View metadata, citation and similar papers at core.ac.uk

brought to you by .{ CORE

provided by Columbia University Academic Commons

Chronicler: Lightweight Recording to Reproduce
Field Failures

Jonathan Bell, Nikhil Sarda and Gail Kaiser
Department of Computer Science
Columbia University
New York, NY 10027
Email: {jbell kaiser} @cs.columbia.edu, ns2847 @columbia.edu

Abstract—When programs fail in the field, developers are often
left with limited information to diagnose the failure. Automated
error reporting tools can assist in bug report generation but
without precise steps from the end user it is often difficult for
developers to recreate the failure. Advanced remote debugging
tools aim to capture sufficient information from field executions
to recreate failures in the lab, but have too much overhead
to practically deploy. We present CHRONICLER, an approach
to remote debugging that captures nondeterministic inputs to
applications in a lightweight manner, guaranteeing faithful re-
production of client executions. We evaluated CHRONICLER by
creating a Java implementation, CHRONICLERJ, and then by
using a set of benchmarks mimicking real world applications
and workloads, showing its runtime overhead to be under 10%
in most cases (worst case 86%), while an existing tool showed
overhead over 100% in the same cases (worst case 2,322%).

Index Terms—Debugging aids, Software maintenance, Error
handling and recovery, Maintainability

I. INTRODUCTION

While software may behave properly under testing prior to
deployment, it can be difficult to fully anticipate all possible
usage scenarios and configurations in the field, where software
is required to operate on different operating systems and in
conjunction with various external systems. Reproducing field
failures in the lab can be difficult — especially in the case of
software that behaves nondeterministically, relies on remote
resources, or has complex reproduction steps. Even when end-
users file bug reports, it can be difficult to coerce users to
provide detailed enough steps to reproduce the failure [17].
To bridge the information gap, remote debugging tools aim to
automatically capture information from the failing code and
transmit it to developers.

A typical approach to remote debugging captures the state
of the system just before a bug is encountered [13], [41].
However, unless such a system knows in advance that a
bug is about to be encountered, it is impossible to provide
developers with the exact state of the system before the
bug is encountered, unless that state is constantly logged
in anticipation of a defect. This approach tends to produce
high overheads (reaching 2,000%+ overhead) in the deployed
application [13], which may make it unacceptable for many
uses. Novel solutions that lower this overhead typically limit
the depth of information recorded (e.g. to use only a stack
trace, rather than a complete state history) [39] or the breadth

of information recorded (e.g. to only record information on a
particular subsystem that a developer identifies as potentially
buggy) [41]. While these approaches can reduce overhead
significantly, to a best case of 1% (with worst cases over
800%), they do not guarantee reproducibility.

Specifically, limiting the depth of information gathered may
fail to reproduce an error if the defect does not present
itself immediately. Imagine a program that reports its stack
trace (along with each parameter for those methods) upon
encountering a bug and contains (among others) methods A
and Z. Method A sets a heap variable V, and method Z reads
it. The program calls method A, which sets V' to an invalid
value and later on calls method Z, which reads the invalid
value in V' and crashes. In this situation a stack trace would
show the invocation of Z but not the invocation of A, as it
occurred in another branch of the execution tree.

Similarly, by limiting logging to a specific subcomponent
of an application, it is only possible to reproduce the bug if
it occurred within that subcomponent. This technique requires
that developers know a priori which sections of code will be
likely to crash and if they select too many the performance of
the system degenerates to the case where everything is logged.
These systems work well if it is clear to the developers what
section of code is most likely to crash, but if they select too
large of a subsystem, the performance benefit shrinks.

In this paper, we present CHRONICLER: a technique that
supports remote debugging by soundly capturing program
execution in a manner that guarantees accurate replay in the
lab, with very low overhead. In addition to simple stand-
alone applications, CHRONICLER supports accurate and effi-
cient record-replay of execution of client-server applications.
CHRONICLER only logs sources of nondeterminism — al-
lowing for a lighter recording process while still supporting
a complete replay for debugging purposes. When a failure
occurs, CHRONICLER generates a test case that consists of the
inputs that brought the system to fail, which allows any bug
that presents itself during execution to be replayed, regardless
of the time between failure and detection. This is a general
approach that can be applied to any language that runs in a
VM (for instance, Java or Microsoft’s .NET CLR), requiring
no modifications to that VM. We demonstrate the feasibility
of CHRONICLER by implementing it in Java, and found that
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the overhead for real world applications was minimal (1.76%
in the case of Eclipse performance tests, 6.62% for Tomcat).

The main contributions of this paper are:

« A presentation of our remote-debugging tool that guar-
antees bug reproduction: CHRONICLER

o CHRONICLERJ , an implementation of CHRONICLER for
Java, available for download and use now on github [14].

o A thorough evaluation of its performance demonstrating
its low overhead on real world applications

Our approach relies on an efficient record and replay system

that could be be used by the community to further explore
areas such as:

o Test suite generation — Existing tools impose high over-
head but could be run offline on captured executions [38]

e Process Migration — Existing tools require OS exten-
sions [48] or additional developer effort [30]

« Efficient checkpoint and restart for VM based languages
— existing tools [11] are not suited to VM based lan-
guages

The record and replay technique used by CHRONICLER can be
applied to these lines of research to ameliorate performance
burdens that have been holding back greater development.

The rest of the paper is organized as follows. In Section

II, we discuss related work in the field of record and replay
systems, ubiquitous error reporting and test case generation.
We elaborate on the CHRONICLER approach in Section III and
present implementation details for CHRONICLERJ n Section
IV. Our empirical evaluation of CHRONICLER and a com-
parison with another bug-reproduction tool is presented in
Section V. In Section VI, we discuss some of the limitations
of CHRONICLER. Finally we conclude and outline some ideas
for future work.

II. RELATED WORK

There are several widely used systems for collecting run-
time information to diagnose failures. Microsoft’s Windows
Error Reporting tool has been in use since 1999 and has
collected billions of error reports since then [33]. This tool
collects system information after the point of crash such as
register contents, thread stacks, hardware specifications and
with the user’s permission, transfers it back to the vendor for
analysis. Apple’s iPhone OS error reporter [12] and Firefox’s
Breakpad [28] are similar, reporting system state after a crash.
While these systems have minimal runtime overhead (they
are dormant until after an error occurs), their reports do not
contain steps to reproduce the crash, nor a test case. The
developer must still infer the cause of the crash, a problem
that CHRONICLER aims to solve.

More recently, tools have been developed specifically to
generate test cases to reproduce errors caught in the field.

BugRedux [39] uses symbolic execution to guide the syn-
thesis of tests that can reproduce failures from four different
kinds of execution data; points of failure, call sequences and
complete program traces. The runtime overhead imposed by
logging call sequences varied from 1% to nearly 50%. How-
ever, its ability to reproduce an observed failure is dependent

on the completeness of the set of intermediate states which
are used to guide the synthesis of the tests. If the states
extracted from the execution traces are incomplete then the
observed failure may not be reproduced. CHRONICLER has
the same end-goal as BugRedux, to generate test cases that
reproduce field errors, but uses an approach that can guarantee
reproduction.

Bbr [22] is a system that uses symbolic analysis to re-create
program runs that are isomorphic in execution paths for long
running programs such as databases and web servers. While
the states generated by bbr might reproduce the execution path
that lead to the error, they are not identical to the original
state. With CHRONICLERthe actual state of the system from
the point when recording commences is preserved.

ReCrashJ [13] is a Java-based tool that automatically gen-
erates test cases when software crashes. ReCrash] maintains
a log of method arguments for the entire call stack, and
in the event of a crash, uses the log to create a test. The
system is limited in performance, showing overhead as high
as 100,000%, 60%, or 42% (depending on the logging method
used, presented here in descending order of soundness; the
42% approach does not maintain copies of the state). While
a second recording mode exists that is lightweight in com-
parison, it requires that a crash be reproduced a second time
in the field — which may be unacceptable if the crash leads
to a loss of data. ReCrash] is also limited in applicability to
failures that present themselves in deep call-stacks — if the
stack depth is too low, the information collected may not be
enough to reproduce the same failure.

Scarpe [41] is a bug reproduction tool that requires de-
velopers to annotate their application to show component
boundaries, and captures interactions between the classes of
interest and external code. This approach can be quite efficient
when the component selected for logging has limited external
interaction, but in other cases the overhead is as high as 877%.
In contrast to Scarpe which captures inter-component interac-
tion within an application, CHRONICLER records interactions
between the application of interest and its environment.

At their core, systems such as CHRONICLER, ReCrash]J
and Scarpe are essentially record and replay systems. Record
and replay systems capture program execution and deter-
ministically replay it. Some of the earliest such systems
were machine-wide, aimed to debug operating systems [27],
[46], [53], [59]. Unlike CHRONICLER, these systems capture
everything running on the machine (rather than within a
specific program) and are invasive, requiring custom hardware,
a modified operating system, or a specialized virtual machine.

Liblog [29] and Mugshot [44] are two application-level
record and replay systems very similar to CHRONICLER.
Liblog is a tool for C applications to record and replay
all interactions between the application and the operating
system by providing a libc wrapper. However, this approach
is insufficient to capture all sources of nondeterminism in
C programs, which can interact with the outside system
through mechanisms such as shared memory or asynchronous
intercepts, and therefore can not guarantee complete replay
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Fig. 1: High Level Overview of CHRONICLER

(concerns that are addressed by a VM). Additionally, liblog
does not support logging multithreaded applications, which
CHRONICLER supports by maintains a log for each thread.
CHRONICLER’s approach is fundamentally very similar to
liblog in that both systems log nondeterminism, although key
to our approach is the mechanism in which we intercept
the nondeterministic calls. A direct application of liblog to
a VM based language would necessitate modifying the VM
or the core language API, whereas our technique involves
instrumenting the byte code representation of the program.
CHRONICLER takes advantage of the portability of VM based
languages, while liblog only runs on systems that use the libc
library.

Mugshot [44] is a record and replay system targeting
JavaScript applications with the same underlying technique as
liblog, using JavaScript reflection to intercept nondeterministic
inputs. Mugshot imposes low overhead both in terms of
storage and computation (7% for interactive games). CHRON-
ICLER is very similar to both tools in that it too achieves
low-overhead record and replay by capturing sources of non-
determinism. However, the principles involved in Mugshot’s
implementation are not generally applicable to VM based
languages, as the interception technique (based on reflection)
can be a computationally expensive operation, particularly
in the JVM. Mugshot also is designed to function in the
limited execution model of browser-based applications (based
on non-preemptive callbacks), which is not the case for
other languages such as Java, with a rich execution model,
full multithreading support and many more sources of non
determinism than Javascript.

R2 [34] is an application level record replay system that
is similar to liblog but improves upon it in a few ways.
While liblog intercepts calls to low level libraries such as libc,
R2 requires developers to annotate the application interfaces
they wish to replay. This allows developers the flexibility
of choosing an interface whose interception will cause low
overhead as well as to bypass liblog’s limitation of not
guaranteeing faithful replay. Conversely, this implies extra
work for the developers to manually annotate the APIs they
care about while CHRONICLER automatically determines the
correct methods to annotate without developer input.

Although several record-replay systems have been described

in the literature, only a few target the JVM. DeJaVu [26] was
one of the earliest JVM based record and replay systems.
However, it required invasive changes to the JVM which
limited its potential for widespread adoption.

JaReC [31] and LEAP [36] are record and replay systems
for Java applications that specifically target replaying thread
interleavings. JaReC suffers from high overhead, ranging from
100-2,490%. LEAP records less information — only partial
thread access information, which allows it to display much
less overhead, around 10% on Tomcat and Derby (but up to
600% in the worst case, depending on thread accesses). Both
only record thread interleavings (and no other inputs) however,
and cannot faithfully replay a recording, unlike CHRONICLER.

jRapture [54] is a Java record and replay system designed to
be used for profiling executions after they have been captured.
jRapture uses an overall approach similar to CHRONICLER but
requires modifications to the core JRE API libraries, which
complicate its widespread distribution. Preliminary perfor-
mance testing showed jRapture to have overheads ranging
from 0.80-10,000% depending on the relative proportion of
I/O in the application being logged [54].

While test case generation tools (e.g. [24], [47], [49],
[62]) focus on generating test cases to increase test suite
code coverage offline, CHRONICLER generates test cases that
specifically reproduce field failures.

III. APPROACH

The CHRONICLER approach relies on a simple principle:
if a bug occurs deterministically, then reproducing it in the
lab can be made trivial — the developer need only run
the program, and the bug will present itself. Unfortunately,
software often fails to behave completely deterministically,
with inputs provided by outside systems (via network, file
or console I/O, shared memory access, etc), from random
numbers, from system properties, such as the current time
or machine configuration, or from thread interleaving. Hence
CHRONICLER records sources of nondeterminism in a pro-
gram and replays them to reproduce the bug.

Figure 2 shows the overall approach to logging nonde-
terminism with CHRONICLER. CHRONICLER is designed to
function in any VM-style programming language, where in-
teraction outside of the VM is restricted to a finite set of
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methods. CHRONICLER runs completely within the VM, and
sits between the application and all sources of nondeterminism,
logging them as they enter the application code. Note that
although thread interleavings are a source of nondeterminism
that may manifest internal to the VM, and are not logged.
This limitation is addressed further in Section VI, but does
not prevent CHRONICLER from replaying non-race bugs.

Unlike systems like liblog [29] and Jockey [52] that record
nondeterminism at the granularity of system calls, CHRONI-
CLER records nondeterminism at the granularity of the meth-
ods provided by the VM. This distinction means that there
will be a wider selection of methods that need to be logged, as
VM-based languages (such as Java or .NET) typically provide
a common library or API of utility functions. For instance,
in order to read data from a file, a programmer may have at
their disposal methods to read by line, by word, or in a binary
format into a byte array. The liblog approach would record the
underlying call from all of these methods that actually reads
data from the file. On the other hand, CHRONICLER will record
the invocation of each of the language utility methods (such
as to read a line), rather than the native routine itself.

This approach removes the need to modify any language-
provided libraries, and can result in performance gains for
CHRONICLER. Returning to our example of reading data from
a file, imagine an implementation of the “readLine” method
provided by the language that reads N bytes from a file into
a buffer until it reaches a newline character. Rather than log
the buffer every time that the underlying “read” method is
called, CHRONICLER simply logs the line that is eventually
returned. Of course, application code can also directly call
native methods (without utilizing the language-provided API),
and these calls are logged as well.

Once all nondeterministic method calls are identified,
CHRONICLER instruments the application code to log the
result of the call. CHRONICLER logs a unique, reproducible
identifier for each thread to denote which log entry should be
replayed in which thread. The log is buffered in memory and
flushed to disk as the log size increases.

We create a special case to handle event-driven systems,

where the event dispatcher is part of the native code (e.g.
Swing in Java). In these cases, nondeterministic input may
drive the language API to fire events to listeners in client
application code, but the application never directly reads that
input. To reproduce these events, we log each invocation of
these listener methods, so that we can fire them in the same
ordering with the rest of our log.

This approach is complete: by logging all sources of non-
determinism, we can guarantee that we can reproduce the
same execution, and hence, the same failure. Moreover, this
approach will reproduce a failure even if it goes unnoticed for
some long time, as long as the log files are retained for the
entire period.

CHRONICLER instruments the application to generate a test
case and log file to transmit to developers upon encounter-
ing an error. Once the developers receive the test case and
log, reproduction is simple: CHRONICLER re-instruments the
application code for replay rather than recording, and then
executes the instrumented application with the log file. To
instrument the application for replay, we identify the same
methods that we previously logged and replace the method
calls with instructions to load the logged input values. Then
we begin execution at the same entry point as the original
failed execution and play back the log. With this technique
we allow developers to observe the entire execution and use
existing automated debugging tools that they may already be
comfortable with, such as [35], [40], [61].

Note that through the entire CHRONICLER approach, no
source code is necessary, and all instrumentation can be
performed directly on byte code.

In order to evaluate the performance of this approach we
implemented CHRONICLER for Java and the JVM, although
the approach is general enough to apply to other languages
within the JVM (e.g. Scala) or other VMs (e.g. .NET).

IV. IMPLEMENTATION

To further elaborate on the CHRONICLER approach, we
provide CHRONICLERJ, our Java implementation of CHRONI-
CLER. Figure 3 shows an overview of the CHRONICLER] im-
plementation.

We describe its implementation in the following four core
components:

A. Detecting Nondeterministic Methods in the JVM

Our approach requires instrumenting the call site of every
method in client code that receives nondeterministic input.
As we noted previously, within the JVM the only way that
code can receive nondeterministic input is if it makes a call
that executes native (non-Java) code. Facilities for generating
random numbers, accessing system properties (such as the
current time, IP address, hostname, etc) or interacting with
files and sockets are all implemented in native code.

Therefore the first step to identifying nondeterministic meth-
ods in the Java API is to scan the entire API, and mark all
methods that are “native” as nondeterministic. However, not all
native methods are nondeterministic. For instance, the typical
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Fig. 3: CHRONICLERJ Implementation Overview

approach to copy the contents of an array is to use a native
call System.arraycopy(Object source, int sourceOffset, Object
dest, int destOffset, int length). While an array-copy could be
implemented in pure Java, the native approach is far more
efficient, as it results in directly copying the contents of the
entire array (stored contiguously in memory) rather than an
entry-by-entry approach. This native method (and many oth-
ers) implement basic tasks deterministically and efficiently. We
manually constructed a stop list of methods which are native,
but deterministic, ensuring that the “default” classification for
a native method was nondeterministic, sacrificing performance
for correctness, rather than risking an incomplete log.

The next step in identifying all nondeterministic methods in
the Java API requires identifying all API methods that call the
previously identified nondeterministic methods. This process
scans the API for all callers of nondeterministic methods and
recursively marks those methods as well as their callers as
nondeterministic. CHRONICLERJ also carries nondeterministic
flags up the inheritance hierarchy — this will, for instance
result in the interface method InputStream.read(byte[], int, int)
to be marked as nondeterministic, since many of its imple-
menters are. Since Java exercises dynamic binding, it may be
impossible to know statically exactly which implementation
of a method will be invoked at run time, and therefore, we err
on the side of caution.

At this point, we have identified all API methods that
call a method which behaves nondeterministically, or return
a nondeterministic result. The final step is to identify methods
which can behave nondeterministically because they share
state with a nondeterministic method. CHRONICLER] performs
a very simple analysis to determine these methods, marking
all fields set by a nondeterministic method as tainted, and then
marking all methods that read those fields as nondeterministic.
Similarly, all owners of methods called by a nondeterministic
method are marked as nondeterministic. A more advanced
control and data flow analysis could limit the number of
methods falsely flagged as nondeterministic, but we found the
performance of this technique to be certainly adequate (more

information on the performance of CHRONICLERJ appears in
Section V-A).

This process of carrying flags through the hierarchy repeats
until the list of nondeterministic methods is stable. Finally,
CHRONICLERIJ checks all classes in the application of interest
(as well as included libraries) to build a list of any methods that
directly invoke native code. With this approach we guarantee
detection of all methods that behave nondeterministically.
In this way, CHRONICLERJ builds a list of approximately
100,000 methods (on JRE 1.7.0_05 running on Mac OS
10.8.0) that must be logged when called by the client code.
This entire process is integrated into CHRONICLERJ, so that
it can be re-run by developers for new releases of Java.

B. Logging

CHRONICLERJ instruments all calls to the identified nonde-
terministic methods to record return values (and buffer(s), if
applicable). All byte code instrumentation is performed using
the ASM byte code framework [20]. This log is buffered in
memory, and written to disk at regular intervals (flushing the
log to disk is described further in the following section). The
log buffer can have a hard size limit, or optionally expand as
necessary until it is flushed. CHRONICLERJ is thread-safe, and
protects each log call with a barrier so that no two threads can
log at the same time.

Logging code is embedded inline, just after the value that
we need to log (a return value or parameter) is pushed onto the
stack. The instrumentation copies the object, grows the log if
necessary, writes the object to the log, writes the current thread
to the log and flushes the log if necessary. For completeness,
we also record events dispatched nondeterministically by the
language API (e.g. Swing ActionListeners) so that the replay-
ing application can fire them at the appropriate time.

When writing values to the log, immutable types (such as
language primitives — Integer, Long, Short, Float, Double,
Byte, Character and Boolean — and other classes such as
String) are simply stored as pointer references. Since the
values are immutable, we can be assured that during execution




the log contents will not be inadvertently changed. Mutable
types (such as arrays, or mutable classes) however must be
fully copied, so as to ensure that the logged version represents
the value at log time, and isn’t modified by the process.

To efficiently copy arrays that contain immutable types, we
created an inline fast cloner, observing that if the values in
an array are immutable, the only way to change the array’s
contents is to assign new values to its indices. Our fast array
cloner directly allocates a new array of the appropriate size,
and uses the native, JVM-provided System.arrayCopy method
to copy the array contents (which may be primitive values or
object references).

The remaining cases (mutable objects that must be cloned)
are cloned using a runtime reflective cloning library [42] that
copies all fields on an object, recursing through those fields
to copy them as well. This can become time intensive — for
an object O that has n fields, it is necessary to first allocate
a new object O, and then for each n fields, copy each field,
recursing to copy that field’s objects, and so on. However,
it is necessary to undertake this process to ensure a faithful
reproduction.

We hold a special case for logging constructors since in
Java a constructor has no return value. In most cases however,
a reference to the newly constructed object is left on the
stack after the invocation of the constructor — so that it
can be stored in a field, or used in any way. However, a
statement such as “new Object();” will not result in a reference
to the object left on the stack — since only the constructor
is called while the the object itself is unassigned. Therefore
CHRONICLER]J tracks the state of the stack, and only generates
log instructions after a nondeterministic constructor if the
newly generated object is used.

We also hold a special case for logging events fired by Java
itself. For each listener, at instantiation we create a unique ID
based on the order in which it was created and the thread that
created it. Then when the listener receives an event, we log
the ID of the listener and the event that was fired.

At the same time that this instrumentation is performed, a
“replay” version of the application is created, which replaces
nondeterministic calls with instructions to load the appropriate
log value. This process leaves instructions that evaluate any
argument expressions to these methods (which themselves may
have side effects), to ensure a faithful reproduction.

C. Flushing the log

By default, CHRONICLERJ flushes the log after 500,000
entries are stored in the log, using the number of entries as
a heuristic for the total size (in memory) of the log. While
it is possible to more accurately count the size of the log,
doing so would add a performance overhead that we did not
wish to incur. The flush interval is configurable, and can be
disabled altogether, so that the developer can directly invoke
the flushing mechanism. This can be particularly useful to
ensure that the log flush occurs during a period that the system
is not processing many events. The log is also automatically
flushed when an uncaught exception occurs. Flushing occurs

in a background thread, and if enough processors are available,
program execution can continue during the flushing process.

CHRONICLERJ uses a shadow log during flushing, which
allows new events to be logged to the primary log, while
CHRONICLERIJ flushes the shadow log. This allows for the
critical region in the flushing process to be relatively small
as only the creation of the shadow log and truncation of the
primary log must be protected. The log is split into two parts: a
log for Serializable types (such as primitives, primitive arrays,
Strings and other Serializable classes), and a log for non-
serializable classes. The log of Serializable types is flushed
using Java’s built-in serialization mechanism, while the non-
serializable log is exported to XML using the XStream library
[58]. This technique takes advantage of the speed of Java’s
serialization mechanism whenever possible.

D. Test Case Generation

When an uncaught exception is encountered (or when the
mechanism is manually invoked by including the CHRONI-
CLER]J library and calling the static function ChroniclerEx-
portRunner.generateTestCase()), CHRONICLERJ creates a test
case that invokes the application with the same starting param-
eters and uses any necessary log files for input, executing the
identical set of actions that caused the system to fail originally.
To perform this replay, CHRONICLERJ re-instruments the
application to replace the code that originally generated the
log, with code to replay the log. In this way, CHRONICLER]J re-
moves nondeterministic method calls, replacing them with
calls to load the appropriate log value. This process leaves
instructions that evaluate any argument expressions to these
methods (which themselves may have side effects), to ensure
a faithful reproduction.

The generated test case contains all necessary log files (as
the log may have been flushed more than once before the
failure), and loads them sequentially as necessary, tracking the
replay progress through each individual log. Each thread main-
tains its own position in the log, and CHRONICLERJ ensures
that each thread receives the logged values for that thread, in
the order that they were logged.

In our evaluation that follows, we show that the logging
overhead of CHRONICLERJ is reasonable for several ap-
plications. Our figures indicate that CHRONICLERJ is very
lightweight compared to ReCrashlJ, the only previous solution
for Java that we were able to obtain to compare to directly.

V. EMPIRICAL EVALUATION

We evaluated CHRONICLER/J in two dimensions: its perfor-
mance in the field when capturing executions, and its ability to
reproduce failures, leading to the following evaluation metrics:

EM1: Performance overhead: Is the runtime overhead
of CHRONICLERJ’s logging suitable to be deployed
with production applications in the field?

EM2: Functionality: Does CHRONICLER] reliably
reproduce failures?



Benchmark Description Benchmark CHRONICLER]J ReCrashJ Overhead
avrora Simulates programs running on a grid of AVR microcon- Overhead
trollers This study  From [13]
batik Executes unit tests for Apache Batik, an SVG toolkit, SVNKit Checkout  68.42% TBD 38.00%
producing several images Eclipsec Channel 9.95% TBD 34.00%
eclipse Executes non-gui performance tests for Eclipse Eclipsec Content 11.62% TBD 13.00%
fop Parses and formats an XSL-FO file into a PDF Ecipsec String 10.87% TBD 27.00%
h2 Runs an in-memory database benchmark, running trans- Eclipsec Jlex 7.18% TBD 42.00%
actions against a theoretical banking application SVNKit Update TBD% TBD TBD%
jython Interprets and runs the pybench Python benchmark using TABLE TII
_ jython [S1] i i i BENCHMARK PERFORMANCE FOR CHRONICLERJ AND RECRASHJ
luinden Indexes the Shakespeare and the King James Bible with AGAINST RECRASHJ’S BENCHMARK SUITE
Apache Lucene
lusearch Searches for keywords over a corpuse including Shake- are jmplementations of well known and accepted workloads.
pmd ;p;;f; n(:ili t:gtllglzrgl d{;::;fﬁjﬁggripg:: Lucene For instance, the “h2” benchmark utili;es the TPC-C workload
sun flow Renders images with ray tracing [57], a common database benchmarking workload, to test an
tomcat Creates a tomcat server and runs a simple sample servlet in-memory database. The “tradebeans” and “tradesoap” bench-

trade beans Executes the DayTrader [55] benchmark via Java Beans
on an Apache Geronimo server with an in memory

database

tradesoap Executes the DayTrader [55] benchmark via SOAP on an
Apache Geronimo server with an in memory database
xalan Transforms several XML files into HTML

TABLE I
DESCRIPTION OF BENCHMARKS, FROM THE DACAPO WEBSITE [19]

Benchmark  CHRONICLERJ Overhead ReCrash] Overhead
avrora 1.56% 2,321.94%
batik 6.59% 5.97%
eclipse 1.76% N/A
fop 39.96% 130.11%
h2 6.46% 669.56%
jython 15.45% 481.11%
luindex 4.66% 312.90%
lusearch 36.60% 951.27%
pmd 10.04% 90.93%
sunflow 1.96% N/A
tomcat 6.62% 9.06%
tradebeans 3.11% 8.15%
tradesoap 5.31% 21.13%
xalan 26.59% 780.25%
TABLE 11

BENCHMARK PERFORMANCE FOR CHRONICLERJ AND RECRASHJ
AGAINST DACAPO

A. EMI - Performance Overhead

We used the DaCapo v9.12-bach suite of benchmarks [18],
a set of Java benchmarks that focus on exercising applica-
tions in real-world conditions to evaluate CHRONICLERIJ’s
performance for EM1. We also evaluate CHRONICLERJ’S
performance overhead on the same set of benchmarks used
by the Java bug reproduction system, ReCrashJ [13]. Finally,
we bound the best and worst case overhead of CHRONI-
CLERJ by constructing synthetic benchmarks that specifically
target CHRONICLERJ’s strengths and weaknesses. We exe-
cuted all benchmarks on a 2.7 Ghz iMac with 16GB of RAM,
Java 1.7_05 with the heap size configured to 12Gb and Mac
OS 10.8.0 in a clean-room environment. We used the default
configuration for both ReCrash]J and CHRONICLERJ .

1) DaCapo Benchmarks: The DaCapo suite consists of
fourteen non-trivial workloads exercising a variety of open
source, widely used applications The benchmarks are diverse
and include a widely used application server (‘“Tomcat”), a
full text search engine (“Lucene”) as well as “Jython”, a
Python interpreter written in Java. Several of the benchmarks

marks run Apache’s DayTrader [55] benchmark workload,
an open source version of IBM’s Trade 6 workload [37]. A
complete list of the individual benchmarks executed along with
a brief description appears in Table L.

We executed all 14 benchmarks in the DaCapo suite
100 times each on both the unmodified benchmark and
the CHRONICLER]J-instrumented benchmark. We attempted to
compare CHRONICLERJ with other bug reproduction systems
on the same benchmark, but were limited in tool availability
— the only Java-based bug reproduction system that we were
able to download was Recrashl] [13], version 0.3.

During our preliminary testing, we found that in some
instances, the CHRONICLERJ-instrumented version of the
benchmark ran faster than the uninstrumented version. This
seemed counter-intuitive, so we investigated and found that
the benchmarks that ran faster with CHRONICLERJ (xalan,
tradebeans, tradesoap and sunflow) were all multithreaded. In
its default configuration, DaCapo uses as many worker threads
as there are cores on the machine (four, in our case). However,
we believe that several of the benchmarks (most notably, xalan
tradebeans tradesoap and xalan) were exhibiting significant
amounts of thread contention. By adding CHRONICLERJ,
which adds a lock around each log statement (no two threads
can write to the log at once), we believe that we actually
reduced the contention, hence increasing the performance.
We experimented with running the non-instrumented version
of DaCapo and found optimal performance on our test ma-
chine (for the non-instrumented DaCapo) when limiting the
number of threads to two. Figure 4 represent the average
time per benchmark of the DaCapo suite limiting the external
concurrency to only two threads. Table II shows the results
of our study in terms of overhead in percent increase of
time per benchmark. Note that ReCrashJ failed to properly
instrument the eclipse and sunflow benchmarks — for these
cases the instrumentation caused a runtime crash in both cases,
and we therefore do not have results for ReCrash] for those
benchmarks.

2) Recrash Comparison: To create a fair basis for compar-
ison with ReCrashJ, we also benchmarked CHRONICLERIJ’s
performance on the same systems that the ReCrashJ authors
benchmarked in their paper [13]:

« Using SVNKit 0.8.0 (an SVN client implemented entirely
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Fig. 4: DaCapo Benchmark Results for a baseline execution, CHRONICLERJ and ReCrashJ
Original ChroniclerJ ReCrash]J
Average  Standard Dev. = Median | Average Standard Dev. Median Overhead | Average Standard Dev.  Median Overhead
avrora 4241.6 103.2 4,231.0 4,308 201 4,285 1.56% 102,729 5,624 106,099  2,321.94%
batik 23129.4 3,297.6 22,420.5 24,653 4,111 24,025 6.59% 24,510 3,628 24,052 5.97%
eclipse 35867.3 1,067.2 35,788.0 | 36,498 945 36,432 1.76% 0 0 0 -100.00%
fop 2370.8 56.0 2,346.0 3,318 108 3,269 39.96% 5,456 131 5,450 130.11%
h2 4916 338.8 4,802.5 5,234 491 5,101 6.46% 37,832 295 37,802 669.56%
jython 8539.5 324.8 8,471.5 9,859 1,034 9,505 15.45% 49,624 1,269 49,678 481.11%
luindex 1414.2 162.1 1,383.5 1,480 148 1,465 4.66% 5,839 506 5,927 312.90%
lusearch 3852 626.8 3,878.5 5,262 640 5,462 36.60% 40,495 860 40,556 951.27%
pmd 4909.5 190.8 4,894.5 5,402 210 5,405 10.04% 9,374 459 9,493 90.93%
sunflow 4479.1 98.0 4,458.0 4,567 96 4,483 1.96% 0 0 0 -100.00%
tomcat 6969 1,032.7 6,815.0 7,431 971 7,133 6.62% 7,600 2,778 7,165 9.06%
tradebeans | 5581.7 249.2 5,528.5 5,755 233 5,749 3.11% 6,036 170 6,024 8.15%
tradesoap 19753.1 414.8 19,872.0 | 20,802 3,853 19,830 5.31% 23,927 10,152 20,064 21.13%
xalan 3470.1 177.7 3,425.5 4,404 114 4,384 26.90% 30,622 6,984 26,315 782.46%
TABLE IV

BENCHMARKED PERFORMANCE OF CHRONICLERJ ON 2 CORES, ALL TIMES IN MILLISECONDS

in Java) [56], checkout and update the project “amock”
on GoogleCode [32]

o Using the Eclipse 2.1 Java compiler (a compiler imple-
mented entirely in Java), compile the JDK 1.7 sample files
“Content,” “String,” and “Channel” as well as version
1.2.4 of the JLex project [16]

In Table III we show the run-time overhead for CHRONI-
CLERJ and ReCrash] on our test platform, as well as the
original results previously obtained by [13]. We attribute the
differences in overhead between our experiment and [13] to
the architectural differences between the test systems.

3) Targeted benchmarks: Although the DaCapo bench-
marks simulate real world workloads, we wanted to explore the
effects of injecting CHRONICLER]J with specialized workloads.
Specifically, we wanted to observe how CHRONICLERJ would
interact with a purely computational workload (which would
entail little or no instrumentation) and an I/O heavy workload
(which would be almost entirely instrumented).

We selected SciMark 2.0 [50] as our computational bench-
mark. Some of the programs included in this benchmark
are an implementation of the Fast Fourier Transform, Monte
Carlo integration and LU decomposition. SciMark only calls
nondeterministic functions to build the test data: there is no
nondeterminism within the benchmark itself (and hence, it
was not instrumented in any way). We executed the SciMark
benchmark 100 times and observed that the overhead imposed
by CHRONICLERJ on purely computational workloads is in-
significant (< 1%).

In order to characterize CHRONICLERJ’s worst case per-
formance, we ran it with a program that did nothing but
read files from 2Mb all the way up to 3Gb. These files
were generated from random binary data, and contain no
linebreaks. The benchmark program uses the readLine method
of java.io.BufferedReader to read the file into a string. We
executed this process 100 times on our test machine and
measured the average overhead. As shown in Figure 6, as we



Original ChroniclerJ ReCrash]J
Average  Standard Dev.  Median | Average Standard Dev. Median  Overhead | Average Standard Dev. Median  Overhead
avrora 4279.5 101.9 4,284.5 4,288 164 4,269 0.20% 97,543 6,748 96,445  2,179.29%
batik 22364.3 2,877.8 21,583.5 | 24,217 4,559 23,728 8.29% 28,758 4,979 28,129 28.59%
eclipse 35521.2 1,019.5 35,373.0 | 35,906 946 35,794 1.08% 0 0 0 -100.00%
fop 2357.5 423 2,346.5 3,266 181 3,210 38.52% 5,488 270 5,476 132.77%
h2 5260.3 410.0 5,176.5 6,299 161 6,288 19.75% 37,111 569 37,213 605.49%
Jjython 8433.7 302.9 8,322.5 8,924 355 8,978 5.82% 51,503 2,312 51,247 510.68%
luindex 1442.1 168.8 1,446.0 1,533 186 1,524 6.31% 6,134 625 6,068 325.38%
lusearch 1441.4 315.9 1,351.5 2,965 137 2,958 105.68% 37,200 1,806 37,010 2,480.91%
pmd 4981.3 178.8 4,945.5 5,094 187 5,070 2.27% 11,162 605 11,171 124.08%
sunflow 3251.7 108.7 3,237.0 3,218 123 3,199 -1.05% 0 0 0 -100.00%
tomcat 5333.2 1,000.6 5,189.0 5,747 804 5,618 7.76% 0 0 0 -100.00%
tradebeans | 6049.9 213.3 6,119.0 5,978 185 6,016 -1.19% 0 0 0 -100.00%
tradesoap 17135.8 510.4 17,181.5 16,560 703 16,685 -3.36% 0 0 0 -100.00%
xalan 4259.4 188.3 4,306.0 4,048 175 4,058 -4.95% 40,660 982 40,671 854.59%
TABLE V
BENCHMARKED PERFORMANCE OF CHRONICLERJ ON 4 CORES, ALL TIMES IN MILLISECONDS
3500 4) Discussion: As expected, CHRONICLER] shows mini-
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Fig. 6: I/O Benchmark Performance for CHRONICLERJ

increased the file size, the overhead evened out at 86% as the
file size grew, providing an upper bound for the worst-case
performance of CHRONICLER]J.

mal overhead in benchmarks that contain low amounts of 1/O,
while overhead grows in I/O heavy situations. In most cases
CHRONICLERJ outperformed ReCrashJ, with the exception
of the batik benchmark and the SVNKit benchmark. We
believe that this was caused by an amiable environment for
ReCrashJ (e.g. low stack depths), while the I/O components
of batik (reading and writing images) and SVNKit (reading
files from the network and writing them to disk) slowed
down CHRONICLERJ. CHRONICLERJ demonstrated a relative
stability in performance (fluctuating from 1.56% to 39.96%)
across the DaCapo suite as compared to ReCrash]J (fluctuating
from 5.97% to 2,321.94%).

We showed that even in the worst case, CHRONI-
CLERJ maintains an 86% overhead, while its best case per-
formance is under 1%. CHRONICLERJ’s overhead exceeded
10% in only benchmarks that performed large amounts of
input or output operations: fop, jython, lusearch, pmd, xalan,
SVNK:it and several Eclipsec instances. Based on our CHRON-
ICLER] evaluation, we conclude that the performance of the
CHRONICLER approach is suitable for applications that are not
dominated by file access, and even in those that contain large
amounts of file access, remains consistently bounded.

B. EM?2 - Functionality

In order to evaluate the ability of CHRONICLER to success-
fully replay an execution we considered eleven real bugs in
the following applications and libraries:

o Jetty: A widely used application server for Java. We
considered a bug that caused an uncaught exception when
the HTTP string parser was given a specific input (bug
#363993) The exception thrown was an EOFException
which was caused because of a lack of infrastructure in
the HttpTester to expect a body in an HTTP response.
The full stacktrace that was thrown is

IJava io. EOFException

2 at org.eclipse.jetty.

:309)

eclipse.jetty .

at org.eclipse.jetty.
:139)

http . HttpParser.parseNext(HttpParser. java

at org. http . HttpParser . parse (HttpParser.java:204)

testing . HttpTester. parse (HttpTester . java




Benchmark \ Composite  Fast Fourier Transform SOR

Monte Carlo  Matrix Multiplication LU Decomposition

Baseline 1564.10376 1025.23461 1465.01133
Chronicler 1560.45056 1013.53144 1460.76157
Overhead 0.23% 1.15% 0.29%

TABLE VI

796.65661
795.14972

1448.65638 3084.95988
1444.79085 3088.01921
0.19% 0.27% -0.10%

BENCHMARK PERFORMANCE FOR CHRONICLERJ AGAINST SCIMARK

The HttpParser had a flag that allowed it to expect a
HEAD response but the HttpTester had no such flag
causing the eof exception..

o Apache Commons-Math: A stateless library consisting of
implementations of mathematical functions. We consider
four bugs that resulted in uncaught exceptions and incor-
rect results.

The first bug [1] we considered involved operations
on quaternions. Normally, post construction, quaternions
should be normalized but with certain input it wasn’t.
Specifically, using the constructor Vector3D -; Vector3D
-¢, Vector3D -; Vector3D -; Rotation with a normalized
angle lead to non-normalized quaternion. This case ap-
peared to me with the following data :

The second bug [6] resulted in NumberFormatExcep-
tion when valid strings were passed to the Num-
berUtils.createNumber method.

Groovy: A JVM based dynamic language. We consider
four bugs that lead to program crashes.

The first bug [7] resulted in a StackOverflowError when
accessors were annotated with @CompileStatic.

For instance, the following code results in the above error

I class HaveOption {

3 private String helpOption:

4

5 @CompileStatic

6 public void setHelpOption(String helpOption) {
7 this.helpOption = helpOption

)

I ul
2 u2
3 vl
Lv2

(0.9999988431610581, —0.0015210774290851095, 0.0)
(0.0, 0.0, 1.0)

(0.9999999999999999, 0.0, 0.0)

(0.0, 0.0, —1.0)

The second bug [8] resulted in a java.lang.LinkageError
with the following code

This lead to the following quaternion
(225783.35177064248, 0.0, 0.0, -3.3684446110762543E-
9)

which is obviously not normalized.

The second bug [2] that we considered resulted in over-
flow on large data sets on the Mean Whitney-U Test.
These data sets were large arrays of doubles, with sizes
around 1500 or more. The reason this was occurring was
that the underlying implementation of the test used an
integer in a place where a double should have been used.
The third bug [3] caused the functions ebeMultiply:
RealVector -; OpenMapRealVector and ebeDivide: Re-
alVector -; OpenMapRealVector to return wrong values
when one of the entries in the parameters passed to these
functions contains nans or infinity. The crux of the bug
is an invalid assumption that for any double x, x * 0d
= 0d is always true which is not the case with nan and
infinity.

The fourth bug [4] resulted in a run time exception
when calling ebeMultiply. This was caused because the
underlying implementation of the method was iterating on
the copy of the RealVector passed to ebeMultiply which
was simultaneously getting modified as well. Instead, the
iterating should have been done on the original copy of
the RealVector which is unchanging.

o Apache Commons-Lang: A stateless library that provide
helper utilities for the java.lang API. We consider two
bugs that resulted in exceptions.

The first bug [5] resulted in an uncaught NPE while call-
ing EqualsBuilder.append(Object[], Object[]). This NPE
was caused by null-value elements in the first object array.

I import groovy.xml.DOMBuilder
2 def filePath = “MestaXml.log'";

3 def doc = DOMBuilder. parse (new FileReader (filePath));
| def docElm = doc.documentElement;

The third bug [9] results in an exception when a closure
accesses a private method. The following code highlights
the bug.

| package test
2 public class Parent{

private String parentMethodB (){
4 return " parentMethodB ' ';

6 protected String parentMethodC (){
7 def closure={

8 return parentMethodB ()}

9 return closure ()

10 3}

1}

| package test

2 public class Child extends Parent{
public static void main(def args){

4 Child ¢ = new Child():

5 println (c.parentMethodC ())

6

}

When this code is run we get the following MissingMeth-
odException.

| Exception in thread ““main'' groovy.lang.MissingMethodException: No
signature of method: test.Child.parentMethodB () is applicable for
argument types: () values: {}

The fourth bug [10] results in an exception when val-
idating arguments passed to the mocked method using
Groovy mocks.

The following script reproduces the bug.

| import groovy.mock.interceptor.StubFor

3 def class SomeClass {

4 def methodOne(int age) {

5 return age * 12 % 30 = 24

6

}

8

9 def someStub = new StubFor(SomeClass)
10
11 someStub.demand . methodOne {




12 number —> assert number > 0
13 return 1

14}

15
16 someStub . use {

17 assert new SomeClass () .methodOne(2) == I

18}

CHRONICLERJ was able to faithfully reproduce the execu-
tions, in each case. All programs terminated with the same
uncaught exception that CHRONICLERJ had captured earlier.
A complete list and description of each of the bugs that
we reproduced are omitted for brevity, but appear in the
accompanying technical report [15].

VI. THREATS TO VALIDITY AND LIMITATIONS

We performed our experiments towards evaluating EM1 on
the DaCapo benchmarks, which we are representative of a
diverse set of real-world loads. However, it is both possible
and likely that there exist applications with workloads that are
not represented by the benchmarks. To provide insight into
performance for other workloads, the targeted benchmarks can
be used to gauge best case and worst case overheads based
on the amount of logging necessary relative to the overall
application. Although we are confident that our worst-case
benchmark truly stresses CHRONICLERJ to the worst case, it
is possible that there is some other use case that would stress
it further.

For EM2, the key threat to validity is the sample size. We
were only able to evaluate eleven failures, given the time-
consuming process of finding real bugs that exercise CHRON-
ICLERJ’s capabilities, downloading and compiling that older
version of software, and reproducing the bug — although we
have reported in this paper every failure that we encountered
and attempted to reproduce. Nonetheless, we believe that
given the approach we have taken, which we are confident is
capable of reproducing any (non-race) bug, this is not a great
concern. We are currently pursuing feedback from developers
regarding the usability of CHRONICLERJ (based on real world
scenarios), available on github [14].

There are several limitations to our approach and implemen-
tation. Current tools that reproduce races in Java applications
have worst-case overheads of over 500% [31], [36] — there-
fore we have omitted this functionality. However, traditional
race-detection techniques (e.g. [45]) could be used within the
lab on replayed executions to detect possible races, without
adding any additional overhead to the field execution.

The second key limitation to CHRONICLER is end-user pri-
vacy. While the thoroughness of CHRONICLER’s input logging
ensures that executions observed in the field are reproduced
accurately in the lab, this approach may leak sensitive end
user information to developers. This is a typical problem in
remote-debugging systems, and several approaches have been
developed specifically to protect the privacy of inputs recorded
in the field that could be combined with CHRONICLER (none
of these systems are record and replay systems themselves).
One way of solving this problem is through input minimization
[60], [61], where input that is non-essential to replicate the
program failure is removed. However, there is no guarantee

that the minimized input does not contain any sensitive data.
Camouflage [23] addresses this issue by mutating a failure
inducing input in such a manner that although the original and
mutated version share no sensitive data, the program execution
paths that they actuate are identical. Castro, et al [21] had
earlier used symbolic execution in conjunction with record
replay techniques in order to anonymize sensitive data present
in bug reports.

All record and replay systems, including CHRONICLER,
generate logs that grow over time. CHRONICLER’s log grows
in proportion to user input, so for systems that operate on
minimal input, the log will not grow significantly. In other
cases, we may be able to combine novel approaches to reduc-
ing the log size [22], [43] along with compression techniques
to decrease log sizes.

Detecting and logging all nondeterministic methods is key
to the CHRONICLER approach — which can only be applied
to languages that operate in a virtual machine (such as Java
or .NET). One potential failure point is if the set of nondeter-
ministic methods varied between individual VMs. However,
this is only possible in the unlikely event that there is a bug in
the VM itself. Similarly, defects in the underlying operating
system or computer hardware may not be reproduced.

Additionally, it is possible to circumvent CHRONICLER’S
logging, by creating a native method that nondeterministically
mutates its parameters (since CHRONICLER does not generally
log parameters passed to nondeterministic methods, only re-
turn values and buffer parameters). For our CHRONICLERJ im-
plementation, we ensured that no Java library methods behave
in this manner by surveying all of the native methods in the
JRE, and found only 37 that accepted a mutable object as a
parameter. We manually verified that none of these methods
were specified to modify their parameters. This process would
need to be performed for implementations of CHRONICLER for
other languages to make sure that this assumption holds.
Additionally, a developer may still create their own native
methods that nondeterministically mutates its parameters, and
this information would not be captured by CHRONICLERJ.
However, this technique is discouraged and rarely used (in the
case of Java), as it is inefficient to access object parameters
in native code [25].

VII. CONCLUSION AND FUTURE WORK

Reproducing bugs encountered in the field is a difficult task
faced by developers. In this paper we presented CHRONICLER,
a record and replay technique that can faithfully reproduce
bugs even in nondeterministic conditions. We presented the
sound approach used by CHRONICLER to guarantee bug
reproduction: logging nondeterministic inputs at a layer above
the language API. We evaluated our approach by creating
CHRONICLERJ in Java and simulating real world workloads.
While state-of-the-art bug reproduction systems can have high
overhead (with worst-case scenarios over 2,000%) or fail to
guarantee to reproduce defects, CHRONICLERJ has a worst-
case overhead of only 86%, with average-case performance
significantly lower. We demonstrated that CHRONICLER can



be used to reproduce bugs in deployed software by generating
test cases from logs.

In the short term, we plan to make CHRONICLER a more
robust approach by addressing its inability to deterministically
replay thread interleavings and its lack of sophisticated privacy
control. Our future research direction involves developing tools
that leverage CHRONICLER to introduce fault tolerance in
deployed software. Another interesting research topic would
be to combine the traces produced by CHRONICLER and
techniques such as symbolic execution or model checking in
order to automatically produce test inputs that can highlight
hidden bugs. These approaches will serve to complement
existing static analysis tools.
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