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SUMMARY

Daily rainfall occurrence and amount at 11 stations over North Queensland are examined for summers 1958–
1998, using a Hidden Markov Model (HMM). Daily rainfall variability is described in terms of the occurrence
of five discrete ‘weather states’, identified by the HMM. Three states are characterized respectively by very wet,
moderately wet, and dry conditions at most stations; two states have enhanced rainfall along the coast and dry
conditions inland. Each HMM rainfall state is associated with a distinct atmospheric circulation regime. The two
wet states are accompanied by monsoonal circulation patterns with large-scale ascent, low-level inflow from the
north-west, and a phase reversal with height; the dry state is characterized by circulation anomalies of the opposite
sense. Two of the states show significant associations with midlatitude synoptic waves.

Variability of the monsoon on time-scales from subseasonal to interdecadal is interpreted in terms of changes
in the frequency of occurrence of the five HMM rainfall states. Large subseasonal variability is identified in terms
of active and break phases, and a highly variable monsoon onset date. The occurrence of the very wet and dry states
is somewhat modulated by the Madden–Julian oscillation. On interannual time-scales, there are clear relationships
with the El Niño–Southern Oscillation and Indian Ocean sea surface temperatures (SSTs). Interdecadal monsoonal
variability is characterized by stronger monsoons during the 1970s, and weaker monsoons plus an increased
prevalence of drier states in the later part of the record.

Stochastic simulations of daily rainfall occurrence and amount at the 11 stations are generated by introducing
predictors based on large-scale precipitation from (a) reanalysis data, (b) an atmospheric general circulation model
(GCM) run with observed SST forcing and (c) antecedent June–August Pacific SST anomalies. The reanalysis
large-scale precipitation yields relatively accurate station-level simulations of the interannual variability of daily
rainfall amount and occurrence, with rainfall intensity less well simulated. At some stations, interannual variations
in 10-day dry-spell frequency are also simulated reasonably well. The interannual quality of the simulations is
markedly degraded when the GCM simulations are used as inputs, while antecedent Pacific SST inputs yield an
anomaly correlation skill comparable to that of the GCM.

KEYWORDS: Daily rainfall Hidden Markov model

1. INTRODUCTION

The Australian monsoon brings summer rainfall to North Queensland, and has
been described extensively (Troup 1961; McBride 1987; Manton and McBride 1992;
Suppiah 1992). A monsoonal upper-level anticyclone becomes established over northern
Australia as the region of intense convection over Indonesia moves south of the equator
during January and February. At low levels, the dry south-east trades are displaced
poleward as equatorial westerlies bring moisture into a region of cyclonic vorticity—
the monsoon trough—over northern Australia.

At the planetary scale, the summertime circulation exhibits a baroclinic Rossby
wave structure consistent with the interactive Rodwell–Hoskins mechanism of mon-
soons (Rodwell and Hoskins 1996, 2001; Chou and Neelin 2003). Chen (2003) has
shown that there is a near-Sverdrup vorticity balance between stretching at low lev-
els (ascent) over the western Pacific warm pool, and low-level poleward advection of
planetary vorticity. With the low-level cyclone situated over Australia, the equatorward
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low-level motion on its western flank is consistent with descent and the relatively cooler
waters of the eastern Indian Ocean.

At the regional scale, North Queensland comes under the influence of both the
planetary-scale region of monsoonal ascent to the east, as well as the southward-
displaced convergence zone over Indonesia. Thus, summertime rainfall can be seen as
a combination of north–south seasonal displacements of the Indonesian convergence
zone, together with an essentially east–west monsoonal circulation. Moisture-laden on-
shore winds cross the warm Coral Sea producing large amounts of rainfall along the
eastern flanks of the coastal ranges.

Although this dynamical picture of the monsoon emerges in the January–February
long-term mean, the monsoon is not a steady phenomenon and exhibits considerable
subseasonal and interannual-to-interdecadal variability. Its onset is highly variable,
ranging by one estimate from 23 November to 27 January at Darwin (12◦S, 130◦E),
with a mean onset date of 24 December over the period 1952–82 (Holland 1986).
Several authors have studied subseasonal variability of the Australian monsoon in
terms of the onset date and active/break periods within the monsoon season (Troup
1961; Holland 1986; Hendon and Liebmann 1990a; Drosdowsky 1996), and the subject
has recently been reviewed comprehensively by Wheeler and McBride (2005). The
Madden–Julian oscillation (MJO: Madden and Julian 1971) is known to exert an impact
on the Australian monsoon (McBride 1987; Hendon and Liebmann 1990b), though the
extent of this impact is debated. Hendon and Liebmann (1990a) found an important MJO
impact on monsoon onset, defined at Darwin in terms of the first occurrence of wet
westerly winds at 850 hPa. However, Drosdowsky (1996) found no clear relationship
between westerly winds and rainfall on subseasonal time-scales, no dominant time-scale
in the length of active periods, nor in the recurrence intervals between them. Cold surges
from both the southern hemisphere storm track as well as (more controversially) from
the South China Sea are both believed to play important roles in subseasonal variability
of the Australian monsoon (Suppiah 1992).

On interannual time-scales, the relationship between El Niño/Southern Oscillation
(ENSO) and Australian rainfall has been the subject of numerous studies, although
correlations between the Southern Oscillation Index (SOI) and summer rainfall over
Queensland are relatively weak (McBride and Nicholls 1983; Nicholls 1989; Syktus
et al. 2003). On longer time-scales, Pittock (1975) demonstrated a dry phase between
1913 and 1945, followed by a wet phase, which appeared to end around 1978 and has
been followed by renewed drier conditions since. The relationship between SOI and
summer rainfall exhibits decadal variations over the past century (Suppiah 2004).

The aim of this paper is to examine summertime variability of daily rainfall
recorded on a network of stations over North Queensland and to relate this variability
to the atmospheric circulation on time-scales of daily to interdecadal. The concept of
planetary circulation regimes (Legras and Ghil 1985), sometimes called weather regimes
(Reinhold and Pierrehumbert 1982), has been introduced in attempting to connect
the observations of persistent and recurring midlatitude flow patterns with large-scale
atmospheric dynamics. These circulation regimes have intrinsic time-scales of several
days to a week, and exert a control on local weather (e.g. Robertson and Ghil 1999).
Synoptic scales are key to the subseasonal variability of the Australian monsoon, and
the circulation regime paradigm provides a basis for connecting local weather with
the seasonal-scale monsoon and its interannual-to-interdecadal variability. Any changes
over time in the frequency of occurrence, or structure, of circulation regimes will result
in longer time-scale rainfall variability. This paradigm of climate variability provides
a counterpart to wave-like decompositions of atmospheric variability, allowing the
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connection to be made with oscillatory phenomena (Ghil and Robertson 2002), such
as the MJO.

Circulation regimes have most often been defined in terms of clustering, fuzzy (Mo
and Ghil 1987) or hierarchical (Cheng and Wallace 1993), maxima in the probability
density function (PDF) of the large-scale low-frequency flow (Molteni et al. 1990;
Kimoto and Ghil 1993a,b), by quasi-stationarity (Ghil and Childress 1987, section 6.4;
Vautard 1990), and more recently using a probabilistic Gaussian mixture model (Smyth
et al. 1999). However, from the perspective of local rainfall, it is advantageous to define
the regimes in terms of the local weather that they give rise to. Such regimes may provide
the basis to predict aspects of ‘weather-within-climate’ at seasonal lead times.

The Hidden Markov Model (HMM) provides a probabilistic framework for factor-
ing the joint distribution of daily rainfall at a network of stations, by introducing a small
set of underlying discrete rainfall states. These states can facilitate interpretation in terms
of accompanying circulation anomalies, while the model can be used to generate large
numbers of stochastic surrogate sequences of daily rainfall (Hughes and Guttorp 1994).
The HMM has recently been shown to be applicable to tropical rainfall occurrence,
over north-east Brazil, where the dominant rainfall states were found to be associated
with circulation regimes characterized by meridional displacements of the intertropical
convergence zone (ITCZ) (Robertson et al. 2004a).

In this paper, we apply the HMM to 11 station records of daily rainfall over
North Queensland (1958–98) during the October–April summer season, considering
both rainfall occurrence and amount. The rainfall dataset and its climatology are de-
scribed in section 2. The HMM for rainfall occurrence and amount is introduced in
section 3. We then apply the HMM in section 4, and use the rainfall states to interpret
the subseasonal time-scale variability of the monsoon in terms of circulation regimes, by
constructing composites of atmospheric circulation data. Interannual and interdecadal
variability of rainfall-state occurrence are then discussed, along with the accompanying
rainfall amount changes and relationships with sea surface temperatures (SSTs). We
then construct ‘predictive’ non-homogeneous HMMs in section 5 to address seasonal
predictability and downscaling from reanalysis and GCM-generated large-scale precipi-
tation fields, as well as predictors based on antecedent Pacific SST anomalies. The paper
concludes with a discussion in section 6 and conclusions in section 7.

2. OBSERVED RAINFALL DATA

We use daily rainfall amounts at 11 stations over North Queensland, for the 197-
day 1 October–15 April season, 1958–1998; leap years end on 14 April. These data
were obtained from the Patched Point Datatset (PPD) (Jeffrey et al. 2001). The PPD
combines observed Australian Bureau of Meteorology (BoM) daily rainfall records
with high quality and rigorously tested data infilling and deaccumulation of missing
or accumulated rainfall. Four of the 11 stations have more than 10% of missing days
infilled: station 2 (18.0%), station 4 (41.6%), station 8 (20.9%), and station 9 (10.3%).
Of these, station 8 might be viewed with some caution, since it has considerable infilling
and is situated in a region of orography. However, these stations are not found to be
outliers in our analyses.

Figure 1 shows the locations of the 11 stations together with the October–April cli-
matological daily probability of rainfall occurrence (defined as days with ≥1 mm day−1)
and rainfall amount on days with rain. We refer to the region spanned by this network of
stations as North Queensland, throughout the paper. Climatological rainfall occurrence
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Figure 1. Rainfall station locations with topographic (50-metre) contours. Circle radius denotes (a) the
1 October–15 April climatological daily rainfall probability 1958–1998, and (b) the corresponding mean wet-
day amount. The stations are: (1) Croydon (18.2◦S, 142.2◦E), (2) Julia Creek (18.7◦S, 140.5◦E), (3) Cloncurry
(21.2◦S, 140.2◦E), (4) Richmond (20.4◦S, 143.2◦E), (5) Cairns (16.9◦S, 145.8◦E), (6) Mount Garnett (17.7◦S,
145.1◦E), (7) Mossman South (16.3◦S, 145.2◦E), (8) Mareeba (17.0◦S, 145.4◦E), (9) Ingham (18.6◦S, 146.2◦E),

(10) Proserpine (20.5◦S, 148.7◦E), (11) Charters Towers (20.4◦S, 146.0◦E).
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Figure 2. The mean seasonal cycle of (a) rainfall occurrence (days/pentad), and (b) wet-day amount (mm day−1)
at each station, computed using pentad block means.

is largest near the east coast, along the coastal escarpment, while rainfall is infrequent
inland. Geographical contrasts in wet-day amount are smaller than for occurrence, with
the largest intensities at station 9.

The mean seasonal variation in occurrence and wet-day amount is depicted in
Fig. 2, in terms of 40-year pentad averages. Both measures increase strongly through
the October–November transition season. This seasonal increase continues into the
December–February core monsoon season toward the coast, tending to level off at
the inland stations. The wet season is largely encompassed by the 1 October–15 April
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dataset, although some stations continue to experience significant rainfall well into the
austral autumn.

3. THE HIDDEN MARKOV MODEL (HMM)

The model for rainfall occurrence largely follows that described in Robertson et al.
(2004a), with further details given in Robertson et al. (2003), and is based on the work
of Hughes and Guttorp (1994). The main departure from Robertson et al. (2003, 2004a)
is that we model rainfall amount by incorporating a mixture model for amount into the
HMM. This consists of a delta function to model dry days, and a mixture of exponentials
to describe rainfall amount on wet days (i.e. rainfall intensity). Fitting the mixture
and exponential parameters is accomplished as an integral part of the HMM, via the
expectation-maximization (EM) algorithm (Dempster et al. 1977).

Let Rt = (R1
t , . . . , RM

t ) be a vector of rainfall amounts for a network of M stations
on day t , and let R1:T denote a time sequence of such vectors R1, . . . , RT . The sequence
of observed rainfall measurements R1:T is assumed to be generated by a Markov chain
of hidden (unobserved) weather states S1:T = (S1, . . . , ST ), where St takes values from
1 to K . Making a first-order Markov assumption, we factor the joint distribution over
the hidden state sequence as:

p(S1, . . . , ST ) = p(S1)

T∏

t=2

p(St |St−1) (1)

where p(St |St−1) is modelled as a K × K stochastic matrix of state transition probabil-
ities � = {γij }, 1 � i, j � K , and p(S1) is a set of initial state probabilities.

The second major assumption in the HMM is that the instantaneous rainfall Rt for
a particular day t is assumed to depend only on the state on day t , so that all rainfall
autocorrelation is treated at the state level. Thus,

p(R1:T |S1:T ) =
T∏

t=1

p(Rt |St ) (2)

and for the joint distribution we have

p(R1:T , S1:T ) =
{
p(S1)

T∏

t=2

p(St |St−1)

}{ T∏

t=1

p(Rt |St)

}
. (3)

We further assume that the M station components of the vector of rainfall amounts
at time t are conditionally independent of each other given the hidden state St ; spatial
dependence is captured implicitly via the state variable,

p(Rt |St) =
M∏

m=1

p(Rm
t |St). (4)

The probability models for individual stations, p(Rm
t |St), are modelled as finite

mixtures with C + 1 components, consisting of (a) a delta function modelling zero
precipitation, and (b) a mixture of C exponential components to model the non-zero
amount distribution, i.e.

p(Rm
t = r|St = i) =

⎧
⎪⎪⎨

⎪⎪⎩

pim0 r = 0,

C∑

c=1

pimcλimc e−λimcr r > 0,
(5)
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Figure 3. Out-of-sample log-likelihood for amounts models using: single exponential (dashed), mixture of two
exponentials (solid), and gamma (dot-dashed) distributions for rainfall on wet days.

with pimc ≥ 0 and
∑C

c=0 pimc = 1 for all m = 1, . . . , M and i = 1, . . . , K . Previous
studies have demonstrated that a mixture of two exponentials represents well the
distribution of daily rainfall amounts (e.g. Wilks and Wilby 1999).

The parameters of the model are estimated from the observed rainfall amount data
in a standard manner using the EM algorithm. Note that rainfall amounts are thus
incorporated directly into the formulation of the HMM, similar to the approach of
Bellone et al. (2000). This contrasts with Charles et al. (1999), where amounts were
modelled a posteriori, in an HMM of rainfall occurrence. Details of the EM estimation
algorithm were presented by Robertson et al. (2003) for a model which is similar
except that binary precipitation occurrence data is modelled instead of amount data.
The mixture of exponentials fits well into the maximum-likelihood framework, and the
additional EM equations required to handle estimation of the parameters for the state-
dependent amount models are described in Kirshner (2005).

4. STATES OF DAILY RAINFALL AMOUNTS

(a) Number of states
As in Robertson et al. (2004a), cross-validation is used to evaluate the quality of

the fitted HMMs in terms of log-likelihood

ln p(R1:T ) = ln
∑

S1:T
p(R1:T , S1:T ) (6)

as a function of K , the number of states. Here, five-year blocks of data were withheld,
the model trained on the remaining 35 years, and the simulations compared with
observed rainfall for the eight 5-year validation periods. In each case the EM algorithm
was run 10 times from different initial seeds, selecting the run with the highest log-
likelihood. The resulting normalized out-of-sample values of the log-likelihood for each
model are plotted for K = 2 to 10 in Fig. 3. Three different amounts models are plotted.
Each consists of a delta function at zero amount, together with (a) a single exponential
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(dashed), (b) a mixture of two exponentials (solid) and (c) a gamma function (cf.
Bellone et al. 2000) (dot-dash). The curves in Fig. 3 do not reach K = 10 for the single
exponential and gamma models, because the number of parameters to be estimated
increases with K , and none of the EM runs from the 10 initial seeds converges for
large K in these cases. This is a technical issue, due to the poorer fit to the data of
these models (especially the single exponential). The double exponential is the most
well behaved model, and we focus on it in the following. Its performance is similar
to the gamma model (both are two-parameter models) and it is superior to the single
exponential model.

The out-of-sample log-likelihood of the models increases monotonically with K
in an asymptotic manner. Thus, the model does not ‘overfit’ for larger K , suggesting
that the rainfall data is considerably more complex than our models. For parsimony, we
choose K = 5. The results discussed below are not sensitive to choosing K = 4 − 6.
Choosing larger K makes the states more difficult to interpret physically. Thus, K = 5
represents a compromise between model performance and physical interpretability.

(b) Estimation of the model parameters
Having chosen the 5-state model, its parameters were estimated from the entire

7880-day rainfall record. The EM algorithm was restarted 10 times, selecting the run
with the highest log-likelihood. The resulting rainfall parameters are illustrated in Fig. 4,
in terms of the probability of rain (panels a–e), and the mean rainfall amount on wet days
(panels f–j). The latter was computed from the parameters of the mixed exponential
distribution.

State 5, the wettest state, exhibits similar spatial distributions of occurrence and
amount to those of the observed summertime climatology (Fig. 1), with largest values
along the east coast. State 1 is also characterized by rainfall at all stations, but probabil-
ities and mean amounts are lower than for state 5, especially in the north-east. State 2
has very low rainfall probabilities everywhere. Both states 3 and 4 are characterized by
high rainfall probabilities along the coast, with dry conditions inland. However, coastal
intensities are much lower than for state 5, and state 3 may be characterized by frequent
drizzle along the coast. For states 1, 4 and 5, rainfall probability tends to be correlated
with rainfall intensity, but this is less the case for states 2 and 3.

The state-transition matrix is given in Table 1. The Markov property of the HMM
is clear in the relatively large self-transition probabilities, i.e. persistence. The dry and
wet states, 2 and 5 respectively, are most persistent, with the ‘coastal’ states 3 and 4 less
so. Other transition probabilities are generally small, though there are hints of preferred
transitions from state 4 to 3, and from state 3 to 2.

(c) Simulations
Once the parameters of the model have been estimated, multiple simulations of

daily rainfall amounts can be generated. Figure 5 shows the marginal daily distributions
of simulated rainfall amount for a dry and a wet station (stations 4 and 7 respectively),
versus the observed. These two stations are typical of the model’s performance. His-
tograms are plotted with a bin-width of 5 mm day−1, with the 0 mm day−1 delta func-
tion given by the leftmost pair of bars. The simulated values were generated from 100
simulations of 40 years.

The mixture of a delta function at zero rainfall together with a mixture of two
exponentials is seen to fit the observed data closely, especially away from the tail of
the distribution. The simulations (black bars) exhibit a smoother distribution at high
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Figure 4. Five-state HMM rainfall parameters. (a)–(e): occurrence probabilities (circle radius). (f)–(j): mean
intensities (wet-day amounts) of the mixed exponential.

TABLE 1. TRANSITION PROBABILITIES

To state

1 2 3 4 5

1 0.654 0.047 0.060 0.100 0.140
From 2 0.080 0.784 0.114 0.022 0.000
state 3 0.045 0.256 0.552 0.144 0.002

4 0.051 0.043 0.271 0.559 0.076
5 0.143 0.008 0.018 0.122 0.709

amounts because sampling variability is small for the 100-member simulation run. The
contrast between the dry and wet station is clear, and the former has many more dry
days (note the log scale on the ordinate). The conditional rainfall distributions for each
individual state were found to be similarly accurate (not shown).

(d) The estimated state sequence
The most-probable daily sequence of the five states over the 40-summer period can

be estimated using a dynamic programming algorithm, known as the Viterbi algorithm
(Forney 1978). This assignment allows an interpretation of the observed rainfall record
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Figure 5. Histograms of the simulated (black) and observed (white) daily rainfall amount distributions
(mm day−1). The leftmost pair gives the zero-rainfall frequencies. The bin-width is 5 mm day−1.

in terms of these states, and thereby, the atmospheric circulation patterns that accompany
each state. The sequence, plotted in Fig. 6, exhibits a clear seasonality as well as marked
interannual and subseasonal variations. The average seasonal cycle is plotted in Fig. 7,
in terms of pentad means of state occurrence averaged across all 40 years. The dry state
(no. 2, 34% of days) dominates during October–December, with the wettest state (no. 5,
13% of days) becoming most prevalent in January–February, waning during March.
States 3 and 4 (wet along the coast; 20% and 15% of days, respectively) become more
prevalent in March–April, while state 1 (moderately wet, 18% of days) has a seasonality
similar to state 5, but with higher prevalence in the austral spring.

Figure 7 suggests a description of the average monsoon evolution in terms of the
rainfall states identified by the HMM, while the individual daily sequences of states in
Fig. 6 point to the large degree of within-season and year-to-year variability. To pursue
this further, we next examine the nature of the accompanying atmospheric circulation
patterns.
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(e) Synoptic conditions
Relationships with atmospheric circulation are explored using the National Cen-

ters for Environmental Prediction–National Center for Atmospheric Research (NCEP–
NCAR) reanalysis data (Kalnay et al. 1996), together with the European Centre for
Medium-Range Weather Forecasts reanalysis (ECMWF ERA-40) for the potential vor-
ticity field. Composites of atmospheric circulation variables from reanalysis data are
plotted for each state in Figs. 8 and 9, computed by averaging over the days assigned to
each state by the Viterbi algorithm.

Figure 8 shows composites of 850 hPa winds and 500 hPa omega composites,
constructed from unfiltered daily data. Large-scale ascent dominates in the equatorial
region, extending into northern Australia in states 1, 4 and especially state 5; subtropical
descent dominates over Australia in states 2 and 3. Monsoon westerlies and subtropical
easterlies occur to varying degrees, consistent with the vertical motion: the westerlies
are strongest in state 5 (wettest), weakening through states 1, 3, 4, to state 2 (dry) in
which they are almost completely replaced by the south-east trade winds. States 3 and
4 (wet near the coast) both show strong south-easterlies, consistent with rain along the
east coast. At upper levels the winds reverse (not shown), with subtropical westerlies
and equatorial easterlies sandwiching the monsoonal anticyclone in state 5.
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Figure 7. The mean seasonal cycle of HMM state occurrence, computed from pentad means (days/pentad).

In terms of the mean seasonal evolution (cf. Fig. 7), the composites for state 2
resemble the mean climatology for July (i.e. winter), and state 5 resembles February (i.e.
the peak of the monsoon). States 3 and 4 resemble the transition season, as the south-
east trades extend northward up the coast. The seasonal extension of the subtropical
convergence zone into south-eastern Australia is also reflected in states 1 and 5.

Composite anomalies relative to the mean seasonal cycle are plotted in Fig. 9. Only
statistically significant wind anomaly vectors are plotted, with shading denoting signif-
icant vertical motion anomalies. All the rainfall states are associated with statistically
significant atmospheric circulation anomalies, with states 2, 4 and 5 being the most
nominally significant. The strongly monsoonal state-5 composite of anomalous vertical
motion over Queensland stands out as being comparable in magnitude to that of the
total field (Fig. 8(e)), while the anomalies associated with other states are substantially
weaker. State 5 is associated with large-scale anomalous ascent over Queensland, and
a low-level anomalous cyclonic circulation displaced slightly to the west. This eddy is
accompanied by low-level north-westerly wind anomalies over Queensland, and implies
an influx of tropical moisture. The implied advection of anomalously high moist static
energy during state 5 will tend to maintain the monsoon’s thermally-direct circulation,
while the anomalous southward low-level wind component will act to offset vortex
stretching at low levels, typical features of a monsoonal circulation. There is also a
region of (weakly significant) anomalous descent over Western Australia during states 1
and 5, suggesting a Rossby wave-train response to the tropical heating over Queensland.
Compared to state 5, the cyclonic eddy in state 1 is displaced further south-east, and is
less intense.

The right-hand panels in Fig. 9 show circulation anomalies at 200 hPa, in terms of
NCEP–NCAR reanalysis winds, and ERA-40 potential vorticity (PV). The two reanal-
ysis datasets are in good correspondence with each other, with qualitative geostrophic
balance between the wind and PV anomalies. The 200 hPa zonal wind anomalies of
state 5 are easterly over Indonesia, consistent with a baroclinic vertical structure at
low latitudes. A region of anomalous anticyclonic PV overlies the Queensland coast,
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Figure 8. Composites of 850 hPa winds (vectors: m s−1) and 500 hPa omega vertical velocity (contour interval
0.01 Pa s−1) over the days assigned to each state, computed from NCEP–NCAR reanalysis unfiltered daily data.

As in Fig. 6, the number of days falling into the five states are 1413, 2685, 1571, 1211, 1000 respectively.

with anomalous northward flow on its eastern flank. This implies anomalous northward
advection of large cyclonic mean PV in state 5, that would tend to offset upper-level
vortex compression over the monsoon region associated with ascent, while at the same
time tending to destabilize the atmospheric column and thereby amplify the monsoonal
circulation.

State-1 anomalies are generally weaker with less statistical significance, especially
at upper levels, compared to state 5. The most marked feature in states 2 and 4
is the circulation anomaly to the east of Tasmania, whose influence extends into
North Queensland. A cyclonic disturbance (state 2) leads to dry conditions, while an
anticylonic one (state 4) leads to rainfall especially along the coast.

( f ) Monsoon onset dates and subseasonal characteristics
According to Fig. 7, the evolution of the monsoon over North Queensland consists,

on average, of a seasonal progression from the dry state toward increasing prevalence
of first the weakly-monsoonal state (no. 1), followed by the strongly-monsoonal state
(no. 5). State 4 with south-easterlies and rainfall along the coast increases in prevalence
toward the end of the monsoon season.
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Figure 9. Anomaly composites with respect to the mean seasonal cycle, over the days assigned to each state.
Left panels: 850 hPa winds (vectors: m s−1) and 500 hPa omega vertical velocity (contour interval 0.005 Pa s−1).
Right panels: 200 hPa winds (vectors: m s−1) and 200 hPa potential vorticity from ERA-40 (contour interval
0.5 K m2kg−1s−1). Only wind vectors statistically significant at the 95% level are plotted, while shading indicates
95%-significant omega and PV anomalies. The number of days in each composite was divided by 10, as a
conservative estimate of the number of effective degrees of freedom. The mean seasonal cycle was computed

after firstly 10-day low-pass filtering the data.
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Figure 10. Histogram showing the occurrence frequency of each state (December–March, 1974–98), stratified
by the phase of the MJO, as defined by Wheeler and Hendon (2004). Phase 7 is wet over North Queensland.

The evolution of the monsoon in any particular year can be interpreted in terms of
the estimated state sequence. The intermittent nature of the monsoon is characterized by
the HMM in terms of transitions between discrete states. Rainfall shows less subseasonal
variability along the coast where states 1, 4 and 5 all bring substantial rainfall, while
its intermittency is large inland. State 2 is clearly associated with a ‘break’ in the
monsoon at all stations, while states 3 and 4 only signal a break over inland stations.
The occurrence of persistent low-level westerlies near Darwin has been associated with
monsoon onset (Troup 1961), so that the first persistent spell of states 1 and 5 could
be identified with onset. However, the intermittent nature of Fig. 6 suggests that the
definition of an onset date may not be meaningful in all years, at least away from the
coast.

To determine whether the HMM’s estimated state sequence is influenced by the
Madden–Julian oscillation, a two-dimensional histogram is plotted in Fig. 10. The
histogram stratifies HMM state occurrence during the December–March seasons (1974–
98) according to the eight phases of the MJO defined by Wheeler and Hendon (2004)
from empirical orthogonal functions (EOFs). Their all-season real-time multivariate
MJO Index was obtained from the www.bom.gov.au website. The very wet state (state 5)
is most frequent during phase 7, which corresponds to the wet phase of the MJO over
North Queensland (see Wheeler and Hendon 2004, their Fig. 16, and www.bom.gov.au).
The dry state (state 2) is most frequent during phase 8, which is a neutral phase of the
MJO as regards North Queensland rainfall. Thus, the occurrences of both the very wet
and dry states are consistent with the MJO, with the stronger relationship during the
active phase of the monsoon.
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Figure 11. (a) Interannual variability and (b) 11-year running mean of state frequency. The 11-year running
mean of the SOI index (multiplied by 10) is also shown.

(g) Interannual and interdecadal variability
The interannual variability in state occurrence frequency is plotted in Fig. 11(a),

computed by summing the number of days per season in the estimated state sequence.
The interannual prevalence of the dry state 2 tends to vary inversely to the monsoonal
states 1 and 5. Correlations between these series and the October–April SOI index are
(0.33, −0.62, −0.01, 0.01, 0.58), indicating that the monsoonal states 1 and 5 both tend
to be associated with La Niña, with the strongest correlation for state 5, while occurrence
of the dry state 2 is strongly correlated with El Niño. These ENSO relationships are
further brought out in Fig. 12, which shows the relationship between state frequency
and SSTs for states 1, 2 and 5. Shown are SST anomaly composites for the October–
December (OND) and January–March (JFM) seasons in which state frequency exceeds
one standard deviation from the mean, using the NOAA Extended Reconstructed SST
dataset (Smith et al. 1996). The composites are defined to be the difference between
seasons in which frequency is anomalously high, minus seasons with anomalously low
frequency. Consistent with the SOI correlations, all three states are related to ENSO
SST anomalies in at least one season. The most significant La Niña relationships with
states 1 and 5 occur during OND, while the dry state 2 is strongly associated with El
Niño during both seasons. During OND, there are significant relationships with SST
over the South Pacific east of Australia. During JFM, there are significant associations
with Indian Ocean SSTs, consistent with ENSO-related SST anomalies there.

In addition to the large interannual variability, the frequency of state occurrence
also varies on interdecadal time-scales as shown in Fig. 11(b). The strong-monsoonal
regime was most prevalent during the 1970s, and became less frequent after about 1981.
Concomitant with this decrease, the weak monsoonal state became more prevalent,
indicative of a weakening of the monsoon between the mid-1970s and 1998. This drying
trend is even more pronounced since about 1985, with an increase in the prevalence of
the dry state. The 1960s were also marked by less-frequent monsoonal states, and higher
prevalence of the dry states 2 and 3. The tendency toward drier conditions since the
late 1970s is consistent with more-negative values of the SOI, plotted at the bottom of
Fig. 11(b).
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Figure 12. Composites of seasonal mean SST anomalies, according to occurrence frequency of states 1, 2 and 5,
for OND (left) and JFM (right) seasons. Shown are SST differences between summers when the HMM states are
most prevalent, minus those in which they are least prevalent as defined by ± one standard-deviation excursions
of the curves in Fig. 11(a). The number of seasons in each composite is given in brackets. Shading represents 95%
statistical significance according to a two-sided Student t-test with 10 degrees of freedom. Negative contours are

dashed, and the contour interval is 0.2 degC.

5. SEASONAL SIMULATION AND PREDICTION WITH A NON-HOMOGENEOUS HMM

In this section we introduce input variables into the HMM, by creating an explicitly
non-homogeneous HMM (NHMM). In a non-homogeneous HMM the state-transition
matrix � is no longer stationary, and the transition probabilities are defined to be a
function of a (possibly) multivariate ‘predictor’ input time series X1:T , corresponding
(for example) to other variables that can influence the evolution of the weather state
sequence S1:T . Here we describe experiments with such a model, where the transition
probabilities are defined as a logistic function f of the predictor variables, i.e.

γij (t) = γij × f (Xt ).

More complete details on this model are provided in Hughes et al. (1999) and Robertson
et al. (2003).

The ‘predictors’ are defined from large-scale precipitation fields derived from the
NCEP–NCAR reanalysis dataset, and from simulations of the ECHAM4.5 atmospheric
general circulation model (GCM) (Roeckner et al. 1996). We also show the result of
using statistical predictors based on antecedent June–August Pacific SSTs.

The reanalysis precipitation fields can be interpreted as a single GCM simulation,
which has been ‘nudged’ toward available (non-precipitation) observations. Precipita-
tion is known to be one of the most problematic variables to model in a GCM, and its
usage here can be regarded as a test of the ability of the reanalysis model to synthesize
the large-scale precipitation process, and provide an appropriate large-scale input to the
NHMM.



AUSTRALIAN MONSOON OVER NORTH QUEENSLAND 535

Figure 13. Leading three regional EOFs of precipitation for (a–c) NCEP/NCAR reanalysis (135◦E–154◦E,
28◦S–9◦S), and (d–f) ECHAM4 precipitation (135◦E–157◦E, 29◦S–7◦S). Units are relative, and negative contours
are dashed. The variance explained is given in brackets. The EOFs were constructed from 10-day low-pass filtered

daily fields 1 October–15 April.

Twenty-four long-term simulations with the ECHAM4.5 GCM were available, with
historical SSTs prescribed (each differing only in its initial condition) from which we
derive the ensemble mean. These inputs to the NHMM represent the portion of large-
scale precipitation that can be characterized by a GCM response to SST anomalies.
As such, we cannot expect any correspondence on a particular day between the GCM
simulations and observations, but the simulations of ensemble-mean three-month aver-
ages generally contain some skill in the tropics, depending on the geographical region
(Goddard et al. 2003; Robertson et al. 2004b).

For both the reanalysis and GCM, inputs are defined from a principal components
analysis (PCA) of gridded daily precipitation over the regional domains given in Fig. 13,
using 10-day low-pass (Blackmon and Lau 1980) filtered daily precipitation. The
loading patterns (empirical orthogonal functions, EOFs) are plotted in Fig. 13. The
PCA is used here as a data compression tool, so as to define the predictors in a semi-
objective fashion from the large-scale precipitation field. The leading three principal
components (PCs) were selected in each case; their variances are given in Fig. 13,
accounting together for 60.0% (reanalysis) and 83.2% (ECHAM4.5) of the low-pass
filtered variance respectively. We have used 10-day low-pass filtered precipitation values
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Figure 14. Interannual variability of NHMM-simulated seasonally-averaged rainfall amount (top), occurrence
frequency (middle), and intensity (average amount on wet days, bottom). Plotted is the median of 100 NHMM
simulations averaged over all 11 stations (solid), versus the observed (dashed). Inputs are from NCEP–NCAR
reanalysis precipitation PCs. The error bars indicate the entire range of the 100 simulations, with the interquartile

range given by the inner ticks.

so as to capture the seasonal cycle of precipitation, and to include a limited amount of
subseasonal variability while averaging over day-to-day weather.

The NHMM was then trained in cross-validated mode, as described in section 4(a),
using the observed station rainfall together with the three daily PC inputs, to gener-
ate 100 stochastic daily simulations of rainfall. The NHMM simulations made with
reanalysis inputs are shown in Fig. 14, in terms of seasonal means, averaged over the
11 stations. The median of the simulations is plotted versus the observed, together with
the interquartile and full range of the 100-member simulation distribution of seasonal
and station averages. Interannual variability of rainfall occurrence frequency and sea-
sonal amount are well simulated (r = 0.82 and 0.79 respectively), with seasonal-mean
intensity less so (r = 0.51). The correlations between the median of seasonal-averaged
simulated rainfall amount, with the observed, are tabulated in Table 2 for each individual
station in turn. All stations, except one (Cloncurry, inland, r = 0.34), achieve correla-
tions of about 0.6. Also shown in Table 2 are correlations of observed station seasonal



AUSTRALIAN MONSOON OVER NORTH QUEENSLAND 537

TABLE 2. INTERANNUAL CORRELATIONS

NHMM Reanalysis-grid Dry-spell
Station amount amount frequency

1 0.68 0.14 0.33
2 0.63 −0.14 0.29
3 0.34 −0.04 0.13
4 0.69 0.22 0.40
5 0.65 0.30 0.50
6 0.61 0.31 0.14
7 0.68 0.23 0.53
8 0.66 0.41 0.29
9 0.59 0.27 0.52

10 0.56 0.21 0.47
11 0.65 0.24 0.50

Average 0.79 0.29 0.63

Correlations between seasonal averages of simulated
rainfall (NHMM or reanalysis grid box) and the
observed values at each station. Rainfall amount and
10-day dry-spell frequency.
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Figure 15. Interannual correlations of simulated versus observed station-averaged October–April rainfall, using
predictors derived from (a) NCEP/NCAR reanalysis precipitation, (b) ECHAM4 precipitation, and (c) June–
August SST. The correlation coefficient between simulated and observed seasonal averages is plotted on the

ordinate. See text for details.

amount with reanalysis precipitation taken from the grid box overlying each respective
station. These correlations are much lower than those derived from the NHMM. Ten-
day dry-spell frequency is a quantity of particular relevance to agriculture. The NHMM
simulations perform less well and more unevenly for this statistic (column 4 in Table 2),
although the correlation of the station average reaches r = 0.63. An attempt to estimate
dry-spell frequency directly from the reanalysis grid-point data gave very poor results.

Figure 15 compares the performance of NHMM simulations made with three
different choices of predictors: reanalysis precipitation (black), GCM precipitation
(dark grey), and antecedent Pacific SSTs (light grey). The NCEP/NCAR reanalysis and
ECHAM4 GCM ‘predictors’ are the October–April contemporaneous precipitation PCs
described above, whose EOFs are plotted in Fig. 13. The Pacific SST predictors were
defined by averaging antecedent June–August SST over two boxes—one over the central
equatorial Pacific (167◦W–133◦W, 5◦S–5◦N), and the other over the south-west Pacific,
adjacent to Australia (147◦E–167◦E, 31◦S–17◦S). Thus we are using June–August SST



538 A. W. ROBERTSON et al.

anomalies to predict the subsequent October–April rainfall over North Queensland. The
two SST regions are characterized by correlations reaching 0.5 between June–August
SST and October–April rainfall occurrence summed over the 11 North Queensland
stations.

Again, the veracity of the simulations is measured in terms of the correlation
coefficient between simulated and observed station-seasonal averages, using the median
of the 100-member simulated distribution. Not surprisingly, both the ECHAM4-NHMM
and SST-NHMM models exhibit lower station-averaged correlations than the reanalysis-
NHMM. However, the purely statistical SST-NHMM model, based on SSTs from the
preceding winter season, is just as skilful as the ECHAM4-NHMM, even though the
GCM simulations are made with prescribed observed SSTs, and are thus not true
forecasts. Direct use of the GCM’s grid-box precipitation values (analogous to column
3 of Table 2) leads to low correlations of seasonal amounts at the station level, with a
range of −0.09 to +0.42 over the 11 stations.

6. DISCUSSION

The HMM yields a state-based description of daily rainfall measured on a network
of stations, which we have used to interpret the variability of the monsoon over North
Queensland on time-scales of subseasonal to interdecadal. The picture that emerges
is one of substantial intrinsic rainfall variability associated with transitions between
rainfall states, rather than of a smooth seasonal evolution. The concept of a monsoon
onset date is scarcely supported, but rather one in which certain regimes have a
probability of occurring that is both seasonally dependent, as well as strongly modulated
on interannual and longer time-scales. Even the dry state occurs quite frequently
during February in some years, and could be interpreted as a monsoon ‘break’. This
interpretation is consistent with previous studies on the intermittent nature of the
Australian monsoon, starting with Troup (1961), and discussed recently by Wheeler and
McBride (2005). It is analogous to recent descriptions of the Indian summer monsoon,
in terms of modes with predominantly intraseasonal time-scales (Goswami and Mohan
2001; Molteni et al. 2003; Gadgil 2003).

The state sequence characterizes temporal variability at the level of the whole rain-
fall network. Three of the rainfall states describe variability that is relatively homo-
geneous across the network (states 1, 2 and 5), while states 3 and 4 describe coastal
rainfall. Thus, there is only one dry state at the coast, and the monsoon tends to be
much more persistent there. Onset would be less variable from year to year, and breaks
in the monsoon less frequent. Inland, on the other hand, the monsoon is much more
erratic, with 3 dry states and 2 wet ones. Thus, the HMM states describe the nature of
subregional variations in the monsoon.

Active and break phases of the monsoon have been associated with northward
propagating synoptic waves, as well as with storm surges over the South China Sea
(Suppiah and Wu 1998). Our results suggest that episodes of monsoonal convection
over North Queensland (state 5) are accompanied by a synoptic-scale ridge centred east
of Tasmania, while monsoon breaks (state 2) are associated with a cyclonic disturbance
there. There is no evidence in our composites of synoptic waves impinging from the
northern hemisphere, even when plotting composites that extend further north. Previous
studies have found troughs over the west coast of Australia to precede or modulate the
onset of the monsoon (Davidson et al. 1983; Keenan and Brody 1988; Hung and Yanai
2004). Our focus on North Queensland, rather than the broader-scale monsoon, may
account for this difference. A midlatitude wave to the east is also seen in state 4.
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The HMM classification is based on a factorization of the daily rainfall distribution
on a network of stations. It is possible that different atmospheric circulation patterns
could yield the same pattern of rainfall. This is a potential issue for the dry state where,
for example, either the MJO or a midlatitude trough east of Tasmania could each yield
dry conditions at all stations, and these effects may be seasonally stratified. Further work
is required to investigate this issue.

ENSO is an important modulator of state frequency especially for the dry state 2
(El Niño), and to a lesser extent for the monsoonal states 1 and 5 (La Niña). However,
using GCM simulations of large-scale precipitation, or Pacific SST anomalies, as input
‘predictors’ to the NHMM led to only moderately successful rainfall simulations;
the correlation values between observed and simulated seasonal means of rainfall
occurrence are substantially lower than those obtained in a similar study over north-
eastern Brazil (Robertson et al. 2004a). This is consistent with Syktus et al. (2003) who
found that GCM precipitation simulation skill tends to be low over Queensland during
austral summer.

It is interesting to note that the weaker monsoonal state 1 (typically associated with
early summer, but less strongly associated with ENSO conditions) has become more
prevalent than the stronger monsoonal state since around 1980. Thus, the monsoon has,
on average, failed to reach full maturity in recent decades, at least until 1998. This is
also consistent with a predominance of more-negative SOI values since the late 1970s
(Fig. 11(b)).

We have used NHMMs with various predictors based either on large-scale reanaly-
sis or GCM precipitation, or antecedent Pacific SSTs. These are subjective choices, and
predictor selection remains an unresolved issue. In the case of the GCM or reanalysis,
other variables may be more appropriate than precipitation. On the other hand, prelimi-
nary work with a multi-model ensemble of six GCMs led to improved skill, suggesting
that it may be adequate to choose GCM precipitation as the predictor field, provided
the simulations of several GCMs are included together. In the case of antecedent Pa-
cific SST predictors, our criteria for model selection used the Queensland rainfall itself,
so that the skill reported in Fig. 15 may be overstated. The simulations of seasonally-
averaged rainfall amount from the reanalysis-NHMM model are almost as good as those
of rainfall occurrence frequency. However, the interannual variability of average rainfall
intensity is less well recovered. This may have less to do with the treatment of amounts
in the HMM, and more to do with the lower seasonal predictability of rainfall intensity
(V. Moron, personal communication).

7. CONCLUSIONS

We have examined daily rainfall amount at 11 stations over North Queensland
during summer 1958–1998 (Figs. 1, 2), by means of a Hidden Markov Model (HMM).
Five discrete rainfall states are used to factor the observed distribution of daily rainfall:
three states characterized by overall very wet, moderately wet, and dry conditions
respectively, together with two states with enhanced rainfall along the east coast and
dry conditions inland (Fig. 4). The HMM rainfall states are found to be associated with
statistically significant atmospheric circulation anomalies, supporting the existence of
distinct weather states. The two wet states are found to be accompanied by monsoonal
circulation patterns, with large-scale ascent, low-level inflow from the north-west, and a
phase reversal with height. The dry state is characterized by circulation anomalies of the
opposite sense. The coastal rainfall states are characterized by low-level south-easterlies
from the ocean, and north-west/south-east midlatitude troughs.
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Simulations with the HMM accurately reproduce the marginal distributions of
daily rainfall amount at each station (Fig. 5). Variability of the monsoon on time-
scales from daily to interdecadal is interpreted through the estimated state sequence
(Fig. 6). The seasonal cycle shows a progression from the dry to the monsoonal states
(Fig. 7), though with a highly variable monsoon ‘onset’ date. The state sequence
exhibits large subseasonal variability, allowing the states to be interpreted as active
and break phases of the monsoon. An MJO signal is found in the occurrence of the
very-wet monsoonal state (Fig. 10). There are also large year-to-year variations in state
frequency that coincide with El Niño–Southern Oscillation conditions (Fig. 12). On
decadal time-scales, the state sequence indicates stronger monsoons during the 1970s,
and an increased prevalence of the weaker monsoon and dry states since then, consistent
with an overall decrease in the SOI index (Fig. 11(b)).

Stochastic simulations of daily rainfall occurrence and amount at the 11 stations are
then made by introducing inputs to form a non-homogeneous HMM. These daily input
time series are based on large-scale precipitation from (a) NCEP–NCAR reanalysis,
(b) the ECHAM4.5 general circulation model run with observed SST forcing and
(c) antecedent Pacific SST anomalies. The reanalysis large-scale precipitation yields
fairly accurate simulations of the interannual variability of seasonally-averaged rainfall
occurrence frequency and amount (Fig. 14, Table 2). This skill is markedly degraded
when the GCM predictors are used, and antecedent June–August SST predictors are
found to yield a skill comparable to that of the GCM. We expect the NHMM will provide
a useful tool in the future, for assessing the potential for seasonal climate forecasts to be
downscaled in time.
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