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Abstract

The purpose of this paper is to describe a framework for evaluating image segmentation algorithms. Image segmentation consists of object

recognition and delineation. For evaluating segmentation methods, three factors—precision (reliability), accuracy (validity), and efficiency

(viability)—need to be considered for both recognition and delineation. To assess precision, we need to choose a figure of merit, repeat

segmentation considering all sources of variation, and determine variations in figure of merit via statistical analysis. It is impossible usually

to establish true segmentation. Hence, to assess accuracy, we need to choose a surrogate of true segmentation and proceed as for precision. In

determining accuracy, it may be important to consider different ‘landmark’ areas of the structure to be segmented depending on the

application. To assess efficiency, both the computational and the user time required for algorithm training and for algorithm execution should

be measured and analyzed. Precision, accuracy, and efficiency factors have an influence on one another. It is difficult to improve one factor

without affecting others. Segmentation methods must be compared based on all three factors, as illustrated in an example wherein two

methods are compared in a particular application domain. The weight given to each factor depends on application.

q 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

1.1. Background

Image segmentation is the process of identifying and

delineating objects in images. It is the most crucial among all

computerized operations done on acquired images. Even

seemingly unrelated operations like image (gray-scale/color)

display, 3D visualization, interpolation, filtering, and

registration depend to some extent on image segmentation

since they all would need some object information for their

optimum performance. Ironically, segmentation is needed for

segmentation itself since object knowledge facilitates

segmentation. In spite of several decades of research [1,2],

segmentation remains a challenging problem in image

processing and computer vision.

Image segmentation may be thought of as consisting of

two related processes—recognition and delineation.

Recognition is the high-level process of determining

roughly the whereabouts of an object of interest in the

image. Delineation is the low-level process of determining

the precise spatial extent and point-by-point composition

(material membership percentage) of the object in the

image. Humans are more qualitative and less quantitative,

whereas, computerized algorithms are more quantitative

and less qualitative. Incorporation of high-level expert
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human knowledge algorithmically into the computer has

remained a challenge. Most of the drawbacks of current

segmentation methods may thus be attributed to the latter

weakness of computers in the recognition process. We

envisage, therefore, that the assistance of humans, knowl-

edgeable in the application domain, will remain essential in

any practical image segmentation method. The challenge

and goal for image scientists are to develop methods that

minimize the degree of this required help as much as

possible.

While algorithms for image segmentation have been in

development for several decades [1,2], the development of

systematic evaluation frameworks for these algorithms has

been lagging, particularly in medical imaging which is the

focus of this paper. The lag is perhaps the result of

problems such as limits in common data sets with which

to compare methods, difficulty in defining the performance

metrics and statistics, and the difficulty in establishing true

segmentation. As early as 1977, the need for effective

evaluation of the segmentation of biological images has

been outlined [3]. More recently, this need has been

echoed by many researchers [2,4–6]. In [4,5], the authors

stress the need for an objective evaluation of medical

image segmentation on large sets of common clinical data,

arguing that this is a critical step towards establishing the

validity and the clinical applicability of an algorithm.

Similarly, [6] claims that the development of an objective

approach will provide consistency in evaluation methods

by removing biases due to human factors. Many attempts

at evaluation do not address the important components that

should be present in any evaluation methodology, thus

limiting their validity and clinical applicability. Claims

about the performance of segmentation algorithms are

limited by problems such as (a) the data sets are too small,

(b) different data sets are used for different estimations of

performance, (c) the data sets are not representative of a

clinical problem, (d) appropriate ground truths (or

surrogates) are difficult to determine, (e) the performance

metrics are poorly defined, (f) there is poor methodology

for training and testing the algorithms, (g) large costs of

time and effort are involved in collecting and hand-

segmenting data, and (h) the algorithms are not compared

against other algorithms [5,7].

In light of such difficulties, it is not surprising that many

researchers develop complex applications (e.g. virtual

colonoscopy systems) that make use of 3D visualizations

of anatomical images derived from 3D segmentation

methods that have not been formally evaluated by a

consistent evaluation strategy (e.g. [8,9]). Many of the

researchers who do evaluate their segmentation algorithms

do so only on a limited number of components, such as cost

analysis [10], inter-rater reliability [11], overall volume

[12], or the Hausdorff distance [13]. These efforts, despite

representing a valid attempt at evaluation, exemplify the

difficulty in devising comprehensive and effective segmen-

tation evaluation methodologies in this domain.

Few researchers [4–7] have made attempts to develop

evaluation frameworks that incorporate many of the

performance metrics necessary for a practical and

informative evaluation of a segmentation algorithm. In

[7], the authors discuss the variety of metrics that would

result in a valid estimation of the performance of an

algorithm. When comparing a segmentation method to a

ground truth segmentation of the image, [7] argues that

there are five possible outcomes that need to be identified.

The computer algorithm can either (a) correctly segment a

region, (b) over-segment a region, (c) under-segment a

region, (d) miss a region, or (e) incorrectly segment

a noise region. Hoover et al. [5] also developed a rigorous

framework for the evaluation of segmentation algorithms.

This involved the use of pixel-level ground truths in 30

real images. The ground truth consisted of the hand-

segmentation, which was reviewed by a second human

operator to catch obvious errors. Each pixel in the region

segmented by the computer algorithm was classified as

either a correct detection, an over-segmentation, an under-

segmentation, a missed pixel, or noise. Four algorithms

were then compared and described on the basis of these

metrics, as well as on the basis of processing time. Zhang

[6] approaches evaluation of segmentation methods by

proposing analytical and empirical methods, where the

empirical methods are divided into goodness and

discrepancy measurements. The analytical methods

examine and assess the segmentation algorithms them-

selves by analyzing their principles and properties. The

empirical methods indirectly judge the algorithms by

testing the images and evaluating the quality of

segmentation results. The weakness of this approach is

that it is intended for ‘all images’. Because of the lack of a

general theory for image segmentation, not all character-

istics of segmentation can be obtained and described by

analytical studies.

We argue that a primary reason for the lack of activity

in evaluation, commensurate with the level of investi-

gation in segmentation algorithm development, is the lack

of a framework which algorithm developers can readily

utilize, without having to spend a great deal of time, to

assess the efficacy of their methods. Such a framework,

we believe, should consist of: (F1) a specification of

readily computable, effective, and meaningful metrics of

efficacy, (F2) real life image data, (F3) reference

segmentations that can be used as surrogates of true

segmentations (ground truth), (F4) a few standard

segmentation algorithms, and (F5) a software system

that incorporates the evaluation methods and the standard

segmentation algorithms. We shall use the phrase

evaluation framework to refer to this quintuple of

components (F1)–(F5). It is clear from the above

description that a comprehensive framework for the

evaluation of segmentation algorithms in the sense of

including the five components is lacking. Even the

metrics of efficacy have not considered all important
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factors and situations that may influence the segmentation

results. For example, variations due to images acquired

on different imaging devices (brands, sites, etc.) or slight

changes in the acquisition protocol are rarely considered.

Even the variations arising from repeat acquisitions on

the same device are rarely addressed.

There are shortcomings in the metrics of efficacy

commonly used. For example, the commonly-used

volume of an object of interest is not a good metric

since two sets S1 and S2 of voxels may constitute very

similar volumes, although, as segmentations of the same

physical object in two different situations, the sets may

differ significantly in terms of the extent of overlap

(S1hS2), and false positive and false negative regions

(S1KS2 and S2KS1). Factors involving efficiency (prac-

tical viability of the segmentation method in terms of the

extent of the various forms of human and computational

help needed) are not at all considered except for one

aspect of the computational requirements of the method.

As we shall see later on, there are several factors (both

human and computational) that influence efficiency that

should be considered within the evaluation framework.

Factors relating to the quality of segmentation results

have not been considered previously. These factors allow

us to take into account in the evaluation framework how

well certain salient features of the object (e.g. a site of

attachment of a ligament, a particular segment of the

object boundary), which are considered important for the

application for which image segmentation is sought, are

captured in the segmentation.

1.2. Purpose

In summary, the gaps that exist in the currently used

evaluation strategies are of two kinds: methodological and

resource related. The former represent lapses in the

evaluation techniques currently employed. The present

paper is an attempt at filling these methodological gaps.

The latter pose challenges to the image scientist since the

evaluation tasks require considerable resources (multiple

data sets with repeat acquisitions and from different sites

and brands of imagers and for different applications with

known segmentations, software), which most algorithm

developers do not possess. We are working toward

addressing these issues and nothing further will be said

about these issues in this paper. We believe that further

work is needed in each of the five components (F1)–(F5) of

the framework. The proposed evaluation methodology is

described in Section 2 and an example is presented in

Section 3 illustrating how the methodology can be utilized

in an actual application for comparing methods. Our

concluding remarks are stated in Section 4. An early

version of this paper was presented at the SPIE Medical

Imaging 2002 conference whose proceedings contained that

paper [14].

2. The methodology

2.1. Notation and terminology

Any method of evaluation of segmentation algorithms

has to, at the outset, specify the application domain under

consideration. We consider the application domain to be

determined by the following three entities.

T: A task; example: volume estimation of tumors.

B: A body region; example: brain.

P: An imaging protocol; example: FLAIR MR imaging

with a particular set of parameters.

An evaluation characterizing the efficacy of a particular

segmentation method a for a given application domain

hT,B,Pi that signals high performance for a may tell nothing

at all about a for a different application domain hT 0,B 0,P 0i.
For example, a particular algorithm may have high

performance in determining the volume of a tumor in the

brain on an MR image, but may have a low performance in

segmenting a cancerous mass from a mammography scan of

a breast. Therefore, evaluation must be performed for each

application domain separately. The following additional

notations are needed for our description.

Object: A physical object of interest, denoted O, in B for

which images are acquired; example: brain tumor.

Scene: A 3D (or higher-dimensional) volume image,

denoted by CZ ðC;f Þ, where C is a 3D (or higher-

dimensional) rectangular array of voxels (short for

volume elements), and f(c) denotes the scene

intensity of any voxel c in C. Cmay be a vectorial

scene, meaning that f(c) may be a vector whose

components represent several imaged properties.

C is referred to as a binary scene if the range of

f(c) is {0,1}.

SX: A set of scenes acquired for the same given

application domain XZ hT ;B;Pi for different

subjects.

The word ‘segmentation’ as used in medical imaging has

two distinct meanings in two different contexts. The first

context is provided by computer aided diagnosis (CAD).

Detection in this context refers to the act of finding via the

given scene an abnormality (such as a lesion) that may exist

in B. The answer sought in this act is mostly to the query

whether or not a particular kind of abnormality (such as a

nodule in the lung) that may exist in B is portrayed in the

scene. If the answer is ‘yes’, the purpose of the second act of

localization is to mark on the scene location(s) where the

abnormality is determined to be present. The second context

for a different meaning for ‘segmentation’ is provided by a

wide-spread and long-standing activity that begs for a name

and an acronym of its own. We refer to this for now as

CAVA, an acronym for computer aided visualization and
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analysis. Briefly, the goal of CAVA is to develop computer

methods for aiding humans in visualizing the objects in B in

their true form, shape, and function, and to quantify the

form, shape, and function of these objects. This is usually

for the purpose of studying in vivo the normal behavior of

an organ system in B or its disease processes in their natural

course or the effects of therapy on the disease processes. The

nature of the objectives and requirements for segmentation

are quite different in CAD and CAVA, as such, we believe

that their evaluation strategies must also be different. The

problem of evaluation addressed in this paper is as related to

segmentation in CAVA.

Segmentation of an objectO in a given scene acquired for

an application domain hT,B,Pi is the process of defining the

region/boundary ofO in the given scene.As said previously, it

consists of two related tasks—recognition and delineation.

Although recognition in CAVA is analogous to detection in

CAD, the term detection would be inappropriate to describe

the role of recognition. For example, if the task is to quantify

brain atrophy in studying a neurological disease or its

treatment effects, the high-level act of recognizing brain

parenchyma and distinguishing it from other objects in the

head that are also portrayed in the scene is very different from

seeking an answer to the detection task of ‘whether or not the

brain is there’. Similar comments are applicable to delineation

vis-a-vis localization.

We assume that the output of any segmentation

algorithm corresponding to a given scene CZ ðC;f Þ is a

(hard) set O3C of voxels. This set represents the region

occupied by (the support of) an object O of B in C. To

accommodate methods that output fuzzy segmentation

results, we denote the fuzzy segmentation of O in C as a

scene COZ ðC;fOÞ, where, for any c2C, fO(c) denotes the

degree of objectness assigned to every voxel c in O by the

segmentation method. We shall always denote a hard

segmentation in C of an object O in B by O and the

corresponding fuzzy object by CO. Our treatment through-

out will be general considering fuzzy objects to be the

output of segmentation methods. Hard segmentations will

become a particular case of this general treatment.

We will use the following operations on fuzzy

segmentations. Let COxZ ðC;fOxÞ; COyZ ðC;fOyÞ; and COzZ
ðC;fOzÞ be any fuzzy segmentations defined by the same

physical object O in a scene C. The cardinality jCOxj of the
fuzzy segmentation COx is defined as jCOxjZ

P
c2C fOxðcÞ.

Fuzzy set union COzZCOxgCOy is defined by, for any

c2C, fOz(c)Zmax(fOx(c), fOy(c)). Fuzzy set intersection

COzZCOxhCOy is defined by, for any c2C, fOz(c)Z
min(fOx(c), fOy(c)). Fuzzy set complement �COxZ ðC; �f OxÞ of
COx is defined by, for any c2C, �f OxðcÞZ1KfOxðcÞ.

Fuzzy set difference COzZCOxKCOy is defined by, for

any c2C:

fOzðcÞZ
fOxðcÞKfOyðcÞ; if fOxðcÞKfOyðcÞR0

0; otherwise:

(
(1)

A fuzzy masking operation COzZCOx†COy, called

inside, is defined by, for any c2C:

fOzðcÞZ
fOxðcÞ; if fOyðcÞs0

0; otherwise:

(
(2)

Another fuzzy masking operation COzZCOx+COy called

outside, is defined by, for any c2C:

fOzðcÞZ
fOxðcÞ; if fOyðcÞZ 0

0; otherwise:

(
(3)

2.2. Outline of methodology

The efficacy of any segmentation method M in an

application domain hT,B,Pi is to be measured in terms of

three groups of factors: Precision (also known as

reliability), which represents repeatability of segmentation

taking into account all subjective actions required in

producing the result; accuracy (also known as validity),

which denotes the degree to which the segmentation agrees

with truth; efficiency (also known as viability), which

describes the practical viability of the segmentation method.

In evaluating segmentation efficacy, both recognition and

delineation aspects must be considered. Commonly, only

delineation is considered to represent the entire segmenta-

tion process. Our methodology attempts to capture both

recognition and delineation within the same framework in

the factors considered for evaluation.

Our overall approach for the evaluation method consists

of the following steps. (1) Establishing true segmentation

for delineation. (2) Establishing true segmentation for

recognition. (3) Defining metrics for precision. (4) Defining

metrics for accuracy. (5) Defining metrics for efficiency. (6)

Comparison of segmentation methods by statistical analysis

of the metrics generated by the methods on the same set of

scenes acquired for a given application domain hT,B,Pi.
These steps are described in detail in the following sections.

2.3. Surrogate of truth

For real scenes (patient scenes in medical imaging), since

it is impossible to establish absolute true segmentation,

some surrogate of truth is needed. In describing this aspect,

we will treat the delineation and recognition aspects

separately in Sections 2.3.1 and 2.3.2, respectively.

2.3.1. Object delineation

Three possible choices of the surrogate for delineation

are outlined below.

(a) Manual delineation. Object boundaries are traced or

regions are painted manually by experts (see Fig. 1).

Sometimes, it is easier for experts to manually correct the

delineation produced by an algorithm. Corresponding to a

given set SX of scenes for the application domain

XZ hT ;B;Pi, manual delineation in either of these forms
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produces a set SXtd of scenes representing the fuzzy

segmentations of the same object represented in the scenes

in SX in the following manner. Manual delineation produces

a hard set O for each scene C in SX. Multiple repetitions of

segmentation by multiple operators should be performed.

The fuzzy segmentation CO is produced simply by

averaging the multiple manual delineations. Manual

delineation is inherently binary; that is, it cannot specify

tissue percentages. These binary results are converted into

fuzzy segmentations by using the above strategy. However,

if only binary segmentation is desired, then the averaged

scene can be thresholded at 0.5 to output a binary scene

corresponding to each C in SX. In that case, SXtd contains

binary scenes. Another alternative is to use the method

suggested in [15] wherein an expectation–maximization

algorithm is described for estimating the surrogate of true

delineation produced by a group of experts.

Manual delineation has several shortcomings. First,

when required to be done by expert physicians skilled in

the application domain, it is very costly because of the time

and effort needed in hand segmenting multiple data sets

multiple times. Second, it can be highly variable. For

example, intra- and inter-operator variations of over 20%

have been reported for manual outlining of multiple

sclerosis lesions in brain MRI scenes [16,17]. Third, the

precision of manual delineations depends on the crispness of

boundaries, the window level settings for image display, the

computer monitor and its settings, and even on the

operator’s vision characteristics [18]. When object

regions/boundaries are fuzzy or very complex, manual

delineation becomes ill-defined. For example, in Fig. 1, it is

difficult to decide what aspect of the edematous region of

the tumor should be included/excluded. Given the various

problems with other surrogates (see below) and given that

manual delineation is an accepted standard surrogate, it

makes sense to examine how we may overcome some of the

drawbacks of manual outlining and still produce a surrogate

that is governed by the underlying precept which has made

this mode of delineation to be accepted as a defacto standard

surrogate. For example, the display characteristics of

display monitors can be standardized [19], and the scene

intensity scale can be standardized [20] in modalities such

as MRI wherein the intensity scales are arbitrary and do not

have a tissue-specific numeric meaning. Such strategies

make it possible to standardize window settings for scene

display to minimize the variation in displayed scenes. These

aspects require further work.

(b) Mathematical phantoms. A set of mathematical

phantoms is created to depict the application domain XZ
hT ;B;Pi as realistically as possible in terms of image blur,

relative tissue contrast and heterogeneity, noise, and

background inhomogeneity in the scenes (see Fig. 2). The

starting point for this simulation is a set SXtd of binary scenes

(true delineation is known to begin with). Each scene in SXtd
is gradually corrupted to yield the actual set of scenes SX.

We may also start with gray scenes depicting true fuzzy

segmentations and then follow the same procedure. The

approach here is the reverse of that described above for

Fig. 2. White matter (WM) in a gray matter background, simulated by segmenting WM from real MR scenes and by setting contrast observed in real scenes and

adding blur, noise, background variation to various degree: (a) low, (b) median, and (c) high.

Fig. 1. A slice from anMR FLAIR scene of a patient’s brain. Different window settings (a) and (b) and magnification factors (c) can cause significant variations

in the result of manual delineations, especially for fuzzy objects.
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manual delineation in the sense that here we start from SXtd
and then produce SX as compared to producing SXtd starting

from SX in the latter approach. The main shortcoming of

this approach is the questionable authenticity of the

challenges posed by the scenes in SX to segmentation

algorithms.

(c) Simulated scenes. One of the possible strategies in

this approach is to use the method of mathematical

phantoms described above to generate scenes and apply to

both the segmentations and the simulated scenes known 3D

deformations (to capture realistically the variations that

exist among patients) to generate more scenes and their

segmentations. The same method is applicable to the

method of manual segmentation also. The complete set of

scenes (original with deformed) in this case constitutes SX,

and the complete set of segmentations represents SXtd . The

main drawback of this approach is that it is difficult to devise

deformations and the associated changes in intensity

characteristics that are realistic.

Another method is to emulate the process of image

acquisition as realistically as possible, starting from

mathematical phantoms which constitute object regions,

and tissue properties/labels assigned to the regions which

constitute actual object properties/labels [21,22]. This

process consists of three distinct steps: (a) generating the

object geometries; (b) simulating the physical process of

data collection to generate the so called ‘projection data’

based on assumptions regarding the imaging device; (c)

reconstructing images. A weakness of this approach is that

in step (a), it is very difficult to include all objects in a body

region in the mathematical phantom and at sufficiently high

resolution. It is also very expensive to generate a sufficient

number of data sets corresponding to different imaged

subjects. Since, all objects cannot be considered with their

realistic properties, realism of the challenges posed for

segmentation cannot be guaranteed in the resulting scenes.

The object geometries generated in step (a) in this approach

constitute SXtd , and the reconstructed images generated in

step (c) constitute SX.

A third method to simulate scenes is to first create an

ensemble of ‘cut-outs’ of object regions from actual

acquired scenes and to bury them realistically in different

scenes. Each cutout is segmented carefully by using an

appropriate segmentation method. This should not be

difficult since the cutout contains just the object region

with a background tissue region only and no other

confounding tissue regions. The resulting scenes and the

segmentations constitute SX and SXtd , respectively. See

Fig. 3. A major weakness of this approach is that its

applicability is very limited, perhaps to only small objects

(such as multiple sclerosis lesions) that occur within large

regions of a co-object (such as white matter) in a relatively

independent manner.

In our methodology, SXtd and the corresponding set SX

associated with any of the above methods can be utilized.

We recommend, however, that the averaged fuzzy results

output by the manual delineation method, particularly the

method wherein the output of an algorithm is manually

corrected by human operators (rather than the results of fully

manual delineation) under standardized conditions, be used

as a surrogate of true delineation.

2.3.2. Object recognition

Evaluation strategies that are usually considered for

assessing delineation accuracy are based on treating all

aspects of the region corresponding to the surrogate of true

delineation with equal weight. In the absence of any

prerequisites, this is a correct, and only possible, stand.

However, such approaches do not address the fact that some

areas of the object may be more important than others. An

algorithm may segment an object and match 98% of the true

delineated region. The importance of that 2% difference will

depend on the importance of the regions missed in

delineation. For example, if it is a crucial landmark area,

such as a location of vascularization, or a site of attachment

of a ligament on a bone, then missing or overestimating 2%

of the volume in this region could have important

repercussions for the surgeon or therapist who needs to

know the location of vital nearby anatomic objects. This

example highlights the importance of landmark identifi-

cation and weighting in evaluating an algorithm’s recog-

nition performance. Our approach for ensuring the inclusion

of the information related to certain key features or

landmarks related to the object (the recognition aspect) in

the surrogate used for assessing accuracy of segmentation is

as follows.

(1) Compile a list of features/landmarks (points, curves,

regions) on the object that are observable in the

acquired scene and that are vital for the application

domain XZ hT ;B;Pi through help from a set of experts

(radiologists, surgeons, anatomists).

(2) Have each expert assign a score to each feature to

indicate its level of importance in the application

domain X.

(3) Compute an average of the scores. Normalize these to

the range [0, 1]. In this fashion, we generate a feature

Fig. 3. A slice (a) of a scene simulated from an acquired MRI proton density

scene of a multiple sclerosis patient’s brain and its ‘true’ segmentation (b)

of the lesions.
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vector F whose components have values in [0, 1]

indicating their level of importance for X.

(4) Have experts delineate the critical area of these features

in scenes in SX repeatedly.

(5) Use the mean location, the spread information about the

location of the features, and the mean vector F to

generate a scene Ci
trZ ðC;f itrÞ for each scene C2SX

and for each feature i. Ci
tr is a location-weighted (for

feature location) and importance-weighted (for i)

representation of feature i. In this scene, a high value

of f itrðcÞ for a voxel c2C indicates that c is both close to

the mean location for a particular feature i and the

importance of the feature is high. These individual

scenes Ci
tr may be combined into a composite scene Ctr

by taking an average or a fuzzy union over all i. Fuzzy

union is perhaps more appropriate and this is the

approach we have taken. From this repeated identifi-

cation of landmarks/features, we generate the scenes Ctr

capturing information about truth in recognition for

each scene C2SX. Note that Ctr does not have any

information about object delineation. It contains bright

blobs (of different shapes) only at the location of the

selected features. We denote by SXtr the set of scenes

containing ‘truth’ in recognition for the set of scenes

SX.

2.4. Metrics of segmentation efficacy

2.4.1. Assessment of precision

Two types of subjective actions need to be addressed in

evaluating segmentation precision: (1) patient positioning in

the scanner. (2) Operator input required for segmentation.

Let SX1 ;SX2 ;.;SXn be n sets of scenes which represent n

repeat scans, registered and redigitized, of the same subjects

and for the same application domain X. In other words,

we think of SX1 ;SX2 ;.;SXn to represent repeat scans

corresponding to SX, with SX1 ZSX. Let H1, H2,.,Hm be

m human operators and let M be a particular segmentation

method. Let CO1
and CO2

be fuzzy segmentations of the

same object O pertaining to the same subject in two

repeated trials. CO1
and CO2

may have resulted from one of

the following situations.

T1: The same operator segments the same object in the

same scene twice by using method M (intra-operator).

T2: Two operators segment the same object in the same

scene once by using method M (inter-operator).

T3: The same operator segments the same object once in

two corresponding scenes in SXi and SXj ðisjÞ by using
method M (inter-scan).

For the given method of segmentation M, all possible

pairs ðCO1
;CO2

Þ for T1 will allow us to assess intra-operator

precision of M. Analogously, T2 and T3 correspond to the

assessment of inter-operator and repeat-scan (inter-scan)

precision. A measure of precision for method M in a trial

that produced fuzzy segmentations CO1
and CO2

for situation

Ti is given by

PRM
Ti
ðOÞZ jCO1

hCO2
j

jCO1
gCO2

j : (4)

PRM
Ti
ðOÞ represents the total amount of the tissue that is

common to both CO1
and CO2

as a fraction of the total

amount of tissue in the union of CO1
and CO2

. PRM
Ti
ðOÞ

values estimated over the scenes in SX1 ;SX2 ;.;SXn utilizing

operators H1, H2,.,Hm characterize the intra-operator,

inter-operator, and repeat-scan (inter-scan) repeatability

(respectively for iZ1,2,3) of method M. The precision of

method M for a given situation (iZ1,2,3) can be

characterized by computing the coefficient of variation or

confidence intervals of the PRM
Ti
values. The precision of any

two segmentation methods M1 and M2 for each Ti can be

compared by comparing the set of PRM
Ti

values by using a

paired t-test.

Note that just how much the volumes of CO1
and CO2

agree (especially for T1 and T2) will not constitute a robust

measure of precision as illustrated in Fig. 4. This is because

CO1
and CO1

may have identical volumes but may constitute

substantially different delineations. However, situation T3 is

quite different from T1 and T2 in that it involves a

registration and subsequent interpolation. As demonstrated

in [23], because of the errors associated with the latter

processes, especially when the object has thin and subtle

features (as in peripheral cerebrospinal fluid in the brain),

the overlap measure of Eq. (5) may indicate poor precision

Fig. 4. Segmented objects (muscles) obtained in two different situations Ti and Tj (b) and (c) in a slice of a CT scene of a knee (a). The two segmentations have

nearly identical volumes, still they differ substantially.
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even when the segmentation is of excellent quality in the

repeat scans. To avoid this problem, we suggest that, for

T3, we must use simply the volume of the object computed

from the segmentation of original repeat scans (without

subjecting repeat acquisitions to registration and then

interpolation). In this case, PRM
T3
ðOÞ is defined by

PRM
T3
ðOÞZ 1K

jjCO1
jKjCO2

jj
1
2
jCO1

jC jCO2
j� � : (5)

A fourth metric PRM
T4
becomes necessary in large clinical

trials wherein different sites (possibly with different brands

of scanners) are utilized for image acquisition. PRM
T4

will

then constitute inter-site precision, and its treatment should

be similar to that of PRM
T3
. In this case, SX1 ;SX2 ;.;SXl will

represent l sets of scenes obtained for the same subjects at l

different sites for X. If X involves image acquisition on

only one scanner, then there is no need for assessing PRM
T4
.

We note that for estimating the precision of any method M,

surrogates of true delineations and of recognition are not

needed. In summary, there are four precision metrics we

utilize: PRM
T1
, PRM

T2
, PRM

T3
, and PRM

T4
.

2.4.2. Assessment of accuracy

We consider accuracy measures separately for object

delineation and recognition.

(a) Delineation. Let SXtd be the set of scenes containing

‘true’ delineations for the scenes in SX. For any scene

CZ ðC;f Þ2SX, let CM
d be the fuzzy segmentation of an

object O of B in C obtained by using any method M, and let

Ctd2SXtd be the corresponding scene of ‘true’ delineation,

all under the application domainX. Let Ud be a subset of C

such that it constitutes a reference superset with respect to

which all delineated regions (true as well as false) within C

can be expressed as a fraction. Let Ud be the binary scene

representing Ud, that is, a scene with domain C and with a

scene intensity value of one for all voxels in Ud and a value

of 0 for voxels in CKUd. We shall comment on the choice

ofUd later on. The only theoretical requirement onUd is that

any delineated region within C corresponding to O by any

segmentation method be a subset of Ud. Let

CFNZCtdKCM
d , CFPZCM

d KCtd, CTPZCM
d hCtd, and

CTNZUdKCM
d KCtd, where the operations between scenes

are as defined in Eqs. (1)–(3). The following measures are

defined to characterize the delineation accuracy of method

M under X.

True positive volume fraction;

TPVFM
d ðOÞZ jCTPj

jCtdj ;
(6)

True negative volume fraction;

TNVFM
d ðOÞZ jCTN j

jUdKCtdj ;
(7)

False positive volume fraction;

FPVFM
d ðOÞZ jCFPj

jUdKCtdj ;
(8)

False negative volume fraction;

FNVFM
d ðOÞZ jCFN j

jCtdj :
(9)

The meaning of these measures is illustrated in Fig. 5 for

the binary case. TPVFM
d indicates the fraction of the total

amount of tissue in the true delineation Ctd that was covered

by method M. TNVFM
d describes the fraction of the total

amount of tissue in the reference region Ud that is truly not

in the object that was also excluded by method M. FPVFM
d

denotes the amount of tissue falsely identified by method M

as a fraction of the amount of tissue inUd that is truly not in

the object. And FNVFM
d expresses the fraction of tissue in

the true delineation Ctd that was missed by method M. The

following desirable relationships among the above measures

can be easily established from Eqs. (1) and (6)–(9).

Ud ZCTPgCTNgCFPgCFN ; (10)

FPVFM
d ðOÞZ 1KTNVFM

d ðOÞ; (11)

FNVFM
d ðOÞZ 1KTPVFM

d ðOÞ: (12)

We note that, in view of Eqs. (10)–(12), only two of the

four measures are independent. Consequently, only two

measures (such as FPVFM
d and FNVFM

d , or TPVFM
d and

FPVFM
d ) need to be specified to describe the delineation

accuracy of method M. The above measures are borrowed

from statistical decision theory as applied to observer

studies [24] but appropriately modified to our situation of

segmentation delineation. Continuing along these lines, we

define delineation sensitivity of method M to be given by

TPVFM
d ðOÞ and delineation specificity to be described by

1KFPVFM
d ðOÞ. Clearly, the greater both these entities are,

the better is the delineation accuracy of method M.

Some comments are in order regarding the definition in

Eqs. (6)–(9) and the choice of Ud. We argue that any

alternative definition should satisfy Eqs. (10)–(12). Most

Fig. 5. Illustration of the accuracy factors for delineation for a binary case.

Here, Ud is assumed to be a binary scene with all voxels in the scene

domain C set to have a value 1.
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likely there cannot be alternatives for the numerators in Eqs.

(6)–(9). (Other measures such as those based on the

boundary of O have been used in place of the region-

based measures described above. Our comments here are

applicable to the region-based measures. The boundary-

based measures will also have to be, and can be, cast

in terms of TP, TN, FP, and FN for appropriately

characterizing delineation accuracy). However, for the

denominator, other choices seem plausible; for example,

jCTPgCFPgCFN j in Eqs. (6), (8), and (9). Such a choice

has been utilized in the past for TPVF (for example in [25])

and for TPVF, FPVF, and FNVF [26,27]. Another

alternative is to use jCtdj in the denominator of all of Eqs.

(6)–(9). All such choices lead to the situation of not

satisfying Eqs. (10)–(12), unlike the definitions in Eqs. (6)–

(9). The satisfaction of Eqs. (10)–(12) is essential for these

measures to make sense.

Coming now to the choice of Ud (and hence Ud), one

obvious possibility is to take UdZC as in Fig. 5. This has

the undesirable property that TNVFM
d and FPVFM

d will

depend on the size of the scene domain chosen; by making C

large, these two factors can be changed arbitrarily. Another

possible choice forUd is the body region B as it manifests in

scene C. In (macroscopic) medical imaging, this usually

corresponds to the foreground region of the scene. In

comparing methods based on the same scene data sets, these

choices may not matter much. These issues obviously

require further research and deliberation. We argue that a

standard evaluation framework (with the five components

(F1)–(F5) mentioned earlier) is essential to carry out

meaningful and exchangeable segmentation performance

evaluation measures.

Fig. 6 presents an example showing the above four

factors for the application domain of brain parenchymal

volume estimation via MRI T2 and PD scenes and by using

the fuzzy connectedness segmentation method [23].

(b) Recognition. At present, the existing segmentation

algorithms seem to focus mainly on delineation without

considering in their design the ability to capture salient

feature/landmark information. It is conceivable, however,

that methods can be devised to recognize important

landmarks as part of the segmentation process. In such a

case, we may formulate measures for recognition exactly

along the lines described for delineation. If CM
r is the scene

representing the landmarks recognized by method M, then

TPVFM
r , TNVFM

r , FPVFM
r , and FNVFM

r can be defined

exactly as in Eqs. (6)–(9) once an appropriate choice is

made for the reference superset Ur for recognition (and for

the corresponding scene Ur). At the current state of affairs,

such algorithms for recognition as part of the segmentation

process do not exist. Therefore, for now we suggest using

the following two measures for recognition, utilizing the

result of delineation CM
d to judge the ability of M to capture

important landmark information.

TPVFM
r ðOÞZ jCtr†CM

d j
jCtrj ; (13)

FNVFM
r ðOÞZ jCtr+ �C

M
d j

jCtrj ; (14)

where † and + are as defined in Eqs. (2) and (3). The idea

here is to determine what portion of the spread region of the

landmarks/features is captured by CM
d . The total weight in

this captured region as a fraction of the total weight in Ctr

defines TPVFM
r for characterizing the accuracy of the

qualitative (recognition) aspect of segmentation by method

M. Analogously, FNVFM
r specifies the fraction of the total

weight in Ctr that is missed by method M. Fig. 7 illustrates

these ideas for the application domain of determining the

kinematics of the ankle joint complex via MRI [28]. Here

we focused on the problem of segmenting one of the bones

of the joint, namely the talus ðOÞ. Two experts (BEH, JW)

compiled a set of five features which included the following:

(i) The superior surface (articular surface) of the body of the

talus. (ii) The inferior surface (posterior articular facet) of

the body of the talus. (iii) The talus head. (iv) The middle

calcaneal articular surface on the inferior surface of the neck

of the talus. (v) A distinct point defining the posterolateral

edge of the sinus tarsi. We have assigned equal weighting

for all features. Subsequently SXtr was created from the

repeated (three times) delineation provided by them for

these features on a set of five scenes. Fig. 7a shows a slice of

one of the scenes C in SX, and Fig. 7b shows the appearance

of three of these features (i)–(iii) on the corresponding slice.

Fig. 6. Assessment of accuracy of segmentation. (a) and (b) A slice of a PD and T2 MRI scene of a patient’s brain. (c) The result of fuzzy connectedness

segmentation of brain parenchyma (in 3D). (d) ‘True’ delineation obtained by manual correction of the fuzzy connectedness segmentation. For this example,

FNVFZ1.9%, FPVFZ0.2%, TPVFZ98.1%, TNVFZ99.8%.
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Fig. 7c displays the corresponding slice of Ctr overlayed on

the corresponding slice of CM
d .M in this case is the live-wire

method [26].

In summary, there are six accuracy metrics that this

framework will utilize only three of which are independent

measures: FNVFM
d , FPVF

M
d , TNVF

M
d , TPVF

M
d , FNVF

M
r , and

TPVFM
r .

2.4.3. Assessment of efficiency

We note that for any method M, the precision and

accuracy metrics influence one another in a complex

manner in the following sense. An attempt to improve

accuracy is usually accompanied by a compromise in

precision and vice versa. As an example, consider M to

represent the method of thresholding based on a fixed

threshold value, as illustrated in Fig. 8, where hT,B,Pi is the
application domain considered in Fig. 6. Obviously PRM

T1

and PRM
T2

are both one. However, with repeat scan (Fig. 8a

and b) there is much variation in the result (Fig. 8c and d)

and PRM
T3
becomes 0.702. The ‘true’ delineations for the two

scans of Fig. 8a and b are shown in Fig. 8e and f,

respectively. It is clear that, although this method has high

precision (except for the third factor PRM
T3
) and degree of

automation (efficiency), its accuracy is poor:

FNVFM
d Z0:142, and FPVFM

d Z0:10. A possible way of

improving accuracy ofM is to modifyM by having a human

operator correct the results post-hoc. This will of course

bring down both efficiency and precision. What most

segmentation methods strive for is to try to have as few

free parameters as possible and then to juggle among these

three groups of factors (precision, accuracy, and efficiency)

in setting up optimal values for the parameters. Some

segmentation methods require other forms of per-scene

human help also, such as for initialization (seed specifica-

tion, initial boundary specification) and for any per-scene

algorithm training needed. We denote the total human time

Fig. 7. (a) One slice of the human ankle MRI scene. (b) The corresponding slice of Ctr . (c) The slice of Ctr overlayed on the corresponding slice of C
M
d obtained

by using the live-wire method.

Fig. 8. (a) and (b) Two corresponding slices after registration of a pair of repeat scans (with a short time gap in between scans) of a patient’s brain. (c) and (d)

Segmentation of (a) and (b) by fixed thresholding. The object of interest is brain parenchyma. (e) and (f) ‘True’ segmentation of (a) and (b) obtained as for

Fig. 6.
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required by M in this manner for each scene by tMh1 . Another

human time component needed, denoted tMh2 , is for any one-

time (and not per-scene) algorithm training needed.

In addition to the human help required, and analogous to

the two components tMh1 and t
M
h2
, there are two components of

computational time required by M, denoted by tMc1 and tMc2 .

They represent, respectively, the computation time required

for segmenting each scene and the computation time

required for one-time (and not per-scene) algorithm

training. We note that tMh1 is the most crucial among these

four time factors.

Efficiency of method M refers to its practical viability in

terms of the above four factors. Most methods require some

human help and the claim of ‘totally automatic’ for a

method M in an application domain hT,B,Pi is not valid

unless perfect (or high) precision and accuracy is

demonstrated for M in hT,B,Pi over a large (essentially

infinite) number of scenes. It is clear therefore, that

precision, accuracy, and efficiency factors have a complex

interdependency, and the measurement of the efficiency

factors is practically highly relevant to distinguish among

methods that have otherwise comparable precision and

accuracy but vastly differing efficiency factors, particularly

tMh1 and tMh2 . A sensible way of combining the efficiency

factors is via the dollar cost incurred. Assuming a trained

technician to be a standard human operator H, H’s salary g

will determine the cost per time unit, and, hence, the weight

to be given to tMh1 and tMh2 . Similarly, the cost (l) per unit

computer time will determine the weight to be given to tMc1
and tMc2 . Obviously g and l can be determined and fixed

within an evaluation framework, although they will have to

be updated on a regular basis. For a given X, the overall

efficiency EM of method M can be given by

EMZgðtMh1 ;tMh2 ;tMc1 ;tMc2 Þ, where g is a function that converts

time factors into dollar cost for the total cost incurred in

segmenting each scene in the set of scenes SX by utilizing g

and l. In summary, this framework will utilize five

efficiency metrics: tMh1 , t
M
h2
, tMc1 , t

M
c2
, and EM. For comparing

methods (Section 3), either the efficiency factor or directly

the time factors can be utilized.

3. How to compare methods

The procedure for comparing two methods M1 and M2

under a given hT,B,Pi consists of the following steps.

(1) Collect sets of scenes SX1 ;SX2 ;.;SXn corresponding to n

repeat scans of the scenes in SX acquired for hT,B,Pi.
Produce scenes SXtd and SXtr representing surrogate of

true delineation and of recognition for the scenes in SX.

(2) Optimize the implementations ofM1 andM2 for hT,B,Pi.
For methods M1 and M2, have operators H1,H2,.,Hm

repeat segmentations of scenes in SX. Have one

operator segment scenes in SX1 ;SX2 ;.;SXn for methods

M1 and M2.

(3) For iZ1,2,3,4, determine all possible values of PR
M1

Ti
and PR

M2

Ti
.

(4) Knowing SXtd and SXtr and the segmentations of the

scenes in SX produced by M1 and M2, compute

FNVF
Mj

d , FPVF
Mj

d , TPVF
Mj

d , TNVF
Mj

d , TPVF
Mj
r , and

FNVF
Mj
r , for jZ1, 2.

(5) Record t
Mj
c1 ;t

Mj
c2 ;t

Mj

h1
;t
Mj

h2
for jZ1, 2 during the segmenta-

tion experiments, and from these compute the efficiency

metric EMj .

(6) For each method Mj, we get a set of values for each of

the 15 parameters: PR
Mj

T1
, PR

Mj

T2
, PR

Mj

T3
, PR

Mj

T4
, FNVF

Mj

d ,

FPVF
Mj

d , TPVF
Mj

d , TNVF
Mj

d , TPVF
Mj
r , FNVF

Mj
r , t

Mj

h1
, t

Mj

h2
,

t
Mj
c1 , t

Mj
c2 , and EMj .

Considering only two independent accuracy parameters

and four t
Mj

h1
; t

Mj

h2
; t

Mj
c1 ; t

Mj
c2

� �
(or one (EMj)) among the

efficiency parameters, we get a set of 12 (or 9) parameters

altogether. There are several choices for the statistical

analysis of these 12 (or 9) sets of values.

(a) Do a paired t-test of the two sets of values for each

parameter for the two methods.

(b) Combine the 12 (or 9) parameters for each method Mj

by a weighted sum, the weight reflecting the

importance given to that parameter for hT,B,Pi and

then do a paired t-test of the resulting single parameter.

(c) Do a multivariate analysis of variance [29] considering

all 12 (or 9) parameters to determine if there is a

statistically significant difference in performance

between methods M1 and M2.

As an example, we display in Table 1 8 of the 12

parameters for the application domain illustrated in Fig. 7.

The two methods compared are M1Zfuzzy connectedness

(FC) [23], and M2Zlive-wire (LW) [26] which is a user-

steered boundary segmentation method and the steering was

provided by a non-expert in the application domain (YZ).

SX consisted of a set of 20 MRI scenes. Because of the

connective tissues (ligaments and tendons) and because

Table 1

Some of the metrics computed from 20 scenes for the two methods FC and LW

PRM
T1

FNVFM
d FPVFM

d TPVFM
r tMh1 (min) tMh2 (min) tMc1 (min) tMc2 (min)

FC 0.99G0.015 0.13G0.043 0.04G0.018 0.78G0.035 1.9G01.3 1 1.85G0.24 0

LW 0.96G0.011 0.03G0.010 0.03G0.017 0.94G0.018 8.5G1.3 1 w0 0

Comparison FCOLW

(p%0.05)

LWOFC

(p%0.05)

– LWOFC

(p%0.05)

FCOLW

(p%0.05)

– LWOFC

(p%0.05)

–
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cortical bone yields very little MR signal, this is a difficult

segmentation problem. SXtd has been previously created for

this application domain by well trained students of podiatric

medicine via LW and subsequently scrutinized (and

corrected if necessary) by an expert (BEH). The two

numbers in the table represent the mean and the standard

deviation of the metric over SX. The p-value for a paired

t-test on each of the metrics comparing the two methods is

also listed when the difference is statistically significant. We

note from the table that, although FC is more efficient from

the consideration of operator help needed ðtMh1 Þ and more

precise ðPRM
T1
Þ, it is less accurate (in both delineation and

recognition) and requires more computational time than LW

for this application domain (‘O’ indicates better than). (For

LW, the live-wire segments are computed and displayed in

real time [26], and therefore, tMc1 is negligible). Clearly, the

preference for the methods in an application domain

depends very much on which of these metrics is crucial

for that domain.

4. Concluding remarks

(1) If the surrogates of truth are highly reliable (gold

standard), then it may appear that there is no need to

evaluate precision, and accuracy analysis would be

sufficient. However, accuracy analysis will then have

to consider intra-operator, inter-operator, repeat-scan,

and inter-site variations. We feel that it is best to

relegate the analysis of these variations to a separate

group, namely precision. Therefore, the factors

describing precision, accuracy, and efficiency are all

essential in assessing the performance of segmentation

methods.

(2) A descriptive answer in terms of the various

parameters gives a more meaningful and complete

assessment of the methods than an answer to the

overall question ‘Is method M1 better than M2 under

the application domain?’

(3) Since, most segmentation methods in practice con-

sider only delineation, we suggest that, at a minimum,

the following set of seven parameters should be

evaluated: PRM
T1
, PRM

T2
, PRM

T3
, FNVFM

d , FPVF
M
d , t

M
h1
, tMc1

for any given method M.

(4) General statements about the merit of segmentation

algorithms cannot be made independent of the

application domain hT,B,Pi. The evaluative results of

two methods M1 and M2 observed under one hT,B,Pi
may not foretell anything about their comparative

behavior for a different hT,B,Pi.
(5) We have proposed a method to incorporate into the

evaluation method the aspect of how well key features

(landmarks) of an object that are considered important

for hT,B,Pi are captured in the segmentation.We are able

to include this qualitative aspect of recognition also

within the same common framework of evaluation.

(6) The four components of efficiency are essential, tMh1
being the most crucial among these. There is no such

thing as ‘an automatic segmentation method’. Any

method may fail (for example, it may produce high FN

VFM
d and/or FPVFM

d for a particular data set) if a

sufficiently large set of scenes is processed, and then it

will need human intervention. ‘Automatic’ is only a

design intent and not necessarily the end result for a

segmentation method. Therefore, the phrase has no

meaning, even for a particular application domain,

unless the method’s efficiency is proven to be 100% (for

all four factors) over a large (essentially infinite) number

ofdata setswith acceptable precision and accuracy in the

application domain.

(7) The factors describing precision, accuracy, and effi-

ciency are interdependent. To simultaneously improve

all three factors for a method is usually difficult and

requires considerable research. An attempt to increase

accuracy may be accompanied by a decrease in

efficiency and/or precision.

(8) Once the surrogates are determined, the framework can

be easily implemented and utilized to evaluate any

image segmentation methods.

(9) A framework with the five components (F1)–(F5)

mentioned in Section 1 becomes essential to carry out

meaningful, exchangeable, and widely accepted seg-

mentation performance evaluation. Further work is

needed in all of these components. Further research is

also needed in the definition of accuracy measures. We

have focused on region-based measures in this paper.

Boundary-based or other (even hybrid) strategies may

be more relevant in certain application domains. (For

example, when the object shape is such that its surface

area to volume ratio is high—that is, when the number of

voxels in the boundary approaches the number of voxels

constituting the region occupied by the object—small

changes in segmentation would yield large changes in

the precision and accuracy measures. For such objects,

perhaps boundary-based measures are more appropri-

ate). Their definition satisfying conditions similar to

those in Eqs. (10)–(12) requires further work. Most

segmentation algorithms behave like human observers

in that their performance cannot be completely

characterized by measures derived at one operating

point, which is decided by the values assigned to the

parameters of the method. There is even no systematic

approach available for setting the values of the

parameters of segmentation methods optimally.

Methods akin to ROC analysis are needed to more

completely characterize the range of behavior of the

accuracy of segmentation methods.

(10) Some comments are in order regarding the terms

‘evaluation’ vis-a-vis ‘validation’. It is wrong to call

the process of evaluating a segmentationmethodM in an

application domainX a ‘validation process’. Since, the

level of performance of M in X is unknown, a neutral
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term like ‘evaluation’ ismore appropriate to describe the

process. Only when the evaluation is completed and if

the level of performance ofM inX becomes acceptable,

it is appropriate to describeM as being validated inX. In

the phrase ‘validation process’, there is a hint of

presumption and wishful thinking. We, therefore,

suggest that evaluation be used to describe this process.
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