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Over the mid-Atlantic shelf of the North America, there is a pronounced shoreward intrusion of the
saltier slope water along the seasonal thermocline, whose genesis remains unexplained. Taking note of
the observed broad-band baroclinic motion, we postulate that it may propel the saline intrusion via the
shear dispersion. Through an analytical model, we first examine the shear-induced isopycnal diffusivity
(“shear diffusivity” for short) associated with the monochromatic forcing, which underscores its varied
even anti-diffusive short-term behavior and the ineffectiveness of the internal tides in driving the shear
dispersion. We then derive the spectral representation of the long-term “canonical” shear diffusivity,
which is found to be the baroclinic power band-passed by a diffusivity window in the log-frequency
space. Since the baroclinic power spectrum typically plateaus in the low-frequency band spanned by
the diffusivity window, canonical shear diffusivity is simply 1/8 of this low-frequency plateau —
independent of the uncertain diapycnal diffusivity. Applied to the mid-Atlantic shelf, this canonical

Tracer dispersion
Thermocline intrusion

shear diffusivity is about 20 m

2 s~ 1 which is sufficient to account for the observed tracer dispersion or

saline intrusion in the thermocline.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Over the mid-Atlantic shelf of the North America, the summer
hydrography is dominated by the seasonal thermocline caused by
the surface heating. Since the thermal contrast dominates the
density signature, the seasonal thermocline generally aligns with
the pycnocline, along which there is little temperature variation.
In contrast, the salinity varies discernibly along the pycnocline
and, as its most striking feature, exhibits a shoreward intrusion of
the saltier slope water. Because of its spatio-temporal variability,
this subsurface salinity maximum may not be captured by
individual soundings (Flagg et al., 1994; Lentz, 2003), but it is of
sufficiently common occurrence to manifest prominently in the
averaged cross-shore sections. An example of the latter repre-
senting an average of 12 transects in mid-September is repro-
duced in Fig. 1 (taken from Burrage and Garvine, 1988), which
shows a distinct tongue of saltier slope water that has intruded a
distance of O (10 km) along the thermocline. Using the observed
temperature and salinity range of 10K and 0.5, respectively,
across the saline intrusion, the density ratio is about 5 — the
reason that the feature does not significantly perturb the density
field hence may be regarded as dynamically passive.
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With the abatement of wind in summer, Houghton and Marra
(1983) suggested that the saline intrusion constitutes the primary
exchange process between the shelf and slope waters in the
stratified season. Quantitatively, Gordon and Aikman (1981)
estimated that the saline intrusion provides up to half the salt
needed to balance the riverine discharge; and based on his census
of soundings in the Mid-Atlantic Bight, Lentz (2003) calculated
that the shelf salinity would be 0.3 lower without the saline
intrusion, a significant fraction of the total salinity range across
the shelf. Even taking into account considerable uncertainty in
these estimates, the importance of the saline intrusion to the salt
balance of the shelf water is palpable; the impetus to understand
its genesis thus extends beyond mere dynamical curiosity.

Several causes have been conjectured for the saline intrusion,
none however are strongly argued or computationally demon-
strated. Boicourt and Hacker (1976) and Flagg et al. (1994) opined
that the feature could be induced by wind, a linkage however
unsupported by observational evidence (Burrage and Garvine,
1988; Flagg et al., 1994; Lentz, 2003; Churchill et al., 2003). Welch
(1981) and Aikman (1984) suggested that it is driven by the
lateral pressure gradient, but the latter is coupled to the motion
field hence may not be regarded as an independent forcing. Some
have postulated its generation by the double-diffusive interleav-
ing (Horne, 1978; Gordon and Aikman, 1981; Houghton and
Marra, 1983), but the requisite concurrent thermal and saline
gradient on density surfaces is not apparent (see Fig. 1), and the
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Fig. 1. The cross-shore hydrography in the Mid-Atlantic Bight in mid-September
(averaged over 12 transects) for temperature (a), salinity (b), and density (c). The
34.5 isohaline marks the boundary of the slope water, which has intruded a

distance of O (10 km) onto the shelf along the seasonal thermocline (taken from
Burrage and Garvine, 1988).

calculated growth rate in any event seems too small (Lentz, 2003).
Although the frontal instability enhanced by impinging Gulf
Stream eddies may inject the slope water onto the shelf
(Churchill et al., 2003), there is no reason for it to be constricted
to the depth range of the thermocline. Nonlinear rectification by
the baroclinic tides could drive an onshore flow in the thermo-
cline (Ou and Maas, 1986), it is however an Eulerian-mean that
may not transport passive tracers. To recap, despite many
propositions, the genesis of the saline intrusion remains unre-
solved, which points to a significant gap in our understanding of
the shelf-slope exchange.

2. Hypothesis

In seeking a possible explanation of the saline intrusion, we
take note of the observed prominence of internal tides on the
shelf. They are generated when the surface tides interact with the
topographic slope and density stratification (Baines, 1982), which
if super-inertial would propagate onto the shelf — sometimes in
the form of solibores whose surface imprints can be seen in

satellite images (Liu et al., 1998). Moored measurements (Colosi
et al., 2001; MacKinnon and Gregg, 2003a) showed additionally
that the baroclinic current may reach several tens of cm s~ !, but
unlike its barotropic counterpart, the baroclinic power spectrum
is broadband and contains comparable low-frequency as the tidal
energy (see Fig. 2, adapted from Sharples et al., 2001), a property
of particular significance in our discussion.

Since the baroclinic shear is concentrated in the thermocline
(MacKinnon and Gregg, 2003a; Palmer et al., 2008), so is the
diapycnal mixing induced by the shear instability, and indeed at
the passage of the solibores the diapycnal diffusivity may be
elevated by two orders of magnitude (MacKinnon and Gregg,
2003b; Moum et al., 2003). With the concurrent vertical shear and
diapycnal mixing in the thermocline, one naturally wonders if the
well-known mechanism of shear dispersion may drive the observed
saline intrusion, the question that motivated the present study.

Besides the naturally occurring saline intrusion, the tracer
release experiments also showed enhanced lateral dispersion in
the thermocline with an effective diffusivity of O (10m?s~! )
(Houghton, 1997; Sundermeyer and Ledwell, 2001; Ledwell et al.,
2004). To uncover the source of this dispersal, Sundermeyer and
Ledwell (2001) carried out numerical integrations of the tracer
distribution using the observed shear and diapycnal diffusivity,
and found that the calculated lateral diffusivity is only a fraction
of that required. Because of this discrepancy, they suspected that
there could be episodic mixing events within the thermocline that
might not be captured by the measured vertical diffusivity. This is
plausible since the latter is based on the vertical spread of the
tracer patch hence indicative of the background diffusivity — not
the diffusivity within the tracer patch that facilitates the shear
dispersion. Additionally, they postulated that the geostrophic
adjustment accompanying such vertical mixing events may
account for the observed lateral diffusion (Sundermeyer et al.,
2005) — a proposition not yet substantiated (Sundermeyer and
Lelong, 2005). Nonetheless, since such vertical mixing events
would augment the diapycnal diffusivity, it may partially bridge
the above shortfall.

Following Taylor’s (1953) consideration of the shear dispersion
in a steady flow, the study of the mechanism has been extended
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Fig. 2. Diffusivity windows (W) superimposed on the baroclinic power spectrum
of Sharples et al. (2001) (thick-dashed for the observed vertical diffusivity v and
thin-dashed when v is doubled). The windows peak at the diffusive time (Ty)
separating the Taylor and Saffman regimes. The dotted line marks the low-
frequency plateau of the power density.
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to a flow that is oscillatory in time to address the tidal dispersal of
tracers (Okubo, 1967; Zimmerman, 1986) and to a flow that is
sinusoidal in the vertical as well to examine its driving by the
internal waves (Young et al., 1982). Since our inquiry is the shear
dispersion in the thermocline where the current shear is concen-
trated, it affords certain simplification in the model formulation
when compared with Young et al. (1982); on the other hand, since
the baroclinic motion is inherently broadband — unlike the
sharply peaked barotropic tides, one needs to take a spectral
view of the process unnecessary for the aforementioned studies.

The remainder of the paper is organized as follows. We
formulate the model in Section 3 and examine the shear diffusivity
induced by monochromatic forcing in Section 4. We derive the
spectral representation of the shear diffusivity in Section 5 and
carry out a numerical test of the analytical formula in Section 6.
We apply the model results to the shelf environment in Section 7
and show that the shear diffusivity is sufficient to account for
the observed tracer dispersion and saline intrusion in the thermo-
cline. We summarize the main findings and provide additional
discussion in Section 8.

3. Model formulation

To elucidate the essential physics, it suffices to consider a level
pycnocline (used interchangeably with thermocline) embedded in
cross-shore baroclinic current as shown in Fig. 3. The current is
oscillatory in time, unvarying laterally, and its shear confined to
the pycnocline; this shear would induce diapycnal diffusivity
through shear instability, which thus is similarly confined. We
recognize that the observed thermocline undulates due to the
semi-diurnal tides, which being super-inertial are progressive, but
since we are concerned with shear dispersion over much longer
timescale, we shall take the model thermocline to be the tidal-
mean hence more aptly the “thermal band” spanned by the
undulation. One is also aware of the strong vertical mixing near
the ocean surface and bottom due respectively to the wind- and
friction-induced shear, which however plays no part in the shear
dispersion in the thermocline. The assumed confinement of the
vertical diffusivity to the thermocline pertains to its contrast from
the smaller background mid-column value, as seen in the
observed profiles (for example, MacKinnon and Gregg, 2003b,
their Fig. 11), which may also be justified by the slow leakage of
the tracer released in the thermocline (Ledwell et al., 1993). While
the observed vertical mixing within the thermocline is highly
episodic and its varied phasing with the current shear may
introduce considerable complication, we shall nonetheless for
simplicity assign a constant vertical diffusivity to the pycnocline
representing some proper space-time average. This assumption
can be partially justified a posteriori by the dominance of the

PYCNOCLINE
LAYER

Fig. 3. The model configuration of a level pycnocline of thickness h and uniform
vertical diffusivity v (zero outside) together with profiles of the baroclinic current
v’ and the tracer perturbation C'.

low-frequency motion in driving the long-term shear dispersion,
which of particular significance has ameliorated its dependence
on the vertical diffusivity (Section 7).

We consider the tracer concentration C inside the pycnocline
governed by the equation

Ci+u'Cx=vCys, (M

where the subscripts indicate partial derivatives (x and z are in the
cross-shore and up directions), v’ is the baroclinic oscillatory current
and v, the vertical diffusivity. The neglect of ambient vertical
diffusivity implies zero tracer flux out of the pycnocline so the
concentration C has zero normal-gradient at the layer boundary.
Although one may formulate a more precise boundary condition with
non-zero outer vertical diffusivity, this would only complicate the
mathematics but not alter the essential physics. To proceed, we
decompose the concentration in the pycnocline into its vertical
average through the layer (angle-bracketed) and deviation (primed):

C=<Cy+C. 2)
Taking the vertical average of (1) and applying the zero

normal-gradient boundary condition, we obtain, noting that v’ is
assumed laterally uniform,

(CH+<UCH =0, 3)
which can be subtracted from (1) to yield
CiHu (CHx+WCy—<uC >y =vC,. 4)

If we assume the motion to be sufficiently weak that the
quadratic terms can be neglected, the above equation is simplified to

Ci+u/ (Cyy=1C,,, (5)

an approximation to be assessed a posteriori (see later discussion).
Defining the “tracer” displacement ¢’ via

C=-¢<Coy (6)
it then satisfies the equation
Cr—ve =, 7

hence is decoupled from the mean tracer field. One may remove the
vertical-derivative terms by taking the current profile to be a half-
sine function in the pycnocline (see Fig. 3)

u' = 0(t)sin(rz/h), ®)
where h is the pycnocline thickness and z=0 is set at its mid-point.

Since this half-sine function is an eigenmode of the tracer concen-
tration as well, the solution to (7) is of the same form

¢'=&(tsin(m z/h) ©
with the temporal part satisfying the equation

@[ +O€é = il, (10)
where
o= v(rt/h)? (11)

is a parameter measuring the importance of the vertical mixing.
Defining the “diffusive” time as

Tq=2m/o=(2/m) h* /v, (12)

and let T; be the “forcing” period and [, the particle excursion, then
(10) implies a scale relation (brackets for scales),

[€]1<le(1,Tq/Ty), (13)

or the tracer displacement is bounded above by the excursion and
can be considerably smaller if the vertical mixing is strong (that is,
the diffusive time is short compared with the forcing period).
With (13), one may now reassess the neglect of the qua-
dratic terms in (4). By comparing them with the second term, it
requires that the tracer displacement be small compared with the
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horizontal scale characterizing the mean concentration, and
based on (13), a sufficient condition would be the excursion itself
satisfies this requirement. On the other hand, even if these
conditions are not strictly met, we do not expect the quadratic
terms to alter the essential results, as attested by their validation
by primitive-equation calculations (Section 6).

With the above formulation, one may solve for the perturbation
(10), which is phase-shifted by the vertical mixing. The resulting
rectified flux then drives the evolution of the vertical-mean concen-
tration via (3) — the essence of the shear dispersion. The derivation
however can be facilitated by the introduction of the “shear”
diffusivity that encodes the rectified flux, as discussed next.

4. Shear diffusivity

The rectified flux in (3) can be expressed in terms of the tracer
displacement (6)

UCH =—Ug) <Oy, (14)

which allows the definition of the shear diffusivity (a vertically
averaged property within the pycnocline) as

k(t)= US> =0&/2 (15)

on account of (8) and (9). Integrating (10) from the time of the
tracer release, we obtain the tracer displacement

t
&= /0 a(tye~*=0dr, (16)

which can be substituted into (15) to yield the (instantaneous)
shear diffusivity. As such, it is seen that the shear diffusivity is a
property only of the motion field hence laterally unvarying as
well. As its auxiliary properties, we define the time-mean shear
diffusivity (overbarred) as its average over the interval [0,t]:

t
k(t)= ]?/0 kdt, 17)

and the time-integrated shear diffusivity (the suffix “int”) as its
integration over the same interval:

ot _
K (£) = / kdt’ = kt. (18)
0

Using the shear diffusivity, the time progression of the (ver-
tical) mean concentration (3) becomes

<C>t:k<c>xx- (19)

It is seen from this equation that if the concentration were
initially Gaussian in x, it would remain so as time progresses with
its second moment 2 given by

1 = 1% + 2Kkipne, (20

where the subscript “0” denotes the initial value.

Analytical expressions of the shear diffusivity and its auxiliary
properties are given in Appendix for the monochromatic forcing,
and some these are plotted in Fig. 4 for selected forcing periods
and phases. The shear diffusivity in this figure has been non-
dimensionalized by the diffusivity scale

k= U? /o= UT4/(21), 21

where U is the amplitude of the current difference across the
pycnocline (referred as the “baroclinic amplitude”) and time t and
the forcing period T; have been non-dimensionalized by the
diffusive time (12) so that

1=T;/Tqg=QRnw) o (22)

with o being the forcing frequency (cycles per unit time). The
phase refers to the lag of the tracer release following the peak

1=1

10 1 1 ]
0.01 0.1 1 10

[
;o

Fig. 4. Time progression of the non-dimensionalized shear diffusivity for selected
forcing periods t and phases 0 (the curves are the same for phase increment of half
cycles). Solid and dash-dotted lines are respectively the time-mean and time-
integrated value over the internal [0,t] and their dashed extensions have been
smoothed over the rapidly shortening wiggles (because of the log-time scale). The
time and forcing period have been non-dimensionalized by the diffusive time and
the phase pertains to the lag of the tracer release with respect to the peak positive
baroclinic current.

positive baroclinic current (noting that since the shear diffusivity
is quadratic in the forcing, the curves are the same for phase
increment of half-cycles). It is seen that the time-mean shear
diffusivity varies strongly in time, particularly during the first
forcing cycle, which moreover is sensitive to the precise time of
the tracer release. In fact, the instantaneous shear diffusivity
could be negative during the sharp downturn of the time-mean —
an anti-diffusive behavior well recognized in the literature
(Smith, 1982). On the other hand, the time-mean is always
positive, so the tracer patch at any time has grown from its
initial size.

As seen in Appendix, the time-mean shear diffusivity tends
over large time to an “equilibrium” value of

at t—oo, 23)

which is a function only of the scaled forcing period 7, and the
large time is with respect to both the forcing period and the
diffusive time. It is seen from (23) that the equilibrium shear
diffusivity is greater for longer-period forcing (that is, greater t)
and asymptotes to 1/16. Qualitatively, the longer-period forcing
induces greater perturbation in the tracer concentration, which is
also more in phase with the baroclinic motion - both enhancing
the shear dispersion; and for sufficiently long forcing period, the
tracer concentration is in approximate steady-state diffusive
balance with the forcing hence its amplitude as well as the
vertically averaged flux no longer depends on the forcing period
- the reason for the above asymptote. Shortening the forcing
period, on the other hand, this equilibrium value (23) would
decreases sharply when the forcing period drops below the
diffusive time.

We have also plotted in Fig. 4 the time-integrated shear diffusivity
(dash-dotted line), which would track the second moment of the
tracer patch (20). At large time, the second moment grows linearly at
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a rate given by the equilibrium shear diffusivity (see (18) and (20)),
but over the short term, given possible contractions, the tracer
evolution provides a poor indicator of the equilibrium shear
diffusivity. Since for small perturbations, the rectified flux and
hence the shear diffusivity are additive among forcings, the above
problem would be compounded by the presence of low-frequency
forcing as the tracer patch would vacillate more widely and over
longer stretch of time.

Since the equilibrium shear diffusivity is greater for lower-
frequency forcing, the above transient behavior may partly
explain the observed increase of the lateral diffusivity over
greater spatial (Ledwell et al., 1998) - and hence temporal -
scale. That is, as the time progresses, the tracer patch is increas-
ingly subjected to lower-frequency forcing that drives more
efficient shear dispersion. But despite the contractions of the
tracer patch, at no time would it return to the initial size: there
could be no spontaneous emergence of the tracer front.

5. Spectral representation

Despite the short-term variation in the shear diffusivity, one
may nonetheless inquire about its hypothetical value when
averaged over infinitely long time, corresponding to full spectral
integration of the equilibrium value. This will be referred as the
“canonical” shear diffusivity (kc.n), a property hence only of the
baroclinic forcing and mixing environment. Extending (17) to
infinite time, we have, using (15),

N Y L
Kean = TangC 57 [ n (et de. (24)

Substituting from (16) and expressing the baroclinic current in
its Fourier coefficients so that

n=oo

ﬂ(t) — Z ﬁneiZnnt/T' (25)
n=—oo
with
1 /72 .
it = T/T/z fl(f)eilznn[/.rdt, (26)

we derive that

T/2
kean = llm 2T/ u(t)/ ft)e =Odrdt

T/Z
— / / Z u ethnt /T —o(t— [)dt dt
TaoczT T/2 T2 5"
= lim it {ly = - €2t/ Tdt
Tﬂsz/T/z ( )HZ "lZnn/T—I—oc

— lim = O ~ o i2mnt/T
= llm‘ZH:Z Pan/T T4 T,/,T/z i(t)e dt rearrange

unuT .1

—rliTcz Z 2mn/T+a T @7

With 1/T tending to do and n/T to ¢ in the limit, (27) becomes
K F(o)
can = 2/ 127w+0f
= E/o I'(e)W(a)d(Ino), (28)

where
F(0)= lim i, °T (29)

is the baroclinic power spectrum,
I'(c)=2F(o) for o¢>0, 30)

its one-sided counterpart (corresponding to the observed spec-
trum shown in Fig. 2) and

W(o) = 31

T
1472
with 7 defined in (22) but generalized to the Fourier frequency,
will be referred as the diffusivity window.

To check that (28) would reduce to the equilibrium shear
diffusivity for monochromatic forcing (with frequency ), one
notes that such forcing has a power spectrum of (see also Jenkins
and Watts, 1968, Section 6.2.2)

re)=1Y)?*sw-o0), (32)
which when substituted into (28) yields indeed

U? 72
Kean = o 16T = [k]keq (33)

on account of the definitions (21)-(23).

Based on (28), the canonical shear diffusivity is simply the
baroclinic power band-passed in the log-frequency space by the
diffusivity window (the thick dashed curve in Fig. 2) — the latter
a function only of the diffusive time. In contrast to the scale
definition of the shear diffusivity (21) motivated by comparing
the efficiency of different forcing frequency (hence of the same
amplitude and vertical diffusivity), here in the spectral space, we
separate the shear diffusivity into its two controlling elements:
the forcing defined by the baroclinic power spectrum I'(¢) and
the vertical mixing encapsulated in the diffusivity window W(o).
The separation allows the above spectral interpretation of the
shear diffusivity, which moreover facilitates ready comparison
between different forcing and mixing environments.

Because of the use of the log-frequency scale, varying the
vertical diffusivity merely displaces the diffusivity window but
leaves its shape unchanged (as seen in Fig. 2). And since the
diffusivity window is invariant to the transformation: t— 1/, it is
symmetric about its peak located at the diffusive time. Increasing
the vertical diffusivity, for example, would move the window to
the right (the thin dashed line), so for a monochromatic forcing
lying to the left of the peak, the shear diffusivity would weaken
while the opposite is true for a forcing lying to the right; the
disparate dependence corresponds respectively to the well-
known Taylor (1953) and Saffman (1962) regimes. One should
note that although the diffusivity window drops off toward the
low frequency, it is compensated by the expanding unit frequency
interval in the log-frequency space, so given the same power, the
low-frequency forcing contributes more strongly to the canonical
shear diffusivity, which is thus entirely consistent with the earlier
deduction that the equilibrium shear diffusivity asymptotes in the
low-frequency limit (Section 4).

6. Numerical test

Since the analytical model is highly idealized, including the
linearized Eq. (5) governing the perturbation, it is desirable if we
can test the diffusivity window from numerical calculations using
a primitive-equation model. The model we use is a free-surface,
z-coordinate model originally developed by Wang (1982), which
has been validated by its use in many coastal studies (e.g. Chen
et al.,, 2003), and although it is relatively unsophisticated compar-
ing with some other models, it suffices for our purpose.

From the numerical solution, we shall diagnose the shear
diffusivity k’:q (starred for dimensional value), which is then
converted to the diffusivity window via (see [23] and [31])

16 .

W(t) = -k

gz oD
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and compared with the analytical formula (31). The conversion
involves four parameters: the baroclinic amplitude U, the thermo-
cline thickness h, the vertical diffusivity v and the forcing period
T (see definitions [12], [21] and [22]); and to have a better control
of these “external” parameters, they will be directly imposed.
Specifically, we configure the model on a flat-bottom cross-shore
domain of depth 100 m and width 60 km with the corresponding
grid spacing of 4 m and 1 km; we impose an initial temperature
field that varies only in the vertical, increasing linearly from 10 to
20 °C through a mid-depth thermocline layer (homogenous out-
side the layer); we assign a constant vertical diffusivity in this
layer (zero outside); we prescribe the oscillatory baroclinic
current at the offshore boundary, which has uniform shear in
the thermocline layer (zero shear outside); and we apply the
radiative condition at the inshore boundary. We set as a control
case the following values: U=0.2m s~ !, h=16 m,v=10">m?s~!
and T¢=0.5 d; these and other values used below are chosen to
span a sufficient range to test the analytical formula, so they need
not be realistic.

We use the salinity as a proxy for the passive tracer (that is,
turning off its effect on the density) and release at t=0 a 1 km-
wide salinity strip (of value 35 against the background value of
33, see Fig. 5) and examine its subsequent evolution. Although
there could be initial vacillation in the vertical-mean salinity as
expected from Fig. 4, the large uncertainty in calculating this
mean during the initial period and the need to resolve distance
much finer than the excursion (about 0.7 km for the control case)
do not allow such simulations. On the other hand, the primary
outcome of the analytical derivation is the equilibrium shear
diffusivity, which can be adequately tested if the integration time
is sufficiently long that the growth of the tracer patch has
stabilized. For the control case of forcing period 0.5 d and an
estimated diffusive time of 1.9 d, this stabilization occurs after a
few days, and the numerical patches are plotted in Fig. 5 for t=0,
5 and 10 d. It is seen that because of the near-zero background
vertical diffusivity, there is little diffusive loss of the tracer from
the thermocline (that is, the areas under the curves are largely
preserved), hence duplicating the boundary condition for the
tracer in the analytical model. With the absence of the lateral
diffusivity in the model, the growth of the tracer patch in the

35 —

34 —

SALINITY

33

1 2 3 4 5 6 7 8 9 10
DISTANCE (km )
Fig. 5. The salinity patch in the thermocline plotted against the cross-shore

distance for the control case. The solid, dashed and dash-dotted lines are for t=0,
5 and 10 d, respectively.

thermocline is due solely to the shear dispersion, which thus
offers a qualitative demonstration of the process.

For quantitative comparison, we shall diagnose the (equili-
brium) shear diffusivity from the numerical solution by taking it
to be the average of (2t)*1(lz—l§) between 5 and 10 forcing cycles
(see (18) and (20)), and we assign as its error the standard
deviation during the same duration. Since the baroclinic ampli-
tude enters the shear diffusivity only through the quadratic
scaling (21), this dependence will be first tested by plotting the
diagnosed shear diffusivity against the baroclinic amplitude, as
shown in Fig. 6. The numerical data points are in circles with the
open circle marking the control case (the errors are too small to
be shown), and for comparison a curve representing the quadratic
dependence is drawn through the control case. It is seen that the
numerical points generally follow the curve, in support of the
quadratic scaling.

With the baroclinic amplitude fixed at its control value, we
then vary other three parameters and the diffusivity window
diagnosed from the numerical solution (34) is plotted against the
scaled forcing period (22) in Fig. 7. The open circle marks the
control case and, moving from left to right, the solid circles are for
the additional thermocline thickness of 24 and 12 m, the solid
squares are for the additional forcing periods of 1 and 2 d, and the
crosses mark the three forcing periods for vertical diffusivity of
5x107>m?s~! (five times the control value). The standard
deviations are also indicated, which generally are greater for
longer time integrations due perhaps to the cumulative drift of
the base state. For comparison, the solid curve is the model-
derived diffusivity window (31), and it is seen that the numerical
points have captured the general shape of the analytical curve,
particularly the peak at the diffusive time (t=1) that divides the
Saffman and Taylor’s regimes (Section 5).

We noticed a slight but systematic shift of the numerical points
to higher 7, which could be attributed to the linear current profile
used in the thermocline. To approximate this profile by the half-
sine function used in the analytical model implies a greater
thermocline thickness hence smaller vertical diffusivity than that
imposed in the numerical solution. As such, the actual diffusive
time is underestimated, which may account for the above shift.
Otherwise, the numerical values compare favorably with the
analytical curve — even though the neglect of the quadratic terms
in (5) cannot be strictly justified in some cases (for example, the
tracer displacement is greater than 1 km for the two solid squares
hence not small compared with the lateral scale of the mean
concentration). This quantitative comparison suggests that the
analytical formula of the shear diffusivity is more widely applic-
able than some the model assumptions would indicate.

k(m/s)

[SS]

0.1 0.2 0.3 0.4
U (m/s)
Fig. 6. The equilibrium shear diffusivity diagnosed from the numerical solution

(circles) plotted against the baroclinic amplitude U. The curve going through the
control case (open circle) represents the quadratic dependence.
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Fig. 7. The analytical diffusivity window (solid curve) and the values diagnosed
from the numerical solution. The open circle is the control case of h=16 m, forcing
period of 0.5 d and v=10"3 m? s—!; and moving from left to right, the solid circles
are for additional thermocline thickness of 24 and 12 m; the solid squares are for
additional forcing periods of 1 and 2 d; and the crosses are for the above three
forcing periods but using a vertical diffusivity of 5x 10~> m? s~ . Also indicated
are the error bars (not shown when indistinguishable from the markers).

7. Application

With the validation of the diffusivity window by the numerical
calculations, we shall next apply the model derivation to the
actual coastal environment. Given the crudeness of the model, it
provides only an order-of-magnitude estimate of the shear
diffusivity, which nonetheless suffices in assessing whether the
shear dispersion may account for the observed phenomena.

Among the model parameters, the vertical diffusivity v is the
least certain, which may span over three orders of magnitude
(Gregg et al., 1999): Over the quiescent mid-shelf, it has the open-
ocean value of O (107> m? s~ ') (MacKinnon and Gregg, 2003b;
Oakey and Greenan, 2004; Ledwell et al., 2004), but over the outer
shelf where internal tides are prominent, it attains a magnitude of
0 (1074-10"3m?s~ 1) (Inall et al., 2000; Sharples et al., 2001;
Rippeth and Inall, 2002; Carter et al., 2005), then at the passage of
internal solibores, it may reach beyond 0 (10~3m?s~!) (Moum
et al, 2003; MacKinnon and Gregg, 2003b). Since the saline
intrusion is a feature over the outer shelf, we use the value of
5x10-4m? s~ estimated by Sharples et al. (2001) as a baseline
value. Since this value is determined from the decay of the tidal-
mean baroclinic energy between two cross-shore moorings, it
represents a spatial-temporal average hence more pertinent for
our purpose — considering the extreme variability of this prop-
erty. Furthermore, the baroclinic power spectrum shown in Fig. 2
is from the same data set, which would aid its combined use with
the above diffusivity value in the later assessment of the shear
dispersion. Using in addition 20 m as representative of the
thermocline thickness (see Fig. 1), the diffusive time (12) would
be 5.9 d. Since this is much longer than the period of the semi-
diurnal tide, we suspect that the latter is not effective in driving
the shear dispersion, as seen next.

Based on Fig. 2, we take the power density to be 20 cm?s~2d
for the semi-diurnal tide, then with a record length of 13 d and 10
degrees of freedom (hence a bandwidth of 5/13 ~ 0.38 d™), the
baroclinic amplitude is estimated from (32) to be U~ (8 x 20x
0.38)!/2~ 7.8 cm s~!. Since the internal tides are highly episodic,
the above amplitude represents an average over the record length
even though the observed amplitude can at times far exceed this

value. With the aforementioned parameter values, we calculate
the equilibrium shear diffusivity to be 0.22 m? s~! based on the
analytical formulae (21) and (23), and if we use the smaller mid-
shelf vertical diffusivity, the diffusive time would be longer,
rendering even smaller shear diffusivity, which thus falls far short
of its observed value of 0 (10 m?s~! ) (Section 2).

Although the record length for Fig. 2 is too short to accurately
gage the low-frequency power density (say, longer than 10 d), one
may assume it to be essentially white with a value of
40cm?s~2d. This would yield a baroclinic amplitude of
5.7 cm s~ !, not much different from that of the semi-diurnal tide,
but applying the analytical formula, the equilibrium shear diffu-
sivity would be 12.1 m? s~ !, which is more than 50 times greater
than that induced by the semi-diurnal tide. This dramatic increase
stems from the steep rise of the shear diffusivity (23) when the
forcing period exceeds the diffusive time (estimated above to be
several days). But as cautioned earlier (Section 4), although the
low-frequency forcing propels a stronger shear dispersion over
the long haul (the above estimate pertains to the equilibrium
shear diffusivity), this effectiveness may not be reflected in the
short-term tracer dispersal, which in fact may undergo more
prolonged - hence more severe — contraction associated with the
low-frequency forcing (see Fig. 4). In other words, even subjected
to similar low-frequency forcings, tracer patches tracked over
several days may exhibit any value (even negative) of the shear
diffusivity below about 10 m? s~! without contradicting its high
equilibrium value — a factor that one must keep in mind in
interpreting the tracer data.

The above estimates compare the efficiency of the semi-
diurnal versus the low-frequency forcing in driving the shear
dispersion, but for a broadband continuum shown in Fig. 2, we
need to apply the spectral representation in estimating the long-
term (canonical) shear diffusivity. The diffusivity window shown
in the figure (the thick dashed line) corresponds incidentally to
the vertical diffusivity used above (5x 10~4m?s~'), which is
seen to fall within the low-frequency plateau of the spectrum.
Marking this plateau by the dotted line denoted as Iy, the
spectral integration (28) becomes

1_' r OC
Kean ~ ﬁ( /0 wd(Ino)

=g
a particularly simple expression, which contains no dependence
on the vertical diffusivity. That is, for the nominal condition of
long diffusive time and - hence - relatively flat power spectrum
encompassing the diffusivity window, the canonical shear diffu-
sivity is simply one eighth of this spectral density.

Setting I'o~ 20cm?s—2d, (35) yields Kkean=~21.6m?s~ !,
which is of the same order-of-magnitude as its observed value
noted in Section 2. Being the canonical shear diffusivity, it is the
value that is more pertinent for assessing the long-time disper-
sion, such as the saline intrusion through the stratified season.
Since the intruding distance can be equated with the square root
of the second moment given in (20), it would be about 18 km
after three months. This is sufficient to account for the observed
intrusion shown in Fig. 1, which represents the mid-September
condition hence several months after the late-spring emergence
of the seasonal thermocline.

The saline intrusion reaches its maximum extent at the end of
the stratified season when the shear dispersion ceases, but there
could be other limitations on its intrusion distance. Over the Mid-
Atlantic Bight of the North America, for example, there is a mean
alongshore flow toward the south, so the downstream distance
would encode the time progression of the saline intrusion — the
reason that the observed feature becomes more prevalent

(35
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southward toward Cape Hatteras (Lentz, 2003); and if the transit
time through the shelf is shorter than the stratified season, it
would curtail the intruding distance. Because of this constraint in
addition to the regional difference in the efficacy of the shear
dispersion, the saline intrusion need not be a common feature
among various shelves and its observed prominence in the Mid-
Atlantic Bight may very well be related to its length hence the
long transit time.

8. Summary and discussion

Through an idealized analytical model, we consider the recti-
fied shear dispersion in the thermocline induced by the baroclinic
motion. For a monochromatic forcing, the instantaneous shear
diffusivity would vacillate, but its time-mean is always positive
and stabilizes over time long compared with both the forcing
period and the diffusive time. This “equilibrium” shear diffusivity
is negligible for short-period forcing but rises sharply when the
forcing period transition through the diffusive time and levels off
for still longer-period forcing. Since the diffusive time is generally
much longer than the period of internal tides, the latter are
ineffective in driving the shear dispersion, which is thus propelled
mainly by the low-frequency baroclinic motion. As such, the
short-term evolution of the tracer patch would exhibit highly
varied behavior - even contraction — and provides a poor gage for
the effectiveness of the long-term dispersion.

Since the baroclinic motion over the shelf is inherently broad-
band, one needs a spectral representation of the shear diffusivity to
assess its long-term value. This “canonical” shear diffusivity is
found to be simply the baroclinic power band-passed by a
diffusivity window on the log-frequency space, which thus may
be readily assessed given the regional forcing and mixing environ-
ment. Since in a shelf environment, the low-frequency baroclinic
power spectrum is relatively flat within the nominal diffusivity
window, it is further derived that the canonical shear diffusivity is
simply one-eighth of this plateau — a surprisingly simple result
that is independent of the vertical diffusivity. When applied to the
seasonal thermocline of the Mid-Atlantic shelf, the long-term shear
diffusivity is about 20 m? s~ !, which is sufficient to account for the
observed tracer dispersal and saline intrusion in the thermocline.

The analytical model has employed many simplifying assump-
tions that cannot be strictly justified for the observed phenomena.
Among the more serious is the use of constant vertical diffusivity in
the thermocline whereas the observed diapycnal mixing is highly
episodic, which may interact with the variable shear to produce
other rectified effect. This problem is partly ameliorated by the
finding that the shear dispersion is propelled by the low-frequency
baroclinic motion so the random phase of the diapycnal mixing
would be smoothed out. It is in fact based on this premise that in the
analytical model the vertical mixing may be treated as a regional
property separable from the baroclinic forcing field. The analytical
derivation also assumes the tracer displacement to be small com-
pared with the lateral scale of the mean tracer concentration so that
the tracer perturbation is governed by the linearized equation.
While this imposes a rather stringent condition, which is certainly
not met in some numerical experiments, the latter nonetheless have
validated the analytically derived shear diffusivity, suggesting its
wider applicability than the model assumptions would indicate.

Because of the technical constraints on the numerical integra-
tion, we have applied model parameters directly to test the
analytically derived shear diffusivity. This approach is justified
in that the primary inquiry is the effectiveness of the shear
dispersion — not the physics that governs these “external”
parameters. Because of these specifications, on the other hand,
the numerical solution does not constitute a simulation of the

observed phenomena, least of which the saline intrusion as is
obvious in our use of a vertical salinity strip. The model findings
on the other hand have underscored additional difficulties that
would confront attempts to simulate the saline intrusion: the
most serious perhaps is the dominance of the shear dispersion by
the low-frequency baroclinic motion, which may stem from
nonlinear interaction of the internal tides; and to carry out the
long integration needed, one may have to incorporate genesis of
the thermocline to prevent its diffusive drift.

Although we consider the shear dispersion in the seasonal
thermocline, the basic physics should be operative in the main
thermocline where the shear may be associated with baroclinic
eddies. In the subtropical North Atlantic, the tracer data of
Robbins et al. (2000) show strong ventilation of the lower
thermocline water, which however cannot be explained by the
subduction; they found instead it requires isopycnal diffusivity of
0 (10> m? s~ 1), the source of which remains unknown. To show
that the shear dispersion can produce such large diffusivity, we
assume a thermocline thickness of 30 m and diapycnal diffusivity
of 1074m?s~! (Munk and Wunsch, 1998) to yield a diffusive
timescale of 73 d. Assuming similar timescale for the baroclinic
eddies and baroclinic amplitude of 0.2ms~!, the analytical
formulae would yield a shear diffusivity of 1.3 x 10> m? s~ !, not
unlike that required. It is recognized that the shear dispersion is
propelled in the direction of the shearing motion, but with eddy
motion that transition through all directions, the above order-of-
magnitude estimate remains justified. This deduction underscores
the point that it is not the vigor of the vertical mixing but the
commensurability of the diffusive and forcing timescales that
determines the effectiveness of the shear dispersion. It is the
perceived tidal dominance of the shear that has stipulated the
need for large vertical diffusivity, but with the presence of
comparable low-frequency shear, such strong vertical mixing is
no longer necessary. In fact, in the extreme case of a steady shear,
the lateral diffusivity would increase indefinitely with decreasing
vertical diffusivity (Taylor, 1953) — though it also takes longer
time to attain the equilibrium value.

Since the shear dispersion that drives the saline intrusion also
enhances the offshore transport of coastal-derived pollutants, it is
important for practical applications to parameterize the process in
regional models that do not resolve internal tides or small scale
vertical mixing. And since under nominal coastal condition, we derive
that the shear diffusivity can be approximated by (35), the latter
provides a crude yet easily applied parameterization scheme. It is
recognized that shear dispersion is likely more effective in the benthic
layer, driven by the barotropic tides and their attendant strong
vertical mixing; but since these processes are more easily resolved
in regional models, there is less need for their parameterization.
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Appendix. Shear diffusivity

For a monochromatic forcing, we have

it = JUcos2rwt +0), (A1)
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where U is the baroclinic amplitude and the phase 6 pertains to
the timing difference between the tracer release and the peak
positive baroclinic current. Substituting (A.1) and (16) into (15),
we derive

k/keq = 2cos2nwt +0) [cos(2mwt +0) + sinnwt + 0)

—exp(—at)(cosf+1sind)] (A.2)

where the shear diffusivity k has been non-dimensionalized by
(21) and keq is the equilibrium shear diffusivity given by (23). The
average of (A.2) over the time interval [0,t] yields

k/keq =1+ ﬁ [sin2(2meot +0)—sin20]

- 2%“ [cos22rwt + 0)—cos20]
32w
+

2wt

(cosO+ % sind){exp(—at)[cos2mwt +0)

— % sinrwt+0)| —(cosO— % sind)} (A3)

where W is the diffusivity window given in (31). The time-
integrated shear diffusivity is (A.3) multiplied by t. It is seen that
the large-time limit of (A.3) yields

k—keq as t—oo, A4

as expected.
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