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[1] The discovery that several solid Earth reservoirs have a superchondritic 142Nd/144Nd ratio led to the
hypothesis that either the bulk silicate Earth is not chondritic or that a subchondritic reservoir lies hidden
somewhere within the Earth’s interior. One important reservoir, i.e., mid‐ocean ridge peridotites represent-
ing the main component of the upper oceanic mantle and the source of mid‐ocean ridge basalt, has never
been tested for 142Nd/144Nd. We determined the 142Nd/144Nd ratio in clinopyroxene separated from two
peridotites and a pyroxenite from the SW Indian Ridge and one peridotite from the northern Mid‐Atlantic
Ridge. All samples analyzed have superchondritic 142Nd/144Nd ratios in line with mantle‐derived material
measured to date, except for some ancient cratonic rocks.
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1. Introduction

[2] For many years, the bulk silicate Earth (BSE),
that is the Earth’s interior excluding the metallic
core, was assumed to have relative abundances
of refractory lithophile elements similar to those
of chondritic meteorites [e.g., McDonough and

Sun, 1995; Palme and O’Neill, 2003], com-
monly regarded as representing the building
blocks of our Planet. The main isotopic tracer of
this concept was the Sm‐Nd system, two neigh-
boring REE that are both refractory lithophile
elements [e.g., DePaolo and Wasserburg, 1976a,
1976b]. Based on the assumption of a chondritic

Copyright 2011 by the American Geophysical Union 1 of 8

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161441989?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1029/2010GC003415


Earth, widely accepted models on the differenti-
ation of the Earth’s mantle and on the generation
of the continental and oceanic lithosphere have
been proposed [e.g., Jacobsen and Wasserburg,
1980; Allegre et al., 1983; Hofmann, 1988].
However, the discovery that the 142Nd/144Nd
ratio of chondritic meteorites is systematically
lower than in most terrestrial rocks [Boyet and
Carlson, 2005] has stimulated a reexamination
of this concept.

[3] The 142Nd is generated by decay of 146Sm, with
a half‐life of 103 Ma, much shorter than the half‐
life of the 147Sm to 143Nd decay system (106 Ga).
The higher than chondritic 142Nd/144Nd ratio of
terrestrial rocks implies either an overall non-
chondritic BSE, or the existence of a complemen-
tary reservoir with lower than chondritic Sm/Nd
ratio that is hidden somewhere in the Earth’s
interior [Boyet and Carlson, 2005, 2006; Bourdon
et al., 2008; Carlson and Boyet, 2008; Caro et al.,
2006; Caro and Bourdon, 2010; Murphy et al.,
2010; Labrosse et al., 2007; O’Neill and Palme,
2008; Warren, 2008]. Due to the relatively short
half‐life of the 146Sm to 142Nd decay reaction, and
given that Nd is more incompatible than Sm, the
nonchondritic 142Nd/144Nd of most terrestrial
rocks may have resulted from a major differenti-
ation event affecting the mantle of the very young
Earth [Boyet et al., 2003; Boyet and Carlson, 2005;
Caro et al., 2003, 2006; Harper and Jacobsen,
1992].

[4] This subchondritic 142Nd/144Nd reservoir might
be hiding in the deep mantle. However, basalts
from Deccan, Iceland, Ethiopia, and Hawaii gen-
erated by presumably deep plume sources, did not
sample this reservoir [Andreasen et al., 2008; Boyet
et al., 2005; Boyet and Carlson, 2006; Caro et al.,
2006; Murphy et al., 2010]. The low 142Nd/144Nd
reservoir may be located within layer D″, just
above the core/mantle boundary: it might have
sunk there from a proto crust differentiated during a
young Earth “magma ocean” stage [Tolstikhin and
Hofmann, 2005; Boyet and Carlson, 2005] or from
dense melts formed at the base of a magma ocean
[Labrosse et al., 2007]. This reservoir, if it exists,
should be enriched in incompatible elements,
including heat‐producing elements U, Th and K. If
layer D″ were a “thermal blanket” around the core
[Boyet and Carlson, 2005; Carlson and Boyet,
2008], it would affect the cooling rate of the
core, the evolution of the Earth’s magnetic field,
the generation of deep mantle plumes and in gen-
eral mantle convection.

[5] Evidence for the creation and survival of
compositionally heterogeneous reservoirs in the
early Earth is provided by both positive [Boyet and
Carlson, 2006; Caro et al., 2003, 2006; Bennett et
al., 2007; Harper and Jacobsen, 1992] and nega-
tive [O’Neil et al., 2008] 142Nd anomalies in
Hadean and Eoarchean crustal rocks compared to
modern mantle‐derived rocks. With the exception
of some samples from the 1.48 Ga Khariar alka-
line complex of India [Upadhyay et al., 2009],
all samples of mantle‐derived rocks younger
than 3.5 Ga so far measured have analytically
indistinguishable 142Nd/144Nd ratios, roughly 18–
20 ppm higher than measured in ordinary and
enstatite chondrites [Andreasen et al., 2008; Boyet
et al., 2005; Boyet and Carlson, 2006; Carlson
et al., 2007; Caro et al., 2006; Murphy et al.,
2010]. This suggests that post 3.5 Ga mixing of
the mantle has almost entirely erased the com-
positionally distinct mantle reservoirs created by
Hadean Earth differentiation [e.g., Bennett et al.,
2007].

[6] Given the above, it is important that all major
mantle reservoirs be well constrained as far as Nd
isotopic composition. Although the main compo-
nent of the suboceanic upper mantle is peridotite,
no 142Nd data on suboceanic peridotite have been
reported to date. The only direct mantle samples
measured for 142Nd are garnet inclusions in dia-
monds from the Finsch (South Africa) kimberlite:
they show normal mantle 142Nd/144Nd values
[Caro et al., 2008]. The 142Nd/144Nd of the sub-
oceanic mantle has been inferred from measure-
ments on four mid‐ocean ridge basalt (MORB)
samples, one from the East Pacific Rise, one from
the Indian Ridge [Boyet and Carlson, 2005, 2006),
and two of unspecified location [Caro et al., 2006],
and on a number of ocean island basalts [Boyet
et al., 2005; Boyet and Carlson, 2006; Caro et al.,
2006; Andreasen et al., 2008; Murphy et al.,
2010]. But MORB and ocean island basalts are
generated by partial melting of mantle sources con-
sisting of peridotite plus probably other enriched
components (pyroxenite, eclogite), possibly derived
from subducted lithosphere [Zindler and Hart, 1986;
Hart, 1988; Hofmann, 1997; Salters and Dick, 2002;
Hofmann, 2003; Cipriani et al., 2004; Seyler et al.,
2004]. These enriched components, if present in
significant quantity in the mantle source of MORB,
would dominate the Nd content of any partial melt
of the mixed source. Therefore, we attempted to
analyze 142Nd/144Nd directly in mantle‐derived
mid‐ocean ridge peridotites (MORP) that may
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better reflect the composition of the end‐member
incompatible‐element‐depleted mantle reservoir.

2. Samples, Methods and Results

2.1. Samples
[7] One challenge with determining precise Nd
isotopic compositions in oceanic peridotites is that
generally they are residual after partial melting and
extraction of MORB; thus, their Nd content, mostly
concentrated in cpx, is exceedingly low (range in
cpx from 0.02 to 2–3 ppm). Given that 142Nd/144Nd
determinations of sufficient precision with state of
the art mass spectrometry require a minimum of
200 ng Nd, >500 mg of pure cpx need to be sep-
arated. We chose relatively unserpentinized, cpx‐
rich peridotites, two from the Southwest Indian
Ridge, one from the Knipovich Ridge in the
northern Mid‐Atlantic Ridge and two from the
Mid‐Atlantic Ridge at 11°N; one pyroxenite sam-
ple from the SWIR was also analyzed (Table 1 and
Figure 1).

[8] All five peridotite samples contain the primary
mineral assemblage typical of MORP, i.e., olivine‐
opx‐cpx‐spinel. The two SWIR samples were
collected from a portion of the global ridge system
with low spreading rate (∼8 mm/yr). They contain
∼5–8% modal cpx [Seyler et al., 2003]. Their spi-
nel and opx Cr# (= 100 Cr/(Cr + Al)) suggest they
are residual after ∼15% partial melting. The Kni-

povich ridge sample is relatively undepleted (Cr#
in spinel is 12.7, in opx 7.6). The two samples from
the MAR are from an exposed lithospheric section
at 11°N [Bonatti et al., 2003]; they contain ∼2%
modal cpx and have undergone a moderate extent
of melting (∼10% F). The SWIR pyroxenite con-
sists of granular cpx (∼70%; Mg# = 88.7) and
olivine (∼30%; Fo = 84.7); its mineral chemistry is
similar to that of other pyroxenites and cumulates
from the mid‐ocean ridge system.

2.2. Methods
[9] Clinopyroxenes were handpicked under a
microscope and leached following a procedure by
Snow et al. [1993]. Dissolution and preliminary Nd
separation steps were performed at LDEO using
standard techniques. Nd was separated in a two
column procedure using Eichrom TRU spec resin
to separate the rare earth elements, followed by a‐
hydroxy isobutyric acid (a‐HIBA) (where 0.5 ml
H2O2 was added to 100 ml of a‐HIBA just prior to
the column procedure to reduce any Ce4+ that was
present in the sample after the dry down from the
first column) [e.g., Boyet and Carlson, 2005] to
separate Nd from all other REE. An additional pass
through the Nd separation column was performed
at DTM in order to improve on the separation of
Sm from Nd. The a‐HIBA procedure at DTM
contributes a Nd blank of 2 pg. Combined with the
dissolution and processing blank of 51 pg for the
procedures performed at Lamont, given the large
samples sizes used for these analyses, the chemical
processing blanks were negligible.

[10] Isotopic measurements were performed with
the DTM Thermo‐Fisher Triton thermal ionization
mass spectrometer following procedures similar to
those described by Boyet and Carlson [2005].
These measurements were performed shortly after
the faraday cups were replaced in April of 2008.
The samples were run as Nd+ on double Re fila-
ments with ion currents of 144Nd ranging from 2 to
5 × 10−11 amps for the standards. Signal sizes for
the samples are given in Table 1. Because the
samples were not spiked, we do not know exactly
how much Nd was present, but given the signal
sizes produced, we estimate that between 50 and
200 ng of Nd was loaded on each filament. Data
were obtained statically monitoring all Nd isotopes,
140Ce and 147Sm in separate faraday cups. Full runs
consisted of 540 ratios of 8 s signal integrations
using amplifier rotation. Data are fractionation
corrected to 144Nd/146Nd = 1.385233 (equivalent to
146Nd/144Nd = 0.7219) in order to simplify cor-

Figure 1. Map of the mid‐ocean ridge system with the
location of peridotites and pyroxenite samples of this
study and of MORB samples analyzed to date for
142Nd. Map was generated using GeoMapApp (www.
geomapapp.org/) and the Global Multi‐Resolution
Topography Synthesis [Ryan et al., 2009].
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rection for Sm interference, assuming exponential
mass dependency for the fractionation. Ce inter-
ferences (142Ce/142Nd) in the samples ranged from
1 to 4 ppm and are thus negligible. Sm inter-
ferences (144Sm/144Nd) for samples SV84‐D1‐1
and EDUL23‐2‐4 were approximately 10 ppm
whereas the Sm interference was more significant
for samples EDUL21‐1‐1 (690 ppm) and
EDUL69‐8‐3 (547 ppm) most likely because these
samples had very high Sm/Nd ratios as suggested
by their high measured 143Nd/144Nd. The magni-
tude of Sm interference on Nd is approximately 15
and 10 times higher on 148Nd and 150Nd, respec-
tively, compared to that on 144Nd. The effects of
Sm interference on Nd are thus dramatically dif-
ferent than the “domain mixing” [Hart and Zindler,
1989; Upadhyay et al., 2008; O’Neil et al., 2008;
Andreasen and Sharma, 2009] deviation from
exponential mass fractionation that produces simi-
lar sign and magnitude offsets of 142Nd/144Nd and
148Nd/144Nd, but 3 times this offset in 150Nd/144Nd
compared to runs that follow the normal expo-
nential mass dependence of the fractionation. The
only sample listed in Table 1 for which both
148Nd/144Nd and 150Nd/144Nd lie outside of error of
the standard is EDUL21‐1‐1, the sample with the
largest Sm interference. None of the samples show
a 3 times larger offset of 150Nd/144Nd compared to
148Nd/144Nd compared to the standard, thus, the
data provide no evidence to suggest that the mea-
sured 142Nd/144Nd is affected by inaccurate mass
fractionation correction. The Sm correction is based
on themeasured 147Sm signal assuming standard Sm
isotopic composition [e.g., Carlson et al., 2007], but
the Sm being emitted from the Nd sample likely
will be mass fractionated compared to standard Sm.
Given the sensitivity of 148Nd and 150Nd to Sm
interference, the fact that all samples except
EDUL21‐1‐1 provide 150Nd/144Nd ratios over-
lapping within uncertainty the standard suggests
that correcting for Sm interference using “normal”
Sm introduces a negligible error on 142Nd/144Nd
at this magnitude of Sm correction. For sample
EDUL21‐1‐1, the 19 ppm low 148Nd/144Nd can
be explained if the Sm interference was mass frac-
tionated by −1% per AMU compared to standard
Sm. If so, the revised Sm correction produces a
142Nd/144Nd 3 ppm higher than measured in the
standard. For sample EDUL69‐8‐3, a similar
revised Sm correction based on 148Nd/144Nd would
raise the Sm‐corrected 142Nd/144Nd to 14 ppm higher
than the standard, which, given the large uncertainty
associated with this analysis, is still within ana-
lytical uncertainty of the standard 142Nd/144Nd.
Using instead the 150Nd/144Nd as an indicator of

inaccurate Sm correction in EDUL69‐8‐3 would
result in a corrected 142Nd/144Nd lower than, but
within error, of the standard.

[11] The results for sample EDUL21‐1‐1 present
the additional problem that the very high
150Nd/144Nd determined for this sample suggests
that it was contaminated with 150Nd spike during
dissolution or chemistry. If this is the correct
interpretation of the high 150Nd in this sample,
correcting for the spike would lower the
142Nd/144Nd and 148Nd/144Nd in this sample by 0.3
and 5 ppm, respectively. As this adjustment would
also affect the Sm correction described in the pre-
ceding paragraph, the 142Nd/144Nd of sample
EDUL21‐1‐1 corrected for both spike and Sm
interference would be 4 ppm higher than in the La
Jolla standard.

[12] Of the six samples, four were successfully
analyzed for 142Nd (Table 1) although sample
EDUL69‐8‐3 ran at both reduced signal size and
number of ratios (270), resulting in a significantly
increased uncertainty. Two of the samples (inci-
dentally, the two with lowest cpx Nd concentra-
tions) did not yield sufficient signals for analysis.
The 142Nd/144Nd ratios in Table 1 are expressed in
part per million differences from the mean value
obtained for six measurements of the La Jolla Nd
standard measured in the same barrel as the samples
(Table 1 and Figure 2). External reproducibility on
repeated measurements of the 142Nd/144Nd ratio of
the La Jolla standard is 5 ppm, i.e., 1.141840 ±
0.000006 where the uncertainty is 2s of the popu-
lation. All the sample runs had internal run errors
larger than this external reproducibility as a result of
the smaller signal sizes (Table 1) used for the
sample measurements. As a result, the internal
errors for the sample data listed in Table 1 provide a
more reliable estimate of the uncertainty of the
sample data.

2.3. Results
[13] The 142Nd/144Nd ratios of the four samples
(Table 1) are within error the same as in the La
Jolla Nd standard (Figure 2). At least two of the
samples have 143Nd/144Nd higher than typically
observed in MORB and hence represent well the
high Sm/Nd ratio, incompatible element depleted
end‐member of the oceanic mantle. Nevertheless,
their 142Nd/144Nd ratios overlap within uncertainty
with all measured modern mantle‐derived rocks.
The constancy of 142Nd/144Nd in modern mantle
rocks in spite of the wide range in 143Nd/144Nd is
consistent with continuing differentiation of the
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mantle. Because of the short half‐life of 146Sm, the
variability in terrestrial 142Nd/144Nd must have
been generated by events that fractionated Sm/Nd
ratios within the first ∼300–400 Ma of Earth his-
tory. The 18–20 ppm elevated 142Nd/144Nd of the
modern mantle compared to chondrites requires a
minimum 147Sm/144Nd ratio of 0.2085 [Carlson
and Boyet, 2008] compared to the chondritic

value of 0.1960 [Bouvier et al., 2008]. A source
formed at 4.568 Ga with 147Sm/144Nd = 0.2085
would today have an "143Nd = +7.4. Consequently,
the higher "143Nd typical of MORB and particu-
larly of the oceanic peridotite clinopyroxenes
measured here suggests further increases of the Sm/
Nd ratio of the mantle after 146Sm was extinct. The
most likely process causing this increasing
incompatible element depletion of the mantle is the
extraction of the chemically complementary conti-
nental crust over the last 4 Ga of Earth history [e.g.,
Jacobsen and Wasserburg, 1980; Allegre et al.,
1983; Hofmann, 1988].

3. Conclusions

[14] Three ocean ridge peridotites and one pyrox-
enite have a superchondritic 142Nd/144Nd, in line
with what has been found to date in most other
accessible Earth reservoirs. We conclude that a
major Earth’s mantle reservoir, i.e., sub ocean ridge
mantle peridotites, has nonchondritic 142Nd/144Nd,
supporting the concept that either the BSE is not
chondritic, or that a subchondritic reservoir lies
hidden somewhere deep enough in the mantle that
it has not been sampled by surface volcanism.
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