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ABSTRACT

Modeling Strategies for Large Dimensional

Vector Autoregressions

Pengfei Zang

The vector autoregressive (VAR) model has been widely used for describing the

dynamic behavior of multivariate time series. However, fitting standard VAR models

to large dimensional time series is challenging primarily due to the large number

of parameters involved. In this thesis, we propose two strategies for fitting large

dimensional VAR models. The first strategy involves reducing the number of non-

zero entries in the autoregressive (AR) coefficient matrices and the second is a method

to reduce the effective dimension of the white noise covariance matrix.

We propose a 2-stage approach for fitting large dimensional VAR models where

many of the AR coefficients are zero. The first stage provides initial selection of non-

zero AR coefficients by taking advantage of the properties of partial spectral coherence

(PSC) in conjunction with BIC. The second stage, based on t-ratios and BIC, further

refines the spurious non-zero AR coefficients post first stage. Our simulation study



suggests that the 2-stage approach outperforms Lasso-type methods in discovering

sparsity patterns in AR coefficient matrices of VAR models. The performance of our

2-stage approach is also illustrated with three real data examples.

Our second strategy for reducing the complexity of a large dimensional VAR model

is based on a reduced-rank estimator for the white noise covariance matrix. We

first derive the reduced-rank covariance estimator under the setting of independent

observations and give the analytical form of its maximum likelihood estimate. Then

we describe how to integrate the proposed reduced-rank estimator into the fitting of

large dimensional VAR models, where we consider two scenarios that require different

model fitting procedures. In the VAR modeling context, our reduced-rank covariance

estimator not only provides interpretable descriptions of the dependence structure of

VAR processes but also leads to improvement in model-fitting and forecasting over

unrestricted covariance estimators. Two real data examples are presented to illustrate

these fitting procedures.
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Chapter 1

Introduction

Large dimensional time series are encountered in many fields, including finance (Tao

et al. 2011), environmental science (Lam and Yao 2011), biological study (Holter

et al. 2001) and economics (Song and Bickel 2011). Statistical models have proven

indispensable for analyzing the temporal evolution of such time series. However, fit-

ting standard time series models to large dimensional series presents many challenges

primarily due to the large number of parameters involved. For example, in a vector

autoregressive (VAR) model, the number of parameters grows quadratically with the

dimension of the series. As a result, standard VAR models are rarely applied to time

series with more than 10 dimensions (Fan et al. 2011). Therefore complexity reduc-

tion becomes an important aspect in fitting time series models to large dimensional

series.

In the literature, there are two major directions for reducing the complexity of

time series models: the first direction is to reduce the number of free parameters

involved; and the second direction is to reduce the dimension of the original series

and model the lower-dimensional process. The focus of this thesis will be on the first
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direction under the context of vector autoregressive (VAR) modeling. Specifically,

we propose strategies for fitting large dimensional VAR models, where the number of

free parameters involved is effectively reduced. In Section 1.1, we provide a review

of existing approaches for fitting large dimensional time series models and in Section

1.2 we provide an overview of our VAR model fitting strategies.

1.1 Literature review

Suppose {Yt} = {(Yt,1, Yt,2, . . . , Yt,K)
′} is a K-dimensional time series and T observa-

tions Y1, . . . , YT from the series are available. When the dimension K is large, fitting

time series models to {Yt} is challenging and reducing the complexity of the model

becomes an important aspect of the model fitting procedure.

One major direction for complexity reduction of time series models is to reduce the

number of parameters via variable selection. We use the vector autoregressive (VAR)

model as an example to review different variable selection methods for time series

models. The vector autoregressive model of order p (VAR(p)) for the K-dimensional

series {Yt} is given by

Yt = µ+

p∑
k=1

AkYt−k + Zt, (1.1)

where µ is a K× 1 vector of intercepts; A1, . . . , Ap are real-valued K×K matrices of

autoregressive (AR) coefficients; and {Zt} is a sequence of iid K×1 noise with mean 0

and covariance matrix ΣZ . In the VAR model setup, current values of each marginal

series of {Yt} are influenced by its own lagged values, as well as lagged values of other

marginal series, with additive noise superimposed. Such a setup is well-suited for

modeling the joint evolution of multiple series and therefore VAR models have been

applied in many fields, such as political science (Freeman et al. 1989), meteorology
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(Wilson 2010), macroeconomics (Sims 1980; Stock and Watson 2001), policy analysis

(Bernanke et al. 2005), biological science (Holter et al. 2001) and finance (Eun and

Shim 1989).

The K-dimensional VAR(p) model (1.1), when fully-parametrized, contains K2p

AR parameters. When the dimension K is small (e.g., K ≤ 5), the AR coefficient

matrices A1, . . . , Ap can be efficiently estimated via least squares or maximum likeli-

hood (when {Yt} is assumed to be Gaussian). When K is large (or even moderate),

however, the number of AR parameters K2p becomes comparable to or exceeds the

sample size. As a result, least squares or maximum likelihood estimates of the AR

parameters are not well behaved since there may exist a large number of spurious

AR coefficient estimates, which can weaken the prediction performance and the in-

terpretability of fitted VAR models. This fact limits the applicability of VAR models

to large dimensional time series. Therefore different methods have been proposed

to reduce the number of AR parameters by setting many entries in the AR coeffi-

cient matrices to zero. To determine which AR coefficients are zero, one possibility is

based on hypothesis testing, see e.g. Fujita et al. (2007); Opgen-Rhein and Strimmer

(2007)). For large dimensional VAR models, a large number of null hypotheses will

be involved and the issue of multiple comparison needs to be addressed. Another

possibility for determining non-zero AR coefficients is to reformulate the VAR model

(1.1) as a linear regression problem
Y

′
p+1

Y
′
p+2

...

Y
′
T

 =


µ

′

µ
′

...

µ
′

+


Y

′
p Y

′
p−1 · · · Y

′
1

Y
′
p+1 Y

′
p · · · Y

′
2

...
...

...
...

Y
′
T−1 Y

′
T−2 · · · Y

′
T−p




A

′
1

A
′
2

...

A
′
p

+


Z

′
p+1

Z
′
p+2

...

Z
′
T

 ,

where current values of the time series are treated as the response variable and lagged
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values are treated as the explanatory variables. Then penalized regression can be ap-

plied to select non-zero AR coefficients. In the literature, one of the most commonly-

used penalties for the AR coefficients in this context is the Lasso penalty proposed

by Tibshirani (1996) and its variants tailored for the VAR modeling purpose, see

e.g. Valdés-Sosa et al. (2005); Hsu et al. (2008); Arnold et al. (2008); Lozano et al.

(2009); Haufe et al. (2010); Shojaie and Michailidis (2010); Song and Bickel (2011).

The Lasso method shrinks the AR coefficients towards zero by minimizing a target

function, which is the sum of a loss function and a l1 penalty on the AR coefficients,

and it has the advantage of performing model selection and parameter estimation

simultaneously. However there are also disadvantages in using Lasso in the context of

VAR modeling. First, unlike linear regression models, the choice of the loss function

between the sum of squared residuals and the minus log likelihood will affect the re-

sulted VAR model even if the multivariate series {Yt} is Gaussian. This is because the

noise covariance matrix ΣZ in (1.1) is taken into account in the likelihood function of

a Gaussian VAR series but not in the sum of squared residuals. We notice that this

issue of choosing the loss function sometimes is not addressed in fitting Lasso-VAR

models. For example, Arnold et al. (2008); Lozano et al. (2009); Haufe et al. (2010);

Shojaie and Michailidis (2010); Song and Bickel (2011) all used the sum of squared

residuals as the loss function and did not consider the possibility of choosing the

minus log likelihood as the loss function. Second, Lasso has a tendency to over-select

the number of non-zero AR coefficients and this phenomenon has been reported in

various numerical results, see e.g. Arnold et al. (2008); Lozano et al. (2009); Shojaie

and Michailidis (2010). The over-selected model complexity can lead to large mean

squared error of the AR coefficient estimates and weakened interpretability of the

VAR model. Third, in applying Lasso, the VAR model is reformulated as a linear

regression problem. Such a formulation ignores the temporal dependence in the time
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series. Song and Bickel (2011) give a theoretical discussion on the consequences of

applying Lasso directly in VAR models without taking into account the temporal

dependence between the response and the explanatory variables.

Fitting the VAR model (1.1) also involves estimating the noise covariance matrix

ΣZ . An estimate of ΣZ is needed for exploring the dependence structure of the VAR

process (Demiralp and Hoover 2003; Moneta 2004) while an estimate of Σ−1Z is re-

quired in constructing confidence intervals for AR coefficient estimates or computing

the mean squared error of VAR forecasting (Lütkepohl 1993). A natural estimator

for ΣZ in VAR models is the sample covariance matrix of the residuals from fitting an

autoregression (Lütkepohl 1993). To this end, the residuals are treated as indepen-

dent samples, conditioned on the AR coefficient estimates. Therefore estimating ΣZ

in VAR models can be cast as a covariance estimation problem where independent

observations are available. Estimating a K ×K covariance matrix from independent

observations is challenging for largeK since the number of parameters to be estimated,

which is K(K+1)/2, grows quadratically in the dimension K. The sample covariance

matrix, which serves as a natural estimator, is known to be severely ill-conditioned

for large dimension. As a result, various methods are proposed for estimating large

dimensional covariance matrices. In the literature, there exist three main approaches

for covariance estimation under large dimensionality. The first is the shrinkage ap-

proach, where the covariance estimator is obtained by shrinking the sample covariance

matrix towards a pre-specified covariance structure (Ledoit and Wolf 2004; Schäfer

and Strimmer 2005); the second is the regularization approach, where the covariance

estimator is derived based on regularization methods, such as banding (Bickel and

Levina 2008), thresholding (El Karoui 2008) and penalized estimation (Huang et al.

2006); and the third is the structure approach, where structural constraints, such as

factor structures (Tipping and Bishop 1999) or autoregressive structures (Daniels and
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Kass 2001), are imposed to reduce the effective dimension of the covariance estima-

tor. In the context of VAR modeling, these covariance estimators can be applied by

viewing the residuals from the fitted autoregression, conditioned on the AR coefficient

estimates, as independent samples from a multivariate distribution with covariance

matrix ΣZ .

Another major direction for reducing the complexity of time series models is via

dimension-reduction of the original series, where subsequent analysis can be carried

out using the dimension-reduced process. One of the most frequently used methods

for time series dimension-reduction is via factor models. The factor model for the

K-dimensional time series {Yt} is given by

Yt = OXt + εt, (1.2)

where {Xt} = {(Xt,1, . . . , Xt,r)
′} is a r-dimensional unobserved series with (unknown)

r < K; O is a K × r matrix of unknown coefficients; and each εt = (εt,1, . . . , εt,K)
′

is a K-dimensional idiosyncratic error. In factor analysis, the r components of {Xt}

are referred to as factors and the matrix O is referred to as the factor loading. The

dimension-reduction of {Yt} is achieved in the sense that the dynamics of {Yt} is

explained by the evolution of a lower-dimensional process {Xt} and subsequent anal-

ysis can be applied to the dimension-reduced series {Xt}. For example, Pan and Yao

(2008) fitted a standard VAR model to the dimension-reduced factor process while

such VAR modeling is inappropriate for the original large dimensional series.

The traditional factor models, see e.g. Zellner (1970); Fama and French (1993),

are developed under the setting that the sample size T grows large while the dimen-

sion of the process K remains bounded. In addition, the following assumptions on

the dependence structures of the factors {Xt} and the errors {εt} are usually made

for traditional factor models: first, both the factors {Xt} and the errors {εt} are
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cross-sectionally uncorrelated; second, the factors {Xt} are independent with the er-

rors {εt}. With the recent availability of large dimensional time series data, new

results of factor models are developed under the setting where both the number of

observations and the dimension of the process are large (“large-T-large-K”). In ad-

dition, the aforementioned assumptions on the factors {Xt} and the errors {εt} in

traditional factor models appear to be too restrictive for many applications, especially

in economics and finance (Bai and Ng 2008). Therefore efforts have been made to

develop “large-T-large-K” factor models where those assumptions are relaxed. For

example, Bai and Ng (2002) allow weak serial and cross-sectional dependence for the

errors {εt}; and Pan and Yao (2008) consider including serial dependence between the

factors {Xt} and the errors {εt}. Estimation and inference of such “large-T-large-K”

factor models with less strict assumptions on the factors {Xt} and the errors {εt}

is an active research area (Bai and Ng 2002; Stock and Watson 2006; Lam and Yao

2011).

In the factor model (1.2), only the series {Yt} is observed while the loading matrix

O, the factors {Xt} and the errors {εt} are all unobserved and need to be estimated

from data. For the estimation of factor models, identification of the number of factors

r is a central problem. Under certain specific (but unusual) instances, factors can

be specified by taking advantage of expert knowledge, see e.g.Engle and Watson

(1981), but much more often the number of factors needs to be determined from

data. Different methods have been proposed to estimate the number of factors r in

large dimensional factor models. For example, Bai and Ng (2002) develop modified

versions of AIC- and BIC-type information criteria to determine r; Pan and Yao

(2008) identify r by embedding multivariate Portmanteau tests (Li and Mcleod 1981)

in a stepwise procedure of expanding the idiosyncratic error space; and Lam et al.

(2011) propose a ratio-based estimator for r based on an eigen-analysis of a matrix-



8

valued function of the autocovariance matrices of {Yt}. Once the number of factors

r is estimated, the factors {Xt} and the loading matrix O can be jointly estimated,

under additional identifying conditions, via the eigen-structure of {Yt}. For example,

Connor and Korajczyk (1986) and Bai and Ng (2002) identify the factors {Xt} from

a least squares perspective and their methods rely on the eigen-decomposition of

the covariance matrix of {Yt}; Lam and Yao (2011) and Lam et al. (2011) estimate

the factors {Xt} by performing an eigen-analysis on a matrix-valued function of the

autocovariance matrices of {Yt} at non-zero lags. A survey of recently developed

theories and methods for large dimensional factor models is given in Bai and Ng

(2008).

1.2 Overview of the thesis

In this thesis, we propose two strategies for fitting large dimensional VAR models.

The first strategy involves reducing the number of non-zero AR parameters and the

second is a method to reduce the effective dimension of the noise covariance matrix.

In Chapter 2, we propose a 2-stage approach for fitting large dimensional VAR

models, where many entries of the AR coefficient matrices A1, . . . , Ap are zero. The

first stage selects non-zero AR coefficients by screening pairs of distinct marginal

series that are conditionally correlated. The conditional correlation between marginal

series is quantified by the partial spectral coherence (PSC), a tool in frequency-domain

time series analysis. In conjunction with the PSC, the Bayesian information criterion

(BIC) is used in the first stage to determine the number of non-zero off-diagonal pairs

of AR coefficients. The VAR model fitted in the first stage may contain spurious

non-zero coefficients. To further refine the model, in the second stage, we propose a

screening strategy based on the t-ratios of the AR coefficient estimates and the BIC.
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In the simulation study in Section 2.4.1, our 2-stage approach outperforms Lasso-type

methods in discovering non-zero AR coefficients in VAR models. The performance of

the 2-stage approach is also illustrated with three real data examples in Section 2.4.2.

In Chapter 3, we consider a method of estimating the noise covariance matrix in a

large dimensional VAR model via reducing its effective dimension. We first propose

a reduced-rank covariance estimator under the setting of independent observations

and give the analytical form of its maximum likelihood estimate. The reduced-rank

estimator comes from a latent variable model for the vector observation and it can

be viewed as a structure covariance estimator (i.e., the third approach of covariance

estimation described in Section 1.1). The effective dimension of the reduced-rank co-

variance estimator is determined according to information criterion and can be much

lower than the dimension of the population covariance matrix. The reduced-rank

estimator is attractive since it is not only well-conditioned but also provides an inter-

pretable description of the covariance structure. We demonstrate, in the simulation

study in Section 3.3.1, that the reduced-rank covariance estimator outperforms two

competing shrinkage estimators in estimating large dimensional covariance structures.

Then we describe how to integrate the proposed reduced-rank covariance estimator

into the fitting of large dimensional VAR models, for which we consider two scenarios

that require different model fitting procedures. The first scenario is that there is no

constraint on the AR coefficients, for which the VAR model can be fitted using a

2-step method; while the second scenario is that there exist constraints on the AR

coefficients, for which the VAR model needs to be fitted by an iterative procedure.

Two real data examples are presented to illustrate these model fitting procedures in

Section 3.3.2. Results from the real data example suggest that using the reduced-rank

covariance estimator can lead to improvement in model-fitting and forecasting than

using unrestricted covariance estimators in large dimensional VAR modeling.
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Chapter 2

Sparse Vector Autoregressive

Modeling

2.1 Introduction

The vector autoregressive (VAR) model has been widely used for modeling the tempo-

ral dependence structure of a multivariate time series. Unlike univariate time series,

the temporal dependence of a multivariate series consists of not only the serial de-

pendence within each marginal series, but also the interdependence across different

marginal series. The VAR model is well suited to describe such temporal dependence

structures. However, the conventional VAR model can be saturatedly-parametrized

with the number of AR coefficients prohibitively large for high (and even moderate)

dimensional processes. This can result in noisy parameter estimates, unstable predic-

tions and difficult-to-interpret descriptions of the temporal dependence. To overcome

these drawbacks, in this chapter we propose a 2-stage approach for fitting sparse VAR

(sVAR) models in which many of the autoregressive (AR) coefficients are zero. Such
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sVAR models can enjoy improved efficiency of parameter estimates, better prediction

accuracy and more interpretable descriptions of the temporal dependence structure.

In the literature, a class of popular methods for fitting sVAR models is to re-formulate

the VAR model as a penalized regression problem, where the determination of which

AR coefficients are zero is equivalent to a variable selection problem in a linear re-

gression setting. One of the most commonly-used penalties for the AR coefficients

in this context is the Lasso penalty proposed by Tibshirani (1996) and its variants

tailored for the VAR modeling purpose, see e.g. Valdés-Sosa et al. (2005); Hsu et al.

(2008); Arnold et al. (2008); Lozano et al. (2009); Haufe et al. (2010); Shojaie and

Michailidis (2010); Song and Bickel (2011). The Lasso-VAR modeling approach has

the advantage of performing model selection and parameter estimation simultane-

ously. It can also be applied under the “large-p-small-n” setting. However, there are

also disadvantages in using this approach. First, Lasso has a tendency to over-select

the order of autoregression of VAR models and this phenomenon has been reported

in various numerical results, see e.g. Arnold et al. (2008); Lozano et al. (2009); Sho-

jaie and Michailidis (2010). Second, in applying the Lasso-VAR approach, the VAR

model is re-formulated as a linear regression model, where current values of the time

series are treated as the response variable and lagged values are treated as the ex-

planatory variables. Such a treatment ignores the temporal dependence in the time

series. Song and Bickel (2011) give a theoretical discussion on the consequences of

applying Lasso directly to the VAR model without taking into account the temporal

dependence between the response and the explanatory variables.

In this chapter, we develop a 2-stage approach of fitting sVAR models. The first

stage selects non-zero AR coefficients by screening pairs of distinct marginal series

that are conditionally correlated. To compute the conditional correlation between

component series, an estimate of the partial spectral coherence (PSC) is used in the
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first stage. PSC is a tool in frequency-domain time series analysis that can be used to

quantify direction-free conditional dependence between component series of a multi-

variate time series. An efficient way of computing a non-parametric estimate of PSC

is based on results of Brillinger (1981) and Dahlhaus (2000). In conjunction with the

PSC, the Bayesian information criterion (BIC) is used in the first stage to determine

the number of non-zero off-diagonal pairs of AR coefficients selected. The VAR model

fitted in the first stage may contain spurious non-zero coefficients. To further refine

the fitted model, we propose, in stage 2, a screening strategy based on the t-ratios of

the coefficient estimates as well as BIC.

The remainder of this chapter is organized as follows. In Section 2.2, we review

some results on the VAR model for multivariate time series and introduce the ba-

sic properties related to PSC. In Section 2.3, we describe a 2-stage procedure for

fitting sVAR models. Connections between our first stage selection procedure with

Granger causal models are give in Section 2.3.1. In Section 2.4.1, simulation results

are presented to compare the performance of the 2-stage approach with the Lasso-

VAR approach. In Section 2.4.2 the 2-stage approach is applied to fit sVAR models to

three real data examples: the first example is the Google Flu Trends data (Ginsberg

et al. 2009); the second example is a time series of concentration levels of air pollu-

tants (Songsiri et al. 2010); and the third example is concerned with squared stock

returns from S&P 500. Further discussion is contained in Section 2.5. Supplementary

material is given in the Appendix.



13

2.2 Sparse vector autoregressive (sVAR) models

Suppose {Yt} = {(Yt,1, Yt,2, . . . , Yt,K)
′} is a vector autoregressive process of order p

(VAR(p)), which satisfies the recursions

Yt = µ+

p∑
k=1

AkYt−k + Zt, t = 0,±1, . . . , (2.1)

where µ is a K× 1 vector of intercepts; A1, . . . , Ap are real-valued K×K matrices of

autoregressive (AR) coefficients; and {Zt} is a sequence of iid K × 1 Gaussian noise

with mean 0 and non-degenerate covariance matrix ΣZ . 1 We further assume that

the process {Yt} is causal, i.e., det(IK −
∑p

k=1Akz
k) 6= 0, for z ∈ C, |z| < 1, see e.g.

Brockwell and Davis (1991) and Reinsel (1997), which implies that Zt is independent

of Ys for s < t. Without loss of generality, we also assume that the vector process

{Yt} has mean 0, i.e., µ = 0 in (2.1).

The temporal dependence structure of the VAR model (2.1) is characterized by

the AR coefficient matrices A1, . . . , Ap. Based on T observations Y1, . . . , YT from

the VAR model, we want to estimate these AR matrices. However, a VAR(p) model,

when fully-parametrized, hasK2p AR parameters that need to be estimated. For large

(and even moderate) dimension K, the number of parameters can be prohibitively

large, resulting in noisy parameter estimates and difficult-to-interpret descriptions

of the temporal dependence structure. It is also generally believed that, for most

applications, the true model of the series is sparse, i.e., the number of non-zero AR

coefficients is small. Therefore it is preferable to fit a sparse VAR (sVAR) model in

which many of its AR parameters are zero. For this purpose we develop a 2-stage

approach of fitting such sVAR models. The first stage selects non-zero AR coeffi-

1In this chapter we assume that the VAR(p) process {Yt} is Gaussian. When {Yt} is non-
Gaussian, the 2-stage model fitting approach can still be applied, where now the Gaussian likelihood
is interpreted as a quasi-likelihood.
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cients by screening pairs of distinct marginal series that are conditionally correlated.

To compute direction-free conditional correlation between component series, we use

tools from the frequency-domain time series analysis, specifically the partial spectral

coherence (PSC). Below we introduce the basic properties related to PSC.

Let {Yt,i} and {Yt,j} (i 6= j) denote two distinct marginal series of the process

{Yt}, and {Yt,−ij} denote the remaining (K − 2)-dimensional process. To compute

the conditional correlation between two time series {Yt,i} and {Yt,j}, we need to adjust

for the linear effect from the remaining marginal series {Yt,−ij}. The removal of the

linear effect of {Yt,−ij} from each of {Yt,i} and {Yt,j} can be achieved by using results

of linear filters, see e.g. Brillinger (1981) and Dahlhaus (2000). Specifically, the

optimal linear filter for removing the linear effect of {Yt,−ij} from {Yt,i} is given by

the set of (K − 2)-dimensional constant vectors that minimizes the expected squared

error of filtering

{Dopt
k,i ∈ RK−2, k ∈ Z} := argmin

{Dk,i,k∈Z}
E(Yt,i −

∞∑
k=−∞

Dk,iYt−k,−ij)
2. (2.2)

The residual series from the optimal linear filter is defined as

εt,i := Yt,i −
∞∑

k=−∞

Dopt
k,i Yt−k,−ij.

Similarly, we use {Dopt
k,j ∈ RK−2, k ∈ Z} and {εt,j} to denote the optimal linear filter

and the corresponding residual series for another marginal series {Yt,j}. Then the

conditional correlation between {Yt,i} and {Yt,j} is characterized by the correlation

between the two residual series {εt,i} and {εt,j}. In particular, two distinct marginal

series {Yt,i} and {Yt,j} are conditionally uncorrelated after removing the linear effect of

{Yt,−ij} if and only if their residual series {εt,i} and {εt,j} are uncorrelated at all lags,

i.e., cor(εt+k,i, εt,j) = 0, for all k ∈ Z. In the frequency domain, {εt,i} and {εt,j} are



15

uncorrelated at all lags is equivalent to the cross-spectral density of the two residual

series, denoted by f εij(ω), is zero at all frequencies ω. Here the residual cross-spectral

density is defined by

f εij(ω) :=
1

2π

∞∑
k=−∞

γεij(k)e−ikω, ω ∈ (−π, π], (2.3)

where γεij(k) := cov(εt+k,i, εt,j). The cross-spectral density f εij(ω) reflects the condi-

tional (or partial) correlation between the two corresponding marginal series {Yt,i}

and {Yt,j}, given {Yt,−ij}. This observation leads to the definition of partial spectral

coherence (PSC), see e.g. Brillinger (1981); Brockwell and Davis (1991), between two

distinct marginal series {Yt,i} and {Yt,j}, which is defined as the scaled cross-spectral

density between the two residual series {εt,i} and {εt,j}, i.e.,

PSCij(ω) :=
f εij(ω)√

f εii(ω)f εjj(ω)
, ω ∈ (−π, π]. (2.4)

Brillinger (1981) showed that the residual cross-spectral density f εij(ω) can be com-

puted from the spectral density fY (ω) of the process {Yt} via

f εij(ω) = fYii (ω)− fYi,−ij(ω)fY−ij,−ij(ω)−1fY−ij,j(ω), (2.5)

which involves inverting a (K − 2)× (K − 2) dimensional matrix, i.e., fY−ij,−ij(ω)−1.

Therefore using (2.5) to compute the PSCs for all pairs of distinct marginal series of

{Yt} requires
(
K
2

)
such matrix inversions, which can be computationally challenging

for a large dimension K. Dahlhaus (2000) proposed a more efficient method to si-

multaneously compute the PSCs for all
(
K
2

)
pairs through the inverse of the spectral

density of the process {Yt}, which is defined as gY (ω) := fY (ω)−1. Let gYii (ω), gYjj(ω)

and gYij (ω) denote the ith diagonal, the jth diagonal and the (i, j)th entry of gY (ω),

respectively. Then the partial spectral coherence between {Yt,i} and {Yt,j} can be
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computed as follows

PSCij(ω) = −
gYij (ω)√

gYii (ω)gYjj(ω)
, ω ∈ (−π, π]. (2.6)

Now the computation of all
(
K
2

)
PSCs using (2.6) requires only one matrix inversion

of the K ×K dimensional matrix fY (ω). From (2.6), it also follows that

{Yt,i} and {Yt,j} (i 6= j) are conditionally uncorrelated (2.7)

if and only if gYij (ω) = 0, for all ω ∈ (−π, π].

In other words, the inverse spectral density gY (ω) encodes the pairwise conditional

correlation between the marginal series of {Yt}. This generalizes the problem of co-

variance selection in which independent samples are available, see e.g. Dempster

(1972); Friedman et al. (2008). Covariance selection is concerned about studying

the conditional relationship between dimensions of a multivariate Gaussian distribu-

tion by locating zero entries in the inverse covariance matrix. For example, suppose

X := (X1, . . . , XK)
′

follows a K-dimensional Gaussian distribution N(0,ΣX). It is

known that two distinct dimensions of X, say Xi and Xj (i 6= j), are conditionally

independent given the other (K− 2) dimensions X−ij, if and only if the (i, j)th entry

in the inverse covariance matrix Σ−1X is zero, i.e.,

Xi and Xj (i 6= j) are conditionally independent iff Σ−1X (i, j) = 0. (2.8)

If the process {Yt} consists of independent replicates of a Gaussian distribution

N(0,ΣY ), then its spectral density fY (ω) = 1
2π

ΣY remains constant over ω ∈ (−π, π]

and (2.7) becomes,

{Yt,i} and {Yt,j} (i 6= j) are conditionally uncorrelated iff Σ−1Y (i, j) = 0, (2.9)
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which coincides with (2.8). Therefore selection of conditionally uncorrelated series us-

ing the inverse spectral density contains the covariance selection problem as a special

case.

2.3 A 2-stage approach of fitting sVAR models

In this section, we describe a 2-stage approach of fitting sVAR models. The first

stage of the approach takes advantage of (2.7) and screens out the pairs of marginal

series that are conditionally uncorrelated. For such pairs we set the corresponding

AR coefficients to zero for each lag. However, the model fitted in the first stage may

still contain spurious non-zero AR coefficients. To address this possibility, a second

stage is used to refine the model further.

2.3.1 Stage 1: selection

As we have shown, a zero PSC indicates that the two corresponding marginal series

are conditionally uncorrelated. In the first stage of our approach, we use the infor-

mation of pairwise conditional uncorrelation to reduce the complexity of the VAR

model. In particular, we propose to set the AR coefficients between two conditionally

uncorrelated marginal series to zero, i.e.,

Ak(i, j) = Ak(j, i) = 0 for i 6= j, k = 1, . . . , p (2.10)

if {Yt,i} and {Yt,j} are conditionally uncorrelated,

where the latter is equivalent to PSCij(ω) = 0 for ω ∈ (−π, π]. From (2.10) we can

see that the modeling interest of the first stage is whether or not the AR coefficients

belonging to a pair of marginal series at all lags are selected, rather than the selection
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of an individual AR coefficient. We point out that our proposed connection from

zero PSCs to zero AR coefficients, as described by (2.10), may not be exact for some

examples. However, numerical results suggest that our 2-stage approach is still able

to achieve well-fitted sVAR models for such examples. We will return to this point

in Section 2.5.

In order to set a group of AR coefficients to zero as in (2.10), we need to find

the pairs of marginal series for which the PSC is identically zero. Due to sampling

variability, however, the estimated PSC, denoted by ˆPSCij(ω) for the pair of series

{Yt,i} and {Yt,j}, will not be exactly zero even when the two corresponding marginal

series are conditionally uncorrelated. To deal with this issue, we rank the estimated

PSCs based on their evidence to be non-zero and decide a cutoff point that separates

non-zero PSCs from zero PSCs. Since the estimate ˆPSCij(ω) depends on the frequency

ω, we need a quantity to summarize its departure from zero over different frequencies.

As in Dahlhaus et al. (1997) and Dahlhaus (2000), we use the supremum of the squared

modulus of the estimated PSC, i.e.,

Ŝij := sup
ω
| ˆPSCij(ω)|2, (2.11)

as the summary statistic, where the supremum is taken over the Fourier frequencies

{2πk/T : k = 1, . . . , T}. A large value of Ŝij indicates that the two marginal series

{Yt,i} and {Yt,j} are likely to be conditionally correlated. Therefore we can create

a sequence Q1 of the
(
K
2

)
pairs of distinct marginal series by ranking each pair’s

summary statistic (2.11) from highest to lowest. In other words, the sequence Q1

ranks the
(
K
2

)
pairs of marginal series based on their evidence to be conditionally

correlated and thereby, according to (2.10), prioritizes the way in which non-zero

coefficients are added into the VAR model. Based on the sequence Q1, we also need to

determine two parameters to fully specify the VAR model: the order of autoregression
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p and the number of top pairs in Q1, denoted by M , that are selected into the VAR

model. For the (K−1)K
2
− M pairs not selected, their corresponding groups of AR

coefficients are set to zero. The two parameters (p,M) control the complexity of the

VAR model as the number of non-zero AR coefficients is (K + 2M)p. We use the

BIC (Schwarz (1978)) to simultaneously choose the values of these two parameters.

The BIC is computed as,

BIC(p,M) = −2 logL(Â1, . . . , Âp, Σ̂Z) + log T · (K + 2M)p, (2.12)

where L(Â1, . . . , Âp, Σ̂Z) is the maximized likelihood of the VAR model. To compute

L(Â1, . . . , Âp, Σ̂Z), we use results on the constrained maximum likelihood estimation

of VAR models as given in Lütkepohl (1993). Details of the estimation procedure can

be found Appendix 2.6.1.

Restricting the two parameters p and M to take values in pre-specified ranges P

and M, respectively, where M is usually specified as M = {0, 1, . . . , K(K−1)/2}, the

steps of stage 1 can be summarized as follows.

Step 1. Estimate the PSC for allK(K−1)/2 pairs of distinct marginal series by inverting

a non-parametric estimate of the spectral density 2 and applying equation (2.6).

Step 2. Construct a sequence Q1 of the K(K − 1)/2 pairs of distinct marginal series by

ranking each pair’s summary statistic Ŝij (2.11) from highest to lowest.

Step 3. For each (p,M) ∈ P×M, set the order of autoregression to p and select the top

M pairs in the sequence Q1 into the VAR model, which specifies the parameter

constraint on the AR coefficients. Conduct parameter estimation under this

constraint using the results in Appendix 2.6.1 and compute the corresponding

BIC(p,M) according to (2.12).
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Step 4. Choose (p̃, M̃) that gives the minimum BIC value over P×M.

The model obtained in the first stage contains (K+2M̃)p̃ non-zero AR coefficients.

If only a small proportion of the pairs of marginal series are selected, i.e., M̃ <<

K(K − 1)/2, (K + 2M̃)p̃ can be much smaller than K2p̃, which is the number of AR

coefficients in a fully-parametrized VAR(p̃) model.

In the first stage we execute group selection of AR coefficients by using PSC in

conjunction with BIC. This use of the group structure of AR coefficients effectively

reduces the number of candidate models to be examined in the first stage. Similar

use of the group structure of AR coefficients has also been employed in other settings,

one of which is to determine the Granger causality between time series. The concept

of Granger causality was first introduced by Granger (1969) in econometrics. It is

shown that, see e.g. Lütkepohl (1993), a Granger causal relationship can be examined

by fitting VAR models to the multivariate time series in question, where non-zero

AR coefficients indicate Granger causality between the corresponding series. In the

literature, l1-penalized regression (Lasso) has been widely used to explore sparsity

in the pattern of Granger causal relationship by shrinking AR coefficients to zero,

see e.g. Arnold et al. (2008); Shojaie and Michailidis (2010). In particular, Lozano

et al. (2009) and Haufe et al. (2010) proposed to penalize groups of AR coefficients

simultaneously, for which their use of the group structure of AR coefficients is similar

to (2.10). In spite of their common purpose of fitting sparse VAR models, simulation

results in Section 2.4.1 demonstrate the advantage of using PSC in conjunction with

BIC over Lasso in discovering sparsity in AR coefficients. Detailed discussion on

using VAR models to determine Granger causality can be found in Granger (1969);

2Here we use the periodogram smoothed by a modified Daniell kernel, see e.g. Brockwell and
Davis (1991), as the non-parametric estimate of the spectral density. Alternative spectral density
estimators, such as the shrinkage estimate proposed by Böhm and von Sachs (2009), can also be
applied.
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Lütkepohl (1993); Arnold et al. (2008).

2.3.2 Stage 2: refinement

The first stage selects AR coefficients related to the most conditionally correlated pairs

of marginal series with the help of PSC. However, it may also have introduced spurious

non-zero AR coefficients in the first stage model: as PSC can only be evaluated for

pairs of series, we cannot select diagonal coefficients in A1, . . . , Ap, nor can we select

within the group of coefficients corresponding to one pair of marginal series. Therefore

we apply a second stage to further refine the first stage model. To eliminate these

possibly spurious coefficients, the (K+2M̃)p̃ non-zero AR coefficients of the first stage

model are ranked according to the absolute values of their t-statistic. The t-statistic

for a non-zero AR coefficient estimate Âk(i, j) (k = 1, . . . , p̃ and i, j = 1, . . . , K) is

ti,j,k :=
Âk(i, j)

s.e.(Âk(i, j))
. (2.13)

Here the standard error of Âk(i, j) is computed from the asymptotic distribution of

the constrained maximum likelihood estimator of the first stage model, which is, see

e.g. Lütkepohl (1993),

√
T (α̂− α)

d
=⇒ N(0, R̃[R̃

′
(Γ̃Y ⊗ Σ̃−1Z )R̃]−1R̃

′
), (2.14)

where α := vec(A1, . . . , Ap) is the K2p-dimensional vector obtained by column stack-

ing the AR coefficient matrices A1, . . . , Ap; α̂, Γ̃Y and Σ̃Z are the maximum likelihood

estimators of α, ΓY := cov((Y
′
t , . . . , Y

′
t−p+1)

′
) and ΣZ , respectively; and R̃ is the con-

straint matrix, defined by equation (2.17) in Appendix 2.6.1, of the first stage model.

So we can create a sequence Q2 of the (K + 2M̃)p̃ triplets (i, j, k) by ranking the

absolute values of the t-ratios (2.13) from highest to lowest. The AR coefficients
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corresponding to the top triplets in Q2 are most likely to be retained in the model be-

cause of their significance. In the second stage, there is only one parameter, denoted

by m, that controls the complexity of the model, which is the number of non-zero AR

coefficients to be retained. And BIC is also used to determine the complexity of the

final model. The steps of stage 2 are as follows.

Step 1. Compute the t-statistic ti,j,k (2.13) for each of the (K + 2M̃)p̃ non-zero AR

coefficient estimates of the first stage model.

Step 2. Create a sequence Q2 of the (K + 2M̃)p̃ triplets (i, j, k) by ranking |ti,j,k| from

highest to lowest.

Step 3. For each m ∈ {0, 1, . . . , (K + 2M̃)p̃}, consider the model that selects the m

non-zero AR coefficients corresponding to the top m triplets in the sequence

Q2. Under this parameter constraint, conduct the constrained parameter esti-

mation using the results in Appendix 2.6.1 and compute the corresponding BIC

according to BIC(m) = −2 logL+ log T ·m.

Step 4. Choose m̂ that gives the minimum BIC value over {0, 1, . . . , (K + 2M̃)p̃}.

Our 2-stage approach in the end leads to a sVAR model that contains m̂ non-zero

AR coefficients corresponding to the top m̂ triplets in Q2. We denote this sVAR

model by sVAR(p̂, m̂), where p̂ is the order of autoregression and m̂ is the number of

non-zero AR coefficients.

2.4 Numerical results

In this section we provide numerical results on the performance of our 2-stage ap-

proach of fitting sVAR models. In Section 2.4.1, simulation results are presented
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to compare the performance of the 2-stage approach against competing Lasso-type

methods of fitting sVAR models. In Section 2.4.2, the 2-stage approach is applied

to three real data examples. The first example is the Google Flu Trends data; the

second example is a time series of concentration levels of air pollutants; and the third

example is concerned with squared stock returns from S&P 500.

2.4.1 Simulation

Simulation results are presented to demonstrate the performance of our 2-stage ap-

proach of fitting sVAR models. We compare the 2-stage approach with Lasso-VAR

methods. To apply Lasso-VAR methods, the VAR model is re-formulated as a linear

regression problem, where current values of the time series are treated as the response

variable and lagged values are treated as the explanatory variables. Then Lasso can

be applied to select the AR coefficients and fit sVAR models, see e.g. Valdés-Sosa

et al. (2005); Hsu et al. (2008); Arnold et al. (2008); Lozano et al. (2009); Haufe et al.

(2010); Shojaie and Michailidis (2010); Song and Bickel (2011). The Lasso method

shrinks the AR coefficients towards zero by minimizing a target function, which is

the sum of a loss function and a l1 penalty on the AR coefficients. Unlike linear re-

gression models, the choice of the loss function between the sum of squared residuals

and the minus log likelihood will affect the resulted Lasso-VAR models even if the

multivariate series in consideration is Gaussian. This is because the noise covariance

matrix ΣZ in (2.1) is taken into account in the likelihood function of a Gaussian

VAR process but not in the sum of squared residuals. In general, this distinction will

lead to different VAR models unless the unknown covariance matrix ΣZ equals to a

scalar multiple of the identity matrix (see Appendix 2.6.2). We notice that this issue

of choosing the loss function has not been addressed in the literature of Lasso-VAR
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models. For example, Arnold et al. (2008); Lozano et al. (2009); Haufe et al. (2010);

Shojaie and Michailidis (2010); Song and Bickel (2011) all used the sum of squared

residuals as the loss function and did not consider the possibility of choosing the

minus log likelihood as the loss function. The simulation setups in these papers all

assume, either explicitly or implicitly, that the noise covariance matrix ΣZ is diagonal

or simply the identity matrix. In our simulation we apply Lasso to VAR modeling

under both cases: in the first case we choose the sum of squared residuals as the

loss function and denote it as the Lasso-SS method while in the second case we use

the minus log likelihood as the loss function and denote it as the Lasso-LL method.

Details of fitting these two Lasso-VAR models are given in Appendix 2.6.2.

The Lasso-VAR approach simultaneously performs model selection and parameter

estimation, which is usually considered as an advantage of the approach. However,

our simulation results suggest that simultaneous model selection and parameter es-

timation can weaken the performance of the Lasso-VAR approach. This is because

Lasso-VAR methods, such as Lasso-SS and Lasso-LL, have a tendency to over-select

the order of autoregression of VAR models, a phenomenon reported by many, see

Arnold et al. (2008); Lozano et al. (2009); Shojaie and Michailidis (2010). This over-

specified model complexity potentially increases the mean squared error of the AR

coefficient estimates of Lasso-VAR models. On the contrary, simulation results show

that our 2-stage approach is able to identify the correct set of non-zero AR coefficients

much more often and it also achieves better parameter estimation efficiency than the

two competing Lasso-VAR methods. In addition, simulation results also suggest that

the Lasso-SS method, which does not take into account the noise covariance matrix

ΣZ in the model fitting procedure, performs the worst among the three.

Here we describe the simulation example. Consider the 6-dimensional VAR(1)
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process {Yt} = {(Yt,1, . . . , Yt,6)
′} given by

Yt,1

Yt,2

Yt,3

Yt,4

Yt,5

Yt,6


=



0.8 0 0 0 0 0

0 0 0 0.3 0 0

0 0 0 0 −0.3 0

0.6 0 0 0 0 0

0 0 0.6 0 0 0

0 0 0 0 0 0.8





Yt−1,1

Yt−1,2

Yt−1,3

Yt−1,4

Yt−1,5

Yt−1,6


+



Zt,1

Zt,2

Zt,3

Zt,4

Zt,5

Zt,6


, (2.15)

where {Zt} = {(Zt,1, . . . , Zt,6)
′} are iid Gaussian noise with mean 0 and covariance

matrix ΣZ . The order of autoregression in (2.15) is p = 1 and there are 6 non-zero

AR coefficients, so (2.15) specifies a sVAR(1, 6) model. The covariance matrix ΣZ of

the Gaussian noise is

ΣZ =



δ2 δ/4 δ/6 δ/8 δ/10 δ/12

δ/4 1 0 0 0 0

δ/6 0 1 0 0 0

δ/8 0 0 1 0 0

δ/10 0 0 0 1 0

δ/12 0 0 0 0 1


.

We can see that the marginal series {Yt,1} is related to all other series via ΣZ . And

we can change the value of δ2 to see the impact of the variability of {Yt,1} on the per-

formance of the three competing methods. We compare the three methods according

to five metrics: (1) the selected order of autoregression p̂; (2) the number of non-zero

AR coefficient estimates m̂; (3) the squared bias of the AR coefficient estimates

p∨p̂∑
k=1

K∑
i,j=1

[E[Âk(i, j)]− Ak(i, j)]2;

(4) the variance of the AR coefficient estimates
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Table 2.1: The five metrics from the 2-stage approach, the Lasso-LL and the Lasso-SS
methods.

p̂ m̂ bias2 variance MSE
2-stage 1.000 5.854 0.021 0.092 0.113

δ2 = 1 Lasso-LL 1.208 17.852 0.060 0.099 0.159
Lasso-SS 1.218 17.156 0.054 0.092 0.146

2-stage 1.000 6.198 0.006 0.087 0.093
δ2 = 4 Lasso-LL 1.150 17.254 0.046 0.103 0.149

Lasso-SS 1.246 16.478 0.053 0.136 0.188
2-stage 1.000 6.190 0.002 0.073 0.075

δ2 = 25 Lasso-LL 1.179 17.275 0.042 0.274 0.316
Lasso-SS 1.364 14.836 0.094 0.875 0.969

2-stage 1.000 6.260 0.003 0.175 0.178
δ2 = 100 Lasso-LL 1.203 17.464 0.056 0.769 0.825

Lasso-SS 1.392 11.108 0.298 2.402 2.700

p∨p̂∑
k=1

K∑
i,j=1

var(Âk(i, j));

and (5) the mean squared error (MSE) of the AR coefficient estimates

p∨p̂∑
k=1

K∑
i,j=1

{[E[Âk(i, j)]− Ak(i, j)]2 + var(Âk(i, j))},

where K = 6, p = 1, p ∨ p̂ := max{p, p̂} and Ak(i, j) := 0 for any triplet (k, i, j) such

that k > 1 and 1 ≤ i, j ≤ K. The first two metrics show the model selection per-

formance and the latter three metrics reflect the efficiency of parameter estimates of

each method. The pre-specified range of the autoregression order p is P = {0, 1, 2, 3}.

Selection of the tuning parameter for the two Lasso-VAR methods is based on ten-fold

cross validations, as described in Appendix 2.6.2. We let δ2 in ΣZ take values from

{1, 4, 25, 100}. The sample size T is 100 and results are based on 500 replications.
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The five metrics for comparison are summarized in Table 2.1. The p̂ column shows

that the 2-stage approach is able to correctly select the autoregression order p = 1

while the two Lasso-VAR methods over-select the autoregression order. Furthermore,

the true number of non-zero AR coefficients is m = 6. As shown by the m̂ column,

the average number of non-zero AR coefficient estimates from the 2-stage approach

is very close to 6. At the same time, this number from either the Lasso-SS or the

Lasso-LL method is much larger than 6, meaning that the two Lasso-VAR methods

lead to a lot of spurious non-zero AR coefficients. Second, we compare the efficiency

of parameter estimates. The bias2 column shows that the 2-stage approach has much

smaller estimation bias than the two Lasso-VAR methods. This is because the l1

penalty is known to produce large estimation bias for large non-zero coefficients, see

Fan and Li (2001). In addition, the large number of spurious non-zero AR coefficients

also increases the variability of the parameter estimates from the two Lasso-VAR

methods. This is reflected in the variance column, showing that the variance of the

AR coefficient estimates from the Lasso-SS and the Lasso-LL methods are larger than

that from the 2-stage approach. Therefore the 2-stage approach has a much smaller

MSE than the two Lasso-VAR methods. And this difference in MSE becomes more

notable as the marginal variability δ2 increases.

A comparison of the AR coefficient estimation between the three methods when

δ2 = 1 is displayed in Figure 2.1. Panels (b) and (c) of Figure 2.1 show the AR

coefficient estimates from stages 1 and 2 of the 2-stage approach. The size of each

circle is proportional to the percent of times (out of 500 replications) the correspond-

ing AR coefficient is selected and the color of each circle shows the average of the

500 estimates of that AR coefficient. For comparison, panel (a) displays the true AR

coefficient matrix A1, where the color of a circle shows the true value of the corre-

sponding AR coefficient. We can see from panel (b) that the first stage is able to
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select the AR coefficients belonging to pairs of conditionally correlated marginal se-

ries. But the first stage model contains spurious non-zero AR coefficients, as indicated

by the presence of 6 dominant white circles in panel (b) at 4 diagonal positions, i.e.,

(2, 2), (3, 3), (4, 4), (5, 5), and 2 off-diagonal positions, i.e., (1, 4), (4, 2). These white

circles effectively disappear in panel (c), which demonstrates the effectiveness of the

second stage refinement. In addition, the similarity between panels (a) and (c) has

two implications: first, the presence of 6 dominant color circles in both panels sug-

gests that the 2-stage approach is able to select the true non-zero AR coefficients with

high probabilities; second, the other tiny circles in panel (c) indicate that the 2-stage

approach leads to only a small number of spurious AR coefficients. These two implica-

tions together show that the 2-stage approach is able to correctly select the non-zero

AR coefficients for this model. On the other hand, panels (e) and (f) display the

estimated AR coefficients from the Lasso-LL and the Lasso-SS methods, respectively.

The most notable aspect in these two panels is the prevalence of medium-sized white

circles. The whiteness of these circles indicates that the corresponding AR coefficient

estimates are unbiased, since the true values of these AR coefficients are 0. However,

the size of these circles corresponds to an approximate 50% chance that each of these

truly zero AR coefficients is selected by the Lasso-VAR methods. As a result, both

two Lasso-VAR methods lead to a large number of spurious non-zero AR coefficients

and their model selection results are highly variable. Consequently, it is more dif-

ficult to interpret these Lasso-VAR models. This observed tendency for Lasso-VAR

methods to over-select the non-zero AR coefficients is consistent with the numerical

findings in Arnold et al. (2008); Lozano et al. (2009); Shojaie and Michailidis (2010).

We also compare the impact of the marginal variability of {Y1,t} on the perfor-

mance of each method. Figure 2.2 displays the estimated AR coefficients from the

2-stage approach as well as the two Lasso-type methods for δ2 = 4, 25 and 100, respec-
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(a) AR coefficients (b) stage 1 (δ2 = 1) (c) stage 2 (δ2 = 1)

(d) Lasso-LL (δ2 = 1) (e) Lasso-SS (δ2 = 1)

Figure 2.1: Displays of the AR coefficient estimates from stages 1 and 2 of the 2-
stage approach, the Lasso-LL and the Lasso-SS methods when δ2 = 1. Panel (a)
displays the true AR coefficient matrix A1, where the color of each circle shows the
true value of the corresponding AR coefficient. In panels (b), (c), (e) and (f), the
size of each circle is proportional to the percent of times (out of 500 replications) the
corresponding AR coefficient is selected; the color of each circle shows the average of
the 500 estimates of that AR coefficient.

tively. We can see that the performance of the 2-stage approach remains persistently

good against the changing marginal variability δ2. This is because the 2-stage ap-

proach involves estimating the noise covariance matrix ΣZ and therefore will adjust

for the changing variability. On the other hand, both Lasso-VAR methods persis-

tently over-select the AR coefficients as δ2 varies. But it is interesting to notice that

the impact of the changing variability is different for the Lasso-SS and the Lasso-LL

methods. The model selection result of the Lasso-SS method is severely impacted by



30

the changing variability. From panels (g), (h) and (i), we can see that as δ2 increases

from 4 to 100, the size of the white circles in the first row increases while the size

of the white circles in the other five rows decreases. This observation suggests that

as the marginal variability of {Yt,1} increases, the Lasso-SS method will increasingly

over-estimate the temporal influence of the other 5 marginal series into {Yt,1} and

leads to spurious AR coefficients in the first row of A1. On the other hand, panels

(d), (e) and (f) show that the model selection result of the Lasso-LL method is not

much influenced by the changing variability. Such a difference between the Lasso-SS

and the Lasso-LL methods is due to the fact that the Lasso-LL method takes into

account the noise covariance matrix ΣZ while the Lasso-SS method does not. The

observed distinction between the Lasso-SS and the Lasso-LL methods verifies that

the choice of the loss function will affect the resulted Lasso-VAR model, a fact that

has not been addressed in the literature of Lasso-VAR modeling. In this simulation

example, the Lasso-LL method benefits from modeling the noise covariance matrix

ΣZ and is superior to the Lasso-SS method.

Finally, we investigate the estimators of one particular AR coefficient from the

three methods in more detail. Figure 2.3 displays the sampling distributions of the

estimator Â1(6, 6) from the 2-stage approach as well as the two Lasso-VAR methods

for δ2 = 1, 4, 25 and 100, respectively. Estimation of A1(6, 6) is of interest because

the marginal series {Yt,6} is exclusively driven by its own past values. Ideally, due

to such “isolation”, the estimation of A1(6, 6) should not be impacted much by the

estimation of the AR coefficients in the 5× 5 upper-left sub-matrix of A1. Moreover,

A1(6, 6) has a large true value of 0.8 and it is interesting to compare the estimation

bias for this large AR coefficient. Figure 2.3 shows that the estimators of A1(6, 6)

from the 2-stage approach and the Lasso-LL method are not much impacted by the

changing variability of {Yt,1}. But the Lasso-SS estimator for A1(6, 6) becomes more
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(a) 2-stage (δ2 = 4) (b) 2-stage (δ2 = 25) (c) 2-stage (δ2 = 100)

(d) Lasso-LL (δ2 = 4) (e) Lasso-LL (δ2 = 25) (f) Lasso-LL (δ2 = 100)

(g) Lasso-SS (δ2 = 4) (h) Lasso-SS (δ2 = 25) (i) Lasso-SS (δ2 = 100)

Figure 2.2: Displays of the AR coefficient estimates from the 2-stage approach, the
Lasso-LL and the Lasso-SS methods when δ2 = 4, 25 and 100, respectively. The
interpretation of the size and the color of a circle is the same as in Figure 2.1.
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biased and volatile as the marginal variability increases from δ2 = 1 to δ2 = 100.

Although both the 2-stage and the Lasso-LL estimators of A1(6, 6) are robust to the

changing values of δ2, the difference between their bias is significant. The 2-stage

approach gives an estimator of A1(6, 6) that remains nearly unbiased as δ2 varies.

However, there is a systematic bias in the Lasso-LL estimator of A1(6, 6), which is

due to the shrinkage effect of the Lasso penalty on the selected AR coefficients.

Figure 2.3: Sampling distributions of the estimators of A1(6, 6) from the 2-stage
approach (the left 4 boxplots), the Lasso-LL method (the middle 4 boxplots) and the
Lasso-SS method (the right 4 boxplots) for δ2 = 1, 4, 25 and 100, respectively. The
dashed horizontal line indicates the true value of A1(6, 6) = 0.8.
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2.4.2 Real data examples

Google Flu Trends data. In the first example we consider the Google Flu Trends

data, which can be viewed as a measure of the level of influenza activity in the

U.S.. It has been noticed by many researchers that the frequencies of certain Internet

search terms can be predictive of the influenza activity within a future time period,

see e.g. Polgreen et al. (2008); Eysenbach (2009); Hulth et al. (2009). Based on

this fact, a group of researchers at Google applied logistic regression to select the

top 45 Google user search terms that are most indicative of the influenza activity.

These selected 45 terms were then used to produce the Google Flu Trends data,

see Ginsberg et al. (2009). The Google Flu Trends data consist of weekly predicted

numbers of influenza-like-illness (ILI) 3 related visits out of every 100,000 random

outpatient visits within a U.S. region. The Google Flu Trends prediction has been

shown to be highly consistent with the ILI rate reported by the Centers for Disease

Control and Surveillance (CDC), where the ILI rate is the probability that a random

outpatient visit is related to an influenza-like-illness. But the Google Flu Trends data

have two advantages over the traditional CDC influenza surveillance report: first, the

Google Flu Trends predictions are available 1 or 2 weeks before the CDC report

is published and therefore provide a possibility to forecast the potential outbreak

of influenza epidemics; second, since Google is able to map the IP address of each

Google user search to a specific geographic area, the Google Flu Trends data enjoy

a finer geographic resolution than the CDC report. In particular, the Google Flu

Trends data are published not only at the national level but are also available for the

50 states, the District of Columbia and 122 cities throughout the U.S.. In contrast,

3According to the Centers for Disease Control and Surveillance, an influenza-like-illness is defined
as a fever of 100 degrees Fahrenheit (or higher) along with a cough and/or sore throat in the absence
of a known cause other than influenza.
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the CDC surveillance report is available only at the national level and for 10 major

U.S. regions (each region is a group of states). Due to these advantages, there has

been increasing interest in modeling the Google Flu Trends data to help monitor the

influenza activity in the U.S., see e.g. Dukić et al. (2010); Fox and Dunson (2011).

Figure 2.4: The first 100 observations of the Google Flu Trends series.

We apply the 2-stage approach to fit a sVAR model to the weekly Goolge Flu
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Trends data from the week of January 1, 2006 to the week of December 26, 2010,

so the sample size is T = 260. Out of the 51 regions (50 states and the District of

Columbia), we remove 5 states (Alaska, Hawaii, North Dakota, South Dakota and

Wyoming) from our analysis due to incompleteness of the data during the selected

time period. So the dimension of the process in this example is K = 46 and we

refer to these 46 regions as 46 states for simplicity. Figure 2.4 displays the first 100

observations from the 46 states. In applying the 2-stage approach, the pre-specified

range of the autoregression order p is P = {0, 1, 2, 3, 4}. The 2-stage approach leads

to a sVAR(2, 763) model, which has only as many as 19.30% = 763/(462 × 2) of the

AR coefficients in a fully-parametrized VAR(2) model. Figure 2.5 displays the BIC

curves from stages 1 and 2 of the 2-stage approach, respectively. From panel (a) of

stage 1, we can see that the first stage selects the autoregression order p̃ = 2 and

M̃ = 290 pairs of distinct marginal series into the model. So the first stage model

contains (K+2M̃)p̃ = (46+290×2)×2 = 1252 non-zero AR coefficients. The second

stage follows by further selecting m̂ = 763 non-zero AR coefficients and leads to the

final sVAR(2,763) model. For comparison, we also fit an unrestricted VAR(2) model

and apply the Lasso-SS method to fit another sVAR model. Based on a ten-fold

cross validation, the Lasso-SS method results in a VAR model with 3123 non-zero

AR coefficients, which we denote as Lasso-SS(2,3123).

We compare the temporal dependence structures discovered by the three models,

i.e., the VAR(2), the sVAR(2, 763) and the Lasso-SS(2,3123). Figure 2.6 displays

the estimated AR coefficients from the three models at lags 1 and 2, respectively. To

illustrate the possible spatial interpretation for the temporal dependence structure,

we group the 46 states into 10 regions as suggested in the CDC influenza surveillance

report 4, which is indicated by the solid black lines in Figure 2.6. From panels (a), (c)

4The CDC 10-region division can be found at http://www.cdc.gov/flu/weekly/
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(a) BIC curve of stage 1 (b) BIC curve of stage 2

Figure 2.5: BIC curves of stages 1 and 2 of the 2-stage approach. In panel (a), the
x-axis M refers to the number of top pairs selected. Each curve corresponds to one
autoregression order p ∈ {1, 2, 3, 4} and shows the BIC values as M varies from 0 to
1035 =

(
46
2

)
. The BIC value of p = 0 is not shown since it is much higher. In panel

(b), the x-axis m refers to the number of non-zero AR coefficients retained and the
curve shows the BIC values as m varies from 0 to 1252. In both panels, the dashed
vertical line indicates where the minimum BIC value occurs.

and (e), we can see that the AR coefficient estimates on the diagonal of Â1 are large

and positive in all three models. This observation is reasonable since influenza activity

from the previous week should be predictive of influenza activity of the current week

within the same region. But panel (a) shows that this diagonal signal is diluted by the

noisy off-diagonal AR estimates in the VAR(2) model. And except for this diagonal

signal in Â1, the other AR coefficient estimates in the VAR(2) model are noisy and

hard to interpret at both lags 1 and 2. In contrast, the diagonal signal of Â1 is

most dominant in panel (c) of the 2-stage sVAR(2,763) model, in which lots of the
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off-diagonal AR coefficients are zero. Additionally, the overall interpretability of the

sVAR(2,763) and the Lasso-SS(2,3123) models is much better than the VAR(2) model,

since both models provide much cleaner descriptions of the temporal dependence

structures and reveal some interesting patterns. For example, both the sVAR(2,763)

and the Lasso-SS(2,3123) models discover the interdependence among the influenza

activities of the 6 states in Region 1, i.e., (CT, MA, ME, NH, RI, VT), as shown by

the first block of states in panels (c), (d), (e) and (f). This within-region dependence

is moderately positive at lag 1 and slightly negative at lag 2. In the sVAR(2,763)

and the Lasso-SS(2,3123) models, we also observe the cross-region influence from

Region 8 of (CO, MT, US) into Region 6 of (AR, LA, NM, OK, TX). In spite of their

general resemblance, the Lasso-SS(2,3123) model contains many more non-zero AR

coefficients than the sVAR(2,763) model. In fact, the Lasso-SS(2,3123) model has a

large number of small (in the absolute value) but non-zero AR coefficients, especially

those at lag 2 as shown in panel (f).

The reduced complexity of sVAR models not only leads to better interpretability,

but also improves forecast performance. To this point, we compare the out-of-sample

forecast performance between the three models. We use the Google Flu Trends data

between the week of July 10, 2011 and the week of December 25, 2011 (Ttest = 24) as

the test data. For the comparison, we compute two quantities: the first is the h-step

forecast root mean squared error (RMSE), which is defined as

RMSE(h) = [K−1(Ttest − h+ 1)−1
K∑
k=1

T+Ttest−h∑
t=T

(Ŷt+h,k − Yt+h,k)2]
1
2 ,

where Ŷt+h,k is the h-step forecast of Yt+h,k for k = 1, . . . , K; and the second is the

logarithmic score (LS), see e.g. Gneiting and Raftery (2007), which is defined as

LS = (Ttest − 1)−1
T+Ttest−1∑
t=T+1

− log pt(Yt),
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(a) Â1 in VAR(2) (b) Â2 in VAR(2)

(c) Â1 in sVAR(2,763) (d) Â2 in sVAR(2,763)

(e) Â1 in Lasso-SS(2,3123) (f) Â2 in Lasso-SS(2,3123)

Figure 2.6: Displays of the AR coefficient estimates from the VAR(2), the
sVAR(2,763) and the Lasso-SS(2,3123) models at lags 1 and 2, respectively.
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where pt(·) is the probability density function of the 1-step forecast distribution. Ta-

ble 2.2 summarizes the forecast RMSE for each forecast horizon h = 1, 2, 3 and 4 as

well as the LS of each model. The sVAR(2,763) model fitted by the 2-stage approach

has the smallest forecast RMSE among the three models, while the most saturated

model, the VAR(2) model, has the worst out-of-sample forecast performance. The

2-stage approach gives the best forecast performance since it excludes many seem-

ingly spurious AR coefficients from the sVAR(2,763) model. But the VAR(2) model

contains a large number of spurious AR coefficients and their presence makes the

out-of-sample forecast much less reliable. In addition, as seen from the last column

of Table 2.2, the LS rule also favors the sVAR(2,763) model among the three.

Table 2.2: The h-step forecast root mean squared error (RMSE) and the logarithmic
score (LS) of the sVAR(2,763), the Lasso-SS(2,3123) and the VAR(2) models. The
test period is from the week of July 10, 2011 to the week of December 25, 2011
(Ttest = 24). The forecast horizon is h = 1, 2, 3 and 4.

Model h = 1 h = 2 h = 3 h = 4 LS
sVAR(2,763) 315.5 337.8 374.4 420.9 305.2
Lasso-SS(2,3123) 324.7 351.5 400.9 437.2 317.4
VAR(2) 336.4 393.2 468.7 562.3 462.7

Concentration levels of air pollutants. In this example we analyze a time series

of concentration levels of four air pollutants, CO, NO, NO2 and O3, as well as the solar

radiation intensity R. The data are recorded hourly during the year 2006 at Azusa,

California and can be obtained from the Air Quality and Meteorological Information

System (AQMIS). The time series under consideration is of dimension K = 5 with

T = 8370 observations. Figure 2.7 displays the hourly averages of the 5 marginal

series. The same dataset was previously studied in Songsiri et al. (2010). A similar
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dataset of the same 5 component series, but recorded at a different location, was

analyzed in Dahlhaus (2000); Eichler (2006). The methods employed in Dahlhaus

(2000); Eichler (2006); Songsiri et al. (2010) are based on the partial correlation

graph model, in which VAR models are estimated under sparsity constraints on the

inverse spectrum of VAR processes. So the modeling interest of the partial correlation

graph approach is sparsity in the frequency domain, i.e., zero constraints on the

inverse spectrum, while our 2-stage approach is concerned about sparsity in the time

domain, i.e., zero constraints on AR coefficients. For this example, we are interested

in comparing the findings from the 2-stage sVAR model and the partial correlation

graph model.

Figure 2.7: Hourly average series of the concentration levels of CO (100 ppb), NO
(10 ppb), NO2 (10 ppb), O3 (10 ppb) and the solar radiation intensity R (100W/m2)
during 2006 at Azusa, California.
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We apply the 2-stage approach to fit a sVAR model to the air pollutant data. The

pre-specified range of the autoregression order p is P = {0, 1, 2, . . . , 8}. The same

range for p was also used in Songsiri et al. (2010). The first stage does not exclude

any pair of marginal series and leads to a first stage model with p̃ = 4 and M̃ = 10,

which contains (5 + 2 × 10) × 4 = 100 non-zero AR coefficients. The second stage

further refines the model and leads to a sVAR(4,64) model in the end. The selection

of the autoregression order p̂ = 4 coincides with the result in Songsiri et al. (2010),

which also used BIC for VAR order selection. However, the BIC value of the 2-stage

sVAR(4,64) model is 15301 and it is lower than the best BIC value (15414) reported

in Table 1.1 of Songsiri et al. (2010). This is because the partial correlation graph

approach used in Songsiri et al. (2010) is concerned about sparsity in the inverse

spectrum rather than in the AR coefficients. So the AR coefficients estimated by

the partial correlation graph approach are never exactly zero, and the resulted VAR

model will contain spurious non-zeros. The presence of these spurious AR coefficients

is one limitation of the partial correlation graph approach: such spurious non-zeros do

not substantially increase the likelihood but inflate the BIC, and they also weaken the

interpretability of fitted VAR models. Another limitation of the partial correlation

graph approach is that it only deals with a small dimension, since in the partial

correlation graph approach model selection is usually executed based on an exhaustive

search of all possible patterns of sparsity constraints on the inverse spectrum, see e.g.

Dahlhaus (2000); Eichler (2006); Songsiri et al. (2010). The number of such patterns

is 2K(K−1)/2, which reaches 2 × 106 when K = 7. Therefore the partial correlation

graph approach is feasible only for a small dimension. In fact, the largest dimension of

all numerical examples considered in Dahlhaus (2000); Eichler (2006); Songsiri et al.

(2010) is 6. This is unlike our 2-stage approach, which is able to deal with higher

dimensions, such as the 46-dimensional process in the Google Flu Trends example.



42

Figure 2.8: Plots of the parametric estimates of the squared modulus of PSC, i.e.,
|PSC|2, as computed from the AR coefficient estimates in the 2-stage sVAR(4,64)
model (solid curves) and the non-parametric estimates of |PSC|2 used in the first
stage selection (dashed curves).

Since the 2-stage approach is applied to the same dataset as in Songsiri et al.

(2010), it is interesting to compare the findings between the 2-stage sVAR model and

the partial correlation graph model. Our comparison is in the frequency domain.

Figure 2.8 displays the estimate of the squared modulus of PSC, i.e., |PSC|2, as

computed from the AR coefficient estimate in the 2-stage sVAR(4,64) model as well as

the non-parametric estimate of |PSC|2 used in the first stage of the 2-stage approach.

We can see the good match-up between the two sets of estimates. So it is implied that
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it is possible to use the AR coefficient estimate from the 2-stage sVAR model, which

are time-domain parameters, to recover the sparsity pattern in the inverse spectrum,

which are frequency-domain quantities. We also point out that the estimate of |PSC|2

from the 2-stage sVAR(4,64) model, as displayed in Figure 2.8, resemble those in

Figure 1.9 of Songsiri et al. (2010), which displays the estimate of |PSC|2 from the

fitted partial correlation graph model. Furthermore, the findings from Figure 2.8

agree with the photochemical theory of interactions between the 5 marginal series.

For example, as pointed out in Dahlhaus (2000), the large estimate of |PSC|2 between

(CO, NO) comes from the fact that both air pollutants are mainly emitted from

cars; and the large estimate of |PSC|2 between (O3, R) reflects the major role of the

solar radiation intensity in the generation of ozone. Additionally, from Figure 2.8 we

observe that the estimates of |PSC|2 between the pairs (CO, O3), (CO, R), (NO, R)

and (NO, O3) are relatively small as compared to the other pairs. This discovery of

small estimate of |PSC|2 agrees with the findings in Dahlhaus (2000); Eichler (2006);

Songsiri et al. (2010), which are summarized in Table 2.3. For more detailed discussion

on the underlying photochemical mechanism of interactions between air pollutants,

readers are referred to Dahlhaus (2000).

Table 2.3: Pairs with small estimate of |PSC|2 in the 2-stage sVAR(4,64) model, as
well as those found in Dahlhaus (2000), Eichler (2006) and Songsiri et al. (2010).
Songsiri et al. (2010) used the same dataset as the sVAR(4,64) model while Dahlhaus
(2000) and Eichler (2006) studied a similar dataset with the same 5 component series.

Model Pairs with small estimates of |PSC(ω)|2
2-stage sVAR(4,64) (CO, O3), (CO, R), (NO, R), (NO, O3)
Dahlhaus (2000) (CO, O3), (CO, R), (NO, R), (NO, O3), (NO, NO2)
Eichler (2006) (CO, O3), (CO, R), (NO, R), (NO, O3)
Songsiri et al. (2010) (CO, O3), (CO, R), (NO, R)
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Squared stock returns from S&P 500. In this example we analyze the squared

daily returns of K = 40 stocks from S&P 500. The 40 stocks come from 4 sectors:

consumer staples, energy, finance and technology, with 10 stocks from each. The

returns are calculated as the logarithm of the ratio between two consecutive daily

close prices from the 252 trading days in 2006. We analyze squared returns which

can serve as proxies for the volatilities of these stocks and we want to investigate the

temporal dependence structure between the volatilities.

We apply the 2-stage approach to fit a sVAR model to the squared return se-

ries. The pre-specified range of the autoregression order p is P = {0, 1, 2, 3, 4, 5}

and the 2-stage approach leads to a sVAR(2,42) model, which has only as many as

2.63% = 42/(402 × 2) of the AR coefficients in a fully-parametrized VAR(2) model.

For comparison, we also fit a VAR(2) model to the squared return series. The two

estimated AR coefficient matrices from the VAR(2) model are displayed in panels (a)

and (b) of Figure 2.9, while the two counterparts from the sVAR(2,42) model are

displayed in panels (c) and (d). The solid lines in Figure 2.9 group the 40 stocks

according to the 4 sectors.

From Figure 2.9 we have the following observations. First, we compare the tem-

poral dependence structures discovered by the VAR(2) and the sVAR(2,42) models.

Panels (a) and (b) in Figure 2.9 show that there exist more non-zero AR coefficients

in the first and third block-columns than in the other two block-columns. It suggests

that the VAR(2) model detects more occurrences of temporal influence among stock

volatilities from the consumer staples and the finance sectors into the energy and the

technology sectors than in the reverse direction. From panels (c) and (d), however,

we can see that most of the AR coefficients in the first and third block-columns are

set to zero in the sVAR(2,42) model. And we cannot see the above trend of “direc-
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(a) Â1 in VAR(2) (b) Â2 in VAR(2)

(c) Â1 in sVAR(2,42) (d) Â2 in sVAR(2,42)

Figure 2.9: Displays of the AR coefficient estimates from the VAR(2) and the
sVAR(2,42) models at lags 1 and 2, respectively. The solid lines indicate the 4 sectors.
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tional” temporal influence among stock volatilities between different sectors. This

observation indicates that the fully-parametrized VAR(2) model may lead to falsely-

detected temporal relationships due to its unstable estimates of AR parameters and

the 2-stage sVAR model helps to correct those spurious relationships among the stock

volatilities. Second, from panels (c) and (d), we can see that out of the 42 non-zero

AR coefficients, only 9 of them occur between stocks from different sectors, which is

less than what would happen due to pure randomness (42×12/16 = 31.5). Therefore

panels (c) and (d) suggest, on a high-level, that stock volatilities are more likely to be

temporally related between stocks within the same sector than from different sectors.

Third, we notice that the AR coefficients associated with certain stocks, such as GIS,

KMB, PEP and USB, are all zero in the final sVAR(2,42) model, since those stocks

correspond to both “empty” rows and columns in panels (c) and (d). It means that

the squared return series of those stocks simply consist of white noise, which is ver-

ified in Figure 2.10. Each panel of Figure 2.10 displays the autocorrelation function

(ACF) of the squared return series of the corresponding stock. We can observe little

serial dependence in any of the 4 panels. In contrast, those stocks are associated with

non-zero AR coefficient estimates in the VAR(2) model, as shown in panels (a) and

(b) of Figure 2.9, which does not agree with the fact that their corresponding squared

return series consist of white noise.

2.5 Discussion

In this chapter we propose a 2-stage approach of fitting sVAR models, in which many

of the AR coefficients are zero. The first stage of the approach is based on PSC and

BIC to select non-zero AR coefficients. The combination of PSC and BIC provides

an effective initial selection tool to determine the sparsity constraint on the AR co-
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(a) ACF of GIS (b) ACF of KMB

(c) ACF of PEP (d) ACF of USB

Figure 2.10: ACF plots of the squared return series of GIS, KMB, PEP and USB.



48

efficients. The second stage follows using t-ratios together with BIC to further refine

the first stage model. The proposed approach is promising in that the 2-stage fitted

sVAR models enjoy improved efficiency of parameter estimates and easier-to-interpret

descriptions of temporal dependence, as compared to unrestricted VAR models. Sim-

ulation results show that the 2-stage approach outperforms Lasso-VAR methods in

recovering the sparse temporal dependence structure of sVAR models. Applications

of the 2-stage approach to two real data examples yield interesting findings about

their temporal dynamics.

In the first stage selection of the 2-stage approach, we use (2.10) to link zero PSCs

with zero AR coefficients. For some examples, however, this connection may not be

exact. When non-zero AR coefficients correspond to zero PSCs, these AR coefficients

are likely to be set to zero in the first stage and thus will not be selected by the

2-stage fitted models. For the cases we have investigated, however, we notice that

purely BIC-selected models also tend to discard such AR coefficients. A possible

explanation is that if the PSCs are near zero, the corresponding AR coefficients do

not increase the likelihood sufficiently to merit their inclusion into the model based

on BIC. As a result, the 2-stage approach still leads to sVAR models that perform

similarly as the best BIC-selected models. To illustrate this point, we construct a

VAR model in which a zero PSC corresponds to non-zero AR coefficients. Consider

the following 3-dimensional VAR(1) process {Yt} = {(Yt,1, Yt,2, Yt,3)
′} satisfying the

recursions 
Yt,1

Yt,2

Yt,3

 =


0 0.5 0.5

0 0 0.3

0 0.25 0.5




Yt−1,1

Yt−1,2

Yt−1,3

+


Zt,1

Zt,2

Zt,3

 , (2.16)

where {Zt = (Zt,1, Zt,2, Zt,3)
′} are iid Gaussian noise with mean 0 and covariance
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matrix

ΣZ =


18 0 6

0 1 0

6 0 3

 .

For this example, one can show that PSC1,2(ω) = 0 for ω ∈ (−π, π] while A1(1, 2) =

0.5. In applying the 2-stage approach to fit sVAR models to (2.16), the first stage

estimate of the summary statistic sup
ω
|PSC1,2(ω)|2, as defined in (2.11), is likely to be

small, so the estimates of A1(1, 2) and A1(2, 1) are likely to be automatically set to

zero in the first stage.

We compare the performance of the 2-stage approach with a modified 2-stage pro-

cedure of fitting sVAR models to (2.16). In the first stage of the modified procedure,

we use precise knowledge of which AR coefficients are truly non-zero and conduct

constrained maximum likelihood estimation under the corresponding parameter con-

straint. Then we execute the second stage of the modified procedure in exactly the

same way as the original 2-stage approach. In other words, the modified procedure

has an “oracle” first stage and uses t-ratios in conjunction with BIC for further refine-

ment in its second stage. So the truly non-zero AR coefficients will not be excluded

after the first stage in the modified procedure. Such AR coefficients will survive

the second stage refinement if the inclusion of them substantially increases the like-

lihood of the final sVAR model; otherwise they will be discarded after the second

stage. For both approaches, the pre-specified range of the autoregression order p is

P = {0, 1, 2, 3}. The sample size T is 100 and results are based on 500 replications.

Figure 2.11 displays the comparison between the estimated inverse spectrum from

these two approaches. In each panel of Figure 2.11, the dashed curve shows the true

|PSC|2 between one pair of the 3 marginal series of {Yt} (2.16) and each solid curve

displays the estimate | ˆPSC|2 from one replication. Panels (a), (b) and (c) correspond
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to the original 2-stage approach (labeled as “PSC+BIC”) while panels (d), (e) and

(f) correspond to the modified 2-stage procedure (labeled as “oracle+BIC”). From

Figure 2.11, we can see that the original 2-stage approach leads to very similar es-

timate of the inverse spectrum as compared to the modified 2-stage procedure, in

spite of the difference between their respective first stages. We also compare the two

approaches using 4 other metrics, as shown in Figure 2.12. In each panel of Figure

2.12, the x-axis refers to the modified 2-stage procedure while the y-axis refers to

the original 2-stage approach. Panel (a) compares the number of non-zero AR coeffi-

cients, where these numbers are jittered so that their distributions can be observed;

panel (b) compares the out-of-sample one-step forecast error; panel (c) compares the

minus log-likelihood and panel (d) compares the BIC of the fitted models. From panel

(a), we can see that the “oracle+BIC” procedure does not lead to more non-zero AR

coefficients than the 2-stage approach does. From panels (b), (c) and (d), we can

see that the “oracle+BIC” procedure does not provide improvement over the original

2-stage approach with respect to the one-step forecast error, the likelihood, or the

BIC of fitted models. So, at least in this example, a non-zero AR coefficient that

corresponds to a zero PSC is unlikely to be included in a BIC-selected model. As a

result, our 2-stage approach has similar performance as that of the “oracle + BIC”

procedure. This phenomenon also raises the connection between the PSC and the

likelihood of VAR processes as an interesting direction for future research.
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(a) PSC+BIC (Yt,1, Yt,2) (b) PSC+BIC (Yt,1, Yt,3) (c) PSC+BIC (Yt,2, Yt,3)

(d) oracle+BIC (Yt,1, Yt,2) (e) oracle+BIC (Yt,1, Yt,3) (f) oracle+BIC (Yt,2, Yt,3)

Figure 2.11: Comparison of the estimate | ˆPSC|2 from the 2-stage approach and the
modified 2-stage procedure. The original 2-stage approach is labeled as “PSC+BIC”
while the modified 2-stage procedure is labeled as “oracle+BIC”. In each panel, the
dashed curve shows the true |PSC|2 and each solid curve corresponds to the estimate
| ˆPSC|2 from one replication.
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(a) number of non-zero AR coef. est. (b) one-step forecast error

(c) minus log-likelihood (d) BIC

Figure 2.12: Comparison between the 2-stage approach and the modified 2-stage
procedure using different metrics. Panel (a): number of non-zero AR coefficient
estimates. Panel (b): out-of-sample one-step forecast error. Panel (c): minus log-
likelihood. Panel (d): BIC. In each panel, the x-axis refers to the modified 2-stage
procedure and is labeled as “oracle + BIC” while the y-axis refers to the original
2-stage approach and is labeled as “PSC + BIC”.
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2.6 Appendix to Chapter 2

2.6.1 Constrained maximum likelihood estimation of sVAR

models

Continuing with the notation in equation (2.1), the constraint that the AR coefficients

of the VAR(p) model are set to zero can be expressed as

α := vec(A1, . . . , Ap) = Rγ, (2.17)

where α = vec(A1, . . . , Ap) is the K2p×1 vector obtained by column stacking the AR

coefficient matrices A1, . . . , Ap; R is a K2p×m matrix of known constants with rank

m (usually m� K2p); γ is a m× 1 vector of unknown parameters. The matrix R in

equation (2.17) is called the constraint matrix and it specifies which AR coefficients

are set to zero by choosing one entry in each column to be 1 and all the other entries

in that column to be 0. The rank m of the constraint matrix R equals the number

of non-zero AR coefficients of the VAR model. This formulation is illustrated by the

following simple example.

Consider a 2-dimensional zero-mean VAR(2) process {Yt} = {(Yt,1, Yt,2)
′} satisfy-

ing the recursions, Yt,1

Yt,2

 =

 A1(1, 1) 0

A1(2, 1) A1(2, 2)

×
 Yt−1,1

Yt−1,2

 (2.18)

+

 0 0

A2(2, 1) 0

×
 Yt−2,1

Yt−2,2

+

 Zt,1

Zt,2

 ,

where Ak(i, j) is the (i, j)th entry of the AR coefficient matrix Ak (k = 1, 2). The

VAR(2) model (2.18) contains 4 non-zero AR coefficients, A1(1, 1), A1(2, 1), A1(2, 2)
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and A2(2, 1), which can be expressed as

α = vec(A1, A2) = Rγ

=⇒



A1(1, 1)

A1(2, 1)

0

A1(2, 2)

0

A2(2, 1)

0

0



=



1 0 0 0

0 1 0 0

0 0 0 0

0 0 1 0

0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0



×


A1(1, 1)

A1(2, 1)

A1(2, 2)

A2(2, 1)

 . (2.19)

The constraint matrix R in (2.19) is of rank m = 4, which equals to the number of

non-zero AR coefficients.

Lütkepohl (1993) gives results on the constrained maximum likelihood estimation

of the AR coefficients. Under the parameter constraint in the form of (2.17), the

maximum likelihood estimators of the AR coefficients α and the noise covariance

matrix ΣZ are the solutions to the following equations,

α̂ = R{R′
(LL

′ ⊗ Σ̂−1Z )R}−1R′
(L⊗ Σ̂−1Z )y, (2.20)

Σ̂Z =
1

T − p

T∑
t=p+1

(Yt − Ŷt)(Yt − Ŷt)
′
, (2.21)
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where ⊗ is the Kronecker product and

Lt := (Yt, Yt−1, . . . , Yt−p+1)
′
,

L := (L0, L1, . . . , LT−1),

y := vec(Y ) = vec(Y1, Y2, . . . , YT ),

Ŷt :=

p∑
k=1

ÂkYt−k.

It is known that, see e.g. Lütkepohl (1993); Reinsel (1997), if there is no parameter

constraint on the AR coefficients, i.e., R = IK2p in (2.17), then the maximum like-

lihood estimator of the AR coefficients does not involve the noise covariance matrix

ΣZ . From equation (2.20), however, we can see that the presence of the parameter

constraint (2.17) makes the estimation of the AR coefficients commingled with the

estimation of the covariance matrix ΣZ . Therefore we iteratively update the estima-

tors α̂ and Σ̂Z according to equations (2.20) and (2.21), until convergence, to obtain

the constrained maximum likelihood estimator of the AR coefficients.

2.6.2 Implementation of fitting Lasso-VAR models

We give details of the implementation of fitting the two Lasso-VAR models, i.e., the

Lasso-SS and Lasso-LL VAR models. Notice that the VAR(p) model (2.1) can be

written in the following compact form,

y = vec(Y ) = (L
′ ⊗ IK)α + vec(Z), (2.22)
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where vec column stack operator, ⊗ is the Kronecker product and

Y := (Y1, Y2, . . . , YT ),

y := vec(Y ),

Lt := (Yt, Yt−1, . . . , Yt−p+1)
′
,

L := (L0, L1, . . . , LT−1),

Z := (Z1, Z2, . . . , ZT ).

Since Z1, . . . , ZT are iid from the K-dimensional Gaussian N(0,ΣZ), from (2.22) the

minus log likelihood of the VAR(p) model (2.22), ignoring an additive constant, is,

− 2 logL(α,ΣZ) = T log |ΣZ |+ [y − (L
′ ⊗ IK)α]

′
(IT ⊗ Σ−1Z )[y − (LT ⊗ IK)α]. (2.23)

For Lasso-penalized VAR models, there are two possible choices of the loss function:

one is the sum of squared residuals and the other one is the minus log likelihood.

The Lasso-SS method uses the sum of squared residuals as the loss function and the

corresponding target function is,

QSS
λ (α) := ||y − (L

′ ⊗ IK)α||22 + λ||α||1; (2.24)

while the Lasso-LL method chooses the minus log likelihood as the loss function and

its target function is,

QLL
λ (α,ΣZ) := [y − (L

′ ⊗ IK)α]
′
(IT ⊗ Σ−1Z )[y − (L

′ ⊗ IK)α] (2.25)

+T log |ΣZ |+ λ||α||1.

In both equations (2.24) and (2.25) the scalar tuning parameter λ ∈ R controls

the amount of penalty. The AR coefficients α of the VAR model are estimated by

minimizing the target function QSS
λ (α) (2.24) or QLL

λ (α,ΣZ) (2.25), respectively.



57

It is worth noting that, unlike the linear regression model, the choice between the

sum of squared residuals and minus log likelihood as the loss function will lead to

different results of applying the Lasso method to VAR models. This can be seen by

taking the first derivative of the Lasso-SS target function (2.24) and the Lasso-LL

target function (2.25) with respect to the AR coefficient α,

∂QSS
λ (α)

∂α
= 2[(LL

′ ⊗ IK)− (L⊗ IK)y] + λ · sgn(α), (2.26)

∂QLL
λ (α)

∂α
= 2[(LL

′ ⊗ Σ−1Z )− (L⊗ Σ−1Z )y] + λ · sgn(α), (2.27)

where sgn(·) is the signum function and sgn(α) is the K2p × 1 vector in which the

kth entry is sgn(αk), k = 1, . . . , K2p. We can see that noise covariance matrix ΣZ

is taken into account by the Lasso-LL derivative (2.27) but not by the Lasso-SS

derivative (2.26). The two K2p × 1 vectors of first derivatives (2.26) and (2.27) are

in general not equal (up to multiplication by a scalar) unless the covariance matrix

ΣZ is a multiple of the identity matrix IK . Therefore the Lasso-SS and the Lasso-LL

methods will in general result in different VAR models.

Based on (2.24) and (2.25), we describe the estimation procedures of the two Lasso-

penalized VAR models. The estimation of Lasso-SS VAR models is straightforward

since it can be viewed as standard linear regression problems with the Lasso penalty.

Therefore the Lasso-SS VAR model can be fitted efficiently by applying the least

angle regression (LARS) algorithm, see e.g. Efron et al. (2004) or the coordinate

descent algorithm, see e.g. Friedman et al. (2010). Here we use the coordinate

descent algorithm implemented in the R package glmnet for fitting Lasso-SS VAR

models. The estimation of Lasso-LL VAR models is more complicated since the

target function (2.25) involves the unknown noise covariance matrix ΣZ . We propose

an iterative procedure to fit the Lasso-LL VAR model. The procedure is based on the

fact that, for a given covariance matrix ΣZ , the Lasso-LL target function (2.25) can
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be re-cast in a least-squares fashion. In other words, for a K × K positive-definite

matrix ΣZ , let

ΣZ = Udiag{κ1, . . . , κK}U
′
,

be its eigenvalue decomposition, where U is an orthonormal matrix and κ1 ≥ κ2 . . . ≥

κK > 0 are the K positive eigenvalues. Define

Σ
− 1

2
Z := Udiag{ 1

√
κ1
, . . . ,

1
√
κK
}U ′

(2.28)

to be the inverse square root of ΣZ . Notice that Σ
− 1

2
Z in (2.28) is symmetric and

Σ
− 1

2
Z Σ

− 1
2

Z = Σ−1Z , then we have

IT ⊗ Σ−1Z = (IT ⊗ Σ
− 1

2
Z )(IT ⊗ Σ

− 1
2

Z )

= (IT ⊗ Σ
− 1

2
Z )

′
(IT ⊗ Σ

− 1
2

Z ),

(IT ⊗ Σ
− 1

2
Z )[y − (L

′ ⊗ IK)α] = (IT ⊗ Σ
− 1

2
Z )y − (IT ⊗ Σ

− 1
2

Z )(L
′ ⊗ IK)α

= (IT ⊗ Σ
− 1

2
Z )y − (L

′ ⊗ Σ
− 1

2
Z )α.

Therefore the Lasso-LL target function (2.25) can be re-written as

QLL
λ (α,ΣZ) (2.29)

= T log |ΣZ |+ [y − (L
′ ⊗ IK)α]

′
(IT ⊗ Σ−1Z )[y − (L

′ ⊗ IK)α] + λ||α||1

= T log |ΣZ |+ [y − (L
′ ⊗ IK)α]

′
(IT ⊗ Σ

− 1
2

Z )
′
(IT ⊗ Σ

− 1
2

Z )[y − (L
′ ⊗ IK)α] + λ||α||1

= T log |ΣZ |+ [(IT ⊗ Σ
− 1

2
Z )y − (L

′ ⊗ Σ
− 1

2
Z )α]

′
[(IT ⊗ Σ

− 1
2

Z )y − (L
′ ⊗ Σ

− 1
2

Z )α] + λ||α||1

= T log |ΣZ |+ ||(IT ⊗ Σ
− 1

2
Z )y − (L

′ ⊗ Σ
− 1

2
Z )α||22 + λ||α||1.

The loss function

||(IT ⊗ Σ
− 1

2
Z )y − (L

′ ⊗ Σ
− 1

2
Z )α||22,

in (2.29) can be viewed as the sum of squared residuals from a linear regression model

with the response variable being (IT ⊗Σ
− 1

2
Z )y and the explanatory variables given by
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L
′ ⊗Σ

− 1
2

Z . Therefore, for a given ΣZ , minimizing the Lasso-LL target function (2.29)

with respect to the AR coefficients α is equivalent to minimizing a Lasso-SS target

function corresponding to the response variable (IT ⊗ Σ
− 1

2
Z )y and the explanatory

variables L
′ ⊗ Σ

− 1
2

Z . So we can use the following iterative procedure to fit Lasso-LL

VAR models.

Step 1. Set an initial value Σ
(0)
Z for the covariance matrix ΣZ .

Step 2. Update the AR coefficients α and the covariance matrix ΣZ at the (k + 1)th

iteration, until convergence, as follows,

2.1. α(k+1) = argmin
α

QLL
λ (α,Σ

(k)
Z ) by applying the coordinate descent algo-

rithm;

2.2. Σ
(k+1)
Z = 1

T−p(Y − A(k+1)L)(Y − A(k+1)L)
′
,

where α(k+1) = vec(A(k+1)).

Fitting Lasso-penalized VAR models, as other penalized regression methods, also

involves choosing the tuning parameter λ ∈ R. Furthermore, the number of explana-

tory variables, i.e., the number of lagged values appearing on the right hand side of

equation (2.22), depends on the unknown order of autoregression p. Therefore values

of both p and λ need to be determined in a data-driven manner. Here we use a ten-

fold cross-validation to determine their values. Restricting the order of autoregression

p to take values in a pre-specified range P, the following steps are used to fit Lasso-SS

and Lasso-LL VAR models.

1. For each p ∈ P, apply the coordinate descent algorithm to minimize the Lasso-SS

target function (2.24) or the aforementioned iterative procedure to minimize the

Lasso-LL target function (2.25). For either the Lasso-SS or Lasso-LL method,
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the optimal tuning parameter λopt(p), depending on the given autoregression

order p, is determined by the minimum average ten-fold cross-validation error.

2. Obtain either the Lasso-SS or Lasso-LL VAR model by setting the autoregres-

sion order to p̂, which gives the minimum average cross-validation error over P,

and the tuning parameter equal to λopt(p̂).
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Chapter 3

Reduced-rank Covariance

Estimation in Vector

Autoregressive Modeling

3.1 Introduction

In this chapter, we propose a strategy to estimate the covariance matrix ΣZ of the

vector noise Zt in a large dimensional VAR model as given by (1.1). Covariance

estimation is important for VAR modeling: an estimate of the noise covariance matrix

ΣZ is needed for exploring the dependence structure of the VAR process (Demiralp

and Hoover 2003; Moneta 2004) while an estimate of the inverse of the noise covariance

matrix Σ−1Z is required in constructing the confidence intervals for AR coefficient

estimates or computing the mean squared error of VAR forecasting (Lütkepohl 1993).

A natural estimator for ΣZ in a VAR model is the sample covariance matrix of the

residuals from fitting an autoregression (Lütkepohl 1993). To this end, the residuals
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are viewed as independent samples, conditioned on the AR coefficient estimates, from

an underlying distribution with covariance matrix ΣZ . Therefore estimating the noise

covariance matrix in a VAR model can be cast as a covariance estimation problem

where independent observations are available.

Covariance estimation from independent observations is a fundamental problem in

many areas, such as portfolio selection (Ledoit and Wolf 2004), functional genomics

(Schäfer and Strimmer 2005), fMRI study (Daniels and Kass 2001) and graphical

models (Lauritzen and Wermuth 1989). Estimating a K×K covariance matrix posits

many challenges for large K since the number of parameters to be estimated, which

is K(K + 1)/2, grows quadratically in the dimension K. The sample covariance ma-

trix of the observations serves as a natural estimator when the dimension K is much

smaller than the sample size. But it is also well known that the sample covariance

matrix can be severely ill-conditioned in small- to medium- samples. As a result,

various methods are proposed to estimate large dimensional covariance matrices. In

the literature, there exist three main approaches for covariance estimation under large

dimensionality. The first is the shrinkage approach, where the covariance estimator

is obtained by shrinking the sample covariance matrix towards a pre-specified covari-

ance structure (Ledoit and Wolf 2004; Schäfer and Strimmer 2005); the second is the

regularization approach, where the covariance estimator is derived based on regular-

ization methods, such as banding (Bickel and Levina 2008), thresholding (El Karoui

2008) and penalized estimation (Huang et al. 2006); and the third is the structure

approach, where structural constraints, such as factor structures (Tipping and Bishop

1999) or autoregressive structures (Daniels and Kass 2001), are imposed to reduce

the effective dimension of the covariance estimator.

In this chapter, we propose a reduced-rank estimator for the noise covariance

matrix in a large dimensional VAR model. In Section 3.2 we first derive the reduced-
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rank estimator under the setting where independent observations are available. The

reduced-rank estimator is based on a latent variable model for the vector observation

and its effective dimension can be much lower than the dimension of the population

covariance matrix. So the reduced-rank estimator can be viewed as a structure co-

variance estimator. The reduced-rank estimator is attractive since it is not only well-

conditioned but also provides an interpretable description of the covariance structure.

Our simulation study shows that the reduced-rank covariance estimator outperforms

two competing shrinkage estimators for estimating large dimensional covariance ma-

trices from independent observations. In Section 3.2.2, we proceed to the context of

VAR modeling. We describe how to integrate the proposed reduced-rank estimator

into the fitting of large dimensional VAR models, for which we consider two scenarios

that require different model fitting procedures. The first scenario is that there is no

constraint on the AR coefficients, for which the VAR model can be fitted using a

2-step method; while the second scenario is that there exist constraints on the AR

coefficients, where the VAR model needs to be fitted by an iterative procedure. In

Section 3.3.2, the reduced-rank covariance estimator is applied to the VAR modeling

of two real data examples. The first example is concerned with stock returns from

S&P 500 and the second example is a time series of temperatures in southeast China.

3.2 Reduced-rank covariance estimation

In this section, we first derive the reduced-rank covariance estimator based on in-

dependent observations. Then we proceed to VAR modeling and describe how to

integrate the reduced-rank estimator into the fitting of large dimensional VAR mod-

els.
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3.2.1 For independent observations

We assume that Z1, . . . , ZT are T independent replicates from a K-dimensional Gaus-

sian with mean 0 and covariance matrix ΣZ . 1 The problem of interest is to estimate

ΣZ , which can be large dimensional. To derive our covariance estimator, we further

assume that each vector observation Zt follows the latent variable model

Zt = Uδt + εt, for t = 1, . . . , T, (3.1)

where the latent variables δt (t = 1, . . . , T ) are independent replicates from a d-

dimensional (0 ≤ d ≤ K − 1) Gaussian with mean 0 and diagonal covariance matrix

Λ := diag{λ1, . . . , λd} (the diagonal entries are positive and in decreasing order); U is

a K × d column-orthonormal matrix, i.e., U
′
U = Id; and the errors εt (t = 1, . . . , T )

are independent replicates from a K-dimensional Gaussian with mean 0 and isotropic

covariance matrix cov(εt) = σ2IK .

Under the latent variable model (3.1), the covariance matrix ΣZ is seen to be

ΣZ = UΛU
′
+ σ2IK . (3.2)

The first component UΛU
′

in the decomposition (3.2) has reduced-rank d (d < K)

and contains the core information about the dependence structure between the K

marginals of Zt. The second component σ2IK has sparse structure and accounts for

unexplained variability in individual marginals. The decomposition (3.2) approxi-

mates the K-dimensional dependence structure encoded by ΣZ with a rank-d matrix

UΛU
′
. Such an approximation is useful for separating important dependence patterns

from large dimensional noisy observations.

1Here we make the assumption of Gaussian distribution. As in Chapter 2, when Zt is non-
Gaussian, the reduced-rank covariance estimation method can still be applied, where the Gaussian
likelihood is interpreted as a quasi-likelihood.
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Connection and distinction with factor models.

The motivation of the latent variable model (3.1) is that the K-dimensional vector Zt

can be related to a d-dimensional vector δt of latent (unobserved) variables through

a column-orthonormal matrix U . With d < K, the latent variable δt provides a more

parsimonious description of the dependence structure of Zt. This motivation is sim-

ilar to that of factor models, see e.g. Anderson (2003). In the factor model setup,

the relation (3.1) is also used to link the observation with the latent variable and

the matrix U is called the factor loading; but it is usually assumed that the latent

variable δt has an isotropic covariance matrix while the error εt has a non-isotropic

covariance matrix. It is known that factor models have non-identifiability issues.

Specifically, for any d× d orthogonal matrix C, the pairs (U, δt) and (UC
′
, Cδt) will

lead to two factor models that are observationally equivalent. In contrast, our la-

tent variable model (3.1) avoids such non-identifiability issues. This is because in

the latent variable model we make different assumptions on the covariance structures

of the latent variable δt and the error εt, as summarized in Table 3.1. In the latent

variable model, the covariance matrix of the latent vector post an orthogonal rotation

C is cov(Cδt) = Cdiag{λ1, . . . , λd}C
′
, which in general is not equal to the original

covariance matrix cov(δt) = diag{λ1, . . . , λd}. So the two latent variable models cor-

responding to the pairs (U, δt) and (UC
′
, Cδt) are not observationally equivalent. In

other words, the assumption of the non-isotropic covariance matrix for the latent

vector δt leads to the identifiability of the latent variable model (3.1). Due to the

identifiability, interpretation of the matrix parameter U becomes meaningful.
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Table 3.1: Comparison of assumptions between the latent variable model and the
factor model.

Model cov(δt) cov(εt)
latent variable model (3.1) diag{λ1, . . . , λd} σ2IK
factor model σ2Id diag{λ1, . . . , λK}

Maximum likelihood estimation.

We derive the maximum likelihood estimator of the reduced-rank covariance matrix

ΣZ = UΛU
′
+ σ2IK (3.2). Based on observations Z1, . . . , ZT , − 2

T
log-likelihood, ig-

noring an additive constant, is given by

− 2

T
logL(U,Λ, σ2) = log |ΣZ |+ tr(Σ−1Z S), (3.3)

where S := 1
T

T∑
t=1

ZtZ
′

t is the sample covariance matrix. The following proposition

shows that there exists an analytical form for the maximum likelihood estimator of

the reduced-rank covariance matrix ΣZ .

Proposition 1 Let c1 ≥ c2 . . . ≥ cK ≥ 0 be the eigenvalues of the sample covariance

matrix S and assume that the reduced-rank d is known. The maximum likelihood

estimator of the reduced-rank covariance matrix ΣZ is given by

Σ̂Z = Û Λ̂Û
′
+ σ̂2IK , (3.4)

where

Û = (Û1, . . . , Ûd), and Ûi is the eigenvector of S corresponding to ci; (3.5)

σ̂2 =
1

K − d

K∑
i=d+1

ci; (3.6)

Λ̂ = diag{λ̂1, . . . , λ̂d}, where λ̂i = ci − σ̂2, i = 1, . . . , d. (3.7)
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We defer the proof to Appendix 3.4.1.

Properties of the reduced-rank covariance estimator.

From (3.5) we can see that there exist links between the latent variable model (3.1) and

principal component analysis (PCA), which is perhaps the most widely used statistical

tool for dimension reduction. The common setup of PCA is based on a series of

mutually-orthogonal projections of vector observations that maximize the retained

variance, where the directions of these projections are called principal axes, see e.g.

Jolliffe (2002). This setup is not based on a probabilistic model but comes from a

projection perspective. In contrast, the latent variable model (3.1) provides a model-

based formulation of PCA, in which the principal axes coincide with the columns

of the maximum likelihood estimator Û as given by (3.5). In the literature, such a

probabilistic formulation of PCA is first investigated by Lawley (1953) within the

context of factor analysis and is then reiterated by Tipping and Bishop (1999) under

the name probabilistic principal component analysis (PPCA). A discussion on the

advantages of this probabilistic formulation of PCA over the traditional projection-

based setup is given in Tipping and Bishop (1999).

We also investigate the conditioning property of the reduced-rank estimator Σ̂Z

(3.4). It can be shown that the eigenvalues, denoted by bi (i = 1, . . . , K), of the

reduced-rank estimator Σ̂Z are

bi =

 λ̂i + σ̂2 = ci, for i = 1, . . . , d;

σ̂2 = 1
K−d

∑K
i=d+1 ci, for i = d+ 1, . . . , K,

which means that the reduced-rank estimator Σ̂Z retains the d largest eigenvalues but

shrinks towards their average the remaining (K−d) eigenvalues of the sample covari-

ance matrix S. Therefore, the condition number, i.e., the ratio between the largest
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and smallest eigenvalues of the covariance estimator, of the reduced-rank estimator

can be much smaller than that of the sample covariance matrix. In other words, the

reduced-rank estimator can be much more well-conditioned than the sample covari-

ance matrix. In addition, as long as the reduced-rank d is smaller than the sample

size T , the reduced-rank estimator will be invertible even if the dimension K exceeds

the sample size T .

Next we discuss how to control the complexity of a reduced-rank covariance es-

timator through the choice of its reduced-rank d. From (3.4) we can see that there

exist two extremes for Σ̂Z as the reduced-rank d varies: when d = K − 1, i.e., there

is no dimension reduction, Σ̂Z = S becomes the full covariance model; and when

d = 0, i.e., there is no structured component Û Λ̂Û
′
, Σ̂Z = c̄IK becomes the isotropic

covariance model. In other words, the reduced-rank covariance estimator is obtained

by balancing between the unbiased but highly variable sample covariance matrix and

the biased but well-conditioned isotropic covariance matrix, where the balance is con-

trolled by the reduced-rank d. In practice, the reduced-rank d is unknown and needs

to be estimated from data. Here we use the Bayesian information criterion (BIC)

(Schwarz 1978) to determine the reduced-rank d. The BIC is computed as

BIC(d) = −2 logL(Û , Λ̂, σ̂2) + log(T )× (Kd− d(d− 1)

2
+ 1), (3.8)

where L(Û , Λ̂, σ̂2) is the maximized likelihood and Kd− d(d− 1)/2 + 1 is the number

of free parameters in the reduced-rank covariance estimator. We select the reduced-

rank d from {0, 1, . . . , K−1} according to minimum BIC. Tipping and Bishop (1999)

give similar results on controlling the complexity of PPCA.

Finally we describe a diagnostic tool for the reduced-rank covariance model. The

latent variable δt in (3.1) can be estimated as

δ̂t = Û
′
Zt, for t = 1, . . . , T, (3.9)
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where Û is given by (3.5). According to model assumptions, δ̂1, . . . , δ̂T should behave

like independent replicates from a d-dimension Gaussian with diagonal covariance

matrix. So the correlation function of the estimated latent variable δ̂t (3.9) can be

used for model diagnostics.

3.2.2 For VAR series

In this section, we proceed from the setting of independent observations to VAR

processes and apply the reduced-rank covariance estimator to the noise covariance

matrix ΣZ in a VAR model (1.1).

As described in Section 3.1, the reduced-rank estimator for ΣZ in a VAR model is

computed based on the residuals from fitting the autoregression. Therefore, in order

to apply the reduced-rank covariance estimator, we need to estimate the AR coefficient

matrices A1, . . . , Ap in (1.1) as well, for which we consider two scenarios. The first

scenario is that there is no constraint on the AR coefficient matrices A1, . . . , Ap; while

the second scenario is that there exist constraints on the AR coefficients. The second

scenario occurs, for example, when some of the AR coefficients are constrained be

to zero. Such zero constraints on AR coefficients arise when we model the Granger

causality of {Yt}, see e.g. Granger (1969); Lutkepohl (1993), or when we fit sparse

vector autoregressive models to {Yt}, see e.g. Davis et al. (2012) and Chapter 2. Here

we use zero constraints on AR coefficients as the example of the second scenario. Zero

constraints on the AR coefficient matrices A1, . . . , Ap can be expressed as

α := vec(A1, . . . , Ap) = Rγ, (3.10)

where α := vec(A1, . . . , Ap) is the K2p-dimensional vector obtained by stacking the

columns of the AR coefficient matrices A1, . . . , Ap; R is a K2p×m matrix of known

constants with rank m; and γ is a m-dimensional vector of unknown parameters. The
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matrix R is referred to as the constraint matrix (Davis et al. 2012) and it specifies

which AR coefficients are zero by choosing one entry in each column to be 1 and all

the other entries in that column to be 0. The rank m of the constraint matrix R is

equal to the number of non-zero AR coefficients. Using results on the constrained

VAR estimation in Lütkepohl (1993) and on the reduced-rank covariance estimation

in Section 3.2.1, we can show that, under the constraint (3.10) and the reduced-rank

covariance model (3.2), the maximum likelihood estimator of the AR coefficients α is

given by

α̂ = R[R
′
(LL

′ ⊗ Σ̂−1Z )R]−1R
′
(L⊗ Σ̂−1Z )y, (3.11)

where

Lt := (Yt, Yt−1, . . . , Yt−p+1)
′
,

L := (L0, L1, . . . , LT−1),

y := vec(Y ) = vec(Y1, Y2, . . . , YT ).

And Σ̂Z in (3.11) is the reduced-rank maximum likelihood estimator for the noise

covariance matrix ΣZ based on the residuals Ẑt := Yt−
p∑

k=1

ÂkYt−k (t = p+ 1, . . . , T )

from the fitted autoregression.

The model fitting procedure for the first scenario.

When there is no constraint on the AR coefficients (scenario 1), we have R = IK2p in

(3.10) and (3.11) becomes

α̂ = IK2p[I
′

K2p(LL
′ ⊗ Σ̂−1Z )IK2p]

−1I
′

K2p(L⊗ Σ̂−1Z )y

= [(LL
′
)−1 ⊗ Σ̂Z ](L⊗ Σ̂−1Z )y

= [(LL
′
)−1L⊗ IK ]y. (3.12)
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So for the first scenario, (3.12) shows that the estimation of the AR coefficients α does

not involve the reduced-rank estimation of the noise covariance matrix ΣZ . Therefore

the reduced-rank covariance estimator can be applied to a VAR model using the

following 2-step method.

Step 1. Fit an unconstrained VAR model to {Yt} and obtain the AR coefficient estimates

α̂ according to (3.12).

Step 2. Compute the reduced-rank covariance estimator Σ̂Z using the results in Propo-

sition 1 based on the residuals from the autoregression conditioned on the AR

coefficient estimates α̂.

The model fitting procedure for the second scenario.

Where there exist zero constraints on the AR coefficients (scenario 2), (3.11) shows

that the estimation of the AR coefficients α is commingled with the reduced-rank

estimation of the noise covariance matrix ΣZ . Therefore the reduced-rank covariance

estimator is applied to a VAR model using the following iterative procedure.

• Start with initial estimators α̂(0) and Σ̂
(0)
Z .

• Assume that at the rth iteration, the current estimators are α̂(r) and Σ̂
(r)
Z ,

respectively. Repeat the following steps 1 and 2 until convergence.

Step 1. Compute α̂(r+1) according to (3.11) by replacing Σ̂Z with the current

reduced-rank covariance estimator Σ̂
(r)
Z .

Step 2. Compute Σ̂
(r+1)
Z by applying the results of Proposition 1 based on the

residuals from the autoregression conditioned on the current constrained

AR coefficient estimates α̂(r+1).
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A latent space interpretation.

We conclude this section by introducing a latent space setup that helps to interpret

results from a reduced-rank covariance estimator when it is applied in VAR model-

ing. In particular, this latent space setup is useful in exploring the contemporaneous

dependence structure of the VAR process {Yt}, which describes how synchronous

values of different marginal series of {Yt} impact each other, see e.g Reale and Wil-

son (2001); Demiralp and Hoover (2003); Moneta (2004). For i = 1, . . . , K, let

ui := (Ui,1, . . . , Ui,d)
′

be the ith row of the K × d matrix U in (3.2). Then for two

different marginal series of {Yt}, say {Yt,i} and {Yt,j} (i 6= j), we have

cov(Yt,i, Yt,j| Ys, s ≤ t− 1) = u
′

iΛuj. (3.13)

The relation (3.13) shows that the conditional contemporaneous covariance between

two different marginal series of {Yt} is represented by a weighted inner-product of

the corresponding rows of U . To help interpret (3.13), we postulate the existence of

a d-dimensional Euclidean space of unobserved (latent) characteristics. The latent

characteristics determine the contemporaneous dependence between the marginal se-

ries of {Yt}. We further assume that each marginal series of {Yt} is associated with a

position in this latent space and the pattern of contemporaneous dependence among

the K marginal series of {Yt} can be characterized by their latent positions. Such a

setup is also used in latent space network models, see e.g. Hoff et al. (2002); Hoff

(2005). From (3.13) we can see that, when the above latent space setup is adopted

to the reduced-rank covariance model (3.2), the d dimensions of the latent space are

represented by the columns of U while the K latent positions are given by the rows of

U . Therefore the matrix U provides a tool to represent the K-dimensional contempo-

raneous dependence structure in a lower-dimensional space. In addition, if we are able
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to find interpretations for different columns of U by taking advantage of exogenous

information, such interpretations will help to identify the unobserved characteristics

that are important in forming the contemporaneous dependence relationship. The

heuristics behind such a latent space setup is similar to that of multidimensional

scaling (MDS), see e.g. Borg and Groenen (1997), in that both methods are con-

cerned with “spatial” representations of observed patterns of dependence among a

group of subjects, such as the K marginal series of {Yt} in our case. However, the

MDS method is not model-based and it constructs spatial representations in an ad-

hoc manner; in contrast, the above latent space setup leads to model-based graphical

representations of the contemporaneous dependence structure via inference of the

reduced-rank covariance model. In Section 3.3.2, we illustrate via real data exam-

ples the use of this latent space setup in interpreting results from the reduced-rank

covariance estimator in a VAR model.

3.3 Numerical results

3.3.1 Simulation

As pointed out in Section 3.1, there exist three major classes of covariance estimators

under large dimensionality: the shrinkage, the regularization and the structure co-

variance estimators. The reduced-rank (RR) estimator can be viewed as a structure

covariance estimator, as discussed in Section 3.2.1. One difference between the three

classes of covariance estimators is that, under finite samples, invertibility holds for the

shrinkage and the structure estimators, but not guaranteed for the regularization es-

timator. Due to this difference, in the simulation study we compare the reduced-rank

covariance estimator with shrinkage estimators for their performance of estimating
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large dimensional covariance matrices from independent observations. The earliest

attempt of shrinkage covariance estimation is given in Stein (1975) and since then

many shrinkage estimators have been proposed, see e.g. Dey and Srinivasan (1985);

Daniels and Kass (2001); Ledoit and Wolf (2003; 2004); Schäfer and Strimmer (2005).

A shrinkage covariance estimator is obtained by shrinking the sample covariance ma-

trix towards a target covariance structure. The balance between these two extremes

is controlled by the shrinkage intensity, a tuning parameter that needs to be esti-

mated from data. A review of commonly-used target covariance structures is given

in Schäfer and Strimmer (2005).

We consider two shrinkage covariance estimators: one is proposed in Ledoit and

Wolf (2004) (LW2004) and the other one is given by Schäfer and Strimmer (2005)

(SS2005). The two shrinkage estimators differ in their choices of the target covari-

ance structure. We generate independent replicates from a K-dimensional Gaussian

N(0,ΣZ) under three cases: (I) ΣZ = IK ; (II) ΣZ has all variances set to 1 and all

covariances set to 0.1; (III) ΣZ has variances set to {1, . . . , 1, 0.8, . . . , 0.8} (the first

five entries are 1 and the others are 0.8) and all covariances set to 0.1. Cases (I) and

(II) are also used for the simulation study in Daniels and Kass (2001). We let the

dimension K = 20 and the sample size T = 20, 40, 100, 200, 400, respectively. In ap-

plying the RR covariance estimator, the reduced-rank d is selected from {0, 1, . . . , 19}

according to minimum BIC, which is computed as (3.8); while in applying the two

shrinkage estimators LW2004 and SS2005, their shrinkage intensities are determined

analytically as described in Ledoit and Wolf (2004) and Schäfer and Strimmer (2005),

respectively. We use two metrics to compare the performance of different covariance

estimators: the first metric is the Stein’s loss (SL) (James and Stein 1961), which

is defined by SL(Σ̂Z) := tr(Σ̂ZΣ−1Z ) − log |Σ̂ZΣ−1Z | − K. It can be shown that the

Stein’s loss SL(Σ̂Z) is equal to (up to a 1/2 multiplier) the Kullback-Leibler diver-
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gence (Kullback and Leibler 1951) between two K-dimensional Gaussians N(0, Σ̂Z)

and N(0,ΣZ); and the second metric is the mean squared error (MSE), which is

defined by MSE(Σ̂Z) := E||Σ̂Z − ΣZ ||22.

Table 3.2: Percentage reduction in SL and MSE of the RR, the LW2004 and the
SS2005 covariance estimators as compared to the sample covariance matrix. For each
setting, the largest reduction among the three is marked in bold. The results are
based on 1000 replications.

percentage reduction in SL percentage reduction in MSE
ΣZ T RR LW2004 SS2005 RR LW2004 SS2005
I 20 99.9 99.6 99.6 99.3 98.0 98.2

40 99.5 98.8 98.7 99.4 98.6 98.4
100 99.5 99.0 98.6 99.5 98.9 98.5
200 99.6 99.0 98.6 99.5 99.0 98.6
400 99.5 99.1 98.7 99.5 99.1 98.6

II 20 98.8 98.5 98.6 78.2 83.3 83.6
40 91.8 90.0 90.3 62.6 72.3 72.8

100 87.4 75.4 75.8 56.6 50.5 52.6
200 90.2 57.8 58.9 71.7 33.2 37.3
400 90.2 38.4 41.3 71.8 19.2 25.6

III 20 98.3 98.0 98.1 68.8 77.8 78.2
40 89.0 86.5 86.5 52.0 64.5 63.8

100 84.9 67.7 67.0 58.2 41.1 41.9
200 81.0 48.3 47.2 60.1 25.2 26.1
400 70.9 30.1 29.3 51.3 13.7 14.7

For small- to medium- sample sizes, the three covariance estimators under con-

sideration all provide improvement over the sample covariance matrix. Table 3.2

summarizes the percentage reduction in SL and MSE of each covariance estimator

as compared to the sample covariance matrix, where the largest reduction among

the three is marked in bold. We can see that for case (I), where ΣZ = IK has very

simple structure, all three covariance estimators achieve similar improvement over

the sample covariance matrix. When the structure of ΣZ becomes more complicated,
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such as in cases (II) and (III), the RR estimator still leads to considerable improve-

ment over the sample covariance matrix. Specifically, for small sample sizes, such as

T = 20, 40 and 100, the improvement of the RR estimator is comparable to that of the

two shrinkage estimators; while for medium sample sizes, such as T = 200 and 400,

the RR estimator achieves significantly better performance than the two competing

shrinkage estimators with respect to both SL and MSE. In addition, the advantage

of the RR estimator in cases (II) and (III) is seen to increase with the sample size T .

For example, when T is 400, the percentage reduction of the RR estimator is twice

as large as that of the two shrinkage estimators with respect to SL, and almost four

times as large with respect to MSE.

3.3.2 Real data examples

We apply the reduced-rank covariance estimator in the VAR modeling of two real

data examples. The first example is concerned with stock returns from S&P 500

and corresponds to the first scenario in Section 3.2.2, i.e., there is no constraint

on the AR coefficients of the VAR model. The second example is a time series of

temperatures in southeast China and corresponds to the second scenario, i.e., there

exist zero constraints on the AR coefficients. For both examples, we use the latent

space setup introduced in Section 3.2.2 to interpret findings from the reduced-rank

covariance estimation.

Stock returns from S&P 500. In the first example, the data consist of daily

returns of K = 55 stocks in S&P 500 and the stocks come from 4 sectors: energy,

industry, finance and technology. The returns are calculated as the logarithm of the

ratio between two consecutive daily close prices from the 252 trading days in 2006.
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Figure 3.1 displays the first 60 observations of the return series.

Figure 3.1: The first 60 observations of the return series. The color indicates the
sector each stock belongs to: energy (black), industry (red), finance (green), technology
(blue).

Our interest is to describe the pattern of contemporaneous dependence between

returns of the 55 stocks. For this purpose, we apply the reduced-rank covariance

estimator in the VAR modeling of the 55-dimensional return series. We use the

2-step method (the first scenario described in Section 3.2.2) to fit a VAR model
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with unconstrained AR coefficients and reduced-rank noise covariance matrix. In

particular, we first fit an unconstrained VAR(1) model to the 55-dimensional return

series, where the autoregression order 1 is selected from {0, 1, 2, 3} according to BIC.

Then we obtain the reduced-rank covariance estimator based on the residuals from

the fitted autoregression. We choose the reduced-rank d from {0, 1, . . . , 54} and panel

(a) in Figure 3.2 displays the BIC curve as d varies, which shows that the minimum

BIC leads to d = 7. In other words, the contemporaneous dependence structure

between the 55 stock return series can be well represented in a 7-dimensional latent

space.

Panels (b), (c) and (d) in Figure 3.2 explore the 7-dimensional latent space by dis-

playing the layouts of the 55 stocks in its first 3 dimensions, where the color indicates

the sector each stock belongs to. Panel (b) corresponds to the first 2 dimensions of the

latent space, from which we can observe a “clustering” phenomenon of the 55 stocks

in these 2 dimensions. Specifically, the within-sector contemporaneous dependence

is most noticeable among stock returns from the energy sector, since those energy

stocks are positioned close to each other while far away from the origin of the latent

space. We also observe that the energy stocks hold opposite signs along the second

dimension against stocks from the industry, finance and technology sectors. It means

that returns of the energy stocks are negatively contemporaneously related to stock

returns from the other 3 sectors. On the contrary, the within-sector contemporaneous

dependence is much weaker among stock returns from the finance sector, since those

stocks are positioned close to the original of the latent space. Moreover, panel (b)

also shows that the first 2 dimensions provide information for separating the energy

sector from the other 3 sectors, but not for distinguishing among the industry, finance

and technology stocks. One exception is that there also exists separation between the

industry and the technology sectors. This separation becomes more noticeable after
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we take into account the third dimension of the latent space. From panels (c) and

(d), both of which display the third dimension along the vertical direction, we can see

that the third dimension is informative for separating the industry from the technology

stocks, while it has little power for distinguishing between the energy and the finance

sectors. For the diagnostic check, Figure 3.3 displays the auto-correlation (ACF) and

cross-correlation functions (CCF) among the first 5 marginals of the estimated latent

variable δ̂t as in (3.9), which exhibits little significant auto- or cross- correlation. In

fact, we observe little significant auto- or cross- correlation among all 7 marginals of

δ̂t. This observation is consistent with the assumption of the reduced-rank covariance

model.

The use of the reduced-rank covariance estimator in the VAR modeling of the

returns series also provides improvement over the situation where the unrestricted

covariance estimator is employed for the noise covariance matrix. Here the unre-

stricted covariance estimator refers to the sample covariance matrix of the residuals

from the fitted autoregression and it corresponds to the case when d = K−1 = 54 in a

reduced-rank estimator. Below we will show that, at least for this example, reducing

the effective dimension of the noise covariance estimator in large dimensional VAR

models also has benefits. From (3.12), we can see that the AR coefficient estimates

from the two unconstrained VAR(1) models with d = 54 and d = 7 are identical.

Due to the selection of the reduced-rank d, however, these two VAR(1) models are

different in two aspects: the confidence intervals of AR coefficient estimates and the

forecast mean squared error, both of which are explored below. Figure 3.4 displays

the confidence intervals of the 3025(= 552) AR coefficient estimates from the two

VAR(1) models with d = 54 and d = 7, respectively. The solid curve shows the

3025 AR coefficient estimates in ascending order, which are identical between the two

VAR(1) models. Each vertical line indicates ±1.96 the corresponding standard error,
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(a) BIC (b) dimension 1 vs dimension 2

(c) dimension 1 vs dimension 3 (d) dimension 2 vs dimension 3

Figure 3.2: Panel (a): The BIC curve as the reduced-rank d varies from 0 to 54.
Panels (b), (c) and (d): Layouts of the 55 stocks in the first 3 dimensions of the
latent space. The color indicates the sector each stock belongs to: energy (black),
industry (red), finance (green), technology (blue). The dashed lines show the axes of
the latent space.
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Figure 3.3: The ACF and CCF plots of the first 5 marginals of the estimated latent
variable δ̂t.
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where the standard error is computed using (2.14). From Figure 3.4 we can see that

reducing the complexity of the noise covariance estimator in VAR models can lead to

narrower confidence intervals for AR coefficient estimates as compared to using the

unrestricted covariance estimator. The narrower confidence intervals help to better

discover significant temporal relationships in the VAR model. We also compare the

forecast performance of the two VAR(1) models. The mean squared error (MSE)

matrix of 1-step forecast of a VAR(p) model with estimated AR matrices Â1, . . . , Âp

is defined as

fMSE(1) := E(Yt+1 −
p∑

k=1

ÂkŶt(1− k))(Yt+1 −
p∑

k=1

ÂkŶt(1− k))
′
, (3.14)

where Ŷt(k) := Yt for k ≤ 0. We use the results in Appendix 3.4.2 to approximate the

forecast MSE matrix (3.14) using the estimated AR parameters Â1, . . . , Âp and noise

covariance matrix Σ̂Z . Figure 3.5 displays the difference between the approximate

1-step forecast MSE matrices from the two VAR(1) models with d = 54 and d = 7

(i.e., the approximate fMSE(1) from d = 54 minus the approximate fMSE(1) from

d = 7) . The solid lines indicate the 4 sectors. We can see from Figure 3.5 that the

reduced-rank covariance estimator gives smaller forecast MSE than the unrestricted

covariance estimator. The reduction in 1-step forecast MSE is most significant for

stocks from the energy and the technology sectors, which correspond to the first and

the fourth blocks in Figure 3.5.

Temperatures in southeast China. This example is concerned with monthly tem-

perature series of K = 7 cities in southeast China 2 from January 1988 to December

1998 (Pan and Yao 2008), which gives T = 132 observations. Figure 3.6 displays the

first 36 observations of the monthly temperature series.

2The 7 cities are Anqing, Dongtai, Hangzhou, Hefei, Huoshan, Nanjing and Shanghai.
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Figure 3.4: Comparison of the confidence intervals of the AR coefficient estimates
between the two VAR(1) models with d = 54 and d = 7. The solid curve shows the
3025(= 552) AR coefficient estimates in ascending order. Each vertical line indicates
±1.96 the corresponding standard error.

Figure 3.5: Display of the difference between the approximate 1-step forecast MSE
matrices of the two VAR(1) models when d = 54 and d = 7. The solid lines indicate
the 4 sectors.
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Figure 3.6: The first 36 observations of the temperature series.

We are interested in the contemporaneous dependence structure between the 7

cities’ temperature movements. For this purpose, we apply the reduced-rank covari-

ance estimator in the VAR modeling of the 7-dimensional temperature series. We use

the iterative procedure (the second scenario described in Section 3.2.2) to fit a VAR

model with constrained AR coefficients and reduced-rank noise covariance matrix.

Specifically, for each d ∈ {0, 1, . . . , 6}, we use the 2-stage approach introduced in

Chapter 2 to determine the zero constraints on the AR coefficients according to mini-

mum BIC. In applying the 2-stage approach, the order of autoregression p is selected
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from {0, 1, . . . , 8}. Then we choose the reduced-rank d from {0, 1, . . . , 6} according

to minimum BIC as well. We finally obtain an order-1 VAR model with 29 non-zero

AR coefficients and reduced-rank d = 3. The selection of d = 3 suggests that the core

structure of contemporaneous dependence between the 7 cities’ temperatures can be

represented in a 3-dimensional latent space.

To obtain insight about this 3-dimensional latent space, we compare the 7 cities’

actual geographical locations with their positions in the estimated latent space. The

findings are summarized in Figure 3.7. Panels (a) and (b) in Figure 3.7 display the 7

cities’ geographical locations (longitude vs latitude) and latent positions (dimension

2 vs dimension 3), respectively. The most noticeable aspect is the similarity between

the layouts of the 7 cities in these two spaces. In addition, panel (c) compares the

rank of pairwise distance among the 7 cities in the geographical space with that

in the latent space. The correlation coefficient between the two sets of ranks is as

much as 0.92. The above findings from the reduced-rank covariance estimator suggest

that geographical layout is an important factor in explaining the contemporaneous

dependence between the 7 cities’ temperature movements. This finding is obviously

not unexpected since neighboring cities are likely to share similar meteorological and

geological conditions, which will impact the temperature within a region. Here we

emphasize that no geographical information is provided to our model. The latent

positions, as given by the rows of Û (3.5), are purely discovered by the reduced-

rank covariance estimation in the VAR modeling of the temperature data. For model

diagnostics, panel (d) of Figure 3.7 displays the ACF and CCF among the 3 marginals

of the estimated latent variable δ̂t as in (3.9). We can see that, with few exceptions,

neither the auto-correlation nor cross-correlation is significant, which is consistent

with model assumptions.
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(a) the geo-space (b) the latent space

(c) pairwise distance (d) ACF and CCF

Figure 3.7: Panels (a) and (b): Locations of the 7 cities in the actual geographical
space and the estimated latent space, respectively. Panel (c): Ranks of pairwise dis-
tance among the 7 cities in the geographical space (x-axis) and in the latent space (y-
axis). The numbers stand for: 1-Anqing, 2-Dongtai, 3-Hangzhou, 4-Hefei, 5-Huoshan,
6-Nanjing and 7-Shanghai. Panel (d): The ACF and CCF plots of the 3 marginals of
the estimated latent variable δ̂t.
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3.4 Appendix to Chapter 3

3.4.1 Proof of Proposition 1 in Section 3.2.1

Proof of Proposition 1. Notice that the K eigenvalues of ΣZ = UΛU
′
+ σ2IK are

λ1 + σ2, . . . , λd + σ2, σ2, . . . , σ2, so the − 2
T

log-likelihood (3.3) becomes

− 2

T
logL(U,Λ, σ2) = log |ΣZ |+ tr(Σ−1Z S)

= (K − d) log(σ2) +
d∑
i=1

log(λi + σ2) + tr(Σ−1Z S). (3.15)

From standard matrix results, see e.g. Schott (2004), (3.2) gives

Σ−1Z = (UΛU
′
+ σ2IK)−1

= (σ2IK)−1 − (σ2IK)−1U [Λ−1 + U
′
(σ2IK)−1U ]−1U

′
(σ2IK)−1

=
1

σ2
IK −

1

(σ2)2
U(diag{ 1

λ1
,

1

λ2
, . . . ,

1

λd
}+ diag{ 1

σ2
,

1

σ2
, . . . ,

1

σ2
})−1U ′

=
1

σ2
IK +

1

σ2
Udiag{− λ1

λ1 + σ2
,− λ2

λ2 + σ2
, . . . ,− λd

λd + σ2
}U ′

=
1

σ2
(IK + U Λ̃U

′
), (3.16)

where Λ̃ := diag{− λ1
λ1+σ2 , . . . ,− λd

λd+σ2}. We point out that it is the assumption of the

isotropic error covariance matrix var(εt) = σ2IK that makes it possible to explicitly

calculate Σ−1Z as in (3.16) and eventually leads to the analytical form of the maximum



88

likelihood estimator. Plugging (3.16) into (3.15), we have

− 2

T
logL(U,Λ, σ2) = (K − d) log(σ2) +

d∑
i=1

log(λi + σ2) +
1

σ2
tr[(IK + U Λ̃U

′
)S]

= (K − d) log(σ2) +
d∑
i=1

log(λi + σ2) +
1

σ2
tr(S) +

1

σ2
tr(U Λ̃U

′
S)

= (K − d) log(σ2) +
d∑
i=1

log(λi + σ2) +
1

σ2

K∑
i=1

ci +
1

σ2
tr(U

′
SU Λ̃).

(3.17)

Let Û denote the K × d matrix whose columns consist of the d eigenvectors that

correspond to the d largest eigenvalues of S as in (3.5). Since the diagonal entries

of Λ̃ are negative and in increasing order, i.e.,− λ1
λ1+σ2 < . . . < − λd

λd+σ2 < 0, standard

matrix results show that tr(U
′
SU Λ̃) in (3.17) is minimized by Û . In addition, as long

as the relationship − λ1
λ1+σ2 < . . . < − λd

λd+σ2 < 0 holds, Û is the minimizer regardless

of the particular values of λ1, . . . , λd and σ2. If the d largest eigenvalues c1, . . . , cd of

S are distinct, the minimizer Û is unique up to column-wise reflections. Additionally,

Û is unique if the signs of entries in one row of Û are anchored a priori.

Now we have Û
′
SÛ = diag{c1, . . . , cd}, so plugging Û into (3.17) gives

− 2

T
logL(Û ,Λ, σ2) = (K − d) log(σ2) +

d∑
i=1

log(λi + σ2) +
1

σ2

K∑
i=1

ci +
1

σ2
tr(diag{c1, . . . , cd}Λ̃)

= (K − d) log(σ2) +
d∑
i=1

log(λi + σ2) +
1

σ2

K∑
i=1

ci −
1

σ2

d∑
i=1

λici
λi + σ2

= (K − d) log(σ2) +
d∑
i=1

log(λi + σ2) +
1

σ2

K∑
i=d+1

ci +
d∑
i=1

ci
λi + σ2.

(3.18)
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Minimizing the right-hand size of (3.18) with respect to λ1, . . . , λd and σ2, we have

σ̂2 =
1

K − d

K∑
i=d+1

ci;

λ̂i = ci − σ̂2, for i = 1, . . . , d.

which completes the proof.

3.4.2 Approximation of MSE matrices of VAR forecasting

We give results on approximating the mean squared error (MSE) matrix for 1-step

forecast of a VAR model. Let {Yt} be the VAR(p) process in (1.1) with µ = 0. Then

the optimal 1-step forecast with estimated AR coefficients Â1, . . . , Âp is given by

Ŷt(1) =

p∑
k=1

ÂkŶt(1− k),

where Ŷt(k) := Yt for k ≤ 0. It can be shown, see e.g. Lütkepohl (1993), that the

MSE matrix of the 1-step forecast Ŷt(1), which is defined as

fMSE(1) := E(Yt+1 − Ŷt(1))(Yt+1 − Ŷt(1))
′
,

can be approximated by

˜fMSE(1) := ΣZ + Ω(1), (3.19)

where

Lt := (Yt, Yt−1, . . . , Yt−p+1)
′
, for t = 1, . . . , T, (3.20)

ΓY := cov(Lt) = cov(Yt, Yt−1, . . . , Yt−p+1)
′
, (3.21)

Ω(1) :=
1

T

T∑
t=1

{(L′

tΓ
−1
Y Lt)⊗ ΣZ}. (3.22)
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We can see that the approximate 1-step forecast MSE matrix ˜fMSE(1) (3.19) has two

parts: the first part ΣZ comes from the uncertainty inherent in the VAR model while

the second part Ω(1) (3.22) accounts for the variability in the parameter estimates.

We estimate the approximate 1-step forecast MSE matrix ˜fMSE(1) by plugging the

parameter estimates Â1, . . . , Âp and Σ̂Z into (3.19). For such estimation, we need to

represent the Kp × Kp covariance matrix ΓY = cov(Yt, Yt−1, . . . , Yt−p+1)
′

(3.21) in

terms of A1, . . . , Ap and ΣZ . We derive this representation as follows. From (1.1)

with µ = 0, we can see that the Kp-dimensional process {Lt} (3.20) satisfies the

following VAR(1) recursion

Lt = ΨLt−1 + Vt

⇒



Yt

Yt−1

Yt−2
...

Yt−p+1


=



A1 A2 · · · · · · Ap

IK 0 · · · · · · 0

0 IK · · · · · · 0
...

...
...

...
...

0 0 · · · IK 0





Yt−1

Yt−2

Yt−3
...

Yt−p


+



Zt

0

0
...

0


, (3.23)

where the Kp×Kp AR coefficient matrix Ψ in (3.23) is referred to as the companion

matrix (Reinsel 1997)of the VAR(p) model (1.1). The covariance matrix ΣV of the

Kp-dimensional noise Vt in (3.23) is a Kp×Kp matrix of zeros except that its upper-

left K ×K sub-matrix is equal to ΣZ . From (3.23), we have

ΓY = cov(Lt) = cov(ΨLt−1 + Vt) = ΨΓY Ψ
′
+ ΣV , (3.24)

and (3.24) leads to

vec(ΓY ) = vec(ΨΓY Ψ
′
+ ΣV )

= vec(ΨΓY Ψ
′
) + vec(ΣV )

= (Ψ⊗Ψ)vec(ΓY ) + vec(ΣV ). (3.25)
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From (3.25), it follows that

vec(ΓY ) = (IK2p2 −Ψ⊗Ψ)−1vec(ΣV ). (3.26)

Since Ψ and ΣV are defined via A1, . . . , Ap and ΣZ , (3.26) shows that ΓY can be

expressed in terms of A1, . . . , Ap and ΣZ as well.
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Chapter 4

Conclusions and Future Directions

In summary, we propose strategies for fitting large dimensional VAR models. We

first introduce a 2-stage approach for estimating large VAR models where many of

the AR coefficients are zero. The first stage provides initial selection of non-zero AR

coefficients based on partial spectral coherence (PSC) and BIC while the second stage

further refines spurious non-zero AR coefficients post first stage. The simulation re-

sult suggests that the 2-stage approach outperforms Lasso-type methods in estimating

VAR models with sparse AR coefficient matrices. We also provide a method of esti-

mating the noise covariance matrix in large dimensional VAR models. The method is

based on a reduced-rank covariance model and it can reduce the effective dimension

of the covariance estimator. We show by examples that applying the reduced-rank co-

variance estimator can give better performance of model-fitting and forecasting than

using the unrestricted covariance estimator in large dimensional VAR models.

Below we list some future directions following this research.

• In the 2-stage approach, we use PSC in conjunction with BIC for initial selection

of non-zero AR coefficients. From the numerical examples we have investigated,
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we notice that BIC-selected models tend to exclude AR coefficients that corre-

spond to zero PSCs. A possible explanation is that if the PSCs are near zero, the

corresponding AR coefficients do not increase the likelihood sufficiently to merit

their inclusion into the model. It is interesting to see what is the connection

between the PSC and the likelihood of a Gaussian VAR series.

• Currently the proposed 2-stage approach can be used for VAR modeling of

time series not exceeding 100 dimensions, but is inappropriate for series of

over 100 dimensions due to the computational burden. The computational cost

primarily comes from the estimation of AR coefficients with zero-constraints

imposed. Can we improve the computation efficiency of this step so that the

2-stage approach can be applied to larger dimensions ?

• We use BIC to control the complexity of both the constrained AR coefficient

estimator (Chapter 2) and the reduced-rank noise covariance estimator (Chapter

3). How the result will be affected if we use other information criteria, such as

AIC and AICC, or cross validations ?
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