Volcanism Program (GVP) database [Siebert and Simkin,
2002-], which have last known eruptions later than 2000 and 1900, respectively. This list is
biased towards subaerial eruptions, and represents only a fraction of volcanoes that are active or
potentially active worldwide. However, since our primary goal is to explore the relationships
between vertical-CLVD earthquakes and active volcanic processess, we limit our scope to those

volcanoes with recently documented eruptions. The distance threshold of 100 km accounts for
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the uncertainty in locations from the GCMT [Smith and Ekstrom, 1997; Hjorleifsdottir and
Ekstrom, 2010] and Surface Wave catalogs, as well as the size and spacing of volcanic centers
[de Bremond d’Ars et al., 1995; Schmincke, 2004]. A map of the recently active volcanoes and

the target earthquakes is shown in Figure 2.2.

Figure 2.2. Map showing the locations of the 429 recently active volcanoes (maroon triangles)
and 395 target earthquakes (blue circles) studied here. Recently active volcanoes have last
known eruptions later than 1900. The target earthquakes include 135 earthquakes from the
Global CMT catalog and 261 earthquakes from the Surface Wave catalog (71 and 190
earthquakes from Category 1 and Category 2, respectively). Category 1 earthquakes are reported
in the ISC catalog, but have surface-wave magnitudes, Mgsw [Ekstrom, 2006], that are at least one
magnitude unit larger than the my, estimates provided by the ISC. Category 2 earthquakes are
newly detected earthquakes that were were detected and located using intermediate-period
surface waves [Ekstrom, 2006], but which are missing from the ISC and NEIC bulletins. An
earthquake on 26 May 2009 is a Category 1 earthquake that is also described in the GCMT
catalog. Plate boundaries are from Bird [2003].
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The Global CMT Catalog (1976-2009)

The GCMT catalog contains moment-tensor and location information for most earthquakes
larger than My 5.0-5.5 since 1976 [Dziewonski et al., 1981; Ekstrom et al., 2012]. The vast
majority of GCMT solutions are calculated using initial hypocentral parameters provided by the
National Earthquake Information Center (NEIC) of the United States Geological Survey
(USGS), and long-period data primarily recorded on the IRIS-USGS Global Seismographic
Network (GSN) or its historical equivalent. Prior to 2004, CMT solutions for earthquakes with
My < 5.5 were constrained using long-period (7> 45 s) body-wave seismograms, whereas long-
period surface-wave (7> 135 s, ‘mantle wave’) seismograms were included for larger
earthquakes [Dziewonski et al., 1981; Dziewonski and Woodhouse, 1983]. Since 2004,
intermediate-period (35 < 7< 150 s) surface-wave data have also been incorporated in source-
parameter inversions for shallow and intermediate-depth My < 7.5 earthquakes [4Arvidsson and
Ekstrom, 1998; Ekstrom et al., 2012]. Because intermediate-period surface waves are the largest
seismic phases in long-period seismograms for shallow earthquakes, their use in CMT inversions
has allowed smaller-magnitude earthquakes to be analyzed by the Global CMT Project. The
inclusion of surface waves also improves the quality of GCMT solutions in general since the

number of waveforms available for analysis is greatly increased.

Because most GCMT solutions were calculated without intermediate-period surface-wave data,
we recalculate CMT solutions for vertical-CLVD earthquakes located near recently active
volcanoes. Intermediate-period surface waves have different frequency contents and leave the
source at different angles than body waves, and including these data allows us to obtain more

robust source parameters. Target events from the GCMT catalog are identified using the
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following criteria: € > 0.20 and plunge of tension axis > 50°, or € <-0.20 and plunge of pressure
axis > 50°. We restrict our search to those earthquakes with centroid depths less than 50 km that

are also located within a 100-km radius of a recently active volcano. Focal mechanisms for the
earthquakes near Bardarbunga were recalculated by Nettles and Ekstrom [1998] using
methodology similar to that employed here, and we do not include those earthquakes as target
events in our study. A total of 134 target earthquakes meet our criteria. We also identify as a
target earthquake an My 5.8 vertical-T earthquake that occurred on 17 February 2009 in the
Kermadec Islands. Although this earthquake did not occur within 100 km of a recently active
volcano, it may be associated with volcanic activity at Curtis Island, a remote volcano for which

the time of last eruption is unknown [Smithsonian Institution, 2009].

The Surface Wave Catalog (1991-2009)

Additional target earthquakes are identified from the Global CMT Project’s catalog of surface-
wave event locations. The Surface Wave catalog includes most shallow M > 4.8 earthquakes
reported by global seismicity catalogs, such as the bulletins of the International Seismological
Centre (ISC) and the USGS NEIC, for which event detection is based on the arrival times of
high-frequency body-wave phases. The Surface Wave catalog also contains information about
other earthquakes that are missing from the ISC and NEIC catalogs due to their small body-wave
magnitudes or unusual source properties [Ekstrom, 2006]. Focal mechanisms have so far been
calculated for only a small number of earthquakes from the Surface Wave catalog that are not

reported in the ISC or NEIC catalogs.
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We limit our scope to two categories of earthquakes from the Surface Wave catalog. Category 1
events are earthquakes that are reported in the ISC catalog, but which have surface-wave
magnitudes, Mgw [Ekstrom, 2006], that are at least one magnitude unit larger than the my
estimates provided by the ISC. Seventy-four Category 1 earthquakes have surface-wave
detections with Quality C or better [Ekstrom, 2006] and initial locations within 100 km of a
recently active volcano. Excluding three earthquakes that have non-vertical-CLVD solutions in
the GCMT catalog, we identify 71 target earthquakes between 1991 and 2009. We note that one
target event from Category 1, an earthquake in the Fiji Islands region on 26 May 2009, has a
vertical-CLVD solution in the GCMT catalog. This earthquake is especially unusual because it is
listed as an my, 4.5 earthquake with a hypocentral depth of 100 km in the weekly listing of the
NEIC’s Preliminary Determination of Epicenters (PDEW), while in the GCMT catalog, it is
listed as an My 5.5 earthquake with a centroid depth fixed to 12 km. With the exception of the

May 2009 event, no focal mechanisms are available for the target earthquakes in Category 1.

The second category of earthquakes that we investigate from the Surface Wave catalog are ‘new’
earthquakes that are missing from the ISC and NEIC bulletins, but which were detected and
located using intermediate-period surface waves using the method of Ekstrom [2006]. We restrict
our search to newly detected earthquakes from 1991 to 2009 that have surface-wave detections
with Quality C or better [Ekstrom, 2006] and initial locations within 100 km of a recently active
volcano. The Nyiragongo earthquakes from Shuler and Ekstrom [2009] are examples of
Category 2 events. Excluding those five events, which have focal mechanisms that were
recalculated using methodology similar to that employed here, we identify 190 target

earthquakes. No focal mechanisms are available for target earthquakes from Category 2.
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2.2.2. Centroid-Moment-Tensor Solutions

For each of our target earthquakes, we collect three-component long-period and very-long-period
seismic data from global and regional networks archived by the IRIS Data Management Center
(DMC). The data sources vary depending on the year, but include stations from the following
networks: the Modified High Gain Long Period Observatory (AS), the Black Forest Observatory
(BF), the China Digital Seismic Network (CD), the Canadian National Seismic Network (CN),
the Czech Seismic Network (CZ), the Digital World-Wide Standardized Seismograph Network
(DW), GEOSCOPE (G), GEOFON (GE), the High-Gain Long-Period Network (HG), MEDNET
(MN), the Singapore Seismological Network (MS), the Regional Seismic Test Network (RS), the
Seismic Research Observatory (SR), TERRAscope (TS), and the IRIS-USGS Global
Seismographic Network (GSN), which is a cooperative partnership between the following
networks: the IRIS/IDA network (II), the IRIS/USGS Network (IU), the IRIS China Digital
Seismic Network (IC), the Global Telemetered Southern Hemisphere Network (GT), and the
CariUSGS Caribbean Network (CU). For target earthquakes from the GCMT catalog, the new

data sets are typically more complete than those used for the original analysis.

We calculate centroid moment tensors, locations and times for each target earthquake generally
following the standard GCMT approach [Dziewonski et al., 1981; Dziewonski and Woodhouse,
1983; Arvidsson and Ekstrom, 1998; Ekstrom et al., 2005], and specifically the methods
employed since 2004 [Ekstrom et al., 2012]. We manually select and edit seismograms from
three frequency bands and time windows. CMT solutions for events with My < 5.5 are
calculated using body-wave data filtered from 40 to 150 and surface-wave data filtered from 50

to 150 s, while solutions for larger earthquakes also include mantle-wave data filtered from 125
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to 350 s. For the smallest earthquakes, we filter the surface-wave data from 40 to 100 s or 35 to
75 s on a case-by-case basis to increase the signal-to-noise ratio. The CMT inversions are based
on data from 14 to 163 stations, depending on the year and magnitude of individual target

earthquakes.

As in the GCMT catalog, we constrain the sum of the diagonal elements of the moment tensor to
equal zero (M + Mg, + M,,, = 0), which is equivalent to imposing the condition that the moment
tensor has no volumetric component. We recognize that exclusion of the isotropic component
can result in deviatoric moment tensors with dominant vertical-CLVD components for
earthquakes that have net volume changes [Strelitz, 1989; Frohlich, 1990b; Kawakatsu, 1996].

We discuss this issue in detail in Chapter 3.

We assess the quality of each CMT solution, and only report solutions that meet the Global CMT
Project’s quality standards. In particular, we reject unstable solutions, solutions based on a small
number of waveforms and solutions with high residual misfit. We classify earthquakes as
‘vertical-CLVD’ if their moment tensors have 40% or more non-double-couple component and

dominant tension or pressure axes that plunge more steeply than 60° (Figure 2.1). Because we

are concerned with vertical-CLVD earthquakes associated with volcanic processes, we restrict

our discussion to those events with centroid depths shallower than 25 km.

2.2.3. Teleseismic Body-Wave Modeling
The vertical-CLVD earthquakes that we identify near active volcanoes are shallow and their

depths cannot be determined accurately using the long-period seismic data required for standard
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GCMT analysis. To constrain the focal depths of these earthquakes, we attempt to model the

broadband teleseismic body waves for vertical-CLVD earthquakes with magnitudes My > 5.0.

We follow the method of Ekstrom [1989], and invert teleseismic P and SH waveforms for focal
mechanism, focal depth and moment-rate function. For this analysis, we collect broadband
seismic records from the IRIS DMC and deconvolve the instrument response to obtain
displacement records filtered from 1 to 100 s period. Following the method of Harvey and Choy
[1982], broadband records for the oldest earthquakes are constructed from digital long- and
short-period seismograms, as in Ekstrom [1989]. Synthetic seismograms are calculated using ray
theory and the Preliminary Reference Earth Model [PREM; Dziewonski and Anderson, 1981].
Reflections and conversions near the source are modeled using a layer-matrix method for a
regional velocity model. For a small number of subaerial volcanoes, we construct the regional
velocity models using the local crustal structure from CRUST2.0 [Bassin et al., 2000]. However,
for those earthquakes near island arc or submarine volcanoes, we use the CRUST2.0 model for a
Japanese island arc (J1) and adjust the thickness of the water layer to match the summit elevation
of the nearest volcano. We include the CMT estimate of the point-source moment tensor as a soft
constraint in the inversions to ensure that focal mechanisms calculated from the broadband data

are compatible with the long-period seismic data used in the CMT analysis.

2.3. Results
Of the 395 target earthquakes investigated, we obtain robust CMT solutions for 313 earthquakes.
Focal mechanisms are plotted in Figure 2.3 and source-parameter information is available in the

Appendix A as well as on our website (www.globalemt.org). We report updated CMT solutions

for 124 earthquakes from the GCMT catalog (Tables A1 and A2) and new CMT solutions for
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190 earthquakes from the Surface Wave catalog, including 59 Category 1 earthquakes (Tables
A3 and A4) and 131 Category 2 earthquakes (Tables A5 and A6). We note that the 26 May 2009
earthquake is reported in both the GCMT and Surface Wave catalogs.
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Figure 2.3. Focal mechanisms for all of the target earthquakes for which we were able to obtain
robust CMT solutions, plotted against their € values. Shallow vertical-CLVD earthquakes are
plotted in black, and the dashed lines indicate € =£0.20. The top panel shows focal mechanisms
for 124 earthquakes from the Global CMT catalog after reanalysis. The middle panel shows focal
mechanisms for 59 Category 1 earthquakes from the Surface Wave catalog, and the bottom panel
shows focal mechanisms for 131 Category 2 earthquakes from the Surface Wave catalog. The
event numbers correspond to the event numbers reported Tables A1-A6. The 43 vertical-P
earthquakes associated with the caldera collapse of Miyakejima in 2000 are indicated in the
middle and bottom panels.

From this group of 313 earthquakes, we identify 86 shallow vertical-CLVD earthquakes located
near recently active volcanoes. We are able to model teleseismic body waves from 18 of these
events. Along with the 15 vertical-CLVD earthquakes already documented at Bardarbunga
[Nettles and Ekstrom, 1998] and Nyiragongo volcanoes [Shuler and Ekstrom, 2009], this study
increases the number of well-documented moderate-sized shallow vertical-CLVD earthquakes

known to occur near volcanic centers to 101.

2.3.1. All Target Earthquakes

The recalculated CMT solutions for target events from the GCMT catalog are based on both
body and surface-wave data that were manually selected and edited. Because the new solutions
described in Tables A1 and A2 were calculated using additional data and updated methodology,
we prefer them over those reported in the standard GCMT catalog. Compared to the original
GCMT solutions, the recalculated moment tensors changed by ~0.1 magnitude units, and the
centroid locations moved ~30 km on average. As expected, differences between the original and
recalculated CMT solutions are smaller for earthquakes that occurred after 2004, when the

Global CMT Project began to use surface-wave data routinely.
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For most target earthquakes from the GCMT catalog, we find that the addition of surface-wave
data reduces the size of the non-double-couple component, resulting in new moment tensors that
are approximately double couple. Recalculated moment tensors for most vertical-T and vertical-
P earthquakes are typical of reverse- and normal-faulting earthquakes. In many cases, the new
focal mechanisms are consistent with those reported in the GCMT catalog for other nearby
earthquakes. Only 26 of the earthquakes considered, 18 vertical-T and 8 vertical-P earthquakes,
have vertical-CLVD moment tensors and centroid depths less than 25 km after the addition of
surface-wave data. Included in this dataset are the four vertical-T earthquakes identified by
Ekstrom [1994] that did not occur near Bardarbunga. In Figure 2.4, we illustrate how the addition
of surface-wave data affects the CMT solutions for one earthquake that became more double-

couple and one that remained vertical-CLVD.

Target earthquakes from the Surface Wave catalog have a wide variety of focal mechanisms,
reflecting the diversity of tectonic settings located with a 100-km radius of recently active
volcanoes. In Tables A3-A6, we provide CMT solutions for these earthquakes. For both
Category 1 and Category 2 events, we find that moment tensors for most of the target
earthquakes are close to double-couple. The most commonly observed earthquake types are
strike-slip and normal-faulting earthquakes along the ridge-transform systems near Tonga,
Vanuatu, Samoa, Fiji, and the Mariana Islands. Shallow strike-slip earthquakes in the southern
oceans are particularly difficult to detect using traditional methods due to their nearly nodal
teleseismic P-wave radiation patterns, their remoteness from seismic stations and the presence of
strong microseismic noise [Rouland et al., 1992; Shearer, 1994], and some go unreported in

standard global seismicity catalogs.
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1984/06/13 2:29 — South of Honshu, Japan

.

My 5.62, e=0.33 My, 5.62, € =0.32

1989/04/25 3:11 — Vanuatu Islands

* 0

My 5.54, e =0.21 My, 5.55, e=0.05

Figure 2.4. A comparison between the original CMT solutions (left), calculated using body
waves, and new CMT solutions (right), calculated in this study using body and surface waves,
for two earthquakes. The moment magnitude and € value associated with each CMT solution are
indicated below the focal mechanisms. Thin solid lines show the double-couple part of the focal
mechanisms. The top panel is for the Tori Shima earthquake. The original solution was
calculated using body-wave data from 15 stations, and the new solution was calculated using
body-wave data from 20 stations, mantle-wave data from 6 stations, and surface-wave data from
22 stations. The bottom panel is for an earthquake in the Vanuatu Islands. The original solution
was calculated using body-wave data from 22 stations, and the new solution was calculated using
body-wave data from 15 stations, mantle-wave data from 12 stations, and surface-wave data
from 27 stations. The Tori Shima earthquake remained vertical-CLVD after the addition of
surface-wave data whereas the Vanuatu earthquake became approximately double-couple.
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Of the 190 target earthquakes investigated from the Surface Wave catalog, 61 have vertical-
CLVD moment tensors. Eight earthquakes have vertical-T moment tensors and 53 have vertical-
P moment tensors. We find that CMT solutions for vertical-CLVD earthquakes are based on a
greater number of waveforms compared to other target earthquakes with similar My magnitudes
from the Surface Wave catalog. This suggests that some aspect of the source properties of
vertical-CLVD earthquakes, other than small magnitude, prevents them from being detected and

located using high-frequency body waves.

We were not able to calculate CMT solutions for several Category 2 target earthquakes that are
spatially and temporally associated with explosive eruptions that produced large-scale
pyroclastic density currents. These events include the sector collapse and lateral blast event at
Soufriére Hills volcano in the West Indies on 26 December 1997 [Calder et al., 2002; Druitt et
al., 2002; Ritchie et al., 2002; Sparks et al., 2002; Voight et al., 2002; Woods et al., 2002; Young
et al., 2002], and several pre-climactic eruptions at Pinatubo volcano in the Philippines on 14 and
15 June 1991 [Harlow et al., 1996; Hoblitt et al., 1996, Lynch and Stephens, 1996; Power et al.,
1996; Wolfe and Hoblitt, 1996]. If the seismic signals that we observe are produced by gravity-

driven flows, it may be more appropriate to model these events using time-varying forces.

2.3.2. Vertical-CLVD Earthquakes

In total, we have identified 101 shallow vertical-CLVD earthquakes with centroid locations near
recently active volcanoes. In Figures 2.5 and 2.6, we show the locations and focal mechanisms of
vertical-CLVD earthquakes from the GCMT and Surface Wave catalogs. Figure 2.7 shows a

map of the vertical-P earthquakes associated with Miyakejima volcano. In these three maps, red
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focal mechanisms denote earthquakes that are associated with volcanic unrest at a volcano within
~60 km (Section 2.4). For each of the 86 vertical-CLVD earthquakes analyzed in this study, in
Table 2.1, we provide a summary of source parameters including centroid times and locations,

my;, values from the NEIC, as well as My values, € values and plunges of the dominant principal

axes derived from the CMT solutions.

60° 120° 180° -120° -60° 0’ 60°

Figure 2.5. Map showing focal mechanisms for the 26 shallow vertical-CLVD earthquakes
identified from the Global CMT catalog. Red focal mechanisms indicate that the earthquakes are
associated with a documented episode of volcanic unrest at a nearby volcano (see text for
details). The dates of the earthquakes are listed above the focal mechanisms. Maroon triangles
indicate the locations of the 429 recently active volcanoes. A yellow star indicates the location of
Bardarbunga volcano, where 10 vertical-T earthquakes occurred between 1976 and 1996 [Nettles
and Ekstrom, 1998]. Bathymetry and topography are from the ETOPO1 dataset.



64

60° 120° 180° -120° -60° 0’ 60°

Figure 2.6. Map showing focal mechanisms for 18 shallow vertical-CLVD earthquakes after
CMT analysis of events in the Surface Wave catalog. The vertical-T earthquake on 26 May 2009
is repeated from Figure 2.5. Red focal mechanisms indicate that the earthquakes are associated
with a documented episode of volcanic unrest at a nearby volcano (see text for details). The dates
of the earthquakes are listed above the focal mechanisms. Maroon triangles indicate the locations
of the 429 recently active volcanoes. Yellow stars indicate the locations of Miyakejima volcano,
where another 43 vertical-P earthquakes occurred in 2000 (Figure 2.7), and Nyiragongo, where 5
vertical-P earthquakes occurred between 2002 and 2005 [Shuler and Ekstrom, 2009].
Bathymetry and topography are from the ETOPO1 dataset.
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Figure 2.7. Map showing focal mechanisms for the 43 vertical-P earthquakes associated with the
caldera collapse of Miyakejima volcano between 7 July and 18 August 2000. Focal mechanisms
are plotted at their centroid locations. The earthquake with the centroid location that is farthest
away from Miyakejima occurred on 18 August 2000 at 9:09 UTC. Grey dots show the locations
of earthquakes associated with the dike intrusion that began at Miyakejima on 26 June 2000.
Epicenters for earthquakes from June to December 2000 are provided by the Japan
Meteorological Agency. The grid-like pattern is due to the reported precision of the epicenters.
Topography is from the Shuttle Radar Topography Mission (SRTM). Bathymetry is from the
Japan Oceanographic Data Center J-EGG500 dataset.
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In Tables A7 and A8 in the Auxiliary Material, we provide detailed information about the CMT
solutions for vertical-CLVD earthquakes, including estimates of the standard errors for the
source parameters. The standard errors associated with the latitude and longitude components are
~3 km on average, although due to uneven station distributions, the presence of noise and
unmodeled structural heterogeneity [Nakanishi and Kanamori, 1982; Dziewonski and
Woodhouse, 1983; Dziewonski et al., 1983; Dziewonski et al., 1984; Smith and Ekstrom, 1997,
Hjorleifsdottir and Ekstrom, 2010], the actual uncertainties are likely larger. For example, the
centroid locations for vertical-CLVD earthquakes linked to specific episodes of volcanic unrest

are sometimes tens of kilometers from their source volcanoes.

We assess the quality of each CMT solution based on the station coverage, the variance
reduction, and the percentage of available waveforms used in the inversion (Table 2.1). A-quality
CMT solutions have variance reductions of 50% or more and are calculated using data from 75%
or more of the available stations. CMT solutions that have variance reductions of 40-50%,

azimuthal gaps greater than 90°, and those that are calculated using data from 50-75% of the

available stations are assigned B quality. We assign the two earthquakes that have fixed centroid
locations to be C quality, in addition to those solutions that are calculated using less than 50% of
the available stations, or those that have variance reductions less than 40%. We find that 47
earthquakes have A-quality solutions, 26 have B-quality solutions, and 13 have C-quality
solutions. However, all of the solutions meet the quality standards of the Global CMT Project.
Our confidence in the significance of the vertical-CLVD component is a function of both the

CMT solution quality and the magnitude of the non-double-couple component.
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We do not report the centroid depths of vertical-CLVD earthquakes in Table 2.1 because they
were all fixed to 12 km during the inversion process, as is standard for shallow earthquakes. To
obtain better constraints on focal depth, we attempted to model the broadband teleseismic body

waves for vertical-CLVD earthquakes with magnitudes Mw = 5.0. However, we were only able

to model 18 earthquakes, all from the GCMT catalog. Body waves for earthquakes in the Surface
Wave catalog are of lower amplitude than the background noise across the frequency band we

examine.

Earthquakes in this magnitude range typically show clear, impulsive direct arrivals and surface
reflections. In contrast, we find that the body waves for vertical-CLVD earthquakes are
dominated by low-frequency energy. Figure 2.8 shows an example body-wave solution for the
My 5.7 vertical-T earthquake that occurred South of Honshu on 4 September 1996. We find that
focal-depth estimates depend on the weight of the soft constraint of the long-period moment
tensors from the CMT inversions, and there is a tradeoff between focal depth and source
duration. Despite the uncertainties associated with modeling body waves for earthquakes
depleted in high-frequency energy, the character of the waveforms for all 18 earthquakes is

consistent with focal depths in the top 10 km of the crust.
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Figure 2.8. Focal-depth analysis for the My 5.7 earthquake that occurred on 4 September 1996
near Smith Rock volcano in the Izu-Bonin volcanic arc. Solid lines are broadband teleseismic P
and SH waveforms, and dashed lines are synthetic seismograms. Brackets across the waveforms
show the portions of the seismograms that were used in the inversion, and arrows indicate the
picked first arrivals. The station name, data type and maximum amplitude (in microns) are
printed above each waveform. The focal mechanism and moment-rate function determined in the
body-wave inversion are plotted in the center of the figure. Black dots on the focal mechanism
show where the plotted waveforms exited the focal sphere. The estimated focal depth of the
earthquake is ~5.2 km below sea level.
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2.4. Links to Volcanic Activity

Our target earthquakes were selected because they occurred near active volcanoes, but there were
no restrictions on volcano type or location. In our dataset of shallow vertical-CLVD earthquakes,
we observe events near active volcanoes in a wide variety of geographical locations and tectonic
settings. In Table 2.2, we list the three closest volcanoes to each vertical-CLVD earthquake. We
report the distances from the centroid location of each earthquake to the three closest volcanoes
using the latitude and longitude coordinates provided by the GVP [Siebert and Simkin, 2002-].
The length scales of volcanic systems, which range from a few hundred meters to tens of
kilometers, should be considered when interpreting these distances. We also report the volcano
type, or morphology, of the closest volcanoes and indicate whether the earthquakes occurred
during documented episodes of volcanic unrest. Most vertical-CLVD earthquakes are located
within ~30 km of arc volcanoes in subduction zones in the Pacific, Indian and Southern Oceans
and the Mediterranean Sea. However, vertical-CLVD earthquakes also occur in the East African
Rift, along a mid-ocean ridge segment in the northeastern Pacific Ocean, and near hotspot
volcanoes in Hawaii, the Galapagos Islands and Samoa Islands. This result suggests that many
types of volcanoes are capable of generating vertical-CLVD earthquakes, and strengthens the

link between volcanoes and these anomalous earthquakes.
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We wish to assess not only the spatial but also the temporal relationships between the vertical-
CLVD earthquakes and volcanism. To assess the likelihood that the earthquakes result, directly
or indirectly, from active magma transport in the crust, we evaluate whether each vertical-CLVD
earthquake in our dataset is associated with known eruptive or other volcanic activity. Below, we
summarize the location of each vertical-CLVD earthquake and its temporal relationship to
volcanic unrest at nearby volcanoes. First, in chronological order by the first earthquake at each
volcano, we discuss the 61 vertical-CLVD earthquakes that are spatially and temporally
associated with volcanic unrest, using eruption reports from the literature. We then summarize
the locations of the remaining 24 vertical-CLVD earthquakes by geographic location. Unless
otherwise indicated, the CMT solutions discussed are A-quality and the information about

specific volcanoes is from the GVP [Siebert and Simkin, 2002-].

2.4.1. Smith Rock

Three My 5.6-5.7 vertical-T earthquakes in the [zu-Bonin volcanic arc have centroid locations
that are ~10-20 km from Smith Rock, a basaltic pinnacle that forms the southern flank of a 20-
km-wide seamount with an 8-9 km-wide submarine caldera. The first earthquake in the sequence
is the 13 June 1984 Tori Shima earthquake discussed in Section 2.1. The Tori Shima earthquake
produced an M=7.3 tsunami [4be, 1988; Satake and Kanamori, 1991], and was followed within
hours by earthquakes with T-wave trains, which are characteristic for submarine volcanic
activity [Talandier and Okal, 1987]. The second and third earthquakes occurred on 4 September
1996 and 1 January 2006. Similar to the Tori Shima earthquake, the 1996 earthquake produced
an M= 7.5 tsunami and is associated with a swarm of low-frequency earthquakes that produced

T-waves [Sugioka et al., 2000], again suggesting volcanic activity. Both the 1984 and 1996



75

earthquakes are likely associated with magma ascent processes at Smith Rock. The 2006
earthquake, which has the smallest non-double-couple component, is not linked to any known

volcanic unrest.

2.4.2. Ol Doinyo Lengai

An My 5.4 vertical-P earthquake with a B-quality CMT solution took place in Tanzania on 15
May 1990. The centroid location is ~25 km from Ol Doinyo Lengai, one of the most active
volcanoes in the East African Rift. Ol Doinyo Lengai is a stratovolcano, and the only known
active volcano to erupt natrocarbonatite, a silica-poor, low-temperature, and low-viscosity lava
[Oppenheimer, 1998]. Before erupting explosively in 2007, Ol Doinyo Lengai erupted effusively
for nearly 25 years, producing lava flows and spatter cones that were confined to the summit
crater. Effusive activity was observed both before and after the 15 May earthquake, during
overflights on 2 May and 9 July 1990 [Smithsonian Institution, 1990a/b], suggesting that the

vertical-P earthquake is related to this effusive eruption.

2.4.3. Rabaul

Four My 5.0 vertical-T earthquakes took place north of New Britain in Papua New Guinea
between 1991 and 1996. These earthquakes occurred on 6 September 1991, 25 January 1994, 17
February 1995 and 15 February 1996. The vertical-CLVD earthquakes have A or B-quality CMT
solutions, and focal mechanisms that are remarkably similar between events. The centroid
locations are tightly clustered near the tip of the Gazelle Peninsula, ~35 km north of Tavui, a 10-
by-12-km submarine caldera, and ~50 km north of Rabaul, an active pyroclastic shield volcano

with a nested 9-by-14-km caldera complex surrounded by several small volcanic cones. The last
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eruption of Tavui occurred approximately 7000 years ago [Nairn et al., 1995; Wood et al., 1995],
although recent seismic tomography studies indicate the presence of a low-velocity zone beneath
the submarine caldera [Bai and Greenhalgh, 2005; Itikarai, 2008 as referenced in Johnson et al.,
2010]. Rabaul, on the other hand, has erupted frequently in the last several hundred years.
Seismic tomography indicates that Rabaul is underlain by two magma chambers, one extending
from 2-4 km depth, and a deeper chamber extending from 12-18 km depth [Finlayson et al.,

2003; Bai and Greenhalgh, 2005; Itikarai, 2008; Johnson et al., 2010].

The most recent episode of volcanic unrest at Rabaul began in 1971, and was characterized by
uplift of the caldera interior and increased seismicity concentrated along an annular structure
[McKee et al., 1984]. Beginning in September 1983, Rabaul experienced a seismic crisis during
which tens of thousands of small magnitude, high-frequency earthquakes occurred along an
outward-dipping ring-fault structure extending to 4-5 km [McKee et al., 1984; Mori and McKee,
1987; Mori et al., 1989; Jones and Stewart, 1997, Itikarai, 2008; Johnson et al., 2010]. The
seismic crisis was accompanied by ~80 cm of uplift in the central part of the caldera, although it
is debated whether the deformation was due to the pressurization of shallow magmatic or
hydrothermal sources in the caldera block [McKee et al., 1984; Mori and McKee, 1987; Geyer
and Gottsman, 2010], overpressure of a deep magma reservoir [De Natale and Pingue, 1993], or
the partial intrusion of a dike along the ring-fault structure [Saunders, 2001; 2005]. After May

1985, seismicity decreased at Rabaul, and the volcano did not erupt until 1994.

On 19 September 1994, Rabaul began an explosive phase that continues today. Initially, the

explosive eruption occurred simultaneously at two volcanic cones, Tavurvur on the northeast
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side, and Vulcan on the west side of the caldera. Activity at Vulcan ceased by 2 October 1994,
although explosive eruptions at Tavurvur continue to occur intermittently. The first two vertical-
CLVD earthquakes occur before the start of explosive activity in September 1994, and are not
associated with increases in the rate of seismicity or other unusual activity at the volcano. The
remaining two vertical-CLVD earthquakes occur after the start of the 1994 eruption, and are
associated with elevated seismicity and explosions at Tavurvur [Smithsonian Institution, 1995a;
1996]. Leveling measurements indicate that the 1995 earthquake is associated with deflation,
whereas the 1996 earthquake is associated with slight inflation of the central caldera block
[Smithsonian Institution, 1995; 1996b]. All four vertical-CLVD earthquakes at Rabaul are
temporally associated with volcanic unrest. However, the events do not seem to be linked to a
specific type of shallow eruptive activity in the caldera itself. This suggests that the earthquakes

are linked to deformation occurring at deeper levels of the volcano.

2.4.4. Vailulu’u

Four My 4.8-4.9 vertical-P earthquakes with B or C-quality CMT solutions took place in the
Samoa Islands on 10 and 11 January 1995 (Figure 2.9). These earthquakes have centroid
locations within 10 km of Vailulu’u, a recently discovered massive submarine volcano with a 2-
km-wide caldera. Vailulu’u is believed to mark the current location of the Samoan hotspot [Hart
et al., 2000]. The vertical-P earthquakes are spatially and temporally associated with an
anomalous swarm of my, < 5.0 earthquakes that occurred northwest of the volcano from 9-29
January 1995. Acoustic T-waves were also recorded by a local hydrophone array from 8 January
through early February 1995 [Smithsonian Institution, 1995b]. Besides the January 1995 swarm,

a search of the NEIC catalog (1973-present) finds no other examples of teleseismically-detected
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earthquakes located within 100 km of Vailulu’u. Both the unusual locations of the January 1995
earthquakes, and the fact that all of the earthquakes have similar magnitudes, suggest that the
swarm is associated with magmatic activity [Konter et al., 2004]. Indeed, radiometric ages of
dredge samples from a 1999 cruise confirm that a volcanic eruption occurred in the summit
crater of Vailulu’u within the prior 5-10 years [Hart et al., 2000]. The four events for which we

have obtained CMT solutions show a clear association with this volcanic activity.

-13°

-15" A
-170° -169° -168°

Figure 2.9. Map showing focal mechanisms for the four vertical-P earthquakes associated with
an anomalous earthquake swarm that occurred at Vailulu’u volcano in January 1995. Red dots
show the locations of M > 4 earthquakes from the NEIC catalog that occurred between 9 and 129
January 1995. Bathymetry is from the Global Multi-Resolution Topography (GMRT) synthesis
[Ryan et al., 2009] used in GeoMapApp (http://www.geomapapp.org).
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2.4.5. Loihi

An My 4.9 vertical-T earthquake with a C-quality CMT solution occurred in Hawaii on 27 July
1996. The centroid location for this earthquake is ~20 km from Loihi, the youngest volcano in
the Hawaiian chain. Loihi is a submarine volcano with a well-defined summit platform that
contains several pit craters and an active hydrothermal system. Eleven days prior to the vertical-
T earthquake, on 16 July 1996, the largest earthquake swarm ever recorded in the Hawaiian

Islands began at Loihi. The following description of the swarm is a summary of results from

Duennebier et al. [1997] and Caplan-Auerbach and Duennebier [2001].

The 1996 swarm can be divided into two distinct phases. The initial phase lasted from 16 to 18
July, and was characterized by 170 M > 1 high-frequency volcano-tectonic earthquakes. After a
brief hiatus on 19 July, when there were no locatable earthquakes at Loihi, the second phase
commenced and the cumulative seismic moment increased dramatically. Thousands of
earthquakes with magnitudes up to My 4.9 were located near Loihi through 9 August. The
second phase of the swarm, which consisted of predominantly long-period earthquakes, had two
main pulses of activity, the first occurring between 20 and 25 July, and the second occurring
between 26 July and 5 August. The vertical-T earthquake occurred during the second pulse of

seismic activity in Phase 2.

Beginning on 6 August, submersible dives and bathymetry surveys confirmed that Pele’s Peak,
formerly the locus of Loihi’s hydrothermal activity, had collapsed to form a new pit crater,
Pele’s Pit, with a diameter of 600 m and a depth of 300 m [Duennebier et al., 1997]. Although

high-temperature hydrothermal plumes were observed, and popping noises were detected by
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sonobuoys, evidence of an ongoing eruption was not observed, and fresh lava recovered from the
summit has been shown to predate the earthquake swarm by several months [Duennebier et al.,
1997; Garcia et al., 1998, 2006]. The cause of the 1996 collapse of Pele’s Pit is unknown,
although it may have been triggered by a rapid draining of a shallow magma chamber, either into
a volcanic rift zone or a deeper magma reservoir [Davis and Clague, 1998; Caplan-Auerbach
and Duennebier, 2001]. The vertical-T earthquake was likely triggered by rapid magma

migration or the collapse of the pit crater.

2.4.6. Miyakejima

Forty-three 4.4 < My < 5.6 vertical-P earthquakes occurred in the Izu-Bonin volcanic arc
between 7 July and 18 August 2000 (Figure 2.7). Most of the earthquakes have A-quality CMT
solutions, although a few CMT solutions have B- or C-quality CMT solutions due to their small
magnitudes or interference from other earthquakes. With the exception of the final earthquake,
centroid locations for all of the vertical-P earthquakes are tightly clustered within ~10 km of
Miyakejima, an 8-km-wide volcanic island formed by a basaltic stratovolcano with several small
summit calderas. In the summer of 2000, the most intense swarm of earthquakes ever observed
in Japan began at Miyakejima and migrated northwestwards to Kozushima, signaling the lateral
propagation of a massive dike intrusion. Following a small submarine eruption, the summit
crater of Miyakejima began to collapse on 8 July 2000. The collapse continued incrementally
over a period of ~40 days, producing unusual tilt signals and vertical-P earthquakes. We

summarize this eruptive activity below.
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On 26 June 2000, a swarm of small volcanic earthquakes was observed beneath Miyakejima’s
southwestern flank. Over a period of a few hours, seismicity intensified and migrated westwards
from the island, resulting in a small submarine eruption of basaltic andesite from four craters off
the west coast of Miyakejima on 27 July [Fujita et al., 2001; Sakai et al., 2001; Amma-Miyasaka
et al., 2005; Kaneko et al., 2005; Uhira et al., 2005]. Following the eruption, the swarm
continued to migrate ~30 km northwestward, and reached the area between Kozushima and
Niijima islands by 1 July [Sakai et al., 2001; Fujita et al., 2001]. Intense seismicity was observed
in the area between Miyakejima and Kozushima through September 2000, and over 600 M > 4
earthquakes, and five M > 6 earthquakes were observed in total [/fo and Yoshioka, 2002; Toda et
al., 2002; Minson et al., 2007]. Analysis of data from island GPS stations indicates that 1-2 km’
of magma was intruded during this episode [Nishimura et al., 2001; Toda et al., 2002; Ozawa et
al., 2004]. Crustal extension northwest of Miyakejima was coincident with contraction of the
island, which indicates that a large portion of the magma was sourced from crustal magma
chambers beneath the volcano, although additional magma may have been sourced from sub-
crustal magma reservoirs located between Miyakejima and Kozushima [Nishimura et al., 2001;

Ozawa et al., 2004; Yamaoka et al., 2005; Murase et al., 2006].

Beginning on 4 July, seismicity beneath the summit area of Miyakejima was reactivated as the
roof of the magma reservoir began to collapse [Nakada et al., 2005; Sakai et al., 2001]. As
confirmed by gravity and electromagnetic data, shallowing seismicity resulted from the upward
migration of a stoping column and the formation of a shallow cavity beneath the summit area
[Kikuchi et al., 2001; Geshi et al., 2002; Sasai et al., 2002; Furuya et al., 2003]. On 8 July,

coincident with a small phreatic eruption, an 800-m-wide area of the summit collapsed ~200 m,
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producing a caldera with an initial volume of 5.6x10" m® [Nakada et al., 2005]. Miyakejima’s
caldera continued to collapse incrementally through mid-August, resulting in a 1.6-km-wide
caldera with an average depth of 450 m [Nakada et al., 2005]. Small phreatic or
phreatomagmatic eruptions took place along the southern rim of the volcano on 14-15 July, 10
August and 13 August [Nakada et al., 2005; Geshi and Oikawa, 2008]. On 13 August, the
composition of the erupted magma changed from basaltic andesite sourced from a shallow
magma chamber at 3-5 km depth to basalt sourced from a deeper magma reservoir between 8-10
km depth [Amma-Miyasaka et al., 2005; Kaneko et al., 2005; Saito et al., 2005]. On 18 August, a
vulcanian to subplinian eruption produced a 16-km-high eruption column [Nakada et al., 2005].
After this eruption, extremely large amounts of volcanic gases began to be emitted from the

summit crater of Miyakejima, and the island was evacuated [Kazahaya et al., 2004].

The caldera collapse of Miyakejima is believed to have been accommodated by slip on inward-
and outward-dipping ring-fault structures [Geshi et al., 2002; Geshi, 2009]. Individual collapse
episodes produced simultaneous tilt changes [Ukawa et al., 2000; Yamamoto et al., 2001] and
variations in the electric and magnetic fields [Sasai et al., 2001; 2002], as well as, in most cases,
very-long-period (VLP) seismic signals [Kikuchi et al., 2001; Kumagai et al., 2001]. In total, 46
major tilt steps were identified between the first explosive eruption on 8 July and the largest
explosive eruption on 18 August [ Yamamoto et al., 2001]. These tilt steps, which are
characterized by an abrupt uplift of the summit area [Ukawa et al., 2000], have been variably
explained by the opening of sill-like tensile cracks [Fujita et al., 2002; 2004] and the elastic
response of the edifice to downward motion of the caldera block [Michon et al., 2009; 2011].

Thirty-nine of these tilt steps were also accompanied by regionally recorded VLP seismic pulses
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with durations of ~30-65 s [Kikuchi et al., 2001; Kumagai et al., 2001; Ohminato and Kumagai,
2001]. In several cases, the VLP pulses were preceded by swarms of shallow M1-2 earthquakes
that increased in frequency before each event [Kobayashi et al., 2003]. Full-moment-tensor
solutions for the VLP signals calculated by Kikuchi et al. [2001] and Kumagai et al. [2001] are
dominated by positive volumetric components, and those events with larger volumetric changes
tend to have longer recurrence intervals. So far, the VLP signals have been explained by piston
collapse [Kumagai et al., 2001; Stix and Kobayashi, 2008] and a hydrothermal expansion model
[Kikuchi et al., 2001]. However, a source process consisting of dip-slip motion on a caldera ring

fault may be a viable alternative [Ekstrom and Nettles, 2002].

Of the 43 vertical-P earthquakes we identify in this study, 39 correspond to the VLP signals
described in Kikuchi et al. [2001]. The four additional events we study occurred on 7 July, 9
July, 30 July and 18 August. The 7 July event is an My 4.4 earthquake that took place before the
start of the caldera collapse, and the remaining three events are associated with tilt steps [Fujita
et al., 2004]. The 18 August earthquake occurred during the climax of the Miyakejima’s largest
explosive eruption [Nakada et al., 2005]. The centroid location for the 18 August earthquake is
~25 km away from Miyakejima, whereas all of the other events are within ~10 km of the
volcano. CMT solutions with the centroid location fixed to the volcano provide a poorer fit to the
data, which may suggest that the final earthquake has a slightly different location or source
process. All of the vertical-P earthquakes are closely linked to volcanic activity at Miyakejima,
and specifically to the collapse of the caldera roof block into the deflating shallow magma

reservoir.
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2.4.7. Nyiragongo

As discussed in Section 2.1, Shuler and Ekstrom [2009] identified five 4.6 < Mw < 5.3 vertical-P
earthquakes near Nyiragongo, a stratovolcano in the Democratic Republic of the Congo, between
2002 and 2005. The first three vertical-P earthquakes occurred on 21 and 22 January 2002, days
after a regional rifting episode reopened fractures on Nyiragongo’s southern flanks and ruptured
the volcanic edifice resulting in a catastrophic fissure eruption on 17 January [4/lard et al., 2002;
Komorowski et al., 2002/2003; Tedesco et al., 2007]. These three vertical-P earthquakes
occurred between the end of the 12-hr effusive eruption and the collapse of Nyiragongo’s
summit crater, which had previously contained a solidified lava lake. These earthquakes are
attributed to dip-slip motion along an inward-dipping ring fault located above a deflating shallow

magma reservoir [Shuler and Ekstrém, 2009].

The five earthquakes identified by Shuler and Ekstrom [2009] are Category 2 events from the
Surface Wave catalog. Analysis of Category 1 earthquakes in this study allowed us to identify
one additional vertical-P earthquake associated with the 2002 eruption, an My 5.1 earthquake
that took place on 20 January 2002. This earthquake has a C-quality CMT solution and a
centroid location ~15 km from Nyiragongo. This earthquake occurred before the three previously
identified vertical-P earthquakes, between the end of the effusive eruption and the collapse of the

summit crater, and can likely be explained by the same physical mechanism.

2.4.8. Stromboli
An My 4.3 vertical-T earthquake with a C-quality CMT solution took place on 5 April 2003.

The centroid location for this earthquake is ~15 km from Stromboli, the northernmost
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stratovolcano in the Aeolian Islands near Sicily, Italy. This earthquake occurred during a
paroxysmal explosion, the largest vulcanian eruption at Stromboli since 1930. The so-called
‘paroxysm’ was recorded by the local multiparametric monitoring network and directly observed

from a helicopter. We summarize the main results from the literature below.

The 2003 paroxysm occurred during an effusive eruption at Stromboli that began in December
2002. Although the paroxysm was not preceded by any obvious precursors, in hindsight,
increased release of magmatic gases was observed in the month before the event, which may
have indicated that gas-rich magma had ascended in the shallow plumbing system [Aiuppa and
Federico, 2004; Carapezza et al., 2004; Rizzo et al., 2008]. Ash emission and temperature
increase at the bottom of the obstructed summit craters were also observed immediately before
the paroxysm [Calvari et al., 2006]. Three minutes before the explosion, on 5 April 2003 at
7:10:25 UTC, the temperature of one summit crater increased dramatically and a thick gas plume
was erupted [Calvari et al., 2006]. At 7:13:05, reddish ash was emitted and a dark cloud with a
cauliflower-shape grew above the crater [Calvari et al., 2006; Rosi et al., 2006; Harris et al.,
2008]. After the initial explosion expanded to a second summit crater, an extremely powerful
blast produced a shock wave that was observed on a local seismic station at 7:13:37 [Calvari et
al., 2006; Harris et al., 2008]. The 2003 paroxysm, which lasted 9 min, launched meter-sized
ballistic blocks from the summit crater and produced an eruptive column that collapsed into
pyroclastic flows [Calvari et al., 2006]. Like other paroxysms at Stromboli, the 2003 paroxysm
erupted aphyric golden pumice, likely caused by the rapid ascent of undegassed basaltic magma

[Bertagnini et al., 2003; Métrich et al., 2005; Francalanci et al., 2008; Allard, 2009].
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The 2003 paroxysm was recorded by broadband seismometers deployed on and around
Stromboli. At 7:12:42, a high-frequency signal likely associated with vesiculation began, and at
7:13:35, a powerful 12-s VLP event was observed in association with the main blast [D Auria et
al., 2006; Ripepe and Harris, 2008]. A source inversion of the main blast signal retrieved a
combination of a vertical-CLVD earthquake and a downward force with an equivalent magnitude
of Mw 3.7 [Cesca et al., 2007]. Additionally, an ultra-long-period (ULP) signal starting 4 min
before and terminating 1 min after the main blast was also observed [Cesca et al., 2007]. The
ULP signal has been variably interpreted as tilt caused by the rapid ascent and ejection of magma
[D’Auria et al., 2006] and as an My 3.0 slow thrust-faulting event [Cesca et al., 2007]. This
signal is unlikely to be source of the vertical-T earthquake that we identify in this study because
the amplitude of the ULP signal on the vertical component is more than an order of magnitude
lower than the amplitude of the horizontal components. The vertical-T earthquake at Stromboli
has a centroid time of 7:13:45.5, which suggests that the earthquake is associated with the VLP

event and the main blast of the paroxysmal explosion.

2.4.9. Sierra Negra

An My 5.5 vertical-T earthquake took place in the western Galapagos Islands on 22 October
2005. The centroid location for this event is immediately south of Isabela Island, ~30 km from
Sierra Negra, the largest shield volcano in the Galapagos Islands. Sierra Negra has a subaerial
extent of 60-by-40 km, and contains a shallow 7-by-10-km summit caldera. The interior of Sierra
Negra’s caldera contains a 14-km-long C-shaped sinuous ridge composed of normally-faulted
blocks with steep outward-dipping fault scarps [Reynolds et al., 1995]. It has been suggested that

this fault system was formed by a series of repeated trapdoor-faulting events driven by magma



87

accumulation [Reynolds et al., 1995; Amelung et al., 2000; Jonsson et al., 2005; Chadwick et al.,
2006; Jonsson, 2009] in Sierra Negra’s ~2-km deep sill-like magma chamber [Amelung et al.,
2000; Yun et al., 2005]. During a trapdoor-faulting event, the crust above the magma chamber

hinges upwards like a trapdoor on one side of the caldera [Amelung et al., 2000].

Trapdoor-faulting events in 1997-1998 and on 16 April 2005 are characterized by maximum
uplift just north of the sinuous ridge in the southern part of the caldera [Amelung et al., 2000;
Jonsson et al., 2005; Chadwick et al., 2006; Jonsson, 2009]. An m,, 4.6 earthquake is associated
with the April 2005 trapdoor-faulting event, during which a GPS station located near the sinuous
ridge was uplifted 84 cm within 10 s [Chadwick et al., 2006]. Although the 1997-1998 trapdoor-
faulting event was originally attributed to slip along steep outward-dipping normal faults
[Amelung et al., 2000], a revised faulting model consisting of 67-74° inward-dipping thrust faults
is compatible with the deformation data from both the 1997-1998 and April 2005 trapdoor-

faulting events [Chadwick et al., 2006; Jonsson, 2009].

On 22 October 2005 at 23:30 UTC, Sierra Negra began erupting after a repose period of 26
years. The start of the eruption was accompanied by a 13-km-high plume of ash and steam, after
which the eruption transitioned to a 2-km-long curtain of fire fountains inside the northern rim of
the caldera [Geist et al., 2008]. Over the next 8 days, ~150x10° m’ of basalt were erupted and the
center of the caldera subsided over 5 m [Yun, 2007; Geist et al., 2008]. No precursors to the
eruption were observed, except for the My 5.5 vertical-T earthquake that occurred at 20:34 on 22
October, approximately 3 hours before the start of the eruption. Unfortunately, the GPS network

failed 16 hours prior to the start of the eruption so deformation associated with this event is
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poorly constrained [Geist et al., 2008]. Yun [2007] modeled interferograms that span the
earthquake and the eruption, and found that the deformation can be explained by a model that
includes a trapdoor-faulting event centered on the western part of the sinuous ridge. The 1.5 m
of maximum dip-slip at the surface estimated by Yun [2007] is consistent with field
measurements of dip-slip displacements on vertical fault scarps in the southern and western parts
of the sinuous ridge [Geist et al., 2008]. The vertical-T earthquake is closely associated with this

period of eruptive activity, and may be associated with a trapdoor-faulting event.

2.4.10. Tungurahua

An My 4.4 vertical-P earthquake with a C-quality CMT solution took place in Ecuador on 17
August 2006. The centroid location for this earthquake is ~25 km from Tungurahua, one of the
most active volcanoes in the Andes [Hall et al., 1999]. Tungurahua is a large andesitic
stratovolcano that has been erupting intermittently since 1999. In 2006, explosive eruptions on
14 July and 16-17 August produced widespread pyroclastic flows, resulting in loss of life and
evacuation of settlements along the flanks of the volcano. The vertical-P earthquake occurred
during the paroxysmal phase of the VEI 3 (Volcanic Explosivity Index, Newhall and Self, 1982)

16-17 August eruption, Tungurahua’s most violent eruption since activity began in 1999.

The August 2006 eruption was preceded by the growth of a bulge on the northern flank of the
volcano between 11 and 16 August [Smithsonian Institution, 2006], and by 16 hours of
uninterrupted, escalating seismic tremor and tephra fallout [4rellano et al., 2008]. The eruption
began on 16 August at 19:30 UTC, and by 22:00, lava fountains reached a height of 100-200 m

above the vent [Barba et al., 2006]. Around 03:00 on 17 August, numerous pyroclastic density
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currents were observed [Barba et al., 2006] and the ash plume rose to a height of 13.25 km [Fee
et al., 2010]. Between 04:00 and 05:00, the lava fountains reached ~1.5 km, and at ~05:30 the
start of the paroxysmal phase of the eruption began [Barba et al., 2006; Fee et al., 2010]. The

vertical-P earthquake took place shortly thereafter, at 05:37 UTC.

The paroxysmal phase of the 16-17 August eruption lasted 50 minutes, and was characterized by
a dramatic increase in acoustic power, as well as a shift in the infrasonic jetting spectrum
towards lower frequencies [Matoza et al., 2009; Fee et al., 2010]. The height of the ash cloud
grew to over 24 km, and ash was injected into the stratosphere while lava fountaining continued
at heights of over 1 km [Fee et al., 2010; Steffke et al., 2010]. Numerous pyroclastic density
currents and heavy ashfall were observed [Barba et al., 2006]. At 06:20, the eruptive activity
dropped off sharply and by ~07:30, the tremor was at background levels [Fee et al., 2010]. In
total, the eruption lasted 11 hours, and produced 2x10” m® of magma and 35,000 tons of SO,
[Arellano et al., 2008; Carn et al., 2008; Fee et al., 2010]. Hours after the end of the eruption,
the effusion of slow-moving blocky lava flows was observed [Arellano et al., 2008; Hanson et
al., 2011; Samaniego et al., 2011]. It has been suggested that the end of the August 2006
eruption may have resulted from the slow ascent of a more-viscous magma [Hanson et al.,

2011].

A series of VLP events was observed during the August 2006 eruption [Kumagai et al., 2007a/b;
Kumagai et al., 2010]. These events started at 05:30 UTC on 17 August, and are characterized by
impulsive signatures with dominant periods of 20-50 s [Kumagai et al., 2007b]. The vertical-P

earthquake that we identify in this study is likely the same event as ‘“VLP2’ from Kumagai et al.
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[2010]. In a waveform inversion using seismic data from two local broadband stations, Kumagai
et al. [2010] modeled this event as an isotropic source at 3 km depth, and hypothesized that the
volumetric change was caused by bubble growth due to newly supplied magma. However, it
seems possible that the vertical-P earthquake could have been generated by a collapse inside the

magmatic plumbing system, as at Nyiragongo and Miyakejima.

2.4.11. Curtis Island

On 17 February 2009, the largest well-documented vertical-CLVD earthquake, an My 5.8
vertical-T event took place in the Kermadec Islands north of New Zealand. The centroid location
is ~2 km from Curtis Island. Together with Cheeseman Island, Curtis Island is the subaerial
portion of a submarine dacitic volcano located along the Kermadec Ridge [Doyle et al., 1979;
Smith et al., 1988]. Curtis Island has a subaerial extent of 500-by-800 m and contains a crater
with active fumaroles. Although uplift of 7 m was documented at Curtis Island between 1929
and 1964 [Doyle et al., 1979], the date of Curtis Island’s last eruption is unknown. One month
prior to the vertical-T earthquake, from 17 to 19 January 2009, earthquakes with T-wave phases
were recorded on the Polynesian seismic network [Smithsonian Institution, 2009], suggesting a
possible eruption near the volcano. As Curtis Island is a remote volcano, this activity was not
confirmed. Because no thermal alerts were issued by the MODVOLC system [Wright et al.,
2002, 2004] through April 2009 [Smithsonian Institution, 2009], the vertical-T earthquake is
likely associated with magma migration within the volcanic edifice or magmatic plumbing

system of Curtis Island rather than a volcanic eruption.
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2.4.12. NW Rota-1

On 19 April 2009, an My 4.9 vertical-P earthquake with a C-quality CMT solution took place in
the Mariana Islands. The centroid location for this earthquake is ~60 km from NW Rota-1, a
recently detected submarine volcano with an active hydrothermal system [Embley et al., 2006].
NW Rota-1 is a steep-sided basaltic to basaltic-andesitic cone with a diameter of 16 km and a
summit depth of ~500 m [Embley et al., 2006; Chadwick et al., 2008]. In 2004, the first
explosive submarine eruptions ever to be observed were witnessed at NW Rota-1 [Embley et al.,
2006]. Repeated dives indicate eruptive activity is characterized by nearly continuous

Strombolian eruptions [Chadwick et al., 2008].

In mid-April 2009, an unusual sequence of earthquakes near NW Rota-1 was detected by both
the NEIC and by a hydrophone moored in the summit of the volcano [Chadwick et al., 2012].
The peak seismicity was observed on 17 April, the first day of the 4-day swarm, when the
hydrophone recorded a continuous broadband acoustic signal that lasted for ~24 hours
[Chadwick et al., 2012]. The April 2009 swarm closely resembles another earthquake sequence
that occurred near NW Rota-1 in 1997 [Heeszel et al., 2008; Chadwick et al., 2012]. Both
swarms have been attributed to magmatic sources [Heeszel et al., 2008; Chadwick et al., 2012].
The seismic swarm and the vertical-P earthquake may be associated with a magmatic intrusion or
the inflation of a shallow magma chamber. A large volcanic eruption and subsequent landslide

took place at NW Rota-1 in August 2009 [Chadwick et al., 2012].
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2.4.13. Other Vertical-CLVD Earthquakes

The remaining 24 vertical-CLVD earthquakes identified in this study are not associated with
documented episodes of volcanic unrest at nearby volcanoes. Several of these earthquakes occur
in spatial clusters near individual volcanoes. We summarize the locations of the vertical-CLVD
earthquakes, starting in Cascadia and moving counterclockwise around the Pacific Ocean. Unless

otherwise indicated, the earthquakes have A-quality CMT solutions.

An My 4.7 vertical-P earthquake with a B-quality CMT solution took place on 19 March 1994
along the Gorda Ridge, north of the Mendocino Fracture Zone off the coast of Oregon. This
earthquake occurred near the boundary between the Central and Phoenix ridge segments, and is

not associated with any unusual earthquake swarms or reported eruptions along either segment.

On 4 December 1999, an My 5.1 vertical-P earthquake with a B-quality CMT solution occurred
in the Andreanof Islands in the central Aleutians. The centroid location for this earthquake is ~40
km from Tanaga, Takawangha and Gareloi volcanoes. All three of these volcanoes are
stratovolcanoes. Tanaga last erupted in 1914, and Gareloi last erupted in 1989. Takawangha has
no known historical eruptions, although radiocarbon data indicates that explosive eruptions have

occurred there in the past several hundred years.

Four vertical-CLVD earthquakes that are not associated with volcanic unrest took place in Japan.
The first earthquake is an My 5.3 vertical-T earthquake that occurred on 16 May 1978 in

Northern Honshu near Hokkaido. This earthquake is not located near any recently active
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volcanoes, but the centroid location is ~40 km from Osore-yama, a historically active

stratovolcano with a 5-km-wide caldera.

An My 5.7 vertical-P earthquake occurred on 9 September 1996 in the Ryukyu Islands near
Kyushu. The centroid location for this earthquake is ~70 km from Kuchinoerabu-jima and Kikai
volcanoes. Kikai is a 19-km-wide caldera that erupted in 1997 and 1998. Kuchinoerabu-jima is a
group of young stratovolcanoes that produces frequent explosive eruptions. The vertical-P
earthquake occurred during a seismic swarm at Kuchinoerabu-jima [/guchi et al., 2001].
However, an earthquake aftershock survey by Sekitani et al. [1997] confirms that the earthquake
we study occurred on Tanegashima Island, ~60 km east of the volcanic arc. Therefore, it seems

unlikely that this earthquake is associated with the Kuchinoerabu-jima magmatic activity.

Two My 5.2-5.3 vertical-T earthquakes have centroid locations ~15 km from Kita-Iwo-Jima, a
deeply eroded stratovolcano in Japan’s Volcano Islands. The first earthquake occurred on 20
August 1992 and the second earthquake occurred on 12 June 2008. Numerous eruptions have
been reported from Funka-Asane, a submarine vent located 2 km northwest of Kita-Iwo-Jima,

but no eruptions were reported during the times of the vertical-T earthquakes.

An My 4.7 vertical-P earthquake with a C-quality CMT solution took place on 11 April 2008 in
the Mariana Islands. The centroid location for this earthquake is ~110 km west of the volcanic
arc and is likely associated with the Mariana Trough, an actively spreading back-arc basin

separating the Mariana Ridge, a remnant volcanic arc, from the active volcanoes of the Mariana
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Arc. No specific volcanic activity has been reported at this location near the time of the

earthquake.

On 25 February 2005, an My 4.9 vertical-P earthquake with a B-quality CMT solution occurred
in Luzon in the Philippines. The centroid location for this earthquake is ~75 km from Masaraga
and Mayon volcanoes. Masaraga is a Holocene stratovolcano, and Mayon is a stratovolcano that
has frequent explosive eruptions. Mayon had small-scale explosive eruptions from June to

September 2004, but was not erupting during the time of the vertical-P earthquake.

An My 5.6 vertical-P earthquake with a B-quality CMT solution took place on 29 June 1999 in
East Papua New Guinea. The centroid location for this earthquake is ~35 km from an active
hydrothermal field called Musa River, ~60 km from Madilogo, a Holocene pyroclastic cone, and
~70 km from Managlase Plateau, a Holocene volcanic field. The earthquake is also located ~75
km from Lamington, a stratovolcano that last erupted in 1956. The vertical-P earthquake is not

linked to unrest at any of these volcanoes.

Two vertical-CLVD earthquakes with C-quality CMT solutions occurred in the Vanuatu Islands
region in 2008. The first earthquake is an My 4.9 vertical-T earthquake that took place on 22
July 2008. The centroid location for this earthquake is ~90 km from North Vate, a Holocene
stratovolcano. The second earthquake is an My 5.0 vertical-T earthquake that occurred on 18
November 2008. The centroid location for this earthquake is ~35 km from Traitor’s Head, a
historically active stratovolcano, and ~85 km from Yasur, a stratovolcano that was producing

continuous strombolian and vulcanian eruptions during this time. We do not link the 18
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November 2008 earthquake to the volcanic activity at Yasur due to the large distance between

the centroid location and the volcano.

Eight vertical-CLVD earthquakes, three vertical-P and five vertical-T events, are located in the
Tonga and Fiji Islands region. The vertical-P earthquakes occurred between 1994 and 2002. The
first event is an My 4.8 earthquake with a B-quality CMT solution that occurred near the
Mangatolo Triple Junction on 8 November 1994. The centroid location for this earthquake is ~30
km from Tafahi, a Holocene stratovolcano, and ~45 km from Curacoa, a submarine volcano that
last erupted in 1979. The second event is an My 4.8 earthquake with a C-quality CMT solution
that occurred on 9 September 1995 along the Fonualei Rift and Spreading Center (FRSC). The
third event is an My 4.7 earthquake with a C-quality CMT solution that occurred on 16 August
2002. The centroid location for this earthquake is ~60 km from Falcon Island, a submarine
volcano that last erupted in 1936, and ~70 km from Hunga Tonga-Hunga Ha’apai, a submarine
volcano that erupted in 1988 and 2009. None of the vertical-P earthquakes are linked to

documented episodes of volcanic unrest.

The five vertical-T earthquakes that took place in the Tonga and Fiji Islands regions occurred
over a 20 year period between 1979 and 2009. The northernmost earthquake is an My 5.3
earthquake that took place on 16 January 1994. The centroid location for this earthquake is ~20
km from Hunga Tonga-Hunga Ha’apai, a submarine volcano with a 4-5-km-wide caldera that
experienced a Surtseyan eruption in March 2009 [Vaughan and Webley, 2010]. The remaining
four events are My 5.5 earthquakes that occurred on 1 October 1979, 7 August 1999, 10

November 2004, and 26 May 2009. The 1979 earthquake has a B-quality CMT solution and the
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three other earthquakes have A-quality CMT solutions. All four of these vertical-T earthquakes
have centroid locations clustered ~10-15 km from an Unnamed submarine volcano (0403-01 in
IAVCETI’s Catalog of Active Volcanoes of the World). The last confirmed eruption from
Unnamed volcano (0403-01) was in 1932. The centroid locations for these earthquakes are also
~20 km from Unnamed volcano (0403-011), a Holocene submarine volcano, and ~45-50 km
from Unnamed volcano (0403-03), a submarine volcano that last erupted in 1999. None of these

vertical-T events are associated with documented eruptive activity.

Finally, five vertical-T earthquakes are located in the remote South Sandwich Islands. Three My
5.3-5.4 earthquakes took place in the northern South Sandwich Islands on 9 September 1978, 5
September 1997 and 18 January 2001. These earthquakes have A- or B-quality CMT solutions
and centroid locations that are clustered within ~15 km of Zavodovski, the northernmost
subaerial volcano in the South Sandwich Islands. Zavodovski is a stratovolcano with active
fumaroles that last erupted in 1819. Centroid locations for these earthquakes are also ~40 km
from Hodson, a Holocene stratovolcano. The remaining two vertical-T earthquakes took place in
the southern South Sandwich Islands on 23 and 31 August 2005. Centroid locations for these My
5.1 and My 5.5 earthquakes are located ~30 and ~55 km from Thule Islands volcanoes. The
Thule Islands consist of a group of stratovolcanoes and calderas that have produced several
explosive eruptions in the last hundred years. The 2005 earthquakes also have centroid locations
~50 and ~85 km from Bristol Island, a historically active stratovolcano that last erupted in 1956.
None of the vertical-T earthquakes in the South Sandwich Islands are associated with
documented volcanic unrest, although visual observations of the South Sandwich Islands are

limited to a few days each year [LeMasurier et al., 1990].
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2.5. Discussion

After investigating 395 target earthquakes located within ~100 km of volcanoes with
documented eruptions in the last ~100 years, we have identified 86 shallow vertical-CLVD
earthquakes with magnitudes 4.3 < My < 5.8. We find that the vast majority of the vertical-
CLVD earthquakes are located, within error, at volcanoes. Of the vertical-CLVD earthquakes
investigated in this study, we find that ~80% are located within 30 km and ~90% are located
within 50 km of a known volcanic center. For those earthquakes that are linked to documented
episodes of volcanic unrest at active volcanoes, ~90% are located within 30 km of the source
volcano, and the farthest earthquake is located ~60 km away. Even for vertical-CLVD
earthquakes that are not linked to episodes of volcanic unrest, ~50% are located within 30 km of
a known volcano. The vertical-CLVD earthquakes are associated with more than 20 active

volcanoes around the world.

The vertical-CLVD earthquakes identified in this study all have shallow depths. During the CMT
inversion process, all of the centroid depths were fixed by the inversion process to 12 km to
prevent them from moving shallower, and body-wave modeling suggests that the vertical-CLVD
earthquakes occur in the top 10 km of the crust. Given that most vertical-CLVD earthquakes are
tightly clustered around active volcanoes, the shallow depth estimates suggest that they are likely

associated with deformation inside or immediately beneath volcanic edifices.

Overall, ~70% of the vertical-CLVD earthquakes identified in this study are spatially and
temporally associated with documented volcanic unrest. Breaking this down by earthquake type,

~40% of vertical-T earthquakes and ~85% of vertical-P earthquakes are linked to volcanic
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unrest. If the earthquakes associated with the Miyakejima caldera collapse are excluded, ~45% of
the remaining vertical-P earthquakes occur during documented episodes of volcanic unrest at a
nearby volcano. Volcanic unrest is underreported, especially in remote regions and in cases
where unrest is not soon followed by an eruption [Moran et al., 2011], so the percentage of
vertical-CLVD earthquakes associated with volcanic activity is likely to be even higher than is
documented here. Most shallow vertical-CLVD earthquakes located near volcanoes are thus

likely related to some type of volcanic unrest.

Shallow vertical-CLVD earthquakes near recently active volcanoes represent a small fraction of
earthquakes described in the GCMT and Surface Wave catalogs. Including events analyzed by
Nettles and Ekstrom [1998], only ~0.1% of earthquakes described in the GCMT catalog from
1976 to 2009 are shallow vertical-CLVD earthquakes located near recently active volcanoes.
Likewise, including events analyzed by Shuler and Ekstrém [2009], only ~2% of Category 1 and
2 earthquakes in the Surface Wave catalog from 1991 to 2009 are shallow vertical-CLVD
earthquakes located near recently active volcanoes. Considering that at least 20 volcanoes around
the world are erupting at any given time, it is clear that not all volcanic activity generates
vertical-CLVD earthquakes. Certain stress and/or structural conditions may be required to
generate this type of earthquake. Below we examine potential correlations between vertical-

CLVD earthquakes and tectonic setting as well as volcano type.

Shallow vertical-CLVD earthquakes are located near volcanoes in many tectonic and geographic
settings. The majority of vertical-CLVD earthquakes are located near arc volcanoes in

subduction zones, mostly in the circum-Pacific region. Although many vertical-CLVD
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earthquakes are located in subduction zones along the western rim of the Pacific Ocean, and few
vertical-CLVD earthquakes are located in South or Central America, or in the Cascade, Aleutian
or Kurile-Kamchatka arcs, there does not seem to be an obvious link between the age, geometry,
or velocity of subducting slabs reported by Syracuse and Abers [2006] and the occurrence of
vertical-CLVD earthquakes. Vertical-CLVD earthquakes are also associated with hot-spot
volcanoes in Iceland, Hawaii, the Samoa Islands, and the Galdpagos Islands, as well as with

volcanoes in the East African Rift.

Only a very small number of vertical-CLVD earthquakes, all of the vertical-P type, are located
along mid-ocean ridge segments. Included in this category are the 19 March 1994, 9 September
1995 and 11 April 2008 earthquakes. The centroid locations of these earthquakes are over 80 km
away from the nearest recently active volcano. The locations of these earthquakes, which are
along back-arc or mid-ocean ridge segments, suggest that these events may be associated with
extension processes rather than directly with volcanic processes. The small number of vertical-
CLVD earthquakes located along mid-ocean ridges is partly the result of the fact that we
identified target earthquakes using the database of the GVP, which contains few submarine
volcanoes located along divergent plate boundaries. However, there is some evidence that
vertical-CLVD earthquakes may be less likely to occur in the ridge environment. A search

through the entire GCMT catalog for shallow vertical-CLVD earthquakes with |g > 0.33 and
dominant P or T axes that plunge more steeply than 60° finds only 15 earthquakes located along

the mid-ocean ridge system. All of the earthquakes are vertical-P events. Given our experience
with how the addition of surface-wave data affects CMT solutions (Section 2.3.1, Figure 2.4), it

is possible that many of these events are poorly resolved normal-faulting earthquakes.
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Vertical-CLVD earthquakes are most commonly associated with submarine volcanoes and
stratovolcanoes (Table 2.2). Additionally, most of the submarine volcanoes and stratovolcanoes
closest to vertical-CLVD earthquakes have pre-existing calderas [Siebert and Simkin, 2002- ]. In
fact, the largest sequence of vertical-CLVD earthquakes is associated with the development of a
new caldera at Miyakejima. Vertical-CLVD earthquakes are also associated with unrest at
Rabaul, a pyroclastic shield volcano, and Sierra Negra, a shield volcano. Both of these shield
volcanoes have calderas with well-documented ring-fault structures. Since ring faults are
produced during the caldera collapse process, the fact that we observe most vertical-CLVD
earthquakes at volcanoes with calderas may indicate that vertical-CLVD earthquakes are

generated by slip on ring-fault structures.

Most volcanoes associated with vertical-CLVD earthquakes erupt basaltic and/or andesitic lavas
[Siebert and Simkin, 2002-]. Nyiragongo and Ol Doinyo Lengai, the two volcanoes associated
with vertical-CLVD earthquakes in the East African rift, erupt lavas with some of the lowest
known silica contents on Earth [Sahama, 1973; Bailey, 1993; Demant et al., 1994]. The
correlation between vertical-CLVD earthquakes and basaltic-to-andesitic volcanoes may suggest
that vertical-CLVD earthquakes preferentially occur at volcanoes that erupt low-viscosity
magmas. However, this observation may also be a consequence of the relatively short time
period covered by our study since basaltic volcanoes tend to erupt small volumes of lava
frequently, whereas silicic volcanoes have longer repose periods and larger, less frequent

eruptions [ White et al., 2006].
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Vertical-CLVD earthquakes are observed during many different types of volcanic unrest. Half of
all the vertical-CLVD earthquakes identified in this study are associated with the caldera
collapse of Miyakejima. Vertical-CLVD earthquakes are also associated with a subglacial fissure
eruption at Bardarbunga, a fissure eruption at Nyiragongo, elevated seismicity and explosive
eruptions at Rabaul, an effusive eruption at Sierra Negra, and explosive eruptions at Stromboli
and Tungurahua. At submarine volcanoes, vertical-CLVD earthquakes are associated with
anomalous earthquake swarms at Vailulu’u, Loihi, NW-Rota-1 and Curtis Island, as well as

disproportionately large tsunamis at Smith Rock.

In Figure 2.10, we examine the temporal relationships between vertical-CLVD earthquakes and
volcanic unrest at 10 volcanoes. We plot vertical-CLVD earthquakes that occurred within five
years of the start of volcanic eruptions or episodes of unrest at each volcano. For some
volcanoes, defining the start of an episode of unrest is arbitrary, but we use the following dates
and times: 1) Bardarbunga — 30 September 1996, 23:30 UTC [Smithsonian Institution, 1996a], 2)
Loihi — 17 July 1996, 7:54 UTC, 3) Miyakejima — 26 June 2000, 9:00 UTC [Nishimura et al.,
2001], 4) NW Rota-1 — 17 April 2009, 4:43 UTC, 5) Nyiragongo — 17 January 2002, 6:25 UTC
[Tedesco et al., 2007], 6) Rabaul 18 September 1994, 20:00 UTC [Smithsonian Institution,
1994], 7) Sierra Negra — 22 October 2005, 23:30 UTC [Geist et al., 2008], 8) Stromboli — 5 April
2003, 7:13 UTC [Calvari et al., 2006], 9) Tungurahua — 16 August 2006, 19:30 UTC [Fee et al.,
2010], and 10) Vailulu’u — 9 January 1995, 14:13 UTC. For Loihi, NW Rota-1 and Vailulu’u,
we use the NEIC catalog and define the start of volcanic unrest as the time of the first

teleseismically-detected earthquake in each swarm.



102

Vertical-P earthquakes occur hours to years after the start of eruptions or episodes of unrest,
whereas vertical-T earthquakes occur both before and after eruptive activity. At Sierra Negra, a
vertical-T earthquake preceded the 2005 eruption by 3 hours, while at Bardarbunga, a series of
vertical-T earthquakes took place over 20 years, with the last occurring 1-2 days before the 1996
subglacial eruption. These results suggest that vertical-CLVD earthquakes may be used to infer
the eruptive states of volcanoes. In particular, vertical-P earthquakes may be used to identify
volcanoes where eruptions or large-scale magmatic intrusions have recently occurred. This may
be especially useful for remote or submarine volcanoes. In addition, vertical-T earthquakes may
be used to identify volcanoes that are likely to erupt in the near future. Clusters of vertical-T
earthquakes are located at Kita-Iwo-Jima, Unnamed (0403-01) and Zavodovski volcanoes, and
these earthquakes may be indicative of magma ascent and increased potential for eruptions at

these volcanoes.
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Figure 2.10. Plot showing the temporal relationships between vertical-CLVD earthquakes and
volcanic unrest at 10 volcanoes. We plot five years of time (in min) before and after the start of
eruptions or episodes of unrest. Vertical lines indicate one hour (%), one day (D), one month (M)
and one year (Y). Vertical-P earthquakes are plotted as grey circles and vertical-T earthquakes
are plotted as black circles. Earthquakes from Bardarbunga are from Nettles and Ekstrom [1998],
and earthquakes from Nyiragongo are from Shuler and Ekstrém [2009]. See the text for details
on the dates and times of eruptions and episodes of volcanic unrest. Note that the vertical-T
earthquake at Stromboli is plotted at 1 minute after the start of the eruption, although it actually
occurred only a few seconds later.
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2.6. Conclusions

Through an in-depth analysis of two global seismicity catalogs and the calculation of over 300
CMT solutions, we have identified 86 shallow vertical-CLVD earthquakes occurring near
recently active volcanoes. These earthquakes have depths in the upper 10 km of the crust, and
80% are located within 30 km of a volcano. Additionally, ~70% of the vertical-CLVD
earthquakes studied are spatially and temporally associated with volcanic unrest at a nearby
volcano. Half of the vertical-CLVD earthquakes are associated with the caldera collapse of
Miyakejima in 2000, and another 20% are linked to documented volcanic unrest or eruptions at
other volcanoes. In addition to caldera collapse, vertical-CLVD earthquakes are associated with
effusive and explosive eruptions and volcanic earthquake swarms. There is thus a clear link
between the occurrence of vertical-CLVD earthquakes and volcanic activity. Our observations
suggest that these unusual earthquakes likely occur within the edifices or magmatic plumbing

systems of active volcanoes.

Vertical-CLVD earthquakes do not occur at all volcanoes, or even during all episodes of unrest
at volcanoes where they are observed, so specific stress or structural conditions must be required
to trigger these earthquakes. We have identified several correlations between the occurrence of
vertical-CLVD earthquakes and specific tectonic settings and volcano types. Vertical-CLVD
earthquakes are predominantly located in subduction zones, though they also occur in continental
rifts and in areas of hotspot volcanism. Most vertical-CLVD earthquakes are associated with
volcanoes with caldera structures. Additionally, most vertical-CLVD earthquakes are associated

with volcanoes that erupt silica-poor magmas. These correlations may indicate that low-
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viscosity magmas and/or ring-fault structures are required to generate vertical-CLVD

earthquakes.

We examined the temporal relationships between vertical-CLVD earthquakes and volcanic
unrest at 10 volcanoes, and found that vertical-P earthquakes occur after the start of volcanic
unrest, whereas vertical-T earthquakes generally occur before volcanic eruptions. The occurrence
of vertical-P earthquakes may be useful for identifying remote or submarine volcanoes that have
recently erupted, and the occurrence of vertical-T earthquakes may signal that a source volcano
is likely to erupt in the future. Vertical-CLVD earthquakes provide information about the stress
and strain conditions internal to active volcanoes, and by studying these rare and unusual
earthquakes, we may learn more about the deformation processes occurring inside active
volcanoes during eruptions and magma ascent and migration. Because vertical-CLVD
earthquakes are associated with many different types of volcanic unrest, it is likely that these
events can be produced by multiple physical processes. Constraining the physical mechanisms
that may be responsible for generating vertical-CLVD earthquakes will enable us to interpret

these events in terms of related volcanic hazards.
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Chapter 3
Physical mechanisms for vertical-CLVD earthquakes at active volcanoes
This work has been submitted for publication:
Shuler, A., Ekstrom, G., and M. Nettles, Physical mechanisms for vertical-CLVD earthquakes at
active volcanoes, submitted to J. Geophys. Res., 2012.
Abstract
Occasionally volcanoes generate earthquakes that are large enough to be detected globally. Many
of these moderate-to-large volcanic earthquakes have anomalous focal mechanisms and
frequency contents. In a previous study, we searched for shallow, non-double-couple earthquakes
with approximately vertical tension or pressure axes that took place near active volcanoes
between 1976 and 2009. We identified 101 vertical compensated-linear-vector-dipole (vertical-
CLVD) earthquakes with magnitudes 4.3 < My < 5.8, and found that the majority of these events
occurred during episodes of volcanic unrest. Here, we explore the physical mechanisms that
generate vertical-CLVD earthquakes. We model teleseismic body waves and examine the
frequency contents of vertical-CLVD earthquakes, and find that they have longer source
durations than tectonic earthquakes of similar magnitudes. Although vertical-CLVD earthquakes
are identified based on the properties of deviatoric moment tensors, we explore the possibility
that these earthquakes may have significant non-zero isotropic components. We examine the
covariance matrix for one of the best-recorded events and confirm that the isotropic and pure
vertical-CLVD components cannot be independently resolved using long-period seismic data.
We explore several potential physical mechanisms that may generate earthquakes with deviatoric
vertical-CLVD moment tensors, including slip on ring faults, volume exchange between two
reservoirs, the opening and closing of tensile cracks, and volumetric changes. We evaluate these

mechanisms using seismological, geological, and geodetic constraints from detailed studies of
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individual earthquakes. Although none of the investigated physical mechanisms can explain all

of our observations, a ring-faulting mechanism is preferred for most vertical-CLVD earthquakes.

3.1. Introduction

As magmas ascend from depth to intrude the crust or erupt on the surface, many different types
of volcanic earthquakes are produced by processes such as brittle fracture, fluid flow, mass
transport and volumetric changes [e.g., Chouet, 2003; McNutt, 2005; Kumagai, 2009; Zobin,
2011]. By observing, analyzing and interpreting these earthquakes, we can learn about the
internal dynamics of volcanic systems, and better forecast volcanic eruptions and assess volcanic
hazards. Because most volcanic earthquakes have small magnitudes (Mw < 2-3), much of
volcano seismology is concerned with analyzing seismic signals recorded on local monitoring
networks. However, in extraordinary cases such as during volcanic eruptions or caldera collapse,
moderate and strong earthquakes with magnitudes up to Mw 6 or 7 have been observed [McNutt,
2000; Zobin, 2011]. In these cases, regional and global seismic data can be used to gain insight
into the stress and strain conditions inside the edifices and magmatic plumbing systems of active
volcanoes. Many moderate and large earthquakes associated with volcanic processes have been
shown to have anomalous source properties, such as unusual radiation patterns or frequency
contents [Filson et al., 1973; Francis, 1974; Dreger et al., 2000; Kumagai et al., 2001; Minson et

al., 2007].

In this chapter and in Chapter 2, we investigate a specific type of earthquake linked to volcanoes,
those with vertical compensated-linear-vector-dipole (vertical-CLVD) moment tensors. By

definition, vertical-CLVD earthquakes have deviatoric moment tensors with large non-double-
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couple components that are dominated by vertical compression or extension. Although rarely
observed, vertical-CLVD earthquakes are some of the largest and most anomalous earthquakes
to occur near volcanoes. Prior to our study in Chapter 2, My > 5 vertical-CLVD earthquakes had
been identified near six volcanic centers around the world [Kanamori et al., 1993; Ekstrom,
1994; Nettles and Ekstrom, 1998; Shuler and Ekstrom, 2009]. At Smith Rock, a submarine
volcano in the Izu-Bonin arc, a vertical-CLVD earthquake produced a disproportionately large
tsunami [Kanamori et al., 1993], and at Bardarbunga volcano in Iceland [Nettles and Ekstrom,
1998] and Nyiragongo volcano in the East African Rift [Shuler and Ekstrom, 2009], vertical-

CLVD earthquakes are associated with damaging fissure eruptions.

In order to assess the relationship between vertical-CLVD earthquakes and volcanic unrest, we
searched in Chapter 2 for additional examples of shallow, moderate-sized vertical-CLVD
earthquakes located near volcanoes with documented eruptions in the last ~100 years. We
investigated nearly 400 target earthquakes from the Global Centroid Moment Tensor catalog
(GCMT, 1976-2009) and the Surface Wave catalog (1991-2009) of Ekstrém [2006], and applied
well-defined criteria to the deviatoric moment tensors to classify earthquakes as vertical-CLVD.
We considered events with dominant pressure or tension axes that plunge more steeply than 60°,

and moment tensors that are distinctly non-double-couple with |g > 0.20, where

€ = -Ay/max (|A1], [As]), (3.1)
and A;, A>and A; are the diagonal elements of the moment tensor in the principal axes coordinate
system, ordered such that A, > A,> A;. Vertical-P earthquakes have dominant pressure axes (|4;]

> |As], |A2]) and vertical-T earthquakes have dominant tension axes (|4;] > |43, |A2]).
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In total, we identified 101 vertical-CLVD earthquakes located near active volcanoes. This
number includes 86 vertical-CLVD earthquakes reported in Chapter 2 and 15 vertical-CLVD
earthquakes previously reported in Nettles and Ekstrom [1998] and Shuler and Ekstrém [2009].
The largest vertical-CLVD earthquake we identified has a magnitude of My 5.8, and the smallest
a magnitude of My 4.3. These earthquakes have shallow focal depths, and over 80% have
centroid locations within ~30 km of a known volcano. Approximately two-thirds of these events
are vertical-P earthquakes, and one-third are vertical-T earthquakes. A map of the earthquakes,

color-coded by type, is shown in Figure 3.1.

60" 120° 180° -120° -60° 0 60"

Figure 3.1. Map showing the locations of 101 vertical-CLVD earthquakes identified in Chapter
2, including those from Nettles and Ekstrom [1998] and Shuler and Ekstrom [2009]. Vertical-P
earthquakes are plotted as green circles and vertical-T earthquakes are plotted as blue circles.
Maroon triangles indicate the locations of 429 volcanoes with eruptions later than 1900 that are
documented by the Global Volcanism Project [Siebert and Simkin, 2002-]. Plate boundaries are
from Bird [2003].
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As described in Chapter 2, vertical-CLVD earthquakes are associated with several different types
of volcanoes located in a variety of tectonic and geographical settings. Most vertical-CLVD
earthquakes are located near arc volcanoes in subduction zones, although a small number are
located in continental rifts, along mid-ocean ridges, and in regions of hot-spot volcanism.
Vertical-CLVD earthquakes occur most frequently at stratovolcanoes and submarine volcanoes
with pre-existing caldera structures. Additionally, vertical-CLVD earthquakes are predominantly
associated with volcanoes that erupt basaltic and/or andesitic lavas, which may suggest that low-

viscosity magmas promote the occurrence of these events.

The vast majority of vertical-CLVD earthquakes occur during documented volcanic eruptions or
episodes of unrest at nearby volcanoes, which suggests that these earthquakes are generated by
magmatic and/or volcano-tectonic processes. As detailed in Chapter 2, vertical-CLVD
earthquakes are spatially and temporally linked to 1) abnormally large tsunamis followed by
volcanic 7T-wave events near Smith Rock volcano [Kanamori et al., 1993], 2) anomalous
volcanic earthquake swarms near Curtis Island, Loihi, NW Rota-1 and Vailulu’u volcanoes, 3)
effusive eruptions at Nyiragongo [Shuler and Ekstrom, 2009], Ol Doinyo Lengai and Sierra
Negra volcanoes, 4) explosive eruptions at Rabaul, Stromboli and Tungurahua volcanoes, 5) a
subglacial eruption near Bardarbunga volcano [Nettles and Ekstrom, 1998], and 6) caldera
collapse at Miyakejima volcano. Most vertical-P earthquakes occur after the start of volcanic
eruptions or episodes of unrest at nearby volcanoes, which suggests that these earthquakes occur
in response to volcanic eruptions or large-scale magmatic intrusions. Vertical-T earthquakes
generally occur before eruptive activity and may be indicative of magma-ascent processes. As

vertical-CLVD earthquakes take place at different types of volcanoes, in association with many
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different types of volcanic unrest, it is possible that these earthquakes are produced by more than

one physical mechanism.

To date, two main classes of physical mechanisms have been presented to explain vertical-
CLVD earthquakes. The first class is composed of faulting mechanisms, in which vertical-CLVD
earthquakes are produced by dip-slip motion on volcano ring faults [Ekstrom, 1994; Nettles and
Ekstrom, 1998; Shuler and Ekstrém, 2009]. While motion along the ring fault is triggered by the
inflation or deflation of shallow magma chambers, the earthquakes are generated by shear failure
on curved or cone-shaped fault structures. No net volume change is expected for earthquakes
produced by ring-faulting mechanisms, so these events should be modeled well using deviatoric

moment tensors, as in Chapter 2.

The second class is composed of mechanisms related to fluid flow and volumetric changes.
Examples of mechanisms in the second class include rapid magma injection [Kanamori et al.,
1993; Konstantinou et al., 2003] or withdrawal, rapid expansion or contraction, and volume or
mass exchange between two magma chambers [Tkalci¢ et al., 2009]. Volume changes associated
with fluid flow mechanisms can be either compensated or uncompensated. In the first case,
deviatoric moment tensors are appropriate, but, in the second case, the earthquakes are expected
to have moment tensors with non-zero isotropic components. In Chapter 2 and in our previous
studies [Nettles and Ekstrom, 1998; Shuler and Ekstrom, 2009], we followed standard GCMT
methodology and constrained the isotropic component to equal zero. For shallow earthquakes,
there is a known tradeoff between the isotropic and pure vertical-CLVD components of the

moment tensor [Kawakatsu, 1996], so it is possible that some earthquakes we have described
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with vertical-CLVD focal mechanisms were generated by physical mechanisms with net volume

changes.

Several earthquakes that we identified as having vertical-CLVD moment tensors in Chapter 2
have also been studied by other authors using different types of data, including local and regional
seismic data and radar interferograms. Several models representing both of the main classes of
physical mechanisms have been presented to explain these earthquakes. A vertical-P earthquake
at Tungurahua volcano has been explained as the result of volumetric changes associated with
bubble growth in magma [Kumagai et al., 2010], and a vertical-T earthquake at Sierra Negra
volcano has been explained using a trapdoor-faulting mechanism [ Yun, 2007]. Multiple scenarios
of caldera collapse involving the downward displacement of a rock piston into an underlying
magma chamber have also been presented to explain dozens of vertical-P earthquakes at
Miyakejima [Kikuchi et al., 2001; Kumagai et al., 2001]. For the Tungurahua and Miyakejima
earthquakes, full moment-tensor solutions calculated using local seismic data are dominated by
isotropic components [Kikuchi et al., 2001; Kumagai et al., 2001, 2010]. Clearly, a discussion of
the physical mechanisms of vertical-CLVD earthquakes requires consideration of the isotropic

component of the moment tensor.

The complexity of the vertical-CLVD events and the tradeoff between the pure vertical-CLVD
and isotropic components of the moment tensor means additional constraints are needed to
evaluate possible source mechanisms. From previous studies, there are several indications that
vertical-CLVD earthquakes have unusually long source processes. For example, in order to

model the teleseismic body waves of vertical-CLVD earthquakes at Smith Rock [Kanamori et
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al., 1993] and Bardarbunga [Nettles and Ekstrom, 1998] volcanoes, source durations exceeding
the average magnitude-duration relationship for tectonic earthquakes [Ekstrom et al., 1992] are
required. Additionally, the frequency spectra of vertical-CLVD earthquakes at Nyiragongo
volcano indicate that these events are depleted in high-frequency energy, and have lower corner
frequencies than tectonic earthquakes with similar magnitudes and locations [Shuler and
Ekstrom, 2009]. Likewise, waveforms from local and regional seismic stations indicate that the
vertical-CLVD earthquakes associated with the incremental caldera collapse of Miyakejima have
smooth source-time functions lasting ~30-65 s [Kikuchi et al., 2001; Kumagai et al., 2001;
Ohminato et al., 2001]. Azimuthal variations in the broadband waveforms for the Bardarbunga
earthquakes suggest that some vertical-CLVD earthquakes may be caused by multiple subevents
[Nettles and Ekstrom, 1998]. A systematic analysis of source duration and frequency content

could provide useful constraints on the physical mechanisms of vertical-CLVD earthquakes.

In this chapter, we explore a range of physical processes that may produce earthquakes with
deviatoric vertical-CLVD moment tensors. We perform additional detailed analysis on the
dataset of 86 shallow vertical-CLVD earthquakes located near active volcanoes identified in
Chapter 2, and combine these results with those from Nettles and Ekstrom [1998] and Shuler and
Ekstrom [2009]. We begin by systematically examining the broadband body waves of vertical-
CLVD earthquakes to gain additional constraints on their source durations and frequency
contents. We investigate the tradeoff between the isotropic and pure vertical-CLVD components
of the moment tensor for our dataset, and calculate full moment-tensor solutions for vertical-
CLVD earthquakes. We then examine several potential physical mechanisms that have been

suggested to explain the anomalous seismic radiation patterns of vertical-CLVD earthquakes,
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including slip on ring faults, volume exchange between two reservoirs, opening and closing of
tensile cracks, and volumetric sources. Finally, we evaluate these mechanisms in light of our
source-duration observations and the temporal relationships between vertical-CLVD earthquakes

and volcanic unrest.

3.2. Data and Analysis

In Chapter 2, we used long-period seismic data from regional and global networks to identify 86
shallow vertical-CLVD earthquakes located near active volcanoes. Source parameters were
calculated using the standard GCMT methodology [Dziewonski et al., 1981; Ekstrom et al.,
2012]. The depths of shallow earthquakes are poorly resolved using long-period seismic data,
and the centroid depths of all the vertical-CLVD earthquakes were fixed to 12 km during the
CMT inversions. Similarly, long-period data have weak sensitivity to event duration, and
earthquake durations in the CMT inversions are based on an empirical moment-duration
relationship [Ekstrom et al., 2012]. For long-period teleseismic data, there also exists a tradeoff
between the isotropic and pure vertical-CLVD components, neither of which generates
azimuthally varying seismic radiation [Mendiguren and Aki, 1978; Kanamori and Given, 1981;
Kawakatsu, 1996; Dufumier and Rivera, 1997]. The isotropic component is expected to be small
for tectonic earthquakes, but, in volcanic and geothermal areas, earthquakes with statistically
significant isotropic components have been observed [e.g., Miller et al., 1998a; Dreger et al.,
2000; Foulger et al., 2004; Minson and Dreger, 2008]. In GCMT analysis, the isotropic

component of the moment tensor is typically constrained to zero.
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In Section 3.2.1, we model the teleseismic body waves of vertical-CLVD earthquakes in order to
obtain estimates of their source durations, and in doing so, we also obtain better constraints on
their depths. We gain additional insight into the source processes of vertical-CLVD earthquakes
by examining variations between the frequency contents and magnitude distributions of
earthquakes reported in the GCMT and Surface Wave catalogs. In Section 3.2.2, we evaluate the
tradeoff between the isotropic and vertical-CLVD components of the moment tensor for our
dataset and calculate full moment-tensor solutions for the vertical-CLVD earthquakes reported in

Chapter 2.

3.2.1. Earthquake Source Duration and Magnitude Distribution

In order to obtain additional constraints on the source processes of vertical-CLVD earthquakes,
we attempt to model the teleseismic body waves for the 63 earthquakes from Chapter 2 that have
Myw > 5.1. We collect broadband seismic records from the Data Management Center of the
Incorporated Research Institutions for Seismology (IRIS), and deconvolve the instrument
response to obtain displacement records filtered from 1 to 100 s period. Broadband records for
the oldest earthquakes are constructed from digital long- and short-period seismograms, as in
Ekstrom [1989] and Kanamori et al. [1993]. We manually pick arrival times for P and SH
phases, and invert broadband waveforms for focal mechanism, moment-rate function and focal
depth using the method of Ekstrém [1989]. This analysis provides estimates of the source

durations of vertical-CLVD earthquakes as well as better constraints on their depths.

Synthetic seismograms are calculated using ray theory and the Preliminary Reference Earth

Model [PREM; Dziewonski and Anderson, 1981]. Reflections and conversions near the source
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are modeled using a layer-matrix method for a regional velocity model that varies depending on
the location of the earthquake. For earthquakes in Tanzania and East Papua New Guinea, we use
local velocity models X5 and K2 from CRUST2.0 [Bassin et al., 2000]. For the remaining
earthquakes, which are near island-arc or submarine volcanoes, we use the CRUST2.0 model for
a Japanese island arc (J1), adding a water layer on top, if necessary, to match the summit

bathymetry of the nearest submarine volcano.

We include the point-source moment tensors from Chapter 2 as soft constraints to ensure that
focal mechanisms calculated from broadband data are compatible with the preferred focal
mechanisms calculated using long-period data during the CMT inversions. We experiment with
different weights of the soft constraint, and select the solutions that provide the best fit to the
broadband data as our preferred solutions. We assign each solution a quality based on the fit to
the data and the number of waveforms used in the broadband body-wave modeling. Solutions
with A quality have the best fit to the data, especially for the initial P waves and the first crustal
reflections. Solutions with B and C qualities have poorer fits and therefore greater uncertainties
associated with estimates of depth and source duration. In Table 3.1, we list our preferred
estimates of depth and source duration and describe the quality of each broadband solution. An
example of an A-quality solution is shown in Figure 3.2 for an My 5.5 vertical-T earthquake that
occurred in the Fiji Islands region near an Unnamed submarine volcano (0403-01 in IAVCEI’s

Catalog of Active Volcanoes of the World) on 7 August 1999.
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Figure 3.2. Focal-depth analysis for the My 5.5 vertical-T earthquake that occurred on 7 August
1999 near an Unnamed volcano (0403-01) in the Fiji Islands region. Solid lines are broadband
teleseismic P and SH waveforms, and dashed lines are synthetic seismograms. Brackets across
the waveform show the portions of the seismograms that were used in the inversion. Arrows
indicate the picked first arrivals. The station name, data type and maximum amplitude (in
microns) are printed above each waveform. The focal mechanism and moment-rate function
determined by the body-wave inversion are plotted in the center of the figure. Black dots on the
focal mechanism show the locations where the plotted waveforms exited the focal sphere. The
focal depth of the earthquake is ~5.2 km below sea level. This is an example of an A-quality
broadband body wave solution.
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For most of the vertical-CLVD earthquakes we study (Mw = 5.1), we find that the broadband

body waves are of lower amplitude than the background noise. However, we are able to model
the body waves for 18 earthquakes, 3 of which are vertical-P earthquakes and 15 of which are
vertical-T earthquakes. Eight solutions are A quality, 6 are B quality, and 4 are C quality. In
general, we find the body waves to be emergent and dominated by low-frequency energy. We do
not observe the impulsive direct arrivals and surface reflections typically observed for
earthquakes in this magnitude range. Source durations range from ~4 to ~10 s, and depth
estimates range from ~4 to ~8 km. For the same location, we find that focal-depth estimates for
multiple vertical-CLVD earthquakes vary ~1-2 km. Our estimates of focal depth and source
duration are consistent with those of Nettles and Ekstrom [1998], who reported focal depths of
~3-7 km and source durations of ~4-7 s for ten 5.1 < My < 5.6 vertical-T earthquakes near
Bérdarbunga volcano. We find that all of the vertical-CLVD earthquakes have moment-rate
functions with smoothly varying, approximately triangular shapes, except for the My 5.6
vertical-P earthquake that occurred in East Papua New Guinea on 29 June 1999. This earthquake
has the longest source duration, 10 s, and appears to be composed of several subevents. For the
inversion weightings we choose, broadband estimates of My are up to 0.3 magnitude units

higher than CMT estimates for individual earthquakes.

Due to the long source durations and partial overlap of direct and reflected phases, there is a
tradeoff between focal depth and source duration. Our preferred solutions are listed in Table 3.1,
but for most earthquakes, the broadband data can be fit nearly as well using shallower focal
depths and slightly longer source time functions. We estimate that the uncertainties associated

with focal-depth and source-duration estimates are at least 2 km and 1 second, respectively.
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Earthquake Date and Time Centroid Centroid Geographical M Depth Source Solution
Y M D h m sec Latitude Longitude Location W (km)  Duration (s)  Quality
1978 5 16 7 35 49.1 40.99 141.44 Hokkaido, Japan 5.3 5.8 4 B
1984 6 13 2 29 298 31.57 139.97 South of Honshu, Japan 5.6 3.8 7 B
1990 5 15 15 21 311 -2.96 35.80 Tanzania 54 55 4 A
1992 8 20 18 31 399 2543 141.13 Volcano Islands, Japan 52 73 6 B
1994 1 16 10 18 415 -20.62 -175.20 Tonga Islands 53 4.1 4 A
1996 9 4 18 16 7.7 31.51 139.99 South of Honshu, Japan 5.7 52 8 A
1996 9 9 4 34 219 30.44 130.95 Kyushu, Japan 5.7 7.7 8 A
1997 9 5 3 23 170 -56.41 -27.47 South Sandwich Islands Region 54 52 7 C
1999 6 29 5 50 92 -9.59 147.97 East Papua New Guinea 5.6 55 10 A
1999 8 7 6 17 305 -21.24 -175.61 Fiji Islands Region 55 52 6 A
2000 1 18 20 17 174 -56.31 -27.43 South Sandwich Islands Region 53 4.9 6 C
2004 11 10 10 35 38.0 -21.26 -175.62 Fiji Islands Region 5.5 39 6 B
2005 8 23 1 38 201 -59.80 -26.68 South Sandwich Islands Region 5.1 52 4 B
2005 8 31 1 24 549 -59.48 -26.86 South Sandwich Islands Region 55 55 4 C
2006 1 1 7 12 8.8 31.60 140.17 Southeast of Honshu, Japan 5.6 52 7 A
2008 6 12 13 10 147 25.53 141.18 Volcano Islands, Japan 53 7.5 6 C
2009 2 17 3 30 588 -30.54 -178.58 Kermadec Islands, New Zealand 5.8 6.4 8 B
2009 5 26 0 49 429 -21.24 -175.62 Fiji Islands Region 5.5 5.8 6 A

* Centroid times, locations and magnitudes are from the CMT solutions presented in Chapter 2. Depth and source-duration estimates are from
broadband body-wave modeling. See text for explanation of solution quality.

In Figure 3.3, we plot the source duration of each vertical-CLVD earthquake as a function of the

scalar moment calculated from the CMT solutions in Chapter 2. We compare these results to the

global average relationship between source duration and scalar moment, as derived from

broadband body-wave modeling using the same method for moderate-to-large shallow

earthquakes,

T=4.52x10° (Mp)"?,

(3.2)

where 7is the source duration in seconds and M, is the scalar moment in Nm [Ekstrom et al.,

2012]. All of the vertical-CLVD earthquakes we are able to model have longer-than-average

source durations for their moment magnitudes. For example, My 5.8 earthquakes, on average,

have source durations of ~4 s, whereas we observe a source duration of ~8 s for the Mw 5.8

vertical-T earthquake that occurred near Curtis Island in the Kermadec Islands on 17 February

2009. The vertical-CLVD earthquakes in Table 3.1 are thus all characterized by slower-than-

average source processcs.
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Figure 3.3. Log-log plot of the scalar moment (in Nm) and source duration (in seconds) of 18
vertical-CLVD earthquakes. The estimates of scalar moment are from the CMT solutions in
Chapter 2, and the estimates of source duration are from broadband body-wave modeling. The
color of the circles indicates the quality of the broadband body-wave solutions. Black circles are
for A-quality solutions, grey circles are for B-quality solutions, and white circles are for C-
quality solutions. The thick black line shows the global average relationship between scalar
moment and source duration for shallow, moderate-to-large earthquakes [Ekstrom et al., 2012].

Although we are unable to model the broadband body waves for most of the vertical-CLVD
earthquakes, we can assess their source durations by examining the general frequency contents of
earthquakes reported in the GCMT and Surface Wave catalogs. Our lack of success in modeling
more of the vertical-CLVD earthquakes is consistent with the pattern of longer-than-usual source
durations. Twenty-six of the vertical-CLVD earthquakes from Chapter 2 are reported in the
GCMT catalog. Before 2006, the GCMT Project used initial hypocentral parameters provided by
the United States Geological Survey (USGS) National Earthquake Information Center (NEIC),

where event detection is based on the arrival times of high-frequency body waves. Since 2006,
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hypocentral parameters from the intermediate-period surface-wave event-detection algorithm of
Ekstrom [2006] have been used for a small number of moderate-to-large earthquakes not
detected by the USGS. However, fewer than 3% of earthquakes in the GCMT catalog since 2006
are based on surface-wave detections [Ekstrom et al., 2012], so nearly all earthquakes in the
GCMT catalog have high-frequency body-wave phases. All of the earthquakes that we are able
to model using broadband body-wave analysis are from the GCMT catalog, with initial

detections from the NEIC.

The remaining 60 vertical-CLVD earthquakes from Chapter 2 are from two subsets of events
reported in the Surface Wave catalog of Ekstrom [2006]. Category 1 earthquakes have surface-
wave magnitudes, Mgsw [Ekstrom, 2006], that are at least one magnitude unit larger than the my,
magnitudes reported in the International Seismological Centre (ISC) Bulletin. Body-wave
magnitudes are calculated at a period of ~1 s, and surface-wave magnitudes, Msw, are calculated
between periods of 30 and 150 s. The discrepancy between these two magnitudes suggests that

Category 1 earthquakes are slow earthquakes.

Category 2 earthquakes from the Surface Wave catalog are missing from the ISC and NEIC
global seismicity catalogs, but were detected and located using intermediate-period surface
waves and the method of Ekstrom [2006]. Compared to body waves, teleseismic surface waves
are dominated by lower-frequency energy. Since the amplitudes of high-frequency body-wave
phases were too small to be detected by the ISC and NEIC, despite the fact that they have
magnitudes up to My 5.6, Category 2 vertical-CLVD earthquakes likely have slow source

processes. Observations of Category 2 vertical-CLVD earthquakes at Miyakejima, Stromboli and



122

Nyiragongo support this interpretation. The 39 largest vertical-P earthquakes associated with the
caldera collapse of Miyakejima, which are either Category 1 or 2 events, have, on average,
source durations of ~50 s [Kikuchi et al., 2001, Kumagai et al., 2001; Ohminato et al., 2001],
which is ~20 times longer than expected considering their moment magnitudes of 5.0 < My <
5.6. A Category 2 My 4.3 vertical-T earthquake at Stromboli is described as a very-long-period
event that lasted ~12 s [D ’Auria et al., 2006]. Likewise, Category 2 vertical-P earthquakes at
Nyiragongo are depleted in high-frequency energy, and have lower corner frequencies than
tectonic earthquakes with similar magnitudes and locations, also suggesting slower source

processes [Shuler and Ekstrém, 2009].

Figure 3.4 shows the distributions of My for vertical-CLVD earthquakes by source catalog.
Included are the 10 vertical-T earthquakes from Bardarbunga [Nettles and Ekstrom, 1998], which
are reported in the GCMT catalog, and the 5 vertical-P earthquakes from Nyiragongo [Shuler
and Ekstrom, 2009], which are reported in the Surface Wave catalog. The GCMT catalog
includes vertical-CLVD earthquakes in this group having magnitudes 4.8 <My < 5.8, and we are
able to model the teleseismic body waves for nearly all earthquakes with magnitudes My > 5.1.
The Surface Wave catalog includes vertical-CLVD earthquakes with magnitudes 4.3 <My < 5.6,
and we are not able to model any of these earthquakes, even the largest events from Nyiragongo
[Shuler and Ekstrom, 2009] and Miyakejima. The fact that we are unable to model the
teleseismic body waves from any vertical-CLVD earthquakes in the Surface Wave catalog
provides another indication that these events have long source durations, and suggests that they
may have even slower source processes than vertical-CLVD earthquakes in the GCMT catalog.

Since vertical-P earthquakes are predominantly from the Surface Wave catalog and vertical-T
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earthquakes are predominantly from the GCMT catalog, we infer that vertical-P earthquakes may

have slower source processes than vertical-T earthquakes.
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Figure 3.4. Distribution of vertical-CLVD earthquakes by source catalog and moment
magnitude. Earthquakes are binned by 0.1 units of moment magnitude. Red dots and lines
represent earthquakes from the Global CMT catalog, and black dots and lines represent
earthquakes from the Surface Wave Catalog of Ekstrém [2006]. Included are vertical-CLVD
earthquakes from Nettles and Ekstrom [1998], Shuler and Ekstrom [2009] and Chapter 2, and the
My values are taken from these studies. We draw a dashed black line at My 5.1 because we are
able to model the body waves for nearly all My > 5.1 vertical-CLVD earthquakes from the
Global CMT catalog, while we are not able to model any My > 5.1 vertical-CLVD earthquakes
from the Surface Wave catalog.

The distributions of My for vertical-CLVD earthquakes reported in the GCMT and Surface

Wave catalogs closely resemble each other (Figure 3.4), except the distribution for the GCMT
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catalog is shifted ~0.2 magnitude units higher than the distribution for the Surface Wave catalog.
The low number of small-magnitude vertical-CLVD earthquakes reported in each catalog is
likely due to the magnitude of completeness, which varies as a function of time and geographical
location. However, the small number of large-magnitude vertical-CLVD earthquakes is
surprising. In 34 years of observations from the GCMT catalog (1976-2009) and 19 years of
observations from the Surface Wave catalog (1991-2009), we have observed ~75 earthquakes
with magnitudes My > 5.0, but no earthquakes with My > 6.0. This observation suggests that
vertical-CLVD earthquakes do not follow the Gutenberg-Richter magnitude-frequency
distribution [ Gutenberg and Richter, 1944] with the global average b-value of 1.0 [Frohlich and
Davis, 1993]. Since our catalog of vertical-CLVD earthquakes ends below My 6.0, this may
indicate that there is an upper limit on the source size for vertical-CLVD earthquakes at active

volcanoes.

3.2.2. Tradeoff Between Isotropic and Pure Vertical-CLVD Components

For long-period teleseismic data, there is a tradeoff between the isotropic and pure vertical-
CLVD components of the moment tensor [Mendiguren and Aki, 1978; Kanamori and Given,
1981; Kawakatsu, 1996; Dufumier and Rivera, 1997]. Below, we investigate this tradeoff for our

dataset of vertical-CLVD earthquakes following the method of Kawakatsu [1996].

To begin, we consider the vector-matrix equation:

d=Gm, (3.3)
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where d is a vector composed of seismograms from several stations, m is a vector containing the
moment tensor elements (M,,, My, M, M., M,, M,,) and G is a matrix containing the Green
functions for each moment-tensor element. The normal-equation matrix for this system is:

G'd=G'Gm, (3.4)
which we can rewrite as

A m=h, (3.5)
where A is the inner product matrix and b is G"d. The covariance matrix for the moment-tensor
elements, Cp, is related to the inner product matrix by a scalar, Cy, = 0’4 A, where 6% is the
variance of the data. The matrix A™' can be calculated from synthetic waveforms using the

centroid location of an earthquake and a distribution of available stations.

Since we are concerned with the tradeoff between the isotropic and pure vertical-CLVD
components of the moment tensor, we rotate the diagonal elements of the moment tensor into a
new basis, redefining them as the Isotropic (/), pure vertical-CLVD (C) and Difference (D)

components, where

1

=2 (M, +My +M,) (3.6)
1

C = (Mg + My -2M,,) (3.7)
1

D= (Mg -My). (3.8)

As an example, we calculate A, for one of the best-recorded vertical-CLVD earthquakes, an
My 5.6 vertical-P earthquake that took place at Miyakejima on 2 August 2000. We use the

centroid location and the same station locations, time windows and frequency bands that were
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used to calculate the CMT solution in Chapter 2. We include two datasets, body waves from 134
stations that were predominantly filtered from 40 to 150 s, and surface waves from 150 stations
that were predominantly filtered from 50 to 150 s. Synthetic seismograms are calculated
following the standard GCMT procedure [Dziewonski et al., 1981; Arvidsson and Ekstrom,

1998], and specifically the methods employed since 2004 [Ekstrém et al., 2012].

We calculate the eigenvalues and eigenvectors of A", and the relative standard deviation of each

element, G,, where

6,=+A' /0, 3.9)
and 0, =./A; ' . We also calculate the correlation matrix, X, where
4l
X, =4; /00,. (3.10)

Our results are plotted in Figure 3.5. On the left, we plot a graphical representation of the
eigenvectors. We plot these in descending order of relative eigenvalue, such that top eigenvector
indicates the moment-tensor elements with maximum covariance, which are therefore the least
well constrained. On the right, we plot the relative standard deviations of the moment tensor

elements, &, and the correlation matrix, X.

We find that the eigenvector with the largest eigenvalue is (-0.87/ + 0.49C). We also find that the
isotropic and pure vertical-CLVD components of the moment tensor have the largest relative
standard deviations. Additionally, the isotropic and pure vertical-CLVD components have a
correlation coefficient of X;c = -0.91, which demonstrates a strong linear dependence between
the two components. Other combinations of the moment-tensor elements have small-to-

negligible correlation coefficients. All of these pieces of information demonstrate that, even for



127

the best-recorded earthquakes in our dataset, the isotropic and pure vertical-CLVD components

of the moment tensor cannot be independently resolved using long-period seismic data.
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Figure 3.5. Results of an examination of the covariance matrix for the My 5.6 vertical-P
earthquake that occurred at Miyakejima on 2 August 2000. On the left, we plot eigensolutions
for A!, which is related to the covariance matrix, Cp, by Cp, = 0’4 A, where 0% is the variance
of the data. Vertical lines in each row indicate the contributions of moment-tensor elements for
each eigenvector, whose relative eigenvalue is given on the left. Positive contributions are
plotted above the horizontal lines in each row, and negative contributions are plotted below. The
eigenvectors are ordered by decreasing relative eigenvalue such that the top eigenvector shows
the combination of moment-tensor elements that is the least well-constrained. Focal mechanisms
for the six elements of the moment tensor are plotted below the eigenvectors. On the right, we
plot the relative standard deviations of the moment-tensor elements and the correlation matrix. In
the correlation matrix, the moment-tensor elements are ordered (I, C, D, Myy, My, Mg,). The size
and color of the circles plotted in the upper right of the correlation matrix represent the
magnitude and sign of the correlation coefficients, which are printed in the bottom left of the
correlation matrix. White circles indicate positive correlation coefficients and black circles
indicate negative correlation coefficients.
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To explore the tradeoff between the isotropic and vertical-CLVD components further, we
calculate full moment tensor solutions for the 86 vertical-CLVD earthquakes reported in Chapter
2. We use the same data selections as in the preferred CMT analysis, but allow the six
independent elements of the moment tensor to vary freely. With the additional free parameter,
full moment tensor solutions provide slightly better fits to the data, improving the variance

reduction by 1% on average.

We decompose the full moment tensor, M, into isotropic and deviatoric (M”) components, where
' 1
My = My = (M, Moy + My,)3,. (3.11)
We define the isotropic moment, Mjso, as
1
Mlso=§(Mr,-+Meg+M¢¢), (3.12)
and the deviatoric moment, Mpgy, as
| :
MDEVZE()%_)%)a (3.13)

where A, and A;’ are the maximum and minimum eigenvalues of M’. We also describe each
earthquake in terms of two quantities, the € value of the deviatoric fraction of the moment tensor,

and &, which describes the relative contributions of the isotropic and deviatoric components. We

define k as:

Mo (3.14)

= ——10
|MIS0|+MDEV

Because we follow GCMT convention to define the deviatoric moment, our definition of &

differs slightly from that given by Hudson et al. [1989].
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Figure 3.6. At left, we plot focal mechanisms for the deviatoric fraction of the full moment-
tensor solutions for the 86 vertical-CLVD earthquakes analyzed here according to their £ and €
values. On the right, we plot the locations of a variety of end-member seismic sources in k-€

space. Dashed lines in both panels illustrate the tradeoff between isotropic and vertical-CLVD
components. See text for details.

In the left panel of Figure 3.6, we plot the deviatoric focal mechanisms (M”) for each earthquake
on axes corresponding to the £ and € values of the full moment-tensor solutions. On the right
panel, we provide a key to illustrate the k& and € values of different types of earthquakes. Moment

tensors for earthquakes with explosive and implosive components have positive and negative k
values, respectively, and moment tensors for earthquakes with no net volume change plot along
the line k£ = 0. Black circles indicate the £ and € values of double-couple earthquakes, pure
implosions and explosions, positive and negative CLVDs, positive and negative dipoles, opening
and closing tensile cracks, and radially expanding and contracting cylinders, assuming that the
Lame constants, A and y, are equal [Chouet, 1996; Kawakatsu and Yamamoto, 2007; Kumagai,

2009].
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We find that the full moment-tensor solutions for the vertical-CLVD earthquakes from Chapter 2

plot roughly along two lines that span wide ranges of k-¢€ space. Vertical-P earthquakes plot close

to the line joining closing tensile cracks with pure explosions, and vertical-T earthquakes plot
close to the line joining opening tensile cracks with pure implosions. Given that the dominant
principal stress axes are close to vertical, the focal mechanisms are consistent with tensile cracks
that are oriented approximately horizontally. Focal mechanisms for vertical positive and negative

dipoles would also plot close to these lines.

The dashed lines in Figure 3.6 are drawn for illustrative purposes based on visual inspection of

the trends of the full moment-tensor solutions for vertical-CLVD earthquakes in k-€ space.

However, we also performed a numerical experiment for the My 5.6 vertical-P earthquake
described in Figure 3.5 in order to examine the impact of the tradeoff between the isotropic and
pure vertical-CLVD components of the moment tensor on our full moment-tensor solutions. We
began with the deviatoric moment tensor presented in Chapter 2, and calculated a suite of
additional moment tensors by adding combinations of the isotropic and pure vertical-CLVD
components (Equations 3.6 and 3.7) in the proportions described by (-0.87/ + 0.49C), the
eigenvector of the covariance matrix with the largest relative eigenvalue. We find an

approximately linear relationship between the k and € values for this suite of moment tensors,
extending from -0.55 < k£ < 0.55 and -0.5 < & <0. The slope of this line is slightly lower than the

dashed lines drawn in Figure 3.6, but approximates the observed trends of the full moment-tensor

solutions for vertical-CLVD earthquakes well.
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3.3. Discussion

In this section, we examine the two main classes of physical mechanisms that have been
presented to explain vertical-CLVD earthquakes, ring-faulting mechanisms and mechanisms
involving fluid flow and/or volumetric changes, using the constraints and understanding
developed in Section 3.2. We describe the proposed physical mechanisms in detail, and use
published results from field geology and analog and numerical models as further constraints on
physical parameters such as the geometry of ring faults and the propagation velocity of fluid-

filled tensile cracks.

Because we cannot constrain the relative contributions of the isotropic and pure vertical-CLVD
components in our waveform inversions, we do not interpret individual full moment-tensor
solutions. Instead, we choose to interpret the range of potential mechanisms allowed by the
solution space for the full dataset of earthquakes. In particular, we consider ring-faulting
mechanisms and volume exchange between two reservoirs, which do not require net volume
changes. We also consider the opening and closing of subhorizontal tensile cracks and dominant
isotropic sources, which do require net volume changes. Given that the isotropic and pure
vertical-CLVD components of the moment tensor cannot be independently resolved for our
dataset, all of these mechanisms are permissible if one only considers information from the CMT

analysis. Additional data are required to assess which mechanisms are the most likely.

In Chapter 2 and in this study, we have identified several additional constraints that can be used
to evaluate potential physical mechanisms for producing vertical-CLVD earthquakes. First,

vertical-CLVD earthquakes have slower source processes than tectonic earthquakes of the same
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magnitude. Additionally, vertical-P earthquakes appear to have longer source processes than
vertical-T earthquakes. Vertical-T earthquakes have durations of ~10 s or less, whereas vertical-
P earthquakes can have durations as long as ~60 s. Second, vertical-P earthquakes typically
occur after volcanic eruptions or the start of volcanic unrest, whereas vertical-T earthquakes
most often occur beforehand. Third, although seismic radiation from vertical-CLVD earthquakes
is dominated by Rayleigh waves that are radiated in approximately equal amplitude in all
directions, we do observe small-amplitude Love waves for many events. As demonstrated by the
broadband body-wave modeling example in Figure 3.2, horizontally polarized shear (SH) waves
are also observed for many vertical-CLVD earthquakes. Finally, vertical-CLVD earthquakes are
most commonly associated with volcanoes that erupt basaltic and/or andesitic lavas, as well as
volcanoes that have calderas. We search for physically plausible mechanisms that can explain

these observations.

3.3.1. Ring-Faulting Mechanisms

Ring faults are curved or cone-shaped dip-slip faults that are circular to elliptical in plan view.
These faults are formed by the inflation and deflation of shallow magma chambers, and can be
either inward- or outward-dipping, as shown schematically in Figure 3.7. In nature, ring faults
are inherently difficult to observe because they are often covered by pyroclastic flow deposits,
lava flows, or crater lakes after forming during episodes of caldera collapse. However, both
inward- and outward-dipping ring faults have been mapped at eroded volcanoes, where they
occasionally are intruded with magma. Summaries of results from field studies on calderas are
provided in Lipman [1997] and Cole et al. [2005], and a database of collapse calderas is provided

by Geyer and Marti [2008]. At volcanoes such as Rabaul [Mori and McKee, 1987], Pinatubo
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[Mori et al., 1996], Mt. Spurr [Jolly et al., 1994], Mt. St. Helens [Scandone and Malone, 1985],
Mammoth Mountain in Long Valley Caldera [Prejean et al., 2003], and Mauna Kea [Wolfe et
al., 2004], the presence of ring faults has been inferred from circular or elliptical patterns formed
by the locations of microearthquakes. Although the geometries of ring faults are difficult to
measure, most ring faults are believed to have steep, approximately subvertical, dip angles

[ Gudmundsson and Nilsen, 2006 and references therein].

Shallow Magma Chamber

Figure 3.7. Schematic diagram for inward- and outward-dipping ring faults located above a
shallow magma chamber/melt lens. The ring faults are cone shaped in three dimensions. Dashed
lines indicate that the ring faults may terminate below the surface.

Ring faults and collapse calderas have been studied in detail through analytical and numerical
models [e.g., Anderson, 1936; Druitt and Sparks, 1984; Burov and Guillou-Frottier, 2003; Folch
and Marti, 2004; Gray and Monaghan, 2004; Gudmundsson, 1988, 1998, 2007; 2008; 4.
Gudmundsson et al., 1997; Roche and Druitt, 2001; Pinel and Jaupart, 2005; Gudmundsson and
Nilsen, 2006; Hardy, 2008; Kinvig et al., 2009; Kusumoto and Gudmundsson, 2009; Marti et al.,

2009; Holohan et al., 2011; Pinel, 2011], as well as analog models [e.g., Marti et al., 1994,
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2008; Acocella et al., 2000; Roche et al., 2000, 2001; Troll et al., 2002; Kennedy et al., 2004;
Holohan et al., 2005, 2008; Aizawa et al., 2006; Geyer et al., 2006; Acocella, 2006, 2007, 2008;
Walter, 2008; Burchardt and Walter, 2010; Howard, 2010]. Although each type of modeling has
its own assumptions, simplifications and limitations, together they provide insight into how ring-
fault structures develop and evolve. Numerical models indicate that sill-like magma chambers
are a requirement for the formation of inward-dipping ring faults, in addition to specific stress
conditions such as magma chamber underpressure or overpressure, extension or regional doming
[Marti et al., 2008 and references therein]. As described below, analog models of caldera
collapse and dome resurgence suggest that slip on outward- and inward-dipping ring faults is

triggered by the deflation and inflation of shallow magma chambers.

In general, analog models suggest that the caldera collapse process can be described by four
stages of progressive subsidence [Acocella, 2006]. During the first stage, the surface gently
subsides as the deflation of a shallow magma chamber results in the upward propagation of
outward-dipping reverse ring faults. In the second stage, well-defined caldera fault scarps form
when the reverse ring faults reach the surface. The outer rim of the caldera moves outwards as
additional subsidence produces multiple sets of reverse ring faults that become progressively
steeper. In the third stage, the outer periphery of the reverse ring faults tilts inward due the
upward propagation of steep, inward-dipping, normal ring faults. Finally, in the last stage, two
nested collapse structures are produced when the normal ring faults reach the surface and begin
to accommodate the majority of later subsidence. Dome resurgence following caldera collapse
reverses the kinematics of pre-existing ring faults such that magma chamber inflation following

deflation is accommodated by slip on inward-dipping, reverse ring faults and outward-dipping
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normal ring faults. In scaled analog models, the dips of ring faults produced during caldera
collapse vary as a function of depth. In Roche et al. [2000], both the outward-dipping reverse
ring faults and the inward-dipping normal ring faults are subvertical at depth and more shallowly
dipping near the surface. Depending on the aspect ratio of the roof (thickness/width) for a given
model, the dips of the reverse faults range from ~45° to ~85°, and the dips of the normal faults

vary from ~50° to ~65° at the surface.

Dip-slip motion on ring-faults can produce vertical-CLVD earthquakes with source parameters
that depend on the geometry and kinematics of the ring fault, as well as the scale and speed of
rupture. Slip on curved normal faults can produce vertical-P earthquakes, whereas slip on curved
reverse ring faults can produce vertical-T earthquakes [Ekstrom, 1994]. Below, we model the
moment tensors of theoretical ring-faulting earthquakes in order to determine how ring fault
geometry and rupture extent influence earthquake size, the magnitude of the non-double-couple
component and the plunge of the dominant principal stress axis. We explore reasons that ring-
faulting earthquakes might have longer source processes than tectonic earthquakes, and evaluate
the ring-faulting model using the observations of vertical-CLVD earthquakes presented in

Chapter 2 and Section 3.2.

Because long-period seismic radiation patterns only depend on the final distribution of slip along
a fault, we approximate the moment tensors of reverse and normal ring-faulting earthquakes by
summing the contributions of moment tensors for planar faults with constant dip and smoothly
varying strike angles, similar to the approach taken by Ekstrom [1994]. We fix the rake to £90°

and, for constant dip angles ranging from 45° to 90°, we vary the strike angles from 0° to 360° to
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simulate earthquakes rupturing different arc angles of a conical ring fault. We calculate
hypothetical moment tensors following Box 4.4 of Aki and Richards [2002]. For each

combination of ring-fault dip and arc angle, we calculate the value of &, the plunge of the

dominant pressure or tension axis, and the normalized scalar moment, which is the ratio between
the scalar moment of the composite moment tensor and the sum of the scalar moments for
individual subfaults. Variations of these three parameters with arc and dip angle are plotted in
Figure 3.8. Except for vertically symmetric sources, which are produced when the entire arc of
the ring fault is ruptured in a single earthquake, small-amplitude SH and Love waves will be

generated, as observed for our dataset of vertical-CLVD earthquakes.

We find that the value of |¢ is largely controlled by the arc angle of the ring fault. Earthquakes
that rupture small portions of the ring fault are approximately double-couple and, in general,
earthquakes that rupture greater arc angles have higher non-double-couple components.
However, for ruptures extending past ~180° of arc, the non-double-couple component does not
always increase with arc angle. The plunge of the dominant principal stress axis for a ring-
faulting earthquake is largely controlled by the dip angle of the ring fault. For equal arc angles,
earthquakes on more steeply dipping ring faults have dominant principal stress axes with
shallower plunges. Earthquakes that rupture the entire circumference of a ring fault are pure

vertical-CLVD events with € = +0.5 and vertical pressure or tension axes.
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Figure 3.8. Source parameters for the composite radiation patterns resulting from different slip
distributions along cone-shaped ring faults. Ring-fault dip is plotted on the y-axis and the
ruptured arc angle on the x-axis. All simulated earthquakes are pure dip-slip events. The top
panel shows |g|, which represents the strength of the non-double-couple component of the
composite moment tensor. The middle panel shows the plunge of the dominant principal stress
axis. The bottom panel shows the normalized scalar moment, which is the ratio between the
scalar moment for the composite moment tensor and the sum of the scalar moments for
individual subfaults.

As demonstrated in the bottom panel of Figure 3.8, dip-slip motion on ring-fault structures also
results in the partial cancellation of seismically radiated long-period moment [Ekstrom, 1994].
For some combinations of dip and arc angle, the sum of the scalar moments (product of shear
modulus, fault area, and displacement) resulting from slip on individual subfaults will be larger
than the scalar moment of the composite moment tensor determined by CMT analysis. As a
consequence, the actual displacement during a ring-faulting earthquake will also be larger than
expected from empirical relationships between average displacement and My like those
developed by Wells and Coppersmith [1994]. In the end-member case, slip on a cylindrical fault
surface will not produce any long-period seismic radiation. Ekstrom [1994] suggests that the
partial cancellation of long-period seismic moment resulting from slip on ring-fault structures

could explain why vertical-T earthquakes near Smith Rock volcano are associated with

disproportionately large tsunamis.

If we consider a ring fault circumscribing a conical crustal block, four distinctly different
moment tensors can be produced for the same combination of dip and arc angles, depending on
whether the ring fault dips inward or outward, and whether the central crustal block moves up or
down relative to the rest of the volcano. In Figure 3.9, we show composite moment tensors for

earthquakes generated by dip-slip motion along the same 120° of arc for ring faults dipping 65°.
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Following the convention of Aki and Richards [2002], in which the fault dips down to the right
of the strike direction, we use strike angles varying between 0° and 120° for inward-dipping ring
faults, and strike angles varying between 180° and 300° for outward-dipping ring faults. We set

the rake to £90° to simulate pure normal and reverse ring-faulting earthquakes.

Inward-Dipping Normal Ring Fault Outward-Dipping Normal Ring Fault
Strike: 0-120° Dip: 65° Rake: -90° Strike: 180-300° Dip: 65° Rake: -90°
£ ~
+ k)
. '
DOWN - uP -
| ] ] i [ ]
r hJ r
“.. ;“" "t i“"
Inward-Dipping Reverse Ring Fault Outward-Dipping Reverse Ring Fault
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Figure 3.9. A comparison of the composite moment tensors that result from dip-slip motion
along a fixed arc segment. In each quadrant, we plot a schematic indicating the direction of the
ring fault (inward or outward) and the relative motion of the central crustal block (up or down) as
well as the matching focal mechanism. Details of the fault parameters are listed at the top of each
quadrant.
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As illustrated in Figure 3.9, for cases in which the ring fault is inward-dipping and the crustal
block moves downward, either due to the deflation of an underlying magma chamber or the
inflation of an overlying magma chamber, vertical-P earthquakes are produced. Vertical-T
earthquakes are produced if the kinematics are reversed and the crustal block moves upward due
to the inflation of an underlying magma chamber. Similarly, the upward motion of an outward-
dipping crustal block can produce vertical-P earthquakes, whereas the downward motion of the
crustal block produces vertical-T earthquakes. For inward-dipping ring faults, the azimuth of the
dominant principal stress axis bisects the ring fault slip distribution, whereas for outward-dipping
ring faults, the midpoint of the ruptured arc segment is offset by 180° from the azimuth of the

dominant principal stress axis.

With the expected behavior for ring-faulting earthquakes outlined above, we use our
observations of vertical-CLVD earthquakes to evaluate the ring-faulting mechanism. If vertical-
CLVD earthquakes are generated by slip on ring faults, deviatoric moment-tensor solutions
should contain information about the ring-fault geometry and the extent of rupture. In Figure
3.10, assuming that the rupture patterns can be approximated by uniform slip along a conical ring

fault as in Figure 3.8, we use the values of € and the plunges of the dominant principal stress

axes retrieved from the CMT solutions in Chapter 2 to plot estimated ring-fault dip and arc

angles. For most earthquakes, the values of € and the plunges of the pressure or tension axes
result in unique estimates of arc and dip angles. However, because the € patterns become

complicated for ruptures extending past 180° of arc, the source parameters for a small number of

earthquakes with |g] > 0.40 are consistent with several possible combinations of dip and arc
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angles. For these earthquakes, we prefer solutions with the smallest arc angles in order to be

consistent with the results for the majority of the other earthquakes.
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Figure 3.10. Application of the conical ring-faulting model from Figure 3.7 to the 86 vertical-
CLVD earthquakes from Chapter 2. We invert the values of |& and the plunges of the dominant
principal stress axes to obtain estimates of the dip and arc angles of ring faults. Green circles
represent vertical-P earthquakes and blue circles represent vertical-T earthquakes. Black lines
show contours of |¢ and dashed lines show contours of the plunge of the pressure or tension
axes.

Overall, we find that the source parameters of the 86 vertical-CLVD earthquakes identified in
Chapter 2 are consistent with slip along ~100°-250° of arc on ring faults that dip 45°-80°. The
vast majority of vertical-CLVD earthquakes cluster between arc angles of 100°-160° and dip

angles of 50°-70°, and we do not observe systematic differences between the ring-fault

parameters estimated for vertical-P and vertical-T earthquakes. In cases where multiple vertical-
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CLVD earthquakes are associated with the same volcano, we find that the estimated ring-fault
parameters are similar. For example, the 39 largest vertical-P earthquakes at Miyakejima have
CMT solutions that are consistent with slip along ~110°-125° of arc on ring faults dipping ~55°-
60°. The dip angles that we retrieve in Figure 3.10 are relatively shallow compared to the
subvertical dip angles observed for ring faults in nature and in analog models. In fact, slip on
subvertical ring faults should produce non-double-couple earthquakes with dominant principal
stress axes that plunge 45°-60°, and those earthquakes would not be considered vertical-CLVD
earthquakes according to our criteria, which require the plunge of the dominant principal stress
axis to be greater than 60°. We estimate that the uncertainties associated with the plunges of the

dominant stress axes are on the order of 5-10°, and the uncertainties associated with the & values

are ~0.05-0.10, which translates to uncertainties of ~30° in arc angle and ~10° in dip angle.

Some of the steepest estimates of ring-fault dip are retrieved for vertical-T earthquakes at Sierra
Negra and Rabaul, two volcanoes with known ring-fault structures. Although the estimates of
ring-fault dip obtained from our CMT solutions are reasonably consistent with geophysical
observations at these volcanoes, as outlined below, the relationships between vertical-CLVD

earthquakes and deformation is not clear.

Sierra Negra is a shield volcano with a large summit caldera located in the Galapagos Islands.
The interior of Sierra Negra’s caldera contains a 14-km-long sinuous ridge formed by a series of
repeating trapdoor-faulting events driven by magma accumulation in the volcano’s sill-like
magma chamber [Figure 3.11; Reynolds et al., 1995; Amelung et al., 2000; Jonsson et al., 2005;

Chadwick et al., 2006; Jonsson, 2009]. On 22 October 2005 at 23:40 UTC, an My 5.5 vertical-T
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earthquake took place at Sierra Negra, three hours prior to the start of an explosive and effusive
eruption sourced from the northern rim of the caldera [Geist et al., 2008]. Yun [2007] interpreted
InSAR data spanning the 2005 eruption to suggest that the precursory earthquake was generated
by uplift of the caldera floor along the sinuous ridge located along the southern and western rims
of the caldera. Vertical fault scarps measured along the sinuous ridge [Geist et al., 2008] support
this model (Figure 3.10). Although Yun [2007] modeled the earthquake as dip-slip motion along
a vertical fault, InNSAR and GPS data from several other trapdoor-faulting episodes that were not
followed by eruptions suggest that these events are generated by slip on curved, steeply inward-
dipping (~71°) thrust faults located along the southern and western rims of the caldera [Jonsson,

2009].

From our CMT analysis, the My 5.5 earthquake at Sierra Negra has an € value of 0.37 and a

tension axis that plunges 62°, which is consistent with dip-slip motion along ~220° of arc on a
ring fault dipping ~78° (Figures 3.9 and 3.10). As demonstrated in Figure 3.9, vertical-T focal
mechanisms are consistent with either the subsidence of a caldera block bounded by an outward-
dipping reverse ring fault, or uplift of a caldera block bounded by an inward-dipping reverse ring
fault. The latter scenario is similar to that suggested by Yun [2007]. However, if the vertical-T
earthquake took place on an inward-dipping reverse ring fault located along the southern and
western rims of the caldera, the tension axis should plunge to the southwest. According to our
CMT solution, which is A-quality and well constrained, the tension axis has an azimuth of 60°,
which is consistent with uplift along an inward-dipping reverse ring fault located along the
northern and eastern rims of the caldera, or subsidence along an outward-dipping reverse ring

fault located on the southern and western rims of the caldera.
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Sierra Negra
10/22/2005 20:34

M,, 5.5, € = 0.37

Tension Axis: Plunge 62°
Azimuth 60°

Figure 3.11. A map of the caldera of Sierra Negra volcano is plotted in the left panel. The
dashed line indicates the location of the initial fissure for the 2005 eruption and the black line
indicates the location of the vertical fault scarp reported in Geist et al. [2008]. Topography is
from the Shuttle Radar Topography Mission. The focal mechanism for the My 5.5 vertical-T
earthquake that occurred 3 hours prior to the start of the 2005 eruption is plotted on the right.
We note similar inconsistencies when we attempt to apply the ring-faulting model to four My
5.0 vertical-T earthquakes that took place at Rabaul between 1991 and 1996. Rabaul is a
pyroclastic shield volcano in Papua New Guinea that entered an explosive phase in September
1994 following a 23-year seismic crisis. At Rabaul, the locations of microearthquakes delineate a
steeply outward-dipping (~80°) elliptical ring fault extending to depths of 4-5 km [McKee et al.,
1984; Mori and McKee, 1987; Mori et al., 1989; Itikarai et al., 2008 as referenced in Johnson et

al., 2010]. The four vertical-T earthquakes from Rabaul have € values of 0.34-0.39 and tension

axes that plunge 63°-70°, which are consistent with dip-slip motion along ~170°-185° of arc
along a ring fault dipping ~68°-75°. The first two vertical-T earthquakes took place during a
period of caldera uplift prior to the 1994 eruption, which is a scenario that should produce

vertical-P earthquakes provided the uplift is accommodated by slip on the observed outward-
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dipping ring fault. As above, the vertical-T focal mechanisms for the Rabaul earthquakes are
consistent with subsidence of a caldera block bounded by an outward-dipping reverse ring fault
or uplift of a caldera block bounded by an inward-dipping reverse ring fault. If a shallow
magmatic or hydrothermal system was inflating before the 1994 eruption [McKee et al., 1984;
Mori and McKee, 1987; Geyer and Gottsman, 2010], it could have triggered subsidence along
the outward-dipping ring fault. The vertical-T earthquakes could also have been caused by slip

on antithetic inward-dipping ring-fault structures [Saunders, 2001, 2005].

As demonstrated in Section 3.2.1, vertical-CLVD earthquakes have slow source processes, and
there are several reasons ring-faulting earthquakes may have lower rupture velocities, and
therefore slower source processes, than standard tectonic earthquakes. The velocity of rupture
propagation during an earthquake is limited by the shear modulus of fault rocks. At volcanoes,
the effective shear modulus of near-surface, fractured basalt is significantly lower than
laboratory values [Rubin and Pollard, 1987], and as a result, the shear-wave velocity is lower
and the rupture velocity is slower. Volcanic earthquakes with low rupture velocities were
observed at Mt. St. Helens in association with the incremental extrusion of brittle rock spines
during the 2004 eruption [Harrington and Brodsky, 2007]. Additionally, the rupture velocity
along ring faults may be affected by unusual frictional and mechanical properties associated with
hydrothermal circulation, magmatic intrusions, and the effects of repeated collapse events.
Finally, ring faults may have complicated geometries composed of several approximately planar
fault segments instead of one smooth cone-shaped fault surface. Rupture velocity is known to

decrease near regions of slip transfer from one fault segment to the next [e.g., Wald and Heaton,
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1994]. Any combination of these factors could explain why vertical-CLVD earthquakes have

slower source processes than tectonic earthquakes.

In Chapter 2, we demonstrated that vertical-T earthquakes usually occur before volcanic
eruptions or the start of episodes of volcanic unrest, whereas vertical-P earthquakes occur after
the initiation of eruptive activity. Additionally, vertical-T earthquakes generally have shorter
source processes than vertical-P earthquakes. If vertical-CLVD earthquakes are generated by
dip-slip motion on ring faults, this may indicate that the inflation of shallow magma chambers
generates earthquakes with faster rupture velocities than post-eruption deflation processes.
Moderate-sized vertical-CLVD earthquakes are most commonly observed at basaltic and/or
andesitic volcanoes with caldera structures, which may indicate that both ring faults and low-

viscosity magmas are required to generate these events.

For equal dip and arc angles, the largest magnitude vertical-CLVD earthquakes are expected to
occur on ring faults with the largest dimensions, or in cases where rapid changes in the volume
of shallow magma chambers trigger large vertical displacements along ring-fault systems. The
fact that we do not observe any vertical-CLVD earthquakes with magnitudes over My 5.8 could
be due to the dimensions of ring faults at source volcanoes. Small calderas, and therefore small
ring faults, are formed at volcanoes located in Mariana-type subduction zones or in oceanic crust,
as well as at volcanoes that erupt tholeiite or alkaline magmas, which have low silica contents
[Sobradelo et al., 2010]. In Chapter 2, we found that moderate-sized vertical-CLVD earthquakes

most commonly occur at basaltic-to-andesitic stratovolcanoes and submarine volcanoes located
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in subduction zones, which suggests that vertical-CLVD earthquakes may be generated by dip-

slip motion on relatively small ring-fault structures.

The ring-faulting model can explain many characteristics of vertical-CLVD earthquakes,
including their anomalous radiation patterns and frequency contents, as well as their magnitudes.
However, it is difficult to relate the source parameters of vertical-CLVD earthquakes to specific
faulting scenarios, even in cases where the earthquakes occur at volcanoes where deformation
and the geometries of ring-fault systems are reasonably well constrained. If the deviatoric
moment-tensor solutions for vertical-CLVD earthquakes can be directly related to slip
distributions on ring faults, these structures must have shallower dips than expected from field
studies and analog models. On the other hand, if vertical-CLVD earthquakes are caused by slip
on steeply dipping ring faults, we must explain the discrepancies between expected and observed
source parameters. Small differences may be attributed to uncertainties in our CMT solutions.
Larger differences could be the result of complexity associated with the ring-fault geometry or
the rupture process. For example, the conical ring fault geometry and the £90° rake angles used
in Figures 3.8-3.10 may not be appropriate. These discrepancies may also be artifacts introduced
by the existence of unmodeled, non-zero isotropic components generated by the inflation or

deflation of shallow magma chambers. Below, we evaluate this possibility.

3.3.2. Fluid-Transport and Volumetric-Change Mechanisms
In volcano seismology, small earthquakes are routinely attributed to sources with net volume
changes. Common sources associated with magma or fluid transport include spherical isotropic

sources, opening or closing tensile cracks, and radially expanding or contracting cylinders
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[Figure 3.6; Chouet, 1996; Kawakatsu and Yamamoto, 2007, Kumagai, 2009]. Below, we
present the moment tensors for volume-change mechanisms of these end-member reservoir types
[Kawakatsu and Yamamoto, 2007]. In each case, AV is the stress-free volumetric strain that
characterizes the amount of fluid that is injected or withdrawn from the reservoir [4ki and
Richards, 2002]. Due to the confining pressure of the medium and the geometry of the reservoir,

the actual volume change of the reservoir, or Mogi volume AV,,, may be smaller than AV

[Richards and Kim, 2005; Kawakatsu and Yamamoto, 2007].

In standard spherical coordinates (7, 6, ¢), the moment tensor for a spherical reservoir is given

by:
A+—u 0 0
2
M., =AV 0 /l+§,u 0 , (3.15)
0 0 A+—U
where

AV, _A+(Q/3u

3.16
AV A+2uU (3.16)

The moment tensor corresponding to a horizontal tensile crack that opens or closes vertically is:

A+2u 0 0
=AV| O A 0]. (3.17)
0 A

crack —
0

In this case,

AV =AV =SAu, (3.18)
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where S is the crack area and Au is the crack opening or closing width.

The moment tensor corresponding to the radial expansion of a cylinder with a vertical symmetry

axis is:
A 0 0
Mcylinder = AV O )' + ;u“ O ’ (3 19)
0 0 A+u
where
% = “—‘u (3 20)
AV A+2u '

By applying a rotation matrix to Equations 3.17 and 3.19, we can obtain moment tensors for
tensile cracks or cylindrical sources of any orientation. As demonstrated by Kawakatsu and
Yamamoto [2007], the isotropic component of spherical sources, opening and closing tensile
cracks and radially expanding or contracting cylinders are all the same when expressed in terms

of AV:
1 2
I=§trace(M)=(l+§,u)AV=KAV (3.21)

where x is the bulk modulus, or incompressibility, of the surrounding medium.

Volume Exchange

When fluid is transported from one reservoir to another, perhaps due to asperity failure,
composite seismic sources are generated by the expansion and contraction of two reservoirs.
These volumetric sources have equal magnitude and opposite sign, so the composite moment

tensor is a pure CLVD with no net isotropic component. Depending on the orientations and types
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of the reservoirs, vertical-CLVD earthquakes can be produced by a mass or volume exchange
process. For example, pure vertical-P moment tensors can be produced by the transport of fluid
from a horizontal tensile crack into a vertical cylinder. Likewise, pure vertical-T moment tensors
can be produced by fluid flow from a vertical cylinder into a horizontal tensile crack [Chouet,
1996]. Vertical-CLVD moment tensors can also be produced by volume exchange between
reservoirs that are not perfectly spherical, cylindrical or planar. In these cases, the radiation
pattern of Rayleigh waves is not azimuthally isotropic and SH and Love waves are produced.
Theoretically, larger vertical-CLVD earthquakes should be produced when greater amounts of
mass or volume are exchanged between two reservoirs. Likewise, the frequency contents of the
earthquakes caused by mass or volume exchange processes should be influenced by the duration
of the exchange process, such that longer exchanges produce slower, lower-frequency

earthquakes.

A volume-exchange process has been investigated as a way to explain the My 5.6 vertical-T
earthquake that occurred in Iceland prior to a subglacial eruption between Bardarbunga and
Grimsvotn in September 1996. Tkalcié¢ et al. [2009] calculated a full moment-tensor solution for
this event using regional seismic data and found it to have a statistically insignificant isotropic
component, which they attempted to replicate using volume exchange between two magma
chambers separated by varying vertical distances. After calculating moment tensors for synthetic
data generated by various configurations of inflating and deflating magma chambers with full
volume compensation, Tkalci¢ et al. [2009] concluded that a mass exchange mechanism is likely
to result in a statistically significant observed isotropic component, even using long-period

seismic data. The volume exchange mechanism is unlikely to explain the Bardarbunga
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earthquake, and we consider it an unlikely mechanism to explain most vertical-CLVD
earthquakes because it requires very special conditions. Furthermore, as we discuss below, the
volumes of fluids and the rates of fluid flow that would be required to generate vertical-CLVD
earthquakes with the observed magnitudes and source durations are extremely large. Below, we

consider mechanisms that do not require volume compensation.

Tensile Cracks

In volcanic and geothermal areas, at depths of up to several km, high fluid pressure can force
open tensile cracks. As illustrated in Figure 3.6, the opening and closing of subhorizontal tensile
cracks can produce earthquakes with deviatoric vertical-CLVD moment tensors. Horizontal
tensile cracks have seismic radiation patterns with several unusual characteristics. In addition to
having first motions that are all up or down, depending on whether the crack is opening or
closing, horizontal tensile cracks radiate Rayleigh waves with equal amplitude in all directions
and they do not excite SH or Love waves. Small amplitude SH and Love waves can be produced
by tensile cracks that are not perfectly horizontal, but which are tilted slightly, so a tensile-crack
mechanism could explain the anomalous seismic radiation patterns of vertical-CLVD

earthquakes.

The observation that most vertical-T earthquakes occur before volcanic eruptions is consistent
with the idea that the opening of subhorizontal tensile cracks may generate earthquakes with
deviatoric vertical-T moment tensors. Likewise, the observation that most vertical-P earthquakes
occur after the start of volcanic unrest is consistent with the idea that the closing of subhorizontal

tensile cracks may generate earthquakes with deviatoric vertical-P moment tensors. However, if
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vertical-CLVD earthquakes can be explained by such a mechanism, the process of opening
subhorizontal tensile cracks must be faster than the process of closing them in order to explain
our observation that vertical-P earthquakes have longer source durations than vertical-T
earthquakes. Below, we evaluate this mechanism by considering the volumes of fluid injection or
withdrawal and the propagation velocities of tensile cracks that are required to generate the

vertical-CLVD earthquakes reported in Chapter 2.

The magnitude of an earthquake generated by the opening or closing of a tensile crack is
dependent on the elastic properties of the surrounding matrix and the volume of emplaced fluid.
Using the range of scalar moments from the CMT solutions in Chapter 2, 3.8 x 10" Nm — 6.5 x
10" Nm, we can estimate the fluid volumes that would be required to match our observations.
We calculate the Mogi volumes and tensile-crack dimensions using Equations 3.17 and 3.18,
assuming that 62.5% of the scalar moment is due to the isotropic component and 37.5% is due to

the deviatoric remainder as in Equations 3.12-3.14. Assuming 1= g = 3.0 x 10'* N/m’, vertical-

CLVD earthquakes are consistent with subhorizontal tensile cracks with volume changes ranging
from ~5 x 10* m’ to ~8 x 10° m’. These volumes are equivalent to the opening or closing of
square tensile cracks with side lengths of ~200 m to ~ 3 km and widths of 1 m. These estimates

will be larger for smaller values of A.

Generally, it is assumed that fluid-driven tensile cracks cannot propagate faster than the fluid can
flow following the crack tip. The propagation velocity of fluid-driven tensile cracks is therefore
limited by the crack width and the fluid viscosity, among other factors. Typical dike propagation

velocities range from 0.01 to 10 m/s [Rubin, 1995], which is far too slow to radiate seismic
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waves. Tensile cracks driven by hydrothermal fluids, however, can propagate fast enough to
generate seismic waves [Miller et al., 1998b Ross et al., 1999; Foulger et al., 2004]. Mechanisms
involving the opening of tensile cracks due to the rapid injection of high-pressure, non-magmatic
fluids have been used to explain several My > 4.5 earthquakes, including CLVD events at Long
Valley Caldera [Dreger et al., 2000; Templeton and Dreger, 2006; Minson and Dreger, 2008],
the Mw 5.6 vertical-T earthquake that occurred in Iceland in September 1996 before a subglacial
eruption between Bardarbunga and Grimsvotn [Konstantinou et al., 2003], and the My 5.6
vertical-T earthquake that generated a disproportionately large tsunami near Smith Rock in Japan

in 1984 [Kanamori et al., 1993].

Under certain conditions, it may be possible for tensile cracks to propagate ahead of the driving
fluid at elastic wave speeds, generating earthquakes. It has been suggested that tensile cracks
may propagate unstably as they approach the free surface or other tensile cracks, and when they
initially propagate outwards from magma chambers [Sammis and Julian, 1987]. Three My 5-6
CLVD earthquakes at Long Valley caldera in 1980 have been attributed to dike propagation
[Julian, 1983; Aki, 1984; Julian and Sipkin, 1985], although this interpretation is controversial.
The data can also be explained using a composite faulting model consisting of normal and strike-
slip subfaults [Ekstrom and Dziewonski, 1983]. Given that vertical-T earthquakes have source
dimensions of at least several hundred meters and source time functions ranging from a few
seconds to a few tens of seconds, our observations require propagation velocities of at least ~100
m/s. Some special condition would be required to allow faster-than-normal crack propagation in

order to explain vertical-T earthquakes by the opening of magma-filled tensile cracks.
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Although fluid-driven tensile cracks can open rapidly, they are generally expected to close
slowly and not radiate seismic waves [Julian et al., 1998]. At mines, however, the sudden
collapse of cavities has produced earthquakes with full moment tensors that closely resemble
closing horizontal tensile cracks [Pechmann et al., 1995; Bowers and Walter, 2002; Ford et al.,
2008; Pechmann et al., 2008], some with magnitudes up to M~5 [Knoll, 1990; Pechmann et al.,
1995; Gibowicz and Lasocki, 2001]. At shallow depths, a moment tensor representing a closing
horizontal tensile crack [Day and McLaughlin, 1991; Bowers and Walter, 2002] produces
approximately the same waveforms as a single vertical force representing the downward motion
of a crustal block [Taylor, 1994]. Below, we consider this mechanism for the special case of

caldera collapse.

In Chapter 2, we describe 43 vertical-P earthquakes that took place at Miyakejima volcano.
These earthquakes occurred between 7 July and 18 August 2000, and were associated with the
~40-day incremental collapse of the summit caldera, which began ~12 days after the start of a
massive submarine dike intrusion between the volcano and Kozushima and Niijima islands.
During most discrete collapse episodes, the downward motion of the caldera block produced
very-long-period (VLP) earthquakes with deviatoric vertical-P moment tensors, and
simultaneous outward tilt-steps [Kikuchi et al., 2001; Kumagai et al., 2001; Ukawa et al., 2000;
Yamamoto et al., 2001]. There is a strong correlation between the caldera volume changes, the
magnitudes of VLP earthquakes, and the amplitude of tilt-steps produced during individual
caldera collapse episodes [Michon et al., 2011]. Together the 43 vertical-P earthquakes have a

combined scalar moment of ~5.1 x 10'® Nm. Assuming A= u=3.0 x 10'® N/m?, these

earthquakes are consistent with a closing subhorizontal tensile crack with a combined volume of
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~6.4 x 10’ m’. The final volume of the Miyakejima’s caldera is ~6 x 10° m’ [Geshi et al., 2002;
Nakada et al., 2005], so our estimate would represent only ~10% of the total volume change.
However, this estimate is only based on collapse episodes that produced VLP signals, and does

not include the initial and largest collapse episode that took place on 8 July. Given that A may be

significantly lower than 3.0 x 10" N/m® in volcanic environments [Rubin and Pollard, 1987], it
is possible that a source model resembling a closing subhorizontal tensile crack or downward
single force could explain some characteristics of the Miyakejima earthquakes, and perhaps other

shallow vertical-P earthquakes as well.

The opening and closing of tensile cracks is a physical mechanism that is most plausible for
small earthquakes with depths in the upper few hundred meters of the crust. Due to overburden
pressures, sizable voids cannot exist at depths greater than ~1 km, and high fluid pressures are
required to open tensile cracks at greater depths [Rubin, 1995]. From teleseismic body-wave
modeling, we know that some vertical-CLVD earthquakes have focal depths of ~4-8 km. Given
the magnitudes, depths and source durations of the vertical-CLVD earthquakes, we consider the

opening and closing of tensile cracks to be an unlikely physical mechanism for most events.

Volumetric Changes

Rapid volume changes can also produce seismic signals with deviatoric vertical-CLVD moment
tensors. If the deforming reservoir has a sill-like or oblate ellipsoidal shape, the seismic radiation
pattern will resemble a subhorizontal tensile crack [Davis, 1986; Fialko et al., 2001; Amoruso
and Crescentini, 2009]. We consider the rapid expansion or contraction of a sill-like magma

chamber due to the injection of withdrawal of magma to be an unlikely mechanism for most
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vertical-CLVD earthquakes due to the large magma volume fluxes that would be required to
explain the observed magnitudes and source durations. For example, the My 5.8 vertical-T
earthquake that took place in the Kermadec Islands on 17 February 2009 has a source duration of
~8 s (Table 3.1). A volume change of ~8 x 10° m® and, therefore, a magma volume flux of ~1 x
10° m’/s, would be required to explain this earthquake using a physical mechanism consisting of
an opening tensile crack. This estimate for the magma volume flux exceeds the estimated mass
eruption rates for Pinatubo and Tambora [Self, 2012] and several flood-basalt eruptions [Self et
al., 1998]. It is possible that some vertical-CLVD earthquakes are generated by volumetric
changes of sill-like reservoirs filled with non-magmatic fluids. High-pressure hydrothermal
fluids such as water or carbon dioxide have lower viscosities that would be consistent with faster
volume fluxes. However, it is not clear why the injection or withdrawal of hydrothermal fluids
should occur preferentially at volcanoes with low silica contents, or at volcanoes with caldera

structures.

If the deforming reservoir is spherical, rapid volume changes can produce seismic signals that
resemble spherical isotropic sources. As illustrated in Figure 3.6, vertical-P earthquakes may be
consistent with sources that are predominantly explosive, whereas vertical-T earthquakes may be
consistent with sources that are predominantly implosive. Just as we estimated the volume
changes for tensile cracks, we can also estimate the isotropic volume changes that would be
required to generate vertical-CLVD earthquakes with our observed scalar moments. As above,
we use the minimum and maximum scalar moments, 3.8 x 10" Nm — 6.5 x 10'" Nm, and

calculate the Mogi volume changes using Equations 3.15 and 3.16 assuming A= = 3.0 x 10"

N/m”. The magnitudes of our vertical-CLVD earthquakes are consistent with spherical sources



157

with Mogi volumes ranging from ~4 x 10* m’ to ~7 x 10° m?, which is equivalent to spheres with
radii between ~20 m and ~120 m. To explain the frequency content of our vertical-CLVD
earthquakes, implosive processes would have to be faster than explosive processes. Since we
believe it is unlikely that implosive processes would precede volcanic eruptions and explosive
processes follow, we consider spherical isotropic source mechanisms unlikely to explain vertical-

CLVD earthquakes.

3.4. Conclusions

Moderate-sized vertical-CLVD earthquakes are some of the most anomalous earthquakes to
occur in volcanic systems. In Chapter 2, and Nettles and Ekstrom [1998] and Shuler and Ekstrom
[2009], we identified 101 shallow vertical-CLVD earthquakes that occurred near active
volcanoes. The majority of vertical-CLVD earthquakes are associated with basaltic and/or
andesitic stratovolcanoes and submarine volcanoes located in subduction zones, although a small
number of vertical-CLVD earthquakes are located in continental rifts, in areas of hotspot
volcanism, and along mid-ocean ridges. Approximately 70% of vertical-CLVD earthquakes
occur during episodes of volcanic unrest at nearby volcanoes, which suggests that these events
are closely related to magma migration and eruption processes. Vertical-P earthquakes occur
after the start of volcanic eruptions or episodes of unrest, whereas vertical-T earthquakes

generally occur before volcanic eruptions.

In this study, we performed additional analysis of the teleseismic body waves of 5.1 < Mw < 5.8

vertical-CLVD earthquakes and determined that these earthquakes have longer source durations

than tectonic earthquakes of the same magnitude. We find that vertical-CLVD earthquakes from
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the GCMT catalog have source durations up to ~10 s. We are unable to model any vertical-
CLVD earthquakes detected only by analysis of surface waves [Ekstrom, 2006], but the inferred
frequency contents of these earthquakes suggest that they have even longer source durations, up
to approximately one minute. Most vertical-CLVD earthquakes identified originally from the
GCMT catalog are vertical-T events and most vertical-CLVD earthquakes from the Surface
Wave catalog are vertical-P events, leading us to infer that vertical-P earthquakes may have
slower source processes than vertical-T events. Currently, it is unknown whether both types of
vertical-CLVD earthquakes have a range of source durations extending from a few seconds to a
few tens of seconds, or whether vertical-T and vertical-P earthquakes are produced by slightly

different physical mechanisms that result in different frequency contents and source durations.

We also explored the possibility that the vertical-CLVD earthquakes may have significant non-
zero isotropic components generated by net volume changes. We examined the covariance
matrix of one of the best-recorded vertical-CLVD earthquakes to illustrate that, even for large
earthquakes with excellent data coverage, there is a tradeoff between the isotropic and pure
vertical-CLVD components of the moment tensor. As a result, many physical mechanisms can
produce earthquakes with deviatoric vertical-CLVD moment tensors, including slip on ring
faults, volume exchange between two reservoirs, the opening and closing of tensile cracks and

volumetric changes.

We evaluated proposed physical mechanisms using additional constraints obtained from our
detailed studies of vertical-CLVD earthquakes, and found that no single physical mechanism

could explain all of our observations. In general, physical mechanisms involving only fluid



159

transport or volumetric changes seem unlikely to explain most vertical-CLVD earthquakes.
Mechanisms involving isotropic volumetric changes cannot explain the temporal relationships
between vertical-CLVD earthquakes and volcanic eruptions. Likewise, the source durations of
vertical-CLVD earthquakes preclude mechanisms involving magma transport through tensile
cracks. Even for basaltic or andesitic magmas, which have relatively low viscosities, the
propagation velocities and volume fluxes required to explain our observations are physically
implausible. It is possible that some vertical-CLVD earthquakes are caused by tensile cracks
filled with less viscous hydrothermal fluids, such as water or carbon dioxide, although it is not
clear why this mechanism should occur preferentially at basaltic stratovolcanoes and submarine
volcanoes. In the special circumstance of caldera collapse, a mechanism resembling the closing

of a subhorizontal tensile crack may explain the occurrence of vertical-CLVD earthquakes.

Ring-faulting mechanisms can explain many characteristics of vertical-CLVD earthquakes,
including their anomalous seismic radiation patterns and source durations. The partial
cancellation of long-period seismic moment that results from slip on curved fault structures can
also explain why vertical-CLVD earthquakes near Smith Rock volcano are associated with
disproportionately large tsunamis. Most vertical-CLVD earthquakes are associated with basaltic-
to-andesitic volcanoes with calderas that are located in oceanic island arcs. Calderas with small
dimensions, and therefore ring faults with small dimensions, are preferentially observed at
volcanoes in these environments [Sobradelo et al., 2010], and basaltic volcanoes erupt more
frequently than silicic volcanoes [ White et al., 2006]. The geodynamic environments of the

source volcanoes may thus explain why we have observed ~75 vertical-CLVD earthquakes with
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My > 5.0 in the last ~35 years, yet we have not observed any vertical-CLVD earthquakes larger

than Mw 5.8.

It remains difficult to interpret the deviatoric moment tensors of vertical-CLVD earthquakes in
terms of specific ring-faulting scenarios. At Sierra Negra and Rabaul, two volcanoes with known
ring faults, the patterns of ring-fault slip suggested by our deviatoric moment tensors do not
match inferences from geodetic studies. Additionally, the plunges of the dominant stress axes

and the ¢ values for vertical-CLVD earthquakes in Chapter 2 are consistent with ring faults with

dip angles of ~50°-70°, though observations from field geology and models of caldera collapse
suggest that ring faults are subvertical. These discrepancies cannot be explained by uncertainties

in the CMT solutions alone.

The dip angles of volcano ring faults are not well constrained. Field studies of active calderas
cannot constrain deep structures, and it is not clear that the surface expressions of ring faults are
representative of deeper seismogenic zones. Similarly, the inferred geometries of ring faults
outlined by microseismicity are dependent on local velocity models and seismic station
distributions. Additionally, numerical and analog models of caldera collapse are simplified, and
in most cases, the effects of heterogeneity, pre-existing faults, and magma intrusion and
extrusion are not considered. Such factors may influence the stress field and affect the dip angles
of the volcano ring faults. More work will be required to evaluate whether active volcanoes may

have ring faults with shallower dip angles, consistent with our seismological observations.
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Alternatively, vertical-CLVD earthquakes may be generated by a mechanism that is a hybrid of
ring faulting and fluid flow. If dip-slip motion on ring faults is triggered by the inflation or
deflation of a shallow magma chamber, rapid volume changes might contribute to the seismic
wavefield and the recovered moment tensors. The tradeoff between the isotropic and pure
vertical-CLVD components in CMT analysis means that, if we combine the moment tensors
resulting from dip-slip motion on a steeply inward-dipping ring fault and either a closing tensile

crack or an implosion, the composite moment tensor will fall close to the line in k-€ space that

represents our solution space (Figure 3.6). If contributions from the isotropic component
influence the deviatoric moment tensors we retrieve for vertical-CLVD earthquakes generated by
ring faulting, it may not be possible to interpret the plunges and azimuths of the dominant stress

axes and the € values in terms of patterns of ring-fault slip without additional constraints.

Despite these ambiguities, it is clear that vertical-CLVD earthquakes are generated by large-scale
deformation occurring inside the edifices and magmatic plumbing systems of active volcanoes.
Vertical-T earthquakes are likely caused by inflation processes leading up to volcanic eruptions,
whereas vertical-P earthquakes are likely caused by deflation processes that begin after the start
of volcanic unrest. However, before vertical-CLVD earthquakes can be interpreted in terms of
specific deformation processes at source volcanoes, it will be necessary to use other types of
geophysical data, such as data from local seismic and GPS networks and interferograms, to
constrain the precise physical mechanisms that generate vertical-CLVD earthquakes at individual

volcanoes.
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Concluding Remarks

In this dissertation, we investigated a rarely observed and poorly understood type of earthquake
associated with volcanic centers. Using openly accessible global seismic data and two seismicity
catalogs from the Global CMT Project, we were able to identify 91 shallow vertical-CLVD
earthquakes located near volcanoes. By studying the source parameters and characteristics of
these earthquakes, as well as their temporal relationships to volcanic unrest, we were able to gain
insight into how these events are linked to deformation occurring inside the edifices or magmatic
plumbing systems of active volcanoes. Below, we summarize our major findings by chapter and

discuss a number of outstanding research questions.

In Chapter 1, we examined a series of five earthquakes that took place near Nyiragongo volcano
in the Democratic Republic of the Congo between 2002 and 2005. Compared to tectonic
earthquakes with similar magnitudes and locations, we find that these earthquakes are depleted in
high-frequency energy, which prevented them from being detected using traditional methods.
We find that each earthquake can be modeled using a time-varying force model consisting of an
upward force followed by a downward force, which is typical for a collapse event. However,
unrealistically large vertical forces are required to generate seismic events with the observed
magnitudes. We find that better fits to the data can be achieved with vertical-P moment tensors.
The first three earthquakes occurred days after a regional rifting episode ruptured the edifice of
the volcano, resulting in a fissure eruption that inundated the city of Goma, ~20 km away. Hours
after these three earthquakes, the summit crater collapsed ~600 m. We interpret these events as
slip on inward-dipping ring faults triggered by the deflation of an underlying shallow magma

chamber. The final two earthquakes took place one and three years later, respectively, when the
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lava lake in Nyiragongo’s summit crater was refilling. These events can be explained using a
similar mechanism, in which magma ascent into shallow levels of the magmatic plumbing
system triggers the collapse of a deeper magma reservoir. Depending on the size and geometry of
the ring faults, displacements on the order of centimeters to meters are required to generate the

observed vertical-P earthquakes.

In Chapter 2, we performed a systematic global search for shallow vertical-CLVD earthquakes
located near volcanoes with documented eruptions in the last ~100 years. Of the nearly 400
target earthquakes investigated from the Global CMT catalog and the Surface Wave catalog of
Ekstrom [2006], we identified 86 earthquakes with robust vertical-CLVD focal mechanisms. All
of these earthquakes have shallow depths, and ~80% are located within 30 km of a volcano. The
majority of vertical-CLVD earthquakes are associated with stratovolcanoes and submarine
volcanoes in subduction zones, although a small number of events are associated with volcanoes
located in continental rifts, along mid-ocean ridges, and above mantle plumes. Vertical-CLVD
earthquakes occur preferentially at volcanoes with caldera structures, and at volcanoes that erupt

magmas with low silica contents.

Half of all vertical-CLVD earthquakes are associated with caldera collapse at Miyakejima in
2000, and another 20% are associated with documented episodes of unrest at other volcanoes.
Vertical-CLVD earthquakes are associated with effusive and explosive eruptions as well as
anomalous tsunamis and submarine seismic swarms. Vertical-P earthquakes occur hours to years
after the start of volcanic unrest, and vertical-T earthquakes occur before and after the start of

eruptive activity. Our results suggest that vertical-P earthquakes may be useful for identifying
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volcanoes where eruptions or large-scale magmatic intrusions have recently occurred, whereas
vertical-T earthquakes may signal that a particular volcano is likely to erupt in the future. Given
that volcanic unrest is underreported, we suspect that most vertical-CLVD earthquakes are
related to some type of volcanic unrest. We observe series of vertical-T earthquakes at
Zavodovski and an Unnamed volcano in the Tonga Islands. These volcanoes have no confirmed
eruptions in the last ~80-200 years, but we suspect that the earthquakes may be indicative of
magma ascent and increased potential for future eruptions, as at Bardarbunga [Nettles and

Ekstrom, 1998].

In Chapter 3, we explored the physical mechanisms that generate vertical-CLVD earthquakes at
active volcanoes. In order to obtain further constraints on source processes, we performed
several types of additional analysis. We attempted to model the body waves for the largest
vertical-CLVD earthquakes and found we were only able to model 18 earthquakes, all of which
are reported in the Global CMT catalog. These vertical-CLVD earthquakes have source
durations of up to ~10 seconds, longer than tectonic earthquakes of the same magnitude.
Vertical-CLVD earthquakes from the Surface Wave catalog likely have even longer source
processes as they are depleted in high-frequency energy. As most vertical-T earthquakes are
included in the Global CMT catalog and most vertical-P earthquakes are reported only in the
Surface Wave catalog, we can infer that, on average, vertical-T earthquakes have faster source
processes than vertical-P earthquakes. It is not clear why these two types of vertical-CLVD

earthquakes have different frequency contents and source durations.
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Additionally, we examined the magnitude distributions of vertical-CLVD earthquakes, and found
that vertical-CLVD earthquakes do not follow the Gutenberg-Richter frequency-magnitude
distribution with the global average b-value of 1.0. Whereas we have documented ~75

earthquakes with My 2 5.0, there are no reported cases of volcanic vertical-CLVD earthquakes

larger than My 5.8. This may indicate that there is a limiting factor on the source size for these

earthquakes.

In Chapters 1 and 2, we defined vertical-CLVD earthquakes by the properties of their deviatoric
moment tensors. However, as earthquakes with significant isotropic components have been
observed in volcanic regions, we explored the possibility that vertical-CLVD earthquakes may
have net volume changes. Through an examination of the covariance matrix for one of the best-
recorded vertical-CLVD earthquakes, we confirmed that the isotropic and pure vertical-CLVD
components cannot be independently resolved using long-period seismic data. Full moment-
tensor solutions for vertical-CLVD earthquakes further demonstrated the tradeoff between
isotropic and vertical-CLVD components, revealing that several different physical mechanisms
can account for the anomalous seismic radiation patterns of vertical-CLVD earthquakes. We
evaluated a range of potential physical mechanisms including dip-slip motion along ring faults,
volume-exchange processes, opening and closing of tensile cracks and volumetric sources. Of
these, only the ring-faulting mechanism can explain the observed source durations (~60 s or less)

and the temporal relationships between vertical-CLVD earthquakes and volcanic unrest.

Ring faults are curved dip-slip faults that form as a result of inflation and deflation of shallow

magma chambers. Motion along ring faults can produce vertical-CLVD earthquakes with source
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parameters that depend on the geometry and kinematics of the ring fault, as well as the scale of
rupture. Vertical-T earthquakes are caused by slip on curved reverse faults, and vertical-P
earthquakes are caused by slip on curved normal faults. The magnitude of the non-double-couple
component, the plunge of the dominant stress axis and the cancellation of long-period seismic
moment are influenced by the dip angle of the ring fault and the arc angle of rupture. The rupture
velocity along ring faults may be affected by unusual frictional and mechanical properties

associated with nearby high-temperature magma bodies or hydrothermal fluids.

The ring-faulting model can explain many characteristics of vertical-CLVD earthquakes,
including their anomalous seismic radiation patterns and frequency contents, and their temporal
relationship to volcanic unrest. According to Sobradelo et al. [2010], the smallest calderas, and
therefore the smallest ring faults, are formed at volcanoes that erupt magmas with low-silica
contents, and at volcanoes located in oceanic crust or in Mariana-type subduction zones. Most of
the source volcanoes for vertical-CLVD earthquakes meet these conditions, and this could

explain why we do not observe My > 6.0 vertical-CLVD earthquakes.

The ring-faulting model cannot explain all of our observations, however. For example, it is
difficult to interpret the source parameters of vertical-CLVD earthquakes directly in terms of
specific faulting patterns. The deviatoric CMT solutions for vertical-CLVD earthquakes are
consistent with slip on ring-fault structures dipping ~50-70°, whereas field geology studies, as
well as analog and numerical models of caldera collapse suggest that most ring faults are
subvertical. Also, as demonstrated for Sierra Negra and Rabaul, the source parameters of some

vertical-CLVD earthquakes also appear inconsistent with geological and geophysical
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observations of deformation. These differences cannot be explained by uncertainties in our CMT

solutions.

If vertical-CLVD earthquakes are caused solely by slip on ring faults, our results suggest that
these structures may be less steep than expected from field geology and modeling of caldera
collapse. This possibility cannot be ruled out, as the dip angles of ring faults are poorly
constrained. At active volcanoes, ring faults are often covered by lava and pyroclastic flows or
crater lakes, and deep structures cannot be observed at the surface. Likewise, the dip angles of
ring faults determined from microseismicity structures are dependent on the chosen velocity
model and the azimuthal distribution of local seismic stations. Analog and numerical models are
often oversimplified, and do not consider the effects of magma intrusion and extrusion,
heterogeneity and pre-existing structures. Better constraints on the dip angles of ring faults

would allow us to assess the ring-faulting model more thoroughly.

Alternatively, vertical-CLVD earthquakes may be generated by a mechanism that is a hybrid of
ring faulting and fluid flow. If dip-slip motion on ring faults is triggered by rapid inflation and
deflation of shallow magma chambers, net volume changes may influence the deviatoric
moment-tensor solutions we retrieve. In the special case of caldera collapse, vertical-CLVD
earthquakes may also be generated by a mechanism resembling the closing of subhorizontal

tensile cracks.

Although our work suggests that vertical-T earthquakes are likely caused by inflation processes

leading up to volcanic eruptions, and vertical-P earthquakes are likely caused by deflation
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processes that occur after the start of volcanic unrest, it is currently not possible to interpret these
earthquakes in terms of specific deformation processes. Multidisciplinary studies using
complementary data, such as local seismic, GPS, and InSAR data, will be required to determine
the physical mechanisms that produce vertical-CLVD earthquakes in specific locations. In the
future, the occurrence of vertical-CLVD earthquakes may be combined with other data to assess

hazards at source volcanoes.
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Appendix A

This appendix contains Supplementary Information for Chapter 2. These data tables have been
submitted as Auxiliary Material for:

Shuler, A., Nettles, M., and G. Ekstrém, Global observations of vertical-CLVD earthquakes at
active volcanoes, submitted to J. Geophys. Res., 2012.

Table A1l. Centroid-moment-tensor solutions for 124 target earthquakes in the Global CMT
catalog (1976-2009). The number in the first column is the event number for each earthquake.
An asterisk next to the event number indicates that the earthquake is a shallow vertical-CLVD
earthquake (see text). The event number is followed by the year, month, day and origin time of

the earthquake. The origin time listed is that of the centroid solution, where &t indicates the time

shift (in seconds) with respect to the time reported by the NEIC in its Preliminary Determination

of Epicenters (PDE) or the Global CMT Project’s Surface Wave Catalog.

The hypocentral coordinates are for the centroid locations, and 04y and d¢y indicate the

perturbations in latitude and longitude obtained with respect to the original epicenter.

The half duration (Half Drtn) of the earthquake is a fixed parameter in the inversion, estimated
from the scalar moment using the empirical relationship

Half Drtn =2.26 x 10° M,"”, (A1)
where the half duration is measured in seconds and Mj is the scalar moment measured in Nm

[Ekstrom et al., 2012]. The moment-rate function is modeled as a triangle.
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The scale factor (/0%) is the number by which the scalar seismic moment and moment-tensor
elements must be multiplied to obtain a result in Nm. The scale factor entries in the table
represent the exponent (ex) values. The scalar moment (M)) is defined as

MO = (Gmax - Gmin)/ 2, (A2)

where Gmax and Gmin are the maximum and minimum eigenvalues of the moment tensor.

The elements of the moment tensor are given in the standard spherical coordinate system

[Gilbert and Dziewonski, 1975]. In Cartesian coordinates, M, = M., My, = My, M, = M,,, M,,
=M., M,, = -M,., and M, = -M., [Aki and Richards, 2002]. The CMT solutions are constrained
to have no isotropic component, so that M, + My, + M,, = 0. Each element of the moment tensor

is followed by its estimated standard error.

Table A2. Moment tensors expressed in principal-axis system and best-double couple
parameters for the 124 target earthquakes from the Global CMT catalog. As in Table Al, the
number in the first column is the event number, and an asterisk next to the event number
indicates that the earthquake is a shallow vertical-CLVD earthquake. The scale factor (10) is
the number by which the scalar seismic moment and eigenvalues must be multiplied to obtain a
result in Nm. Each principal axis is described by an eigenvalue, plunge and azimuth. The scalar
moment (M) is repeated from Table Al. The strike, dip, and rake of the nodal planes of the best-

double-couple mechanism are listed, following the convention of Aki and Richards [2002].
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Table A3. Centroid-moment-tensor solutions for 59 Category 1 target earthquakes in the Surface
Wave catalog (1991-2009). Columns are as in Table A1, except the origin time listed is that of

the centroid solution, where ot indicates the time shift (in seconds) with respect to the time

reported by the Global CMT Project’s Surface Wave Catalog.

Table A4. Principal axes and best double-couple parameters for 59 Category 1 target

earthquakes in the Surface Wave catalog (1991-2009). Columns are as in Table A2.

Table AS. Centroid-moment-tensor solutions for 131 Category 2 target earthquakes in the
Surface Wave catalog (1991-2009). Columns are as in Table A1, except the origin time listed is

that of the centroid solution, where %, indicates the time shift (in seconds) with respect to the

time reported by the Global CMT Project’s Surface Wave Catalog.

Table A6. Principal axes and best double-couple parameters for 131 Category 2 target

earthquakes in the Surface Wave catalog (1991-2009). Columns are as in Table A2.

Table A7. Centroid-moment-tensor solutions for 86 target earthquakes in the Global CMT
catalog (1976-2009) and the Surface Wave catalog (1991-2009). This table is a compilation of
all of the shallow vertical-CLVD earthquakes described in Tables A1, A3 and AS. Columns are
as in Table A1l. Because all of the earthquakes are shallow, their centroid depths were

constrained by the inversion to be 12 km, so no standard error in depth is given.



198

Table A8. Principal axes and best double-couple parameters for 86 target earthquakes in the
Global CMT catalog (1976-2009) and the Surface Wave catalog (1991-2009). This table is a
compilation of all the shallow vertical-CLVD earthquakes described in Tables A2, A4 and A6.

Columns are as in Table A2.
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Appendix B
Earthquake source parameters for the 2010 western Gulf of Aden rifting episode

This is the final accepted manuscript for work that has been published as:

Shuler, A. & Nettles, M. 2012. Earthquake source parameters for the 2010 western Gulf of Aden
rifting episode, Geophys. J. Int., 190, 1111-1122, doi:10.1111/5.1365-
246X.2012.05529.x.

Abstract

On November 14, 2010, an intense swarm of earthquakes began in the western Gulf of Aden.

Within a 48-hour period, 82 earthquakes with magnitudes between 4.5 and 5.5 were reported

along an ~80-km-long segment of the east-west trending Aden Ridge, making this swarm one of

the largest ever observed in an extensional oceanic setting. In this study, we calculate centroid-
moment-tensor solutions for 110 earthquakes that occurred between November 2010 and April

2011. Over eighty percent of the cumulative seismic moment was due to earthquakes that

occurred within one week of the onset of the swarm. We find that this sequence has a b-value of

~1.6 and is dominated by normal-faulting earthquakes that, early in the swarm, migrate
westwards with time. These earthquakes are located in rhombic basins along a section of the
ridge that was previously characterized by low levels of seismicity and a lack of recent

volcanism on the seafloor. Body-wave modeling demonstrates that the events occur in the top 2

to 3 km of the crust. Nodal planes of the normal-faulting earthquakes are consistent with

previously mapped faults in the axial valley. A small number of strike-slip earthquakes observed
between two basins near 44°E, where the axial valley changes orientation, depth and width,
likely indicate the presence of an incipient transform fault and the early stages of ridge-transform
segmentation. The direction of extension accommodated by the earthquakes is intermediate

between the rift-orthogonal and the direction of relative motion between the Arabian and
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Somalian plates, consistent with the oblique style of rifting occurring along the slow-spreading
Aden Ridge. The 2010 swarm shares many characteristics with dike-induced rifting episodes
from both oceanic and continental settings. We conclude that the 2010 swarm represents the
seismic component of an undersea magmatic rifting episode along the nascent Aden Ridge, and
attribute the large size of the earthquakes to the combined effects of the slow spreading rate,
relatively thick crust and recent quiescence. We estimate that the rifting episode was caused by
dike intrusions that propagated laterally for 12 to 18 hours, accommodating ~1-14 m of opening
or ~85-800 years of spreading along this section of the ridge. Our findings demonstrate the
westward propagation of active seafloor spreading into this section of the western Gulf of Aden
and illustrate that deformation at the onset of seafloor spreading may be accommodated by
discrete episodes of faulting and magmatism. A comparison with similar sequences on land
suggests that the 2010 episode may be only the first of several dike-induced rifting episodes to

occur in the western Gulf of Aden.

B1. Introduction

The Gulf of Aden is a young ocean basin that stretches from the Afar depression in East Africa
to the Carlsberg Ridge in the Indian Ocean (Figure B1). Here, northeastward motion of the
Arabian plate relative to the Somalian plate is accommodated by oblique spreading on a system
of approximately east-west trending rift zones (Bosworth et al. 2005; Manighetti ef al. 1997,
Cochran et al. 1981; Courtillot 1980). Beginning in mid-November 2010, the western Gulf of
Aden between 43.75° and 44.5°E experienced an intense swarm of earthquakes. Within a 48-
hour period, 24 earthquakes with magnitudes between 5.0 and 5.5, and 58 earthquakes with

magnitudes between 4.5 and 5.0, were reported in this area. The magnitudes of these
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13° 13°

12° 12°
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10°

Figure B1. Map of the western Gulf of Aden and surroundings. The Carlsberg Ridge lies east of
the Shukra al Sheik discontinuity, outside the frame of the figure. Maroon dots mark the
locations of earthquakes in the NEIC catalog (1973-2010). Focal mechanisms are from the
Global CMT catalog (1976-2010). All seismic data plotted covers the entire period of the
catalogs prior to the start of the earthquake swarm. Plate boundary information is from Bird
(2003). The plate motion vector for the Arabian plate relative to the Somalian plate (1.6 cm/yr at
N34°E) is from MORVEL (DeMets et al. 2010). Topography and bathymetry is plotted from the
GEBCO_08 Grid, version 20100927, http://www.gebco.net.
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earthquakes, as well as the large number of earthquakes in a short time, make this swarm one of
the largest ever observed in an extensional oceanic setting. Teleseismically detected earthquakes
continued to occur for several months after the onset of the swarm, although at a much lower
rate. The earthquake sequence occurred on a tectonically complex section of the Aden Ridge,
crossing structural and mechanical boundaries (Dauteuil et al. 2001; Hébert et al. 2001). In this
chapter, we use data from the Global Seismographic Network to estimate source parameters for
110 earthquakes in the sequence in order to characterize the swarm and better constrain the
tectonics of this nascent spreading center. Comparison with seismic and volcanic activity in other
regions suggests the swarm represents the seismic component of an undersea rifting episode, the

first documented in this area.

B2. Tectonic Background

The impingement of the Afar mantle plume on the base of the African lithosphere ~31 Ma
triggered continental rifting in the Gulf of Aden (Baker ef al. 1996; Hoffmann et al. 1997;
Rochette et al. 1997; Ukstins et al. 2002; Bosworth et al. 2005). This event, combined with
regional extension due to subduction of Africa beneath Eurasia (Malkin & Shemenda 1991;
Courtillot et al. 1999; Jolivet & Faccenna 2000; Bellahsen et al. 2003; Bosworth et al. 2005)
resulted in the initiation of seafloor spreading in the eastern Gulf of Aden. Extension propagated
westwards over time, reaching the Shukra al Sheik discontinuity, and the eastern edge of the
Afar plume, approximately 10 Ma (Bosworth et al. 2005). Rifting stalled there, and propagated
into the central and western Gulf of Aden only within the last 2-3 Ma (Cochran 1981; Bosworth
et al. 2005). Gravity and magnetic data have indicated that the western boundary of active

seafloor spreading is currently at approximately 44°E (Hébert et al. 2001). East of the Shukra al
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Sheik discontinuity, the crust is oceanic with a mean thickness of 6 km, and extension is
accommodated by faulting and oceanic accretion along a well-developed ridge-transform system
(Dauteuil et al. 2001). In the area of the 2010 earthquake swarm, however, the crustal thickness
ranges from 6 to 13 km, and although an axial trough is present, ridge-transform segmentation is
poorly developed (Dauteuil et al. 2001). This section of the Aden Ridge is part of a ~130 km-
long transition between oceanic lithosphere in the east and stretched continental lithosphere in

the west (Dauteuil ez al. 2001; Hébert et al. 2001).

The Aden Ridge spreads at a rate of 1.6 cm/yr in the direction N34°E (DeMets ef al. 2010;
Figure B1). The spreading direction is oblique to the rift axis, which trends N90°E between the
Shukra al Sheik discontinuity and ~44°E longitude, and N70°E as it approaches the Gulf of
Tadjoura. East of 44°E the axial valley is between 1000 and 1500 m deep and has a mean width
of 20 km. Acoustic reflectivity surveys have shown that this portion of the ridge consists of
overlapping rhombic basins oriented N120°E (Manighetti et al. 1997; Dauteuil ef al. 2001). The
axial valley is bounded by east-west trending normal faults while the center of the valley
contains left-stepping en echelon faults oriented N100-120°E that accommodate both extension
and right-lateral strike-slip motion (Manighetti et al. 1997; Dauteuil et al. 2001). West of 44°E,
the axial valley changes orientation, deepens to 1650 meters and narrows to a width of 10-15 km.
There the ridge is composed of several basins containing linear to sigmoidal normal faults
striking N80°-N120°E (Tamsett & Searle 1988; Taylor et al. 1994; Tuckwell et al. 1996;
Dauteuil et al. 2001). Backscatter images from a 1995 cruise showed no recent lava flows or

volcanic cones between 43.3° and 44.3°E (Dauteuil ef al. 2001).
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B3. Seismic Overview

The section of the Aden Ridge that ruptured during the 2010 swarm was previously characterized
by low levels of seismicity (Figure B1). Prior to 2010, the area between 43.9°E and 45°E had not
ruptured in a M5+ earthquake in at least the last 38 years, the era of modern seismic
instrumentation and the time-span covered by the catalogs of the USGS National Earthquake
Information Center (NEIC, 1973-present) and Global Centroid Moment Tensor Project (GCMT,
1976-present, Dziewonski ef al. 1981; Ekstrom et al. 2005). This contrasts with other sections of
the ridge, including the Gulf of Tadjoura near the Afar triple junction and the Sheba Ridge east

of the Shukra al Sheik discontinuity, where moderate-sized earthquakes occur frequently.

The 2010 western Gulf of Aden earthquake sequence was preceded by an My 4.5 earthquake on
13 November at 18:26 GMT. The main part of the sequence began 12 hours later on 14
November at 06:32 with an My 5.4 earthquake. Over the next 48 hours, 82 earthquakes with
magnitudes 4.5 and greater were located by the NEIC and/or by the Global CMT Project using
surface waves (Ekstrom 2006; see Figure B2). The number of moderate-sized earthquakes in this
sequence is extraordinary, and is comparable to the number of similarly sized earthquakes
expected in the aftershock sequence of an My 7-8 main shock (Shcherbakov & Turcotte 2004;
Shcherbakov et al. 2005), even though the largest earthquake was only My 5.5. Seventy percent
of the cumulative seismic moment of the swarm is due to earthquakes occurring the first day, and
83% to earthquakes occurring the first week (Figure B3). Earthquakes were detected in the area

through August 2011, although they occurred at a much lower rate than during the swarm.
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Figure B2. Centroid locations for 110 earthquakes analyzed in this study (November 2010-April
2011). Red dots denote earthquakes with well-constrained locations while grey dots denote
earthquakes with less-well-constrained locations. Focal mechanisms, plate boundary
information, bathymetry and topography are as in Figure B1.
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Figure B3. Top: Fractional cumulative seismic moment during the first week of the 2010 Gulf of
Aden earthquake sequence. The cumulative seismic moment is estimated by summing the scalar
moments for earthquakes analyzed in this study. The cumulative seismic moment through April
2011 is 3.5x10"® Nm, which is equivalent to a single My, 6.3 earthquake.

Bottom: Times and magnitudes of earthquakes. Red dots show moment magnitudes for
earthquakes analyzed in this study. Blue dots show times and magnitudes for additional
earthquakes reported by the USGS NEIC; these are not included in the moment sum.
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B4. Data and Methods

We use data from the IRIS-USGS Global Seismographic Network (GSN), Geoscope, GEOFON,
MEDNET and the Canadian Regional Seismic Network to calculate centroid moment tensors,
locations and times for earthquakes in the western Gulf of Aden between November 2010 and
April 2011, the first six months after the start of the swarm. We calculate centroid-moment-
tensor solutions generally following the standard GCMT approach for earthquakes with My <
5.5 (Dziewonski et al. 1981; Arvidsson & Ekstrom 1998; Ekstrom et al. 2005), which
incorporates long-period body waves filtered from 40-150 s and intermediate-period surface
waves filtered from 50-150 s. Solutions for the smallest earthquakes are constrained primarily by
surface-wave data, and in this case, we adjust the filter to shorter periods (40-100 or 35-75 s) on
a case-by-case basis to increase the signal-to-noise ratio. Data from 30-100 stations are used for
each solution, with the nearest station being FURI-IU, located ~675 km away near Addis Ababa,

Ethiopia.

Because all of the earthquakes in the western Gulf of Aden swarm are shallow, their depths
cannot be resolved well with the long-period seismic data used in standard GCMT analysis.
Likewise, depth estimates could not easily be read from depth phases because the direct and
reflected teleseismic P waves for shallow normal-faulting earthquakes typically have opposite
polarity and occur very close together in time. To obtain accurate estimates of focal depth, we
model the broadband teleseismic body waves of the largest earthquakes of the sequence (Mw >
5.2) using the method of Ekstrom (1989). We perform an inversion of P and SH waveforms for
focal mechanism, focal depth and moment-rate function. For this analysis, we deconvolve the

instrument response to obtain broadband displacement records filtered from 1-100 s period.



228

Synthetic seismograms are calculated using ray theory and the Preliminary Reference Earth
Model (PREM; Dziewonski & Anderson 1981). Reflections and conversions near the source are
modeled using a layer-matrix method for a regional velocity model. We use the CRUST2.0
velocity model for the Red Sea (YO — thinned continental crust with 1.0 km thick sediment layer;
Bassin et al. 2000), adding a 1.25 km thick water layer on top to match local bathymetry. The
CMT estimate of the point-source moment tensor is included as a soft constraint in the inversion
to ensure that focal mechanisms calculated from the broadband data are compatible with the

long-period data used in CMT analysis.

BS. Results

We are able to obtain CMT solutions for 110 earthquakes of the western Gulf of Aden sequence
and broadband body-wave estimates of depth for four of the larger events. These results are
summarized in Figures B4-B7, and source parameters are provided in Tables B1, C1 and C2 (see
Appendix C), and in electronic format on our web site (www.globalecmt.org). Below, we examine
the source parameters retrieved in the context of known geology, and, in Section B6, consider
implications of the sequence in light of the tectonic setting and ongoing evolution of the Gulf of

Aden.

B5.1. Centroid-Moment-Tensor Solutions

We attempted to analyze all 198 earthquakes with initial magnitudes of 4.0 or larger as reported
by the NEIC and/or the GCMT Project, and were able to obtain CMT solutions for 110
earthquakes with magnitudes 4.5 < Mw < 5.5. (Figure B3). Solutions for the 25 largest

earthquakes, those with My > 5.0, have been adopted as the preferred solutions of the Global
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CMT catalog, which has a minimum magnitude threshold of M~5. We consider both these and
our additional 85 solutions for smaller events here. Focal mechanisms are presented in Figure
B4. The solutions are generally robust and well constrained. In the figures and tables, we identify
18 earthquakes as having less well-constrained focal mechanisms. This designation is given to
events with the smallest number of usable data, which is due to small magnitude and/or the
presence of large amplitude waveforms from other earthquakes. Nonetheless, focal mechanisms
for the least well-constrained earthquakes are consistent with those of the best-constrained events

(Figures B4 and B6), and we do not distinguish between them in the discussion below.

Although we report complete deviatoric moment tensors for the western Gulf of Aden
earthquakes in Table C1, we plot only the double-couple components of the focal mechanisms in
Figure B4 because we are unable to constrain the non-double-couple component well using the
existing data. This is due to the fact that there are few close stations, and many of the
earthquakes are near the magnitude threshold of GCMT analysis. The largest normal-faulting
earthquakes have small non-double-couple components, and are consistent with rupture on
planar faults. Larger non-double-couple components are retrieved for the least well-constrained
earthquakes and earthquakes with strike-slip focal mechanisms, but for these events we find that
double-couple moment tensors fit the data nearly as well as the full solutions. The strikes and

dips of the nodal planes for the two types of solutions are nearly identical.



230

43.5° : 44.5°
[] _

12°

11.75°

L]
43.5° 44’

Figure B4. Focal mechanisms for the western Gulf of Aden. Black focal mechanisms are pre-
swarm earthquakes from the Global CMT catalog. Focal mechanisms for the sequence that began
on November 13, 2010 are plotted in red and grey, with only the double-couple component
shown. The best-constrained focal mechanisms are plotted in red, and the less well-constrained
focal mechanisms are plotted in grey. Black lines show fault traces from Dauteuil ez al. (2001).
Bathymetry from GEBCO is plotted in 100-meter contours.

The standard errors for the latitude and longitude components of the centroid locations are
between three and five kilometers on average (Table C1). Due to uneven station distributions, the
presence of noise and unmodeled structural heterogeneity (Nakanishi & Kanamori 1982; Smith
& Ekstrom 1997; Hjorleifsdottir & Ekstrom 2010), we believe that the actual errors are likely to
be larger. The good correspondence between the centroid locations and the axial valley,
however, suggest that absolute location errors are typically less than 20 km. Because the
distances between individual earthquakes in the sequence are small, and because we use a similar

station distribution for each CMT solution, the relative location errors are expected to be smaller,

approximately 5-10 km.
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The western Gulf of Aden swarm is dominated by normal-faulting earthquakes located in the
axial valley between 43.75° and 44.5°E (Figure B4). These earthquakes have WNW-ESE
striking nodal planes that are oriented N109°E on average, or ~75° from the direction of relative
plate motion (DeMets et al. 2010). The rotation of the nodal planes with respect to the spreading-
orthogonal direction is consistent with fault populations at other oblique rifts around the world
(Taylor et al. 1994; Tuckwell et al. 1996). The normal-faulting earthquakes have dip angles that
are close to 45°, with the average dip angles of the shallow and steep nodal planes being 42° and
51°, respectively. For these events, there is excellent agreement between the distribution of
retrieved strike angles of the nodal planes and observed fault orientations measured using
acoustic reflectivity data (Dauteuil ef al. 2001). Though the vast majority of the earthquakes
show normal faulting, a small fraction of the earthquakes have strike-slip focal mechanisms with

NE-SW and NW-SE striking nodal planes, consistent with the extension direction.

The western Gulf of Aden earthquakes are clustered in both space and time. Spatially, the
centroid locations are divided into two elongated groups, which are offset from one another by
10-15 kilometers (Figure B4). These groups correspond to mapped basins inside the axial valley,
east and west of 44°E (Dauteuil et al. 2001). While normal-faulting earthquakes are distributed
throughout the basins, strike-slip earthquakes are predominantly located near the offset between
two of the basins near 44°E. At the beginning of the sequence, the basins east of 44°E were
active, producing four of the ten largest earthquakes observed during the entire sequence within
the first six hours. Beginning at 12:49 on November 14, activity shifted to the western basin for
approximately ten hours and produced the remaining six of the ten largest earthquakes. From

November 15 onwards, seismicity continued at a lower rate and was concentrated east of 44°E.
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We do not find any evidence for uniform migration of the centroids with time. However, we do
observe a westward propagation of the onset of seismicity for the first 12 hours of the swarm, as
shown in Figure B5. We find that seismicity migrated at a rate no higher than ~1.1 m/s, which is
consistent with earthquake swarms from Iceland and Afar (Brandsdottir & Einarsson 1979;

Belachew et al. 2011).
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Figure BS. Spatial and temporal distribution of earthquakes for the first 48 hours of the swarm.
Earthquakes are plotted as black circles at the longitude of their centroid locations. The time
plotted in this figure is relative to the start of the swarm, 14 November at 06:32 GMT. For
reference, a propagation rate of 1.1 m/s is indicated by the dashed line. This is a maximum
estimate for the propagation rate of the onset of seismicity.

The principal axes of the moment tensor provide information about the strain accommodated by
fault movements (McKenzie 1969; Townend 2006). The tension axes indicate the direction of
maximum extension during an earthquake. Tension axes are close to horizontal for both normal-
faulting and strike-slip earthquakes in the western Gulf of Aden sequence, and the azimuths of
the tension axes we determine are plotted in Figure B6. For normal-faulting earthquakes, the
average azimuth of the tension axes is N19°E, which is intermediate between the spreading

direction from global plate motion vectors, N34°E (DeMets et al. 2010), and the normal to the

ridge trend in this area, N20°W-NO°E. These observations are consistent with earthquake focal
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mechanisms at other oblique rifts around the world (Fournier & Petit 2007), as well as with the
orientations of normal-fault structures observed in analog models of oblique rifting (Withjack &
Jamison 1986; Tron & Brun 1991; Clifton et al. 2000). The tension axes of the strike-slip
earthquakes near 44°E are rotated counter-clockwise relative to those of the normal-faulting
earthquakes, as expected for a left-stepping transform fault connecting two ridge segments. The
full deviatoric moment tensors for these earthquakes are also consistent with composite focal
mechanisms resulting from earthquakes with subevents on both ridge and transform segments
with this left-stepping geometry (Frohlich 1994). The strike-slip earthquakes likely indicate that
the offset between basins near 44°E is a transfer zone (Dauteuil & Brun 1993; Bellahsen et al.
2006; Autin et al. 2010), in the process of developing into a transform fault, as has already

occurred east of the Shukra al Sheik discontinuity.
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Figure B6. Azimuths of tension axes for the western Gulf of Aden earthquakes. Tension axes are
plotted at the centroid locations, and are drawn in blue for earthquakes with large strike-slip
components, and red or grey for the best-constrained and less well-constrained normal-faulting
earthquakes. The double-headed black arrow shows the spreading direction from the global plate
motion model MORVEL (DeMets et al. 2010). Black lines show fault traces from Dauteuil et al.
(2001). Bathymetry from GEBCO is plotted in 100-meter contours. Tension axes are plotted in
chronological order, and a single, early strike-slip event at 12.09°N, 44.2°E is obscured by later
normal-faulting events.
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B5.2. Teleseismic Body Wave Modeling

We are able to model the teleseismic body waves of four earthquakes, all occurring on
November 14, 2010. The first of these earthquakes occurred east of 44°E, while the remaining
earthquakes are located in the western basin. Although the focal depth estimates depend on the
particular choice of crustal model, we find that, for reasonable choices of sediment thickness
ranging from 0-1 km, the waveforms can be fit well and the differences between focal depth
estimates are well within the 1 to 2 km uncertainty associated with the Ekstrom (1989) method.
An example of the waveform fits achieved is shown in Figure B7. In Table B1, we present focal
depths that were calculated using a velocity model that includes a 1.25-km layer of water and a
1-km layer of sediments. This model was chosen to account for the fact that the sediment
thickness in the western Gulf of Aden ranges from essentially zero near the ridge axis to 2 km
outside the rift (Khanbari 2000 as cited in Hébert et al. 2001). The focal depths we retrieve are
shallow, ranging from 1.6 to 2.6 km below the seafloor. If we use a sediment thickness of zero
km, the focal depth estimates range from 1.4 to 2.4 km below the seafloor. These depth estimates
are consistent with other earthquakes from mid-ocean ridges with similar spreading rates (Huang
& Solomon, 1988). For My 5.5 normal-faulting earthquakes, empirical scaling relationships
estimate the down-dip fault width to be ~5 km (Wells & Coppersmith 1994), so it is likely that
some of the earthquakes in this sequence ruptured the surface of the seafloor. If indeed 1 km of
sediments is present, our depth estimates suggest that the earthquakes occurred only ~0.5-1.5 km
into the crystalline crust. Such shallow depth estimates suggest either the earthquakes had
unusually high stress drops, unlikely if the earthquakes occurred on pre-existing faults, or that

seismogenic rupture continued into the sediment layer.
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Figure B7. Focal-depth analysis for the My 5.5 earthquake on November 14, 2010 at 17:02
GMT. Solid lines are broadband teleseismic P and SH waveforms, and dashed lines are synthetic
seismograms. Brackets across the waveforms show the portions of the seismograms that were
used in the inversion, and arrows indicate the picked first arrivals. The station names and
maximum amplitude (in microns) are printed for each waveform. The focal mechanism and
moment-rate function determined by the body-wave inversion are plotted in the center of the
figure. Solid black lines on the focal mechanism show nodal planes for the double-couple part of
the moment tensor. Black dots on the focal mechanism show where the plotted waveforms exited
the focal sphere. The focal depth of the earthquake is 3.5 km below the sea surface, or 2.3 km
below the seafloor.

Earthquake Date M Depth
and Time W (km)
11/14/10 06:32 5.4 1.6
11/14/10 13:50 5.2 2.6
11/14/10 17:02 5.5 2.3
11/14/10 22:22 5.3 1.8

Table B1. Focal depth estimates determined by broadband analysis. The depths are relative to
the seafloor.
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B6. Discussion

The western Gulf of Aden earthquake sequence occurred beneath more than a kilometer of water
in one of the most dangerous shipping routes in the world (Smith ez al. 2011). Thus, there are no
independent observations of the deformation that took place during this episode, either from
satellite interferometry or from ship-based surveys. However, the character of the seismic
activity is similar to dike-induced earthquake sequences observed in both continental and oceanic
settings, and we infer that this sequence is the seismic component of a magmatic rifting episode.
We base this interpretation on the swarm-like nature of the sequence, and the dominance of
normal-faulting earthquakes clustered around the ridge axis. With this interpretation, we estimate
the duration of the diking event and the amount of opening that took place along this section of
the ridge. We use published analog models to interpret our observations in the context of the

evolution of the Gulf of Aden and other oblique rifts around the world.

B6.1. Comparison to Other Dike-Induced Rifting Episodes

During rifting episodes along mid-ocean ridges and magma-rich segments of continental rifts,
both dikes and faults accommodate plate boundary separation. As dikes propagate laterally
though the crust, they trigger slip on faults located above and ahead of the intrusions (Rubin &
Pollard 1988; Rubin 1992; Rubin & Gillard 1998). After propagation ceases, earthquakes
continue to occur on pre-existing faults close to failure due to changes in Coulomb stress caused
by the dike injection and related faulting and thermal stressing, although these earthquakes are
generally fewer in number (Toda ez al. 2002; Ayele et al. 2009; Kulpinski ez al. 2009; Ebinger et
al. 2010). Dike-induced rifting episodes in both continental and oceanic settings are

characterized by earthquake sequences that have neither a single large mainshock nor a decrease
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in magnitude with time (Abdallah et al. 1979; Brandsdottir & Einarsson 1979; Tolstoy et al.
2001; Wright et al. 2006; Rowland et al. 2007; Ayele et al. 2009; Keir et al. 2009; Ebinger et al.
2008, 2010; Riedel & Schlindwein 2010). Such swarms have elevated b values, which are
typically attributed to high thermal gradients and the presence or migration of magmatic and/or
hydrothermal fluids (Brandsdéttir & Einarsson 1979; King 1983; Hill ef al. 1990; Wiemer &

McNutt 1997; Wiemer et al. 1998; Toda et al. 2002; Farrell et al. 2009).

For the western Gulf of Aden sequence, we estimated the h-value by examining the frequency-
magnitude distribution. The magnitude of completeness (M.) was defined as the magnitude
below which the data depart from a linear trend by more than one standard deviation (Zaniga &
Wyss 1995). Using the maximum likelihood approach (Utsu 1965; Aki 1965; Bender 1983;
Wiemer 2001) with a M, of My 4.8 and calculating the uncertainty by bootstrapping, we
estimate the b-value for the western Gulf of Aden sequence to be 1.6 +/- 0.18, which is
significantly higher than the global average value of ~1.0 (Frohlich & Davis 1993). The estimate

of b-value remains well above 1.0 for choices of M, larger than 4.8.

Although there is some debate over whether particular earthquake swarms on mid-ocean ridges
are due to episodes of tectonic extension or magmatism (Bergman & Solomon 1990), dike-
induced earthquake swarms have now been observed directly on many mid-ocean ridges. Along
fast and intermediate-spreading mid-ocean ridges, dike intrusions produce short-lived swarms of
Myw < 4.0 earthquakes that are observed primarily by ocean-bottom seismometers (Fox et al.
1995; Tolstoy et al. 2006; Dziak et al. 1995, 2007, 2009), while larger, teleseismically-detected

swarms of dike-induced earthquakes are generally only located on slow and ultra-slow spreading
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ridges such as the Mid-Atlantic Ridge and the Gakkel Ridge (Miiller & Jokat 2000; Tolstoy et al.
2001; Dziak et al. 2004; Riedel & Schlindwein 2010; Schlindwein & Riedel 2010; Korger &
Schlindwein 2011). For normal-faulting earthquakes along mid-ocean ridges, an inverse
relationship between maximum earthquake size and spreading rate has been observed, and is

attributed to thermal limitations on the depth of the seismogenic zone (Soloman & Burr 1979;

Huang & Solomon 1988; Bird et al. 2009).

The mid-ocean ridge swarm that is most similar to the swarm investigated in this study is the
1999 Gakkel Ridge swarm, which lasted nine months and produced 20 normal-faulting
earthquakes with My > 5.0 (Miiller & Jokat 2000; Tolstoy et al. 2001; Ekstrom et al. 2003;
Riedel & Schlindwein 2010). In that case, sonar images and bathymetric data suggest that the
swarm was associated with a volcanic eruption on the seafloor (Edwards et al. 2001). As at the
Gakkel Ridge, the large magnitudes of the earthquakes in this study can likely be attributed in

part to the slow spreading rate in the western Gulf of Aden.

The regional crustal structure and tectonic history of the western Gulf of Aden may also help
explain the large magnitudes of the earthquakes. The area of the earthquake swarm has thick
crust, which is transitional from oceanic to continental (Dauteuil et al. 2001; Hébert et al. 2001),
and thicker sections of brittle crust can support larger earthquakes (Rubin 1990). Large
earthquakes have also been associated with dikes that are the first to intrude host rift zones after
long periods of quiescence (Rubin & Gillard 1998). Based on the seismic history and on the

seafloor observations of Dauteuil ef al. (2001), this rifting episode is the first in the western Gulf
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of Aden in a minimum of several decades, and may represent westward propagation of active

seafloor spreading into a new section of the Aden Ridge.

This interpretation of rift propagation is consistent with the fact that the earthquake swarm that
most closely resembles the western Gulf of Aden sequence, continental or oceanic, occurred on
an incipient mid-ocean ridge in neighboring Afar. The September 2005 diking episode in Afar
was characterized by hundreds of teleseismically-detected, shallow earthquakes located in a 120-
km-long by 25-km-wide area of the Dabbahu segment of the Red Sea rift over a period of three
weeks. These earthquakes were predominantly normal faulting and 17 had My > 5.0 (Ebinger et
al. 2008, 2010; Ayele et al. 2009). Like the western Gulf of Aden sequence, the largest
magnitude earthquake in the 2005 Afar rifting episode was My 5.5 and the cumulative seismic
moment was equivalent to a single Mw 6.3 earthquake (Ebinger et al. 2008; Grandin et al. 2009).
InSAR studies confirm that a magma volume of 1.5-2.5 km® was injected along a 65-km-long

shallow dike during the 2005 Afar rifting episode (Wright ef al. 2006; Grandin et al. 2009).

Because the western Gulf of Aden sequence has elevated b-value and is dominated by shallow,
normal-faulting earthquakes that migrate over time, closely resembling well-documented dike-
induced earthquake sequences in both oceanic and continental settings, we conclude that this
swarm represents the seismic component of a magmatic rifting episode along the nascent Aden
Ridge. The large size of the earthquakes is likely due to the combined effects of the slow

spreading rate, relatively thick crust, and recent quiescence.



240

B6.2. Rifting Episode Duration and Opening Estimates

The similarities between the earthquakes in this study and those associated with the well-
documented Afar rifting episodes enable us to make a rough estimate of the duration of the dike
intrusion, as well as the amount of opening that took place during the 2010 rifting episode.
Belachew et al. (2011) performed a detailed analysis of local seismic data from nine dike
intrusions in Afar, and concluded that the largest earthquakes in each sequence were caused by
faulting and graben formation above laterally propagating dike intrusions. Based on cumulative
seismic moment curves, they conclude that the vast majority of seismic moment is accumulated
during the dike propagation phase, after which seismicity decreases significantly, and the slope
of the cumulative seismic moment curve flattens. Interpreting our cumulative seismic moment
curve (Figure B3) in the same way, we estimate that the main dike intrusion in the western Gulf
of Aden propagated for less than 18 hours. This result is consistent with our observation that
seismicity migrated westwards for approximately 12 hours during the beginning of the swarm.
Combining these results, we conclude that the dike propagation phase during the 2010 western
Gulf of Aden rifting episode likely lasted between 12 and 18 hours. This is shorter than the dike
propagation phase for the 2005 rifting episode in Afar, which lasted several days (Ayele ef al.

2009).

Using our CMT solutions, and assuming that all extension occurs on planar normal faults, we
estimate the amount of spreading accommodated by the earthquakes using the following
expression:

> My=uLhd/(sin(6)cos(6)), (B1)



241

modified from Solomon ez al. (1988). Here, Y M, is the cumulative seismic moment of the
normal-faulting earthquakes, u is the shear modulus, / is the thickness of the seismogenic layer,

0 is the dip of the fault planes, L is the total along-axis length of the ridge segments that slipped

in the earthquakes, and d is the total amount of horizontal opening. We use values of 3.0x10"
N/m? for u, and 10 km for A (Dauteuil ez al. 2001), and calculate the remaining parameters from
the CMT solutions. Y M is 3.4x10'® Nm, and we estimate L from the distance between the

easternmost and westernmost earthquake centroids, finding a value of 80 km. We use 51° for 6,

which is the average dip angle for the steeply dipping nodal planes. Because all of the retrieved
nodal-plane dips are close to this value, the result depends little on the details of this choice.
Solving for the horizontal displacement, we obtain a value of d=7 cm, which is equivalent to ~4
years of spreading assuming that opening occurs solely by seismogenic extension of the brittle
lithosphere at a rate of 1.63 cm/yr, the full spreading rate predicted by MORVEL for 12°N, 44°E
(DeMets et al. 2010). If instead we constrain 4 to be 5 km, the down-dip width for the largest
earthquakes based on our depth and scalar moment estimates and scaling relationships of Wells
& Coppersmith (1994), the estimate of horizontal opening is twice as large, d~14 cm, which is

equivalent to ~8 years of spreading.

However, the amount of opening that occurred during the western Gulf of Aden rifting episode is
likely to be much higher. Along slow-spreading mid-ocean ridges, earthquakes account for no
more than 10-20% of plate separation (Solomon et al. 1988). Rifting episodes in continental
settings are also generally dominated by aseismic deformation. In Iceland, the Asal Rift and
Afar, field measurements of fault offsets from rifting episodes are much larger than the amount

of slip required to generate the observed earthquake swarms (Brandsdottir & Einarsson 1979;
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Doubr¢ & Peltzer 2007; Rowland et al. 2007). Additional aseismic opening may occur due to the
volume change associated with the dike intrusion. The discrepancy between seismogenic and
total opening can also be demonstrated by comparing the cumulative seismic moment to
estimates of the combined geodetic moment, which accounts for dip slip on normal faults and
volume change due to magma intrusions. For the September 2005 rifting episode in Afar, the
geodetic moment was at least an order of magnitude larger than the cumulative seismic moment
(Wright et al. 2006; Grandin et al. 2009). Belachew et al. (2011) compared the seismic and
geodetic moments for nine rifting episodes in Afar between 2006 and 2009, and found that
earthquakes accounted for only ~0.1-3.5% of the total deformation. Following Solomon et al.
(1988) and Belachew et al. (2011), if we assume that 1-5% of the total deformation was
accommodated by earthquakes, we estimate that this discrete rifting episode may have
accommodated ~1-14 m of opening, or ~85-800 years of spreading, in this section of the western

Gulf of Aden.

B6.3. Evolution of the Western Gulf of Aden

The Gulf of Aden is a transtensional setting where rift formation occurs due to oblique
divergence. The relative amounts of extension and shear, and therefore the faulting patterns that
are produced along a given section of the rift, depend on the obliquity angle, ¢, which is the
angle between the rift trend (N70-90°E) and the direction of relative plate motion (N34°E,
DeMets et al. 2010). The obliquity angle in the western Gulf of Aden varies between ~35° and

55° in the area of the recent earthquake swarm, with the highest value of o being found east of
44°E where the rift trends east-west. For similar values of ¢, analog models show that oblique

rifting produces en echelon arrays of normal faults in the axial valley (Withjack & Jamison 1986;
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Tron & Brun 1991; Dauteuil & Brun 1993; McClay & White 1995; Clifton et al. 2000; Mart &
Dauteuil 2000; Clifton & Schlische 2001; Corti et al. 2001, 2003; Agostini et al. 2009; Autin et
al. 2010). In the models, these normal faults strike in a direction intermediate between rift-
parallel and perpendicular to the spreading direction (Withjack & Jamison 1986; Clifton et al.
2000; Corti et al. 2001, 2003; Autin ef al. 2010). The orientations of the nodal planes from our
CMT solutions support these results. For normal faulting earthquakes, the average strike angle of
the nodal planes is N109°E, which is intermediate between N70-90°E and N124°E. Analytical
models demonstrate that these fault patterns arise because the combination of extension and
shear in oblique rifts results in the principal extensional strain being oriented approximately
halfway between the normal to the rift trend and the spreading direction (Withjack & Jamison
1986). The strain pattern we find in the western Gulf of Aden provides observational validation
of this explanation. The mean orientation of the tension axes we observe in the swarm is N19°E,

intermediate between north-south and the direction of relative plate motion, N34°E.

Overall, there is excellent agreement between the results of our seismic analysis and models of
oblique rifting, which allows us to remark on the both the current and future states of the rift
system in the western Gulf of Aden. Recent scaled analog models by Autin e al. (2010) suggest
that the oblique rifting in the Gulf of Aden was not initiated on a pre-existing weak zone, so that
the structures that develop are not influenced by previous geometry. Their work, as well as other
analog models (Clifton & Schlische 2001; Agostini ef al. 2009), indicate that the western Gulf of
Aden is in the late stages of oblique rifting, where deformation is largely controlled by slip on
pre-existing fault segments. The similarities between the orientations of faults mapped prior to

the earthquake swarm (Dauteuil et al. 2001) and the nodal planes of the normal-faulting
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earthquakes supports the interpretation that the 2010 swarm occurred on pre-existing faults in the
axial valley. Based on the analog models, we expect that further extension will result in
additional slip and lengthening of optimally oriented en echelon normal faults (Clifton ef al.
2000; Clifton & Schlische 2001; Agostini et al. 2009). In addition, we expect that some of the
transfer zones between individual basins may evolve towards transform faults (Dauteuil & Brun
1993; Bellahsen et al. 2006; Autin ef al. 2010), and segmentation of the ridge will increase as
seafloor spreading develops in the western Gulf of Aden. The occurrence of strike-slip
earthquakes in the 2010 swarm, near a step-over between basins and a change in ridge

orientation at 44°E, may indicate the presence of an incipient transform fault.

In analog models of oblique rifts, normal faults in the axial valley control the emplacement of
magmatic intrusions and define the locations of ocean accretion centers (Clifton & Schlische
2001; Agostini et al. 2009; Autin et al. 2010). This progression has already been documented
within basins east of the recent swarm, where seafloor spreading is more developed and there are
linear chains of volcanoes oriented N110°-120°E (Tamsett & Searle 1988; Dauteuil ef al. 2001).
Prior to 2010, the section of the rift where the swarm is located was characterized by low levels
of seismicity and a lack of recent volcanism, and gravity and magnetic surveys indicated that
seafloor spreading had not yet been initiated (Dauteuil ez al. 2001; Hébert et al. 2001). We
believe that the earthquakes in the 2010 swarm are the seismic component of a dike-induced
rifting episode, which provides evidence for westward propagation of seafloor spreading into this
area. As in Afar, this swarm confirms that deformation at the onset of seafloor spreading is
achieved by intense episodes of dike intrusion and faulting. For now it is unknown whether this

rifting episode will consist of a single diking episode, like in the Asal Rift in 1978 (Abdallah et
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al. 1979), or whether additional dike intrusion episodes will follow as in Afar and Iceland. If the
latter, we expect additional dike intrusions to become progressively more effusive, leading to

eruptions on the seafloor (Buck ef al. 2006; Hamlin et al. 2010).

B7. Conclusions

In the western Gulf of Aden, the east-west trending boundary between the Arabian and Somalian
plates is transitioning from a continental rift to a mid-ocean ridge. Until recently, the section of
the nascent Aden Ridge near 44°E was characterized by low levels of seismicity and a lack of
recent volcanism on the seafloor, and has been believed to lie west of the boundary of active
seafloor spreading. However, our analysis of a swarm of moderate to large earthquakes that
began on November 14, 2010 in this area indicates that the early stages of seafloor spreading
have now propagated into this section of the rift. The swarm closely resembles dike-induced
earthquake swarms from both continental and oceanic settings, and was likely triggered by the
lateral propagation of a shallow dike intrusion. Though the sequence was dominated by shallow,
normal-faulting earthquakes, we also find evidence for an incipient transform fault and the early
stages of rift-transform segmentation. The direction of extension accommodated by the normal-
faulting earthquakes of the sequence is intermediate between the rift-orthogonal and the
spreading direction predicted by global plate motion vectors, validating analog and analytical
models of oblique rifting. Our findings indicate that deformation at the onset of seafloor

spreading is achieved by discrete episodes of faulting and magmatism.
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Appendix C

This appendix contains Supplementary Information for Appendix B. These data tables have been
published as Supporting Information for Shuler and Nettles (2012), and are reprinted with
permission.

Shuler, A. & Nettles, M. 2012. Earthquake source parameters for the 2010 western Gulf of Aden
rifting episode, Geophys. J. Int., 190, 1111-1122, doi:10.1111/j.1365-
246X.2012.05529.x.

Table C1: Centroid-moment-tensor solutions for 110 earthquakes occurring in the western Gulf

of Aden from 2010 November to 2011 April. The number in the first column is the event number

for each earthquake. An asterisk next to the event number indicates that the earthquake is less-

well constrained (see text). The event number is followed by the year, month, day and origin

time of the earthquake. The origin time listed is that of the centroid solution, where ) indicates

the time shift (in seconds) with respect to the time reported by the NEIC in its Preliminary

Determination of Epicenters (PDE) or the Global CMT Project’s Surface Wave Catalog.

The hypocentral coordinates are for the centroid location, and 04, and 8¢, indicate the

perturbations in latitude and longitude obtained with respect to the original epicenter. Because all
of the earthquakes are shallow, their centroid depths were constrained by the inversion to be 12

kilometers, so no standard error in depth is given.

The half duration (Half Drtn) of the earthquake is a fixed parameter in the inversion, estimated
from the scalar moment using an empirical relationship. The moment-rate function is modeled as

a triangle.
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The scale factor (/0%) is the number by which the scalar seismic moment and moment-tensor
elements must be multiplied to obtain a result in Nm. The entries in the table represent the

exponent (ex) values. The scalar moment (M) is defined as My = (Gax - Omin)/2, Where Gq and

Omin are the maximum and minimum eigenvalues of the moment tensor.

The elements of the moment tensor are given in the standard spherical coordinate system (Gilbert

& Dziewonski 1975). In Cartesian coordinates, M,, = M., Mgo = M., My, = M,,, Mg = M,., M,,
= —M,., and My, = —M,, (see Aki & Richards 2002). The CMT solutions are constrained to have
no isotropic component, so that M, + Mgy + M,, = 0. In some cases, the elements of M, and M,

are also constrained to zero because of the instability of the solution. In these cases, the
corresponding values and standard errors are omitted in the table. Each element of the moment

tensor is followed by its estimated standard error.

Table C2: Moment tensors expressed in principal-axis system and best-double-couple
parameters. As in Table S1, the number in the first column is the event number, and an asterisk
next to the event number indicates that the solution is less-well constrained. The scale factor
(10%) is the number by which the scalar seismic moment and eigenvalues must be multiplied to
obtain a result in Nm. Each principal axis is described by an eigenvalue, plunge and azimuth.
The scalar moment (M)) is repeated from Table S1. The strike, dip, and rake for the nodal planes
of the best-double-couple mechanism are listed, following the convention of Aki & Richards

(2002).
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