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ABSTRACT 

The Physical Mechanism of Blood-Brain Barrier Opening Using Focused 

Ultrasound and Microbubbles 

 

Yao-Sheng Tung 

The key to effective treatment of neurological diseases resides in the safe opening of 

the blood-brain barrier (BBB), a specialized structure that impedes the delivery of 

therapeutic agents to the parenchyma. Despite the fact that several approaches have been 

successful in overcoming the BBB impermeability, none of them can induce localized BBB 

opening noninvasively except for focused ultrasound (FUS) in conjunction with 

microbubbles. The physical mechanism behind the opening, however, has not been 

identified. Insight into the mechanism can be critical for delineating the safety profile for in 

both small and large animals alike. Therefore the purpose of this dissertation is to first 

determine the physical mechanism of FUS-induced BBB opening in mice and then 

translate this approach to non-human primates. 

To accomplish this goal, an in vivo transcranial cavitation detection system was 

developed and tested, built in phantoms and in vivo, to monitor the behavior of the 

microbubbles in the FUS bean, and to determine the type of cavitation, i.e., the activation 

of bubbles in an acoustic field, during BBB opening. We showed that the inertial cavitation 

(IC), a collapse of a bubble, which can vary from a fragmentation of the bubble to shock 

wave and liquid jets depending on the pressure, thereby damaging the endothelial cells of 

the brain capillaries, was not required to induce BBB opening in mice. With this system, 



 

 

the role of microbubble properties, including the diameter and shell components, in the 

BBB opening were determined. When the BBB opens with stable cavitation (SC), i.e., 

relatively moderate amplitude changes in the bubble size, the bubble diameter is similar to 

the capillary diameter (i.e., at 4-5, 6-8 µm) while with inertial cavitation it is not (i.e., at 1-2 

µm). The bubble may thus have to be in closer proximity to the capillary wall to induce 

BBB opening without IC. The BBB opening properties, such as volume and permeability, 

however, were not affected by the shell component of the microbubbles in mice. The 

connection between the physical and physiological mechanism was then investigated to 

identify the lowest peak rarefactional pressure BBB opening threshold at 1.5 MHz (0.18 

MPa). A sufficiently long pulse (pulse length = 0.5 ms) was required for the SC to induce 

BBB opening at the lowest pressure. However, the tight junctions, the main formation of 

the BBB, were found not to be disrupted after sonication at both low (0.18 MPa) and high 

(0.45 MPa) pressures. Therefore, the transcellular pathway may be the main route of the 

FUS-induced BBB opening. Finally, the cavitation-guided BBB opening system was used 

to induce reversible BBB opening in non-human primates. This is a major step towards 

clinical feasibility. In conclusion, a transcranial cavitation detection system was developed, 

in order to characterize the physical mechanism, the role of the microbubbles, and the 

corresponding physiological response of the FUS-induced BBB opening. 

 

 
 
 
 



 
 

i 

Table of Contents 

Table of Contents .................................................................................................................... i 

List of Tables ........................................................................................................................... v 

List of Figures ........................................................................................................................ vi 

Glossary ................................................................................................................................ xix 

Acknowledgments ................................................................................................................ xx 

Chapter 1 Introduction .......................................................................................................... 1 

1.1 Motivation ....................................................................................................................... 2 

1.2 Overview and significance ............................................................................................. 3 

Chapter 2 Noninvasive and Localized Blood-Brain Barrier Opening Using Focused 

Ultrasound and Microbubbles .............................................................................................. 6 

2.1 Introduction ..................................................................................................................... 7 

2.2 The Blood-Brain Barrier ................................................................................................ 7 

2.3 FUS-induced BBB opening ......................................................................................... 10 

2.3.1 Focused ultrasound ............................................................................................... 10 

2.3.2 Microbubbles ........................................................................................................ 11 

2.3.3 BBB opening using FUS and microbubbles ........................................................ 13 

2.3.3.1 Animal models for BBB opening ................................................................. 13 

2.3.3.2 Investigation of experimental conditions ..................................................... 14 

2.3.3.3 Delivery of large compounds through the opened BBB .............................. 18 

2.3.3.4 Safety assessment .......................................................................................... 20 

2.4 Possible mechanism of FUS-induced BBB opening .................................................. 22 

2.4.1 Physiological mechanism ..................................................................................... 22 

2.4.2 Physical mechanism – acoustic cavitation ........................................................... 24 

Chapter 3 Development of a Transcranial Cavitation Detection System ..................... 27 



 
 

ii 

3.1 Introduction .................................................................................................................. 28 

3.2 Materials and Methods ................................................................................................ 29 

3.2.1 Phantom validation of the skull effect ................................................................. 29 

3.2.1.1 Experimental Setup ....................................................................................... 29 

3.2.1.2 Skull preparation and targeting procedure .................................................... 32 

3.2.1.3 microbubble preparation and sonication ....................................................... 34 

3.2.1.4 Acoustic emission signal acquisition and analysis ....................................... 35 

3.2.2 In vivo transcranial cavitation detection in mice ................................................. 36 

3.2.2.1 Experimental Setup ....................................................................................... 36 

3.2.2.2 Magnetic resonance imaging ........................................................................ 39 

3.2.2.3 Histological analysis ..................................................................................... 40 

3.2.2.4 Acoustic emission signal acquisition and analysis ....................................... 41 

3.3 Results .......................................................................................................................... 42 

3.3.1 Phantom validation of the skull effect ................................................................. 42 

3.3.2 In vivo transcranial cavitation detection in mice ................................................. 50 

3.4 Discussion .................................................................................................................... 55 

3.4.1 Phantom validation of the skull effect ................................................................. 55 

3.4.2 In vivo transcranial cavitation detection in mice ................................................. 59 

3.5 Conclusion ................................................................................................................... 63 

Chapter 4 Microbubble-Dependent Mechanism of Blood-Brain Barrier Opening 

Using Focused Ultrasound and Microbubbles ................................................................. 64 

4.1 Introduction .................................................................................................................. 65 

4.2 Theoretical models for microbubble oscillation ......................................................... 68 

4.2.1 Oscillation of a free air and a shelled microbubble ............................................. 69 

4.2.2 Oscillation of a lipid-shelled microbubble ........................................................... 71 

4.3 Materials and Methods ................................................................................................ 72 

4.3.1 Mono-dispersed microbubbles ............................................................................. 72 

4.3.1.1 Microbubble size distribution ....................................................................... 72 

4.3.1.2 Microbubble shell materials .......................................................................... 74 

4.3.2 Sonication protocol ............................................................................................... 75 



 
 

iii 

4.3.2.1 In vivo study for BBB opening properties assessment ................................. 75 

4.3.2.2 Phantom validation for IC threshold determination ..................................... 76 

4.3.3 MRI protocol ........................................................................................................ 77 

4.3.4 Acoustic emission signal processing.................................................................... 78 

4.4 Results .......................................................................................................................... 79 

4.4.1 Bubble size dependent BBB opening properties ................................................. 79 

4.4.1.1 In vivo BBB opening investigation ............................................................... 79 

4.4.1.2 IC threshold determination of mono-dispersed microbubbles ..................... 88 

4.4.2 Shell effect on bubble behavior during BBB opening ......................................... 92 

4.5 Discussion .................................................................................................................... 97 

4.5.1 Bubble size dependent BBB opening properties ................................................. 97 

4.5.1.1 In vivo BBB opening investigation ............................................................... 97 

4.5.1.2 IC threshold of lipid-shelled mono-dispersed microbubble ....................... 103 

4.5.2 Shell effect on bubble behavior during BBB opening ....................................... 105 

4.6 Conclusion ................................................................................................................. 109 

Chapter 5 The Cavitation-Dependent Tight-Junction Integrity of Blood-Brain Barrier 

Opening Using Focused Ultrasound and Microbubbles ............................................... 111 

5.1 Introduction ................................................................................................................ 112 

5.2 Materials and Methods .............................................................................................. 113 

5.2.1 Sonication protocol ............................................................................................. 113 

5.2.2 BBB opening confirmation ................................................................................ 115 

5.2.3 Immunofluorescence Staining ............................................................................ 115 

5.3 Results ........................................................................................................................ 116 

5.3.1 SC- and IC-induced BBB opening ..................................................................... 116 

5.3.2 Fluorescence imaging and Tight Junction integrity .......................................... 118 

5.4 Discussion .................................................................................................................. 121 

5.4.1 Cavitation-dependent mechanism of BBB opening .......................................... 122 

5.4.2 Safe BBB opening using low mechanical index ............................................... 126 

5.5 Conclusion ................................................................................................................. 127 



 
 

iv 

Chapter 6 Translation of the Focused Ultrasound Induced Blood-Brain Barrier 

Opening System to Non-Human Primates ...................................................................... 128 

6.1 Introduction ................................................................................................................ 129 

6.2 Materials and Methods .............................................................................................. 130 

6.2.1 Sonication protocol ............................................................................................. 130 

6.2.2 MRI and acoustic emission detection ................................................................ 134 

6.3 Results ........................................................................................................................ 135 

6.3.1 BBB opening and corresponding cavitation response ....................................... 135 

6.3.2 Closing timeline and accuracy ........................................................................... 142 

6.4 Discussion .................................................................................................................. 144 

6.5 Conclusion ................................................................................................................. 149 

Chapter 7 Conclusion and future directions .................................................................. 151 

7.1 Conclusion ................................................................................................................. 152 

7.2 Future directions ........................................................................................................ 154 

List of Publications Related to the Thesis ....................................................................... 156 

Reference ............................................................................................................................. 158 

Appendix A Kinetic model for permeability map.......................................................... 177 

Appendix B Transcranial focusing quality quantification ........................................... 181 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

v 

List of Tables 

Table 2.1 Techniques shown to induce BBB opening and their advantages ......................... 9 

Table 2.2 Three main microbubbles used in BBB opening. The data of Optison and 

Definity is obtained from the package insert. The data of Sonovue is from 

Molecular Imaging and Contrast Agent Database (MIDAC) ................................... 12 

Table 2.3 Animal models used in FUS-induced BBB opening ............................................ 14 

Table 2.4 Investigations on the experimental parameters ..................................................... 16 

Table 2.5 Molecules used in the FUS-induced BBB opening .............................................. 19 

Table 3.1 Number of mice with BBB opening / number of mice studied at each pressure . 38 

Table 4.1 Abbreviations, molecular weight, viscosity, and gel-liquid transition temperature 

of each acyl-chain length ............................................................................................ 74 

Table 4.2 Number of mice studied at each pressure and each bubble size ........................... 75 

Table 4.3 Number of mice studied at each pressure and each acyl-chain length ................. 75 

Table 4.4 Expansion ratio (Rmax/R0) for each diameter and each theoretical model ............ 89 

Table 4.5 Safety assessment (damaged / BBB-opened mice) at each pressure and each 

acyl-chain length ......................................................................................................... 92 

Table 5.1 Acoustic parameters for SC-induced BBB opening ........................................... 114 

Table 6.1 Acoustic parameters and corresponding targeting region # denotes the number of 

sonications. N is the number of monkeys. VC: Visual Cortex.   HC: Hippocampus  

Ca: Caudate Pu: Putamen. ........................................................................................ 131 

Table 6.2 The axial focal shift, BBB opening volume, and MRI contrast enhancement of 

two opening regions. The focal shift is as our expectation shown in Appendix B. 143 

Table B.1 Targeting coverage for the different anatomical aims through NHP and human 

skulls. ........................................................................................................................ 190 

  



 
 

vi 

List of Figures 

Figure 2.1 – A schematic diagram of the major differences between (a) general capillaries 

and (b) brain capillaries. The endothelium of brain capillaries has the tight junction 

between the cells, as well as lacks intercellular clefts, fenestrations, and pinocytosis. 

This figure is modified from Churchland et al.27 ......................................................... 8 

Figure 2.2 – Illustration of the focused ultrasound. The rarefactional pressure map shown 

in the XY-plane and XZ-plane demonstrates the ellipsoidal focus of the FUS 

transducer used for BBB opening in this dissertation. .............................................. 10 

Figure 2.3 – Illustration of a microbubble composition, modified from Sirsi et. al.34 ......... 11 

Figure 2.4 – Physiological transport across the BBB95. The main routes for molecular 

traffic across the BBB are (a) paracellular aqueous pathway, but restricted by the 

tight junction which is mainly established by the transmembrane proteins (claudins 

and occludin), linked to cytoskeletal actin through ZO-1; (b) the lipid membranes of 

the endothelium offers an effective diffusive route for lipid-soluble agents; (c) 

transport proteins for glucose, amino acids, purine bases, nucleosides, and choline; 

(d,e) receptor- or adsorptive-mediated endocytosis. Modified from Abbott et al.95 

and Chou et. al.101 ....................................................................................................... 23 

Figure 2.5 – Schematic diagram illustrating the microbubble behavior and cavitation types. 

A microbubble decreases in size during the compressional phase, and expands 

during the rarefactional phase. Low-intensity ultrasound induces a stable oscillation 

of a microbubble in the capillaries, named as stable cavitation where the harmonics 

(red arrows) and ultra-harmonics (black arrows) are generated. However, at higher 

intensities, the microbubble grows rapidly for a few cycles. Very soon, the inertial 

energy of the fluid surrounding the microbubble during the compression forcibly 

collapses the microbubble, generating fluid jet or shock waves, along with 

broadband response (red curve). ................................................................................ 26 

Figure 3.1 – Block diagrams of the experimental setup. The PCD was positioned at a (a) 

60⁰ and (b) 90⁰ relative to the longitudinal axis of the FUS beam. The space between 



 
 

vii 

latex membrane and phantom was degassed water, and the big water tank was not 

shown on this figure. The overlap between the focal region of PCD and FUS was 

also illustrated in the insets. The cylindrical region was the focal region of PCD and 

the cigar-shaped region was the focal region of FUS. The water tank, in which the 

phantom was immersed, is not shown for clarity purposes....................................... 31 

Figure 3.2 – The channel phantom below the ex vivo mouse skull was localized using 

raster scan with the pulse-echo transducer as shown. (a) The first raster scan was 

used to find the position of the vessel while (b) the second raster scan of the RF 

signal amplitude was used to find the position of the left parietal bone, where in 

previous studies was the acoustic window through which to sonicate to target the 

left-hippocampus region (cross symbol). The white bar indicates the grid which was 

yellow shown in (b). [Image of the mouse skull available at 

http://www.digimorph.org.] ....................................................................................... 33 

Figure 3.3 – Block diagram of the experimental setup. The PCD was positioned at a (a) 60⁰ 

and (b) 90⁰ relative to the longitudinal axis of the FUS beam. The space between 

latex membrane and phantom was degassed water, and the big water tank was not 

shown on this figure. The overlap between the focal region of PCD and FUS was 

also illustrated in the insets. The cylindrical region was the focal region of PCD and 

the cigar-shaped region was the focal region of FUS. The water tank, in which the 

phantom was immersed, is not shown for clarity purposes....................................... 37 

Figure 3.4 – Illustration of the inertial cavitation dose (ICD) calculation of the in vivo 

experiments. (a) The spectrogram of the first pulse from 0.02 to 0.15 ms after a 4 

MHz high-pass filter (chebshev type 1) at 0.60 MPa. The harmonics and the 

broadband response could be observed in this figure. The corresponding VRMS was 

depicted in (b) and the ICD was obtained using the integral of VRMS curve between 

two dash lines. ............................................................................................................ 42 

Figure 3.5 –   Frequency response of the first pulse (a,c) through no skull and (b,d) through 

an ex vivo skull at 5 distinct acoustic pressures. Acoustic emissions were collected 

with a PCD positioned at (a,b) 60º and (c,d) 90º from the longitudinal axis of the 



 
 

viii 

FUS beam. Broadband acoustic emissions were detected at and higher than 0.45 

MPa. ............................................................................................................................ 44 

Figure 3.6 – Spectrogram of the first pulse in the phantom study without and with the 

microbubbles at 5 distinct acoustic pressures. Acoustic emissions were acquired 

with a PCD positioned at 60º and 90º from the longitudinal axis of the FUS beam. 

No broadband acoustic emissions were detected without the microbubbles while 

with the microbubbles the broadband acoustic emissions were detected at pressure 

at or higher than 0.45 MPa. At 0.30 MPa, the ultra-harmonics were detected at the 

90º-PCD but not the 60º-PCD. ................................................................................... 45 

Figure 3.7 –    The spectrogram (a,c) without the skull and (b,d) through an ex vivo skull at 

five distinct acoustic pressures. The duration of each sonication was 2 s, i.e., 20 

pulses. Please note that the broadband acoustic emissions could only be detected at 

the first two pulses at 0.45 MPa in (b) and their amplitudes were much lower than at 

higher pressures. ......................................................................................................... 46 

Figure 3.8 – (a) Root mean square (VRMS) and (b) ICD at 5 distinct acoustic pressures are 

indicated here. In order to emphasize the difference between 5 distinct acoustic 

pressures, the limit of the y-axis is from 0 to 0.5 at 60º-PCD, with the presence of 

skull. ICD was quantified as the area below VRMS curve, at each pressure. Twenty 

pulses were applied for each sonication set. The ICD at 0.45 MPa was significantly 

larger than 0.30 MPa (*:P < 0.05, indicates the threshold of inertial cavitation). .... 47 

Figure 3.9 – B-mode imaging provided a means of determining whether the microbubbles 

were present following sonication. Images were acquired after 2 seconds of 

sonication at 5 distinct acoustic pressures in skull and non-skull experiments. ....... 48 

Figure 3.10 – (a) The illustration of ROI and (b) the correlation between ICD and the 

intensity decrease ratio of B-mode imaging at 5 distinct acoustic pressures (0.30, 

0.45, 0.60, 0.75 and 0.90 MPa). The intensity decrease ratio at 0.45 MPa was 

significantly larger than 0.30 MPa ( *: P < 0.05) ...................................................... 49 

Figure 3.11 – BBB opening using confirmed by 3D-MRI images, using (a) System-A and 

(c) System-B. The corresponding spectrograms of the first pulse using (b) System-



 
 

ix 

A and (d) System-B showed that the broadband acoustic emissions were detected at 

0.45 MPa and 0.60 MPa but not at 0.15 MPa and 0.30 MPa. The 3D-MR images 

confirmed that the BBB could open at 0.30 MPa, i.e., without inertial cavitation. .. 51 

Figure 3.12 – The inertial cavitation dose (ICD) at 4 distinct acoustic pressures (a) using 

the System-A and (b) using the System-B. ICD was quantified as the area under the 

VRMS curve from 0.095 ms to 0.145 ms, at each pressure. The signal used for 

quantification was from a focused hydrophone. For the System-A, the ICD at 0.45 

MPa and 0.60 MPa was significantly higher than 0.15 MPa and 0.30 MPa (*: P < 

0.05). For the System-B, the ICD at 0.60 MPa was significantly higher than at 0.30 

MPa and 0.15 MPa. The ICD at 0.45 MPa was also significantly higher than 0.15 

MPa (*: P < 0.05). ...................................................................................................... 52 

Figure 3.13 – 2D-MRI images and H&E-stained horizontal sections of the BBB-opened 

hippocampi at (a-c) 0.15 MPa, (d-f) 0.30 MPa, (g-i) 0.45 MPa, and (j-l) 0.60 MPa 

using the System-A with microbubbles administration. Sonicated brains at 0.15 

MPa, 0.30 MPa and 0.45 MPa showed no histological damage. Brain samples 

sonicated at 0.60 MPa (j-l) showed higher incidence of microscopic damage at 

multiple distinct damaged sites. Black arrows point to the RBC extravasations. 

Black boxes in the left and middle column indicate the enlarged regions shown in 

the middle column and right column, respectively. Magnifications and scale bars in 

(a,d, g, j) were 40x and 200 μm, in (b, e, h, k) 100x and 100 μm, and in (c, f, I, l) 

200x and 50 μm, respectively. ................................................................................... 53 

Figure 3.14 – 2D-MR images and H&E-stained horizontal sections of the BBB-opened 

hippocampi at (a-c) 0.15 MPa, (d-f) 0.30 MPa, (g-i) 0.45 MPa, and (j-l) 0.60 MPa 

using the System-B with microbubbles administration. Sonicated brains at 0.15 

MPa, 0.30 MPa and 0.45 MPa showed no histological damage. Minor microscopic 

damage was noticeable in one location of the right hippocampus sonicated 0.60 

MPa, constituting one distinct damaged site (g-i). Black arrows point to RBC 

extravasations. Black boxes inside the left and middle column showed enlarged 

regions in the middle and right columns, respectively. Magnifications and scale bars 



 
 

x 

in (a,d, g, j) were 40x and 200 μm, in (b, e, h, k) 100x and 100 μm, and in (c, f, I, l) 

200x and 50 μm, respectively. ................................................................................... 54 

Figure 3.15 – Comparison between (a) water and (b) bubble experiments without skull for 

spectrogram from 90º-PCD at 0.90 MPa. Broadband acoustic emissions and the 

amplitude of the 3rd to 6th harmonics were not obtained in the water experiments. . 57 

Figure 4.1 – The graphical user interface of bubblesim used to specify bubble, pulse and 

calculation parameters. ............................................................................................... 70 

Figure 4.2 – The illustration of dynamic surface tension of a lipid-coated bubble as 

presented by Marmottant et al.139 ............................................................................... 72 

Figure 4.3 – The size distribution of the Definity® microbubbles (a) according to the 

number concentration and (b) volume fraction was characterized. This indicated 

that the size distribution of Definity® microbubbles was not well centralized. ........ 73 

Figure 4.4 – Size distributions of 3 mono-dispersed microbubbles are depicted as number-

weighted percent of the total concentration of bubbles and volume-weighted 

percent of the total volume of bubbles. Before in vivo experiment, the distribution is 

centralized at 1-2 µm, 4-5 µm, and 6-8 µm (solid black). Distribution analysis is 

performed again at the same day, after in vivo experiments (dashed red), depicting 

small decrease at the peaks. ........................................................................................ 74 

Figure 4.5 – Experimental timeline for each study in this chapter ....................................... 76 

Figure 4.6 – The BBB opening with 3 bubble diameters confirmed by 3D-MRI images 

with coronal (top left), sagittal (top right), and horizontal (middle left) views. The 

corresponding spectrogram (middle right) of the first pulse from 95 to 135 µs with 

microbubbles administration shows the acoustic response from microbubbles. The 

corresponding H&E sections (40x magnifications, bottom left) and permeability 

maps (bottom right) are also provided. In the case of 1-2 µm bubbles, the 

broadband acoustic emissions are detected at 0.45 and 0.60 MPa but not at 0.15 and 

0.3 MPa. The 3D-MR images confirmed that the BBB is opened at 0.45 and 0.60 

MPa, with inertial cavitation. In the case of 4-5 and 6-8 µm bubbles, the broadband 

acoustic emissions are detected at 0.45 and 0.60 MPa but not at 0.15 and 0.3 MPa. 



 
 

xi 

The 3D-MR images confirmed that the BBB is opened at 0.30 MPa without inertial 

cavitation or 0.45 MPa and 0.60 MPa with inertial cavitation. In each H&E image, 

its center indicated the focus as viewed on the MRI. No damage was detected in 

any of these cases (see Fig. 4.11 for cases with damage). ........................................ 81 

Figure 4.7 – Statistical analysis of the stable cavitation dose (SCD) at the ultra-harmonics 

3.75 MHz (2.5f), 5.25 MHz (3.5f), 6.75 MHz (4.5f), 8.25 MHz (5.5f), 9.75 MHz 

(6.5f), and 11.25 MHz (7.5f) against three distinct pressures at three microbubble 

diameters.  The SCD at the 6-8-µm diameter was significantly higher than at the 1-

2-µm diameter (*: P < 0.05, compared to 1-2-µm diameter) in most cases, and at 

the 4-5-µm diameter in two cases (#: P < 0.05, compared to 4-5-µm diameter). At 

0.30 MPa, i.e., no inertial cavitation occurrence, the SCD at the 4-5-µm or 6-8-µm 

diameter was significantly higher than at the 1-2-µm diameter in 7 cases, which 

provides the evidence that the BBB is opened via the stable cavitation. .................. 82 

Figure 4.8 – The quantification of (a) the inertial cavitation dose (ICD), (b) BBB opening 

volume and (c) the correlation in between. Statistical analysis indicates that the 

ICDs and BBB opening volume are both pressure and bubble-size dependent. [*: P 

< 0.05, compared to 1-2-µm diameter, #: P < 0.05, compared to 4-5-µm diameter]. 

Regression analysis shows a linear correlation between the ICD and the BBB 

opening volume with three bubble diameters. It also shows that inertial cavitation is 

necessary for 1-2 µm bubbles to induce BBB opening. The intercept indicates that 

the BBB can be opened without inertial cavitation in the case of 4-5 and 6-8-µm 

diameter bubbles. ........................................................................................................ 83 

Figure 4.9 – Mean quantitative Ktrans measurements. The results are presented in two 

different ways in order to demonstrate the dependence of the BBB opening Ktrans on 

both the acoustic pressure and the microbubble size. The mean Ktrans in the 

epicranial muscle (no barrier) is also presented for comparison. One asterisk (*) 

refers to a statistical significance of P < 0.05 and two asterisks (**) refer to a 

statistical significance of P<0.01. .............................................................................. 85 

Figure 4.10 – Histology at the BBB opening threshold. The mouse was sacrificed either 3 

hrs or 7 days after sonication. In both cases, no red blood cell extravasations and 



 
 

xii 

dark neurons were found with H&E staining, which means that safe BBB opening 

can be achieved at adequate pressure with all bubble diameters. ............................. 85 

Figure 4.11 – Permeability and histological findings of the only three mice that exhibited 

neuronal damage and cell loss. (a) T1 image, (b) corresponding permeability map 

and (c-h) H&E sections of the first mouse, sonicated at 0.45 MPa using 4-5 µm 

bubbles. (i) T1 image, (j) corresponding permeability map and (k-p) H&E sections 

of the second mouse, sonicated at 0.60 MPa using 4-5 µm bubbles. (q) T1 image, 

(r) corresponding permeability map and (s-x) H&E sections of the third mouse, 

sonicated at 0.60 MPa using 6-8 µm bubbles. The black boxes in (c, f, k, n, s, v) 

refer to the regions of interest depicted in (d, g, l, o, t, w), respectively. The black 

boxes in (d, g, l, o, t, w) refer to the regions of interest depicted in (e, h, m, p, u, x), 

respectively. ................................................................................................................ 87 

Figure 4.12 – Transverse T2 images of the brain from each mouse cohort. Dark areas in 

the sonicated regions (indicated by white arrows) were detected at higher pressures 

for the larger bubbles as a result of susceptibility artifacts from the excessive Gd-

DTPA presence in the extravascular extracellular space. ......................................... 88 

Figure 4.13 – The frequency spectrum and ICD of the 1-2-µm diameter bubbles. The IC 

threshold is determined to lie between 0.30 and 0.35 MPa (***: P < 0.001). The SC 

does not occur between 0.15 and 0.35 MPa. ............................................................. 90 

Figure 4.14 – The frequency spectrum and ICD of the 4-5-µm diameter bubbles. The IC 

threshold is determined to lie between 0.30 and 0.35 MPa (**: P<0.01), but the SC 

occurs at 0.30 MPa. .................................................................................................... 90 

Figure 4.15 – The frequency spectrum and ICD of the 6-8-µm diameter bubbles. The IC 

threshold is determined to lie between 0.35 and 0.40 MPa (***: P<0.001), but the 

SC occurs at 0.30 MPa. .............................................................................................. 91 

Figure 4.16 – Simulation of the oscillation of a 1.5 µm diameter bubble at 0.20 MPa PRP 

using Bubblesim (unshelled, shelled), and Marmottant model.  The “compress-

only” behavior of a lipid shelled microbubble is observed here. .............................. 91 



 
 

xiii 

Figure 4.17 – The 2D horizontal T1-weighted MR image (top left), corresponding 

spectrogram of the first pulse (top right), 2D horizontal permeability map (bottom 

left), and H&E sections of the hippocampus (bottom right) in each table entry at 3 

bubble diameters and 3 peak-rarefactional pressures. Few histological damage cases 

were noted and shown here (black arrow: dark neuron, red arrow: red blood cell 

extravasations) were observed with inertial cavitation occurrence (see Table 3 for 

summary of damage cases). ....................................................................................... 93 

Figure 4.18 – Transverse T2 images of the brain from each mouse cohort. Dark areas in 

the sonicated regions (indicated by white arrows) were detected at all pressures for 

the C24 bubbles, which indicated that C24 may not be an appropriate shell material 

for BBB opening application. .................................................................................... 94 

Figure 4.19 – Statistical analysis of the stable cavitation dose (SCD) at the ultra-harmonics 

3.75 MHz (2.5f), 5.25 MHz (3.5f), 6.75 MHz (4.5f), 8.25 MHz (5.5f), 9.75 MHz 

(6.5f), and 11.25 MHz (7.5f) with three acyl-chain lengths at three distinct pressures. 

No significant difference was observed across the different acyl-chain lengths in 

most cases. However, at 9.75 MHz and 11.25 MHz, the SCD of the C16 

microbubbles was significantly higher than the C24 microbubbles (*: P < 0.05). 

Since the center frequency of the PCD is 10 MHz, the sensitivity may be higher 

when the ultra-harmonic is close the 10 MHz.  At 0.30 MPa, i.e., no inertial 

cavitation occurrence, the SCD was statistically higher than the background noise, 

which indicated that the BBB was opened through stable cavitation. ...................... 95 

Figure 4.20 – Statistical analysis of the (a) inertial cavitation dose (ICD), (b) BBB opening 

volume, and (c) permeability between three acyl-chain lengths at three distinct 

pressures. The ICD of C24 microbubbles was significantly lower than the C16 and 

C18 microbubbles at 0.60 MPa (*: P < 0.05). In the rest cases, however, no 

statistically difference was observed. ........................................................................ 96 

Figure 4.21 – Comparison between (a) sagittal section of 3D-T1-MR images and (b) -6dB 

focal region of the FUS transducer in the case of 6-8 µm bubbles at 0.30 MPa. The 

consistence between the contrast enhancement region and focal region of the FUS 

transducer indicates that IC is not necessary to induce BBB opening. ..................... 98 



 
 

xiv 

Figure 5.1 – The 2D T1-weighted MR image of each acoustic parameter set shown in 

Table 1. At 5-Hz PRF, sonications were (a-d) at PLs of 0.1, 0.5, 2, and 5 ms at 300-

s duration, or (e) at 20-ms PL and 30-s duration. In addition, identical duty cycle as 

set (c), sonication was at (f) 0.1-ms PL and 100-Hz PRF. The BBB was not opened 

in protocol (a) and (f), but was opened in protocol (b-e). Histological analysis (g-i) 

showed that no red blood cell extravasations were observed in protocol (d), i.e., the 

longest exposure time. The magnification in (g), (h), and (i) are 40x, 100x, and 

200x, respectively. .................................................................................................... 117 

Figure 5.2 – Statistical analysis of the BBB opening volume and normalized MR intensity 

on the effects of (a) 4 different PLs, and (b) exposure time. ................................... 118 

Figure 5.3 – The 2D T1-weighted MR image of IC-induced BBB opening sonicated at 

PRFs of (a) 5 kHz, (b) 25 kHz, and (c) 100 kHz. The BBB opening volume, 

normalized MRI contrast enhancement, and inertial cavitation dose of 3 PRFs were 

measured (d). No significant difference was observed between all cases in terms of 

volume and intensity. The ICD of 100 kHz was significantly higher than the other 

cases. ......................................................................................................................... 119 

Figure 5.4 – Fluorescence images and the corresponding frequency spectrum in the case of 

(a,b,e,f) SC- and (c,d,g,h) IC-induced BBB opening.  The right hippocampus 

(b,d,f,h) was sonicated in the presence of microbubbles and fluorescently tagged 3-

kDa dextran, whereas the left side was the control (a,c,e,g). The dextran molecules 

were restricted in the vessel in the case of SC-induced BBB opening (b), together 

with the occurrence of harmonics, while they were diffused to the hippocampus in 

the case of IC-induced BBB opening (d), together with the broadband response. 

The scale bar depicts 1 mm. ..................................................................................... 120 

Figure 5.5 – Immunofluorescence staining in the cases of (a-d) SC- and (e-h) IC-induced 

BBB opening. The ZO-1 expression was indicated in green. No significant 

difference can be observed between the left (a,c,e,g) and the right (b,d,f,h) 

hippocampus, in both SC- and IC-induced BBB opening. ..................................... 121 



 
 

xv 

Figure 5.6 – Simulation of the oscillation of a 4.5-µm-diameter bubble at PRPs of 0.18 

MPa and 0.15 MPa using Bubblesim. The shell viscosity was 0.19 Pa.s and the 

shear modulus was 32 MPa. The maximum diameter lies in 8-10 µm at 0.18 MPa, 

but in 5-7 µm at 0.15 MPa. ...................................................................................... 124 

Figure 6.1 – Experimental setup for in vivo FUS-induced BBB opening in the operating 

room. (a) A single-element, circular focused ultrasound transducer with a hole in 

the center was driven by a function generator (Agilent Technologies, Palo Alto, 

CA, USA) through a 50-dB power amplifier (ENI Inc., Rochester, NY, USA). The 

center frequency, focal depth, outer radius and inner radius of FUS were 500 kHz, 

90 mm, 30 mm and 11.2 mm, respectively. (b) In vivo of the transducer mounted on 

the stereotactic frame with a manipulator allowing precise positioning of the 

transducer in the stereotactic referential. (c) Monkey placed in the stereotactic 

frame. The monkey is shaved and a degassed echographic gel container is placed on 

the top of its head to insure maximal acoustic transmission. .................................. 131 

Figure 6.2 – Targeting procedure for in vivo FUS-induced BBB opening. (a) A positioning 

rod (black arrow), indicating the position of the focus (5 cm away from the edge of 

the transducer), was used to target. (b) This positioning rod was mounted on the 

manipulator in order to locate the origin of the stereotactic coordinates. (c) The 

origin of the stereotactic coordinates indicated by the engraved cross on the metal 

piece between the ear-bars is targeted with the tip of the positioning rod. ............. 132 

Figure 6.3 – Targeting region and corresponding view from three dimensional views, 

adapted from a web-based brain atlas168. ................................................................. 132 

Figure 6.4 – Experimental timeline of in vivo BBB opening in NHPs. Two targets at 0.30 

MPa (purple circle) and 0.45 MPa (orange circle) are also illustrated. .................. 133 

Figure 6.5 – (a) The spectrogram without microbubbles administration show that all the 

harmonics and broadband response are from microbubbles. Spectrograms during 

FUS sonication with monkey 2 at (b) 0.20 MPa, (c) 0.25 MPa, (d) 0.30 MPa, and 

MR images with (e) coronal and (f) sagittal planes show that the broadband 

response occur with all pressures, but no BBB opening is induced (dashed circle).136 



 
 

xvi 

Figure 6.6 – (a) The spectrogram without microbubbles administration show that all the 

harmonics and broadband response are from microbubbles. The spectrogram during 

FUS sonication with monkey (b) 0.45 MPa shows that the broadband response 

takes place. The MR image with (c) sagittal plane, however, shows that no BBB 

opening is induced (dashed circle). .......................................................................... 136 

Figure 6.7 – The BBB opening confirmed by 3D-MRI images. No higher harmonics and 

broadband response are present at 0.30 MPa in (a) the spectrogram without 

microbubbles administration. The corresponding spectrogram of the first pulse with 

microbubbles administration shows that the broadband acoustic emissions are 

detected at (b) 0.30 MPa and (c) 0.45 MPa. The 3D-MR images confirm that the 

BBB is opened at (d, e, g) 0.30 MPa and (f, h) 0.45 MPa with inertial cavitation. 

The yellow box in the sagittal plane in (d) defines a region of interest from which 

images in (e) and (f) were acquired. The coronal plane with BBB opening is 

provided at (g) 0.30 MPa and (h) 0.45 MPa. The white arrow in (c) indicates that 

the time-point of occurrence of the second harmonic coincides with the travel 

distance to the skull. ................................................................................................. 137 

Figure 6.8 – Damage assessment. (a,c,d) 3D T2-weighted sequence. Edemas should appear 

brighter in these images. (b,e,f) 3D Susceptibility-Weighted Image (SWI) sequence 

was applied. Hemorrhages, as well as large vessels should appear in black in these 

images. (a,b) Same reconstructed coronal slice as shown in Fig. 6.7. The two 

opening sites are circled with the corresponding colors. There is no difference 

between the two hemispheres. (c,d,e,f) Corresponding reconstructed sagittal slices 

for the two opening sites. No edemas or hemorrhages are visible in the sonicated 

regions (dashed contour). ......................................................................................... 138 

Figure 6.9 – BBB opening experiment targeting hippocampus using Definity® 

microbubbles and applying 0.6 MPa (yellow dashed line shows region of interest). 

3D Spoiled Gradient-Echo (SPGR) T1-weighted sequence was applied after 

intravenous (IV) injection of gadodiamide 1 h after sonication. No damage was 

detected using Definity® microbubbles from T2-weighted sequence. ................... 139 



 
 

xvii 

Figure 6.10 – BBB opening experiment targeting hippocampus using custimized 

microbubbles and applying 0.6 MPa (yellow dashed line shows region of interest). 

3D Spoiled Gradient-Echo (SPGR) T1-weighted sequence was applied after 

intravenous (IV) injection of gadodiamide 1 h after sonication. An edema was 

visible using Definity® microbubbles from T2-weighted sequence. ...................... 140 

Figure 6.11 – The correlation between the ICD and the BBB opening volume at 0.30 and 

0.45 MPa at 4-5-µm diameter bubbles (a total of 11 openings). The volume at 0.60 

MPa is not shown because only one big opening is induced by 4 sonications (Fig. 

6.10). ......................................................................................................................... 141 

Figure 6.12 – The region dependent SCD at 0.30 and 0.45 MPa. The amplitude level is 

putamen > caudate > visual cortex at 0.30 MPa, as well as visual cortex > caudate > 

hippocampus at 0.45 MPa. ....................................................................................... 141 

Figure 6.13 – An example of BBB closing in the NHP caudate using 0.30 MPa and 4-5-

µm microbubbles. The blue region indicates the opening region and it is no longer 

visible in day 4. The corresponding quantification of BBB opening volume 

indicates that the BBB is nearly closed on day 2. The error bar denotes the stander 

deviation of the MR intensity of the BBB opening area. ........................................ 142 

Figure 6.14 – The discrepancy between focal region (yellow area) and BBB opening 

region (blue area) at the caudate at 0.30 MPa. Corresponding spectrogram shows 

the cavitation response along 2 min duration. ......................................................... 143 

Figure 6.15 – The discrepancy between the focal region (yellow area) and the BBB 

opening region (blue area) at the visual cortex at 0.45 MPa. Corresponding 

spectrogram shows the cavitation response along 2 min duration. ......................... 144 

Figure 6.16 – Three spectrograms of the cavitation response. (a) The spectrogram of all 

pulses provides the information about the microbubble persistence and the duration 

for them to reach the brain after the IV-injection. (b) The spectrogram of one pulse 

(red line in (a)) indicates the duration of inertial cavitation. (c) The actual location 

of the focus may be determined by the first 0.4 ms of one pulse, i.e., the red square 

in (b). ......................................................................................................................... 148 



 
 

xviii 

Figure 7.1 – Safety windows in terms of peak rarefactional pressure and microbubble types 

in mice. The safest window (green rectangular), in the absence of inertial cavitation 

(IC) and damage, lies between 0.15 and 0.30 MPa using 4-5- or 6-8-µm diameter 

bubbles, as well as between 0.30 and 0.45 MPa using Definity®. Another safety 

window, in the absence of damage with the IC occurrence (orange rectangular), lies 

between 0.30 and 0.45 MPa using 1-2-µm diameter bubbles or Definity®. However, 

the pressure threshold of the damage occurrence at 1-2-µm diameter bubbles has 

not been determined. ................................................................................................ 152 

Figure A.1 – The arterial input function, averaged from a population of all 40 mice, by 

measuring the Gd-DTPA concentration in the internal carotid artery on the dynamic 

images. ...................................................................................................................... 180 

Figure B.1 – Targeting images for monkey and human skulls based on combined 

reflectivity and time-of-flight measurements. Anatomical landmarks are clearly 

identified such as the occipital protuberance or lambda. ........................................ 184 

Figure B.2 – Examples of -6 dB pressure profiles obtained through a NHP skull for the 

four different orientations. Blue dashed lines represent the contour of the target (as 

indicated in the depicted plane. ................................................................................ 187 

Figure B.3 – Examples of -6 dB pressure profiles obtained through a human skull for the 

four different orientations. Blue dashed lines represent the contour of the target as 

indicated in the depicted plane. ................................................................................ 188 

Figure B.4 – Focusing performance assessment through human and NHP skulls. 

Attenuation represents the energy loss crossing the skull interface compared to that 

of the water. Tilt represents the angle between the axial dimension of the focus and 

the geometric axis of propagation. Lateral resolution and axial resolution represents 

the dimension of the focus (-6 dB cutoff). Lateral and axial shift represents the 

displacement of the center of the focus. ................................................................... 190 



 
 

xix 

Glossary 

AD Alzheimer’s disease 

BBB Blood-brain barrier 

BDNF Brain-derived neurotrophic factor 

BRF Burst repetition frequency 

CNS Central nervous system 

DCE-MRI Dynamic contrast enhanced-MRI 

EB Evans blue 

FUS Focused ultrasound 

HIFU High-intensity focused ultrasound 

IC Inertial cavitation 

ICD  Inertial cavitation dose 

IP Intraperitoneal 

IV Intravenous 

MI Mechanical index 

NHP Non-human primates 

P/E Pulse Echo 

PCD Passive cavitation detector 

PEG Polyethylene glycol 

PL Pulse length 

PRF Pulse repetition frequency 

PRP Peak rarefacional pressure 

RBC Red blood cell 

RMS Root mean square 

SC Stable cavitation 

SCD Stable cavitation dose 

SWI Susceptibility-weighted imaging 

TJ Tight junction 



 
 

xx 

Acknowledgments 

It has been ten years since I started entering the field of therapeutic ultrasound. It was 

very tough for a person who has a background in “Business Administration” to pursuit his 

doctoral degree in Biomedical Engineering. Finally, this fantastic journey is close to its 

destination, combined with sweet memories. At this moment, I must express my deep 

gratitude to many people because I could not finish this dissertation without their 

contribution. 

Of course, the most important one is my advisor, Dr. Elisa E. Konofagou, a smart, 

humor, energetic, and optimistic person. In the last five years, I had a really unforgettable 

experience with her. Her guidance keeps me on the correct track for my degree. Having a 

discussion with her makes me have full of energy to be productive for my research. Thanks 

for her encouragement, people in our lab are able to attend conferences annually and 

publish journal papers regularly. I really appreciate her guidance in different aspects, 

including inspiration, education, and communication, etc… Most importantly, I could not 

have a wonderful life in New York without her founding support! 

Thanks to my dissertation committee, Dr. Mark Borden, Dr. Truman Brown, Dr. 

Barclay Morrison, III, and Dr. Paul Sajda, for their knowledge and wisdom for my 

dissertation. Especially thanks Dr. Mark Borden and his student Jameel Feshitan for their 

support on the mono-dispersed microbubbles which contribute on my studies about the role 

of microbubbles and cavitation dependent tight-junction integrity. Moreover, their 

microbubbles enable us to induce BBB opening in monkeys with 100% probability! 



 
 

xxi 

It is my pleasure to be able to join this BBB group in Ultrasound and Elasticity Imaging 

Laboratory (UEIL). We have many excellent scientists, including Dr. James Choi, Dr. 

Shougang Wang, Dr. Thomas Deffieux, Dr. Fotios Vlachos, Dr. Fabrice Marquet, Dr. 

Cherry Chen, Dr. Shoutao Wang, Babak Baseri, Kirsten Selert, Oluyemi Olumolade, 

Gesthimani Samiotaki, Matthew Downs, and Shih-Ying Wu. Several interns also 

contributed to this dissertation and the BBB group: Julio Herrera Estrada, Jennifer Hui and 

Jennifer Hui. I would also like to thank the rest of the UEIL for their comments on my 

presentation for the conference: Dr. Jianwen Luo, Dr. Jonathan Vappou, Dr.Sacha Nadlall, 

Dr. Danial Shahmirzadi, Dr. Jiangang Chen, Dr. Julien Grondin, Jean Provost, Gary Hou, 

Stanley Okrasinski, Ronny Li, Ethan Bunting, and Alexandre Costet. 

Special thanks for our collaborators, Vincent Ferrara and Tobias Teicher,. in the 

Department of Neuroscience. The BBB opening in monkeys would not be achieved 

without their contribution! I would also like to thank Kenneh Hess, Fan Hua, Stephen 

Dashnaw, and Dr. Shashank Sirsi for assistance and training with experimental instruments. 

My work would not have been finished without their help. 

I owe this accomplishment to Dr. Wen-Shiang Chen form the National Taiwan 

University. I would not have the chance to be here, Columbia University, without his 

guidance. As a Taiwanese, I really appreciated Wei-Ning Lee’s help for her kindness in 

guiding me in this lab. I was grateful to have support from: Chien-Huan Lai, Chen-Bang 

Chen, Chih-Chien Su, Chih-Chao Chen, Wei-Hsuan Dai, Andy Lin, Lo Kuan, Chin-Han 

Chiang, and Chang-Chih Lin.  

Finally, I would love to thank my family for their endless love and selfless support, 

especially to my Dad in the heaven. 



1 

 

 

 

 

 

Chapter 1  

Introduction 

 
  



2 
 

  

1.1 Motivation 

Most neurological disorders and neurodegenerative diseases, such as Alzheimer's 

disease (AD), Parkinson's disease (PD), multiple sclerosis (MS) and amyotrophic lateral 

sclerosis (ALS), remain difficult to treat. To date, only 5% of the more than 7000 small-

molecule drugs available can currently treat Central Nervous System (CNS) diseases 

because of the impermeability of the blood-brain barrier (BBB)1. The BBB is a specialized 

structure found between the capillary lumen and the brain parenchyma that only allows 

passive diffusion of lipid-soluble molecules with a molecular weight smaller than 400 Da2. 

Distinct from the general capillaries, the BBB consists of the tight junctions (TJs) between 

endothelial cells in CNS capillaries that restrict the passage of solutes. As a result, 

pharmacological agents cannot reach their desired targets, thus rendering therapeutically 

potent drugs clinically ineffective. Mechanical stress induced by the activation of 

microbubbles in an acoustic field is currently the only noninvasive approach to temporarily 

induce localized BBB opening, without damaging the surrounding tissues3. Since 2001 

when the first microbubble-enhanced BBB opening using focused ultrasound (FUS) was 

reported, numerous reports have been published on the methodology and application. Our 

group has also recently achieved the delivery of therapeutic compounds, i.e., the Brain-

Derived Neurotrophic Factor (BDNF) and neurturin (NTN), to the murine hippocampus4. 

The physical mechanism behind this approach, however, is still not entirely known. 

In order to achieve the goal of developing a FUS technique that will allow 

pharmacological agents to cross the BBB under well controlled and safe conditions, it is 

necessary to have a very clear understanding of the mechanisms and determination of the 

endpoints in order to identify a safety window for FUS brain drug delivery. Although 
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there are many indications as to the various mechanisms involved such as the dilation of 

vessels, temporary ischemia, mechanically induced opening of the tight junctions, and the 

activation of various transport mechanisms have been reported5-7, the trigger cause 

induced by the microbubbles, however, is unclear. Therefore, the primary objective of 

this dissertation is to reveal the physical mechanism (i.e., bubble behavior of trigger 

cause) of BBB opening using a novel device in phantoms and in vivo. Meanwhile, 

theoretical models are applied to predict the type of oscillation of the acoustically-driven 

microbubbles. Once the physical mechanism is identified, a secondary objective entails 

the translation of the BBB opening system to non-human primates to verify the feasibility 

and mechanism in large animals. 

 

1.2 Overview and significance 

Acoustic cavitation, which refers to acoustically driven bubble activity, is considered to 

be the main cause of BBB opening since it does not occur without injecting preformed 

microbubbles at a given acoustic setting. At low acoustic pressures, acoustically driven 

bubble oscillations were shown to increase the permeability of surrounding cell 

membranes8. At high acoustic pressures, inertial cavitation, i.e., the collapse of bubbles, 

releases high energy and may generate high temperatures, high pressures, and high velocity 

jets that may damage the surrounding structures9. Therefore, knowing the pressure 

threshold for inducing inertial cavitation is important for controlling the potential side-

effects. As of now, possible physical mechanisms for BBB opening via FUS and 

microbubbles include inertial cavitation, which may induce pores on the membrane of 

endothelial cells in the brain9,10, and stable cavitation, bubble oscillation and 
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microstreaming surrounding the microbubbles that may induce shear stress or repeated 

stretch affecting the tight junctions or the permeability of the endothelial cells11.  

Until recently the interaction among the microbubbles, the FUS beam, and the brain 

capillaries have not been thoroughly investigated. Imaging techniques, such as magnetic 

resonance imaging (MRI) and fluorescence imaging, have been used to confirm the FUS-

induced BBB opening. In order to study the physical effects responsible for BBB opening, 

a passive cavitation detector (PCD) can be used to acquire the acoustic response stemming 

from the microbubble and tissue, thereby monitoring the bubble behavior during BBB 

opening. In addition, assessing the bubble behavior is necessary for establishing a well-

controlled safety window during BBB opening. Since inertial cavitation may cause damage 

to the vessel structure surrounding the microbubbles, it should be prevented for FUS-

induced BBB opening. Therefore, in order to determine the cavitation type during BBB 

opening, an in vivo transcranial PCD system was designed and built. The PCD system 

provides an alternative way to monitor the target and estimate the volume of BBB opening. 

Since the BBB opening is dependent on the microbubble size and the acoustic 

parameters12, we hypothesize that the physical effect responsible for BBB opening can be 

unveiled by changing the microbubble properties and acoustic parameters based on our in 

vivo transcranial PCD system. The optimal parameters can thereby be determined for a safe 

and efficient BBB opening. The feasibility of BBB opening in non-human primates is also 

investigated for the future clinical treatment of neurodegenerative diseases with the 

proposed technology.  

Furthermore, cavitation effects have been reported in several therapeutic ultrasound 

applications, including sonoporation13, sonothrombolysis14, gene transfection15, high-
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intensity focused ultrasound (HIFU)16, histotripsy17, and lithotripsy18, etc.. Since the bubble 

oscillation cannot be observed in vivo, an in vivo cavitation detection system may prove 

pivotal in determining the role of cavitation in different fields. As a result, the development 

of an in vivo cavitation detection system will have high medical significance. 

This dissertation is structured as follows. First, the basics of the blood-brain barrier 

physiology and current brain drug delivery methods are summarized. Second, the basics 

behind FUS and microbubbles, as well as previous studies on the FUS-induced BBB 

opening including optimization, delivery of therapeutic compounds, safety assessment and 

the possible mechanism, will be described in Chapter 2. In order to reveal the physical 

mechanism of the FUS-induced BBB opening, the method of a transcranial PCD system 

during BBB opening is described (Chapter 3). This system offers the possibility to study 

the physical mechanism by adjusting the microbubble design and carefully selecting the 

acoustic parameters. The permeability measurement and safety inspection will be 

implemented in order to study the mechanism associated with distinct microbubble 

diameters and shell materials (Chapter 4). The theoretical model of bubble behavior will 

also be implemented with a vessel phantom validation (Chapter 4). After describing the 

role of microbubbles in the BBB opening mechanism, the connection between the physical 

and physiological mechanisms will be investigated to provide insight into the physiological 

response to the microbubble activity during BBB opening (Chapter 5). Finally, an in vivo 

transcranial cavitation system in monkeys will be described in order to achieve real-time 

cavitation-guided BBB opening in non-human primates (Chapter 6). The main conclusions 

are finally summarized and future work is discussed (Chapter 7). 
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Chapter 2  

Noninvasive and Localized Blood-

Brain Barrier Opening Using Focused 

Ultrasound and Microbubbles 
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2.1 Introduction 

Identification of the physical mechanism of FUS-induced BBB opening requires a full 

understanding of the BBB physiology, focused ultrasound, and microbubbles. In this 

chapter, we will first provide basic concepts of the BBB physiology and summarize current 

brain drug delivery methods (section 2.2). The FUS, microbubbles, and previous reports on 

FUS-induced BBB opening will then be provided in detail in section 2.3. Finally, the 

different types of physiological and physical mechanisms will be introduced in section 2.4.  

In terms of physical mechanism, the types of cavitation and cavitation detection will also 

be summarized. 

 

2.2 The Blood-Brain Barrier 

The main limiting factor towards the development of novel treatments of neurological 

and neurodegenerative diseases is the blood-brain barrier (BBB): more than 98% of small-

molecule drugs and nearly all large-molecule drugs do not cross this anatomic barrier1,19. 

The BBB is a complex regulatory system within the neurovascular unit, which controls the 

flow of nutrients and chemicals into and out of the brain parenchyma maintaining the brain 

homeostasis necessary for proper neuronal firing20. The BBB hinders the effective systemic 

delivery of neurological agents and biomarkers to the brain through a combination of 

passive, transport and metabolic barriers. Determining factors for the passage of molecules 

across the BBB are lipid solubility, charge and molecular size (threshold range spans 

between 50 Da and 400 Da)2. Therefore, potential therapeutic agents, such as growth 

factors21,22, adenoviral gene therapy23,24, inhibitors (100-1,000 Da) and proteins (30-3,000 
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kDa)25,26,  do not efficiently cross the BBB when administered systemically. Such delivery 

and efficacy are critical in inducing therapeutic effects and triggering biological pathways.  

The difference between the general capillaries and the brain capillaries is depicted in 

Fig. 2.1. Most molecular traffic, which occurs via intercellular transport and pinocytosis in 

the general capillaries, is forced to take an intercellular route across the BBB through the 

tight junctions. Therefore, the BBB acts as a physical barrier impeding paracellular transfer 

through the junctions.  

 

 

 

	
Figure 2.1 – A schematic diagram of the major differences between (a) general capillaries 
and (b) brain capillaries. The endothelium of brain capillaries has the tight junction 
between the cells, as well as lacks intercellular clefts, fenestrations, and pinocytosis. This 
figure is modified from Churchland et al.27 
 

(b) (a) 
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Several techniques exist to circumvent the BBB, such as intracranial injections, mixing 

or attaching agents to BBB-modifying chemicals, and the chemical alteration of agents to 

be delivered through endogenous transport systems1,20. However, these techniques are 

either invasive, drug-specific or are plagued by very poor spatial specificity. Even the latest 

advances in brain gene therapy28 provide cell specific drug delivery but not region specific.  

Global breaching of the BBB can be a risky process, as it increases influx of all molecules 

and therapeutic agents in untargeted areas of the brain29 even if this approach has been 

proven to be successful for some applications such as metastatic lung cancer30. A controlled 

and safe opening of the BBB would enable the passage of pharmacological agents across 

the interstitial space that could enhance the neuronal activity in the aforementioned brain 

diseases, without causing permanent physiologic or anatomical damage. An ideal method 

would ensure drug-independent, reversible, localized and noninvasive delivery through the 

BBB to minimize potential hazards. Several methods currently available for opening the 

BBB are listed in Table 2.1. Except FUS, none of them can induce localized BBB opening 

noninvasively. 

 

Table 2.1 Techniques shown to induce BBB opening and their advantages 

Method Noninvasive Localized 

Direct injection 
(e.g., intracerebral, intracerebroventricular)   
Hyperosmotic solutions 
(e.g., mannitol)   
Chemical modification of molecules 
(e.g., lipidization, endogenous transport systems)   
Focused ultrasound and microbubbles   
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2.3 FUS-induced BBB opening 

2.3.1 Focused ultrasound 

“Ultrasound” defines the acoustic wave, with a frequency higher than the human 

audible frequency (> 20 kHz), generated from a transducer which converts the electrical 

stimulus into mechanical vibrations. Distinct from the conventional diagnostic ultrasound, 

a curved-shaped transducer is driven at frequencies between 200 kHz and 5 MHz to 

generate a high energy, compared with the intensity near the surface of the transducer, at 

the focus. The concept of FUS is illustrated in Fig. 2.2. Therefore, FUS can be used in the 

therapeutic applications which require localized and noninvasive treatment. Since the 

temperature at the focus can reach over 70°C, which leads to protein denaturation, at high 

acoustic pressures, this technique has been widely used in ablation of tumors31-33. This is 

most widely known as high-intensity focused ultrasound (HIFU). Compared with HIFU, 

however, the FUS in conjunction with microbubbles can induce BBB opening at relative 

low pressures (< 1 MPa). This approach is introduced in detail in section 2.3.3. 

Figure 2.2 – Illustration of the focused ultrasound. The rarefactional pressure map shown 
in the XY-plane and XZ-plane demonstrates the ellipsoidal focus of the FUS transducer 
used for BBB opening in this dissertation. 
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2.3.2 Microbubbles 

Microbubbles, also known as ultrasound contrast agents (UCA), are gas-filled bubbles. 

They are prevented from dissolving by a stabilizing shell. They are used in the clinic to 

help improve the ultrasound image contrast of blood vessels and blood cavities. In general, 

microbubbles have a typical size distribution centered around 3 to 4 µm in diameter. They 

are stabilized against dissolution by a coating that consists of a lipid, protein (albumin), or 

polymer shell. The basic illustration of a microbubble is depicted in Fig. 2.3. In general, the 

shell thickness of the lipid, protein, and polymer shell is around 3 nm, 15-20 nm, and 100-

200 nm, respectively.  

 

 

 

	
	

Figure 2.3 – Illustration of a microbubble composition, modified from Sirsi et. al.34  
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Besides initially used merely as the contrast agent for ultrasonic imaging, microbubbles 

have recently been shown critical in therapeutic ultrasound applications, such as HIFU16, 

sonothrombolysis35, and BBB opening3,36. The interaction between microbubbles and 

ultrasound can significantly enhance the effect of FUS. In HIFU, the effect of microbubble 

concentrations on the lesion volume and focal shift has been investigated. It has been 

shown that the lesion volume can be enhanced to 12 times higher than the one without 

microbubble administration, but with an acceptable shift of focus16. Previous research 

found that microbubbles could not only enhance the effectiveness of the thrombolytic 

agents in the presence of ultrasound, but microbubbles also had the potential to reduce the 

dose of the thrombolytic agents in the treatment of vascular thrombotic disease, and reduce 

the side effects of the thrombolytic therapy37. Unlike HIFU, in FUS-induced BBB opening, 

the BBB is not opened in the absence of the microbubble administration. The description of 

three mainly commercial microbubbles, including Definity®, Optison®, and Sonovue®, 

used in the BBB opening are listed in Table 2.2.  

 

 

Table 2.2 Three main microbubbles used in BBB opening. The data of Optison and 
Definity is obtained from the package insert. The data of Sonovue is from Molecular 
Imaging and Contrast Agent Database (MIDAC) 

Microbubble Shell Gas 
Concentration 

(numbers / mL) 
Mean 

Diameter (µm) 

Definity® Lipid Perfluoropropane 1.2 x 1010 1.1 - 3.3 

Optison® Albumin Perfluoropropane 5-8 x 108 3.0 - 4.5 

Sonovue® Lipid Perfluorobutane 2.0 x 108 3 
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2.3.3 BBB opening using FUS and microbubbles 

FUS-induced BBB opening was first observed using HIFU, accompanied with lesion 

formation38.  It was also reported that abnormal permeability of the human blood-brain 

barrier can be induced by 300 kHz insonation, used for somothrombolysis, in one patient 

with severe cerebral small vessel disease39. A remarkable side effect was observed in this 

patient undergoing perfusion-MRI. Although the patient with cerebral small vessel disease 

may already have an impaired BBB (vascular leakage), it has to be tentatively regarded as a 

negative effect of this technique on the cerebral endothelium39. In 2001, with intravenous 

administration of microbubbles, the BBB was opened in vivo at acoustic pressures and duty 

cycles low enough that significant thermal effects may be avoided3,40. To date, several 

different aspects of this technique have been investigated, including different animal 

models, the optimization of experimental conditions, varied-sized compound delivery, 

safety assessment, physiological mechanism, and physical mechanism, which will be 

summarized in the following sections. 

 

2.3.3.1 Animal models for BBB opening 

The first BBB opening using FUS and microbubbles was implemented in rabbits with 

craniotomy3. Following this study, BBB opening has been achieved in additional species, 

such as, mice41, rats42, and pigs43. Since the craniotomy is invasive and time-consuming, 

the reversible BBB opening using transcranial FUS was then achieved in rats and 

rabbits44,45. Our group has also shown that the BBB can be reproducibly opened using 

transcranial FUS in a specific subcortical region associated with neurodegenerative disease, 

i.e., the hippocampus in mice40,41. Transgenic mice are being developed, in an attempt to 
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generate models of human Alzheimer’s disease to allow a better understanding of the 

mechanisms leading to initiation and progression of the disease, which would identify 

potential therapeutic targets and permit testing of drugs of real clinical potential46. Thus, the 

Alzheimer’s-model mouse (AD mouse) is an appropriate model for FUS induced BBB 

opening47. Furthermore, in order to have clinical translation of this technique, the feasibility 

of FUS-induced BBB opening in non-human primates (NHP) has been accomplished by 

our group and will be described in most detail in Chapter 636,48. The summary of all animal 

models and main contribution are listed in Table 2.3. 

 

Table 2.3 Animal models used in FUS-induced BBB opening 

Animal Microbubble Main contribution 

Mice40,41  Optison® Reproducible opening located at hippocampus  

AD mice47 Optison®/Definity® Successful opening in AD mice 

Rats42 Optison® Transcranial BBB opening in rats  

Rabbits3 Optison® BBB opening with/without craniotomy 

Pigs43 In-house First BBB opening in large animals 

Monkeys36,48 In-house  
First BBB opening and Cavitation-guided BBB 
opening in NHPs 

 

 

2.3.3.2 Investigation of experimental conditions 

After successfully opening the BBB in different models, the efficacy, efficiency, and 

the corresponding experimental conditions have been widely investigated. First, different 

acoustic parameters, such as frequency, peak rarefactional pressure (PRP), pulse length 

(PL), pulse repetition frequencies (PRF), and sonication duration, have been studied. 
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Several frequencies, e.g., 28 kHz49, 260 kHz45, 500 kHz48, 690 kHz44, 1 MHz50, 1.5 MHz41, 

1.63 MHz3, and 2.64 MHz51, have been applied for opening the BBB. The PRP threshold 

for BBB opening was shown to increase with the applied sonication frequency. The 

threshold, however, remained constant when compared to the mechanical index (MI)51. The 

PRP threshold was also shown to decrease with PL while the PRF did not affect the 

threshold52. In addition, our group has demonstrated feasibility of BBB opening using a 

pulse length of  3 cycles (2 µs) at 1.5 MHz PL-based pulse, and capable of delivering a 

high dose of dextran homogenously throughout the targeted region53. Furthermore, a 

sonication duration lower than 180 s in duration is associated with a low probability of 

irreversible damage to the brain tissue at a PRP of 0.38 MPa54.  

Second, distinct microbubble concentration and types have been investigated in several 

studies. The microbubble concentration has shown no effect on the contrast enhancement 

of dextran or MRI images within the range among 50, 100, and 250 µL/kg at 0.5 MPa12,52, 

but was shown to affect the Evans Blue (EB) delivery at 1.2 MPa55. In terms of 

microbubble properties, our group has shown that the PRP threshold for the smaller (1-2 

µm in diameter) microbubbles is higher than that of the larger ones (4-5 and 6-8 µm)56,57. 

Larger microbubbles were observed having bigger opening volume, but having higher 

chance of inducing damage57.  

Third, because MRI was used in most studies for BBB opening confirmation, distinct 

parameters were applied in terms of optimization. A susceptibility-weighted MRI was first 

used to detect hemorrhage during BBB opening42. Both gradient echo and spin echo 

sequences were deemed reliable in indicating the degree of BBB opening58. The timing of 

contrast-enhanced MRI that best indicates blood–brain barrier (BBB) disruption has also 
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been obtained. The spin-echo T1W images at 10 minutes post–contrast enhancement 

showed the best correlation with EB staining in both quantity of EB extravasation and 

spatial distribution59. In addition, MRI signal intensity change not only could be used to 

detect BBB opening during sonication, but could also be used to estimate the concentration 

of EB in the target tissue over the whole duration of BBB disruption after sonication60.  

Reversibility, i.e., the duration of BBB opening, has also been reported in several 

studies. In general, using commercial microbubbles, such as Optison®, Sonovue®, and 

Definity®, the opened BBB will close in 24 hours if the PRP is lower than 1 MPa. In our 

recent findings, however, the duration of BBB opening can be controlled between 1 and 5 

days by selecting corresponding pressures (0.30 - 0.60 MPa), pulse length (100 - 10,000 

cycles) and microbubble diameters (1-2, 4-5, and 6-8 µm)61. In addition, repeated BBB 

openings are being implemented to investigate the effect of the second BBB opening. With 

the 40 min interval, the MR contrast enhancement and histological examination of the 

second sonication was shown different from a single sonication50.  The investigations in 

different experimental parameters were summarized in Table 2.4. 

 

Table 2.4 Investigations on the experimental parameters 

Parameter 
1st author, 
year 

Main contribution 

PL 

McDannold, 
200852 

The PRP threshold was lower with 10 ms PL, compared 
with 0.1 and 1 ms PL. 

Choi, 201012 
The PLs of 0.033, 0.1, 0.2, 1.0, 2.0, 10, 20, and 30 ms at 
0.46 MPa were evaluated. 

Choi, 201153 
The 3 cycles PL was capable of inducing homogenous 
BBB opening. 

O’Reilly, 
201262 

The BBB has been disrupted using closely-timed 3-ms 
pulses, at repetitions rates as slow as 1 Hz 

Duration 
Chopra, 
201054 

Longer duration may increase the probability of increasing 
irreversible damage. 
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PRF 

McDannold, 
200852 

No significant difference, in terms of MRI contrast 
enhancement, was observed among 0.5, 1, 2, and 5 Hz. 

Choi, 201012 
The BBB was not opened at 0.1-Hz PRF. No difference 
was observed among 5, 10, and 25-Hz PRF. 

Choi, 201253 
The fluorescence with a 100-kHz PRF and a 5-Hz BRF 
was significantly greater than other acoustic parameters 

Microbubble 
properties 

McDannold, 
200763 

Optison® produced a larger effect than Definity® for the 
same acoustic pressure amplitude. 

Choi, 201056 
PRP threshold of the 1-2-µm diameter bubbles was higher 
than the 4-5-µm diameter bubbles. 

Tung, 201157 The physical mechanism is bubble-size dependent. 

 
Vlachos, 
201164 

The permeability is bubble-size dependent 

Microbubble 
dose 

Yang, 200755 
(Sonovue®) The amount of EB was significantly greater 
with 60 or 90 uL/kg than with 0 or 30 uL/kg at  1.2 MPa 

McDannold, 
200852 

(Optison®) No difference was observed among 50, 100, 
and 250 uL/kg at 0.50 MPa. 

Yang, 200965 
(Sonovue®) A dose of 300 and 450 uL/kg induced greater 
EBs amount and longer opening duration than a 150 uL/kg. 

Choi, 201012 
Fluorescence intensity was not significantly different 
among 10, 50, and 250 uL/kg with Definity® at 0.46 MPa. 

MRI 

Liu, 200842 
susceptibility–weighted imaging is more sensitive than 
standard T2-weighted and contrast-enhanced T1-weighted 
MRI techniques in detecting hemorrhages 

Vlachos, 
201066 

Comparison of two permeability models for BBB opening 

Yang, 201060 
MRI signal intensity change could be used to estimate the 
concentration of EB.  

Weng, 201059 
The spin-echo T1W images at 10 minutes post–contrast 
enhancement showed the better correlation with EB 
staining than the gradient-echo T1W images. 

Weng, 201158 
Both gradient echo and spin echo sequences were all 
reliable in indicating the degree of BBB opening. 

Howles, 
201067 

This technique enables in vivo functional mapping of the 
mouse barrel field cortex with manganese-enhanced MRI 

Reversibility 

Hynynen, 
200544 

(Optison®), the opened BBB is closed in 5 hrs at 0.40 MPa 
and at 260 kHz in rabbits. 

Wang, 200968 (Sonovue®), the opened BBB is closed in 8 hrs at 0.80 MPa 
and at 1.1 MHz in rabbits. 

Xie, 200843 (In-house MBs), the opened BBB is closed in 3 hrs at 0.25 
MPa and at 1 MHz in pigs. 

Samiotaki, 
2012 

(Mono-dispersed in-house MBs), the opened BBB is closed 
from 1 to 5 days at 0.30–0.60 MPa and at 1.5 MHz in mice. 
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2.3.3.3 Delivery of large compounds through the opened BBB 

The aim of optimization for experimental conditions was to successfully delivery drugs 

into the brain parenchyma. To date, except for the agents used for BBB opening 

confirmation, such as Ominiscan40, Magnevist69, Superparamagnetic iron oxide70, 99mTc-

DTPA71, Evans Blue (EB)72, Trypan Blue73, Congo Red73, fluorescence tagged dextran74, 

and horseradish peroxidase6, different agents have been shown across the BBB via the 

interaction between FUS and microbubbles.  

FUS-induced BBB opening has been used for the delivery of various therapeutic 

agents. The deposition of doxorubicin (DOX), named as a strong candidate for 

chemotherapy of the central nervous system, has been increased due to the FUS-induced 

BBB opening75,76.  BCNU, used in the treatment of several types of brain cancer, has also 

been successfully delivered to the brain tumors of rats77-79. Higher PRP (> 1 MPa) was 

usually applied for tumor treatment. For neurodegenerative disease treatment, however, 

successful delivery is more difficult because lower PRP is usually used to prevent the 

occurrence of ablation. Our group has achieved the delivery of brain-derived neurotrophic 

factor (BDNF) which can encourage the growth and differentiation of new neurons4. In 

addition, the delivery of neuron stem cells from the blood to targeted brain structures was 

also demonstrated80. This provided an alternative to cell therapy. 

Antibody-based anticancer agents are promising chemotherapeutic agents. Among 

these agents, Herceptin (trastuzumab), a humanized anti-human epidermal growth factor 

receptor 2 (HER2c-erbB2) monoclonal antibody, was successfully delivered into the 

murine brain81. In addition, anti-Aβ antibodies, used to reduce the Aβ plaque involved with 

neuron degeneration, have also been delivered into the brain of AD (TgCRND8) mice82. A 
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rabbit anti-human dopamine D4 receptor antibody, which recognizes the 3rd extracellular 

domain (Ac-176-185) of the human dopamine D4 receptor, has also been delivered in the 

murine brain83. Furthermore, the expressions of exogenous gene pBDNF-EGFP were 

observed in the cytoplasm of some neurons, and BDNF expressions were markedly 

enhanced by the combination of ultrasound and pBDNF-EGFP-loaded microbubbles84. The 

large agents and corresponding size were summerized in Table 2.5.   

 

Table 2.5 Molecules used in the FUS-induced BBB opening 

Compound Name Size 

MRI or SPECT 
contrast agent 

Omniscan40 573 Da 

Magnevist69 938 Da 

Superparamagnetic iron oxide (SPIO)70 50 nm 

99mTc-DTPA71 492 Da 

Dye and 
fluorescence agent 

Evans Blue72 960 Da 

Trypan Blue73 916 Da 

Congo Red73 697 Da 

Dextran74 3 kDa, 7 kDa, 2 MDa 

Horseradish peroxidase6 40 kDa 

Therapeutic 
compounds 

Doxorubicin75,76 544 Da 

BCNU77-79 214 Da 

BDNF4  27 kDa 

Neuron Stem cell80 -- 

Antibody 

Herceptin81  148 kDa 

Anti Aβ82 -- 

D4 rabbit receptor-targeting83 42 kDa 

Gene delivery exogenous gene pBDNF-EGFP84 -- 

Nano particle 
Magnetic nanoparticles85 74-83 nm 

Gold nanoparticles86 50 nm 
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2.3.3.4 Safety assessment 

In order to prevent the permanent damage on the healthy brain tissue, safety assessment 

is necessary. Most studies mainly concentrated on hematoxylin and eosin (H&E) analysis, 

which provided the information of red blood cell (RBC) extravasations and damaged 

neurons identified based on characteristics of dark neurons in the sections. These neurons 

had shrunken and triangulated cell bodies, eosinophilic peri-karyal cytoplasm and pyknotic 

basophilic nuclei. TUNEL is also a common method for detecting DNA fragmentation that 

results from apoptotic signaling cascades87. In addition, vanadium acid fuchsin (VAF)-

toluidine blue staining is used to visualize ischemic neurons in the parenchyma in the 

sonicated areas88. Based on these histological analyses after FUS-induced BBB opening, 

the PRP threshold for vascular wall damage, hemorrhage, and eventually necrosis was 6.3 

MPa. No ischemia or apoptosis was observed even if the PRP was 12.7 MPa, which 

induced 1.7 °C temperature rise89. 

Besides the histological analysis, MRI can be used as the damage identification. The 

susceptibility–weighted imaging (MR-SWI) has been shown more sensitive for possible 

tissue hemorrhage associated with BBB opening in a rat model. Also, temperature changes 

were measured with MRI by exploiting the temperature-dependence of the proton resonant 

frequency (PRF). Changes in the PRF were estimated with phase-difference images using a 

fast spoiled gradient echo (FSPGR) sequence90. Therefore, MRI is able to identify thermal 

effect during BBB opening, but no significant thermal effect has been observed so far. 

Permeability assessment can also provide the dynamic information of the molecular 

diffusion. Our group has investigated the permeability after FUS-induced BBB opening 

using dynamic contrast enhanced (DCE-MR) imaging, together with the effect of the 
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diameter of microbubbles. The permeability after BBB opening was found to increase by at 

least a 100-fold64,66.  Further details will be provided in Chapter 4.  

The safety assessment of the short term (immediately after sonication up to a few 

hours) and long term (few days to several weeks) have been investigated by our group and 

McDonnald et. al91,92. For short survival time periods (30 min and 5 h), it was only the 

lower-pressure amplitudes that showed the least amount of short-term effects (0.3 to 0.46 

MPa at 1.5 MHz)91. No lesions containing ischemic or apoptotic neurons were observed to 

4 weeks after sonication at 0.7 or 1.0 MPa. Thus, using FUS in conjunction with 

microbubbles for targeted BBB opening does not appear to result in widespread damage to 

the neurons (either directly or through ischemia or apoptosis) or delayed effects up to one 

month after sonication92.  

Using the SPIO, it has been shown that the infiltration of phagocytes, i.e. the 

inflammatory response, does not occur using lower PRP (1.1 MPa, compared with 2.45 

MPa)93. Furthermore, during the BBB opening experiments, the effect of anesthesia 

methods was investigated. Over the range of exposure levels tested, MRI contrast 

enhancement was significantly higher for animals anesthetized with ketamine/xylazine. 

Furthermore, the threshold for extensive erythrocyte extravasations was lower with 

ketamine/xylazine94.  
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2.4 Possible mechanism of FUS-induced BBB opening  

Understanding the mechanism of FUS-induced BBB opening is believed useful for 

optimization and the design of therapeutic agents. Here, we will first summarize the 

physiological response to the stimulus of microbubbles activated in the acoustic filed. The 

possible physical mechanism behind the physiological response will then be introduced. 

 

2.4.1 Physiological mechanism 

Figure 2.4 shows the general pathways for molecules across the BBB. Prior to the FUS-

induced BBB opening, the tight junction (TJ) restricts the paracellular route, thus only 

small (<400 Da) and lipid soluble molecular can transport across the BBB through the 

lipophilic pathway, transport proteins, and endocytosis95. The cellular mechanism of FUS-

induced BBB opening has been first reported in 2004. The data revealed that several 

mechanisms of transcapillary passage are possible after such sonications: 1. transcytosis; 2. 

endothelial cell cytoplasmic openings - fenestration and channel formation; 3. opening of a 

part of tight junctions; and 4. free passage through the injured endothelium7. As shown in 

Fig. 2.4, TJ-related protein includes occluding, claudin-1, claudin-5, and ZO-1. More 

specific, the TJ molecular structure was shown disassembled at 1.1 MPa peak rarefactional 

pressure (PRP) using a 1.5-MHz FUS and Optison® microbubbles, as well as the occludin, 

claudin-1 and ZO-1 was affected up to 4 hours after the sonication6,7. This TJ disruption 

may induce the activation of Akt signaling pathway, which plays a role in regulating 

neuronal cell survival during pathological alteration, in neuronal cells surrounding the 

opened BBB96.  
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The gap junctions, which allow transfer of information between adjacent cells and are 

responsible for tissue homeostasis, was observed having reorganization instead of 

destruction or loss of gap-junctional plaques after BBB opening97. In addition, regarding 

the protein about the transcellular route, the expression of caveolin-1 has been shown to be 

increased after FUS-induced BBB opening, which is relevant to the receptor-mediated 

mechanism98. In addition, optical imaging used to observe the response of the brain 

vasculature has shown 1) the activation of vesicular transport was shown more expressed in 

the brain arterioles than in the capillaries5; 2) vasoconstriction99 and 3) different types of 

leakage correlated to distinct PRP during BBB opening, from 0.3 to 0.8 MPa100. However, 

the physical mechanism on the microbubble interaction with ultrasound during BBB 

opening remains to be established.  

Figure 2.4 – Physiological transport across the BBB95. The main routes for molecular 
traffic across the BBB are (a) paracellular aqueous pathway, but restricted by the tight 
junction which is mainly established by the transmembrane proteins (claudins and 
occludin), linked to cytoskeletal actin through ZO-1; (b) the lipid membranes of the 
endothelium offers an effective diffusive route for lipid-soluble agents; (c) transport 
proteins for glucose, amino acids, purine bases, nucleosides, and choline; (d,e) receptor- or 
adsorptive-mediated endocytosis. Modified from Abbott et al.95 and Chou et. al.101 
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2.4.2 Physical mechanism – acoustic cavitation 

Cavitation is defined as any stimulated bubble activity. The stimulation may be due to 

flow, decompression, acoustic waves, sudden deposition of electromagnetic or ionizing 

radiation, or heat102. The activity can refer to bubble inception or dynamics. Acoustic 

cavitation refers to the generation, growth and interaction of small gas bubbles in a sound 

field. When exposed to an acoustic field in a fluid, the gas cavity or bubble can either 

oscillate gently at low pressure levels, or oscillate violently, resulting in large growth and 

rapid collapse at higher pressures. Traditionally, we call the former the stable cavitation 

(SC), and the latter the transient or inertial cavitation (IC)102.  

Apfel and Holland calculated the pressure threshold of inertial cavitation in water and 

showed that it increased with frequency103. Most studies on the threshold of cavitation 

effects with microbubbles were based on the assumption of a free bubble104-109. However, 

containment of a bubble within a vessel alters its behavior. Qin and Ferrara simulated the 

interaction between acoustically driven microbubbles in compliant microvessels and found 

that the threshold of bubble fragmentation was higher within more rigid vessels when 

compared to compliant vessels110.  

Rigid bubble motion as a result of the radiation force as well as visualization of radial 

oscillations have been proposed to explain why microbubbles within smaller tubes have a 

higher fragmentation threshold and greater persistence111. The relationship between the 

threshold of fragmentation for ultrasonic contrast agents and the acoustic parameters used 

has also been investigated105. However, cellulose tubes, which have been used in most 

vessel phantom studies, do not have the same properties as physiologic vessels. The 

observation of microbubble interaction with the microvessel wall of the ex vivo cecum has 
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been investigated to demonstrate the process of bubble collapse into the endothelium and 

repeated expansion of the microbubble within the blood vessels112. It has been shown that 

the inertial cavitation can be correlated with cell damage in rabbit ear vessels113,114. The 

interaction between ultrasound and microbubbles has been shown to increase the 

permeability of the endothelial layer without any cell detachment or damage in vitro115. 

Since optical imaging can only be used to observe the superficial vasculature with the 

craniotomy, a better method has to be implemented in order to identify the type of 

microbubble behavior during BBB opening in the deep regions in absence of the 

craniotomy. In order to study the physical effects responsible for BBB opening, a passive 

cavitation detector (PCD) can be used to acquire the acoustic response stemming from the 

microbubble and tissue during BBB opening116. The frequency response can be classified 

into two categories. The first response is generated by SC, i.e., at harmonic, sub-harmonic 

and ultra-harmonic frequencies. The second response is generated by IC, which will 

produce broadband acoustic emission due to the collapse of microbubbles. In general, 

stable cavitation dose (SCD) and inertial cavitation dose (ICD) are generated by the 

integration of the amplitude at ultra-harmonics and broadband response, respectively, with 

the sonication duration117,118. In this dissertation, we will qualitatively demonstrate the 

frequency and quantitatively calculate the SCD and ICD in order to determine the 

cavitation type which dominate BBB opening. 

The possible physical mechanism for BBB opening and corresponding frequency 

response can hence be depicted in Fig. 2.5. In SC, the stable expansion and contraction may 

be able to change the permeability of endothelial cells. The corresponding frequency 

spectrum and spectrogram clearly show the peaks at harmonics and ultra-harmonics 
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without the broadband response.   In IC, the collapse of microbubbles induces broadband 

response and the fluid jet may damage surrounding endothelial cells. Our group has 

achieved the in vivo transcranial cavitation detection in mice and provided evidence that the 

BBB opening could be induced at the absence of inertial cavitation, at 0.30 MPa119,120. We 

have also shown that the murine skull does not completely influence the detection of 

inertial cavitation119, which is further described in Chapter 3.  

	
Figure 2.5 – Schematic diagram illustrating the microbubble behavior and cavitation types. 
A microbubble decreases in size during the compressional phase, and expands during the 
rarefactional phase. Low-intensity ultrasound induces a stable oscillation of a microbubble 
in the capillaries, named as stable cavitation where the harmonics (red arrows) and ultra-
harmonics (black arrows) are generated. However, at higher intensities, the microbubble 
grows rapidly for a few cycles. Very soon, the inertial energy of the fluid surrounding the 
microbubble during the compression forcibly collapses the microbubble, generating fluid 
jet or shock waves, along with broadband response (red curve). 
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Chapter 3  

Development of a Transcranial 

Cavitation Detection System 

 

  



28 
 

  

3.1 Introduction 

A comprehensive assessment of the physical mechanism is warranted in order to 

establish a safety window of BBB opening. Till now, the physical mechanism of FUS-

induced BBB opening remains largely uncovered. Not only is the interaction between the 

acoustically driven bubble and brain capillaries unknown but also the effect of the skull on 

the BBB opening threshold has not been thoroughly described. Several studies 

investigating BBB opening require craniotomy3,52,63,92,121. However, craniotomy is a 

difficult and time-consuming process that is associated with brain exposure, morbidity and 

occasional mortality. As a result, Hynynen et al. used low frequency (260 kHz), which 

resulted in lower phase aberration through the skull when opening the BBB 

transcranially44,45. Our group has characterized the FUS beam through the murine skull in 

simulations and ex vivo skull experiments in order to understand the effects of aberration 

and attenuation through the skull corresponding to the hippocampus41. Since Alzheimer’s 

disease occurs in hippocampus, localized transcranial BBB opening in the murine 

hippocampus has been reported40.   

In order to study the bubble behavior during BBB opening, the relationship between 

acoustic cavitation and BBB disruption was previously investigated using a PCD, which 

suggested that inertial cavitation might not be necessary for BBB opening121. The peak-

rarefactional pressure (PRP) threshold of BBB opening and inertial cavitation at 260 kHz 

was 0.29 MPa and 0.40 MPa, respectively, which suggested that inertial cavitation might 

not be necessary for BBB opening. However, that study was performed following 

craniotomy and ignored any effects that the skull may introduce such as a change in the 

threshold of inertial cavitation. As a result, in vivo transcranial cavitation detection during 
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BBB opening is necessary for studying the actual mechanism of BBB opening induced by 

FUS and microbubbles without craniotomy.     

The objective of this chapter is to establish a novel system to detect bubble response 

transcranially and to identify the cavitation type during BBB opening in mice in vivo. First, 

a phantom study was carried out to separately assess the effect of the skull, the angle 

dependence, sensitivity and reliability of the PCD setup. The occurrence of inertial 

cavitation during BBB opening in mice in vivo was then investigated using two PCD setups 

to determine the optimal configuration. The spectrogram and inertial cavitation dose (ICD), 

the integration of the spectrum amplitude with time curve, were used to identify the 

threshold of inertial cavitation. MRI and histology were used to determine the BBB 

opening occurrence and macroscopic damage, respectively. 

 

3.2 Materials and Methods 

3.2.1 Phantom validation of the skull effect 

3.2.1.1 Experimental Setup 

The experimental setup of the phantom validation is shown in Fig. 3.1. A single-

element circular focused ultrasound transducer (Riverside Research Institute, New York, 

USA) was driven by a function generator (Agilent Technologies, Palo Alto, CA, USA) 

through a 50-dB power amplifier (ENI Inc., Rochester, NY, USA). The center frequency, 

focal depth, outer radius and inner radius of the FUS transducer were 1.525 MHz, 90 mm, 

30 mm and 11.2 mm, respectively. A single-element diagnostic transducer (center 

frequency: 7.5 MHz, focal length: 60 mm), which was driven by a pulser-receiver 
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(Panametrics, Waltham, MA, USA), was positioned through the opening of the FUS 

transducer. These two transducers were confocally aligned. A cone filled with degassed 

and distilled water was attached to the transducer system. The transducer was then mounted 

on a computer-controlled positioner (Velmex Inc., Bloomfield, NY). The dimensions of the 

focal region were measured and a lateral and axial full-width at half maximum (FWHM) 

intensity were of approximately 1.32 and 13.0 mm, respectively. 

A 5-cm broadband, cylindrically focused hydrophone (Sonic Concepts, Bothell, WA, 

USA) with a cylindrical focal region (height 19 mm, diameter 3.64 mm) was placed at 60º 

(60º-PCD, Fig. 3.1(a)) or 90º (90º-PCD, Fig. 3.1(b)) from the longitudinal axis of the FUS 

beam. The hydrophone holder was adjusted to confocally align the hydrophone and the 

FUS transducer. The acoustic emissions from the microbubbles were acquired by the 

hydrophone followed by a 20-dB amplification (model 5800, Olympus NDT, Waltham, 

MA, USA) and collected using a digitizer (model 14200, Gage Applied Technologies, Inc., 

Lachine, QC, Canada).  

Each sonication set included a pulse length of 100 cycles (67 μs) and a pulse repetition 

frequency (PRF) of 10 Hz. The total sonication duration of a sonication set was 2 s, i.e., 20 

pulses. Acoustic signals emitted from microbubbles were acquired for each pulse. The 

peak-rarefactional pressure amplitude ranged between 0.30 and 0.90 MPa at a 0.15 MPa 

step size as calibrated in our previous studies40. 
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Figure 3.1 – Block diagrams of the experimental setup. The PCD was positioned at a (a) 
60⁰ and (b) 90⁰ relative to the longitudinal axis of the FUS beam. The space between latex 
membrane and phantom was degassed water, and the big water tank was not shown on 
this figure. The overlap between the focal region of PCD and FUS was also illustrated in 
the insets. The cylindrical region was the focal region of PCD and the cigar-shaped 
region was the focal region of FUS. The water tank, in which the phantom was 
immersed, is not shown for clarity purposes. 

(b)

(a)
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The vessel phantom was constructed using acrylamide according to Takegami et al.122 

without the egg protein. The vessel was formed by inserting a polyethylene tube (model 

PE10, Becton Dickinson and Company, Sparks, MD, USA) before the phantom solidified 

and removing it immediately after. The phantom was immersed in a tank filled with 

degassed water (Fig. 3.1). The vessel was positioned 3 mm below the surface of the 

phantom to simulate the location of the vessel targeted in the in vivo application40,41. A 

linear-array transducer (center frequency 7.5 MHz, model 10L5, Terason Ultrasound, 

Burlington, MA) was placed perpendicular to the longitudinal axis of the FUS transducer 

(Fig. 3.1) and was used to map the spatial distribution of microbubbles after sonication. 

 

3.2.1.2 Skull preparation and targeting procedure 

Three brown mice (strain: C57BL/6, sex: male, mass: 20-25g) were euthanized, their 

skulls were extracted and then immersed into a formalin solution. All procedures used on 

the mice were approved by the Columbia University Institutional Animal Care and Use 

Committee. The thickness of the parietal bone was 0.18, 0.20 and 0.23 mm, respectively. 

The intact skull was degassed before each experiment in order to prevent any cavitation 

effects at the skull level that may affect the beam propagation. Based on previous 

experiments, the skull attenuates the pressure amplitude by approximately 18.1% at 1.525 

MHz40. Therefore, the FUS transducer was driven at different voltages to ensure that the 

pressure values were of the same magnitude, with or without skull in place.  

Figure 3.2 illustrates the targeting method through the skull that is also used to open the 

BBB in a subcortical structure such as the hippocampus in vivo40. Since the thickness and 

attenuation of the skull vary across its volume, a precise targeting method was required in 
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order to propagate through the thinnest region. A grid-positioning method was used to 

ensure that the focal spot overlapped with the equivalent hippocampus location, which is 

the target in our in vivo studies40,41. First, a raster scan (Fig. 3.2(a)) was performed to 

ensure that the center of the FUS focal spot was placed in the middle of the vessel. Second, 

the FUS transducer was positioned above the skull. A second raster scan was performed to 

locate the region equivalent to the hippocampus location in vivo, i.e., 3 mm below the skull 

as indicated in Fig. 3.2(b). 

 

 

 

 

	
	

Figure 3.2 – The channel phantom below the ex vivo mouse skull was localized using 
raster scan with the pulse-echo transducer as shown. (a) The first raster scan was used to 
find the position of the vessel while (b) the second raster scan of the RF signal amplitude 
was used to find the position of the left parietal bone, where in previous studies was the 
acoustic window through which to sonicate to target the left-hippocampus region (cross 
symbol). The white bar indicates the grid which was yellow shown in (b). [Image of the 
mouse skull available at http://www.digimorph.org.] 

 (b)  (a) 
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3.2.1.3 microbubble preparation and sonication 

Definity® microbubbles (Bristol-Myers Squibb Medical Imaging, N. Billerica, MA, 

USA.), which constitute perflutren-filled, lipid-shelled microspheres, were used in our 

experiments. These microbubbles had a mean diameter of about 1.1 to 3.3 μm (Table 2.2), 

with 98% having a diameter lower than 10 μm, and a concentration of around 1.2×1010 

bubbles/mL. In this study, the concentration was diluted in degassed phosphate buffered 

saline (PBS) to 2.5×107 (number of bubbles/mL), which approximated what was used in in 

vivo studies40,41. The concentration (number of bubbles/mL) of microbubbles was measured 

by an automatic particle sizer (Accusizer 780A, NICOMP Particle Sizing Systems, Santa 

Barbara, CA), which used a laser light obscuration and scattering technique. In order to 

ensure that the concentration of the microbubbles did not change over time, e.g., caused by 

a decay of microbubbles, a new batch of diluted bubble suspension was used every 10 

minutes. The same diluted bubble suspension was used for 10 independent sonication sets. 

At each pressure amplitude and PCD angle, five sonication sets were performed in the 

presence, and five in the absence, of the skull. A new phantom was used with each different 

skull, each for 15 – 20 sonication sets. Prior to each sonication set, new microbubbles were 

slowly injected into the vessel formed in order to avoid any change in the microbubble size 

distribution and concentration that may be introduced with a fast bubble injection123. 

Following each sonication set, degassed water was used to remove any remaining 

microbubbles inside the vessel.  
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3.2.1.4 Acoustic emission signal acquisition and analysis 

The acoustic emissions acquired by the PCD were sampled at 80 MHz and processed 

using MATLAB® (2007b, Mathworks, Natick, MA). The resulting signals were analyzed 

using four independent methods: the frequency response of the first pulse of each 

sonication was obtained using a 4096-point FFT (Fig. 3.5), a spectrogram of the first pulse 

(Fig. 3.6), and the spectrogram depicted as the frequency response of the signal versus the 

20 sonication pulses applied (Fig. 3.7), the root mean square (RMS) of the PCD’s recorded 

voltage amplitude (VRMS) for each pulse (Fig. 3.8(a)), and the average across all pulses 

(Fig. 3.8(b)). 

In the calculation of the VRMS and ICD, a highpass filter with a cut-off of 4 MHz was 

first applied to the acquired PCD signal. A comb filter was then used to exclude the ± 150 

kHz range at the transducer’s harmonic (nf, n = 1, 2, …,6), subharmonic (f/2) and 

ultraharmonic (nf/2, n = 3, 5, 7, 9) frequencies124. The ICD was defined as the integral of 

the area under the VRMS curve over the entire sonication duration (2 s in this study). In 

order to reduce the noise in the ICD calculation, the VRMS of water at each pressure 

amplitude was also calculated and was subtracted from the results of the bubble experiment 

to obtain the net bubble response.  

Radiofrequency (RF) data from the linear array was acquired using the Terason system 

and processed using MATLAB®. B-mode imaging was then performed using the Hilbert 

function on the acquired RF data. The change in the B-mode imaging contrast due to 

microbubbles was calculated as the intensity ratio: 

pre

postpre

I

II
ratioIntensity


                                                  (3.1) 
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where Ipre is the intensity of the region of interest (ROI) at the FUS focal region before 

sonication and Ipost is the intensity of the ROI after sonication. The dimensions of the ROI 

were equal to 9.0 × 7.2 mm2. 

A Student’s t-test was used to determine whether the ICD dose or intensity ratio was 

different between the two different pressures. A P-value of P < 0.05 was considered to 

represent a significant difference in all comparisons. 

 

3.2.2  In vivo transcranial cavitation detection in mice 

3.2.2.1 Experimental Setup 

The experimental setup of in vivo transcranial cavitation detection is shown in Fig. 3.3. 

All procedures used on the mice were approved by the Columbia University Institutional 

Animal Care and Use Committee. Twenty-six (n=26) adult male mice (strain: C57BL/6, 

weight: 26.1±1.7g, Harlan Sprague Dawley, Indianapolis, IN, USA) were sonicated. The 

number of nice studied in each pressure were showed in Table 3.1. The animals were 

anesthetized with a mixture of oxygen (0.8 L/min at 1.0 Bar, 21̊C) and 1.5-2.0% vaporized 

isoflurane (Aerrane, Baxter Healthcare Corporation, Deerfield, IL) using an anesthesia 

vaporizer (SurgiVet, Inc. Waukesha, WI). In this study, a grid system which could localize 

the sutures of the murine skull was used for the targeting procedure41. The right 

hippocampus was targeted and the PCD was placed on the right-hand side. The focal point 

was placed 3 mm beneath the skull so that the focal region overlapped with the right 

hippocampus and a small portion of the thalamus of the murine brain.  
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Figure 3.3 – Block diagram of the experimental setup. The PCD was positioned at a (a) 60⁰
and (b) 90⁰ relative to the longitudinal axis of the FUS beam. The space between latex 
membrane and phantom was degassed water, and the big water tank was not shown on this 
figure. The overlap between the focal region of PCD and FUS was also illustrated in the 
insets. The cylindrical region was the focal region of PCD and the cigar-shaped region was 
the focal region of FUS. The water tank, in which the phantom was immersed, is not shown 
for clarity purposes. 

(b)

(a)
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Table 3.1 Number of mice with BBB opening / number of mice studied at each pressure 

  Pressure   

System/PCD 0.15 MPa 0.30 MPa 0.45 MPa 0.60 MPa Total 

A / Hydrophone 0/2 3/3 3/3 3/3 11 

B / Hydrophone  0/2 3/3 3/3 3/3 11 

B / 10- MHz P-E  0/1 1/1 1/1 1/1 4 

 

In order to maintain the stability of the microbubbles, a new vial of Definity® 

microbubbles was activated each time using the manufacturer’s instructions and only used 

for the experiments within 24 h after activation. Following activation, a 1:20 dilution 

solution was prepared using 1x phosphate-buffered saline (PBS) and slowly injected into 

the tail vein (1 µl per gram of mouse body weight). Two different FUS transducers were 

used in this study in order to confirm that FUS-induced BBB opening was transducer 

independent. The first FUS transducer (System-A, center frequency: 1.525 MHz; focal 

depth: 90 mm; outer radius: 30 mm; inner radius 11.2 mm, Riverside Research Institute, 

New York, NY, USA) was the same as in the phantom study and the targeted right 

hippocampus was sonicated one minute after bubble injection. The second FUS transducer 

(System-B, center frequency: 1.5 MHz; focal depth: 60 mm; outer radius: 30 mm; inner 

radius 11.2 mm, model: cdc7411-3, Imasonic, Besançon, France) was used to perform 

sonication immediately following bubble administration with the same acoustic parameters 

as System-A. A single-element pulse-echo (P/E) diagnostic transducer (center frequency: 

10 MHz, Olympus NDT, Waltham, MA, USA) with a focal length of 60 mm was 
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positioned through the center hole of the FUS transducer so that the foci of the two 

transducers could be properly aligned.  

  Both transducers used pulsed-wave FUS (burst rate: 10 Hz; burst duration: 20 ms; 

duty cycle: 20%) in two 30-s sonication intervals with a 30-s intermittent delay. Peak-

rarefactional acoustic pressures of 0.15, 0.30, 0.45 and 0.60 MPa were used in this study. 

For both transducers, these values were obtained experimentally in degassed water and 

adjusted to account for murine skull attenuation values of 18.1%. The left hippocampus 

was not targeted and was used as the control for MRI examination. The sonication on the 

right hippocampus without microbubbles could provide the baseline of acoustic emission 

acquired by the PCD. It was shown that the sonication without microbubbles at lower 

pressures (< 2 MPa, peak-rarefactional) would not induce BBB opening41. As a result, the 

net bubble response could be calculated after subtraction from the baseline. 

 

3.2.2.2 Magnetic resonance imaging 

A vertical-bore 9.4T MR system (Bruker Biospin, Billerica, MA, USA) was used to 

confirm the blood-brain barrier opening in the murine hippocampus. Each mouse was 

anesthetized using 1-2% of isoflurane gas and was positioned inside a single resonator. The 

respiration rate was monitored throughout the procedure using a monitoring or gating 

system (SA Instruments Inc., Stony Brook, New York, USA). Prior to introducing the 

mouse into the scanner, intraperitoneal (IP) catheterization was performed. Because the 

MR system underwent a software upgrade during the course of the study, two different 

protocols were used for MR imaging. The first protocol was a three-dimensional (3D), T1-

weighted SNAP gradient echo pulse sequence, which acquired horizontal images using 
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TR/TE=20/4 ms, a flip angle of 25 deg, NEX of 5, a total acquisition time of 6 min and 49 

s, a matrix size of 256×256×16 pixels and a field of view (FOV) of 1.92×1.92×0.5 cm3, 

resulting in a resolution of 75×75×312.5 µm3. The second protocol was a 3D T2*-weighted 

GEFC gradient echo pulse sequence, which acquired horizontal images using 

TR/TE=20/5.2 ms, a flip angle of 10 deg, NEX of 8, a total acquisition time of 8 min and 

12 s, a matrix size of 256×192×16 pixels and a FOV of 2.25×1.69×0.7 cm3, resulting in a 

resolution of 88×88×437.5 µm3. Both protocols were applied approximately 30 min after 

IP injection of 0.30 ml of gadodiamide (Omniscan®, GE Healthcare, Princeton, NJ, USA), 

which allowed sufficient time for the gadodiamide to diffuse into the sonicated region. 

 

3.2.2.3 Histological analysis  

Five hours after sonication, all mice were sacrificed and transcardially perfused with 30 

ml phosphate buffered saline and 60 ml 4% paraformaldehyde. After soaking the brain in 

paraformaldehyde for 24 hours, the skull was removed and the brain was fixed again in 4% 

paraformaldehyde for six days. The post-fixation processing of the brain tissue was then 

performed according to standard histological procedures. The paraffin-embedded 

specimens were sectioned horizontally at 6-µm thickness section. A 1.2-mm layer from the 

top of the brain was first trimmed away. A total of twelve separate levels that covered the 

entire hippocampus were then obtained at 80-µm intervals. At each level, six sections were 

acquired and the first two sections were stained with hematoxylin and eosin (H&E). 
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3.2.2.4 Acoustic emission signal acquisition and analysis 

The acoustic emission signals acquired by the PCD were sampled at 25 MHz in the in 

vivo study to accommodate the highest memory limit of the digitizer involved in each case. 

A customized spectrogram function (30-cycles, i.e., 20 µs, Chebyshev window; 95% 

overlap; 4096-point FFT) in MATLAB® (2007b, Mathworks, Natick, MA) was used to 

generate a time-frequency map, which provided the spectral amplitude in time (Fig. 3.4(a)). 

The spectrogram can then clearly indicate how the frequency content of a signal changes 

over time. Therefore, the onset of the broadband response and its duration could be clearly 

demonstrated on the spectrogram.  

In terms of the quantification of the acoustic emission signal acquisition, the filtering 

technique has been described in the section 3.2.1.4. Here, the root mean square (RMS) of 

the spectral amplitude (VRMS) could be obtained from the spectrogram through filtering 

(Fig. 3.4). Fig. 3.4(a) depicts the spectrogram after high-pass filtering with a 4-MHz cutoff 

and Fig. 3.4(b) showed the corresponding VRMS. To maximize the broadband response 

compared to the sonication without microbubbles, only the first 50 µs of sonication (from 

0.095 ms to 0.145 ms, denoted by the two dash lines in Fig. 3.4 were considered in the ICD 

calculation, which was performed by integrating the VRMS variation within an interval of 

0.75 µs (i.e., calculating the area below the VRMS curve between 0.095 ms and 0.145 ms). 

In order to remove the effect of the skull in the ICD calculation, the VRMS in the case 

without microbubbles was also calculated and was subtracted from the results with the 

microbubbles to obtain the net bubble response. A Student’s t-test was used to determine 

whether the ICD was statistically different between different pressure amplitudes. A P-

value of P < 0.05 was considered to denote a significant difference in all comparisons.  
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3.3 Results 

3.3.1 Phantom validation of the skull effect 

The frequency response of the first pulse as recorded by the 60º-PCD and 90º-PCD 

configurations, with and without the presence of the skull in the wave propagation path is 

depicted in Fig. 3.5. Without the skull, the frequency spectra in the 60º-PCD and 90º-PCD 

cases are similar. As mentioned in Chapter 2, the frequency response shown in this study 

can be classified into two types125. The first response is generated by stable cavitation, i.e., 

at harmonic, sub-harmonic and ultra-harmonic frequencies. The second response is 

Figure 3.4 – Illustration of the inertial cavitation dose (ICD) calculation of the in vivo 
experiments. (a) The spectrogram of the first pulse from 0.02 to 0.15 ms after a 4 MHz 
high-pass filter (chebshev type 1) at 0.60 MPa. The harmonics and the broadband 
response could be observed in this figure. The corresponding VRMS was depicted in (b) 
and the ICD was obtained using the integral of VRMS curve between two dash lines. 

 (b) 

 (a) 
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generated by inertial cavitation, which will produce broadband acoustic emission. Here, the 

broadband response was detected when the pressure was at, or higher than, 0.45 MPa (Fig. 

3.5(a, c)). This broadband response was used to determine the threshold of inertial 

cavitation for Definity® within the 610-micron-diameter vessel. The skull presence led to a 

decrease in the peak amplitude of all harmonics, but the characteristic broadband response 

was still detected (Fig. 3.5(b, d)). This indicated that the threshold of inertial cavitation of 

0.45 MPa was not dependent on the skull presence. However, comparison of the results 

between the 60º-PCD and 90º-PCD configurations showed that the detection of acoustic 

emissions was influenced by the skull’s presence, i.e., part of broadband response was 

absorbed by the skull (Fig. 3.5(b)). 

The spectrogram of the first pulse as recorded by the 60º-PCD and 90º-PCD 

configurations in the presence of the skull in the wave propagation path is depicted in Fig. 

3.6, which shows that the pressure threshold of the broadband response (or, inertial 

cavitation) was the same between these two PCD configurations, i.e., 0.45 MPa. This 

indicated that the pressure threshold of the broadband response was not affected by the 

skull in vivo. At 0.30 MPa, however, the 90º-PCD could detect the ultra-harmonics but the 

60º-PCD could not, which indicated that the stable cavitation response was filtered by the 

skull. Also, the comparison of the results between the 60º-PCD and 90º-PCD configurations 

showed that the 2nd harmonic would be detected by the 60º-PCD without microbubbles at 

0.30 MPa and the acoustic emission amplitude was influenced by the presence of the skull, 

i.e., the response was partially absorbed by the skull.  

In order to assess the temporal behavior of the bubbles, the frequency response’s 

temporal variation was studied using spectrograms of the at the two different PCD angles 
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with and without the skull (Fig. 3.7). The spectrogram also indicated that the skull 

influences the signal at 60º-PCD. The amplitude around the fundamental frequency was 

enhanced by the skull (Fig. 3.7(b)). However, both Figs. 3.6 and 3.7 confirm the threshold 

of inertial cavitation to be 0.45 MPa. 

	
	
Figure 3.5 –   Frequency response of the first pulse (a,c) through no skull and (b,d) 
through an ex vivo skull at 5 distinct acoustic pressures. Acoustic emissions were 
collected with a PCD positioned at (a,b) 60º and (c,d) 90º from the longitudinal axis of 
the FUS beam. Broadband acoustic emissions were detected at and higher than 0.45 
MPa. 

 (b) 

(a) 

 (d) 

(c) 
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Figure 3.6 – Spectrogram of the first pulse in the phantom study without and with the 
microbubbles at 5 distinct acoustic pressures. Acoustic emissions were acquired with a 
PCD positioned at 60º and 90º from the longitudinal axis of the FUS beam. No broadband 
acoustic emissions were detected without the microbubbles while with the microbubbles 
the broadband acoustic emissions were detected at pressure at or higher than 0.45 MPa. At 
0.30 MPa, the ultra-harmonics were detected at the 90º-PCD but not the 60º-PCD. 
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Figure 3.7 –    The spectrogram (a,c) without the skull and (b,d) through an ex vivo skull at 
five distinct acoustic pressures. The duration of each sonication was 2 s, i.e., 20 pulses. 
Please note that the broadband acoustic emissions could only be detected at the first two 
pulses at 0.45 MPa in (b) and their amplitudes were much lower than at higher pressures. 

 (b) 

(a) 

 (d) 

(c) 
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Figure 3.8 – (a) Root mean square (VRMS) and (b) ICD at 5 distinct acoustic pressures 
are indicated here. In order to emphasize the difference between 5 distinct acoustic 
pressures, the limit of the y-axis is from 0 to 0.5 at 60º-PCD, with the presence of skull. 
ICD was quantified as the area below VRMS curve, at each pressure. Twenty pulses were 
applied for each sonication set. The ICD at 0.45 MPa was significantly larger than 0.30 
MPa (*:P < 0.05, indicates the threshold of inertial cavitation). 

(a) 

 (b) 
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     The broadband response as detected by the PCD was quantified by using the VRMS at 

each pressure amplitude (Fig. 3.8(a)) and the ICD (Fig. 3.8(b)). The ICD, which is shown 

in Fig. 3.8(b), was calculated by taking the integral of the VRMS variation. The VRMS curve 

depicted no significant difference between different pressure amplitudes beyond 1 s. As 

indicated by the ICD calculations (Fig. 3.8(b)), the presence of the skull induced lower ICD 

and the ICD at 60º-PCD was lower than at 90º-PCD. The ICD at 0.45 MPa was statistically 

higher than at 0.30 MPa (P < 0.05), which confirmed that the threshold of inertial 

cavitation was around 0.45 MPa. 

B-mode images acquired after two seconds of sonication were used to depict the spatial 

distribution of microbubbles within the vessel at five different pressure amplitudes, with or 

without the presence of the skull (Fig. 3.9). As the pressure amplitude increased, an 

increasingly dark region in the center of the B-mode image coinciding with the FUS focus 

(Fig. 3.10(a)), representing loss of echogenicity, was observed in the focal region. 

	
Figure 3.9 – B-mode imaging provided a means of determining whether the microbubbles 
were present following sonication. Images were acquired after 2 seconds of sonication at 5 
distinct acoustic pressures in skull and non-skull experiments. 
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Figure 3.10 – (a) The illustration of ROI and (b) the correlation between ICD and the 
intensity decrease ratio of B-mode imaging at 5 distinct acoustic pressures (0.30, 0.45, 
0.60, 0.75 and 0.90 MPa). The intensity decrease ratio at 0.45 MPa was significantly larger 
than 0.30 MPa ( *: P < 0.05) 

(a)

(b)



50 
 

  

With the skull in place, the dark region appeared only when the pressure amplitude was 

at and above 0.45 MPa, which was consistent with the aforementioned threshold of inertial 

cavitation from the PCD (Fig. 3.8). The spatial maps were compared against the ICD 

measurements. The region of interest (ROI) around the focal region of FUS was traced and 

the intensity ratio (Eq. 3.1) decrease was calculated from the radio frequency (RF) signal 

corresponding to the B-mode images (Fig. 3.10(a)). The intensity ratio was found to be 

statistically different between 0.30 MPa and 0.45 MPa (P < 0.05) (Fig. 3.10 (b)). This was 

also consistent with the results of the ICD quantification.  

 

3.3.2 In vivo transcranial cavitation detection in mice 

The confirmation of BBB opening and the corresponding spectrogram are depicted in 

Fig. 3.11. As a result of the deposition of gadodiamide into the brain parenchyma through 

the BBB opening, the MRI indicated that the threshold of BBB opening was at 0.30 MPa 

(Fig. 3.11(a) and (c)), but the spectrogram showed that the broadband response occurred at 

0.45 MPa (Fig. 3.11(b) and (d)). After bubble administration, higher harmonics could be 

detected, including the 3rd harmonic at 0.15 MPa without BBB opening, the 3rd to 5th 

harmonics at 0.30 MPa with BBB opening, and the 3rd to 8th harmonics together with the 

broadband response and BBB opening at 0.45 MPa and 0.60 MPa. The threshold of inertial 

cavitation was consistent between the two systems (Fig. 3.6(b), (d)) and the duration of the 

broadband response was around 5 µs at 0.45 MPa. However, the duration of the broadband 

response detected from the 10-MHz P/E transducer at 0.60 MPa was 0.5 ms longer than the 

hydrophone, especially at higher frequencies. At 0.30 MPa, not only the 3rd to 5th but also 

the 6th to 8th harmonics could be detected by the 10-MHz P/E transducer. An ultra- 
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harmonic peak between the 7th (10.5 MHz) and 8th harmonics (12 MHz) was detected as 

indicated in Fig. 3.11(d).  

 

 

 

 

	
	
Figure 3.11 – BBB opening using confirmed by 3D-MRI images, using (a) System-A and 
(c) System-B. The corresponding spectrograms of the first pulse using (b) System-A and (d) 
System-B showed that the broadband acoustic emissions were detected at 0.45 MPa and 
0.60 MPa but not at 0.15 MPa and 0.30 MPa. The 3D-MR images confirmed that the BBB 
could open at 0.30 MPa, i.e., without inertial cavitation. 

 (d) 

 (b) 

(a) 

(c) 
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The broadband response as detected by the PCD was quantified using the ICD (Fig. 

3.12). As indicated by the ICD calculations, the ICD at 0.45 MPa and 0.60 MPa was 

statistically higher than at 0.30 MPa and 0.15 MPa (P < 0.05) (Fig. 3.12(a)), which 

confirmed that the threshold of inertial cavitation during the BBB opening was around 0.45 

MPa. The histological findings are shown in Figs. 4.13 and 4.14. In the cases of BBB 

opening at 0.30 MPa and no BBB opening at 0.15 MPa confirmed by 2D-MR horizontal 

images, no cell damage, e.g., red blood cell (RBC) extravasations or neuronal death 91, was 

observed after histological examination (Fig. 3.13 and 4.14, (a-f)). In the cases of BBB 

opening at 0.45 MPa, no extravasations were detected in the sonicated brain regions (Fig. 

3.13 and 4.14, (j-l)) even though a broadband response was detected (Fig. 3.11(b), (d)). 

Brain samples sonicated at 0.60 MPa showed higher incidence of microscopic damage at 

multiple distinct damaged sites (Fig. 3.13 and 4.14, (j-l)). The exposure pressures that 

resulted in RBC extravasations were those associated with the largest broadband response. 

	

	
	
	
	
	
	
	
	
	
	
	
 
	

Figure 3.12 – The inertial cavitation dose (ICD) at 4 distinct acoustic pressures (a) using 
the System-A and (b) using the System-B. ICD was quantified as the area under the 
VRMS curve from 0.095 ms to 0.145 ms, at each pressure. The signal used for 
quantification was from a focused hydrophone. For the System-A, the ICD at 0.45 MPa 
and 0.60 MPa was significantly higher than 0.15 MPa and 0.30 MPa (*: P < 0.05). For 
the System-B, the ICD at 0.60 MPa was significantly higher than at 0.30 MPa and 0.15 
MPa. The ICD at 0.45 MPa was also significantly higher than 0.15 MPa (*: P < 0.05). 
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Figure 3.13 – 2D-MRI images and H&E-stained horizontal sections of the BBB-opened 
hippocampi at (a-c) 0.15 MPa, (d-f) 0.30 MPa, (g-i) 0.45 MPa, and (j-l) 0.60 MPa using the 
System-A with microbubbles administration. Sonicated brains at 0.15 MPa, 0.30 MPa and 
0.45 MPa showed no histological damage. Brain samples sonicated at 0.60 MPa (j-l) 
showed higher incidence of microscopic damage at multiple distinct damaged sites. Black 
arrows point to the RBC extravasations. Black boxes in the left and middle column indicate 
the enlarged regions shown in the middle column and right column, respectively. 
Magnifications and scale bars in (a,d, g, j) were 40x and 200 μm, in (b, e, h, k) 100x and 
100 μm, and in (c, f, I, l) 200x and 50 μm, respectively. 
 



54 
 

  

 

 

 

 

 
Figure 3.14 – 2D-MR images and H&E-stained horizontal sections of the BBB-opened 
hippocampi at (a-c) 0.15 MPa, (d-f) 0.30 MPa, (g-i) 0.45 MPa, and (j-l) 0.60 MPa using the 
System-B with microbubbles administration. Sonicated brains at 0.15 MPa, 0.30 MPa and 
0.45 MPa showed no histological damage. Minor microscopic damage was noticeable in 
one location of the right hippocampus sonicated 0.60 MPa, constituting one distinct 
damaged site (g-i). Black arrows point to RBC extravasations. Black boxes inside the left 
and middle column showed enlarged regions in the middle and right columns, respectively. 
Magnifications and scale bars in (a,d, g, j) were 40x and 200 μm, in (b, e, h, k) 100x and 
100 μm, and in (c, f, I, l) 200x and 50 μm, respectively. 
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3.4 Discussion 

3.4.1 Phantom validation of the skull effect 

The peak-rarefactional pressure threshold of inertial cavitation in the presence of 

preformed microbubbles in a vessel phantom by FUS in the absence or presence of a skull 

was investigated in this chapter. Qualitatively and quantitatively, the threshold of inertial 

cavitation was identified to be at the peak-rarefactional pressure of 0.45 MPa with or 

without an ex vivo skull in place (Figs. 3.4-3.10). The frequency spectrum of the first pulse 

showed that the broadband response appeared when the pressure was at, or higher than, 

0.45 MPa (Fig. 3.5). Spatial mapping using B-mode imaging provided further evidence of 

bubble disruption caused by inertial cavitation (Fig. 3.9). The decrease in echogenicity was 

consistent with the emergence of the broadband response shown in Fig. 3.5, which 

demonstrated that the microbubbles were disrupted by inertial cavitation. Quantitative 

results of spatial maps also showed that the image intensity ratio (Eq. (3.1)) at 0.45 MPa 

was larger than at 0.30 MPa (P < 0.05). Hence, both the PCD frequency response and the 

spatial information from B-mode imaging could be used to determine the threshold of 

inertial cavitation.  

This study also investigated the effect of the skull to predict feasibility in in vivo 

transcranial applications where transcranial cavitation detection is required. At the same 

pressure amplitude, the ICD was lower in the presence of the skull (Fig. 3.8(b)), which 

showed that the acoustic wave was distorted by the skull. In order to reduce skull thickness 

effects being responsible for the difference between the 0º and 60º cases, based on our 

measurements, the area of the parietal bone, which was assumed to have uniform thickness, 
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was around 5 mm2 which would cover the ultrasound path for both the 0º
 and 60º cases. 

When the PCD was placed at 60º, the PCD signal amplitude was the lowest because the 

acoustic wave propagated through the skull twice (Fig. 3.5(b), Fig. 3.8(b)). However, the 

quantification showed that the significant broadband response could still be detected at 60º-

PCD (Fig. 3.8(b)). Hence, the PCD system used in this study might be suitable for the in 

vivo applications.  

The broadband response appeared when the microbubbles were sonicated at or above 

0.45 MPa. The broadband response at 0.90 MPa persisted for approximately 0.5 s, which 

was consistent with the VRMS curves (Fig. 3.8(a)). Inertial cavitation may have caused 

microbubble destruction, thus hampering the likelihood of subsequent inertial cavitation. 

However, harmonics were still detectable during the entire sonication at each pressure 

amplitude (Fig. 3.7) and these harmonics appears to have been due to microbubbles (Fig. 

3.15(b)), as they were absent in the degassed water filled vessel (Fig. 3.15(a)). Figure 8 

showed that only the 1st and 2nd harmonics appeared when degassed water was sonicated, 

while distinct 1st to 6th harmonics were observed in the presence of microbubbles. There are 

three possible explanations for this phenomenon. First, since the focal region of the PCD 

was larger than the focal region of FUS (Fig. 3.1), the harmonics may be due to the 

oscillation of microbubbles, which were near the focal region of FUS but had not 

experienced the full extent of the peak pressure amplitude. Second, some microbubbles 

may have adhered to the vessel wall and they continued to be acoustically driven. Third, 

the initial microbubbles may have been disrupted into smaller bubbles, which were not 

detectable on the B-mode images. These smaller bubbles could then be acoustically driven 

to emit the characteristic harmonics.  
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Quantitative results of the frequency response and spatial maps indicated the threshold 

of inertial cavitation (Fig. 3.10(b)). When the pressure was higher than 0.60 MPa, no 

significant difference was shown in the intensity ratio, since the microbubbles in the focal 

region might have completely disappeared after 2 s of sonication. In contrast, the ICD 

increased exponentially when the pressure exceeded the threshold of inertial cavitation.  

 Here, we provided a simplified method to show that the ICD was influenced by the 

skull unlike the threshold of inertial cavitation. This implied that, if the BBB is opened at 

0.30 MPa74, the mechanism involved at that pressure may be stable cavitation. However, 

some issues remain to be investigated further in order to understand the mechanism of BBB 

opening. The diameter of the vessel in this study was 610 μm, which was larger than most 

murine vessels. The internal carotid artery of the mouse brain has a diameter of 218±19 

μm126. The compliance or stiffness of the vessel also influences the bubble behavior 110. 

Therefore, a smaller diameter vessel phantom should be implemented to confirm the 

	

Figure 3.15 – Comparison between (a) water and (b) bubble experiments without skull 
for spectrogram from 90º-PCD at 0.90 MPa. Broadband acoustic emissions and the 
amplitude of the 3rd to 6th harmonics were not obtained in the water experiments. 

(b)(a) 
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threshold of inertial cavitation of microbubbles within smaller vessels, such as 100 to 300 

μm, will not be affected by the skull. 

No flow effects were investigated in this study unlike in the in vivo case. The 

concentration of microbubbles may also affect the threshold of inertial cavitation, which 

has been shown to decrease with the concentration of microbubbles in the vessel 

phantom127. The effect of flow and concentration will be investigated in future 

implementations.  

The PCD sensitivity also needs to be considered. The broadband response captured by 

the PCD is dependent on its sensitivity. The results of this study showed that the threshold 

of inertial cavitation was equal to 0.45 MPa. However, it might be possible that the 

broadband response was not captured at 0.30 MPa because the PCD sensitivity was not 

high enough. However, based on the complementary results of the spatial maps from the B-

mode imaging, we believe that the sensitivity of the PCD used in this study is deemed 

sufficiently high. 

Two different angles of PCD were used to understand whether the results will be 

influenced by the presence of the skull. At 0.30 MPa without the skull, some signal at 60º-

PCD (Fig. 3.5(a)) was higher than at 90º-PCD (Fig. 3.5(c)). The signals obtained by 60º-

PCD may include some reflected signals from the surface of the phantom, which may not 

have been captured by 90º-PCD. The PCD used in this study had a cylindrical focus, which 

was ideal when the hydrophone was positioned perpendicular to the focused ultrasound 

transducer’s main axis. When positioned in this manner, the cylindrical focal region closely 

matches the ellipsoidal shape of the FUS focal spot (Fig. 3.1(b)). If the PCD is placed at a 

60º angle to the focused ultrasound transducer’s main axis, other reflected signals from the 
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surface of the phantom and the effect of the skull will also be observed. Therefore, it may 

be better to place the PCD at 90 degrees for vessel phantom experiments. 

  

3.4.2 In vivo transcranial cavitation detection in mice 

The presented study noninvasively detected in vivo acoustic emissions during FUS-

induced BBB opening and showed that BBB could be opened without inertial cavitation or 

cell damage. The reliability, sensitivity, and transcranial capability of our PCD setup to 

detect acoustic emissions was validated first in a phantom119. Broadband emission, a 

signature of IC, could be detected transcranially (with the 60º-PCD configuration) and the 

IC threshold was identical to that at 90º-PCD (non-transcranial PCD). Hence, the PCD 

system used in this study was deemed suitable for transcranial in vivo detection of inertial 

cavitation. 

Both the phantom and in vivo studies indicated that the threshold of inertial cavitation 

during BBB opening was at the peak-negative pressure of 0.45 MPa. This was verified 

qualitatively and quantitatively. When the sonication was performed one minute after 

bubble administration, the bubble concentration in the mouse body would decrease because 

the increased circulation time would increase the probability of bubble disruption, 

dissolution, absorption and clearance. However, the threshold of the broadband response 

was not affected by this one-minute delay, which indicated that the variation of bubble 

concentration within one minute inside the capillaries of the brain does not significantly 

affect the threshold of inertial cavitation. 

Our findings indicated that the BBB remained intact at 0.15 MPa and opened at 0.30 

MPa, which was consistent with our previous work on the threshold of BBB opening as 
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confirmed using fluorescence imaging74,91. In addition, a broadband response was not 

detected at the pressure of 0.30 MPa. Our findings were in good agreement with 

McDannold et al.’s findings that indicated that the BBB in the rabbit after craniotomy 

would be intact at 0.14 MPa and open at 0.29 MPa. The threshold of broadband response 

was also found to fall around 0.40 MPa in their study. On the other hand, they proposed 

that the second and third harmonics may be used to monitor BBB opening. However, in our 

study, the third harmonic could not be used to monitor BBB opening because it could still 

be detected at 0.15 MPa, which was shown not to induce BBB opening. Based on the 

results of our phantom study, at 0.30 MPa, the ultra-harmonics were effectively filtered by 

the skull (Fig. 3.6), which suggested that the stable cavitation might be responsible for 

BBB opening at 0.30 MPa in vivo and that the associated ultra-harmonics could not be 

detected by the broadband hydrophone, potentially due to sensitivity limitation and the 

skull presence (Fig. 3.11(b)). However, the signals from 10-MHz P/E transducer with in 

vivo implementation (Fig. 3.11(d)) showed that not only could higher harmonics be 

detected at 0.30 MPa but also the ultra-harmonics at 11.25 MHz. Therefore, both 

transcranial phantom and in vivo studies showed that BBB opening might be induced by 

stable cavitation only, at or near the opening threshold. 

 In the in vivo study, the fourth and fifth harmonics could be detected and associated 

with BBB opening at 0.30 MPa (Fig. 3.11(b, d)). This was also consistent with our 

phantom work, which indicated that the fourth and fifth harmonics were detected at 0.30 

MPa by the 60º-PCD (Fig. 3.6). At 0.30 MPa, nonlinear oscillations may induce the fourth 

and fifth harmonics, and bubble expansions may lead to BBB opening. In simulations, the 

resonance frequency of 1-2 μm-diameter microbubble was about 4-8 MHz, which included 
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the fourth and fifth harmonics of 1.5 MHz128,129. As a result, the fourth and fifth harmonics 

detected by the broadband hydrophone might serve as a reliable indicator for BBB opening. 

 The spectrogram used in this study could clearly elucidate the onset and duration of IC 

within a signal pulse. In this study, the IC occurred at the beginning of sonication and the 

longest duration was around 50 μs as detected by the hydrophone (Fig. 3.11(b)) and 500 µs 

as detected by the 10-MHz P/E transducer (Fig. 3.11(d)) at 0.60 MPa. The overlap of the 

focal regions of the FUS and the 10-MHz P/E transducers was larger than with the 

broadband hydrophone, hence the longer duration of inertial cavitation detected. Therefore, 

the System-B will be used in the following in vivo studies in mice. 

At 0.45 MPa, the broadband response was detected at the first but not the second pulse. 

However, at 0.60 MPa, a broadband response was detected in the first three pulses. A likely 

explanation for this may be that the pulse repetition frequency (PRF) used in this study was 

not low enough to allow blood reperfusion in the capillaries between pulses. As a result, the 

microbubbles were disrupted after the first pulse but not a sufficient number of 

microbubbles replenished the vessel within the interval of 80 ms (20% duty cycle, PRF = 

10 Hz). However, harmonics could be detected at each pulse. Since the focal region of the 

PCD was larger than the FUS focal region (Fig. 3.3), the harmonics may be due to the 

nonlinear oscillation of the microbubbles, which were near the FUS focal region but were 

not activated at the highest pressure amplitude. 

In the phantom study, the sub-harmonic and ultra-harmonics were clearly detected at 

0.30 MPa when the detection was performed without the skull in the PCD path, i.e., in the 

90º-PCD case, but it was masked by the skull at 60º-PCD. In the in vivo study, sub-

harmonics and ultra-harmonics could not be detected transcranially and are thus probably 
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filtered by the skull. Since the broadband response is more commonly associated with 

inertial cavitation, inertial cavitation was detected and quantified through the measurement 

of broadband emissions at different pressures.  

The histological results in this study were consistent with existent literature that 

investigated the relationship between tissue damage and inertial cavitation113,130. Some red 

blood cell extravasations were induced at 0.60 MPa but no extravasations could be found at 

0.15, 0.30 or 0.45 MPa. Even with higher ICD estimated at 0.60 MPa, the extravasations 

were limited to 2-3 sections. However, in order to investigate more specific forms of 

cellular damage (i.e., apoptosis), more sensitive staining protocols, such as TUNEL, will be 

applied in future studies. 

Standing waves might also be generated due to the long pulse lengths used in our in 

vivo study that may lead to peak pressure variations within the mouse brain. However, in 

this study, the threshold of inertial cavitation was identical between the phantom and in 

vivo studies, which indicated that the standing wave effects might not be significant in vivo. 

This is in agreement with simulation findings predicting the standing wave effects 

intracranially131. Figure 3.11 also showed that the inertial cavitation occurred at the 

beginning of sonication. Therefore, our results on the IC threshold may be independent of 

the number of cycles and thus potential standing wave effects. Of course, we might have to 

take into account the fact that the in vitro (atmospheric) and in vivo (i.e., capillary) 

pressures were not the same. However, the identical threshold of BBB opening across all 

mice and the phantom study strongly indicates the insignificance of the capillary pressure 

effect.  
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Since two systems and poly-dispersed microbubbles were used in this chapter, it is 

difficult to identify the role of stable cavitation. In order to determine the effect of stable 

cavitation with distinct microbubble diameter, the stable cavitation dose will be quantified 

in the next chapter. 

Because the bubble response could be detected through the skull, more parameters 

should be investigated to unveil the mechanism of BBB opening. Different PRF could be 

applied to obtain the blood velocity, which will affect the reperfusion rate of microbubbles. 

The microbubbles used in this study were commercial ultrasound contrast agents, which 

were poly-dispersed. Because the threshold of BBB opening was shown to be higher for 

the 1-2 µm than the 4-5 µm bubbles56, the size-dependent threshold of inertial cavitation 

will be investigated to identify the role of different bubble diameters on the inertial 

cavitation and BBB opening, which will be described in detail in Chapter 4.. Finally, a 

smaller pressure step size can be used to identify a more precise IC pressure threshold 

associated with BBB opening by using more sensitive instrumentation. 

 

3.5 Conclusion 

In summary, preliminary investigation on the in vivo transcranial cavitation detection 

and quantification of the inertial cavitation activity during BBB opening was presented. 

The bubble behavior was shown detectable in mice in vivo through the intact scalp and 

skull. The threshold of inertial cavitation using transcranial FUS and microbubbles in a 

vessel phantom was also investigated to provide complementary information to the in vivo 

findings. This novel system will allow us to investigate the role of microbubbles and 

differentiate the mechanism between SC- and IC-induced BBB openings.  
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Chapter 4  

Microbubble-Dependent Mechanism 

of Blood-Brain Barrier Opening Using 

Focused Ultrasound and Microbubbles 
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4.1 Introduction 

In Chapter 3, an in vivo transcranial cavitation detection system was successfully 

developed. Then deeper investigations regarding the bubble property and acoustic 

parameters should be performed. Since microbubbles are the necessary agents to induce a 

safe BBB opening, their role needs to be thoroughly investigated. In this chapter, we aim at 

understanding how the interaction between microbubbles and ultrasound-induced BBB 

opening and corresponding permeability. Following the development of in vivo transcranial 

PCD system, this system was applied to order to unveil the physical effects of different 

microbubble properties, including diameter and shell component, responsible for FUS-

induced BBB opening, 

Typically, most reported studies in FUS-BBB opening use commercially available and 

poly-dispersed microbubbles, such as Definity®, Optison®, or Sonovue®. Thus, it has been 

difficult to determine the role of the microbubble properties in those applications. The 

bubble diameter is inversely proportional to the resonance frequency, when every other 

bubble parameter remains the same. For a bubble constrained in a vessel, regardless of the 

shell property, the resonance frequency increases when the bubble size decreases128,132. For 

example, when the bubble is confined in a compliant, 10-µm-diameter vessel, its resonance 

frequency at a diameter of 2 µm, 4 µm, 6 µm and 8 µm is 3.92 MHz, 1.93 MHz, 1.41 MHz 

and 1.26 MHz, respectively132. When microbubbles are confined within a vessel, the 

bubble behavior changes due to the vessel wall constraints. Some numerical studies have 

predicted how the vessel size and stiffness affect the bubble behavior. In rigid vessels, it 

has been shown that the resonance frequency of microbubbles decrease as the vessel 
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diameter decreases128. The resonance frequency of microbubbles also decreases as the 

vessel compliance decreases132,133.  

Therefore, the frequency of the FUS used in this study (1.5 MHz) is close to the 

resonance frequency of 4-5 µm bubbles. High-speed camera findings have also indicated 

that the pressure threshold of bubble fragmentation increases with bubble size105. Recently, 

mono-dispersed microbubbles were shown as an important factor in high frequency 

ultrasound imaging134. It has also been shown that the pressure threshold of BBB opening 

is bubble-size dependent. The threshold of 1-2-µm bubbles was higher than that of 4-5-µm 

microbubbles56, which underlined the importance of the microbubble role in BBB opening. 

Hence, the physical mechanism of FUS-induced BBB opening may also be bubble-size 

dependent, so understanding the role of different microbubble sizes is very important to 

unveil the physical mechanism of BBB opening.  

Besides the diameter, the shell has been shown to dictate bubble behavior. The main 

shell constituent is lipid/surfactant, albumin, and lipid for the Definity®, Optison®, and 

Sonovue® bubbles, respectively. The pressure threshold of inertial cavitation has been 

shown to differ between the aforementioned contrast agents135. Because the shell and 

diameter range distribution of commercial microbubbles are different, both factors need to 

be investigated. Theoretical models have shown a clear dependence of the bubble wall 

velocity, attenuation coefficient in a bubbly liquid, and resonance frequency on the 

viscosity of the surface layer136,137. The increase in shell stiffness and shell friction would 

increase the damping coefficient, and affect the oscillation138. Therefore, it is expected that 

stiffer shells may undergo smaller expansion during oscillation. Recently, Marmottant et al. 

have proposed a model to describe the buckling behavior of lipid-shelled microbubbles139. 
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Moreover, it has been shown that the acyl-chain length (i.e., lipid hydrophobic chain) 

dictates the dissolution behavior of the lipid monolayer-coated microbubbles140 and the 

ultrasound-induced microbubble fragmentation141. The surface shear viscosity of the 

phospholipid monolayer-coated microbubbles has also been found to be acyl-chain length 

dependent142. In addition, some studies have shown that the polyethylene glycol (PEG), an 

additional component of the lipid shell composition, may affect the fraction of the bubble 

fragmentation induced by inertial cavitation143,144. Therefore, shell effects are expected to 

affect the acoustic response from microbubbles. Until now, however, most models or 

experimental studies were implemented on a single free bubble, i.e., not in vivo. The bubble 

behavior may be affected due to wall constraints when the bubble is confined within a 

vessel. It has been shown that the microbubble resonance frequency decreases, and the 

pressure threshold of inertial cavitation increases, as the vessel diameter or compliance 

decreases128,145. The expansion ratio (R(t)/R(0)) of a microbubble in a 8-µm capillary is 

half of a free bubble132. The shell effect is still unknown in vivo, especially in the brain 

vasculature. 

The objective of this chapter was to unveil the physical effects of microbubble diameter 

and shell properties responsible for FUS-induced BBB opening. First, the physical effects 

of different microbubble sizes were determined. Microbubbles were size-isolated into 1-2, 

4-5, and 6-8-µm diameter ranges and the acoustic response of different-sized microbubbles 

were transcranially detected during BBB opening. Second, we proposed a method to 

investigate the effect of lipid shell composition on the microbubble response in the brain 

vasculature. In order to exclude the impact of bubble size, the diameter of microbubbles 

was kept constant at 4-5-µm. Several tools were used in these two investigations. First, 
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MRI was used to determine the threshold of BBB opening and the BBB opening volume, 

as well as to generate the permeability maps based on the kinetic model determined from 

previous study (Appendix). Second, during BBB opening, the acoustic emission from 

microbubbles with three diameters or with three acyl-chain lengths was detected 

transcranially and noninvasively. The spectrogram, stable cavitation dose (SCD), and 

inertial cavitation dose (ICD) were then generated to identify the threshold of inertial 

cavitation and the bubble behavior of distinct bubble properties. Third, in each study, 

histology was used to detect any macroscopic effects of BBB opening and T2 images were 

used to assess the possibility of hemorrhage in the sonicated area.  In addition, in order to 

determine the precise PRP threshold of inertial cavitation of each microbubble diameter, 

simulation based on several theoretical models and phantom validation were implemented.  

 

4.2 Theoretical models for microbubble oscillation 

Microbubbles are the necessary agent to induce BBB opening within safe pressure 

ranges (i.e., by avoiding the thermal effects). Since the theoretical model about 

microbubbles can be used to explain the bubble behavior, including the radius, bubble wall 

velocity, and frequency response, an appropriate theoretical model will be used for the 

simulation to identify the behavior of lipid-shelled microbubbles under FUS. A variety of 

models have been developed to study bubble dynamics in liquids, Qin et al.146 provided a 

detailed description regarding bubble behavior simulation, including some main models, 

such as the classic Rayleigh-Plesset equation about unshelled bubble in incompressible 

unbounded liquid147, Keller and Miksis equation about liquid compressibility148, and shell 

property derived by Church et al136. Specifically, bubble dynamics regarding phospholipids 
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shell property has been proposed in 1995139. Since the microbubbles used in our study, 

Definity® and mono-dispersed microbubbles, are phospholipids shell, this model will be 

used to explain the bubble behavior in our studies. 

 

4.2.1 Oscillation of a free air and a shelled microbubble 

Bubblesim, an ultrasound contrast bubble simulation codes, was used for estimating the 

radial oscillation and scattered sound from an ultrasound contrast bubble under acoustic 

field. Bubblesim was developed by Dr. Hoff and was in collaboration with the Acoustics 

Group at the Department of Telecommunications and with the Department of Physiology 

and Biomedical Engineering, both at NTNU, the Norwegian University of Science and 

Technology, in Trondheim, Norway149. 

It was implemented as a toolbox in MatlabTM program (Math Works, Natick, MA) on a 

PC to solve the model of microbubbles and to plot the variation of some parameters 

(velocity of bubble wall, radius, etc…). Fig. 4.1 showed the basic interface of the 

Bubblesim. Here the R-P with radiation damping equation was the main model for the 

response of a bubble behavior under the ultrasound pulse. Most parameters (Pulse 

Amplitude, Pulse Length, Pulse Center Frequency, Sample rate and Bubble Radius) were 

the same as the experimental situation. 

    The shell model was also considered in Bubblesim. Regarding the property of the 

shell material, most of them were in general not known. Therefore, in this experiment, 

several literatures were searched to find the related parameters about the shell. An optical 

method was developed to measure the resonance frequency of contrast agent. Under this 

model, the shell might slightly influence the resonance frequency. The shell thickness was 
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set for 3 nm and the shell viscosity was 0.19 Pa•s150. The shell shear modulus of 

microbubble was measured based on the observation of effects of ultrasound radiation 

force. The shear modulus of phospholipid shell was 32 MPa150.  The aforementioned 

parameters will be then applied into Bubblesim to obtain the oscillation of shelled 

microbubbles. 

    

	
	

Figure 4.1 – The graphical user interface of bubblesim used to specify bubble, pulse and 
calculation parameters.  
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4.2.2 Oscillation of a lipid-shelled microbubble 

Fig. 4.2 shows three states during the oscillation of the lipid-shell bubble. When the 

lipid molecules are larger than the bubble surface area (i.e. bubble compression until	

	 ), the surface tension will be equal to zero. The bubble surface tension will be 

equal to the water surface tension when	 	 . The bubble will behave elastically 

between those two states. The main equations are as follows: 

	

1 										(5.1)																																		

							

	

0																																						 	 	

	 1 						 	 		 	

			 																								 	 	 	 	

																																				 	 	 					(5.2)	

	
	
	
Where 

 

 

R Bubble radius 

 The velocity of bubble wall 

 The acceleration of bubble wall 

P0 The hydrostatic pressure 

Pac The acoustic pressure  

 surface tension 

ρ Liquid density, 103 kg/m3

 Polytropic exponent, 

c Speed of sound in the liquid, 1500 m/s 

 Liquid viscosity, 10-3 Pa 

k 
Shell viscosity 10-9, 10-8, and 2.5 x 10-8 kg/s for 1-2, 4-5, and 6-8-µm 
microbubbles 

x Shell elasticity 2.5 N/m 
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4.3 Materials and Methods 

4.3.1 Mono-dispersed microbubbles 

4.3.1.1 Microbubble size distribution  

In general, as shown in Fig. 4.3, the distribution of Definity® is not well centralized 

around a certain diameter. In this chapter, Lipid-shelled microbubbles with three different 

diameters (1-2, 4-5 and 6-8 µm) were in-house manufactured and size-isolated using 

differential centrifugation described by Feshitan et al.151. The concentration was diluted 

from a higher concentration to approximately 107 numbers / mL after microbubble 

administration and the sonication was performed immediately after microbubble 

administration. microbubble size distributions and concentrations were determined by laser 

light obscuration and scattering (Accusizer 780A; NICOMP Particle Sizing Systems, Santa 

Barbara, CA, USA). The number- and volume-weighted size distributions before and after 

	

Figure 4.2 – The illustration of dynamic surface tension of a lipid-coated bubble as 
presented by Marmottant et al.139  
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(~8h later) the experiments (those were unused bubbles obtained from the same vial at 

those times) are shown in Fig. 4.4, which shows that the microbubbles used for BBB 

opening remain stable. In the study of the size effect, two sets of 1-2-µm diameter bubbles 

were found not to be stable after the experiments, i.e., the peak in the number distribution 

was still 1-2 µm, but the peak of the volume distribution had shifted to larger diameters 

(around 4-8 µm). However, the results of the two vials were statistically different from the 

4-5-µm and 6-8-µm diameter bubbles, which led to the conclusion that the number 

distribution is a more reliable measure of stability. 

 

 

 

 

 

 

	

Figure 4.3 – The size distribution of the Definity® microbubbles (a) according to the 
number concentration and (b) volume fraction was characterized. This indicated that the 
size distribution of Definity® microbubbles was not well centralized. 

 (a) (b) 
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Table 4.1 Abbreviations, molecular weight, viscosity, and gel-liquid transition temperature 
of each acyl-chain length 

Property 

Acyl-chain Abbreviations M.W. Viscosity (mN s/m)142 Tm(°C)142 

C16 DPPC 734.05 1 41 

C18 DSPC 790.16 3 55 

C24 DLgPC 958.48 22 80 

 

Figure 4.4 – Size distributions of 3 mono-dispersed microbubbles are depicted as number-
weighted percent of the total concentration of bubbles and volume-weighted percent of the 
total volume of bubbles. Before in vivo experiment, the distribution is centralized at 1-2 
µm, 4-5 µm, and 6-8 µm (solid black). Distribution analysis is performed again at the same 
day, after in vivo experiments (dashed red), depicting small decrease at the peaks. 
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4.3.1.2 Microbubble shell materials 

In the study of the shell effect, lipid-shelled microbubbles with three different acyl-

chain lengths (C16, C18, and C24) were manufactured and size-isolated in-house with a 4-

5-µm diameter. The concentration was diluted from a higher concentration to 

approximately 8 x 108 bubbles / mL before microbubble administration and sonication was 

performed after microbubble administration. microbubble-size distributions and 

concentrations were determined by the electrical impedance sensing zone method 

(Multisizer 3, Beckman couter, Brea, CA, USA). The properties, including the molecular 

weight (M.W.), viscosity and get-to-liquid crystalline phase-transition temperature, of the 

three acyl-chain lengths are shown in Table 4.1.  

 

4.3.2 Sonication protocol 

4.3.2.1 In vivo study for BBB opening properties assessment 

Different numbers of mice are used in three distinct studies shown in this chapter. First, 

in the study of the bubble-size effect, 67 mice were sonicated at 0.15, 0.30, 0.45, or 0.60 

MPa. The number of mice used at each pressure and bubble size is shown in Table 4.2. 

Second, in the study of the shell effect, 0.15, 0.225, 0.30, 0.45, and 0.60 MPa peak-

rarefactional acoustic pressures were used on 31 mice. The number of mice used at each 

pressure and acyl-chain length was provided in Table 4.3. 

The experimental setup has been mentioned in section 3.2.2 (Fig. 3.3(b)) and the 

experimental timeline was shown in Fig. 4.5. The pulse length, pulse repetition frequency 

(PRF) and the total sonication duration were respectively 100 cycles, i.e., 67 µs, 10 Hz, and 

one minute. Prior to the microbubble administration, a 2-s sonication was applied in order 
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to obtain the baseline of acoustic response used in the quantification of cavitation dose. The 

mice were sacrificed 3 hrs or 7 days after sonication for histological analysis. The 

procedure has been described in section 4.2.2.3. 

 

Table 4.2 Number of mice studied at each pressure and each bubble size 

  Pressure (MPa) # of mice

Diameter 0.15  0.30 0.45 0.60  67

1-2 µm 3 6 6 8 23

4-5 µm 4 7 6 6 23 

6-8 µm 3 6 5 7 21 

 

Table 4.3 Number of mice studied at each pressure and each acyl-chain length 

 Pressure (MPa) # of mice

Acyl-chain 0.15 0.225 0.30 0.45 0.60 31

C16 1 1 2 2 3 9

C18 1 1 3 3 3 11 

C24 1 1 3 3 3 11 

 

 

	
Figure 4.5 – Experimental timeline for each study in this chapter 
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4.3.2.2 Phantom validation for IC threshold determination 

As mentioned in section 3.2.1.1,   the same materials for the vessel phantom are used 

here for 3 different microbubble diameters.  Each sonication set includes a pulse length of 

100 cycles (67 μm) and a pulse repetition frequency (PRF) of 10 Hz. The total duration of a 

sonication set is 2 seconds (i.e. 20 pulses). Five sonications are done in a row with a space 

of 5 mm in between each focus, and repeated for three times with fresh microbubble 

administration. Acoustic signals emitted from microbubbles are obtained for each pulse. 

The peak rarefactional pressure amplitude ranges between 0.15 and 0.60 MPa at a 0.05 

MPa step size as calibrated in previous studies40,41 

 

4.3.3 MRI protocol 

All the mice were imaged in a 9.4 T microimaging MRI system (DRX400, Bruker 

Biospin, Billerica, MA, USA). Each mouse was scanned 30-40 minutes after sonication, 

using a 30-mm-diameter single resonator. Isoflurane gas (1-2%) was used to keep the 

mouse anesthetized at 50-70 breaths/min during the entire MRI procedure. Dynamic 

contrast-enhanced MR imaging (DCE-MRI) was performed using a 2D FLASH T1-

weighted sequence of a 192×96 matrix size (reconstructed to 256×128), a spatial resolution 

of 130×130 μm2 (reconstructed to 98×130 μm2), a slice thickness of 600 μm (no interslice 

gap), a flip angle of 70°, TR/TE=230/2.9 ms, NEX=4 and a scan time of 88 s. Forty 

dynamic acquisitions were made over a total period of 60 min. Each acquisition produced 

20 horizontal slices that covered the entire mouse head. Upon completion of the second 

dynamic acquisition, a 0.30 mL non-diluted bolus of gadodiamide (Gd-DTPA) was 

injected intraperitoneally (IP) through a catheter at a rate of approximately 10μL/s. The 
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relatively large dosage of contrast agent was preferred in order to secure the presence of a 

bolus peak in the vascular system, which is essential for the AIF determination, but also to 

have a clearer depiction of the extent of BBB opening. Gd-DTPA has been shown to 

reduce the longitudinal relaxation time when excreted in the extravascular extracellular 

space (EES), thus enhancing the T1 signal intensity, where the BBB opening has occurred. 

Upon completion of DCE-MRI, a 2D FLASH T1-weighted sequence (TR/TE=230/3.3 ms; 

flip angle: 70°; NEX=18; scan time: 9 min 56 s) with higher spatial resolution (matrix size: 

256×192; spatial resolution: 86×86 μm2; slice thickness: 500 μm with no interslice gap) 

and a 2D RARE T2-weighted sequence (TR/TE=3300/43.8 ms; echo train: 8; NEX=10; 

scan time: 9 min 54 s; matrix size: 256×192; spatial resolution: 86×86 μm2; slice thickness: 

500 μm with no interslice gap) were acquired. 

The kinetic model used here to generate permeability map was developed by Vlachos et 

al. and is summarized in Appendix A. The volume of BBB opening was quantified using 

Medical Image Processing, Analysis, and Visualization software (MIPAV, Center for 

Information Technology, National Institutes of Health, Bethesda, MD, USA). In each 2D 

horizontal image, an intensity threshold was determined from the left hippocampal region. 

A levelset volume of interest (VOI) was then used to analyze the intensity values and 

identify the contour boundary of the BBB opening, where the intensity was higher than a 

pre-specified threshold. After defining the area and the thickness of each slice, the BBB 

opening volume was calculated.  
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4.3.4 Acoustic emission signal processing 

The acoustic emission detected by the PCD was sampled at 100 MHz and a customized 

spectrogram function (24-cycles, i.e., 16 µs, Chebyshev window; 98% overlap; 4096-point 

FFT) in MATLAB® (2007b, Mathworks, Natick, MA) was used to generate a time-

frequency map, which provided the spectral amplitude in time and frequency. The 

spectrogram can then clearly indicate how the frequency content of a signal changes over 

time. Therefore, the duration of the broadband response can be demonstrated using the 

spectrogram. In order to obtain the stable cavitation dose, the root-mean-square (RMS) 

spectral amplitude with a 100-kHz bandwidth of each ultra-harmonic frequency (2.5f to 

7.5f) was calculated. The quantification of ICD has been shown in section 3.2.1.4. In 

general, the cavitation dose was defined as the area under the time-amplitude curve of the 

ultra-harmonics (SCD) or broadband response (ICD) over the entire sonication duration 

(Chapter 2). 

 

4.4 Results 

4.4.1 Bubble size dependent BBB opening properties 

4.4.1.1 In vivo BBB opening investigation 

The qualitative results, including 3D T1-weighted MR images, spectrogram of the first 

pulse permeability maps, and histological analysis of each pressure and microbubble 

diameter are depicted in Fig. 4.6. Here, only the second harmonic is present at 0.60 MPa in 

the spectrogram without microbubble administration, which has been shown in chapter 3. 

Therefore, harmonics higher than the 3rd and any broadband response are due to 
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microbubble effects (Fig. 4.6). 3D coronal, sagittal and horizontal T1-MR images were 

used to identify the location of BBB opening. As a result of the deposition of the MRI 

contrast agent induced by BBB opening, the MR images indicate that the threshold of BBB 

opening is at 0.45 MPa for the 1-2-µm diameter bubbles and at 0.30 MPa for the 4-5-µm 

and 6-8-µm diameter bubbles. The corresponding spectrogram  shows that only lower 

harmonics (1st to 4th) are detected at 0.15 MPa and higher harmonics (up to 8th) can be 

detected at 0.30 MPa and beyond at each bubble size. However, the broadband response, 

i.e., the inertial cavitation, occurs at 0.45 MPa and 0.60 MPa for all microbubbles used in 

this study. Therefore, the BBB opening can be induced by nonlinear oscillation (i.e., with 

harmonics but without broadband emissions) at 4-5-µm and 6-8-µm diameter but not 1-2 

µm diameter bubbles. The permeability maps assessed both the efficacy of the targeting 

and the spatial extent of the opening. The corresponding histological analysis (methods is 

shown in section 3.2.2.3) shows indicates that no damage was detected in any of these 

cases shown in Fig. 4. 6 (damaged cases are shown in Fig. 4.11). 

The quantitative results, including the SCD, ICD, BBB opening volume, and 

permeability are shown in Figs. 4.7-4.9. Stable cavitation based on the 2nd to 7th ultra-

harmonic (3.75 – 11.25 MHz) with three distinct diameters is quantified as the SCD and 

depicted in Fig. 4.7.  The SCD at the 6-8-µm diameter was significantly higher than at the 

1-2-µm diameter (*: P < 0.05, compared to 1-2-µm diameter) in most cases, and at the 4-5-

µm diameter in two cases (#: P < 0.05, compared to 4-5-µm diameter). At 0.30 MPa, the 

SCD at the 4-5-µm or 6-8-µm diameter was significantly higher than at the 1-2-µm 

diameter in 7 cases, which provides the evidence that the BBB is opened via the stable 

cavitation. 
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Figure 4.6 – The BBB opening with 3 bubble diameters confirmed by 3D-MRI images 
with coronal (top left), sagittal (top right), and horizontal (middle left) views. The 
corresponding spectrogram (middle right) of the first pulse from 95 to 135 µs with 
microbubbles administration shows the acoustic response from microbubbles. The 
corresponding H&E sections (40x magnifications, bottom left) and permeability maps 
(bottom right) are also provided. In the case of 1-2 µm bubbles, the broadband acoustic 
emissions are detected at 0.45 and 0.60 MPa but not at 0.15 and 0.3 MPa. The 3D-MR 
images confirmed that the BBB is opened at 0.45 and 0.60 MPa, with inertial cavitation. In 
the case of 4-5 and 6-8 µm bubbles, the broadband acoustic emissions are detected at 0.45 
and 0.60 MPa but not at 0.15 and 0.3 MPa. The 3D-MR images confirmed that the BBB is 
opened at 0.30 MPa without inertial cavitation or 0.45 MPa and 0.60 MPa with inertial 
cavitation. In each H&E image, its center indicated the focus as viewed on the MRI. No 
damage was detected in any of these cases (see Fig. 4.11 for cases with damage). 
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Figure 4.7 – Statistical analysis of the stable cavitation dose (SCD) at the ultra-harmonics 
3.75 MHz (2.5f), 5.25 MHz (3.5f), 6.75 MHz (4.5f), 8.25 MHz (5.5f), 9.75 MHz (6.5f), and 
11.25 MHz (7.5f) against three distinct pressures at three microbubble diameters.  The SCD 
at the 6-8-µm diameter was significantly higher than at the 1-2-µm diameter (*: P < 0.05, 
compared to 1-2-µm diameter) in most cases, and at the 4-5-µm diameter in two cases (#: P 
< 0.05, compared to 4-5-µm diameter). At 0.30 MPa, i.e., no inertial cavitation occurrence, 
the SCD at the 4-5-µm or 6-8-µm diameter was significantly higher than at the 1-2-µm 
diameter in 7 cases, which provides the evidence that the BBB is opened via the stable 
cavitation. 
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The ICD, BBB opening volume of different bubble diameters, and their relationship are 

shown in Fig. 4.8. The ICD 6-8-µm is larger than at 1-2-µm-diameter bubbles (*: P < 0.05) 

at 0.45 and 0.60 MPa, as well as larger than at 4-5-µm-diameter bubbles at 0.45 MPa (#: P 

< 0.05), which shows that the ICD is also bubble-size dependent [Fig. 4.8(a)]. The 

statistical analysis results of the BBB opening volume at different bubble diameters are 

	
Figure 4.8 – The quantification of (a) the inertial cavitation dose (ICD), (b) BBB opening 
volume and (c) the correlation in between. Statistical analysis indicates that the ICDs and 
BBB opening volume are both pressure and bubble-size dependent. [*: P < 0.05, compared 
to 1-2-µm diameter, #: P < 0.05, compared to 4-5-µm diameter]. Regression analysis 
shows a linear correlation between the ICD and the BBB opening volume with three bubble 
diameters. It also shows that inertial cavitation is necessary for 1-2 µm bubbles to induce 
BBB opening. The intercept indicates that the BBB can be opened without inertial 
cavitation in the case of 4-5 and 6-8-µm diameter bubbles. 

 (b) (a)

(c)
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shown in Fig. 4.8(b). The volume with 4-5- and 6-8-µm-diameter bubbles is larger than 

with 1-2-µm-diameter bubbles (*: P < 0.05) at 0.45 and 0.60 MPa. In the cases of 0.30 and 

0.45 MPa, the BBB opening volume with 6-8 µm is statistically larger than with 4-5-µm-

diameter bubbles (#: P < 0.05). The correlation between the BBB opening volume and ICD 

is shown in Fig. 4.8(c), which a linear correlation with all bubble diameters. The intercept 

indicates that the BBB can be opened without inertial cavitation in the case of 4-5 and 6-8-

µm diameter bubbles as configured by Fig. 4.7.  

The 1-2 μm bubbles exhibited no uptake of Gd-DTPA at 0.30 MPa and a small uptake 

at 0.45 MPa. At 0.60 MPa a Ktrans was found higher than 0.005 min-1. Similar Ktrans 

distributions were found between the 4-5 μm/0.30 MPa and 6-8 μm/0.30 MPa cases, 

resulting in mildly permeable BBB openings. The quantitative measurements provided 

numerical permeability values of the BBB opening (Fig. 4.9). The opening threshold for 

the 1-2 μm bubbles was found to be at 0.45 MPa, yielding a Ktrans value of 0.011 ± 0.004 

min-1, while at 0.60 MPa Ktrans reached a value of 0.039 ± 0.008 min-1. The 4-5 μm bubbles 

exhibited higher Ktrans values, i.e. 0.028 ± 0.013 min-1, 0.044 ± 0.011 min-1 and 0.052 ± 

0.007 min-1, for the pressures of 0.30, 0.45 and 0.60 MPa, respectively. Similar results with 

the 4-5 μm bubbles were found for the 6-8 μm, where the estimated Ktrans was 0.033 ± 

0.007 min-1, 0.049 ± 0.001 min-1 and 0.049 ± 0.006 min-1 for the pressures of 0.30, 0.45 and 

0.60 MPa, respectively. The statistically significant p-values for each acoustic pressure and 

microbubble size using a two-tailed Student’s t-test with unequal variances are depicted on 

the corresponding graphs (Fig. 4.9). The permeability of the epicranial muscle was also 

measured in every mouse and the mean Ktrans value throughout the entire group of mice 

was found to be equal to 0.047 ± 0.007 min-1.  
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Figure 4.9 – Mean quantitative Ktrans measurements. The results are presented in two 
different ways in order to demonstrate the dependence of the BBB opening Ktrans on both 
the acoustic pressure and the microbubble size. The mean Ktrans in the epicranial muscle (no 
barrier) is also presented for comparison. One asterisk (*) refers to a statistical significance 
of P < 0.05 and two asterisks (**) refer to a statistical significance of P<0.01. 

	
	

Figure 4.10 – Histology at the BBB opening threshold. The mouse was sacrificed either 
3 hrs or 7 days after sonication. In both cases, no red blood cell extravasations and dark 
neurons were found with H&E staining, which means that safe BBB opening can be 
achieved at adequate pressure with all bubble diameters. 
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Two histological analyses were performed. First, the histological analysis at the BBB 

opening threshold at both the 3-hours and 7-day time points was shown in Fig. 4.10. In 

both cases, no cell damage, e.g., red blood cell (RBC) extravasations or dark neurons91, was 

detected after histological examination, which signifies that safe BBB opening can be 

achieved at all bubble diameters. Second, the damaged cases were inspected and shown in 

Fig. 4.11. The histological findings showed that only three out of all mice used in this study 

revealed some structural neuronal damage and cell loss in the sonicated hippocampal area. 

In two of these mice, which were sonicated at 0.45 and 0.60 MPa, using 4-5 μm 

microbubbles (Fig. 4.11(c-h) and (k-p), respectively), cell loss was detected in the granule 

cell layer of the right dentate gyrus (GrDG). Moreover, the presence of dark neurons in the 

layer could be an indication of apoptosis. More serious damage was found in the 6-

8μm/0.60 MPa case (Fig. 4.11(v-x)), which underwent a major deformation of the structure 

of the CA3 field of the right hippocampus, followed by cell loss and multiple dark neurons. 

However, the H&E slices of all the mice showed no red blood cell extravasations that could 

indicate hemorrhage. The regular T1 images (Fig. 4.11(a, i, q)) and the permeability maps 

(Fig. 4.11(b, j, r)) of the corresponding mice, acquired approximately 1.5 h after sonication 

are presented along with the histological findings, but no direct correlation could be found 

between the two imaging techniques.  
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T2 imaging was used as a complementary tool for the assessment of any physiological 

changes in the sonicated region. Dark regions were detected in the sonicated region in most 

of the cases of higher pressures and larger microbubbles (Fig. 4.12), but a distinct 

correlation with the histological findings could not be established, since H&E staining 

showed no signs of erythrocyte extravasations. This led to the conclusion that the dark 

regions in T2 imaging were the result of susceptibility artifacts from the excessive Gd-

DTPA excreted in the EES, rather caused by hemorrhage. 

 

	
Figure 4.11 – Permeability and histological findings of the only three mice that exhibited 
neuronal damage and cell loss. (a) T1 image, (b) corresponding permeability map and (c-h) 
H&E sections of the first mouse, sonicated at 0.45 MPa using 4-5 µm bubbles. (i) T1 
image, (j) corresponding permeability map and (k-p) H&E sections of the second mouse, 
sonicated at 0.60 MPa using 4-5 µm bubbles. (q) T1 image, (r) corresponding permeability 
map and (s-x) H&E sections of the third mouse, sonicated at 0.60 MPa using 6-8 µm 
bubbles. The black boxes in (c, f, k, n, s, v) refer to the regions of interest depicted in (d, g, 
l, o, t, w), respectively. The black boxes in (d, g, l, o, t, w) refer to the regions of interest 
depicted in (e, h, m, p, u, x), respectively. 
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4.4.1.2 IC threshold determination of mono-dispersed microbubbles 

In 4.4.2.1, we have found that the BBB opening properties, including the pressure 

threshold, permeability, and volume are bubble size dependent. However, the pressure 

threshold of IC lay between 0.30 and 0.45 MPa within all bubble sizes, which was different 

from theoretical interpretation105 and optical observation104. Therefore, a channel phantom 

was used to determine the pressure threshold of IC for mono-dispersed microbubbles used 

	
	

Figure 4.12 – Transverse T2 images of the brain from each mouse cohort. Dark areas in 
the sonicated regions (indicated by white arrows) were detected at higher pressures for 
the larger bubbles as a result of susceptibility artifacts from the excessive Gd-DTPA 
presence in the extravascular extracellular space. 
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in our in vivo studies. The SC was also quantified to compare the in vivo results. Figures 

4.13-4.15 showed the spectrum and the ICD at pressures from 0.15 to 0.60 MPa, as well as 

the SCD at pressures from 0.15 to 0.35 MPa, of 1-2, 4-5, and 6-8 µm diameter bubbles, 

respectively. The IC threshold lay between 0.30 and 0.35 MPa for 1-2 and 4-5 µm diameter 

bubbles, and it lay between 0.35 and 0.40 MPa for 6-8 µm diameter bubbles. This 

confirmed our in vivo results which showed that the IC threshold lay between 0.30 and 0.45 

MPa for all microbubbles used in this chapter. The SC did not occur at pressures of 0.15 - 

0.35 MPa for 1-2-µm diameter bubbles (Fig. 4.13), but occur at 0.30 MPa for 4-5- and 6-8-

µm diameter bubbles (Figs. 4.14, 4.15). 

The oscillation of a 1.5-µm diameter bubble simulated by three bubble conditions, an 

unshelled and a shelled bubble using Bubblesim, as well as a shelled bubble using the 

Marmottant model, was shown in Fig. 4.16. The result of the Marmottant model was 

implemented on Matlab. Here, the “compression-only” behavior, i.e. the bubble only 

compresses and hardly expands beyond its initial diameter, observed by DeJong152 was 

successfully simulated. The expansion ratio (Rmax/R0), which can be used to determine the 

IC threshold, at 0.30, 0.35, and 0.40 MPa for each diameter and each theoretical model was 

shown in Table 4.4.  

 

Table 4.4 Expansion ratio (Rmax/R0) for each diameter and each theoretical model 

Diameter 1-2 µm 4-5 µm 6-8 µm  

Bubble\PRP 0.30 0.35 0.40 0.30 0.35 0.40 0.30 0.35 0.40 

Unshelled 4.48 5.11 5.78 2.69 2.99 3.34 2.60 2.69 2.84 

Shelled 1.51 1.83 2.24 2.35 2.70 3.01 1.91 2.12 2.29 

Marmottant 1.67 2.40 3.51 3.22 4.48 5.75 3.06 4.01 5.52 
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Figure 4.13 – The frequency spectrum and ICD of the 1-2-µm diameter bubbles. The IC 
threshold is determined to lie between 0.30 and 0.35 MPa (***: P < 0.001). The SC does 
not occur between 0.15 and 0.35 MPa. 

	
Figure 4.14 – The frequency spectrum and ICD of the 4-5-µm diameter bubbles. The IC 
threshold is determined to lie between 0.30 and 0.35 MPa (**: P<0.01), but the SC 
occurs at 0.30 MPa. 
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Figure 4.15 – The frequency spectrum and ICD of the 6-8-µm diameter bubbles. The IC 
threshold is determined to lie between 0.35 and 0.40 MPa (***: P<0.001), but the SC 
occurs at 0.30 MPa. 

	
	

Figure 4.16 – Simulation of the oscillation of a 1.5 µm diameter bubble at 0.20 MPa 
PRP using Bubblesim (unshelled, shelled), and Marmottant model.  The “compress-
only” behavior of a lipid shelled microbubble is observed here. 
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4.4.2 Shell effect on bubble behavior during BBB opening 

Since no BBB opening was induced at 0.15 or 0.225 MPa, the results at these two 

pressures are not shown here. The T1-weighted MR images, permeability maps, 

histological sections and corresponding spectrograms of the first pulse of each acyl-chain 

length case are depicted in Fig. 4.17 and four main observations can be made: 1) the BBB 

opening pressure threshold is 0.30 MPa at all acyl-chain lengths, which means that the 

BBB opening pressure threshold is not affected by the acyl-chain length; 2) the 

corresponding permeability map clearly shows that the BBB opening region at high Ktrans 

(> 0.03 min-1) increases with the pressure amplitude, but no difference is observed across 

all acyl-chain lengths; 3) the spectrogram shows that the threshold of inertial cavitation 

with the 4-5-µm bubbles lies between 0.30 and 0.45 MPa for all acyl-chain lengths, which 

is the same as what was shown in our previous study on the effect of microbubble diameter; 

4) histological findings showed that some dark neurons or red blood cell (RBC) 

extravasations are generated at 0.45 and 0.60 MPa (Fig. 4. 17). The number of damaged 

cases at each acyl-chain length and applied pressure are shown in Table 4.5. Despite the 

fact that a high damaged rate (6/9) at 0.60 MPa or with C24 microbubbles were obtained, 

no significant damage difference between acyl-chain lengths was noted. 

Table 4.5 Safety assessment (damaged / BBB-opened mice) at each pressure and each 
acyl-chain length 

 Pressure (MPa)

Acyl-chain 0.15 0.225 0.30 0.45 0.60

C16 0/0 0/0 0/2 1/2 1/3

C18 0/0 0/0 0/3 1/3 2/3

C24 0/0 0/0 1/3 2/3 3/3

Total 0/0 0/0 1/8 4/8 6/9
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As used in the investigation on the effect of microbubble diameter, T2 imaging was also 

used as a complementary tool for the assessment of any physiological changes in the 

sonicated region here. Dark regions were detected in the sonicated region in most of the 

cases of higher pressures and larger microbubbles (Fig. 4.18), including one case at 0.30 

MPa with the C24 microbubbles. This is the only case with corresponding hemorrhage in 

the absence of inertial cavitation. 

	
Figure 4.17 – The 2D horizontal T1-weighted MR image (top left), corresponding 
spectrogram of the first pulse (top right), 2D horizontal permeability map (bottom left), and 
H&E sections of the hippocampus (bottom right) in each table entry at 3 bubble diameters 
and 3 peak-rarefactional pressures. Few histological damage cases were noted and shown 
here (black arrow: dark neuron, red arrow: red blood cell extravasations) were observed 
with inertial cavitation occurrence (see Table 3 for summary of damage cases). 
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Stable cavitation based on the 2nd to 7th ultra-harmonic (3.75 – 11.25 MHz) with three 

applied pressures is quantified as SCD and depicted in Fig. 4.18. In most cases, no 

difference was observed among the three acyl-chain lengths studied. As a result, the acyl-

chain length does not seem to have an effect on the ultra-harmonic response emitted by the 

microbubbles during BBB opening. At 0.30 MPa and above, however, all SCDs were 

statistically higher than zero (i.e., more ultramonics were generated in the presence of 

microbubbles than with the skull alone), which confirms the results shown in Fig. 4.7.  

	
	

Figure 4.18 – Transverse T2 images of the brain from each mouse cohort. Dark areas in 
the sonicated regions (indicated by white arrows) were detected at all pressures for the 
C24 bubbles, which indicated that C24 may not be an appropriate shell material for BBB 
opening application. 
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Figure 4.19 – Statistical analysis of the stable cavitation dose (SCD) at the ultra-harmonics 
3.75 MHz (2.5f), 5.25 MHz (3.5f), 6.75 MHz (4.5f), 8.25 MHz (5.5f), 9.75 MHz (6.5f), and 
11.25 MHz (7.5f) with three acyl-chain lengths at three distinct pressures. No significant 
difference was observed across the different acyl-chain lengths in most cases. However, at 
9.75 MHz and 11.25 MHz, the SCD of the C16 microbubbles was significantly higher than 
the C24 microbubbles (*: P < 0.05). Since the center frequency of the PCD is 10 MHz, the 
sensitivity may be higher when the ultra-harmonic is close the 10 MHz.  At 0.30 MPa, i.e., 
no inertial cavitation occurrence, the SCD was statistically higher than the background 
noise, which indicated that the BBB was opened through stable cavitation. 
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Figure 4.20 – Statistical analysis of the (a) inertial cavitation dose (ICD), (b) BBB 
opening volume, and (c) permeability between three acyl-chain lengths at three distinct 
pressures. The ICD of C24 microbubbles was significantly lower than the C16 and C18 
microbubbles at 0.60 MPa (*: P < 0.05). In the rest cases, however, no statistically 
difference was observed. 

 (b) 

 (a) 

 (c) 
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The inertial cavitation dose (ICD), BBB opening volume, and Ktrans are shown in Fig. 

4.20. The threshold of inertial cavitation is identified to lie between 0.30 and  0.45 MPa for 

all acyl-chain lengths but, at 0.60 MPa, the ICD with the C24 microbubbles is statistically 

lower than with the C16 and C18 microbubbles (P < 0.05, Fig. 4.9(a)). The quantification 

of BBB opening volume and permeability are shown in Fig. 4.9(b) and (c), and no 

significant difference is observed between the three acyl-chain lengths at all pressures, 

although the ICD is lower with the C24 microbubbles. Similar to our previous studies, 

however, the ICD and BBB opening increase with pressure, and the permeability reaches 

an upper limit around 0.05 min-1 at 0.45 and 0.60 MPa.  

 

4.5 Discussion 

4.5.1 Bubble size dependent BBB opening properties 

4.5.1.1 In vivo BBB opening investigation 

The objective of this study was to investigate the physical effects of the systematically 

circulating microbubbles on the FUS-induced BBB opening and corresponding 

permeability. The pressure threshold of BBB opening, determined by the MRI contrast 

enhancement, was 0.45 MPa for the 1-2-µm and 0.30 MPa for both the 4-5-µm and 6-8-µm 

bubbles. However, the spectrogram showed that the broadband response occurred at 0.45 

MPa for all microbubbles. The uncorrelated threshold between BBB opening and inertial 

cavitation implied that the physical effects responsible for the BBB opening may be bubble 

size dependent. The inertial cavitation may be necessary for BBB opening with smaller 

diameter (1-2 µm) but not with larger diameter (4-5 and 6-8 µm) microbubbles.  
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For larger diameter (4-5 and 6-8 µm) microbubbles, at 0.45 and 0.60 MPa, with the 

occurrence of inertial cavitation, both the volume and the shape of the contrast 

enhancement region was different from the case at 0.30 MPa. In the sagittal images, the 

shape of the contrast enhancement region at 0.45 MPa and 0.60 MPa with 4-5 µm and 6-8 

µm bubbles indicated enhanced shielding effects induced by the bubbles and potential 

inertial cavitation occurrence (Fig. 4.6). However, at 0.30 MPa without inertial cavitation 

occurrence, the contrast enhancement region, which covered the hippocampal formation 

(Fig. 4.21(a)), was more homogeneous and was similar in shape and geometry to the -6 dB 

focal spot of the FUS beam (Fig. 4.21(b)).  

 

 

	
	

Figure 4.21 – Comparison between (a) sagittal section of 3D-T1-MR images and (b) -
6dB focal region of the FUS transducer in the case of 6-8 µm bubbles at 0.30 MPa. The 
consistence between the contrast enhancement region and focal region of the FUS 
transducer indicates that IC is not necessary to induce BBB opening. 

 (b)

 (a) 
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The capillary diameter in the murine brain ranges between 4-8 µm153, which is 2-8 

times larger than the 1-2-µm diameter bubbles. It has been shown that the microbubble will 

be fragmented when the radius expands to higher than three times the initial radius at rest 

(i.e., Rmax / Rrest > 3)104. However, the ratio of expansion of the 4-5-µm and 6-8-µm 

diameter bubbles needed not to be as high as for the 1-2-µm diameter bubbles to enter into 

contact with the capillary wall. BBB opening may thus be induced through nonlinear 

oscillation only in the case of larger bubbles. In addition, the bubbles of 6-8-µm in diameter 

are even closer in size to the diameter of the capillary, increasing the probability of opening 

in a larger number of locations. 

The spectrogram used in this study clearly elucidated the onset and duration of inertial 

cavitation within the first pulse. Here, the inertial cavitation occurred at the beginning of 

sonication (Fig. 4.6). At the highest pressure (0.60 MPa), the broadband response 

corresponding to the first pulse, lasted throughout the entire duration of the pulse length at 

all bubble sizes (Fig. 4.6), which indicated that the highest pressure may fragment the 

microbubbles to smaller bubbles that serve as cavitation nuclei. In the case at 0.15 and 0.30 

MPa at all bubble sizes, only harmonics without broadband emissions, were detected. 

However, the BBB opened at 0.30 MPa only in the 4-5 and 6-8 µm cases. Despite the fact 

that up to the 8th harmonic could be detected by our PCD, no BBB opening was induced at 

0.30 MPa with the 1-2 µm bubbles. Therefore, the nonlinear oscillation of smaller bubbles 

would not induce BBB opening. The harmonics which corresponded to the nonlinear 

oscillation of microbubbles thus may not be used as an indicator of BBB opening in the 

case of the smaller diameter bubbles.  
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In chapter 3, we showed that the BBB was opened at 0.30 MPa using FUS and 

Definity® 120. Despite the fact that the mean bubble diameter was within 1.1-3.3 µm, close 

to 1-2 µm, they were not considered as mono-dispersed because the maximum diameter 

was 20 µm and 98% was under 10 µm. It has also been shown that Definity® are poly-

dispersed microbubbles based on the size distribution119. Therefore, the BBB opening may 

be induced by the larger (4-10 µm) bubbles rather than the smaller (1-3 µm) Definity® 

bubbles at 0.30 MPa.  

According to previous reports on Definity® and Optison®, Optison® appeared to 

produce larger effects than Definity® when applied at the same pressure amplitude with 

respect to the magnitude of the BBB opening63. Here, our findings using both ICD and 

BBB opening volume confirmed this conclusion. The mean diameter range of Optison® 

and Definity® was 2.0-4.5 µm and 1.1-3.3 µm, respectively. Both the effects to the 

vasculature and the acoustic emission detection were different at distinct microbubble sizes.  

It has been shown that the active vesicular transport is more pronounced in arterioles 

than in capillaries and venules after BBB opening5, which provided evidence that opening 

is not restricted to the capillaries. Since the size of the arterioles was around 10 – 20 µm99, 

bubble expansion may not be the factor inducing BBB opening in arterioles. According to 

multiphoton imaging findings, a vasoconstriction induced after microbubble administration 

was previously reported99. Vasoconstriction may be induced by bubble aggregation caused 

by a secondary radiation force154. Therefore, larger bubbles may induce vasoconstriction 

with higher probability than smaller bubbles. After vasoconstriction is induced by bubble 

aggregation, the shear stress surrounding the microbubble may be high enough to enhance 

the permeability of endothelial cells, or to rupture tight junctions. Therefore, the tensile 
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strength of the tight junctions and the shear stress amplitude will be considered in future 

investigations to unveil the mechanical effect onset of FUS-induced BBB opening. 

Similar to the threshold of BBB opening, the SCD, ICD and BBB opening volume 

were also bubble size dependent (Figs. 4.7 and 8). At 0.30 MPa, the SCDs at the 4-5- or 6-

8-µm diameter bubbles were significantly higher than at the 1-2-µm diameter bubbles at 

frequencies of 3.75, 5.25, 9.75, and 11.25 MHz (Fig. 4.7). Also, at the same pressure, mean 

ICD was almost zero for all microbubble diameters (Fig. 4.8(a)). As a result, both SCD and 

ICD indicated that the BBB was opened via stable cavitation in the cases of larger bubbles. 

A good linear correlation between the ICD and BBB opening volume was also observed 

(Fig. 4.8(c)), thus the PCD may serve as a good indicator to estimate the BBB opening 

volume based on the ICD calculation. 

According the histological analysis at the BBB opening threshold, the BBB opening 

can be induced without RBC extravasations or neuronal damage (Fig. 4.10). Despite the 

fact that the inertial cavitation occurred at 0.45 MPa with the 1-2-µm diameter bubbles, a 

small opening volume was induced without any damage. In this case, inertial cavitation did 

not induce cell death but was sufficient to change the permeability of endothelial cell or 

ruptured the tight junctions.  

The histological findings of this study revealed that no significant damage was induced 

in the majority of the sonicated mice, proving that the permeability can increase, but not at 

the expense of safety. Three out of forty mice (7.5%) showed signs of neuronal damage 

under histological examination or cell loss in the sonicated hippocampus seven days after 

sonication at pressures higher than 0.45 MPa and microbubble sizes larger than 4-5 μm 

(Fig. 4.11). The damage was represented by the presence of necrotic or apoptotic cells. In 



102 
 

  

one particular case a significant deformation of the right hippocampal anatomical structure 

was observed. The presence of dark regions in T2 imaging (Fig. 4.12) in the cases of 

sonications with higher pressures using larger-sized bubbles was found not to correlate 

with hemorrhage, since no red blood cell extravasations were found in the H&E sections of 

any of the mice that underwent the FUS procedure. Thus, the dark regions were assumed to 

be directly related to the field inhomogeneities as a result of the excessive Gd-DTPA 

presence in the EES. Liu et al42 have suggested that susceptibility-weighted imaging (SWI) 

can detect massive hemorrhagic regions after FUS at the acoustic pressure of 3.47 MPa, but 

the detection of a few erythrocyte extravasations that low acoustic pressure sonications may 

induce is limited by the spatial resolution that MRI can offer.  

As mentioned in the Materials and Methods section, the stability of the 1-2-µm bubbles 

is being improved in ongoing investigations. During our experiments, mono-dispersed 

microbubbles were generated on the same day or one day before our experiments. The 

number-weighted distribution was always centered around 1-2 µm. In every case of the 1-

2-µm diameter bubbles, the BBB was not opened at 0.30 MPa. Therefore, it would also be 

expected that the threshold of BBB opening might be higher than 0.45 MPa, if the 1-2 µm 

bubbles are still stable after our experiments.  

Based on a quantitative summary of findings of this study, the BBB opening pressure 

threshold, BBB opening volume, inertial cavitation dose, and the percentage of mice with 

dark neurons are all bubble size dependent but the inertial cavitation threshold is not. In this 

study, the pressure interval was 0.15 MPa which may not be small enough to determine the 

real pressure threshold of inertial cavitation. Regarding the neuronal damage, the inertial 

cavitation with 1-2 µm bubbles can open the BBB without dark neurons, which implies that 
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the mechanism of BBB opening may also be bubble size dependent. The highest 

percentage of mice with dark neurons is in the case of 4-5 µm bubbles. Since the resonance 

frequency of 4-5 µm bubbles embedded in a compliant vessel is close to 1.5 MHz, i.e., the 

FUS frequency used in this study, the inertial cavitation at this bubble size may induce 

more damage. 

 

4.5.1.2 IC threshold of lipid-shelled mono-dispersed microbubble 

Since the IC threshold of mono-dispersed microbubbles with three distinct diameters 

was observed within the same range from our in vivo investigation, which is different from 

previous reports about the relationship between the IC and bubble diameter104,105, a 

phantom validation, together with theoretical models implementation, was performed to 

identify the IC threshold of the microbubbles used in this chapter. As shown in Figs. 4.19-

21, the IC threshold was determined as 0.35, 0.35, and 0.40 MPa for the 1-2, 4-5, and 6-8-

µm diameter bubbles, respectively. The largest microbubbles (6-8-µm diameter) were 

shown having higher threshold than the other two microbubbles, which is similar as 

previous report105. The IC threshold, however, was identical between 1-2 and 4-5-µm 

diameter bubbles. This may be resulted from the effect of the resonance frequency. Since 

the resonance frequency of 4-5-µm bubbles lies between 1.25 MHz and 1.61 MHz, where 

our insonation frequency lies in, the IC threshold may hence be lower than expected. 

However, the results of our phantom validation confirmed our in vivo investigation, which 

indicated that the IC will not occur below 0.30 MPa using 1.5-MHz insonation. 

A theoretical model can be used to estimate the microbubble oscillation. From previous 

reports, the IC threshold for the microbubble “relative expansion ratio (Rmax/Rrest)” is 
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defined as 3104. The ratio of each diameter microbubble at 0.30, 0.35, and 0.45 MPa with 

three bubble conditions was shown in Table 4.4. In the case of the 1-2-µm microbubbles, 

the estimation of an unshelled bubble was considered not proper since the ratios (4.48-5.78) 

were twice than the threshold, which can be clearly observed from Fig. 4.16. Compared 

with the unshelled bubble, the other two conditions, Shelled and Marmottant, provided 

more accurate ratio corresponding to our phantom validation. Furthermore, the Marmottant 

model not only estimated the correct ratio (2.40 at 0.35 MPa), but also described the 

“compression-only” behavior which has been observed in previous reports152,155. Therefore, 

in the case of 1-2-µm microbubbles, the Marmottant model was concluded to be more 

appropriate.  

However, the ratio estimated by the Marmottant model became inaccurate (> 5 at 0.40 

MPa) compared to the other two models. Till now, the oscillation of larger microbubbles at 

the pressure higher than 0.3 MPa using Marmottant model has not been reported. In this 

model, the fitting of experimental radius-time curves for lipid-shelled microbubbles reveals 

that the shell material parameters are found to be dependent on the initial bubble radius137. 

In our simulation, the shell viscosity and elasticity were determined based on previous 

reports at much lower pressure (40 kPa), which may not be applicable at higher pressure up 

to megaPascal level. Also, “compression-only” behavior was only observed in the case of 

small microbubbles (< 2-µm diameter), which can be explained by this model mainly based 

on the “buckling behavior” within narrow range of radii change137. If, during expansion, the 

bubble radius exceeds the threshold value Rbreak-up, the shell ruptures, which will affect the 

estimation of the next bubble expansion. Therefore, larger microbubbles with the 

insonation higher than 0.3 MPa may not be simulated by the Marmottant model.  
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In comparison with the theoretical model and phantom validation, the simulation of a 

shelled bubble using Bubblesim may hence be suitable for the case of 4-5 and 6-8-µm 

diameter bubbles. Therefore, this model and corresponding shell parameters will be 

implemented to estimate the bubble oscillation in Chapter 5, which will use 4-5-µm 

diameter bubbles and relative low pressure (0.18 MPa) to determine the BBB opening 

mechanism triggered by the stable cavitation. However, this is an approximate simulation 

in order to estimate possible bubble oscillation in vivo. More accurate models, such as 

taking into account red blood cells156, should be investigated to provide more accurate 

estimation in the future. 

 

4.5.2 Shell effect on bubble behavior during BBB opening 

In this study, the effect of the acyl-chain on the BBB opening characteristics and 

corresponding microbubble behavior was investigated. The threshold of BBB opening was 

found to be identical across all acyl-chain lengths. According to the qualitative and 

quantitative analysis, four cases of microbubble oscillation can be determined in this study. 

First, at 0.15 and 0.225 MPa, the microbubble expansion or the shear stress induced by 

microbubble oscillation did not induce BBB opening. Second, at 0.30 MPa, when no 

inertial cavitation was detected, the BBB could be opened through stable cavitation (Fig. 

4.19), at a lower permeability (Ktrans ~ 0.03 min-1). The microbubble expansion, at this stage, 

may thus not be affected by the capillaries. Third, at 0.45 MPa, i.e., the threshold of inertial 

cavitation, the bubble expansion ratio may reach the threshold of inertial cavitation, which 

would lead to larger BBB opening volume and higher permeability than at 0.30 MPa. At 

this stage, however, no significant difference between the three acyl-chains was observed in 
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the ICD, most likely because the capillary wall may have a larger effect on the bubble 

expansion. Finally, at 0.60 MPa, i.e., the pressure at which a 66% damage rate was noted, 

the ICD of the C24 microbubbles was statistically lower than with the C16 and C18 

microbubbles, but no difference in the BBB opening volume and permeability was noted. 

The bubble expansion may exceed the wall strength at this stage, which induced similar 

BBB opening volume and permeability. The permeability at 0.60 MPa did not exceed the 

value at 0.45 MPa, since the well-known upper limit had been reached (Ktrans ~ 0.05 min-)64.  

The plateau in the permeability (Fig. 4.20) was reached at 0.45 and 0.60 MPa, which 

was the same as our previous studies64. The permeability reached the upper limit when the 

inertial cavitation occurred, even if the ICD with the C24 acyl-chain was significantly 

lower than with the C16 and C18 acyl-chains. Therefore, it was expected that, since 

different acyl-chain lengths have no effect on the threshold of the inertial cavitation, the 

permeability will not be affected.   However, because of the upper limit, the permeability 

may not be used to estimate the BBB opening volume. According to the findings of our 

previous study regarding the physical mechanism of the BBB opening with three 

microbubble diameters, the ICD can be used towards the estimation of the BBB opening 

volume. The shell, however, was shown to have an effect on the ICD but not on the BBB 

opening volume. Thus, the correlation between the ICD and the BBB opening volume 

changes both pressure and shell types.  

In terms of the acoustic response from microbubbles, a previous study has shown that 

shell composition influences microbubble response in ultrasonic imaging157. Larger 

molecular-weight shell was shown to have lower imaging intensity since the elasticity of 

the shell was lower. Here, our investigation confirmed these results with respect to the ICD 
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in vivo. The ICD from the C24 microbubbles was significantly lower than from the C16 

and C18 microbubbles at 0.60 MPa. As shown in Table 4.1, the molecular weight, viscosity, 

and phase transition temperature were comparable between the C16 and C18 microbubbles. 

In the case of the C24 microbubbles, the molecular weight was 170 Da higher than the C18 

microbubbles, and the viscosity was 22 times higher than the C16 microbubbles. Thus, as 

previously mentioned, since the bubble expansion was not affected by wall strength at 0.60 

MPa, the expansion ratio of the C24 microbubbles may be lower, thereby inducing lower 

ICD. Regarding the BBB opening characteristics, however, the shell composition did not 

have any effects on the BBB opening volume, BBB opening threshold, or permeability. 

Since the microbubble diameter in this study was 4-5 µm, which was similar to the 

diameter of a capillary, a stable oscillation at 0.30 MPa was sufficient to open the BBB 

regardless of the acyl-chain lengths.  Therefore, the bubble size effect may override the 

bubble shell effect on the BBB opening.  

Histological findings (Table 4.5) revealed that the damage ratio was 1/8, 4/8, and 6/9 at 

0.30, 0.45, and 0.60 MPa, respectively, which means that the probability of inducing 

damage increased with pressure, especially correlated with the occurrence of inertial 

cavitation. T2 images also showed dark region in the damage cases (fig. 4.18). This finding 

was different from previous studies using 4-5-µm microbubbles. Only few damaged cases 

were observed in that study because the mice were sacrificed 7 days as opposed to 3 hours. 

Because certain damage may be reversible after 7 days, more damage cases were observed 

in this study.  

Interestingly, In the case of the C24 microbubbles, five out of six brains were observed 

having RBC extravasations or dark neurons at 0.45 and 0.60 MPa (Table 4.5), even if the 
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ICD was the lowest at 0.60 MPa. It was expected that the ICD was lower with the C24 

microbubbles due to the moderate expansion. However, most studies reported that the 

damage was correlated with the ICD107,113,114. This study therefore provided another insight 

into the shell effect. Borden et al. have shown that buds and strings build up to form large 

lipid particles several microns in diameter after few pulses insonification in the case of 

DBPC (i.e., C22 acyl-chain length) microbubbles141. Compared with the C24 

microbubbles, the C16 and C18 microbubbles mostly experienced acoustic dissolution, 

which resulted in diameter decrease. Thus, larger contact area between the aforementioned 

large lipid particles and endothelial cells may be reached in the case of the C24 

microbubbles, which may increase the probability of inducing damage with inertial 

cavitation (i.e. at 0.45 and 0.60 MPa). The effect of buds or strings formed due to the 

ultrasonic pulses may not be sufficiently reflected by the ICD. However, since this is a 

preliminary study regarding the effects of the acyl-chain length, we cannot safely conclude 

that the acyl-chain length will have effect on the RBC extravasations or dark neurons 

observed. Further studies need to be performed in order to investigate the effect of the acyl-

chain length on safety.  

Here, three acyl-chain lengths (C16, C18 and C24) were used to identify the shell 

effects. In the composition of the lipid-coated microbubbles, however, polyethylene glycol 

(PEG) is frequently used as the emulsifier to prevent coalescence and nonspecific 

adsorption of blood plasma proteins140. PEG has been considered as a tuning parameter 

with respect to the cavitation events. The pressure required to yield 50% fractional 

destruction of the microbubble population was affected by PEG, despite the fact that the 

inertial cavitation was not observed at pressures lower than 0.40 MPa 143. Compared to the 



109 
 

  

PEG-5k used in this study, PEG-40 stearate (PEG 40s) was used as the emulsifier in our 

previous studies on the effect of bubble size. Therefore, the effects between PEG-40s and 

PEG-5k could now be studied here with identical acyl-chain length and the bubble size 

(C18 and 4-5-µm diameter, respectively). The threshold of inertial cavitation and BBB 

opening lied between 0.30 and 0.45 MPa for PEG-40s and PEG-5k microbubbles. In terms 

of quantitative parameters, such as the ICD, BBB opening volume and permeability, no 

statistical difference was noted between the PEG-40s and PEG-5k. Hence, following the 

findings on the acyl-chain length reported here, the threshold of inertial cavitation, 

threshold of BBB opening, BBB opening volume, and permeability were concluded not to 

be affected by the microbubble shell (PEG and acyl-chain length) in the brain vasculature.  

In addition, in the brain vasculature, the acoustic emission was found to be affected by 

the acyl-chain length, but the BBB opening characteristics were not. In terms of BBB 

opening, combined with our previous studies, the microbubble size was concluded to be the 

most important parameter compared to the shell properties. In order to adequately control 

the contact area between the microbubbles and the endothelial cells, smaller acyl-chain 

length would be preferable. For example, C18 microbubbles will be recommended as the 

agent to induce BBB opening. On the other hand, since the vibration of microbubbles in the 

brain will still be affected, shell properties should be considered in the optimization for 

drug delivery. 

 

4.6 Conclusion 

This chapter has revealed the microbubble-dependent effect on FUS-induced BBB 

opening, based on the analysis of permeability, volume, and cavitation response of distinct 
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microbubble size and shell properties. First, we have investigated the relationship between 

permeability, cavitation response, the diameter of the administered microbubbles and the 

peak rarefactional pressure of the focused ultrasound-induced blood-brain barrier opening. 

The volumetric, quantitative permeability measurements and inertial cavitation dose 

showed that Ktrans, SCD, and ICD in the sonicated region are increasing with the bubble 

size and the acoustic pressure. Inertial cavitation was observed to be required for smaller 

bubbles to induce BBB opening. Based on our findings on the SCD and ICD, however, the 

interaction between larger bubbles (4-5-µm and 6-8-µm) and the FUS beam could induce 

the BBB opening through nonlinear oscillation, without inertial cavitation. No significant 

damage was detected at the BBB opening threshold, at all bubble sizes. Therefore, larger 

diameter bubbles and lower pressure amplitudes (0.20 – 0.30 MPa) were determined to be 

safe and consistent in BBB opening. Second, in order to characterize the microbubble 

behavior during BBB opening, three distinct acyl-chain lengths were used in the fabrication 

of mono-dispersed microbubbles (4-5-µm diameter). Our findings indicated that the BBB 

opening characteristics, such as the pressure threshold of BBB opening, the BBB opening 

volume, and permeability were not affected by the acyl-chain lengths. In addition, the BBB 

was opened through stable cavitation at 0.30 MPa at all acyl-chain lengths. The 

quantification of SCD in both studies on microbubble size and shell properties provided the 

evidence that the stable cavitation, i.e., ultra-harmonics, occurred in the absence of inertial 

cavitation at 0.30 MPa. The microbubble behavior, however, was affected by the acyl-

chain length at 0.60 MPa. The C24 microbubbles might also have higher probability to 

induce RBC extravasations and dark neurons. Further studies need to be performed to 

investigate the effect of acyl-chain length on the safety profile.  
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5.1 Introduction 

In Chapter 4, the role of microbubbles in FUS-induced BBB opening has been 

determined. Also, based on our findings in Chapter 3, the cavitation type can be monitored 

and controlled for the BBB opening. As mentioned in Chapter 2, several physiological 

responses to the FUS-induced BBB opening have been studied. The corresponding physical 

mechanism, however, has not been investigated. Therefore, in this chapter, we will focus 

on the cavitation dependent mechanism of the FUS-induced BBB opening. Meanwhile, the 

conditions for BBB opening induced by different cavitation types will also be investigated.  

In Chapter 2, two types of cavitation have been defined for the microbubbles activated 

in the acoustic field: inertial cavitation (IC) and stable cavitation (SC). Under IC, the 

collapse of microbubbles, in association with microjets and shockwaves, was shown 

responsible for the perforation of cell membranes158 or hemolysis107. Under SC, 

microbubbles expand and contract in the negative and positive acoustic fields, 

respectively103. The mechanical index (MI), defined as the peak rarefactional pressure 

(PRP, negative pressure) divided by the square root of the center frequency, was used for 

the determination of IC likelihood. It has been shown that the IC is not required to induce 

BBB opening and MI = 0.37 was able to induce the IC during BBB opening120. Therefore, 

real-time modulation of treatment pressures on the basis of acoustic emissions from the 

exposed microbubbles is capable of monitoring and controlling the cavitation during BBB 

opening159. 

As shown in Fig. 2.4, tight junction (TJ) plays an important role in the formation of the 

BBB. Therefore, understanding the TJs response to the specific cavitation type can be 

helpful to unveil the mystery of delivery for larger compound across the BBB via the 
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microbubble oscillation in the acoustic fields. The MI, however, used in the studies shown 

in Chapter 2 about the TJs integrity of BBB opening was above the IC threshold (0.37), 

and the microbubbles were poly-dispersed. Since the pressure threshold of BBB opening is 

bubble size-dependent56,57, using poly-dispersed microbubbles at high MI would raise the 

difficulty of unveiling the physics of FUS-induced BBB opening.  

To date, the physical mechanism of causing the disruption of the TJ proteins after FUS-

induced BBB opening is unclear. Therefore, the purpose of this study is to investigate the 

TJ response and corresponding cavitation during BBB opening. In order to exclude the 

bubble size effect, 4-5-µm diameter bubbles are used in each sonication and the 

concentration remained the same. SC-induced BBB opening is generated at a PRP of 0.18 

MPa using various pulse lengths (PLs). In contrast, IC-induced BBB opening is generated 

at a PRP of 0.45 MPa using a burst sequence based on our previous study53. Although, as 

mentioned in Chapter 2, IC occurs along with SC occurrence, the IC dominates BBB 

opening while the PRP is higher than the IC threshold. In both cases, the TJ integrity is 

studied with respect to SC- and IC-induced BBB opening.  

 

5.2 Materials and Methods 

5.2.1 Sonication protocol 

The system of focus ultrasound and cavitation detection was shown in Fig. 3.3(b). A 

total of thirty-three (n=33) adult male mice (strain: C57BL/6, weight: 23.35 ± 1.93 g, 

Harlan Sprague Dawley, Indianapolis, IN, USA) were sonicated in this chapter. The right 

hippocampus was targeted and the left hippocampus served as the control following a 
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precise grid-targeting procedure40. The focus was placed 3 mm beneath the skull so that the 

focal region overlapped with the right hippocampus as in previous studies41. 

In the study of SC-induced BBB opening, a PRP of 0.18 MPa accounting for tissue 

attenuation was used40. The pulse repetition frequency (PRF) was 5 Hz. Six sets of acoustic 

parameters were used to investigate the effect of pulse length (PL), exposure energy, and 

duty cycle. The number of mice used at each set of acoustic parameters is provided in 

Table 5.1. A PRP of 0.45 MPa was used in the study of the IC-induced BBB opening. As 

employed in our previous study160, a burst of 100 short-cycle pulses (3 cycles, PRF = 5, 25, 

or 100 kHz) was applied at 5-Hz burst repetition frequency. The method of the 

quantification for the ICD has been proposed in section 4.3.4. 

Lipid-shelled microbubbles of 4-5-µm in diameter were manufactured and size-isolated 

in-house using differential centrifugation as described in Feshitan et al.151. The 

concentration was diluted from a higher concentration to approximately 8 x 108 bubbles / 

mL before microbubble administration and sonication was performed 5 s after microbubble 

administration. Microbubble-size distributions and concentrations were determined by the 

electrical impedance sensing zone method (Multisizer 3, Beckman couter, Brea, CA, USA). 

Table 5.1 Acoustic parameters for SC-induced BBB opening 

Protocol (a) (b) (c) (d) (e) (f) 

PL (cycles) 150 750 3000 7500 30000 150 

PL (ms) 0.1 0.5 2 5 20 0.1 

PRF 5 5 5 5 5 100 

Duty cycle (%) 0.05 0.25 1 2.5 10 1 

Duration (s) 300 300 300 300 30 300 

Exposure time (s) 0.15 0.75 3 7.5 3 3 

Opening 1/3 4/4 3/3 4/4 3/3 0/3 
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5.2.2 BBB opening confirmation 

In this study, MRI and fluorescence microscopic examination of dextran delivery was 

used to confirm the BBB opening. A vertical-bore 9.4T MR system (Bruker Biospin, 

Billerica, MA, USA) was used to confirm and quantify the BBB opening in the murine 

hippocampus. The procedure and volume quantification method were then used as 

previously described in Chapter 457. The average MR intensity within the opening volume 

was also measured simultaneously.  

Lysine-fixable dextran at a molecular weight of 3 kDa and fluorescently tagged with 

Texas Red® (Invitrogen, Carlsbad, CA, USA, excited wavelength: 568±24 nm.) were used 

as the model drug. Dextran was dissolved (concentration: 40 µg/g) in phosphate-buffered 

saline (PBS). A 100 µl volume was injected into the tail vein during 30 s after sonication. 

Brains were prepared for fluorescence microscopy and image analysis by serial dilution of 

10%, 20%, and then 30% sucrose at 30 min, 1 h, and overnight time increments, 

respectively. They were then embedded in a formulation of water-soluble glycols and 

resins (Sakura Tissue-Tek O.C.T. Compound; Torrance, CA, USA), frozen in a square 

mold, and then sectioned using a cryostat into 80-µm and 10-µm slices in the horizontal 

orientation. Images of all frozen sections were then acquired using an upright fluorescence 

microscope (BX61; Olympus, Melville, NY, USA). 

 

5.2.3 Immunofluorescence Staining 

Immunofluorescence staining of the frozen brain sections was performed according to 

the manufacturers’ instructions.  Briefly, sections were prewashed once in PBS for 3 min, 

and then permeabilized using PBS/0.2% Triton-X-100 solution for 1 hr at room 
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temperature. The antigens were unmasked by incubating the sections in 10 mM sodium 

citrate buffer (pH 6.0) and heating them just below the boiling temperature (95-99 ºC) for 

20 min. The slides were then cooled down at room temperature for 30 min, rinsed in PBS 

for 3 min and then followed by immunofluorescence staining. Sections were blocked with 

blocking buffer (PBS/0.3% Triton-X-100/5% goat serum) for 1 hr at room temperature and 

then incubated with rabbit anti-ZO-1 antibody (Invitrogen) diluted with antibody dilution 

buffer (PBS/0.3% Triton-X-100/1% BSA) overnight at 4 ºC. After washing sections with 

PBS 3 times, they were incubated with Alexa Fluor 488 conjugated goat anti-rabbit IgG 

(Invitrogen) for 1 hr in the dark at room temperature. Sections were then washed and 

covered with vectashield mounting medium containing DAPI (Vector Lab; Burlingame, 

CA) and cover slips. The final fluorescence images were captured with an Olympus 

DP30BW camera mounted on an Olympus BX61 inverted microscope using a 100x 

objective. 

 

5.3 Results 

5.3.1 SC- and IC-induced BBB opening  

The BBB opening confirmed by MRI of each parametric set is depicted in Fig. 5.1. In 

the case of low PRP (0.15 MPa), three main observations can be concluded. First, at 5-Hz 

PRF, the BBB is not opened with a 0.1-ms PL, but is opened at PLs of 0.5, 2, 5, and 20 ms 

(Figs. 5.1(a-e)). Second, BBB opening is not observed at 0.1-ms PL and 100-Hz PRF (Fig. 

5.1(f)). Third, the histological analysis shown in Figs. 5.1(g-i) depicts that no damage is 

observed at the longest exposure time (corresponding to Fig. 5.1(d), 5-ms PL and 5 min 
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duration). The quantitative analysis depicted in Fig. 5.2 shows that both the BBB opening 

volume and the normalized MR intensity reach a plateau when the PL surpassed 2 ms (Fig. 

5.2(a)). In the investigation on the effect of exposure time (2-ms PL and 5 min duration as 

well as 20-ms PL and 0.5 min duration), no significant difference was observed in the BBB 

opening volume (Fig. 5.2(b), left axis), but the normalized MR intensity is significantly 

higher at longer sonication durations (*: P < 0.05, Fig. 5.2(b), right axis).  

	
	

Figure 5.1 – The 2D T1-weighted MR image of each acoustic parameter set shown in 
Table 1. At 5-Hz PRF, sonications were (a-d) at PLs of 0.1, 0.5, 2, and 5 ms at 300-s 
duration, or (e) at 20-ms PL and 30-s duration. In addition, identical duty cycle as set (c), 
sonication was at (f) 0.1-ms PL and 100-Hz PRF. The BBB was not opened in protocol (a) 
and (f), but was opened in protocol (b-e). Histological analysis (g-i) showed that no red 
blood cell extravasations were observed in protocol (d), i.e., the longest exposure time. The 
magnification in (g), (h), and (i) are 40x, 100x, and 200x, respectively. 
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Emission of the burst sequence at the PRFs of 5, 25, and 100 kHz is capable of opening 

the BBB (Fig. 5.3(a-c)). No significant difference was observed between the three different 

PRFs in the BBB opening volume and normalized MR intensity. The inertial cavitation 

dose (ICD) at 100-kHz PRF is significantly higher than 5- and 25-kHz PRF (Fig. 5.3(d), *: 

P<0.05).  

 

5.3.2 Fluorescence imaging and Tight Junction integrity 

Fluorescence images (Fig. 5.4) and the corresponding frequency response show that, in 

the case of the longest exposure time (5-ms PL and 5-min duration) of the SC-induced 

BBB opening, fluorescently tagged 3-kDa dextran was contained in the vessel (Fig. 5.4(b)) 

and only the harmonics were observed (Fig. 5.4(f)), while the dextran is diffuse into the 

hippocampus region in the case of IC-induced BBB opening at 100-kHz PRF (Fig. 5.4(d)) 

together with the presence of the broadband response (Fig. 5.4(h)).  

 

Figure 5.2 – Statistical analysis of the BBB opening volume and normalized MR intensity 
on the effects of (a) 4 different PLs, and (b) exposure time. 
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The immunofluorescence staining of ZO-1 protein for SC- and IC-induced opening is 

shown in Fig. 5.5. However, no difference is observed on the expression of ZO-1 between 

the unsonicated (Figs. 5.5(a,c,e,g)) and sonicated sites (Figs 5.5(b,d,f,h)), neither between 

the opening induced by SC (Figs. 5.5(b,d)) and IC (Figs. 5.5(f,h)).  

 

Figure 5.3 – The 2D T1-weighted MR image of IC-induced BBB opening sonicated at 
PRFs of (a) 5 kHz, (b) 25 kHz, and (c) 100 kHz. The BBB opening volume, normalized 
MRI contrast enhancement, and inertial cavitation dose of 3 PRFs were measured (d). No 
significant difference was observed between all cases in terms of volume and intensity. The 
ICD of 100 kHz was significantly higher than the other cases. 
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Figure 5.4 – Fluorescence images and the corresponding frequency spectrum in the case of 
(a,b,e,f) SC- and (c,d,g,h) IC-induced BBB opening.  The right hippocampus (b,d,f,h) was 
sonicated in the presence of microbubbles and fluorescently tagged 3-kDa dextran, whereas 
the left side was the control (a,c,e,g). The dextran molecules were restricted in the vessel in 
the case of SC-induced BBB opening (b), together with the occurrence of harmonics, while 
they were diffused to the hippocampus in the case of IC-induced BBB opening (d), together 
with the broadband response. The scale bar depicts 1 mm.  
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5.4 Discussion 

Here, the cavitation-dependent TJ integrity in the presence of the FUS-induced BBB 

opening was investigated. The TJ protein ZO-1 was examined to evaluate the relation 

between TJ and cavitation. In the SC-induced BBB opening, to our knowledge, a PRP of 

0.18 MPa has not been used in transcranial BBB opening using FUS and microbubbles. 

This study also investigated the effect of pulse length, duty cycle, and total exposure energy 

to explore the conditions required for SC-induced BBB opening at low PRP. In IC-induced 

BBB opening, the effect of PRF in the burst sequence was also determined based on the 

cavitation response recorded by our trascranial PCD. 

	
Figure 5.5 – Immunofluorescence staining in the cases of (a-d) SC- and (e-h) IC-induced 
BBB opening. The ZO-1 expression was indicated in green. No significant difference can 
be observed between the left (a,c,e,g) and the right (b,d,f,h) hippocampus, in both SC- and 
IC-induced BBB opening. 
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5.4.1 Cavitation-dependent mechanism of BBB opening 

The TJs were found not to be disrupted by either SC or IC under the FUS and 

microbubble pore formation used in this study (Fig. 5.5). This is different from the findings 

reported by Sheikov et. al 6, where ZO-1 was disassembled, leading to the loss of junctional 

barrier functions in brain microvessels, inspected by the immunoelectron   microscopy, 

after sonication. The variations could be linked to the different PRPs applied in that study 

(1.1 MPa) comparing to ours (0.45 MPa for IC and 0.18 MPa for SC), suggesting that the 

TJs may not be disrupted until a sufficiently high pressure is reached. For the delivery of 

macromolecules (3-kDa dextran) across the BBB in our study, it is possible that 

transcellular transport was preferred over the paracellular at the pressures used (Fig. 5.4). 

Similar results have previously been reported using other lipid-coated microbubbles161,162.  

Juffermans et al. showed that the uptake of fluorescent di-4-

aminonaphtylethenylpyridinium (di-4-ANEPPS, ~500 Da) was facilitated through 

endocytosis and macropinocytosis after rat cardiomyoglast cells were sonicated using 1 

MHz at 0.25 MPa PRP with Sonovue® microbubbles161.  Using fluorescence microscopy, 

Meijering et al. also showed homogeneous distribution of 4.4- and 70-kDa dextrans 

through the cytosol, using 1 MHz at 0.22 MPa PRP with Sonovue® microbubbles, which 

was linked to ultrasound and microbubble-mediated delivery of macromolecules through 

endocytosis in vitro162.  Although the type of cavitation was not determined in the 

aforementioned two studies, the MIs were calculated to be 0.25 and 0.22, respectively, 

which was lower than the IC threshold (0.37, Chapters 3, 4)120. Therefore, it is concluded 

that the transcellular path may be the possible molecular uptake route of SC-induced BBB 

opening. 
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Furthermore, we observed that a sufficient PL (0.5 ms) was required for SC to induce 

BBB opening (Fig. 1). It has been shown that an increases in intracellular calcium occurs 

when subjected to mechanical stretching on keratocytes163. Also, the opening of stretch-

activated ion channels in response to repeated mechanical deformation may lead to an 

increase in calcium concentration in visceral sensory neurons164. The vessel invagination 

has also been observed due to the ultrasound-driven microbubble165. A longer PL may thus 

increase probability and number of interactions between the microbubbles and the 

endothelial cells or surrounding neurons. Therefore, the duration of the repeated 

deformation of the endothelial cells, dictated by the pulse length (PL), may play an 

important role in the SC-induced endocytosis.  

As mentioned in Chapter 4, the theoretical model can be a tool for estimation of 

microbubble oscillation. In this chapter, compared with our previous studies56,57, the BBB 

was opened at 0.18 MPa but was not opened at 0.15 MPa, even at a PL of 20 ms. In order 

to have the possible explanation, Bubblesim was used to estimate the microbubble 

oscillation. As shown in Fig. 5.6, the maximum diameter of microbubble is over 9 µm at 

0.18 MPa, but is less than 7 µm at 0.15 MPa based on the parameters decided in Chapter 4. 

As a result, 0.15 MPa may not be sufficient for microbubbles to have enough contacts on 

the endothelial cells. Using 0.18 MPa, the expansion of 4-5-µm diameter bubbles may be 

able to reach the capillary wall of the endothelial cells, and then induce BBB opening via 

sufficient PL, i.e. repeated deformation.  
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In Chapter 4, the stable cavitation dose quantified in vivo (Fig. 4.7) and in phantom 

(Fig. 4.14) showed that the SC occurred at 0.30 MPa. Here, we also quantified the SCD at 

0.18 MPa PRP, but no significance was observed between the peaks at ultra-harmonics and 

the background noise. Despite the fact that the skull may mask the detection of ultra-

harmonics, the phantom results in Chapter 4 also showed that SC did not occur at 0.18 

MPa. Therefore, using 4-5-µm diameter bubbles, the BBB may be opened via short PL (67 

µs, Chapter 4) in the presence of ultra-harmonics, or long PL (5 ms) in the absence of ultra-

harmonics. 

	
	
Figure 5.6 – Simulation of the oscillation of a 4.5-µm-diameter bubble at PRPs of 0.18 
MPa and 0.15 MPa using Bubblesim. The shell viscosity was 0.19 Pa.s and the shear 
modulus was 32 MPa. The maximum diameter lies in 8-10 µm at 0.18 MPa, but in 5-7 µm 
at 0.15 MPa.  
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The mechanism of IC-induced BBB opening was also investigated in this study. Our 

results indicate that observable BBB opening was induced using 3-cycle PL and 4-5-µm 

diameter bubbles(Fig. 5.3(a-c)), which confirmed the previous works using short cycles 

and Definity® bubbles53,62. Also, the ICD at 100-kHz PRF was significantly higher than at 

5-kHz and 25-kHz PRF (Fig. 5.3(d)). Because of lower microbubble depletion through 

uninterrupted pulsed sonication in short pulse interval durations, 100-kHz PRF may 

increase the probability of disrupting a larger number of microbubbles, thereby causing 

higher ICD. However, no significant difference was observed in terms of the BBB opening 

volume and normalized intensity. Since the permeability plateau is reached at 0.45 MPa 

using 4-5-µm diameter bubbles64, the PRF may not affect the BBB opening properties with 

identical conditions. 

Interestingly, in the case of SC-induced BBB opening at the longest exposure time, 

detectable BBB opening was observed in the MR images (Fig. 5.1(d)), but not in the 

fluorescence images (Fig. 5.5(b,d)). Since the molecular weight of MRI contrast agent, 

Omniscan®, is 573 Da, while the fluorescently-tagged dextran is 3 kDa, this finding could 

imply that the size of SC-induced BBB opening is between 573 Da and 3 kDa. However, 

the uptake mechanism between them may be distinct. In addition, comparing with the IV 

injection for the dextran, the administration of Omniscan® was IP. It is difficult to compare 

the uptake of different molecules with distinct administration routes. Future studies will be 

carried out to investigate the maximum BBB opening size cause by SC. 
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5.4.2 Safe BBB opening using low mechanical index 

The thresholds of MI used in previous studies (0.46 or 0.37) were determined not to be 

necessary and sufficient for BBB opening12,51. The results of this study indicate that low MI 

(0.15) is capable of inducing detectable BBB opening at PLs of 0.5 ms or above. The PL 

threshold of inducing BBB opening has been previously identified at 10 ms using Optison® 

at MI = 0.652 and 2 ms using Definity® at MI = 0.312. In this study, however, it was 

identified between 0.1 and 0.5 ms. Compared with other studies of the PL effect, 4-5-µm 

mono-dispersed microbubbles were used in this study. The effect of bubble size has been 

investigated in our previous studies56,57. The BBB opening was induced without IC using 

larger microbubbles at 0.067-ms PL. Therefore, the PL-threshold may be also bubble-size 

dependent. The histological analysis showed that no RBC extravasation was observed 

using the longest exposure time, i.e., 5-ms PL and 5-min duration (Fig. 5.1(g-i). Also, 

compared with our previous study, comparable BBB opening volume (20.92 ± 2.65 mm3) 

could be reached using long PL (5 ms) at relatively low pressures (0.18 MPa) instead of 

100 cycles at 0.45 MPa. Therefore, equivalent therapeutic effects may be induced at low 

pressures and sufficient PL, which will effectively reduce the probability of damage caused 

by the IC.  

In this study, sonication duration was observed having effects on the MR intensity. As 

shown in Fig. 5.2, the BBB opening volume was similar but the normalized MR intensity 

of the 300-s duration was found significantly higher than that of the 30-s duration. As 

shown in Fig. 5.1(g), since the BBB opening volume reached the plateau at 2-ms PL, 

longer PL may not increase the opening volume. However, longer durations may increase 

the likelihood of opening the BBB of different endothelial cells, i.e. the BBB opening sites, 
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due to the reperfusion of microbubbles; thereby increasing the amount of gadolinium 

diffusion to the brain tissue. 

The effect of the duty cycle was also investigated in this study. In order to keep the 

duty cycle identical, 100-Hz PRF and 0.1-ms PL was applied to compare with the results of 

5-Hz PRF and 20-ms PL. Even if the duty cycle is fixed at 1%, no BBB opening was 

induced using 100-Hz PRF and 0.1-ms PL. Therefore, the duty cycle does not play a role in 

the FUS-induced BBB opening.  

 

5.5 Conclusion 

In this chapter, for the first time, MI = 0.15 was shown to be capable of transcranially 

opening the BBB. A sufficient PL was required to induce BBB opening at this MI, and 

higher MRI contrast enhancement was induced at longer sonication durations. The TJ was 

not disrupted at PRPs lower than 0.45 MPa, therefore longer PLs (2 ms) at lower acoustic 

pressure (0.18 MPa), in combination with larger (4-5-µm diameter) microbubbles, may be 

sufficient to deliver therapeutic molecules by changing the permeability of endothelial cells 

without IC occurrence or any damage.  
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Chapter 6  

Translation of the Focused Ultrasound 

Induced Blood-Brain Barrier Opening 

System to Non-Human Primates 
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6.1 Introduction 

In previous chapters, we have shown that a passive cavitation detector (PCD) can be 

used to transcranially acquire the acoustic emissions stemming from the interaction 

between the microbubble and the brain tissue during BBB opening in mice. During 

sonication, the cavitation response, which was found to be pressure- and bubble-dependent, 

provided real-time feedback regarding the opening occurrence and its properties, thereby 

determining the physical mechanism of FUS-induced BBB opening. As a result, the 

passive cavitation detection can serve as a useful tool for monitoring the microbubble 

response to predict the occurrence and volume of BBB opening, as well as the possibility 

of inducing damages. However, to test the potential of this technique to be applied in 

humans, it is very important to first translate this system of the FUS in combination with 

cavitation monitoring from mice to larger animals and preferable non-human primates. 

Contrary to rodents, the primate brain consists of sulci (fissures) and gyri (lobes). In 

addition, due to the thicker skull, discrepancies in sound velocity and density combined 

with high absorption can lead to poor focusing quality and high energy loss, especially at 

higher frequencies166. Therefore, in non-human primates, the pressure threshold of BBB 

opening and inertial cavitation as well as the safety window and the physical mechanism of 

FUS-induced BBB opening may be distinct from that in mice. 

In this chapter, we aim at establishing a cavitation-guided BBB opening system in non-

human primates. This study will be a major step towards the clinical translation of this 

emerging technology that can be combined with any type of pharmacological treatment to 

the brain. Based on our previous studies on the capabilities and limitations of this technique 

tested in ex vivo non-human primates (Appendix B), we will first determine the appropriate 
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microbubble size and acoustic pressure for BBB opening. Second, different parameters will 

be applied to determine the reproducibility and reversibility of BBB opening. Finally, the 

correlation between the cavitation response, the BBB opening volume and targeted brain 

structure will be established to achieve the real-time cavitation-guided BBB opening in 

monkeys. 

 

6.2 Materials and Methods 

6.2.1 Sonication protocol 

Initial feasibility studies were performed on five male rhesus macaques over the course 

of 12 sessions (a total of 25 sonications). Either the mono-dispersed 4-5-µm bubbles were 

manufactured in-house and size-isolated using differential centrifugation, as used in 

Chapter 4 and 5,151 or the Definity® microbubbles, as used in Chapter 3, were used in this 

study. The PRP, PL, PRF, microbubble types, and targeting region were described in Table 

6.1. The experimental setup was shown in Fig. 6.1. The single-element transducer used in 

our previous ex vivo study was mounted on a standard monkey stereotaxic frame for 

accurate positioning (Fig. 6.2), and the corresponding targeting region was shown in Fig. 

6.3. The global attenuation (absorption, reflexion and scattering) of the skull and the skin 

was assumed to be -5.7 dB and -4.5 dB at 500 kHz, respectively167. The attenuation in the 

monkey brain tissue was assumed to be around -0.5 dB.cm-1 and the thickness of this layer 

was estimated to be equal to 2 cm. Therefore, the emission amplitude was raised by 7.15 

dB (approximately a factor of 2.28) compared to the calibration measurements obtained in 

water to compensate for the energy loss along the path.  
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Table 6.1 Acoustic parameters and corresponding targeting region # denotes the number of 
sonications. N is the number of monkeys. VC: Visual Cortex.   HC: Hippocampus  Ca: 
Caudate Pu: Putamen. 

Protocol PL PRF (Hz) microbubble PNP (MPa) Targeting (#) N

A 100 cycles 10  Definity® 

0.20 VC (1) 1 

0.25 VC (1) 1 

0.30 VC (1) 1 

B 5000 cycles 2  

Definity® 

0.30 HC (3) 2 

0.45 HC (3) 2 

0.60 HC (1) 1 

4-5 µm 

0.30 VC (2), Ca (2), Pu (1) 4 

0.45 VC (4), Ca (1), HC (1) 4 

0.60 VC (2), HC (2) 1 
 

 

	

 
Figure 6.1 – Experimental setup for in vivo FUS-induced BBB opening in the operating 
room. (a) A single-element, circular focused ultrasound transducer with a hole in the center 
was driven by a function generator (Agilent Technologies, Palo Alto, CA, USA) through a 
50-dB power amplifier (ENI Inc., Rochester, NY, USA). The center frequency, focal depth, 
outer radius and inner radius of FUS were 500 kHz, 90 mm, 30 mm and 11.2 mm, 
respectively. (b) In vivo of the transducer mounted on the stereotactic frame with a 
manipulator allowing precise positioning of the transducer in the stereotactic referential. (c) 
Monkey placed in the stereotactic frame. The monkey is shaved and a degassed 
echographic gel container is placed on the top of its head to insure maximal acoustic 
transmission. 

 

(b) (a)  (c) 
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Figure 6.2 – Targeting procedure for in vivo FUS-induced BBB opening. (a) A positioning 
rod (black arrow), indicating the position of the focus (5 cm away from the edge of the 
transducer), was used to target. (b) This positioning rod was mounted on the manipulator in 
order to locate the origin of the stereotactic coordinates. (c) The origin of the stereotactic 
coordinates indicated by the engraved cross on the metal piece between the ear-bars is 
targeted with the tip of the positioning rod. 

 

 

 

	
Figure 6.3 – Targeting region and corresponding view from three dimensional views, 
adapted from a web-based brain atlas168.  

 

(b) (a)  (c) 
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Figure 6.4 – Experimental timeline of in vivo BBB opening in NHPs. Two targets at 0.30 
MPa (purple circle) and 0.45 MPa (orange circle) are also illustrated. 

 

 

The experimental timeline is shown in Fig. 6.4. For the application of the FUS, all 

animals were anesthetized with 2% isoflurane (carrier gas: oxygen). The heart rate was 

held at approximately 120 beats per minute and the respiratory rate at around 60 breaths per 

minute.  Prior to sonication, the scalp hair was removed with a depilatory cream to ensure 

maximal acoustic transmission. The animal’s head was then placed in a stereotactic frame 

to enable careful targeting of the ultrasound. The sonication was performed immediately 

after intravenous (IV) injection of a 500-μL microbubble bolus in all experiments (5x109 

numbers/mL for customized microbubbles and 1.2x1010 numbers/mL for Definity®). 

Targeting was ensured using a manipulator and a positioning rod indicating the position of 

the focus relatively to the stereotaxic coordinates (Fig. 6.2).  
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6.2.2 MRI and acoustic emission detection 

MRI was used to confirm BBB opening using gadiodiamide contrast agent. 3D Spoiled 

Gradient-Echo (SPGR) T1-weighted sequences (TR/TE=20/1.4 ms; flip angle: 30°; 

NEX=2; spatial resolution: 500×500 μm2; slice thickness: 1 mm with no interslice gap) 

were applied after intravenous (IV) injection of gadodiamide (Omniscan®, molecular 

weight 573.66 Da, GE Healthcare, Princeton, NJ, USA) 1 h after sonication. The dose 

applied was 0.2 mL/kg and the IV injection was performed 2 minutes before the SPGR T1-

weigthed scan (scan duration: 18 minutes). Gadodiamide presence in the brain parenchyma 

was induced by BBB opening, similar to the mice shown in Chapters 3-5. 3D T2-weighted 

sequence (TR/TE=3000/80; flip angle: 90°; NEX=3; spatial resolution: 400×400 μm2; slice 

thickness: 2 mm with no interslice gap) and 3D Susceptibility-Weighted Image (SWI) 

sequence were applied (TR/TE=19/27 ms; flip angle: 15°; NEX=1; spatial resolution: 

400×400 μm2; slice thickness: 1 mm with no interslice gap) and were used to assess brain 

damage.  In the session of closing timeline and accuracy, FSL, a comprehensive library of 

analysis tools for MRI brain imaging data, was used to perform the image registration to 

keep the brain orientation at identical location for the closing timeline determination, and 

the focal shift identification169,170. 

A single-element passive cavitation detector (center frequency: 7.5 MHz, focal length: 

60 mm, Olympus NDT, Waltham, MA, USA) was positioned through the center hole of the 

FUS transducer. The two transducers were aligned so that their focal regions fully 

overlapped within the confocal volume. The PCD and spectrogram method were 

mentioned in Chapter 4.  
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6.3 Results 

6.3.1 BBB opening and corresponding cavitation response 

Two protocols were implemented in this study. First, in the protocol A (Table 6.1), we 

used Definity® microbubbles and short PL (100 cycles) at 0.20 – 0.30 MPa. The results 

were shown in Fig. 6.5, which showed that no BBB opening was induced in any case of 

protocol A (Table 6.1), although inertial cavitation, i.e., broadband response, occurred in 

each case. However, microbubble response was detected through the monkey skull for the 

first time36.  

Second, in the protocol B (Table 6.1), Long PL (5000 cycles) and higher pressure (0.30 

– 0.60 MPa) were applied with Definity® or 4-5-µm diameter bubbles. Figure 6.6 shows 

that no BBB opening was induced at 0.45 MPa using Definity® but a broadband response 

was detected. In the case of 4-5-µm microbubbles, however, the BBB was successfully 

opened at 0.30 and 0.45 MPa. The MR images and the corresponding spectrogram of the 

first pulse are depicted in Fig. 6.7. As a result of the deposition of the MRI contrast agent in 

the brain tissue after ultrasound exposure, the MR images indicated that the BBB was 

opened at 0.30 MPa (Fig. 6.7(d,e,g)) and 0.45 MPa (Fig. 6.7 (f,h)) using the 4-5-µm 

bubbles. The white matter, compared with the gray matter, was observed easier to be 

opened (Fig. 6.7). The peak MR intensity enhancement at the BBB-opened region relative 

to the average value in the parenchyma was increased by 119% and 48% at 0.3 MPa and 

0.45 MPa, respectively. The volume of the BBB disruption was equal to 24.6 mm3 and 30.5 

mm3, respectively. The two distinct opened sites were separated by a distance of 4.74 mm.  
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Figure 6.5 – (a) The spectrogram without microbubbles administration show that all the 
harmonics and broadband response are from microbubbles. Spectrograms during FUS 
sonication with monkey 2 at (b) 0.20 MPa, (c) 0.25 MPa, (d) 0.30 MPa, and MR images 
with (e) coronal and (f) sagittal planes show that the broadband response occur with all 
pressures, but no BBB opening is induced (dashed circle). 

 

	
Figure 6.6 – (a) The spectrogram without microbubbles administration show that all the 
harmonics and broadband response are from microbubbles. The spectrogram during FUS 
sonication with monkey (b) 0.45 MPa shows that the broadband response takes place. The 
MR image with (c) sagittal plane, however, shows that no BBB opening is induced (dashed 
circle). 
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Figure 6.7 – The BBB opening confirmed by 3D-MRI images. No higher harmonics and 
broadband response are present at 0.30 MPa in (a) the spectrogram without microbubbles 
administration. The corresponding spectrogram of the first pulse with microbubbles 
administration shows that the broadband acoustic emissions are detected at (b) 0.30 MPa 
and (c) 0.45 MPa. The 3D-MR images confirm that the BBB is opened at (d, e, g) 0.30 
MPa and (f, h) 0.45 MPa with inertial cavitation. The yellow box in the sagittal plane in (d) 
defines a region of interest from which images in (e) and (f) were acquired. The coronal 
plane with BBB opening is provided at (g) 0.30 MPa and (h) 0.45 MPa. The white arrow in 
(c) indicates that the time-point of occurrence of the second harmonic coincides with the 
travel distance to the skull. 

 

The corresponding spectrogram (Figs. 6.7 (b) and (c)) showed that the broadband 

response, i.e., the inertial cavitation, occurred at 0.30 MPa and 0.45 MPa. No harmonics 

were present at 0.30 MPa in the spectrogram without microbubble administration (Fig. 6.7 

(a)), which confirms our findings in mice (Chapter 3)120. The spectrogram can also be used 

to determine the position of the focus. The white arrow in Fig. 6.7 (c) indicates that the 

time-point of occurrence of the second harmonic coincides with the travel distance to the 

skull. Therefore, harmonics higher than the 3rd harmonic and any broadband response are 

due to microbubble effects (Fig. 6.7 (b,c)). 
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Figure 6.8 – Damage assessment. (a,c,d) 3D T2-weighted sequence. Edemas should appear 
brighter in these images. (b,e,f) 3D Susceptibility-Weighted Image (SWI) sequence was 
applied. Hemorrhages, as well as large vessels should appear in black in these images. (a,b) 
Same reconstructed coronal slice as shown in Fig. 6.7. The two opening sites are circled 
with the corresponding colors. There is no difference between the two hemispheres. 
(c,d,e,f) Corresponding reconstructed sagittal slices for the two opening sites. No edemas or 
hemorrhages are visible in the sonicated regions (dashed contour). 

 

The same MRI sequence and IV contrast agent injection were repeated six days after 

BBB opening. No intensity enhancement was observed indicating that the BBB was closed 

or reinstated. Two other MRI sequences (T2-weighted and susceptibility-weighted) were 

used to assess potential brain damage after ME-FUS and both of them indicated absence of 

detectable damage such as edema or hemorrhage (Fig. 6.8). The same protocol was 

repeated for the two following sessions applying 0.6 MPa and two different kinds of 

microbubbles. The results are shown in Fig. 6.9 and 6.10. T1-weighted MR sequences were 

used to track the diffusion of gadodiamide. The peak MR intensity enhancement at the 

BBB-opened region relative to the average value in the parenchyma was increased by 68% 

and 41% using customized and Definity® microbubbles, respectively. The volume of the 

BBB disruption was equal to 285.5 mm3 and 116.3 mm3, respectively. The BBB opening 

regions at the caudate and the hippocampus were shifted from the targeted location by 

respectively 0.6 mm and 0.9 mm laterally and 6.5 mm and 7.2 mm axially. T2-weighted 
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MR sequences were also used to assess potential damages in the brain. An edematous 

region was detected on the T2-weighted MRI in one case using custom made microbubbles 

while no damage was detected using Definity® with all acoustic parameters being the same. 

All the animals have been survived and therefore histological findings are not available at 

this time. Even though no in-depth cognitive tests have been performed thus far, qualitative 

assessment of basic the animal behavior has been monitored. Normal cognitive behavior 

has been noted following ME-FUS procedures at moderate pressures and using Definity®. 

In the case of 0.6 MPa and customized microbubbles, the animal with the edema exhibited 

a weakness in the contra-lateral arm over four days after treatment, but then fully recovered 

after that four-day period. The corresponding spectrogram showed that a large broadband 

signal was recorded for both customized and Definity® microbubbles. 

	
	

Figure 6.9 – BBB opening experiment targeting hippocampus using Definity® 
microbubbles and applying 0.6 MPa (yellow dashed line shows region of interest). 3D 
Spoiled Gradient-Echo (SPGR) T1-weighted sequence was applied after intravenous (IV) 
injection of gadodiamide 1 h after sonication. No damage was detected using Definity® 
microbubbles from T2-weighted sequence. 
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Figure 6.10 – BBB opening experiment targeting hippocampus using custimized 
microbubbles and applying 0.6 MPa (yellow dashed line shows region of interest). 3D 
Spoiled Gradient-Echo (SPGR) T1-weighted sequence was applied after intravenous (IV) 
injection of gadodiamide 1 h after sonication. An edema was visible using Definity® 
microbubbles from T2-weighted sequence. 

 

Here, a total of 11 BBB openings were induced at 0.30 and 0.45 MPa (Table 6.1) using 

4-5-µm diameter bubbles. The correlation between the ICD and the BBB opening volume 

was shown in Fig. 6.11. At 0.60 MPa, because the BBB opening volume was the 

combination of four sonications (two in the visual cortex and two in the hippocampus), this 

opening volume (285.5 mm3) is not including the Fig. 6.11. The SCD at all ultra-harmonics 

of difference regions at 0.30 and 0.45 MPa is shown in Fig. 6.12. At 0.30 MPa, the 

amplitude at ultra-harmonics was the largest in the putamen and the lowest in the visual 

cortex. At 0.45 MPa, the amplitude in the visual cortex was higher than in the caudate and 

the hippocampus. 
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Figure 6.11 – The correlation between the ICD and the BBB opening volume at 0.30 and 
0.45 MPa at 4-5-µm diameter bubbles (a total of 11 openings). The volume at 0.60 MPa is 
not shown because only one big opening is induced by 4 sonications (Fig. 6.10). 
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Figure 6.12 – The region dependent SCD at 0.30 and 0.45 MPa. The amplitude level is 
putamen > caudate > visual cortex at 0.30 MPa, as well as visual cortex > caudate > 
hippocampus at 0.45 MPa. 

 

(b) (a) 
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6.3.2 Closing timeline and accuracy 

The duration of BBB opening and the corresponding opening volume of each scan 

were shown in Fig. 6.13. At 0.30 MPa, the BBB was opened in the caudate and lasted two 

days. On day 4, the opened BBB was completely recovered. The targeting precision was 

also investigated. Figures 6.14 and 6.15 show the estimated focal region (yellow area) and 

the BBB opening region (blue area) from the coronal, sagittal, and horizontal plane. The 

axial shift of the focus was found to vary in 6.9 mm. The corresponding spectrogram for all 

duration (120s) is also presented. The focal shift, BBB opening volume, and MRI contrast 

enhancement of the visual cortex and caudate are quantified in Table 6.2.  

	
	

Figure 6.13 – An example of BBB closing in the NHP caudate using 0.30 MPa and 4-5-
µm microbubbles. The blue region indicates the opening region and it is no longer visible 
in day 4. The corresponding quantification of BBB opening volume indicates that the BBB 
is nearly closed on day 2. The error bar denotes the stander deviation of the MR intensity of 
the BBB opening area. 
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Table 6.2 The axial focal shift, BBB opening volume, and MRI contrast enhancement of 
two opening regions. The focal shift is as our expectation shown in Appendix B. 

 

Region Caudate Visual cortex 

Pressure (MPa) 0.30  0.45  
Axial focal shift (mm) 3.4 6.9 

Volume (mm3) 72.5 112.3 
MR Enhancement 52% 63% 

 

 

 

 

 

	
Figure 6.14 – The discrepancy between focal region (yellow area) and BBB opening 
region (blue area) at the caudate at 0.30 MPa. Corresponding spectrogram shows the 
cavitation response along 2 min duration. 
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Figure 6.15 – The discrepancy between the focal region (yellow area) and the BBB 
opening region (blue area) at the visual cortex at 0.45 MPa. Corresponding spectrogram 
shows the cavitation response along 2 min duration. 

 

 

6.4 Discussion 

In this chapter, the FUS-induced BBB opening, combined with the transcranial 

cavitation detection, in non-human primates is reported for the first time. A total of four 

locations were disrupted in five animals (Table 6.1). Pressures ranging from 0.3 MPa to 0.6 

MPa were investigated. Previous studies have shown that a pressure increase results in a 

larger BBB opening extent and higher BBB permeability while a safety window exists 

within the pressure range of 0.30 MPa and 0.60 MPa91,120. For all experiments, T1-

weighted MRI at 3.0 T was used to confirm the BBB disruption, tracking the diffusion of 

IV-injected gadodiamide in the brain. Since this cavitation response was capable of being 

used to estimate the BBB opening volume and predict the occurrence of BBB opening57, 
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further information could be obtained in this study to investigate the cavitation-guided 

BBB opening in NHP. 

Understanding the discrepancy of physical mechanism between mice and monkeys is 

helpful for clinical translation. Here, except for one case sonicated at 0.60 MPa, no BBB 

opening was induced using Definity®
 microbubbles and 10-ms pulse length, despite the 

occurrence of inertial cavitation (Figs. 6.5 and 6.6). Therefore, lower pressures (0.20 - 0.30 

MPa) and shorter pulse length (0.2 ms) shown in protocol A (Table 6.1) may not be 

sufficient to induce BBB opening. However, in our previous studies, the BBB was opened 

at 0.45 MPa and PLs of 0.1, 0.2, 1, 2, and 10 ms, using the same microbubbles in mice. 

Therefore, higher pressures may be required to open the BBB in monkeys using Definity®. 

Also, given that the medial areas were targeted (Fig. 6.5), the focus included the 

superior sagittal sinus that, due to the large volume of microbubbles circulating, resulted in 

larger amplitude of the cavitation spectrum. Measuring the cavitation spectrum may, 

therefore, be helpful to determine whether a large vessel is in the path of the FUS beam and 

thus predict or avoid its effects on inducing BBB opening. This is important as this 

likelihood may be hard to exclude otherwise: 1) due to the interference from the skull, the 

exact location of the focus in the brain is difficult to predict; 2) the exact location of large 

vessels in the brain relative to the beam is not known a priori. Hence, the relationship 

between the amplitude of the cavitation spectrum, the area of BBB opening, and the BBB 

opening threshold will provide valuable additional information regarding the presence of 

large vessels close to the focus. This information can thus be used to predict whether 

opening of the BBB was obstructed due to the focal spot proximity to a large vessel and 
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subsequent shielding and adjust the targeting accordingly to achieve BBB opening, i.e. 

avoid shielding by large vessels. 

Those preliminary results have also indicated the dependence of the BBB opening on 

the microbubble types. In protocol B (Table 6.1), at 0.30 and 0.45 MPa, BBB opening was 

only observed with the 4-5-µm bubbles (Figs. 6.7 and 6.8). At 0.60 MPa, larger BBB 

opening area was obtained with the 4-5-µm bubbles (Figs. 6.9 and 6.10). This is mainly 

because by increasing the peak pressure, a larger portion of the brain reaches the disruption 

threshold. We have shown that the 4-5-µm bubbles result in a larger BBB opening region 

in mice. Based on this finding, which complements our previously reported studies on the 

bubble size in mice57, it is believed that the bubble size also plays an important role in the 

BBB opening in primates. 

In Chapter 4, we showed that the BBB was opened at 0.3 MPa and the inertial 

cavitation occurred at 0.45 MPa using 1.5-MHz FUS and 4-5-µm diameter bubbles. Here, 

the BBB was also opened at 0.30, 0.45, and 0.60 MPa with the presence of inertial 

cavitation. The mechanical index was 0.25, 0.37, and 0.49 at 1.5 MHz, as well as 0.42, 0.64 

and 1.02 at 500 kHz for 0.3 MPa, 0.45 MPa and 0.6 MPa, respectively. Since the MI 

threshold of the broadband response was close to 0.451 and the broadband response was 

observed in most cases of BBB opening, lower pressures will be applied and the stable 

cavitation dose will be quantified to determine whether the BBB can be opened without 

inertial cavitation using 4-5-µm diameter bubbles. 

In our previous studies, the cavitation response was shown capable of estimating the 

BBB opening volume (Chapter 4)57. By taking into account 11 openings performed with 

the 4-5-µm bubbles, preliminary feasibility of volume prediction using the ICD was shown 
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in Fig. 6.11. More openings will be performed in the future to determine the relation 

between the ICD and the BBB opening volume. If successful BBB opening and the 

corresponding opening volume can be predicted using the PCD system, MRI is not 

required for monitoring BBB opening during sonication, thereby expanding the application 

of FUS while maintaining its low cost and real-time capability for the clinical application. 

In the cavitation response, not only the ICD, but also the spectrogram can provide very 

useful information on the microbubble behavior in real-time. Figure 6.16 shows three 

spectrograms. First, the spectrogram of total duration (120s) (Fig. 6.16(a)) indicated the 

duration for microbubbles to reach the brain after the IV-injection. For instance, it takes 10 

seconds for Definity® microbubbles to reach the brain (Fig. 6.16(a)). In clinical application, 

the patient may have a circulation problem, which may be indicated by the spectrogram of 

total duration. The microbubble persistence can also be identified. Compared with the 

response of 4-5-µm bubbles shown in in Fig. 6.15, the 4-5-µm bubbles is shown more 

robust during 120s. Second, the spectrogram of one pulse (red line in Fig. 6.16(a)), 

showing a pulse length of 10 ms (Fig. 6.16(b)), can determine the duration of inertial 

cavitation. This duration may be microbubble dependent and correlated to the ICD. If 

insufficient microbubbles are sonicated at each pulse, the duration of inertial cavitation 

may be shorter, thereby inducing lower ICD and BBB opening volume.Third, the first few 

hundred microseconds of one pulse (Fig. 6.16(c), 0-0.4 ms of the Fig. 6.16(b)), can indicate 

the location of the focus based on the starting point of harmonics and broadband response. 

This might be useful to estimate the actual focus, thereby determining the axial shift 

between the actual focus and the desired targeting region. 
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Figure 6.16 – Three spectrograms of the cavitation response. (a) The spectrogram of all 
pulses provides the information about the microbubble persistence and the duration for 
them to reach the brain after the IV-injection. (b) The spectrogram of one pulse (red line in 
(a)) indicates the duration of inertial cavitation. (c) The actual location of the focus may be 
determined by the first 0.4 ms of one pulse, i.e., the red square in (b). 

 

Since the primate brain is inhomogeneous, the BBB opening properties may be distinct 

between different areas. As shown in Fig. 6.7, the intensities of MRI contrast enhancement 

in the BBB opening region at 0.30 MPa was 2.3 times higher than at 0.45 MPa. These 

differences may be due to a higher concentration of microbubbles in the sonicated region 

during the 0.30 MPa stimulation. This would explain both, the enhanced MRI contrast and 

the stronger broadband response.  

 In addition, the cavitation response may also be region dependent. The SCD at distinct 

regions at 0.30 and 0.45 MPa was depicted in Fig. 6.11. The higher sensitivity lied near the 

center frequency of the PCD (7.5 MHz). Four different locations were shown having 

distinct cavitation response. In Fig. 6.11, at 0.30 MPa, the amplitude level in the putamen is 

the largest and the visual cortex is the lowest. In comparison between the caudate 

(Fig.6.12) and the virtual cortex (Fig. 6.13), the visual cortex is deeper than the caudate. 

This might be one of the reasons why lower amplitudes are detected in the visual cortex. 

The comparison between the caudate and putamen can be seen in Fig. 6.3. The putamen is 

(b) (a)  (c) 
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deeper than caudate in the sagittal view, but is roughly the same depth in the coronal view. 

Also, because of only one sonication in the putamen, more sonications will be implemented 

to determine the region dependent cavitation response. In the comparison between the 

visual cortex and hippocampus, the hippocampus is deeper than visual cortex from the 

sagittal and coronal view (Fig. 6.3). Therefore, the amplitude was lower in the 

hippocampus. Although the depth of the targeting regions would have an effect on PCD 

amplitude, the region dependent cavitation response might be used to characterize the BBB 

opening properties in different location in NHP.  

 

6.5 Conclusion 

In this chapter, we successfully translated the in vivo transcranial BBB opening system 

together with real-time passive cavitation detection from mice to NHPs. First, initial 

feasibility of noninvasive, highly selective, drug-independent and reversible BBB opening 

was demonstrated in non-human primates in vivo. High spatial selectivity of this technique 

was also shown.  Compared to the mouse application (Chapters 3-5), the BBB in monkeys 

was considered more difficult to be opened, and the larger microbubbles facilitated BBB 

opening. Ongoing investigations entail optimization of the procedure including safety and 

efficacy of the trans-BBB drug delivery. Second, the noninvasive and transcranial 

cavitation detection during BBB opening in non-human primates was achieved. The ICD 

can be used to estimate the BBB opening and corresponding opening volume. In addition, 

the MRI contrast enhancement and cavitation response were shown to be region and/ or 

microbubble-size dependent. Therefore, this technique might be used for a cavitation-

guided BBB opening to better monitor the target of sonication without requiring real-time 
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MRI. Further studies will be performed to optimize the application in primates and 

determine the correlation between the location of BBB opening and the cavitation 

spectrum. This study is a major step toward clinical translation of this emerging technology 

that can be combined with any type of pharmacological treatment to the brain.  
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Chapter 7  

Conclusion and future directions  
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7.1 Conclusion 

In this dissertation, the physical mechanism and corresponding safety assessment have 

been fully investigated. The safety window, including the threshold of the inertial 

cavitation and the damage (here is red blood cell extravasations), in terms of microbubble 

types and peak rarefactional pressure, was determined in mice and shown in Fig. 7.1. First, 

the BBB was opened in the absence of inertial cavitation and damage using Definity® 

microbubbles at 0.30 MPa (Chapter 3) as well as using 4-5-µm diameter bubbles at 0.18 

and 0.30 MPa (Chapters 4 and 5), considered as the safest window (green rectangular). 

Second, using Definity® or 1-2-µm diameter bubbles, although the inertial cavitation 

occurred at 0.45 MPa, no damage was observed. As a result, another safety window 

(orange rectangular) lies between 0.45 and 0.60 MPa using Definity® (Chapter 3) or 1-2-

µm diameter bubbles (Chapter 4).  

Figure 7.1 – Safety windows in terms of peak rarefactional pressure and microbubble types 
in mice. The safest window (green rectangular), in the absence of inertial cavitation (IC) 
and damage, lies between 0.15 and 0.30 MPa using 4-5- or 6-8-µm diameter bubbles, as 
well as between 0.30 and 0.45 MPa using Definity®. Another safety window, in the 
absence of damage with the IC occurrence (orange rectangular), lies between 0.30 and 0.45 
MPa using 1-2-µm diameter bubbles or Definity®. However, the pressure threshold of the 
damage occurrence at 1-2-µm diameter bubbles has not been determined. 
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A major step toward the clinical application was the successful BBB opening in 

monkeys using our noninvasive and transcranial cavitation-guided BBB opening system. 

The probability of opening the BBB in monkeys was 100% using 4-5-µm diameters 

bubbles at 0.5 MHz and at pressures of 0.30 – 0.60 MPa (Chapter 6). Therefore, 

microbubbles in diameters of 4-5-µm or 6-8-µm were suggested for future application in 

monkeys or human.  

In this dissertation, the physical mechanism was determined based on the cavitation 

response, combined with theoretical model simulation and the phantom validation. In mice, 

harmonics at 0.18 MPa (Chapter 5), ultra-harmonics, i.e. SCD, at 0.30 MPa (Chapter 4), 

and broadband response, i.e. ICD, at 0.45 and 0.60 MPa (Chapters 3,4) were detected and 

the corresponding BBB opening properties was obtained. Therefore, the conclusions of our 

main findings were as follows: 

1) The transcranial cavitation response, including the SCD and ICD, during BBB 

opening was successfully detected and calculated for the first time (Chapters 3-6). 

2) The BBB can be opened in the absence of inertial cavitation or any cellular damage 

in mice (Chapters 3-5). 

3) A sufficiently long pulse length was required to induce BBB opening in mice via 

stable cavitation, without disrupting the tight junction (Chapter 5).  

4) The physical mechanism may be distinct between mice and monkeys (Chapter 6).   

5) Cavitation response can serve as a decent indicator to estimate the BBB opening 

occurrence (SCD, Chapter 4), the BBB opening volume (ICD, Chapter 4),  

microbubble persistence (Spectrogram, Chapter 6), and the location of focus 

(Spectrogram, Chapter 6). 
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7.2 Future directions 

This dissertation has revealed the physical mechanism of FUS-induced BBB opening 

and achieved the feasibility of cavitation-guided BBB opening in non-human primates. 

However, in order to achieve the goal of safe delivery of therapeutic drugs, several studies 

are recommended.  

Successful delivery of therapeutic agents (BDNF) in mice has been reported by our 

group4. The acoustic pressure, however, was at 0.46 or 0.60 MPa along with the IC 

occurrence. Although the IC in conjunction with Definity® microbubbles at 0.45 MPa was 

still within the safety window, until now, the capability of brain drug delivery using the SC 

has not been investigated. As shown in Chapter 5, fluorescently tagged 3-kDa dextran was 

contained in the vessel in the case of SC-induced BBB opening at 0.18 MPa. Thus, the 

BDNF, with a total molecular mass of 27 kDa, may not be delivered at 0.18 MPa. Choi et 

al. have shown that the FUS combined with microbubbles opened the BBB sufficiently to 

allow passage of compounds of at least 70 kDa, but not greater than 2000 kDa into the 

brain parenchyma, using 0.46-MPa sonication, i.e. the inertial cavitation threshold of 

Definity®. Therefore, identifying the range of molecular mass of the agents across the SC- 

or the IC-induced BBB opening will be important to assess the efficacy of this approach. 

Based on the findings in Chapter 3, microbubbles in the diameter of 4-5- or 6-8-µm were 

able to induce sufficient BBB opening in the absence of the inertial cavitation.  Also, at 

relative low pressure (0.18 MPa), a sufficiently long PL (5 ms) was capable of enhancing 

the MR contrast in the BBB opening region. On this ground, we suggest using those 

microbubbles in combination with sufficient pressure and PL to determine the maximum 

size of the SC-opened BBB. 
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A long term study, in combined with the cognitive monitoring, is obligated to be 

investigated in order to determine the effect of repeated sonication with intervals of few 

days to few weeks. If any injury was induced by the repeated sonication, the corresponding 

behavior may be different from the normal mice. This study will provide useful 

information for the clinical application in the future. 

In Chapter 6, the feasibility of BBB opening using FUS and microbubbles, along with 

transcranial cavitation detection, was achieved. More aspects should be investigated: 

1) Safety windows determination, including the wide investigates on pressures, pulse 

length, microbubble sizes, and behavior monitoring after BBB opening. 

2) Delivery of pharmacological compounds in monkeys.  

3) Successful prediction of BBB opening occurrence and the BBB opening volume at 

different region by real-time monitoring the cavitation response. 
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The general kinetic model (GKM) was used to measure the BBB permeability in the 

targeted region. Previous studies66 have validated the reliability of GKM in the FUS-

induced BBB opening. GKM classifies tissues in two compartments, the blood plasma and 

the EES171: 

tCKCK
dt

dC
epptrans

t                                                (A.1)	

where Ktrans, Kep are the transfer rate constants from the blood plasma to the EES and 

from the EES to the blood plasma, respectively, and Cp, Ct are the concentrations of Gd-

DTPA in the blood plasma and the EES respectively. GKM assumes prior knowledge of 

the arterial input of the contrast agent over time, which is model fitted to a bi-exponential 

equation, typically referred to as the arterial input function (AIF): 

  tm
2
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where Ai, mi (i=1, 2) are the amplitude and decay rates of Cp respectively and t is time. 

The plasma concentration Cp is calculated as a fraction of the blood concentration Cb, 

bctp )CH(1C  , where Hct=0.45 is the hematocrit level for wild-type mice. The difficulty 

in obtaining an accurate AIF from a detectable vessel in the dynamic images has been 

reported and assessed with various estimating models172. However, recent studies172 have 

demonstrated that selecting a population average from a large group of the same strain of 

animals in order to determine the AIF can be both accurate and robust. In this study, the 

entire cohort of mice was used to determine the AIF, by averaging the Gd-DTPA 

concentration changes in the internal carotid artery (ICA), as shown in previous studies66.  

Signal intensity in T1 images is translated to tracer concentration, using the Solomon-

Bloembergen equation173. The equation assumes a linear relationship between the 
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concentration of the contrast agent ([Gd]) and the relaxation rate difference (ΔR1). Relating 

the relaxation rate to signal intensity (S) in the gradient echo MR images yields a linear 

relationship between S and [Gd]: 

 
pre1pre1,

prepost

SrT

SS
Gd




                                                (A.3) 

where T1,pre is the longitudinal relaxation time of the corresponding tissue before the 

contrast agent administration, r1 is the longitudinal relaxivity of the contrast agent and Spre, 

Spost are the signal intensities before and after Gd-DTPA injection respectively. Phantom 

experiments in the 9.4 T MRI system have shown that the r1 relaxivity of gadodiamide 

(Omniscan®, molecular weight of 530 Da) is approximately 2.6 mM-1s-1, while the 

longitudinal relaxation times of the brain tissue (0.9 s) and the arterial blood (1.5 s) in mice 

have been reported in previous studies, using arterial spin labeling techniques174. 

Prior to the quantitative Ktrans measurements, all the images were smoothed using the 

N-D filtering algorithm of the Image Processing Toolbox® of Matlab (MathWorks, Inc., 

Natick, MA, USA). In addition, since the actual Gd-DTPA injection time occurred 

approximately 3 min after the beginning of DCE-MRI, exclusion criteria were set for the 

estimated Gd-DTPA injection time (t<0 or t>30 min) in order to avoid any fitting 

divergences. The spatial permeability distribution was estimated by counting the voxels 

that exhibited a Ktrans value over a predefined threshold (0.005 min-1). The threshold was 

selected in the mouse that showed the smallest BBB opening, using the quantification 

method described below. The estimations represented the volume area in the sonicated 

region where there was a clear permeability increase. The Ktrans values were measured both 

pixel-by-pixel, generating transverse and reconstructed coronal permeability maps of the 
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mouse brain, and for a circular region of interest (ROI) of 1 mm in diameter in the targeted 

hippocampal area and the control side. The ROI was applied on the slice with the highest 

T1 signal enhancement due to BBB opening and the ROI size was selected so it matched 

the axial full-width-at-half-maximum intensity area dimension of the beam. If the temporal 

Gd-DTPA concentration profile of a pixel fitted the AIF curve (Fig. A.1), then that pixel 

was excluded and the remaining pixels within the ROI were averaged to extract the Ktrans 

value. 

The general kinetic algorithm determined both the Ktrans and Kep values, but this study 

emphasized only on Ktrans, which represents the Gd-DTPA leakage from the systemic 

circulation and is mostly influenced by the concentration changes immediately after the 

Gd-DTPA injection. Kep values are mostly influenced by the “steady-state” time points of 

the concentration curves (Fig. A.1), when equilibrium is reached between the EES and the 

blood plasma concentrations175,176. 

	
	

Figure A.1 – The arterial input function, averaged from a population of all 40 mice, by 
measuring the Gd-DTPA concentration in the internal carotid artery on the dynamic 
images.  
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Acoustic transducers 

 A single-element, circular focused ultrasound transducer (Riverside Institute, New 

York, New York, USA) with a hole in its center was driven by a function generator 

(Agilent Technologies, Palo Alto, CA, USA) through a 50-dB power amplifier (ENI Inc., 

Rochester, NY, USA). The center frequency, focal depth, outer radius and inner radius of 

FUS were 500 kHz, 90 mm, 30 mm and 11.2 mm, respectively. A single-element passive 

cavitation detector (PCD) (center frequency: 7.5 MHz, focal length: 60 mm, Olympus 

NDT, Waltham, MA, USA) was positioned through the center hole of the FUS transducer. 

The two transducers were aligned so that their focal regions fully overlapped within the 

confocal volume. This transducers assembly is suspended to a 3D axis positioning system 

(Velmex Inc., Bloomfield, NY, USA) to be able to aim the desired target through the skull. 

A hydrophone (HGN-0200, Onda Corp, Sunnyvale, CA, USA) is attached to a second 

similar 3D axis positioning system in order to scan the transcranial pressure field.  

 

Skull preparation 

Two human and two non-human primate skulls were used for this study. For these 

skulls, two hemispheres were used for each location. Prior to the experiment, the skulls 

were degassed during one day in a sealed jar. Vacuum was made using a custom made 

pump. For in vitro experiments, the transducer was connected to the first 3D positioning 

system and immersed in a large water tank filled with degassed water. The human or NHP 

skull is also immersed in water. The hydrophone was then placed inside the skull cavity at 

the center plane through the virtual targeted region. 
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Targeting 

Targeting was performed using a pulse-echo transducer and utilizing the distinct 

landmarks on the skull. The 7.5 MHz pulse-echo transducer embedded through the central 

bore hole of the therapeutic transducer was used to map the surface of the targeted skull. 

The occipital protuberance (OP) that lines the inferior dorsal region and the lambda 

anatomical landmarks in both primates and humans (Fig. B.1) was identified using time-of-

flight and power spectral density measurements, whose product indicates the reflectivity of 

the skull. To this purpose, the pulse-echo transducer was moved using the positioning 

system in the lateral and ventro-dorsal directions of the skull and the time of occurrence of 

the peak in the power spectrum of the received RF signals will be calculated in each 

location. The OP and lambda landmarks were then identified (Fig. 6.2) due to their distinct 

reflectivity and texture and then mapped onto a preexisting brain atlas. For each target, the 

orientation of sonication was chosen to be similar to the previous simulation study 

performed in our lab131. In this previous work, optimal orientations for the ultrasound focus 

to match anatomical shapes of targets were calculated. Also, as the NHP OP seemed to be 

hindering the ultrasonic propagation for putamen and caudate targeting, alternative 

orientations were defined. These alternative orientations for caudate and putamen are very 

similar and studying the benefit of this choice in vitro is relevant, therefore for NHP skulls 

we studied the alternative caudate and the original putamen orientations. 
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Figure B.1 – Targeting images for monkey and human skulls based on combined 
reflectivity and time-of-flight measurements. Anatomical landmarks are clearly 
identified such as the occipital protuberance or lambda. 

 

Acoustic measurements 

In order to quantify the focusing quality, pressure field measurements are realized 

around the geometric focus. Once the transducer is set to aim a particular region through 

the skull using the procedure described in the previous section, the hydrophone is set at this 

location using the second 3D positioning system. This second positioning system is used to 

move the hydrophone to scan the pressure field along one plane. The scan field of view is 2 

cm along lateral dimensions and 6 cm along axial dimension, the spatial step is 0.167 mm 

for the lateral dimensions and 0.5 mm for the axial. For each point, the acoustic response is 

acquired on a PC workstation with an 80‐MHz digital acquisition board (model 14200, 

Gage applied technologies Inc., Lachine, QC, Canada). For each location, the peak 

negative pressure is measured and represented in 2D matrix. For every case, transcranial 
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pressure profiles are compared with water pressure profiles enabling quantification 

comparison in peak pressure amplitude, position shift and focal shape. In the previous 

simulation work131, two other parameters were evaluated to quantify the quality of the 

target coverage by the ultrasound focus. For every case we calculated the percent-of-target-

overlapped, which depicts the volume fraction of the target above half-pressure threshold, 

and the percent-of-beam-overlapping-target, which represents the volume fraction of the 

beam that falls inside the targeted region.  

 

Results 

Figures B.2 & B.3 show typical beam plots of examples the transcranial ultrasonic 

pressures measured in the horizontal and transverse planes of the focus of the transducer. 

According to previous reports51,91,120, the ratio between the pressure threshold for damage 

and the pressure threshold for BBB disruption is always less than 2 or 6dB. These pressure 

fields have been thresholded at -6dB in order to represent the maximum extent of induced 

BBB opening without inducing damage. The contour of the targeted region is depicted 

using a blue dashed line. For each target and each skull type, these pressure profiles were 

acquired four times (two skulls and two hemispheres). For each acquisition, the quality of 

the focusing is assessed using the following parameters: attenuation compared to that of the 

water, lateral and axial resolution of the focus (for the lateral, small and large axis are 

measured to quantify the distortion of the focus), shift of the position of the focus compared 

to that of the water, resolution of the focus (-6 dB dimensions, roughly equivalent to half-

pressure threshold) and angle tilt of the focus. Using NHP skulls, the values of these 

parameters were consistent from one location to the next except for the NHP putamen 
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targeting. The overall attenuation was found to be around -6 dB (respectively -5.66 ± 0.77 

dB, -6.18 ± 0.30 dB and -5.57 ± 0.47 dB for the hippocampus, caudate and vertex). The 

resolution of the focus was found acceptable compared to that of the water (lateral 

dimension 3.6 ± 0.1 mm, axial dimension 31.2 ± 1.2 mm). The difference in between the 

two main axis of the focus in the focal plane was also investigated in order to quantify the 

distortion of the focus. For the hippocampus, caudate and vertex respectively, the lateral -6 

dB dimensions were 3.9 ± 0.2 mm, 4.0 ± 0.1 mm and 3.7 ± 0.1 mm for the small axis and 

4.2 ± 0.2 mm, 4.2 ± 0.3 mm and 4.0 ± 0.2 mm for the large axis. Corresponding axial 

resolutions were found to be 38.5 ± 1.7 mm, 39.2 ± 2.3 mm and 38.9 ± 1.7 mm. The 

displacement of the focus compared to the geometrical focus was also quantified. The shift 

of the focus was found to be, respectively, 0.6 ± 0.2 mm, 0.8 ± 0.1 mm and 0.5 ± 0.3 mm in 

the focal plane and -4.4 ± 1.3 mm, -4.1 ± 0.7 mm and -3.9 mm ± 1.0 mm along the 

geometric axis of propagation. Finally the tilt of the focus induced by presence of the skull 

was measured, the angle between axial dimension of the focus and the principal axis of 

propagation. The respective measurements were 1.21 ± 0.11°, 1.43 ± 0.64° and 1.03 ± 

0.18°.   

For the initial orientation calculated for targeting the putamen, the effects of the skull 

were stronger. The total attenuation was found to be -6.91± 0.88 dB. The resolution of the 

focus was more altered and the difference between small axis resolution (4.3 ± 0.3 mm) 

and the large axis resolution (5.2 ± 0.7 mm) was increased. The axial resolution (41.2 ± 1.8 

mm) was also increased but compared to the previous orientations this change was less 

sensitive. The shift of the focus was increase by a factor three in the lateral dimension (2.0 

± 0.7 mm) and 25% in the axial dimension (-5.0 ± 1.0 mm). 
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Figure B.2 – Examples of -6 dB pressure profiles obtained through a NHP skull for the 
four different orientations. Blue dashed lines represent the contour of the target (as 
indicated in the depicted plane. 
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Figure B.3 – Examples of -6 dB pressure profiles obtained through a human skull for the 
four different orientations. Blue dashed lines represent the contour of the target as indicated 
in the depicted plane. 
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In the human skulls, the same measurements were also performed. Even though the 

overall effects induced by the skull are sharper, the findings were very similar. The total 

attenuation was measured to be -9.31 ± 0.62 dB, -9.02 ± 0.69 dB, -9.37 ± 0.65 dB and -9.05 

± 0.86 dB for the hippocampus, caudate, putamen and vertex, respectively. The lateral -6 

dB resolution was found to be 4.2 ± 0.2 mm, 4.2 ± 0.2 mm, 4.1 ± 0.2 mm and 4.0 ± 0.1 mm 

for the small axis in  the hippocampus, caudate, putamen and vertex, respectively, and 4.5 ± 

0.3 mm, 4.6 ± 0.2 mm,  4.4 ± 0.2 mm and 4.3 ± 0.1 mm for the large axis in  the 

hippocampus, caudate, putamen and vertex, respectively,. Corresponding axial resolutions 

were found to be 40.5 ± 1.1 mm, 42.0 ± 1.6 mm, 40.7 ± 1.3 mm and 40.3 ± 1.2 mm, 

respectively. The displacement of the center of the focus was found to be, respectively, 1.1 

± 0.6 mm, 1.3 ± 0.5 mm, 1.4 ± 0.3 mm and 1.2 ± 0.4 mm in the focal plane and -5.7 ± 0.6 

mm, -6.5 ± 0.9 mm, -7.0 ± 0.5 mm and -6.6 mm ± 0.5 mm along the geometric axis of 

propagation. Tilt angles were measured to be 1.56° ± 0.64°, 2.13° ± 0.91°, 2.18° ± 0.80° 

and 1.39° ± 0.57°. Figure B.4 summarizes all the measurements with their means and 

standard deviations.   

Target coverage estimations were calculated in each case. Table B.1 summarizes the 

findings. For NHP skulls, the percent-of-target-overlapped was found to be 42.1 ± 1.4 %, 

31.0 ± 0.9 % and 21.8 ± 5.4 % for the hippocampus, caudate and putamen respectively 

while the percent-of-beam-overlapping-target was found to be 62.3 ± 2.4 %, 45.1 ± 2.3 % 

and 27.2 ± 6.7 %. For human skulls, for the hippocampus, caudate and putamen, the 

percent-of-target-overlapped was found to be 12.3 ± 2.1 %, 13.8 ± 2.5% and 16.6 ± 1.7 % 

while the percent-of-beam-overlapping-target was found to be 71.2 ± 1.7 %, 54.4 ± 3.0 % 

and 82.1 ± 2.8 %. 
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Table B.1 Targeting coverage for the different anatomical aims through NHP and human 
skulls. 

 %-of-target-overlapped %-of-beam-overlapping-target 

NHP hippocampus 42.1 ± 1.4  62.3 ± 2.4 
NHP caudate 31.0 ± 0.9 45.1 ± 2.3 
NHP putamen 21.8 ± 5.4 27.2 ± 6.7 
Human hippocampus 12.3 ± 2.1 71.2 ± 1.7 
Human caudate 13.8 ± 2.5 54.4 ± 3.0 
Human putamen 16.6 ± 1.7 82.1 ± 2.8 

 

	
	

Figure B.4 – Focusing performance assessment through human and NHP skulls. 
Attenuation represents the energy loss crossing the skull interface compared to that of the 
water. Tilt represents the angle between the axial dimension of the focus and the geometric 
axis of propagation. Lateral resolution and axial resolution represents the dimension of the 
focus (-6 dB cutoff). Lateral and axial shift represents the displacement of the center of the 
focus. 
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