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A B S T R A C T
A novel method to automatically compute the symmetry plane and to correct the 3D ori-
entation of neuro-images is presented. In acquisition of neuroimaging scans, the lack
of perfect alignment of a patient’s head makes it challenging to evaluate brain im-
ages. By deploying a shape-based criterion, the symmetry plane is defined as a plane
that best matches external surface points on one side of the head, with their coun-
terparts on the other side. In our method, the head volume is represented as a re-
parameterized surface point cloud, where each location is parameterized by its elevation
(latitude), azimuth (longitude), and radius. The search for the best matching surfaces
is implemented in a multi-resolution paradigm, and the computation time is signifi-
cantly decreased. The algorithm was quantitatively evaluated using in both simulated
data and in real T1, T2, Flair magnetic resonance patient images. This algorithm is found
to be fast (<10s per MR volume), robust and accurate (<.6 degree of Mean Angular
Error), invariant to the acquisition noise, slice thickness, bias field, and pathological
asymmetries.

Introduction
The human brain exhibits a high level of bilateral symmetry,
and the automatic detection of symmetry plane may serve many
clinical applications. Symmetry is used by clinical experts to de-
tect qualitatively asymmetric patterns that indicate a wide range
of pathologies, such as tumors, bleedings, and stroke. Similarly,
the degree of asymmetry can be quantified using computer
software to suggest a pathological condition and/or provide a
diagnostic cue to the clinicians (see Fig 1). Since symmetry is
routinely employed by the neuro-radiologists to assist their as-
sessment of brain images, the misalignment of the patient’s head
in the scanner may lead to distorted clinical interpretation of the
patients’ scans. Likewise, for a computer program to correctly
assess the pathological asymmetries, the head images from the
scan should not be tilted but accurately aligned and oriented
within the coordinate system of the scanner. Quantitative meth-
ods to assess brain asymmetry are useful in cases such as: quanti-
fying functional/physiological left–right differences in the brain
hemispheres using the relative difference map (RDM)1; and
investigating structural hemispheric asymmetries using a va-
riety of metrics.2-6 The tilt of the head, which is often ob-
served during the scanning process, is not always tractable.
Data misalignment might be caused by, but is not limited to,
the health condition and immobility of a patient, the inexpe-
rience of the technician, and possibly, the imprecision of the
data calibration systems. In misaligned scanned data, radio-
logical slices of the brain images are no longer homologous
within the same coronal or axial level.7 It is important to cor-
rect and realign the data before further processing and assess-
ment takes place. From physicians’ perspective, they would
like to associate the radiological images to be consistent with
the head anatomy in their minds: the same characteristic land-

marks on different sides of the head should appear at the same
axial image. Thus, the misaligned images are, more often than
not, non-intuitive and distracting. Manual adjustment of the
misalignment of brain images, although doable, is neither effi-
cient nor sufficient. In the pipeline of symmetry identification,
which is followed by asymmetry quantification (for pathology
detection), an automatic symmetry plane detection method is
needed.

In short, brain image assessment, by either a human expert
or a computer system that is based upon hemisphere-wise cross
referencing might be affected by the geometrical misrepresen-
tation. Thus, it is important to correct and realign the data in
the first place.

Studies (see Table 1) have shown that a compensational algo-
rithm may suffice to reinstall the tilted orientation of the head.
In the literature, an ideal mid-sagittal plane (MSP) has been
defined as a 3D anatomical structure about which the given
volumetric neuro-image presents maximum mirror symmetry.
Thus, if the MSP can be computed, the orientation of the head
can be resolved and the tilt of the head can be detected and
corrected. Based on this rationale, the existing algorithms that
are designed to resolve the tilt of the head, can be classified
into the following dichotomies: (1) Shape-based methods ver-
sus content-based methods, and (2) 2D based methods versus
3D based methods.

Shape-Based Methods Versus Content-Based Methods

Shape-based methods use the geometric landmarks or topo-
logical features of the head, to compute the orientation of the
symmetry plane. The content-based methods, utilize the in-
ternal signal intensities of the brain matters to perform the
venue.
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Fig 1. Asymmetries exhibited in different image modalities: MRI, and CT perfusion (CTP) images. When a clinician is evaluating
these images, he or she mentally (1) identifies the symmetry axis/plane; and (2) compares the abnormality with the healthy side of the
brain.

An example of the shaped-based approach is to use the
inter-hemispheric fissure as a simple landmark to extract the
MSP. For example, Hough transform8 for straight line detec-
tion was utilized to identify cerebral inter-hemispheric fissure.
Marais extracted the fissure using snakes,9 arguing that the fis-
sure may not be always a straight line. Methods using inter-
hemispheric fissure are computationally efficient and invariant
to strong internal asymmetries. However, they are sensitive to
the presence of a large mass near the fissure, or are affected
by invisibility of the fissure, common in some of the image
modalities.

Other shape-based methods make use of inertia matrices to
derive 3D features of a dataset. This approach, called the prin-
cipal component analysis (PCA)10 treats head as a 3D rigid

body with three distinctive principal axes that are orthogo-
nal to each other and about which the moments of inertia are
minimized. These axes are used to characterize dispersion of
rigid bodies by representing the spatial distribution of their
mass. Minovic et al hypothesized that “any plane of symmetry in
a body is orthogonal to a principal axis.” 10 Some other authors
implemented this idea and presented a method for detecting
dominant plane of bilateral symmetry in an image of arbitrary
dimension.11

These algorithms, however, have been only tested on the
synthesized figures or on a small number of real images of the
head. The major shortcoming of this approach is that it can’t
handle incomplete/over-complete datasets. For instance, when
the head data is truncated or the field of view (FOV) includes

Table 1. Existing Methods for Detecting Symmetry Planes of Brain Images

Content Based Extracting 2D versus Local search versus
Methods versus Shaped Based Feature 3D Global Search Modalities

Brummer8 Shape based Inter-hemisphereic fissure
(IF)

2D Global: seek longitudinal
fissure

MR

Hu and Nowinnski14 Shape Based Inter-hemisphereic fissure
(IF)

2D Local: in the vicinity of IF MR, CT

Minovic 10 Shape Based Principle axes 3D Global: search the inertia
matrix of 3D rigid body

Simulated Data and MR

Liu 19 Shape Based External surface point cloud 3D Global Simulated Data and MR
Liu12 Content Based Edge map cross correlation 2D Global: edge cross

correlation
MR, CT

Smith and Jenkinson 15 Content Based The ratio of intensity profile 3D Global: measure the
symmetry of the lines
orthogonal to the
candidate symmetry
plane

CT, MR, PET, SPECT

Junck16 Content Based Content cross correlation 2D Global PET, SPECT
Ardekani13 Content Based Content cross correlation 3D Local: on a unit sphere MR, PET
Prima7 Content Based Content cross correlation 3D Local: block matching CT, MR, PET, SPECDT

Kullback-Leibler measure
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non-head structures (eg, neck and shoulder), the assumption
that the head is ellipsoid-like 3D object is not met and the
technique may produce distorted results.

Content-based methods treat the head as two halves of one
gray-level volume, where the intensities of one half can be
matched to those of the other half through registration. By ge-
ometrically aligning one hemisphere to its reflection, the sym-
metry plane can be derived. Typically, an optimization scheme
is used to seek the maximum value of the similarity measure be-
tween hemispheres. Implementation of this approach may vary:
the searching process can be either global12 or local;4,13,14 the
chosen features can be: the intensities of the voxels,4 edge im-
ages,12 or the characteristics of the sampled distributions.14,15

Due to its optimization scheme and iterative nature, content-
based methods are generally more computational intensive
than shape-based methods.

2D Based Methods Versus 3D Based Methods

2D based methods extract 2D lines first from each individual
slice and then compute the 3D plane from those lines by using
standard interpolation technique. For example, a Hough trans-
formation is used to compute the longitudinal fissure at each
coronal slice.8 Liu et al estimated the 2D mid-sagittal axis for
each coronal or axial slice, and then computed a 3D plane from
set of these lines.12 Junck et al, used a cross correlation anal-
ysis for the detection of the line of symmetry in a transverse
positron emission tomography (PET) or SPECT slice.16 These
methods consider the head volume slice-by-slice,8,12,16 and the
global symmetry of the whole brain is not always properly cap-
tured. In case when the head is strongly tilted, the structures
displayed in the same axial slice do not reside in the same axial
level. The mid-lines computed independently from each axial
slice, are likely to be a misrepresentation of the real symmetry
axes, therefore the 3D interpolation of these lines may produce
meaningless results.

3D based approaches consider the head volume as a single
mass; hence the plane that maximizes the bilateral symmetry is
captured. Minoshima17 extended Junck’s 2D method16 to 3D,
and improved its tolerance to pathological asymmetries by ap-
plying the stochastic sign change (SSC) criterion. But the results
only demonstrated its success in PET image and the perfor-
mance using SSC criterion on MRI and other image modalities
is unknown.

Ardekani13 conducted iterative search on the unit sphere, in
order to find the plane with respect to which the image exhibits
maximum cross correlation. Thirion et al used the “Demons”
algorithm to find the anatomical counterpart via a non-rigid reg-
istration method.4 Non-rigid registration however will provide
distorted matching when a lesion is present only on one hemi-
sphere. The meaningless correspondences can degrade the LS
criterion and its minimization. Prima et al modified this method
and computed local similarity measures between two sides of
the brain, using block matching procedure.7 This method gen-
erated a robust estimation of MSP, overcoming the limitations
of other registration methods.

Unlike 2D based methods, in the 3D approach, 3D volume
is taken into account. The overall gross anatomy of the volu-
metric brain is used. The 3D based methods are less sensitive

to initial conditions of the head’s orientation and variability of
the inter-hemispheric fissure. For most existing 3D methods,
however, a common drawback is computational cost due to the
optimization scheme and iterative nature.

The existing work on the MSP detection is summarized as
in Table 1. Computationally, it is important to know if an
algorithm can be implemented efficiently in clinical settings.
Content-based algorithms are time consuming comparing to
shape-based methods. A number of techniques can be used
to improve further the efficiency of these methods, such as
down-sampling the volumetric data or employing multi-scale
scheme.

Our Approach: Shape-Based and 3D-Based

The pathological changes, such as tumor, bleedings and stroke,
only affect local, or internal, symmetries. These brain lesions do
not alter the topological properties of the shape of the 3D head.
Thus, by treating the head as a solid 3D oval-shaped object,
an algorithm is designed that makes use of global criteria, and
guarantees successful correction of the tilt of the head.

In another application, a “head-hat” method was proposed18

to register images acquired from MRI and CT scans, where the
external skin surface was used as an accurate landmark to per-
form registration between different image modalities. External
surfaces are easier to segment, comparing to internal structures,
even when the image exhibits low signal-to-noise ratio and
substantial artifacts. Based on this observation, we propose a
shaped-based 3D algorithm, with the external surfaces as the
leading feature for estimating the mid-sagittal plane.

As in most existing 3D approaches, we define the mid-
sagittal plane as a construct that maximizes similarity between
two halves of the head. We pose the symmetry plane extrac-
tion problem as the external surface matching problem. A set
of possible planes is considered from which a plane is selected
that corresponds to maximum of similarity measure between
the external surfaces collocated on opposing hemispheres. We
choose the surface normal to characterize the geometry of the
symmetry planes in 3D Euclidian space (see Fig 2). Then, an
adequate parameterization scheme is selected to represent the
external surface of the head.

First, the brain volume is represented as a set of 3-
dimensional points. A discrete thin point cloud is formed, by pa-
rameterizing each location on the surface with three elements—
elevation (latitude), azimuth (longitude), and radius (Fig 3). To
accelerate computation, the search for the best matching sur-
faces is performed utilizing a multi-resolution scheme. Spatial
affine transformation is performed to rotate the 3D brain rep-
resentation and to re-align/re-center within the coordinate sys-
tem of the scanner. The realigned head volume is re-sliced with
each slice representing brain at the same axial level. While an
early version of this algorithm have appeared in a prior pub-
lication,19 in this paper we present a significant improvement
of the algorithm, testing and evaluating the method on mag-
netic resonance (MR) brain images, including both synthetic
and patients’ images. We evaluate the breakdown points of the
MSP extraction algorithm by testing different brain orientation,
lesion size, slice thickness, noise level, and the strength of bias
field. Since the external surface of the head is relatively easy
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Fig 2. Surface normal characterizes the symmetry plane in volumetric neuro-images. (a) Illustration of one surface normal (the yellow vector)
in volume rendered MRI images. (b) Depiction of the symmetry plane and its surface normal.

to segment, and invariant under different data acquisition con-
ditions, the algorithm is insensitive to the acquisition noise,
intensity non-uniformity, and pathological asymmetries.

The paper is organized as follows. In the Method section, a
shaped-based, 3D-based algorithm that computes mid-sagittal
plane is presented. In the Implementation section, a parameter-
ization model on a synthesized head model is proposed. In the
Evaluation section, the algorithm is evaluated using simulated
MR images and patient data. In the Discussion section, a dis-
cussion of the algorithm follows. We summarize and conclude
our work in the last section.

Method
We propose an algorithm that computes desired orientation of
the head, from the 3D medical imaging. The external surface
of a 3D head image is extracted and matched using a chosen
similarity criterion. The mid-sagittal plane is determined as an
object that best partitions the external surface of the head into
two symmetric subdivisions.

A. Preprocessing and Data Representation

Not all clinical scans have high vertical (in z direction) reso-
lution; therefore, the voxel dimension is not guaranteed to be
cubic-shaped. A vertical interpolation is performed in order to
achieve the similar resolution in z dimension as that in x, y di-
mensions, resulting, if feasible, in cubic voxels. Cubic B spline
interpolation20 is recommended since it provides high-order es-
timation of the parameters leading to better visual appearance
and accuracy. Performance differentiation in different sampling
resolutions will be discussed in the Evaluation section.

Let us consider a single 3-dimensional object of interest (a
head) in a volumetric dataset. We assume that patient scans do
not exhibit surface discontinuity due to significant skull or skin
damage. Patients’ data with head trauma where the scalp/skin
is not longer intact and continuous do not meet our inclusion
criterion. The premise of our work lies in that the external surface of the
head ought to be complete and symmetrical, which is generally valid in
most stroke/tumor/other head pathology patients. Given the region of
interest Rg in the image I , where the background value in most
image acquisition protocols is almost close to zero, a small cutoff

Fig 3. 3D brain volume is represented as a digitized surface point cloud. (a) Each location on the surface is parameterized by its elevation
(latitude), azimuth (longitude), and radius {(α,θ,r )}. The step size (�θ, �α) defines the sampling resolutions in the elevation angle and azimuth
angle. (b)The symmetry plane can be uniquely defined as the normal vector that is perpendicular to the plane.
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value δ can be specified. To be more conservative, a δ value
higher than 5 standard deviations from the mean background
intensity is set to ensure that the background will be discarded
completely. Some inner structures such as sinuses and CSF that
exhibited low signal values are likely to be discarded as well.
As the matching features will make use of the external surface
of the head, the missing of the interior voxels would not affect
computation of the external contours of the head.

We represent the external surface in spherical coordinates
and characterize each location on the surface with three pa-
rameters: elevation (latitude), azimuth (longitude), and radius.
A conversion from Cartesian coordinates to spherical coordi-
nates requires first that the centroid is correctly identified.21

x̄ =
( �

R
xXR(x, y, z)dxdydz

)/
A;

ȳ =
( �

R
yXR(x, y, z)dxdydz

)/
A;

z̄ =
( �

R
zXR(x, y, z)dxdydz

)/
A

where the volume A is defined as the 0th moment of the region
of interest.

A =
�

I
XR(x, y , z)dxdydz =

�
R

dxdydz

and XR represents a binary image: where XR equals to 1, when
the image intensity is higher than δ, and 0, otherwise.

The x coordinate axis corresponds to the left-to-right di-
rection, y coordinate axis corresponds to posterior-to-anterior
direction, and z to superior-to-inferior direction (see Fig 3).

The technique extracts the points on the external surface
of the head by uniformly and omni-directionally emitting rays
from the centroid. The intersections of the rays with the furthest
non-zero elements of the characteristic function XR entail a thin
discretized layer of the surface point cloud. Every point (xi , yi ,
zi ) on such a point cloud {(xi , yi ,zi ) : i∈Z} is in accordance to
a triple set {(α,θ ,r)}, where the radius r is the distance from
a given point to the centroid, α the azimuth angle and θ the
elevation angle. We define α to be the rotational angle away
from the x-z plane and this azimuth angle runs clockwise from
0 to 360 degrees, with 0 degrees occurring in line with the +x
axis, 0 ≤ α < 2π . We define θ to be the elevation angle with
respect to the horizontal plane(x-y plane). θ goes from −90
degree (south pole) to 90 degree (north pole),−π/2 ≤ θ < π/2,
and θ equals to zero at the equator. The density of the rays
emanating from the centroid is determined by (�θ , �α). The
sampling resolution in elevation angle and azimuth angle, are
defined by these rays.

B. Geometry of the Mid-Sagittal Plane (MSP)

Under Cartesian coordinates, a plane in 3D, can be uniquely
specified by one point that lies in the plane and one vector
perpendicular to the plane. Then an arbitrary plane in 3D space
is determined by the following equation:

aX + bY + cZ + d = 0,

where a, b, c∈Z and a, b, c are not all zero. (a, b, c ) spec-
ifies the normal vector that is perpendicular to the plane.
� = d/

√
a2 + b2 + c 2is the vertical distance of the plane with

respect to the centroid. By moving the origin of the coordinates
to the centroid of the extracted head XR, we set the distance � to
zero (therefore d = 0), and make the symmetry plane traverse
through the new origin of the image.

Based on above equation, the mid-sagittal plane in Cartesian
space can be uniquely defined by a triplet (a, b, c ). We aim to
identify a triplet that describes a symmetry plane in the image
I that exhibits maximum “symmetry” measure. Any parameter
set (a, b, c ) in Cartesian coordinates can find its unique counter-
part (θN ,αN ) in spherical coordinates by converting it through
the trigonometric functions sine and cosine. This relationship is
demonstrated as follows:

a = r cos(θN ) cos(αN );

b = r cos(θN ) sin(αN );

c = r sin(θN );

Given a unit normal vector orthogonal to the symmetry
plane where the radius r equals to 1, the symmetry plane is ex-
pressed as a function of two angles, where θN denotes elevation
angle and αN denotes the azimuth angle of the normal vector
(see Fig 3).

N(θN , αN ) = ((cos(θN ) cos(αN ), cos(θN ) sin(αN ), sin(θN ))T .

In the reverse direction of N (θN ,αN ), a vector can be de-
noted as N T (θR , αR ), where θR = −θN and its αR = αN +π .

C. Sampling Strategy and Constrained Search

The rays that are emitted from the center of mass toward the
surface of the head, are spaced apart at a discrete quantization
level. The step size (�θ , �α) defines the sampling resolutions in
the elevation angle and azimuth angle (see Fig 4). Therefore, the
volume XR can be represented by a set of surface point clouds
{(θ , α, r)}. A similarity measure between q points centered
with respect to the normal vector N (θN ,αN ), and the opposing
q points centered with respect to the reverse vector N T (θR , αR )
is then evaluated. The initial guess of the normal vector perpen-
dicular to the symmetry plane is initialized. The dynamics of
the vector N (θN ,αN ) changes as iterations evolve until an con-
vergence is reached. Given a surface patch ({θ i},{αi}) whose
height is denoted as θmax, and width as αmax., the spans of θ i

range from θN – k1�θ to θN + k1�θ , k1 = 0,1,2 . . . . θmax/2�θ,

and the spans of αi range from αN – k2�α to αN + k2�α , where
k2 = 0,1,2 . . . .αmax /2�α. For example, in Figure 4, two roughly
trapezoid-shaped surface patches centered upon N (θN , αN ) and
N T (θR, αR) are formed with θmax = 600 and αmax = 1800 . The
surface patch that is associated with N (θN ,αN ) is named after
the source surface patch and is denoted as PN({θi }, {αi }); the sur-
face patch associated with N T (θR , αR ) is named after the target
surface patch and is denoted as PR({θi }, {αi }). Each surface patch
is quantized with the evenly distributed points spaced by a step
size �θ and �α in the elevation direction and azimuth direction,
respectively.

Within each iteration, the source surface patch PN is fixed
while the target surface patch is sought among a set of
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Fig 4. Identify the symmetry plane according to the surface point cloud similarity. (a) The framing wires distributed on the external surface
of the head. (b) The plotted source and target wires and the computed correlation coefficient (CC) based on their distances to the centroid.
The vertical axis indicates the distance from the surface point to the centroid.

candidates PR in the neighborhood about the vector N T (θR ,
αR ).The vicinity of the vector N T (θR , αR ) consists of the search-
ing subspace V , which is defined as follows:

V = {(θ, α) : θ ∈ {θR ± p1ηθ }, α ∈ {αR ± p2ηα}}
where p1 = 0,1,2 . . . 	θ /2ηθ, p2 = 0,1,2 . . . 	α/2ηα. (θ ,α) form
the basis for this searching subspace. (ηθ, ηα) denotes the step
size (in degrees) between two adjacent candidates in each
searching iteration. 	θ, and 	α demonstrate the scope of the
search space, in elevation direction and azimuth direction, re-
spectively. Hence, in each iteration, a total 	θ	α /ηθηαnumber
of searching steps are performed, that is, 	θ	α/ηθηα number
of candidate target surfaces PR are tested and compared against
the source surface patch PN. While the optimum finding of the
PR in the i th iteration enters the (i+1)th iteration; PN is updated
accordingly in response to the dynamics of changing roll and
yaw angles, as iterations evolve.

In the context of performing a constraint search for the best
matching patches in a sub-space V , all the dependent variables
can be summarized as following two sets: surface parameters (�θ ,
�α , θmax, αmax)—that define the density and the size of each
surface patch; and searching parameters (ηθ , ηα , 	θ,,	α)—that
define the fineness and scope of the searching subspace.

D. Similarity Measure

Correlation coefficient (CC ) is chosen as the criterion for mea-
suring the similarity betweenPN ({θ i},{αi}) andPR ({θ i},{αi}).
We denote the radii (to the centroid) of the q points on the sur-
face PN({θ i},{αi}) to be x1,x2, . . . ,xq and those on the surface
PR({θ i},{αi}) to be y1,y2 . . . ,yq . The CC between PN and PR is
computed as follows:

CC(
N , 
R) = 1
q

a∑
i=1

(xi − xmean )(yi − ymean )

/
1
q

√√√√ a∑
i=1

(xi − xmean )2
a∑

i=1

(yi − ymean )2

where CC measures the strength of the linear relationship be-
tween two point clouds PN and PR. Symmetry measure (D)
is defined to be the absolute value of CC ,D(PN,PR) = ‖CC‖.
The highest absolute CC returns Dmax which represents the
strongest correlation and minimum matching error between
the source and target surface patches (Fig 4). In the case de-
picted in Figure 4, even though there is an insufficient FOV,
the algorithm still comes up with the highest score of CC when
the ideal MSP is found.

E. Multi-Resolution Scheme

Although the spatial down-sampling accelerates computa-
tion through considerable data reduction, employing a multi-
resolution approach is recommended to further enhance
searching efficiency.

With multi-resolution search the initial estimate will be com-
puted at a coarse level and refined estimate at a finer level. The
initial estimate is used as the search center for subsequent finer
levels. In our context, coarse level search for the target surface
patch PR, is the search conducted at large step intervals (ηθ,

ηα) over a wide search scope (	θ , 	α). This provides us with
a rough estimate of PR at initial rounds. As iterations progress,
we reduce the search space (	θ , 	α) while increase the search-
ing resolution (ηθ, ηα) by a factor of 2. We repeat the process
in subsequent iterations. As the reduction of the search space
is correlated with the shortening of the step size, the total num-
ber of search steps (or total number of candidate target surface
patches), in each iteration, remains invariant. New iterations
are associated with finer resolutions. The optimum PRi is found
when the preceding iteration passes into the next iteration and it
is used as the search center for the subsequent iteration. In each
iteration, a transitional MSP is computed, and a new normal
vector Ni (θN ,αN ) is used to update the old one, where i is the
number of iterations. The algorithm reaches the convergence
in the mth iteration when | Nm(θN ,αN ) −γ | ≤ ε, where ε is
an arbitrarily designated small positive number, γ is a chosen
limit, and all the later iterations meet the above condition. The
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final computation of the normal vector Nm (θN , αN ) is used to
determine the orientation of the MSP.

F. Affine Spatial Transformation for Tilt Correction

After the normal vector that is perpendicular to the MSP is
found, the rotation matrix and translation matrix can be easily
identified to correct the tilt of the head images. Let Ro represent
the linear rotation matrix as

Ro = Rω Rβ Rγ =

⎢⎢⎢⎢⎢⎣
cos(ω) sin(ω) 0

− sin(ω) cos(ω) 0

0 0 1

⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎣

cos(β) 0 − sin(β)

0 1 0

sin(β) 0 cos(β)

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1 0 0

0 cos(γ ) sin(γ )

0 − sin(γ ) cos(γ )

⎤
⎥⎥⎦

where ω, β, γ are the rotational angles around x, y, and z axes,
that are named after yaw, roll, pitch, respectively. The final
specification of the normal vector are Nm (θN , αN ), ω = 0,β =
αN ,γ = θN .

Let T represent the translation matrix.

T =

⎡
⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 0

σx σ y σ z 1

⎤
⎥⎥⎥⎥⎦

where σx, σ y, σ z are the spatial offset in x, y, z directions be-
tween the centroid of the object Rg and the origin of the image
grid.

The affine transformation can be expressed with matrix
multiplications: Vv = Vg ·Rk ·T, where Vg represents the in-
put 3D volume and Vv represents the corrected volume that
is re-centered at the origin of the scanner coordinates. Rk is a
4×4 matrix obtained by expanding the corresponding linear
transformation matrix Ro by one row and one column. The ex-
tra space is filled with zeros except for the lower-right corner,
which must be set to 1. The corrected head volume is re-sliced
into cross-sections, such that each axial image represents the
brain at the same axial level. Cubic Spline interpolation is ap-
plied for improved smoothness and higher precision.

G. Algorithm Summary

To summarize, the algorithm consists of the following steps:

Input: A set of brain scans in axial format with known voxel
dimensions.

Output: (a) (θN , αN ) that uniquely characterize mid-sagittal plane.
(b) A new set of brain scans with corrected spatial orientation.
Algorithm:
Preprocessing: Vertical interpolation to create cubic-shaped vox-

els and spatial down-sampling in three dimensions.
Step 1– Isolate head region by applying a small background cutoff

value.
Step 2– Data re-parameterization from Cartesian coordinates to

spherical coordinates. Define a normal vector N (θN , αN ) or-
thogonal to the mid-sagittal plane.

Step 3– Initialize of MSP.
Step 4– Define source surface patch PN({θ i},{αi})where its θ

spans between the range [θN – k1�θ ,θN + k1�θ ], and α spans

between [αN – k2�α , αN + k2�α ]; Initialize a target surface
patch PR that points toward the reverse direction of the source
surface patch PN.

Step 5– Compute (CC ) between source patch PN({θ i},{αi}) and
target surface patch PR ({θ i},{αi}) and search for the maxi-
mum CC.

Step 6– At each iteration, reduce the search scope (	θ, 	α) by a
factor of 2 while increase the searching intervals (ηθ, ηα ) also by
a factor of 2: 	θ ← 	θ/2, 	α ← 	α/2, ηθ ← ηθ /2, ηα ←
ηα/2

Step 7– Update the N (θN , αN ) according to the maximum CC.
Update the source surface patch PN, PNj ← PN j+1;
Update target surface patch PR, PR j ← PR j+1
Loop back to Step 5 until PN and PR are “sufficiently close” to

each other or until convergence is reached.
Step 8– Apply affine spatial transformation Vv = Vg ·Rk ·T and

cublic-spline interpolation to correct the misaligned volume.

Implementation and Simulation
The algorithm was implemented in Matlab on IBM 60T,
1.66GHz, 512M RAM PC. The first objective was to identify
the key parameters that are directly associated with the per-
formance of the estimation. To obtain initial results, a perfectly
symmetrical head MR model was generated. In such a symmet-
rical idealized head model, the ground truth (3D orientation
of the head) is known, and parameters can be easily adjusted
and tested in a controlled manner. We identified the following
parameters needed in the computation of the MSP, such as:
sampling density (�θ , �α), height and width (θmax, αmax) of the
surface patch, searching step size (ηθ, ηα), and the searching
scope (	θ,,	α). The computational cost of performing a con-
straint search for best matching surface patches is proportional
to (θmaxαmax	θ	α)/( �θ�α ηθ ηα).

A. Generation of a Perfectly Symmetrical Head

Generating a perfectly symmetrical head model M provides
us with idealized ground truth data, with known orientation,
and opportunity to test and calibrate various parameters in a
controlled manner. We can manipulate and transform our M
arbitrarily by changing its spatial orientation, where the ground
truth MSP parameters are always known. We used a data set of
volumetric T1-weighted MRI head, with matrix dimension of
256 × 256 × 124 and voxel dimension 1.01 × 1.01 × 2.0 mm3.
This patient dataset is nearly perfectly aligned. We asked a med-
ical expert to help generate perfectly symmetric ground truth
3D data. The head model is manually adjusted until the expert
approves its spatial orientation in the scanner coordinates. We
remove one hemisphere of the head, and flip the other half with
respect to the mid-plane that is in parallel with the y-z plane of
the scanner coordinates. A perfectly symmetrical head is cre-
ated by joining two mirror-models of identical hemispheres (see
Fig 5).

B. The Error Term—Mean Angular Error (MAE)

The ground truth orientation of the head is determined by two
angles, roll γ and yaw ω, and (γ , ω) uniquely characterizes the
3D orientation of the symmetry plane. The estimated orienta-
tion of the head using the proposed partial surface matching
(PSM) algorithm is expressed in two computed angles (γ ′, ω′).
Given a source patch centered upon vector N(θN , αN ), corre-
sponding target patch is that centered upon N T (θR, αR), and
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Fig 5. A perfectly symmetric head is generated. The algorithm extracts the head surface and re-parameterizes it into the point cloud. A
multi-resolution scheme is used to find the best surface match between the source surface patch and the target surface path.

the orientation of the MSP is defined by roll angle γ ’ = −((θR

−θN )/2−π/2) and yaw angle ω’ = ((αR −αN )/2−π/2). The roll
error refers to the absolute difference between the estimated
roll and the true roll |γ ’−γ |. The yaw error corresponds to the
absolute difference between the estimated yaw and the true yaw
|ω′−ω|. The mean angular error, MAE = (|γ ’−γ |+|ω′−ω|)/2 is
used as the principal accuracy measure to quantitatively eval-
uate how much the estimated orientation differs from the ex-
pected orientation (expressed in degrees).

C. Uniform Parameter Optimization

Parameter space exploration in a continuous space requires
computational brutal force. We explore the dynamics of the
parameter space, until satisfactory results are observed. Surface
parameter set, relatively independent of searching parameter
set, consists of four parameters ( �θ, �α, θmax, αmax) yielding a
four-dimension vector space E . We use computationally inex-
pensive approach to perform the parameter optimization and
approximation by uniformly sampling parameters in the 4D
vector space E , that is now discretized into a four-dimension
grid. Based on 784 runs, using different parameter combination,
the error space is divided into four compartments according to
the scale of the MAE; they are, .0 ≤ MAE <1.0, 1.0 ≤ MAE <

2.0, 2.0 ≤ MAE< 4.0, and MAE > 4.0.
At the coarse level of the parameter space, we learned what

surface parameters might influence the outcome. The initial in-
vestigation demonstrated that looking at the surface parameter
set ( �θ, �α, θmax, αmax), only the surface patch height θmax af-
fects the most the system’s performance. The diagram suggests
we should choose θmax no larger than 60 degrees to ensure
sufficient accuracy—and the MAE less than 1.5 degree. The re-
sult shows the accuracy estimation degrades radically as θmax

exceeds 60 degree. The initial investigation of the parameter
space, indicates that density of the surface patch, together with
surface patch width appear to be less critical than other param-
eters to the outcome.

We fixed the value of three parameters (�θ = �α = 15,

αmax = 70) while varying the key parameter θmax, in a finer
resolution, and to a greater scope: θmax = {5,10,15,20, 25,30,
35,40,45,50,55,60}. We wanted to take a close look at the re-
lationship between θmax and the outcome. As depicted in the
following diagram (Fig 6), the algorithm performs consistently
well when θmax falls into the range between 30 degree and 50
degree (MAE is less than .5 degree).

This experiment suggests an optimal value range of the crit-
ical parameter θmax ought to be in between 30 degrees and 50
degrees.

D. Refined Parameter Searching and Estimation

In the initial parameter exploration stage, only one single ori-
entation of the head is evaluated. In order to test the system
performance at different head orientations, we successively ap-
ply a roll rotation γ around posterior-anterior axis and a yaw
rotation ω around bottom-top axis (see Fig 7).

A series of artificial spatial orientations of a perfectly sym-
metrical head model M are simulated. Starting with the initial
orientation γ = 00, ω = 00, we confine the variation of roll and
yaw angles into a discrete set 	, which spans from −15 degree
to 15 degree with 5 degree intervals. 	 = {−15, −10, −5, 0, 5,
10, 15}. Given a combination of roll γ and yaw ω, γ ∈	, ω ∈	,
the ground truth orientation of the head is determined, because
{γ , ω} uniquely characterizes the 3D orientation of the symme-
try plane. In all, 7 × 7 = 49 arbitrary orientations of the head
are generated. A linear rotation transformation is performed on
the head model M , using cubic B-spline technique for voxel
interpolation.

By plugging in a fixed value to the most deterministic param-
eter θmax (∼40 degree), we start to vary other three parameters
in a finer resolution in search for the optimal value for each pa-
rameter. Our baseline parameters, based on the experimental
estimate, are valued as θmax = 40, �θ = 15, �α = 15, αmax = 70.
In the following experiments, by varying one parameter and
fixing the other three, we obtain a profile for each parameter
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Fig 6. The plot of the MAE as a function of the surface patch height.

whose relationship with the system performance is suggested.
For instance, we have demonstrated the relationship between
surface patch density and the system performance in Figure 8.

As indicated from the following figures, the increase of the
searching step size (ηθ, ηα) has more to do with the computa-
tional time than to accuracy. By increasing the searching step
size, for example, from 2.5 degrees to 15 degrees, computa-
tional time drops from 50 seconds down to 15 seconds, and the
MAE reads only marginal fluctuation. From the diagram below
(Fig 9), a breakdown point is strongly suggested with a condition
that the searching step size is equal to and/or greater than 17.5
degrees. This suggests that the best choice of the searching step
size should be found in a range, eg (100, 150), as a compromise
between accuracy and efficiency.

Fig 7. The pitch, roll and yaw angle of the head. The z direction
is assumed to be aligned with the major axis of the scanner. The
x direction is chosen as left to right, and the y axis is chosen as
posterior to anterior.

Given most brain images are largely aligned to the scan-
ner, it is reasonable to set the searching scope 	θ (in elevation
direction) and 	α ( in amuith direction) to be 300 .

In summary, after evaluating the trade-off between accuracy
and efficiency, we claim that restricting the following parameter
values, the algorithm is expected to achieve optimal outcome:

1. The surface parameter set (�θ, �α) = (150 , 150 ), θmax∈{300 ,
500}, αmax∈ {450 , 700}

2.The search parameter (ηθ, ηα ) = (150 , 150 ) and (	θ,, 	α) = (300 ,
300 ).

With this configuration for the parameters, the time to pro-
cess one MR volume is around 10 seconds. The mean and
standard deviation of MAE, exhibited in Figure 10, demon-
strates that the no matter how the head is initially orientated
(within 20 degree variance), the algorithm precisely captures
the roll and yaw angle. In other words, the system performance
is consistent and stable, in spite of different orientations of the
input head images.

Evaluation
Evaluation on the Simulated MRI Data

In this section, we present the validation experiments on simu-
lated data from BrainWeb22 in order to investigate the robust-
ness of the algorithm. Brainweb provides a simulated brain
database that contains a set of realistic MRI data volumes
produced by the MRI simulator. The acquired image size is
128×128 in each plane. We have tested our algorithms on
three data sets -T1, T2, Proton-Density (PD), using a variety of
slice thicknesses (from 1 mm to 9 mm), different scales of noise
signals and different strengths of intensity non-uniformities. We
created some artificial lesions and superimposed them on the
normal Brainweb images. The brain MR volume was initialized
to different orientations (rotational angles are set to different
numbers, ranging from 4 to 12 degree) using standard interpo-
lation algorithm. For example, the roll angle and the yaw angle
are set to 8 degree (see Fig 12). Thus with the known ground
truth orientations, we were able to quantitatively evaluate the
accuracy of our symmetry detection algorithm.

The objective of this phase of the evaluation study is to exam-
ine the system’s performance in a simulated brain MR volume
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Fig 8. The relationship between the surface patch density and the MAE.

Fig 9. Effect of varying search step size on the algorithm performance. Left: relationship between search step size and the MAE. Right:
relationship between search step size and computing time.

where the ground truth is known and a set of external condi-
tions have been superimposed. We would like to observe the
system’s behavior and evaluate its tolerance to the variations
of conditions, such as, the thickness of the input scans, acquisi-
tion noise, intensity in-homogeneity (bias field) and pathologi-
cal asymmetries.

A. Tolerance to the Thickness of the Input Scans

Brainweb simulator fixes the in-plane pixel size to be 1 × 1
mm, while allows the slice thickness varying from 1 to 9 mm.
As demonstrated in the table below (Table 2), no significant
correlation between the slice thickness and the MAE has been
identified. This is because the slice thickness does not affect

the overall geometry of the head as long as the voxel is cubic-
shaped. For the latter, the intra-plane voxel interpolation per-
formed in the preprocessing stage has ensured that each voxel
has the same width, height, and length in three dimensions.

B. Tolerance to the Acquisition Noise

An addictive Gaussian white noise, with standard deviations
to be 5, 10, 15, 20, 25, is sequentially imposed upon the orig-
inal noise-free MR images. As we can see from the following
figure (Fig 11), when the additive Gaussian noise is less than
15 standard deviation, the accuracy of the algorithm is ex-
cellent and MAE are less than 1 degree. A noise level over
20 standard deviation, however, significantly degrades the
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Fig 10. Evaluation of algorithm performance against different initial orientations of the head. (a) MAE as function of roll angle. (b) MAE as
function of yaw angle. The graphs indicate consistent performance in spite of varying roll and yaw angles of the input images.
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Table 2. Dependence of MAE and Stderr On the Input-Scan Slice
Thickness: the Input-Scan Slice Thickness Has Little Influ-
ence On the System’s Performance

Thickness (mm) MAE (degree) StdErr

9 .807 .423
7 .769 .399
5 .750 .444
3 .843 .549
1 .825 .454

algorithm’s performance and therefore is marked as the break-
down point (Table 3). This is because the high noise level cor-
rupts the continuity of the external surface of the head, and the
algorithm fails to extract surface using simple thresholding ap-
proach. By picking both the external surface and hypo-intensity
speckles exterior to the head, the algorithm is mostly doomed
because the continuity of the external surface is interrupted.
One way to tackle this problem is to increase the cutoff value
used in extracting the external surface. Another way is to apply
some simple noise reduction techniques prior to running this
algorithm.

C. Tolerance to the Intensity Non-Uniformity (INU)

Tolerance to the intensity non-uniformity (INU) is illustrated
in Figures 12 and 13. No significant accuracy degradation is
detected when the INU has been applied to the brain images.
This conforms to our presumption that the internal variation
of the signal intensity has no impact upon the topology of the
exterior surface, therefore, has little to do with the computation
of the mid-sagittal plane.

D. Tolerance to the Pathological Asymmetries

Three big round-shaped lesions with diameters 40 mm, 20
mm, and 20 mm are created and blended with the volumet-
ric dataset. The presence of those three big lesions consider-
ably degrades the internal symmetry of the brain, where our
algorithm (shape-based approach) can be found superior to
other content-based approach. The latter is likely to fail due
to the big content asymmetries. It is not difficult to observe
that as long as the external surface of the head remains in-

Table 3. Influence of Gaussian Noise Levels on the System Perfor-
mance (Measured in Mean MAE and StdErr)

Noise (Gaussian Level) MAE (degree) StdErr

0 .574 .493
5 .503 .310

10 .660 .242
15 .800 .541
20 2.051 1.278
25 4.892 2.810

tact and continuous, the sizes of the lesions are irrelevant, and
our algorithm successfully computes the MSP. The experiments
exhibited in Figures 14 and 15 confirmed this idea and demon-
strate the robustness of our algorithm against pathological
asymmetries.

E. Tolerance to the Down-Sampling

As stated earlier, to reduce the computational cost, we uni-
formly down-sample the volumetric brain data in three dimen-
sions, assuming that this data reduction would not alter the
geographical property of the head. From the experiments, we
have found that the volume reduction from 1283 to 323 (dis-
played in Fig 16) harms the accuracy to a less degree than it
boosts the speed. The mean MAE for 1283 images is .397 ± .33
(degrees), for 643 images is .949 ± .54, for 323 images is 1.744 ±
1.01 (see Table 4). The average CPU time however, drops from
17s to 5.5s to 2.6s.

When the image size is shrank to 323 or even smaller, the
variation of the surface patches become trivial and using the
surface correlations to compute MSP will generate aberrant
results. We didn’t compute the original size data because the
memory allocation (in the PC 512M matlab environment) de-
clared insufficiencies when the algorithm attempted to process
the head which is 2563 in dimension. Yet, the table below
(Table 4) suggests the utilization of the down-sampling to either
1283 or 643, prior to the MSP extraction, produces satisfying
results. The choice of 128 or 64 requires trading in accuracy for
time and is application dependent- different applications may
put different weight on time and accuracy.

Fig 11. Dependence of MAE on various noise levels in the image. It can be seen that the algorithm’s performance starts to deteriorate when
the additive Gaussian noise becomes larger than 20 standard deviations.
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Fig 12. Realignment of simulated T1-weighted MR images. The left panel displays axial views while the right panel displays the coronal
views. Within each panel, from left to right, we demonstrate the simulated disoriented MR images and the realigned images. Parameter
configurations for the density and the size of each surface patch (�θ, �α, θmax, αmax) = (10, 10,60, 160); the fineness and scope of searching
subspace (ηθ, ηα, �θ, �α) = (15,15, 60, 60). Additive white Gaussian noise is imposed with standard deviation values of 15. The intensity
non-uniformity is set to (RF) = 20%. The slice thickness is 3 mm. In the above case, the true raw and true yaw equal to 8 degree. The estimated
raw = 7.031 and the estimated yaw = 7.959. Thus the MAE equals to .500 degrees. The CC equals to .931 between two surface matches.

Evaluation on the Real Patient Data

The proposed algorithm has been applied to more than 30
MRI data sets of patients with brain tumors, as well as a small
number images from other modalities like CT, MR diffusion
weighted images (DWI). All data was collected from PACS

(picture archiving and communication system) image database
at Columbia Presbyterian Hospital.

For the MRI data set each image contains one of three dif-
ferent tumor types: Type I: Meningioma primary brain tumor
(the most common benign tumors of the brain), Type II: Non-
Meningioma primary brain tumor, and Type III: Metastatic

Fig 13. The accuracy (as given by MAE) is not affected by the strength of the Intensity Non-Uniformity (INU), or bias field.
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Fig 14. Realignment of simulated T1 MR images with 7 mm vertical thickness. The left panel displays axial views while the right panel displays
the coronal views. Within each panel we show the simulated disoriented MR images (left) and the realigned images (right). The parameter
configurations for the density and the size of each surface patch are given by (�θ, �α, θmax, αmax) = (10, 10, 60, 160); The parameter
configurations for the fineness and scope of the searching subspace are given by (ηθ, ηα, �θ, �α) = (15,15, 60, 60). Three occupational lesions
with diameters to be 40 mm, 20 mm, and 20 mm are superimposed. In the above case, the true roll = −8 degree and true yaw = 12 degree.
The estimated roll = −8.906 and the estimated yaw = 11.719. Thus the MAE equals .594 degrees. The CC equals .947 between two surface
matches.

secondary brain tumor-a metastasis from another primary can-
cers in other body regions. Most datasets were T1-weighted,
T2-weighted and PD-weighted images. Some sets included con-
trast enhanced T1, FLAIR, and diffusion-weighted images. The
majority of the images had 16 bits contrast resolution and 5 mm
slice thickness and their x/y resolution is approximately 2.3 pix-
els per mm. In this dataset, we have found a great variety of
tumors, in different shapes, different location, sizes, and highly
variant signal intensities.

Unlike simulated MRI, where the ground truth information
is available, conducting proper validation on real images is very
difficult. To simplify the process, instead of delineating the sym-
metry axis slice-by-slice on the original data, the clinical expert
was asked to evaluate the corrected data volume. The expert
drew the symmetry axis on 5 axial slices and 5 coronal slices
of the corrected MR volume. Since the corrected data volume,
by definition, assume 0 degree of rotation in any dimension,
the mean angle of the manually drawn symmetry axis become
the MAE of the computational method, given the manual de-
lineation is the gold standard.

The automated symmetry detection and tilt correction re-
sults can be found in Figure 17, where the first row is T1
weighted MR images. Row 2–4 are T2-weighted and row 5–6
are Flare MR images. In Figure 18, we demonstrated an ex-
treme case where there is significant distortion, and incomplete
field of view. A comparison of human versus computer esti-
mated yaw and roll angles are presented in Table 5 Some test
results in CT and DWI are illustrated in Figure 19.

Discussion and Conclusion
We describe a new approach, a significant extension of orig-
inally published preliminary pilot study, for automatic detec-
tion of the mid-sagittal plane in an arbitrarily oriented 3D head
dataset; and an efficient correction the 3D orientation of brain
images.

As readers may argue that reorientation of the scan can be
done manually and very easily, using current visualization soft-
ware, we like to justify the clinical relevance of the presented
technology. First of all, mid-plane identification and correction
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Fig 15. Simulated PD-weighted (top) and T2-weighted (bottom)
MR images with synthetic multiple sclerosis (MS). The initial axial
images are shown on the left panel, and the realigned images are
shown on the right panel.

is not the final goal of the story; it is not solely used for visu-
alization purpose either. The reason for previous authors (see
Table 1) and for us to perform extensive experiments on this, is
not that we were curious about solving a computational geom-
etry/registration problem, but rather that we would like to treat
the correctly computed symmetry plane, as a starting point that
can lead to more clinically important analysis: eg, Quantitative
asymmetries analysis of the brain. For instance, we have pub-
lished widely about computerized asymmetry analysis in many
neuro-applications studies, including stroke asymmetry analy-
sis,23 CT/MR perfusion quantification of asymmetries,1,24 and

Table 4. Different Size of the Input Image and their Respective Ac-
curacy and Efficiency Using the Algorithm to Compute the
MSP

Image Size MAE Std_MAE Mean_Time Std_Time

32 1.744 1.011 2.6 .19
64 .948 .543 5.5 .76

128 .397 .333 16.9 4.30

brain tumor estimation,25 all encapsulated in the first author’s
PhD thesis.26

On the other hand, if we want to enable this asymmetri-
cal pathology detection algorithm (particularly for some subtle,
subclinical findings) to trigger an alarm event to clinician’s atten-
tion, it is necessary to automate this pipeline because it is almost
impossible for the radiologists to manually inspect/correct the
mid-sagittal planes for every case.

It is true that there exist many other published methods
to extract mid-sagittal planes and we are aware that many of
them claimed successfully applying to the clinical images, each
approach has its own strengths and limitations (see the summa-
rization in the introduction and Table 1). Our method is meant
to serve a population of patients: such as tumors and stroke
patients who do not suffer from skin (or brain/bone) surface
intactness and discontinuity. We claim that we can correctly
compute the plane of symmetry, using external surface-based
method to tackle this particular group of subjects with compet-
itive accuracy and efficiency.

The algorithm is independent of the imaging modality and it
is insensitive to incompleteness of the data. Unlike many of the
classical symmetry-based methods, where pathological asym-
metries can severely degrade the computation of the symmetry
plane, our method uses parameterized surface points to estimate
the best similarity measure, and therefore it performs robustly
in the presence of the normal/pathological asymmetries inside
the brain.

It is worthwhile to notice that using polar coordinates to
re-parameter surface points in 3D space may exhibit some

Fig 16. The MAE on 643 images is .95 degree, and the MAE on 1283 images is .40 degrees. The average CPU time is 5.46 seconds and
16.95 seconds, respectively. Given the time saving (about 18 seconds saved) and performance consistency (only .2265 degree in angular
difference), we suggest that using down-sampled images (from 256 to 64) to estimate the mid-sagittal plane. This can produce enough
satisfying results while boost the overall efficiency.
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Fig 17. The results of symmetry detection and correction algorithm in MR images. The left column are original input, the middle column are
the reoriented and recentered volume in axial view, and the right column are the corrected brain volume in coronal view.
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Fig 18. The results of Case 40 with a large tumor and incomplete field of view. The first row is T1-weighted MR and the second row is
T1-Contrast enhanced MR images. The presence of a brain tumor making the interhemispheric fissure and the ventricles severely displaced
with respect to their normal positions. The spatially corrected head images with computed roll = 1.875 degree and yaw = −15.469 degree is
processed in spite of large distortion and incomplete field of view.

limitations. Given the same sampling intervals in elevation and
azimuth directions, the points close to polar are more densely
sampled than these close to the equator. Concentric circles at
different elevation locations are not uniformly sampled. In the
extreme case, the point on the north polar where the eleva-
tion angle is 90 degree, the azimuth angles are not defined.
Owing to this limitation intrinsic to the polar representation,
we choose to rotate the data, instead of rotating the coordi-
nates, in the first several iterations of optimization, and rede-
fine the surface patches based on the new orientation of the
rotated head data. This process may cause numerical insta-
bility especially after many iterations; moreover, rotating the
data involves spatial interpolation and may affect the compu-
tation. In our study, we demonstrated that imperfect data sets
still can be successfully processed by the algorithm, as long
as the shape of the head is intact. Cautions must be taken,

however, in processing other symmetric dataset using polar
representation.

We demonstrated how non-head data can be pre-processed
and excluded by applying a small threshold δ value that sep-
arates background from head tissue. We set δ a less conserva-
tive value—a value higher than 5 standard deviations from the
mean background intensity. By doing so, the background can
be discarded completely, and in addition, some inner struc-
tures of the brain may also be removed due to their intensity
overlap with that of the background. As our method focuses
on discovering the geometric properties of a solid oval shape,
the performance remains unaffected even though some interior
pixels, in the brain region, are omitted from the computation.
Internal content asymmetries commonly lead to the pitfalls in
registration-based mid-line detection method. The advantage
of employing shape symmetry as a criterion to compute the

Table 5. Comparison of Human Versus Compute Estimated Yaw Angle and Roll Angle

Expert Estimated Rotational Angle
Based on PSM Correction

Expert Estimated Rotational Angle
Based on PCA Correction

Mean Err Mean Err Mean Err Mean Err
Case# Pathologies Type (roll angle γ) (yaw angle ω) (roll angle γ) (yaw angle ω)

IM01 Meningioma T1 .35 .59 .72 .35
IM02 Small Meningioma T2 .84 .68 .57 .65
IM03 Malignant primary tumor T2 .58 .22 .48 .26
IM16 Big Meningioma T2 .32 .82 1.64 2.97
IM34 Big metastatic tumor FLARE .26 .39 2.78 3.92
IM38 Malignant primary tumor FLARE .08 .12 .53 .92
IM40 Malignant primary tumor T1 C+ 1.86 .98 8.54 10.27

As summarized in Table V, the PSM algorithm is compared against PCA, using manual delineation as the ground truth. It demonstrates that based method and have
found that our method outperforms PCA method in terms of both accuracy and robustness. The estimated MAE of PSM method, compared to the expert estimation is
about .58 ± .46. The PCA methods, in contrast, generate inconsistent results when there is incomplete (case 40) or over-complete (case 16) field of view, and when the
head is too round (case 34) such that there is no distinctive eigenvectors in three dimensions.
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Fig 19. The possibility of extending the skin surface extraction to skull and brain surface extraction, in order to perform symmetry identification.
Test results on isotropic CT images(a) and diffusion weighted MR images (b). (c) and (d) demonstrates the test results using skull surface and
brain surface obtained from the Visible Human data. In (a) and (b), the first column of each panel shows the original misaligned images, and
the second column demonstrates the corrected images. This figure demonstrates the versatility of the proposed algorithm. For CT images the
most distinguished features are bones. Thus the external surface of the bone can be used to identify symmetry plane. In the DWI images, on
the other hand, only the brain data are shown. In this case, we could use the external surface of the brain for performing the task.

symmetry axis/plane is manifested by its performance consis-
tency in the presence of content asymmetries and external arti-
fact such as bias field. While we use a simple method to extract
background, there has always been an option of using com-
mercial tools or more sophisticated algorithms to separate head
from the other structures in MR images.

The present methodology uses the external surfaces of the
head to identify the symmetry axis, assuming the internal struc-
ture (ie, the brain) shares the same symmetry geometry and
symmetry axis. This is consistent with a technician positioning

a patient’s head in the scanner, placing the head to be aligned
with scanner coordinate system, granted that the brain should
be as correctly aligned as the head. This assumption is only
valid when no evident brain traumas and significant patholo-
gies that apparently violate this spatial correlation. In case that
this correlation (between symmetry plane of the brain and that
of the head) no longer stands, a possible solution could be the
use of the external surface of the brain (instead of the head)
to perform symmetry assessment. This approach would require
segmentation of the brain structure and reconstruction of the
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brain surface, prior to the computation of plane of symmetry.
In this preliminary experiment (see Fig 19) we are using this
method to assess brain-only images (such as DWI).

In our first phase of evaluation study, we examine the sen-
sitivity of the performance by varying the surface/searching
parameters. By subdividing the parameters into four sets, we
tested each set independently while fixed other three sets of pa-
rameters. In omitting the potential interactions between these
parameter sets, we admit our test is not fully objective. In order
to compute the optimal outcome, we have to first guess which
parameter set will have most impact on the performance. Then,
we identify the best estimate of the parameters set, and we use
this to estimate other parameters. Alternatively, we can adopt a
multivariate optimization algorithm to streamline this process.
The Levenberg-Marquardt method is a method of non-linear
optimization that uses Jacobian matrix. It minimizes the func-
tions: F(x) = ∑

f i
2(x1, . . . , xn). This problem could be solved

as a general non-linear optimization problem, where xi indi-
cate the varying parameter set and fi are usually nonlinear cost
functions. In our future work, we may consider using non-linear
optimization for parameterized surfaces.

Arguing that shape symmetry outperforms content symme-
try in computing the symmetry plane, we proposed a novel par-
tial surface searching algorithm to detect the MSP, and subse-
quently to correct the potential spatial misalignment of the brain
images. Interestingly, this research provided interesting obser-
vation about anatomical properties: (1) The symmetry plane
seems to be perpendicular to the eigenvector associated with
the second smallest eigenvalue. This discovery indicates that
the head’s horizontal diameter (from ear to ear) is the short-
est measurement comparing to the distance from posterior to
anterior and that from bottom to top; (2) Through the parame-
ter simulation study for symmetry detection algorithm, we ob-
served that for the vertical span of the surface patch, between
30 degree and 50 degree and the horizontal span of the sur-
face patch is between 45 degree and 70 degree, the algorithm
achieves the optimal outcome in terms of both accuracy and
efficiency. This means that trapezoid area on the surface of the
head centered upon +x and -x directions of a height (300–500)
and a width (450–700) has the most significant geometrical
features.

In summary, we presented a novel algorithm to detect and
re-align 3D symmetry plane of the volumetric neuroimages. It
is the first documented method that represents the head volume
as a re-parameterized surface point cloud, where each location
is parameterized by its elevation (latitude), azimuth (longitude)
and radius, and such representation is used to compute the
mid-sagittal plane.

Never before surface patches (defined as a nearly trapezoid point
cloud on opposing hemispheres) were used to perform search-
ing and optimization scheme. The search for the best match-
ing surfaces is very efficient due to implementation of a multi-
resolution paradigm that considerably decreases the computa-
tion time. We quantitatively evaluated the algorithm in both sim-
ulated data and real T1,T2-weighted magnetic resonance images
(MRI). This algorithm is very fast, robust and accurate, in spite of
the acquisition noise, slice thickness, bias field, and pathological
asymmetries.
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