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Abstract—System reliability is a fundamental requirement
of cyber-physical systems. Unreliable systems can lead to
disruption of service, financial cost and even loss of human life.
Typical cyber-physical systems are designed to process large
amounts of data, employ software as a system component,
run online continuously and retain an operator-in-the-loop
because of human judgment and accountability requirements
for safety-critical systems. This paper describes a data-centric
runtime monitoring system named ARIS (Autonomic Reliability
Improvement System) for improving the reliability of these types
of cyber-physical systems. ARIS employs automated online
evaluation, working in parallel with the cyber-physical system
to continuously conduct automated evaluation at multiple
stages in the system workflow and provide real-time feedback
for reliability improvement. This approach enables effective
evaluation of data from cyber-physical systems. For example,
abnormal input and output data can be detected and flagged
through data quality analysis. As a result, alerts can be sent to
the operator-in-the-loop, who can then take actions and make
changes to the system based on these alerts in order to achieve
minimal system downtime and higher system reliability. We
have implemented ARIS in a large commercial building cyber-
physical system in New York City, and our experiment has
shown that it is effective and efficient in improving building
system reliability.

Keywords-cyber-physical system; system reliability; reliabil-
ity engineering; data analysis; machine learning; data mining;
runtime environment; smart buildings

I. INTRODUCTION

System reliability is a fundamental requirement of cyber-
physical systems—i.e., systems featuring a tight combination
of and coordination between computational systems and
physical elements. These include systems that manage criti-
cal infrastructure for essential functions ranging from power
grids and transportation systems to biomedical instruments
and devices. Unreliable systems can result in disruption of
service, financial cost and in some cases even loss of human
life [1]. More importantly, cyber-physical systems cannot
be deployed for certain mission-critical applications such
as traffic control, automotive safety or healthcare without
improved reliability and predictability [2].

Typical cyber-physical systems are designed to meet the
following criteria: process large amount of data; employ
software as a system component; run online continuously;
maintain an operator-in-the-loop because of human judg-
ment and accountability requirements for safety-critical sys-

tems [3]. Systems that meet these criteria include building
systems, power grids, energy systems, transportation sys-
tems, defense systems, factory automation systems and cloud
computing data centers. These systems do not operate in a
controlled environment, and must be robust to unexpected
conditions and adaptable to subsystem failures [3]. It is
often not possible to perform robust testing of cyber-physical
systems prior to actual deployment because the physical
devices are so expensive that they cannot be replicated in
the testing lab, or at least not for large-scale operation. Thus,
it is imperative to have an online quality assurance process
that can continuously evaluate the live system during runtime
in the field to ensure that it is performing reliably and as
expected.

This paper describes a data-centric runtime monitoring
platform named ARIS (Autonomic Reliability Improvement
System). ARIS works in parallel with the cyber-physical sys-
tem, continuously conducting automated online evaluation
at multiple stages along the system workflow and providing
operator-in-the-loop feedback for reliability improvement.

One technique employed by ARIS is data quality analysis,
wherein computational intelligence is applied to evaluate
data quality in an automated and efficient way. ARIS also
makes use of self-funing, automatically self-managing and
self-configuring the evaluation system to ensure that it adapts
itself to both changes in the system and feedback from the
operator. This self-tuning continuously adapts the evaluation
system to ensure proper function, which leads to a more
robust evaluation system and improved system reliability.

In the following section, we describe our approach of
automated online evaluation, followed by the system ar-
chitecture in section III. In section IV, we describe our
empirical study. Finally, we compare some related work in
section V before concluding in section VI

II. APPROACH

As illustrated in Figure 1, automated online evaluation
works in parallel with the cyber-physical system to perform
continuous assessment at multiple stages along the system
workflow and provide operator-in-the-loop feedback for re-
liability improvement. This enables ongoing evaluation of
data from cyber-physical systems. For example, abnormal
input and output data can be detected and flagged based
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on data quality analysis. As a result, alerts can be sent out
that enable the operator-in-the-loop to take actions and make
changes to the system in order to minimize system downtime
and maximize system reliability.
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Figure 1. Automated online evaluation.

A. Data Quality Analysis

ARIS uses computational intelligence to perform data
quality analysis in an automated and efficient way and
thereby ensure that the running system performs as reliably
as possible. This computational intelligence is enabled by
machine learning, data mining, statistical and probabilistic
analysis and other intelligent techniques. In a cyber-physical
system, data collected from the system (e.g., sensor data
points, software bug reports, system status logs and error
reports) are stored in databases. ARIS analyzes these data
so that useful information on system reliability, such as
erroneous data or abnormal system states, can be obtained.
This reliability-related information is in turn directed to
system operators so that proper actions can be taken—in
some cases, proactively based on predictive results—to ensure
proper and reliable execution of the system. The following
are some data quality analysis techniques used by ARIS.

1) Thresholds: The thresholds define the normal working
range for specific data-points. If data readings exceed these
thresholds at either the lower or upper bound, the data record
will be flagged as anomalous and a corresponding warning
will be communicated back to the operator electronically.

2) Online Anomaly Detection for Single Data Points:
Anomaly detection is used to find data instances that are
unusual and do not fit any established pattern. It concentrates
on modeling normal behavior in order to identify atypical
data-points. For the cyber-physical systems of interest in this
study, time-series data usually arrive continuously in parallel
at a varied pace. This component processes the continuously
updated data-streams to detect anomalies for single data-
points, using a customized incremental Local Outlier Factor
(LOF) algorithm [4]. The algorithm uses k-nearest neighbor
on each inserted data record to instantly compute LOF value,

which is the degree to which a data record represents an
outlier or an indicator of abnormality. A sudden increase in
LOF value indicates that a data record is likely to be an
outlier. LOF values for existing data records can be updated
on the fly if necessary. Because each data series is for an
individual data source with low data dimensionality, such as
a sensor’s reading of (time, value) tuples, the incremental
LOF algorithm is computationally efficient.

Furthermore, multiple LOF value time series can be pro-
cessed for different data sources and displayed in parallel via
sparkline graph, a type of information graphic characterized
by its small size and high data density [5], for more fine-
grained checks. As shown in Figure 2, data series B and C
both experience a sudden increase of LOF value at around
the 38th hour after the start of observation. This spike
indicates a strong likelihood of a data anomaly at that time-
point. This visualization component provides an easy way
to obtain additional verification of a data anomaly. It is
also a useful communication channel to help the operator
understand where issues are arising.
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Figure 2. LOF value time series displayed using sparkline graph.

3) Data Anomaly Diagnosis Using Machine Learning
Classification: After a data anomaly is detected, further
automated diagnosis or reasoning is needed to infer what
physical and computational/software component the data
anomaly relates to, what reliability issue this anomaly might
cause, and the recommended action (or work order) for the
operator to take in order to correct the problem. This can be
solved as a supervised learning problem and a classification
model trained on existing data can predict unknown values
(i.e., the component having issues and the corresponding
corrective/preventive action).

We used Support Vector Machines (SVMs) [6], [7] as
the classifier. SVMs formulate the classification modeling
process as a quadratic minimization problem and find hy-
perplanes in a high-dimensional space that separate data
instances of different categories while maximizing the mar-
gins between categories. First, a set of historic data records
(e.g., each one with N attributes) is used as training data
to build a linear SVM model as a classifier. For a new
data record with one unknown data field A (i.e., N — 1
attributes available and one attribute or class label unknown),



the trained SVM model and the available N — 1 attributes
are used to predict the value of the unknown A field for
this data record. In cases where multiple data fields need
to be determined for a data record (e.g., N — M attributes
available and M attributes unknown), the SVM model and
the available N — M available attributes are used to predict
the unknown fields one by one.

Using SVM classification as the basis for data anomaly
diagnosis has some advantages over rule-based reasoning
systems. SVM classification does not require a lot of prior
knowledge of the system because it works solely based
on the data itself. Rule-based systems require derivation
of the rules, including both forwarding-chaining rules (e.g.,
IF something happens THEN do something) and backward-
chaining rules (e.g., IF I want to achieve this goal THEN
something has to happen), based on extensive heuristics
and in many cases expert domain knowledge. Also, SVM
classification is adaptive based on updated training data,
while rule-based logics are often rigid and not easy to
change. In some unexpected real-world situations, rule-based
systems are often unable to reach any conclusion whereas
machine-learning approaches may be able to derive partially
useful information for the operator, such as a rank list with
scores based on probability and susceptibility.

B. Self-Tuning

ARIS also makes use of self-tuning, an aspect of auto-
nomic computing [8] that automatically self-manages and
self-configures the evaluation system to ensure that it adapts
itself to changes in the system and feedback from the oper-
ator. This self-tuning is used to improve accuracy, efficiency
and robustness of data analysis, and also minimizes the
burden imposed on the operator.
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Figure 3. MIT self-tuning process.

As illustrated in Figure 3, self-tuning employs a Measure-
Identify-Tune (MIT) process in order to achieve the follow-
ing results:

« use performance metrics such as R? (coefficient of

determination), ROC (receiver operating characteristic)
and AUC (area under the curve) to measure and im-
prove accuracy of the data analysis models [9]

o use statistical trend detection and curve fitting, such
as Weibull distribution and parameters estimation [10],
[11], to reduce variability and eliminate overshoot

o prioritize updates from operators and adjust system
parameters such as set-points, thresholds and machine

learning model parameters when abnormal exogenous
situations happen in order to reduce false alarms

« use dynamic load balancing and failover switch, which
applies to the parallel processing of the large amount
of time series data coming from different data sources,
to maximize efficiency and reliability

III. ARCHITECTURE

The architecture of ARIS is illustrated as a seven-step
process in Figure 4. ARIS evaluates the cyber-physical
system via three stages of data quality analysis (steps 13):
first, evaluation of the input data; second, evaluation of
the data output; and third, evaluation of feedback from the
cyber-physical system.

The initial evaluation checks to see if the input data meets
the quality specifications pre-defined by the application
developer and the system operator. Examples of data quality
specification include data existence, up-to-date, conforming
to certain distribution, time-synchronization across different
sources, variation and pattern.

The output data evaluation checks the quality of the results
of the application. For example, for a machine learning-
based prediction system, data output quality relates to the
accuracy or confidence level of the prediction. For a non-
machine learning-based system, such as a building energy
management system, the quality of the data output relates to
the extent to which results can be used to guide subsequent
actions (e.g., building energy use adjustment).

The evaluation of the feedback from the cyber-physical
system checks the outcome resulting from the previous steps.
This evaluation is important to ensure that the data output
in fact leads to the desired system outcome.

In step 4, the results from the data quality analysis are di-
rected to a user interface for system operators, who may take
control or recovery actions when abnormal and erroneous
situations happen. These actions ensure proper execution of
the system and lead to improved system reliability.

At steps 5 and 6, the self-tuning component receives
feedback from both the operator-in-the-loop and changes in
the system.

Finally, in step 7, the self-tuning component self-manages
and self-configures the evaluation system based on the feed-
back from the operator and the changes in the system. This
self-tuning adapts the evaluation system to ensure proper
functioning, which leads to a more robust evaluation system
and improved system reliability.

To further illustrate the proposed architecture, here is
an example use case wherein multiple steps and actions
were managed using ARIS. A Building Management System
(BMS) is a type of cyber-physical system consisting of
both software and hardware components that controls and
monitors a building’s mechanical and electrical equipment,
such as ventilation, lighting, power systems, fire systems
and security systems. The building energy control system
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is an important component of the BMS that reads data
feeds representing internal and exogenous conditions (e.g.,
temperature, humidity, electrical load, peak load, fluctuating
electricity pricing and building work schedule) and takes
control actions (e.g., adjust lighting, turn on/off the air-
conditioning and shut off partial elevators) accordingly.
Building operators usually have the ability to change or
override control actions taken by the BMS to accommodate
special situations such as severe weather or changes in the
building’s work schedule.

To ensure that the building energy control system works
reliably 24x7, we evaluated input data, output data (i.e.,
control actions) and the result of actions taken using ARIS.
In one example scenario, a malfunction of the digital ther-
mostat caused a temperature reading to stay at a fixed
level without changing for a long time. The building energy
control system was designed to accept any value within a
certain temperature range and would not be able to handle
this type of input data error (i.e., constant temperature). In
contrast, ARIS’s intelligent data quality analysis component
can quickly detect this type of input data error (Figure 4, step
1), and give feedback to the building operator (Figure 4, step
4). After receiving an automated notification from ARIS, the
building’s operator can then take appropriate action.

In another example scenario, building management no-
tifies the operator of the need to keep the building fully
functioning for a special, one-time-only event during the
coming weekend. The operator then notifies ARIS about the
abrupt change (Figure 4, step 5). The self-tuning component
of the ARIS takes this signal and uses it to adjust data quality

analysis (Figure 4, steps 6 and 7), thus avoiding possible
false-positive system warnings due to the abnormal energy
use data during this specific weekend.

IV. EMPIRICAL STUDY

A. Implementation

We have developed a prototype ARIS application. As
shown in Figure 5, the software consists of a secure IP-based
data connector, a data quality analysis and self-tuning mod-
ule with back-end database, several feedback mechanisms
(including alert emails, warning messages, and reports, ) and
a user interface enhanced by real-time visualization.
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Figure 5.

B. Real-World Experiment

We implemented the prototype ARIS application at 345
Park Avenue, a 634 ft (193 m) tall skyscraper in midtown
Manhattan, New York City. Designed by Emery Roth &
Sons and completed in 1969, the building has 44 floors
and more than 2 million square feet of tenant space. Ap-
proximately 5,000 people work in the building, and there
are about 1,000 visitors to the building daily. Rudin Man-
agement, one of the largest private real estate companies
in New York City, is the building owner and property
manager. Building management has installed a state-of-the-
art building energy monitoring system and BMS, which
provided a live building dataset for ARIS.

As shown in Figure 6, ARIS worked with the BMS in
parallel and processed the live data feeds via a remote
data link. In our experiments, we connected ARIS to the
building’s various intelligent systems directly using a secure
IP-based data connector. This setup simplifies the data
collection and communication processes.

ARIS application,
BMS database, Web servers

{
Building - pata Points

Figure 6. Experimental setup.



C. Experimental Results

Our experiments showed that ARIS is effective in ensuring
that building systems operate reliably online continuously
and in real-time. ARIS efficiently identified a large number
of suspicious data anomalies obtained from 2,480 building
data sources, mostly sensors, over a six-month period (De-
cember 2011 to May 2012). We investigated the relevant sen-
sors and SCADA (supervisory control and data acquisition)
data sources with the building operators and engineers. The
results confirmed that the majority of the issues identified
were in fact caused by system failures such as BMS software
errors or equipment malfunctions. Figures 7-9 present some
example time-series visualization charts for selected data
sources.

Figure 7 shows out-of-bounds supply air temperatures
that are lower than 50 °F or higher than 80 °F. After these
abnormal behaviors are detected and flagged by ARIS,
the building’s operator can take proper control actions to
maintain normal operation of the building’s cooling system
and ensure that service will not be disrupted. Through its
SVM classification-based diagnosis, ARIS also recommends
corrective actions to the operator as part of a work order
management system.
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Figure 7. Supply air temperature time series.

As shown in Figures 8-9, the drop in maximum energy
demand and steam demand around January 1 coincide with
the building system shutdown during New Year’s Eve and
subsequent reactivation after the holiday. This kind of dip
would normally be detected as anomalous behavior and
a warning would be triggered and sent to building man-
agement from the automated online evaluator. However,
the self-tuning capability allows the building’s operator to
notify ARIS about this abrupt schedule change to avoid the
generation of unnecessary warnings.

V. RELATED WORK

Reliability is widely recognized as a critical requirement
for cyber-physical systems. In his paper “Cyber physical
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Figure 9. Maximum steam demand time series.

systems: Design challenges”, Lee described how the ex-
pectation of reliability in cyber-physical system will only
increase, and concluded that cyber-physical system will not
be deployed into certain mission-critical applications such
as traffic control, automotive safety and health care without
improved reliability and predictability [2]. The CPS steering
group stated in the executive summary of its 2008 Summit
report that architectures and tools are needed to build reliable
and resilient cyber-physical systems [3].

Some prior research has been done on data quality anal-
ysis and self-tuning. Gegick et al. performed text mining of
bug reports to identify security issues [12]. Sullivan demon-
strated that probabilistic reasoning and decision-making
techniques can be used as the foundation for an effective,
automated approach to software tuning [13]. Kaiser et al.
have retrofitted autonomic computing onto legacy systems
externally, without any need to understand or modify the
code and, in many cases, even when it is impossible to
recompile [14], [15].

Some prior research has also been done on smart building
systems. A measurement and actuation profile for building
information based on sensor systems was discussed in Ref.
[16]. Their work is complementary to our approach. Schein
and Bushby developed a rule-based system-level fault de-
tection and diagnostic method for HVAC systems [17]. As
described in section II-A3 above, the machine learning-based
approach has certain advantages over rule-based systems.



VI. CONCLUSION

This paper presents a data-centric runtime monitoring
system named ARIS that performs data quality analysis
using computational intelligence and self-tuning techniques
to improve system reliability for cyber-physical systems
that process large amounts of data, employ software as a
system component, run online continuously and maintain
an operator-in-the-loop. Our experiments with ARIS in a
large commercial building in New York City have demon-
strated that this approach is effective and efficient. The
data-dependence of this system makes it easily applicable
to different types of cyber-physical systems, and the open
expandable architecture also enables the incorporation of
new data quality analysis and self-tuning techniques.

ACKNOWLEDGMENT

The authors would like to thank Dr. Christian Murphy
and Dr. Roger Anderson for their comments, and Rudin
Management Company for providing the experimental en-
vironment for this research. Wu and Kaiser are members
of the Programming Systems Laboratory, funded in part by
NSF CCF-1161079, NSF CNS-0905246, and NIH 2 U54
CA121852-06. Wu is also a member of the Energy Research
Group in the Center for Computational Learning Systems,
supported in part by General Electric, FedEx, Consolidated
Edison, and Rudin Management Company.

REFERENCES

[1] S. M. Amin, “U.S. electrical grid gets less reliable,” IEEE
Spectrum, p. 80, January 2011.

[2] E. A. Lee, “Cyber physical systems: Design challenges,”
in International Symposium on Object/Component/Service-
Oriented Real-Time Distributed Computing (ISORC),

May 2008, invited Paper. [Online].  Available:
http://chess.eecs.berkeley.edu/pubs/427.html
[3] CPS Steering Group, “Cyber-physical systems execu-

tive summary,” in CPS Summit 2008, March 2008,
http://varma.ece.cmu.edu/Summit/.

[4] D. Pokrajac, A. Lazarevic, and L. J. Latecki, “Incremental

local outlier detection for data streams,” in Proceedings of

IEEE Symposium on Computational Intelligence and Data
Mining, 2007, pp. 504-515.
[5] E. Tufte, Beautiful Evidence. Graphics Press, 2006.

[6] V. N. Vapnik, The nature of statistical learning theory. New
York: Springer-Verlag, 1995.

[7] C. Cortes and V. Vapnik, “Support-vector networks,” in Ma-
chine Learning. Springer, 1995, p. 20.

[8] IBM, “Autonomic computing,” 2011, available at

http://www.research.ibm.com/autonomic/.

91

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(7]

L. Wu, G. Kaiser, C. Rudin, and R. Anderson, “Data quality
assurance and performance measurement of data mining for
preventive maintenance of power grid,” in Proceedings of the
17th ACM SIGKDD Workshop on Data Mining for Service
and Maintenance, August 2011.

L. Wu, B. Xie, G. Kaiser, and R. Passonneau, “BugMiner:
Software reliability analysis via data mining of bug reports,”
in Proceedings of the 23th International Conference on Soft-
ware Engineering and Knowledge Engineering (SEKE), July
2011.

S. E. Rigdon and A. P. Basu, “Estimating the intensity
function of a Weibull process at the current time: Failure
truncated case,” in Journal of Statistical Computation and
Simulation (JSCS), vol. 30, 1988, pp. 17-38.

M. Gegick, P. Rotella, and T. Xie, “Identifying security
bug reports via text mining: An industrial case study,” in
Proceedings of the 7th IEEE Working Conference on Mining
Software Repositories (MSR), Cape Town, May 2010, pp. 11—
20.

D. G. Sullivan, “Using probabilistic reasoning to automate
software tuning,” Harvard University, Tech. Rep., September
2003.

G. Kaiser, “Autonomizing legacy systems,” in 2002 IBM Al-
maden Institute Symposium on Autonomic Computing, April
2001.

J. Parekh, G. Kaiser, P. Gross, and G. Valetto, “Retrofitting
autonomic capabilities onto legacy systems,” Journal of Clus-
ter Computing, vol. 9, no. 2, pp. 141-159, April 2006.

S. Dawson-Haggerty, X. Jiang, G. Tolle, J. Ortiz, and
D. Culler, “sMAP - a simple measurement and actuation
profile for physical information,” in Proceedings of the Sth
ACM Conference on Embedded Networked Sensor Systems
(SenSys’10), November 2010.

J. Schein and S. T. Bushby, “A hierarchical rule-based
fault detection and diagnostic method for HVAC systems,”
HVAC&R Research, vol. 12, no. 1, January 2006.



