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Abstract 

The Roles and Regulation of the Redundant Phenazine Biosynthetic Operons in Pseudomonas 

aeruginosa PA14 

David Alfonso Recinos 

The opportunistic pathogen Pseudomonas aeruginosa has been well studied for its ability to 

cause nosocomial infections in immunocompromised patients. However, its pathogenicity is only 

one aspect of the biology that makes this bacterium one of the most versatile of its genus. Since 

its first description in 1885, P. aeruginosa has been known to produce colorful, small molecules 

called phenazines. These redox-active compounds were originally thought of as mere secondary 

metabolites or virulence factors that allow P. aeruginosa to infect plant and animal hosts. 

However, recently we have gained an appreciation for their diverse functions that directly benefit 

their producer: phenazines act as signaling molecules, regulate intracellular redox homeostasis 

and are implicated in iron uptake. As a result, phenazines also have dramatic effects on the 

structural development of multicellular communities of P. aeruginosa, generally referred to as 

biofilms. How phenazine production is regulated in response to environmental cues to allow for 

this functional diversity is still poorly understood.  

Pseudomonas aeruginosa produces at least five different phenazines, each of which have distinct 

chemical properties. The genes encoding the core phenazine biosynthetic enzymes are found in 

two redundant 7-gene operons. These operons, phzA1-G1 (phz1) and phzA2-G2 (phz2), encode 

two sets of proteins that catalyze the synthesis of phenazine-1-carboxylic acid (PCA), the 

precursor for all other phenazine derivatives. Although the phz1 and phz2 operons are nearly 

identical (~98% similarity), they are differentially regulated. phz1 is regulated by quorum 



sensing (QS), while the factors controlling phz2 expression have not yet been identified. 

Furthermore, the contribution of phz2 to phenazine production is not fully understood. The phz2 

operon is conserved among all P. aeruginosa species and we hypothesize that it may be vital to 

their ability to adapt to diverse environments. 

In this work, we have investigated the regulation of the phz2 operon and its contribution to 

colony biofilm development in P. aeruginosa PA14 (Chapter 2). We found that (1) phenazine 

production in biofilms is mediated exclusively through the phz2 operon, (2) phz2 expression is 

required for biofilm development and host colonization and (3) phz2 is regulated by quinolones, 

which are prominent signaling molecules in P. aeruginosa’s QS system. We then investigated 

the roles of individual phenazines in colony development (Chapter 3) and the specificity of SoxR 

activation by redox active molecules (Chapter 4). We found that the effects of individual 

phenazines are not redundant and may be used in combination to modulate colony development. 

SoxR is a transcription factor that is activated by redox-active molecules including phenazines. 

Investigations into SoxR specificity showed that SoxR activation in non-enteric bacteria is tuned 

to specific redox potentials. Together, the findings presented in this thesis have expanded our 

knowledge about the role of phenazine production in biofilms and pathogenicity.  
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CHAPTER 1 

1. Introduction and Background 

1.1. The pathogenic bacterium Pseudomonas aeruginosa and its genus 

Microbiologists have been studying pathogenic bacteria for almost two centuries. Robert Koch 

and Louis Pasteur started their investigations into disease-causing bacteria in 1859 1. They 

formulated the germ theory of disease, which states that microorganisms are the cause of 

diseases such as cholera, tuberculosis, syphilis, and typhoid 2. One of the most studied bacteria in 

the context of disease is Pseudomonas aeruginosa. It was first described in 1885 by Carle 

Gessard in his paper “On the blue and green coloration that appears in bandages” 3 . He 

characterized it as a rod-shaped, aerobic and very motile bacterium that secretes blue-green 

pigments. Based on his observations, he named it Bacillus (meaning “rod”) pyocyaneus 

(meaning “blue pus”). It has since been renamed as Pseudomonas aeruginosa. The colorful 

pigments exuded by P. aeruginosa belong to a class of redox-active molecules known as 

phenazines. These compounds have long been known to act as antibiotics4,5 and are required for 

full virulence6,7. In recent years we have gained an appreciation for the beneficial roles of 

phenazines for the producing organism in redox homeostasis, iron uptake and as signaling 

molecules, which may give P. aeruginosa a competitive advantage at the site of infection.  
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1.1.1. Pseudomonas aeruginosa is the most pathogenic and versatile member of its genus  

Members of the genus Pseudomonas are gram-negative gamma-proteobacteria that are well 

known for their metabolic and physiological versatility and their ability to cause disease in plant 

and animal hosts8-10 (Figure 2).  

Figure 1. Pseudomonas aeruginosa. 
A gram-negative, rod-shaped 
bacterium that uses pili and flagella 
for its motility. It is ubiquitous in 
water, soil and host environments. 
Source: Kunkel Microscopy 2004 
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Currently, the NCBI database lists 18 complete pseudomonad genome sequences and 72 partial 

sequences11. The complete genomes are available for strains from the plant and animal pathogen 

P. aeruginosa12, the plant pathogens P. syringae13 and P. fluorescens14, as well as P. stutzeri15, 

P. putida16 and P. entomophila17 (Table 1).  

Figure 2. Pseudomonas aeruginosa is a versatile member of its genus. The 
pseudomonads inhabit diverse environments. This has led to the evolution of a wide-
range of traits, many of which are shared among species. P. aeruginosa is one of the 
most versatile of the genus as it contains most of the shared traits of the genus. 
Source: Silby, et al., FEMS Microbiol Rev, 2011  
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The best-studied P. aeruginosa strains are PAO1 and PA14. PAO1 was isolated from a patient’s 

wound in Melbourne, Australia in 195418. It became the standard for investigations of P. 

aeruginosa’s metabolism and physiology. PA14 was isolated from a burn wound and generally 

shows more virulent characteristics compared to PAO119.  PA14 is the preferred strain for the 

study of P. aeruginosa virulence and pathogenicity. The major virulence-related genomic 

differences between PAO1 and PA14 are found in two large pathogenicity islands with PA14 

Table 1. General features of the completed Pseudomonas genomes. The 
Pseudomonas genome is one of the largest in the bacterial domain (~6 Mb). Of 
note, the smallest genome of the pseudomonads belongs to the non-fluorescent, 
saprophyte P. stutzeri. Source: Silby, et al., FEMS Microbiol Rev, 2011   



5 

 

containing 322 more mobile coding sequences than PAO120. These sequences are grouped into 

58 PA14-specific gene clusters, of which about half are of unknown function.  

 

1.1.2. P. aeruginosa is an opportunistic pathogen that adapts to different environments 

P. aeruginosa thrives in diverse environments, such as water, air, soil, animal and plant hosts. It 

can infect a range of organisms including nematodes21, fruit flies22, waxmoths23, zebrafish24 and 

mammals25,26. As an opportunistic pathogen it is capable of causing serious infections in a 

variety of tissues and organs, predominantly in immunocompromised patients27.  For example, it 

has been associated with many hospital-acquired infections including burn wound infections, 

chronic lung infections, pneumonia, respiratory tract and even infections of the eye associated 

with contact lens use28 29. P. aeruginosa is also the major pathogen contributing to the morbidity 

and mortality of patients with the genetic disorder cystic fibrosis (CF)30. One of the hallmarks of 

P. aeruginosa infections in CF patients is the colonization of the lungs as sessile, antibiotic-

resistant biofilms (multicellular, structured communities)31.  

Transcriptomic and genetic studies revealed the importance of virulence factors in establishing 

chronic P. aeruginosa infections. Many virulence genes are located in ‘conserved’ regions of the 

genome and are required for the production of rhamnolipids, phenazines, exotoxins, and 

proteases32. Mobile DNA elements, or the ‘accessory’ genome, have also been suggested to be 

determinants of environmental adaptability in P. aeruginosa33. These include phage and plasmid 

elements, genomic islands, transposons and repetitive extragenic palindromic elements11,17,34. 
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Accessory genes have been shown to contribute to increased virulence or competitiveness of 

particular strains of P. aeruginosa32. 

 

1.1.3. Physiological changes in response to the host environment 

During chronic infections, P. aeruginosa populations change and diversify genetically. The 

properties characterizing the bacterial population during the initial infection period (acute) are 

different from those in later stages. P. aeruginosa isolates from acute infections are non-mucoid, 

motile, and susceptible to antibiotics35. As the infection progresses, changes in colony 

morphology, hypermutability, antibiotic resistance and loss of virulence traits manifest 

themselves36. In fact, genomic analysis of sequential isolates has suggested that loss of virulence 

may be beneficial for the persistence of infection37. However, conflicting studies have shown 

that some members of the infecting population maintain their virulence capabilities even after 

many years of infection38. The diversity in P. aeruginosa populations within chronic infections is 

a striking feature that highlights its versatility in adapting to host environments at the population 

level. 

Acclimation to the CF lung by P. aeruginosa can also be accelerated by environmental factors 

including host immune response, nutrient limitation, oxidative stress and iron availability 39. 

Despite investigations into P. aeruginosa gene expression during infection, the molecular basis 

for infection is currently unknown. Proteomic analyses have attempted to address infection by 

comparing the proteome of AES-1 (an acute, transmissible CF strain) to that of proteomes from 

common laboratory strains, such as PAO1 and the more virulent PA14 40. Hare et al. found that 
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of 1700 proteins identified, 183 were significantly altered between the strains. Many of these 

proteins are involved in virulence and metabolism but demonstrated different expression patterns 

between the strains. This suggests that P. aeruginosa alters its protein expression pattern 

depending on its environment. 

 

1.1.4. Environmental effects on P. aeruginosa’s transcriptome: planktonic vs. biofilms 

Bacteria can take on dramatically different lifestyles: as free-living cells or as part of 

multicellular communities (biofilms). The physical and chemical properties of biofilms 

significantly alter gene expression patterns41. Transcriptional studies in PA14 have found key 

differences in bacterial cells grown in planktonic cultures compared to cells grown in 

biofilms42,43. Genes involved in the type III secretion system (T3SS), adaptation to anaerobic 

growth, and production of the extracellular matrix were highly upregulated in biofilms 43. The 

T3SS is utilized by many bacterial species to deliver over 100 effector proteins into the host 44. 

These effector proteins are often multifunctional proteins that help coordinate bacterial responses 

to the host. However, a subset of genes were similarly expressed in stationary phase planktonic 

culture and biofilms. These included genes involved in metabolism, translation and motility (pili- 

and flagella-mediated motility) and are likely linked to the nutrient depletion and slower growth 

rate bacterial cells experience in both stationary phase planktonic cultures and biofilms45.   
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1.1.5. The metabolic versatility of P. aeruginosa: Use of different carbon sources and 

electron acceptors  

P. aeruginosa can utilize a variety of carbon sources and electron acceptors for energy 

generation. This metabolic versatility is another characteristic that allows for its ability to survive 

in diverse environmental niches. Unlike E. coli, P. aeruginosa does not use glucose as its 

preferred carbon source46. Rather, it consumes organic acids and amino acids prior to 

glucose47,48. The sequential metabolism of carbon sources is regulated by catabolite repression, 

allowing for the utilization of preferred substrates in an ordered fashion49,50. Once preferred 

substrates are depleted, sugars are degraded through the Entner-Doudoroff pathway instead of 

Embden-Meyerhof glycolysis as P. aeruginosa lacks a key enzyme required for the latter39 51.  

 

 

 

 

Figure 3. Denitrification in P. aeruginosa. P. aeruginosa is a denitrifying bacterium 
that can use nitrate as an electron acceptor to carry out anaerobic respiration. This is 
catalyzed by four enzyme complexes: nitrate reductase (NAR), nitrite reductase (NIR), 
nitric oxide reductase (NOR) and nitrous oxide reductase (N2OR). Source: Williams et 
al., Adv. Micro. Phys., 2007 
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Energy production in P. aeruginosa is mainly based on aerobic respiration. Its metabolic 

versatility is highlighted by its ability to use a variety of electron acceptors. In low oxygen 

environments, it can flourish by using the alternative external electron acceptors nitrate and 

nitrite in a multi-step process called denitrification52 (Figure 3). The membrane-bound enzyme 

NAR reduces nitrate to nitrite, which is further reduced to nitrite by NIR. Both reduction steps 

are coupled to the generation of a proton-motive force53. The metabolic differences between P. 

aeruginosa and other bacteria highlight different strategies to compete in various environments. 

P. aeruginosa can thrive in any soil and host environments where it can take advantage of the 

flux of organic acids, amino acids, sugars and nitrogenated bases. 

  

1.2. Bacterial Communication 

Members of all three domains of life use various modes of intercellular communication. 

Historically, research into cell-cell signaling has centered on eukaryotes. However, discoveries 

over the past 30 years have demonstrated that bacteria have an arsenal of signals that rival the 

most complex eukaryotes. It is now known that bacteria engage in cooperative and social 

behavior in order to perform a wide range of activities and developmental processes54. This 

research has revealed a previously unimagined complexity of bacterial communication that 

opens the door for further exploration into this exciting new realm.  

Studies of several bacterial species known to form multicellular communities have found that 

they are capable of concerted actions and use extracellular signals for cell-cell communication. It 

is also clear that these extracellular signals can not only be detected by other bacterial cells, but 
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that the receiving cells can respond to these signals in a variety of ways. One such response is 

referred to as “quorum sensing” (QS), which involves the regulation of gene expression 

dependent on cell proximity and density55. There are many signaling pathways regulated by QS 

and these have a myriad of different functions within the cell and the bacterial community. These 

collections of signals within the community are used in a coordinated manner to benefit the 

population as a whole and imbue them with characteristics for survival. This is evident in chronic 

infections of mucoid bacterial communities and their resistance to antibiotics56. The QS system 

allows bacterial communities as a whole to respond to extracellular signals and is a prominent 

feature of bacterial survival mechanisms. 

 

1.2.1. Quorum sensing in P. aeruginosa 

Quorum sensing (QS) signaling is the best-studied communication system in bacteria. It is a 

complex and extensive array of molecules that can detect and react to endogenous and 

environmental signals. These signals trigger a response characterized by massive changes in 

gene expression57. This happens in a cell-dependent manner as gene expression is only triggered 

at a certain threshold concentration55. One of the first models used to study QS was the 

luminescent bacterium Vibrio fischeri58. Genes involved in the regulation of light production 

encode the canonical QS signaling pathway: LuxI synthesizes homoserine lactones (signal) 

which activate the transcriptional regulator LuxR. (Figure 4). This QS system is conserved 

across gram-negative bacteria.      
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1.2.1.1. The Las/Rhl system 

In P. aeruginosa the two Lux-homologs LasI and RhlI catalyze the production of the N-

homoserine lactones (HSL) 3-oxo-C12-HSL and 3-oxo-C4-HSL, respectively59,60. These HSLs 

activate two transcriptional regulators, LasR and RhlR, which bind to specific binding sites, 

“lux-boxes”, in the promoter regions of their target genes61-63. The LasR and RhlR regulons show 

significant overlap, both regulating dozens of virulence genes such as the ones responsible for 

the production of rhamnolipids, elastases, exotoxins and proteases64-66.  

 

1.2.1.2. Quinolones as signaling molecules 

 P. aeruginosa’s QS system is extended by another class of compounds, the alkyl quinolones 

(AQ). P. aeruginosa produces over 50 AQs67,68 which vary in the lengths of their saturated or 

unsaturated alkyl side chains. The main AQs produced by P. aeruginosa are the Pseudomonas 

Figure 4. Simplified model of 
bacterial quorum sensing 
(QS). The QS system allows for 
a large-scale response to 
environmental factors. Bacteria 
exude signaling molecules that 
alter gene expression in a 
growth-dependent manner. 
Source: Bassler et al., Curr. 
Opin. Bio., 2000 
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quinolone signal (PQS), its precursor 2-heptyl-4-quinolone (HHQ), and N-oxide 2-heptyl-4-

hydroxyquinoline-N-oxide (HQNO) (Figure 5). Despite the great number of AQs produced, their 

synthesis and transport are closely regulated69-71. PQS and its precursor HHQ are the best-studied 

AQs. Together they control the production of many virulence factors produced by P. aeruginosa 

including phenazines72,73. 

 

 

 

Quinolones are the only known QS signals that are not members of the acylated-HSL family. 

The quinolone HHQ is synthesized by the enzymes encoded within the five gene operon 

pqsABCDE74. HHQ is then converted to PQS by the distally located monooxygenase PqsH 

(Figure 6). PQS production starts in late exponential phase, reaching its maximum during early 

stationary phase, and decreases subsequently75. The presence of PQS-producing P. aeruginosa 

strains in the lungs of cystic fibrosis patients suggests PQS is important for infection76. The PQS 

receptor PqsR (also known as MvfR, for multiple virulence factor regulator), is a membrane-

associated protein that induces synthesis of elastase, phospholipase, 3-oxo-C12-HSL, and 

Figure 5. Structures of some 
common quorum sensing 
signals in P. aeruginosa. The 
three most abundant quinolones 
are the Pseudomonas quinolone 
signal (PQS), 2-heptyl-4-
quinolone (HHQ) and N-oxide 
2-heptyl-4-hydroxyquinoline-N-
oxide (HQNO). C4-HSL and 3-
oxo-C12-HSL are products of 
the Rhl and Las systems, 
respectively. Source: Williams et 
al., Curr. Opin. Micro., 2009 
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phenazines77-79. Like PQS production, pqsR expression reaches maximum levels at late 

exponential phase. Although PqsR’s relevance in the pathogenesis of P. aeruginosa is well-

established, its precise binding motif and complete transcriptome have yet to be elucidated.  

 

 

 

 

 

Figure 6. Synthesis, regulation and autoinduction of the quinolone signaling system in 
P. aeruginosa. Anthranilate is the substrate for quinolone biosynthesis. The quinolone PQS 
binds the transcription factor PqsR for its own autoinduction as well as the control of several 
virulence genes. PqsE is known as the “PQS response” protein, as it is needed for many 
PQS-dependent downstream effects.  Its exact mechanism of action is unknown. Source: 
Jimenez et al., Micro. Mol. Bio. Rev., 2012.    
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1.2.2. The formation of multicellular communities 

Most bacteria are able to aggregate into multicellular communities (biofilms)80-82. The formation 

of biofilms is an active, concerted process that involves the coordinated action of billions of 

bacterial cells. This mode of growth is a strategy that is employed by bacteria in response to 

challenging environmental stimuli such as nutrient depletion and protects them from antibiotics, 

detergents, and other potentially harmful foreign molecules83, allowing them to thrive in hostile 

environments. Although the mechanisms that govern biofilm formation can differ between 

species and even between strains of the same species, it seems to be an adaptation common to 

most bacterial species84. 

Biofilms can form on any type of surface (even on an air-liquid interface) in a wide variety of 

environments. Of medical concern are biofilms that form in the host (in lungs, wounds, skin, 

teeth, and the urinary tracts)25,85,86 or on equipment, such as catheters, medical implants and 

inside water pipes84,87. This form of adaptation seems to be an evolutionarily conserved process 

to insure species survival in environments rife with competing organisms. However, in nature, 

biofilms tend not to consist of just one species but represent communities between multiple 

microbial species. In some instances, biofilms can be beneficial to their eukaryotic hosts: 

biofilms of Actinobacteria on the backs of ants provide protection from fungal and protozoan 

pathogens88,89, while P. chlororaphis biofilms on roots protect plants from invaders90.  

Biofilms are architecturally and chemically complex structures. They are composed of a matrix 

made up of polysaccharides, proteins, and extracellular DNA91 that harbors a metabolically 

heterogeneous population of cells. These give rise to chemical gradients across the biofilms92 

consisting of metabolic products and signaling molecules that create unique environmental 
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niches92. The best-studied gradient is that of oxygen, characterized by high levels at the top of 

the biofilm (which is exposed to oxygen) and low concentrations at the bottom of the biofilm 

(where no oxygen can penetrate)93. The oxygen gradient in turn affects gene expression, 

metabolism and redox balancing94.  

In P. aeruginosa, the extracellular polymeric substance (EPS) is made up of three main 

polysaccharides: alginate, Psl and Pel. Alginate is associated with a subset of P. aeruginosa 

variants that form mucoid colonies on agar plates38. It is a high molecular weight acetylated 

polymer composed of non-repetitive monomers of L-glucoronic and D-mannuronic acids. 

Alginate production confers a selective advantage within the CF lung95, protecting P. aeruginosa 

from the consequences of inflammation and phagocytic clearance. However, despite its 

protective roles, alginate is not necessary for biofilm formation96. The common laboratory strains 

PAO1 and PA14 do not produce much alginate, relying on PSL and PEL for matrix 

construction97. PSL is necessary for biofilm formation in PAO1 and is also involved in cell-

surface and cell-cell interactions98. It is composed mainly of mannose and galactose but its 

structure has yet to be solved99. In PA14, PEL is the main contributor to biofilm development 

and morphology. This may be in part because PA14 has a partial deletion in the psl gene locus 

100. The structure of PEL forms a glucose-rich polysaccharide polymer but its exact structure 

remains to be elucidated. 

 Two main laboratory models are used for the study of P. aeruginosa biofilms. The most 

prominent is the “flow cell” biofilm model: Nutritious medium with a low bacterial inoculum is 

streamed over the surface of a glass slide. Individual cells attach to the slide, multiply and 

eventually form a structured biofilm101. Biofilm development can be monitored by fluorescence 
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microscopy. The flow-cell model mimics environmental conditions found in aquatic 

environments. Another model for the study of biofilms is the colony biofilm assay. This assay 

involves spotting 10 µl of high-density cell suspension onto an agar plate.  Once spotted, it is 

possible to follow the development of the community of cells over time. This technique is ideal 

for studying stages of biofilm development following initial attachment. The macroscopic 

colonies are particularly amenable for high-throughput screens. 

 

1.3. Phenazines  

Phenazines are redox-active, heterocyclic compounds produced by several bacterial species. 

Their discovery dates back to the late 19th century when doctors noticed blue-tinted pus secreted 

from purulent wounds in patients102. They were able to isolate a blue compound, “pyocyanin” 

that belongs to the class of phenazines. Additional phenazines were subsequently identified from 

culture supernatants as well as chronic P. aeruginosa infections5. Phenazine are characterized by 

a heterocyclic three-ring core that can be decorated with different functional groups, which 

change the chemical properties of phenazines (redox activity, solubility, color) (Figure 7). The 

colors range from the blue of pyocyanin (PYO), the lemon yellow of phenazine-1-carboxylic 

acid (PCA), the orange hue of 1-hydroxyphenazine (1-OH-PHZ), to the green tint of phenazine-

1-carboxamide (Figure 8). P. aeruginosa contains a pair of redundant seven-gene operons (phzA-

G) that encode the enzymes responsible for the biosynthesis of the phenazine PCA from 

chorismate102,103 (Figure 8). The core phenazine operons are often found next to phenazine-

modifying enzymes and other regulatory genes104,105. In P. aeruginosa, the phzA1-G1 phenazine 

operon (phz1) is flanked by the methyl-transferase encoding gene phzM and the monooxygenase 
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gene phzS.  PhzM and PhzS convert PCA to the blue phenazine pyocyanin (PYO) (Figure 8), 

which is unique to P. aeruginosa106. 

 

 

 

Researchers and clinicians alike have delved into the physiological effects of phenazines. They 

found that phenazines are required for P. aeruginosa’s virulence and competitiveness, which is 

mainly due to its superoxide-generating redox activity 107.  

Phenazines were originally viewed as secondary metabolites that assert their deleterious effect on 

other organisms via their ability to transfer electrons to oxygen. While phenazines have been 

observed within other bacterial species and some archaea, most of the work on the physiological 

role of phenazines has been done in the context of pseudomonad infections. Increased phenazine 

concentrations within the lung, such as during chronic P. aeruginosa infection of a CF patient, 

Figure 7. Some characteristics of phenazines produced by P. aeruginosa. 
The functional groups and the redox potentials at pH 7 are shown. Source: 
Price-Whelan et al., Nat. Chem. Bio., 2006 
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can impair epithelial cell function while also attenuating immunological responses108. PYO 

reacts with oxygen to form superoxide radicals that can severely disrupt the host cells’ internal 

redox balance 109. These reactive oxygen species can also act as antibiotics towards other 

microbes competing for resources in human hosts, as well as in soil ecosystems. For example, P. 

aeruginosa biofilms that form around the roots of plants can protect the plant from pathogenic 

fungi via phenazine secretion.  A large body of work has established the role of phenazines in 

physiological effects on hosts and ecological competition during P.aeruginosa infections. 

However, research within the last decade has elucidated a new role for phenazines as signaling 

molecules that can affect gene expression.   
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1.3.1. Distribution of the phenazine operon across the bacterial domain 

Phylogenetic analyses revealed that the phenazine operon (phzA-G) is highly conserved among 

phenazine-producing bacteria, such as Gram-positive actinobacteria and Gram-negative beta- 

and gamma-proteobacteria105 (Figure 9). Mavrodi et al. have suggested that the transfer of the 

phz operon may have occurred via horizontal gene transfer in certain lineages, as the operon is 

Figure 8. P. aeruginosa produces a variety of phenazines with colorful 
properties. The gene products encoded within the redundant 7-gene operons 
convert chorismate to phenazine-1-carboxilic acid (PCA). PCA can then be 
converted to several phenazines including pyocyanin (PYO), phenazine-1-
carboxamide (PCN), and 1-hydroxyphenazine (1-OH-PHZ). These phenazines have 
different biochemical properties. Source: Adapted from Price-Whelan et al., Nat. 
Chem. Bio., 2006 
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found in diverse species, such as Streptomyces spp. (actinobacteria) and Pseudomonas spp. 

(gamma-proteobacteria)110,111. The strongest evidence for horizontal gene transfer is found in 

Burkholderia species where the phz operon is surrounded by conserved transposon elements105. 

Additionally, in Burkholderia the phz operon has an unusually high degree of sequence 

conservation and it is inconsistently distributed within the genomes. Transfer of the phz operon 

between species that occupy diverse environments highlights the importance of this biosynthetic 

pathway. 

 

 

 

 

Figure 9. Distribution of phenazine producers based on phzF phylogeny 
analysis. Classification of bacterial species based on 16S sequencing (A) and 
phzF phylogeny. (B) Phenazine producing species were classified in three 
major clades that agree with 16S phylogeny of the taxa analyzed. Source: 
Mavrodi et al., App. Env. Micro., 2010  
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A large portion of phenazine producers are soil-dwellers and part of the rhizosphere11,112. 

Amongst those, only P. aeruginosa and S. cinnamonensis contain two redundant phz operons113 

(Figure 10). The fact that P. aeruginosa can thrive in both soil and host environments, and 

contains a redundant set of phz operons may be of importance. Does having redundant phz 

operons give P. aeruginosa an advantage in certain environments? Examination of the location 

of the operons and their flanking regions may begin to answer this question. The phzA2-G2 

operon (phz2) is found approximately 2 MB away from the phz1 operon and does not have any 

phenazine-modifying enzymes flanking it. In addition, although the phz1 and phz2 operons are 

nearly identical (~98%), they contain distinct regulatory elements114. The differences between 

the flanking regions of phz1 and phz2 may point to different characteristics of each operon that 

were first present at the time of the duplication event. While the regulation of phenazine 

production through the phz1 operon has been investigated thoroughly6,115,116 the specific 

regulation of the phz2 operon remains to be elucidated.  
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1.3.2. Some thoughts on genetic redundancy  

Evolutionarily, the perpetuation of functionally redundant genes within a genome may at first 

seem paradoxical. In theory, these genes should be selected against over time since at first glance 

they provide no obvious beneficial advantage for the organism. However, investigations into 

redundant genes in various organisms have found that there is a synergy between redundant 

genes that may be beneficial to the organism 117. Genetic diversity through gene duplication 

leads to organism-specific phenotypes and adaptive characteristics. The existence of multiple 

gene copies in eukaryotes has been known for a long time and is considered an important 

Figure 10. Organization of the phenazine biosynthetic operons in 
several bacterial species. A comparison of sequences of the phenazine 
operons across diverse bacteria. (A) The phenazine biosynthetic genes in 
the Burkholderia species. (B) In this species, they are surrounded by 
several mobile transposon elements. Source:  Mavrodi et al., App. Env. 
Micro., 2010 
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element in their molecular evolution118,119. However, bacteria were considered to be “simple” 

and were thought to carry very little, if any, redundant information in their genomes. It was 

surprising when the genome of Escherichia coli K12 showed that nearly 30% of the coding 

sequences could be grouped into gene families that were similar enough to be assigned similar 

functions120. They were described as 'paralog' gene families, and it was thought that their 

similarity reflected similar evolutionary descent, but actual or potential functional divergence. 

Since then, the presence of gene families typically containing between two to thirty copies has 

been described for nearly every prokaryotic genome sequenced. The number of paralogous genes 

and families appears to correlate with an increase in genome size118,121. 

  

Many redundant gene products are found in crucial cellular processes such as signal 

transduction, development and metabolism122. Examples of genetic redundancy include the 

myogenic development regulators of mammals123, cell surface receptors in Caenorhabditis 

elegans124 and Ser/Thr kinases in Saccharomyces cerevisiae125. The function of genetic 

redundancy within signaling networks has been studied thoroughly. In S. cerevisae, inspection of 

the 239 redundant genes reveals that 29% of these are found in signaling networks125-127. The 

redundant genes within signaling networks are also found to be differentially regulated compared 

to redundant genes in other contexts125-128. Differential regulation of redundant genes may 

facilitate signal transduction and modulate gene expression through collaboration between genes. 

It is this collaboration between redundant genes that may help propagate specific responses to 

numerous and diverse environmental stimuli.  
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1.3.3. Quinolone-dependent regulation of phenazine production 

Quinolones, specifically PQS, have been shown to be necessary for the production of 

phenazines23,129 (Figure 11). This is thought to require only one of the redundant phenazine 

operons, phz1. Expression of the phz1 operon has been shown to be dependent upon the 

quinolone signaling network, as deletions of genes encoding quinolone biosynthetic enzymes 

(pqsA) or the PQS receptor (pqsR) correlate with reduced expression of the phz1 operon130,131. 

However, a PqsR binding motif has not been identified upstream of phz1.  

 

 

 

 

Interestingly, in P. aeruginosa strain PA14, deletion of the pqsA gene does not completely 

abolish PYO production78,132. Furthermore, deletion of pqsH, which is specifically required for 

the production of the quinolone PQS, only reduces PYO production by ~20%133. This is in 

Figure 11. Model of P. aeruginosa’s quorum sensing network. PQS is 
produced in late exponential phase and regulates the production of phenazines. 
Source: Price-Whelan et al., Nat. Chem. Bio, 2006 
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contrast to investigations in strain PAO1 that found that a lack of PQS production reduces PYO 

levels by ~90%130. The reason for these strain-specific differences remains to be elucidated. 

 

1.3.4. Functions of phenazines 

1.3.4.1. Phenazines as signaling molecules 

Recent work has increased our understanding of the cell-cell signaling cascades present in P. 

aeruginosa. Work from the Newman lab has established that phenazines extend the QS signaling 

network in P. aeruginosa134 and regulate a specific set of genes. Subsequent studies showed that 

phenazines modulate the maturation of colony biofilms135. Specifically, PYO and PCA altered 

colony formation and structure with different potencies136, demonstrating that individual 

phenazines contribute differently to biofilm development. These initial investigations into the 

role of phenazines as signaling molecules laid the groundwork for further research into this 

exciting topic.   

An intriguing aspect of phenazine signaling is that it can activate the redox sensor SoxR, a 

transcriptional activator that contains an iron sulfur cluster in its sensory domain. Redox active 

agents, such as phenazines, are molecules that are easily reduced and re-oxidized under 

physiological conditions. These molecules are secreted by bacteria, fungi and plants and can 

impair cell function by the generation of reactive oxygen species7,137. SoxR, along with another 

transcriptional activator, SoxS, is part of the oxidative stress response in enterobacteria, such as 

E. coli and Salmonella enterica138,139. Together, these transcription factors regulate the 

expression of over one hundred genes involved in the suppression of oxidative stress. However, 
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recent work indicates that the SoxR response pathway has different functions in non-enteric 

bacteria140.    

It had long been assumed that superoxide stress was the sole activator of SoxR, and that the 

deleterious effect of redox-cycling agents was mediated through the creation of these toxic 

species. However, Gu and Imlay found that the SoxR response could be activated by redox 

active compounds and did not necessarily require superoxide141. Using the natural redox-active 

antibiotic paraquat, they showed that SoxR could be activated under anaerobobic conditions, 

suggesting that SoxR is sensing redox-cycling agents directly instead of superoxide. In support 

of this hypothesis, studies on Streptomyces coelicolor and P. aeruginosa have found that the 

endogenous redox-active compounds actinorhodin and phenazines elicit a SoxR-mediated 

response135,142. Actinorhodin is a polyketide endogenously produced by S. coelicolor that induces 

the expression of several SoxR target genes143. Similarly, phenazines produced by P. aeruginosa 

activate several genes under the control of SoxR135. Interestingly, none of these genes are 

involved in mediating a general stress response to superoxides. Rather, the gene products may 

function in the export or modification of actinorhodin or phenazines in S. coelicolor or P. 

aeruginosa, respectively (Figure 12). 
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A closer look at the SoxR regulon in non-enteric bacteria, such as P. aeruginosa and S. 

coelicolor, reveals that it is very different than the SoxR regulon of enteric bacteria, such as E. 

coli. The SoxR regulon from enteric bacteria is composed of only the transcription factor SoxS, 

which regulates the expression of more than 100 genes gene, many of which are involved in a 

general stress response to superoxide (e.g. superoxide dismutase)144,145. The SoxR regulon in 

non-enterics differs in both number and types of genes affected. In P. aeruginosa, SoxR controls 

the expression of a Resistance-Nodulation-cell Division (RND) family efflux pump MexGHI-

OpmD, a Major Facilitator Family (MFS) transporter, and a putative monooxygenase135. In S. 

coelicolor, SoxR is responsible for genes encoding putative reductases, a monooxygenase and an 

ABC transporter143. The differing regulons of P. aeruginosa and S. coelicolor indicate that the 

SoxR response may be specific to endogenously produced redox-active signals. In support of 

this, the growth of SoxR mutants in both of these non-enteric bacteria is unaffected by 

Figure 12. Activation of SoxR-
dependent gene expression by 
pyocyanin (PYO). The transcription 
factor SoxR forms a homodimer that 
binds to the “SoxRbox” of target 
genes. In its reduced form, SoxR 
prevents transcription. PYO then 
oxidizes SoxR through a one electron 
transfer. This causes the homodimer 
to undergo a conformational change 
that allows DNA polymerase to bind 
the DNA, resulting in transcription of 
the target genes. 
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endogenous or exogenous redox-active compounds suggesting that SoxR is not part of the 

detoxification response in these organisms. 

 

1.3.4.2. The role of phenazines in iron reduction 

Iron is an essential element that is required for crucial metabolic processes such as respiration 

(ferredoxins, cytochromes) and key enzymatic reactions (fumirase and aconitase of the TCA 

cycle)146. However, under aerobic conditions iron is not readily usable, as it is commonly found 

in the poorly soluble form Fe3+147,148. As such, host defense systems employ a series of 

mechanisms to limit iron availability for the invading pathogens. These mechanisms include 

proteins that use iron such as hemoglobins, cytochromes and ferritins or chelators of extracellular 

iron such as glycoproteins, transferrins and lactoferrins149,150. The phenazine PYO may assist P. 

aeruginosa in the acquisition of iron by reducing it and freeing it from transferrin, a protein that 

normally sequesters iron so that it is available only to the human host151,152. Another 

pseudomonad strain, P. chlororaphis, has been shown to reduce iron oxides through electron 

transfer to the phenazine PCN, and it is thought that this ability may be important in the 

rhizosphere, where iron is also present predominantly in an insoluble, oxidized form153. In 

addition to phenazines, P. aeruginosa also uses strong extracellular iron chelators, termed 

siderophores, for iron uptake154.  Interestingly, transcriptomic studies of P. aeruginosa have 

found that the biosynthetic genes that control phenazine and siderophore production are 

upregulated during infection111.  
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1.3.4.3. The role of phenazines in redox homeostasis 

Phenazines also act as substrates in intracellular redox transformations. The redox 

transformations of phenazines can be observed as a color change in cultures that have become 

limited for terminal electron acceptors. The phenazine PYO is blue in its oxidized state, but 

colorless upon reduction. A shaking culture is blue because oxygen is continuously introduced 

into the medium. If the culture is limited for oxygen the cells will rapidly reduce all phenazines 

and the culture will lose its blue color155. This activity has also been demonstrated in oxygen-

limited cultures of the bacterium P. chlororaphis, which can use its phenazine product, 

phenazine-1-carboxamide (PCN) to reduce extracellular iron oxides 153.  

The redox potentials of phenazines are such that they can be easily reduced by the bacterial cell 

and react extracellularly with higher potential oxidants such as ferric iron and oxygen, acting as 

electron shuttles between the bacterium and an external substrate156,157. In homogeneous liquid 

cultures of P. aeruginosa, phenazines affect gene expression and oxidize the intracellular redox 

state158-160. Under conditions where no other oxidant is available, phenazine-dependent electron 

transfer between cells and an oxidizing electrode supports survival9,161. Phenazines also help 

maintain redox homeostasis by acting as electron acceptors for the re-oxidation of accumulating 

NADH. Maintaining a proper redox balance in the pyridine nucleotide pool is essential for 

metabolism162. This suggests that an important role for phenazines could be to serve as 

intracellular redox buffers. 

The building of cellular communities such as biofilms leads to the creation of gradients due to 

limited diffusion and consumption of substrates by individual cells within a community. Cells 

within biofilms use different strategies to ensure substrate acquisition and survival, depending on 
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the specific microenvironment they inhabit. Mechanisms that aid in redox homeostasis at the 

cellular level have been characterized in diverse organisms. In mammals, redox-balancing 

mechanisms are involved in the development of lung and blood vessel systems, which prevent 

oxygen starvation of the developing embryo 163. In such large, multicellular species, cells must 

cope with limited oxygen availability that leads to the formation of zones with varying 

concentrations of oxygen. During processes such as tumor angiogenesis, relative oxygen 

concentrations act as cues that determine adaptive morphological features, facilitating oxygen 

delivery to cells within the macroscopic structure94. 

In summary, Pseudomonas aeruginosa is a versatile bacterium that can inhabit diverse 

environments such as water, air, soil and host organisms. Phenazine production and formation of 

multi-cellular communities are two important aspects of its physiology that help this bacterium 

adapt to different environments. How phenazines modulate biofilm development is poorly 

understood..The second chapter will address how phenazine production is affected in biofilms. 

More specifically, we addressed the role of the second phenazine operon in phenazine production 

in the biofilm environment. In the third chapter, we investigated the roles of individual 

phenazines on colony development. It has been established that phenazines are necessary for 

colony development but exactly which phenazines are involved in this process has yet to be 

elucidated. Finally, in chapter four we investigated the activation of the transcription factor SoxR 

by phenazines. Specifically, we addressed the ability of SoxR to respond to specific redox 

potentials. The work described below is aimed at furthering our understanding of the intimate 

link between phenazines and biofilm development.  
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Chapter 2. The redundant phenazine biosynthetic operons in Pseudomonas aeruginosa 

exhibit environment-dependent expression and differential roles in pathogenicity 

 

 

This chapter is adapted from a manuscript that has been submitted for publication (Recinos, et 

al., 2012). 

 

2.1. Introduction 
 

Gene duplications give rise to genetic redundancy, an unstable condition that would not be 

expected to persist over evolutionary time. Despite this, genomes from diverse organisms 

maintain redundant genes1,2. Redundancy may be favored for a variety of reasons. For example, 

differential expression of redundant genes may allow an organism to thrive under varying 

environmental conditions3,4. Redundant genes are found in diverse organisms, and their products 

are involved in crucial cellular processes such as signal transduction, development and 

metabolism5. Examples of systems utilizing genetic redundancy include regulators of myogenic 

development in mammals6, cell surface receptors in Caenorhabditis elegans 7 and Ser/Thr 

kinases in Saccharomyces cerevisiae8. 

 

An excellent example of maintained genetic redundancy is the versatile bacterium Pseudomonas 

aeruginosa, an opportunistic pathogen that can thrive in both soil and host environments. The P. 

aeruginosa genome contains a set of redundant seven-gene operons, each encoding the 

biosynthetic enzymes for phenazine-1-carboxylic acid (PCA)9. Additional genes encode 
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decorating enzymes that derivatize this precursor, generating other phenazines (Fig. 13A). The 

pseudomonad phenazines are toxic to many other organisms and cell types due to their inherent 

redox activity10,11. Studies conducted in various plant and animal models of infection have 

implicated phenazines in colonization and pathogenicity12-14. For example, the most familiar 

biological phenazine, pyocyanin (PYO), has been shown to be necessary for pseudomonad 

infection of the lungs of mice15. Some of the deleterious effects of pseudomonad phenazines 

leading to toxicity in host cells include the generation of reactive oxygen species, inhibition of 

ciliary beating, and reduction of the macrophage response 11,16,17. 

 

In addition to the effects that secreted phenazines can exert on hosts, recent studies have 

elucidated roles for phenazines in P. aeruginosa physiology. Phenazines can act as intercellular 

signals, altering gene expression within a population of pseudomonads18. Additionally, P. 

aeruginosa is not negatively affected by the redox toxicity of phenazines19; rather, phenazines 

balance the intracellular redox state and may support survival when other electron acceptors are 

not available20,21. The signaling and redox balancing effects of phenazines are thought to 

contribute to their dramatic influences on P. aeruginosa colony biofilm development, where 

phenazine production induces a drastic morphotypic switch between wrinkled (rugose) and 

smooth phenotypes22. 

 

The various advantages conferred by phenazines may support conservation of the phz 

biosynthetic operon in the more than 57 phenazine-producing species currently identified23. phz 

operons have been discovered in Gram-positive Actinobacteria and Gram-negative Beta- and 

Gamma-proteobacteria and are often found next to phenazine-modifying enzymes and regulatory 
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genes23. However, although the phz operon displays a broad phylogenetic distribution, bacterial 

genomes containing more than one phz operon are rare: of the bacterial genomes sequenced to 

date, only those belonging to P. aeruginosa, the closely related Pseudomonas sp M18, and 

Streptomyces cinnamonensis contain a second, redundant phz operon23. In P. aeruginosa, the 

regions surrounding each of the phz operons are highly divergent. The phzA1-G1 operon (phz1) 

is flanked by phzM, encoding a methyltransferase and phzS, encoding a monooxygenase, which 

convert PCA to the well-studied phenazine pyocyanin (PYO) (Fig. 13A). The phzA2-G2 operon 

(phz2) is found approximately 2 MB away from the phz1 operon and is not flanked by 

phenazine-modifying enzymes. A third phenazine-modifying enzyme, PhzH, is encoded at a 

distinct site in the genome and is responsible for the conversion of PCA to phenazine-1-

carboxamide (PCN). Additional phenazine derivatives that have been detected in P. aeruginosa 

cultures are either (1) intermediates and by-products that arise from PhzM and PhzS activity 

and/or (2) produced by enzymes for which the coding genes are not known24-26. 

 

The phz1 and phz2 operons are nearly identical (~98% similarity at the DNA level), yet they are 

preceded by distinct promoter regions9 . Although this suggests that different environmental cues 

may be required to activate each operon, the differential regulation of the phz operons has not 

been thoroughly explored. Studies examining phz gene expression and the relative contributions 

of the phz operons to phenazine production have typically conflated phz1 and phz2 or measured 

PYO as the representative product, discounting other phenazines. Despite the difficulties 

associated with dissecting the regulation of the two phz operons, some advances have been made 

on this front. Several lines of evidence suggest that phz1 is regulated by quorum sensing (QS). 

The phz1 promoter contains a lux box 390 bp upstream of the phzA1 translational start site27. lux 
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box motifs are found upstream of many genes regulated by QS 28 and recruit the LuxR family 

transcriptional regulators LasR and/or RhlR. The upstream lux box motif, LasR, and RhlR have 

been shown to be necessary for the full induction of phzA128, indicating that expression of the 

phz1 operon is strongly dependent on quorum sensing cues. It has also been shown that the phz1 

operon is regulated by quinolones. Although it has been reported that binding of the 

Pseudomonas quinolone signal (PQS) to its receptor protein PqsR (MvfR) is required for wild-

type PYO production29,30, a PqsR binding motif has not been identified in the promoter region of 

phz129. On the other hand, simultaneous transcription of phz1 and phz2 has been observed9. 

Furthermore, the PQS-dependence of phenazine production has been observed in several RNA 

array studies and is often attributed to the QS control of phz1, but it is unlikely that microarray 

probes can distinguish between phz1 and phz2 due to their high similarity. The quinolone 

dependence of phz2 expression has therefore remained an open question. 

 

To investigate the quinolone-dependent regulation of the phz operons, we generated a panel of 

mutants lacking genes involved in the biosynthesis of phenazines and quinolones and evaluated 

their effects on phenazine production, colony biofilm morphogenesis and pathogenicity. 

Promoter-YFP fusions were used to examine the relative expression levels of phz1 and phz2 

during growth in liquid batch cultures and during colony development. The relative contributions 

of phz1 and phz2 to P. aeruginosa pathogenicity were tested using a murine model of lung 

colonization. Our results have identified a previously underestimated role for phz2 under 

planktonic growth conditions, and discovered a novel, near-exclusive dependence on phz2-

derived phenazines during P. aeruginosa biofilm development and host infection. 
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2.2. Results 
 

2.2.1. Both phz operons contribute to phenazine production in planktonic cultures 

 

P. aeruginosa planktonic cultures begin to produce phenazines in early stationary phase. To 

investigate the relative contributions of the two phz operons to phenazine production in 

planktonic cultures, we deleted each individual operon in P. aeruginosa PA14. Using high-

performance liquid chromatography (HPLC) analysis of culture supernatants, we compared the 

production of phenazines from the phz1 deletion mutant (Δphz1), the phz2 deletion mutant 

(Δphz2) and a mutant in which both phenazine operons had been deleted (Δphz)18 . We were able 

to quantify the levels of PCA and PYO; however the levels of PCN and other phenazines were 

below our detection limit. The PCA levels produced by Δphz1 and Δphz2 were significantly 

lower than that produced by the wild type (Fig. 13B, bottom). Δphz1 produced more PCA than 

Δphz2, but the sum of PCA produced in the individual mutants (22 µM and 6 µM, respectively) 

did not reach wild type levels (95 µM). Downstream phenazine modifications may have 

prevented us from accurately quantifying the total PCA produced by each operon (Fig. 13A). 

The Δphz1 mutant produced PYO at a level near that of the wild type, while the Δphz2 mutant 

was severely defective in PYO production (Fig. 13B, top). The PYO production phenotypes of 

the individual mutants are intriguing in light of their chromosomal environments: phz1, which 

does not contribute significantly to PYO production, is the operon that is flanked by the genes 

for the PYO-producing enzymes PhzM and PhzS. 
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To address the possibility that the phz operons are expressed at different levels, we created 

fluorescent reporter constructs containing the 500 bp promoter regions upstream of each operon 

fused to the gene encoding Venus, a YFP derivative. These reporters, PphzA1YFP (A1YFP) and 

PphzA2YFP (A2YFP) were integrated into the chromosome at a neutral site in the wild type and 

the ∆phz mutant. We observed that the expression of PphzA1YFP was higher than that of 

PphzA2YFP in the wild type and ∆phz backgrounds (Fig. 13C, top). This concurs with 

Figure 13A-B. PA14 expresses a redundant set of phenazine biosynthetic operons 
that contribute to phenazine production in planktonic culture. (A) Diagram 
showing differing flanking regions and regulatory elements of phz1 and phz2. The 
operons are composed of 7 genes that catalyze the synthesis of phenazine-1-carboxylic 
acid (PCA) which is the precursor to pyocyanin (PYO), phenazine-1-carboxamide 
(PCN) and 1-hydroxyphenazine (1-OH-PHZ). (B) Growth curve of WT, Δphz, Δphz1 
and Δphz2 strains with PYO (top panel) and PCA (bottom panel) quantification. Error 
bars indicate standard deviation of three independent experiments. 
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previously published work reporting that phz1 is expressed at higher levels than phz2 in 

planktonic cultures31-33. It is noteworthy that expression of phz1 and phz2 were lower in the Δphz 

mutant background than in the wild type (Fig.13C, bottom).  

 

 

 

 

Figure 13C. The phz1 operon is expressed at higher levels than phz2 in 
planktonic culture. (C) Expression levels of YFP reporter constructs for 
phz1 and phz2 operons in WT (top panel) and Δphz (bottom panel) 
backgrounds. Error bars indicate standard deviation of one experiment 
performed in biological triplicates.Experiment was repeated four times with 
similar results. 
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Overall, these data demonstrate that both phz1 and phz2 make significant contributions to 

phenazine production during growth in planktonic cultures. However, the observed difference in 

PCA production between the Δphz1 and Δphz2 mutants was not consistent with the expression 

patterns of the phz1 and phz2 operons: phz1 was the higher-expressed operon, but Δphz2 showed 

more severe defects in PCA and PYO production. However, PCA measurements for the Δphz1 

and Δphz2 strains may not accurately represent total PCA production due to the various 

phenazine-modifying enzymes (PhzH, PhzM and PhzS) that use PCA as a precursor (Fig. 13A).  

 

2.2.2. The phz2 operon is responsible for producing the majority of the PCA pool in 

planktonic cultures 

 

We made a triple deletion strain (ΔphzHMS) that lacks the phzH, phzM and phzS genes and in 

this background deleted either phz operon in order to assess their contributions to the total PCA 

pool. The ΔphzHMS mutant produced more PCA than the wild type (Fig. 14B); this represents 

the total PCA production from both operons. That this amount was higher than the combined 

total PCA produced by the phz1 and phz2 mutants confirms that conversion of PCA to other 

phenazines prevented us from accurately quantifying the total PCA pool. Deleting phz1 in this 

background (ΔphzHMSΔphz1) decreased PCA production slightly, while deleting phz2 

drastically reduced PCA production (ΔphzHMSΔphz2), indicating that phz2 is responsible for the 

majority of the PCA production in planktonic cultures. 
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2.2.3. The phz2 operon is sufficient for wild-type phenazine production in colony 

biofilms  

 

Growth-dependent control of phenazine production has been characterized most extensively 

using planktonic cultures. However, phenazines have also been shown to affect the morphology 

of different types of biofilms22,34. We evaluated the importance of the individual phz operons in 

P. aeruginosa biofilm morphogenesis. Using a colony morphology assay, we compared the 

development of Δphz, Δphz1 and Δphz2 to that of the wild type. As has been previously shown, 

Figure 14. The phz2 operon 
contributes the majority of the 
PCA pool in planktonic culture. 
(A) Growth curves and (B) PCA 
quantification of ΔphzHMS, 
ΔphzHMSΔphz1 and 
ΔphzHMSΔphz2 deletion strains. 
PCA quantification was performed 
after 16 hours of growth for B. Error 
bars indicate standard deviation of 
three independent experiments. 
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the phenazine-null mutant (Δphz) exhibited a wrinkled morphology18. Strikingly, the presence of 

the phz2 operon alone was sufficient for maintenance of the wild type (smooth) phenotype. In 

contrast, deleting the phz2 operon led to a wrinkled morphology much like that of the Δphz strain 

(Fig.15A). Biofilms formed by the Δphz and the Δphz2 strains exhibited a two-fold increase in 

surface coverage compared to those formed by the wild type (Fig. 15B), while loss of the phz1 

operon had no effect on colony morphology. This suggests that phz2, but not phz1, is important 

for phenazine production in biofilms. 
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To confirm that the mutant biofilm phenotypes were consistent with their phenazine production 

profiles, we extracted and quantified the phenazines from the agar on which the biofilms were 

grown. The Δphz1 strain produced ~60% of the amount of PCA produced by the wild type, but 

generated ~60% more PYO than the wild type (Fig. 16A). This shift toward PYO production is 

consistent with the increased PYO/PCA ratio we observed for the Δphz1 mutant grown 

planktonically. The combined total of PYO and PCA produced by the Δphz1 biofilm (201 µM) 

Figure 15. The phz2 operon 
is necessary and sufficient 
for maintaining WT colony 
morphology. (A) Growth of 
WT, Δphz, Δphz1 and Δphz2 
colonies on agar plates and (B) 
surface area quantification 
over the course of 6 days. 
Error bars indicate standard 
deviation of three independent 
experiments. 
Scale bar = 1cm. 
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was comparable to that produced by the wild type biofilm (225 µM) (Fig. S1). We were not able 

to detect any PCA or PYO peaks from the Δphz2 strain in our HPLC analysis (Fig.S2). Removal 

of phzH, phzM, and phzS, from the phz1 and phz2 backgrounds confirmed that all of the 

detectable phenazines produced by the wild-type colony could be produced by phz2 alone (Fig. 

16B). Complementation with the phz2 operon restored phenazine production and rescued the 

wrinkled colony morphology (Fig. S3).  
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We next evaluated the expression levels of the phz operons in biofilms. We quantified 

fluorescence across the midsection of colonies grown from strains containing our A1YFP and 

A2YFP reporter constructs. Fluorescence levels for the A2YFP reporter were significantly higher 

Figure 16. The total PCA pool 
in biofilms is produced by 
phz2. (A) Quantification of PYO 
and PCA produced by WT, Δphz, 
Δphz1 and Δphz2 colonies grown 
on agar plates. (B) Quantification 
of PCA produced by ΔphzHMS, 
ΔphzHMSΔphz1 and 
ΔphzHMSΔphz2 deletion strains 
grown on agar plates. Error bars 
indicate standard deviation of 
three independent experiments. 
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than background in a colony containing the YFP-encoding gene cloned without a promoter 

(Pmcs) (Fig.17). The fluorescence levels for the A1YFP colony were indistinguishable from 

background. The midsection fluorescence quantification gave rise to a “Batman”-shaped plot for 

all colony types. This is likely due to an increased cell concentration at the colony perimeter, 

which results from the coffee ring effect 35 when a cell suspension is first spotted onto an agar 

surface for the colony morphology assay.  

 

 

 

 

 

 

 

Figure 17. phz2 is expressed at higher levels than phz1 in biofilms. (A) 3D 
surface fluorescence intensity plot and (B) quantification of fluorescence of YFP 
reporter constructs for phz1 and phz2 operons. Fluorescence quantification was 
performed by using the surface plot analysis across the middle of the colony 
(Image J). Data represents one experiment performed in biological triplicates. 
Experiment was repeated three additional times with similar results. Shading 
indicates standard deviation. 
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The exclusive expression of phz2 in biofilms contrasts with the observation made for liquid batch 

cultures, where phz1 was expressed at higher levels than phz2. In biofilms, the production of 

PCA could be fully attributed to phz2. In planktonic cultures, most, but not all, of the PCA 

production was phz2-dependent. Although the phz2 operon is consistently the primary 

contributor to phenazine production, additional regulatory differences between planktonic and 

biofilm cells likely tune the extent of the phz1 contribution. 

 

2.2.4. Quinolone-dependent regulation of the phz2 operon 

 

Although the P. aeruginosa phz operons are almost identical, their upstream promoter regions 

differ significantly. Previous studies have demonstrated that phz1 expression (1) is upregulated 

by Las and Rhl 28 and (2) depends on the quinolone PQS and its receptor PqsR (MvfR)36. The 

mechanism whereby PQS controls phz1 is unknown, as direct binding of PqsR to the phz1 

promoter has not been observed. Even less is known about the regulation of phz2, except for its 

apparent repression by QscR33. We sought to identify signals required for the activation of the 

phz2 operon. We tested whether quinolones were required for induction of phz2 in biofilms. 

PA14 produces three major types of alkyl quinolones: PQS, 2-heptyl-4(1H)-quinolone (HHQ) 

and 2-heptyl-4-hydroxyquinoline-N-oxide (HQNO) 37. We generated a mutant lacking the genes 

pqsABC (ΔpqsAC), which is unable to produce any quinolones. We also created individual 

mutants with deletions in the genes encoding the monooxygenases PqsL and PqsH, which 

catalyze the formation of HQNO and PQS respectively38,39. The ΔpqsAC strain showed the most 

significant defect in PCA production while the ΔpqsL deletion seemed to have no effect (Fig. 

18A). The double mutant ΔpqsHL showed PCA production similar to that of the ΔpqsH strain 
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suggesting that HHQ and not NQNO is responsible for PCA production. To investigate whether 

quinolones affect PCA production directly from the phz2 operon we deleted the pqsABC genes in 

the ΔHMSΔphz1 and ΔHMSΔphz2 backgrounds and assayed for phenazine production. The 

ΔpqsACΔHMSΔphz1 mutant showed a drastic reduction in PCA production compared to the 

ΔHMSΔphz1 strain (Fig.18B), illustrating quinolone-dependent regulation of phz2. Removing 

quinolones also abolished PCA production from phz1 (ΔpqsACΔHMS2 strain). Finally, to 

evaluate whether PQS specifically is the quinolone responsible for phz2 induction (as is the case 

for phz1), we generated the mutants ΔpqsHΔHMSΔphz1 and ΔpqsLΔHMSΔphz1. PCA 

production in these mutants was identical to that of the ΔHMSΔphz1 mutant, suggesting that the 

PQS/HQNO precursor HHQ positively regulates phenazine production from the phz2 operon 

(Fig.18C). 

 

To further verify that quinolone signaling affects phz2 expression, we inserted the PphzA2YFP 

reporter construct into the ΔpqsAC, ΔpqsR and ΔpqsHL mutants and compared fluorescence 

between the strains. As shown in figure 18D, phz2 expression levels were significantly reduced 

in the ΔpqsAC::A2YFP and the ΔpqsR::A2YFP strains in biofilm environments. However, phz2 

expression levels in the ΔpqsHL::A2YFP strain were similar to that of the wild type (Fig.18E). 

These observations were recapitulated in the planktonic environment (Fig.S4). These results 

indicate that quinolones, specifically HHQ, can positively regulate transcription of the phz2 

operon. 
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Figure 18A-C. Quinolones regulate the phz2 operon in biofilms. Quantification of 
PCA from strains containing deletions in various biosynthetic genes involved in H-
alkyl-quinolone (HAQ) production (A) in the ΔphzHMSΔphz1 and ΔphzHMSΔphz2 
backgrounds (B). PCA production of ΔphzHMSΔphz1, ΔpqsHΔHMS1 and 
ΔpqsLΔHMS1 strains (C). Error bars indicate standard deviation of three independent 
experiments 
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Figure 18D-E. HHQ positively regulates phz2 expression in biofilms. 
Expression levels of the phz2 operon in the ΔpqsAC, ΔpqsR (D) and in the 
ΔpqsHL strain (E). Representative experiment performed in biological 
triplicates is shown (for D and E). Experiment was repeated several times 
with similar results. Shading indicates standard deviation. 
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2.2.5. The phz2 operon is required for lung colonization in a murine model of 

infection 

 

Phenazine production contributes to virulence in diverse infection models (flies, worm, mice and 

lettuce leaves14,15,40,41). Characterizations of the bacterial populations associated with infections 

have suggested that P. aeruginosa assumes a biofilm-like lifestyle during host colonization. We 

observed that the phz2 operon was required for phenazine production in biofilms; we therefore 

set out to test whether the phz2 operon is required for infection in a mouse lung colonization 

model15. Mice were inoculated with 0.3-1 x 105 colony-forming units (cfu) of P. aeruginosa 

PA14 wild-type, Δphz1, or Δphz2 and euthanized 18 h after infection. Cfu counts were 

performed by dilution and plating of whole lung homogenates. In this model, the Δphz1 strain 

had the capacity to colonize the mouse lung to the same extent as the wild type (Fig.19). In 

comparison, the Δphz2 and the Δphz strains showed a significantly decreased rate of infection. 

The pathogenicity of the panel of mutants was also evaluated in the lettuce leaf assay (data not 

shown). These results demonstrate that the phz2 operon is required for P. aeruginosa virulence in 

divergent host systems. 
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2.3. Discussion 

 

Surveys of redundancy across bacterial phylogeny have revealed that gene duplication gives rise 

to organism-specific phenotypes and adaptive traits 42. Many of these duplicated genes products 

have redundant functions. P. aeruginosa contains a redundant phenazine biosynthetic operon 

(phz2) whose regulation was previously underappreciated. We hypothesized that the 

Figure 19. The phz2 operon is 
necessary for lung colonization 
in the murine infection model. 
CFU counts of the WT, Δphz, 
Δphz1 and Δphz2 strains from 
mouse lungs. Mice were inoculated 
with 0.3-1 x 105 colony-forming 
units (cfu) of P. aeruginosa PA14 
wild-type, Δphz1, or Δphz2 and 
euthanized 18 h after infection. Cfu 
counts were performed by dilution 
and plating of whole lung 
homogenates. Straight lines within 
the data points indicate average of 
CFU/ml. P-value between data is 
shown. 
 



62 

 

nonhomologous promoter regions of the redundant P. aeruginosa phz1 and phz2 operons allow 

for condition-dependent regulation of PCA biosynthesis in diverse environments. We generated 

mutants with deletions in each of these operons, and created fluorescent reporter constructs to 

monitor operon expression. We also deleted genes required for downstream conversion of PCA 

to the phenazines PYO and PCN. For planktonic cultures we found that phz1 was expressed at 

higher levels than phz2 (Fig. 13C), and that both contributed significantly to PCA production, 

with the phz2 making a greater contribution (Fig. 14B). This result suggests that factors other 

than transcriptional regulation are controlling the amount of PCA produced in such cultures.  

 

In contrast to planktonic cultures, phz expression in colony biofilms correlates well with PCA 

production. During colony development, phz1 expression was undetectable, while fluorescence 

from the phz2 yfp reporter was detectable throughout the structure (Fig. 17). Biofilm 

morphogenesis (a process dependent on phenazine production) and PCA synthesis of the phz1 

deletion mutant phenocopied the wild type. With respect to biofilm morphology and PCA 

production, the phz2 mutant was indistinguishable from a mutant lacking both phz operons, 

suggesting that phz2 is sufficient for the wild-type phenotype during multicellular growth and 

survival. 

 

Our phz expression data for planktonically grown P. aeruginosa PA14 are consistent with 

published reports comparing relative expression of phz1 and phz2 in P. aeruginosa PAO1 and 

Pseudomonas sp. M1843. This difference in expression has been attributed to post-transcriptional 

regulation at the RNA level as part of a feedback loop through PCA production from phz2 to 

phz1. The orphan repressor QscR has also been shown to negatively affect the transcription of 
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both phenazine operons through an unknown mechanism33. Recently, the small RNA chaperone 

protein Hfq was shown to positively affect phz2 transcription by inactivating QscR44.  

 

It is well established that phenazine production is controlled by the quinolones. P. aeruginosa 

produces at least 50 quinolone derivatives45. The best studied quinolones are HHQ, HQNO and 

PQS. PqsA-D synthesizes HHQ, which can then be converted by the monooxygenases PqsH or 

PqsL to PQS or HHQ, respectively46-48. Previous reports demonstrated that phz1 induction is 

dependent on PQS though its transcriptional regulator PqsR30. Both PQS and its precursor 

molecule HHQ activate PqsR although HHQ does this with lower efficiency49,50. The connection 

between PQS and phz1 is in agreement with our findings that ΔpqsH and the Δphz1 mutants 

produce similar amounts of PCA (compare figure 16B to figure 18A). We now show that phz2 

expression is also controlled by quinolones and does not rely on PQS. The production of HHQ is 

sufficient to allow full expression of phz2 and that this regulation is PqsR- dependent (Fig. 18). 

HHQ has been previously shown to act as a signaling molecule responsible for cell-cell 

communication50. It is worth noting that neither the phz1 nor phz2 promoters contain an 

identifiable PqsR binding motif, suggesting that additional regulators may be required for phz 

expression. Interestingly, we also detect some quinolone independent regulation of the phz2 

operon as removing the quinolone biosynthetic genes does not completely abolish PCA 

production (Fig. 18B).  

 

An important distinction between the quinolone signals HHQ and PQS is that biosynthesis of the 

latter requires oxygen as it is catalyzed by the oxygen-dependent monooxygenase PqsH51. An 

intriguing idea therefore is that HHQ/phz2 ensures PCA production under anaerobic conditions 
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because it is oxygen-independent. In contrast PQS/phz1 may be exclusively tuned to aerobic 

environments. This is further supported by the observation that another oxygen-dependent 

monooxygenase gene phzS is found adjacent to phz1 and transcription of both is thought to be 

controlled by the same promoter (unpublished observation). It is somewhat peculiar that we were 

not able to phz1 expression in the colony biofilm environment, which is characterized by steep 

oxygen gradients and therefore should allow the expression of both operons. 

 

From an evolutionary perspective, the maintenance of redundant genes is paradoxical. One might 

expect redundancy to disappear over time as redundant genes alone do not provide and 

functional selective advantage52. However, subtle functional specialization and differential 

regulation are features that can render duplicate genes and their products beneficial 53. The phz1 

and phz2 operons exhibit environment-specific expression and individual characteristics that 

account for distinguishing phenotypes. The increased expression and phenazine production from 

the phz2 operon in biofilms may allow the bacteria to adapt to its environment as the phz2 

operon is sufficient and necessary for colonization of mouse lungs.  

 

James Thomas and others have put forth several mechanisms for the maintenance of redundant 

genes3,54. Specifically, the divergent function mechanism states that two genes that have 

overlapping activities are selected for properties that are unique to each. Our findings suggest 

that the mechanism of maintenance for the redundant phenazine operons of P. aeruginosa agrees 

with this hypothesis. Both the phz1 and phz2 operons have the shared function of producing PCA 

but also have distinct regulatory mechanisms in different environments. It is tempting to 

speculate that the PQS-dependent regulation of the phz1 operon is enhanced in the planktonic 
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environment while the HHQ-dependent regulation of phz2 operon is dependent on factors that 

are prominent in the biofilm environment.  

 

2.4. Materials and Methods 

 

2.4.1. Bacterial Strains and Growth Conditions 

 

All strains were grown at 37°C in Luria-Bertani (LB) broth or 1% tryptone as specified. Biofilms 

were grown on 1% tryptone/1% agar plates. Coomasie Blue (20 µg/mL) and Congo Red (40 

µg/mL) were added to plates used for morphology assays.  

 

2.4.2. Construction of mutants 

 

We generated unmarked deletions of the phenazine modifying enzymes phzH, phzM, phzS and of 

the two redundant phenazine biosynthetic operons phzA1-G1 and phzA2-G2 in PA14. Deletions 

of phzA1-G1 and phzA2-G2 genes have been described previously18. Here we describe the 

protocol for generating the unmarked deletion of phzA2-G2: The 5′ region (~1 kb in length) of 

the sequence flanking phzA2 was amplified using the primer pair #1 and the 3 ′ region (~1 kb in 

length) of the sequence flanking phzG2 with primer pair #2 (Table 3). These flanking DNA 

fragments were joined using overlap extension PCR. The resulting PCR product, containing a 

deletion of phzA2-G2, was cloned into a unique SpeI site in the mobilizable plasmid pSMV10. 

pSMV10 is a suicide plasmid for PA14 and contains an oriR6K origin of replication that does 

not function in PA14 but replicates in E. coli strains containing the pir gene; a gentamicin 
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resistance gene (aacC1); an oriT from RP4 that allows for mobilization by E. coli strains 

carrying RP4-derivatives on their chromosome (E. coli BW29427); and the counterselectable 

sacB gene. The resulting deletion plasmid was transformed into E. coli BW29427 and mobilized 

into PA14 using biparental conjugation28. PA14 single recombinants (merodiploid containing the 

intact phzA2-G2 operon and the deleted operon) were selected on LB agar containing 

gentamicin. Potential phzA2-G2 deletion mutants were generated by selecting for a resolved 

merodiploid (double recombinant) by identifying strains that grew in the presence of 10% 

sucrose (these strains lost the sacB containing plasmid because sacB is toxic in the presence of 

sucrose). Strains with properties of a double recombination were further analyzed by PCR to 

determine if phzA2-G2 has been deleted and one was selected. The deletions of all other strains 

listed in Table 2 were made in a similar manner using primer pairs shown in Table 3. 

 

2.4.3. Quantification of phenazines from biofilms and liquid cultures 

 

For phenazine quantification from biofilms assay, starter cultures were grown for approximately 

16 hours in LB. Ten microliters from these stationary-phase cultures were spotted on 1% 

tryptone/1% agar plates. These were then grown for 3 and 6 days. On day 3 or 6, five of these 

colonies were scraped from the plate and the agar was broken into pieces and put into 50ml 

conical with 3ml of water to extract phenazines. The tubes were then placed on a rotator for 

approximately 16 hours. Two hundred microliters from the overnight extraction was then 

centrifuged twice at 13,000 x g for 5min to remove any debris. A final centrifugation of the 

aliquots in spin columns (0.2 mm filter pore size) at 13 000 x g was done to remove any cells. 

The cleared extract was then loaded directly onto a Waters Symmetry C18 reverse-phase column 
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(5 mm particle size; 4.6 x 250 mm) in a Beckman SystemGold set up with a photodiode array 

detector. Phenazines were separated in a gradient of water-0.01% TFA (solvent A) to 

acetonitrile-0.01% TFA (solvent B) at a flow rate of 0.6 ml/min in the following method: linear 

gradient from 0 to 5% solvent B from 0 to 2 min, linear gradient to 83% solvent B from 2 to 22 

min, then a linear gradient to 0% solvent B from 22 to 24 min. The total method time was 39 

min. Retention times for PYO and PCA averaged 10.933 and 19.918 respectively. System Gold 

32 Karat Software was used to calculate the area under each peak in absorbance units in the 366 

nm channel. Phenazine standards at known concentrations were used to calculate conversion 

factors for PYO and PCA and were 8 x 10-6 mM/AU and 9.5 x 10-6 mM/AU respectively. 

 

For liquid cultures grown in 1% Tryptone medium, 200 microliter samples were taken after 

being grown for approximately 16 hours. These were then prepared for HPLC analysis using the 

method described above. 

 

2.4.4. Construction of the YFP-reporter plasmids 

 

To generate the yfp reporter construct, we amplified an optimized yfp gene (Venus) from an E. 

coli strain in which the yfp gene is integrated within the chromosome (courtesy of Dr. John 

Hunt) using primers 1 and 2. The PCR product was digested with KpnI and NcoI and ligated 

with KpnI and NcoI digested miniTn7 (Gm) PA1/04/03 eyfp-a 55 to give pAKN69-venus, which 

contains a SpeI site upstream of the engineered SphI site at the Venus start codon. The multiple 

cloning site from pUCP18-mini Tn7T-Gm-lacZ 56 was amplified with primers 3 and 4. The PCR 

product was digested with SpeI and SphI and ligated with SpeI and SphI digested pAKN69-
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venus to give pAKN69-MCS-venus. The multiple cloning site from pAKN69-MCS-venus was 

then amplified with primers 5 and 6. The PCR product was digested with SalI and MfeI and 

ligated with XhoI and EcoRI digested pYL122 57. This step replaced the rhlA promoter in 

pYL122 with a multiple cloning site to give pSEK101-yfp. The phzA1 promoter was amplified 

from P. aeruginosa PA14 genomic DNA by PCR with primers 7 and 8. The phzA2 promoter was 

amplified from P. aeruginosa PA14 genomic DNA by PCR with primers 9 and 10. These PCR 

products were digested with SpeI and SphI and ligated with SpeI and SphI digested pSEK101-

yfp to give pSEK-PphzA1-yfp and pSEK-PphzA2-yfp. To integrate the reporter fusions into the 

PA14 genome, the PphzA1-yfp and PphzA2-yfp fusions were inserted as single-copies into the 

chromosomal attB site in P. aeruginosa PA14 using a modified version of a previously described 

protocol57. Briefly, pSEK-PphzA1-yfp and pSEK-PphzA2-yfp were transformed into chemically 

competent E. coli BW29427 cells for conjugation with P. aeruginosa. Merodiploids were 

selected with 200 µg/mL tetracycline, and Flp-catalyzed excision of the integrase and TetR 

cassette was carried out as previously described58,59. 

 

2.4.5. Yfp fluorescence quantification 

 

Yfp fluorescence was quantified for yfp-reporter strains described above in planktonic and 

biofilm growth. For planktonic culture, strains were grown in biological triplicates in LB for 16 

hours after which, cultures were diluted 1:100 and grown for another 3 hours to assure strains 

were in logarithmic phase. After 3 hours of growth, strains were diluted to an OD of 0.05 into a 

96-well plate (Costar). The OD500 and fluorescence was monitored for 20 hours using Synergy 
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4 plate reader from BioTek. The excitation wavelength was 488nm and emission was at 520nm. 

Gen5 program was used to acquire the data.  

For yfp-reporter strains grown on solid media, strains were spotted on morphology assay plates 

(90mL of media) the same as above and followed for 3 days. High resolution images of the 

plates were acquired using a Typhoon Trio variable mode scanner on Day 3. The excitation 

wavelength was 488nm and emission was at 520nm. Fluorescent data was quantified using the 

surface plot analysis in Image J. 

 

2.4.6. Mouse lung colonization assay 

 

P. aeruginosa strains were grown in LB broth or agar at 37°C with appropriate selection when 

applicable. Lung infections of P. aeruginosa were performed using eight-week-old C57BL/6J 

mice. Mice were anaesthetized with 100 mg/kg ketamine and 5 mg/kg xylazine and inoculated 

with 0.3-1 x 105 colony-forming units (cfu) of organism before euthanasia 18 h after infection. 

Bacterial cfu were determined by homogenizing the whole lung and plating dilutions of the re-

suspended tissue on LB agar. All mouse infections were performed under the guidelines of the 

Institutional Animal Care and Use Committee of Columbia University. 
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2.6. Appendix 

 
Table 2. Strains and plasmids used in Chapter 2 
 

 
 

Strain Comments/Genotype 

P.aeruginosa 

Source or Reference 

  

PA14 Clinical Isolate, UCBPP-14 Dietrich et. al., 2006 

Δphz 
PA14 with deletions in the phzA1-G1 

and the phzA2-G2 operons 
Dietrich et. al., 2006 

Δphz1 
PA14 with deletion of the phzA1-G1 

operon 
This study 

Δphz2 PA14 with deletions of the phzA2-G2 
operon 

This study 

ΔHMS 
PA14 with deletions of the phzM, 

phzH and phzS genes This study 

ΔHMSΔphz1 
PA14 with deletions of phzM, phzH 
,phzS genes and phzA1-G1 operon This study 

ΔHMSΔphz2 
PA14 with deletions of phzM, phzH 
,phzS genes and phzA2-G2 operon 

This study 

ΔpqsAC 
PA14 with deletions of the pqsA-C 

genes 
This study 

ΔpqsR PA14 with deletion of the pqsR gene Hogan Lab 

ΔpqsH PA14 with deletion of the pqsH gene Hogan Lab 

ΔpqsE PA14 with deletion of the pqsE gene This study 

ΔpqsL PA14 with deletion of the pqsL gene This study 

ΔpqsACΔHMS1 
PA14 with deletions of the pqsA-C 
genes in the ΔHMS1 background This study 
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ΔpqsACΔHMS2 
PA14 with deletions of the pqsA-C 
genes in the ΔHMS2 background This study 

ΔpqsHΔHMS1 
PA14 with deletions of the pqsH 
gene in the ΔHMS1 background 

This study 

ΔpqsLΔHMS1 
PA14 with deletions of the pqsL gene 

in the ΔHMS1 background 
This study 

ΔpqsHLΔHMS1 
PA14 with deletions of the pqsH and 

pqsL genes in the ΔHMS1 
background 

This study 

WT::MCS YFP 
PA14 with YFP insert with no 

promoter in the multiple cloning site This study 

WT::PphzA1 YFP PA14 with PphzA1YFP insert This study 

WT::PphzA2 YFP PA14 with PphzA2YFP insert This study 

ΔpqsAC::PphzA2 YFP ΔpqsAC with PphzA2YFP insert This study 

ΔpqsR::PphzA2 YFP ΔpqsR with PphzA2YFP insert This study 

Δphz2::pUCP18 Δphz2 with pUCP18 plasmid inserted This study 

Δphz2::phz2 Δphz2 with pUCP18 plasmid with 
phz2 insert 

This study 

E.coli   

UQ950 

E. coli DH5α λ(pir) host for cloning; 
F-Δ(argF-lac)169 Φ80 

dlacZ58(ΔM15) glnV44(AS) rfbD1 
gyrA96(NalR) recA1 endA1 

spoT1 thi-1 hsdR17 deoR λpir+ 

D. Lies, Caltech 

BW29427 

Donor strain for conjugation: 
thrB1004 pro thi rpsL hsdS lacZ 
ΔM15RP4–1360 Δ(araBAD)567 

ΔdapA1341::[erm pir(wt)] 

W. Metcalf, University of 
Illinois 

Plasmids Description 

pUCP18 

Source 

Multi-copy plasmid with ColEI ORI; Schweizer, 1991 
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AmpR; lacZ α gene 

pUCP18-phz2 
pUCP18 plasmid with phz2 operon 

inserted This study 
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Table 3. Primers used in Chapter 2 

Primer Sequence 
Primers for fluorescent 

reporter constructs 

Source 

  

1)kpnI-speI-sphI-Venus-FOR 
 

2) ncoI-venus-REV 

5’-tgaggggtaccactagtagcttgcatgctgagcaagggcgagg-3’ 
 

5’-cgtaccatggttacttgtacagctcgtcca-3’ 

This 
study 

3) speI-MCS-FOR 
 

4) sphI-MCS-REV 

5’-tgcccgaggcatagactgta-3’ 
 

5’-ggatggcatgcctgtttcctgtgtgataaagaaag-3’ 

This 
study 

5) salI-MCS-FOR 
 

6) mfeI-MCS-REV 

5’-tgaggtcgactaccgccacctaacaattcg-3’ 
 

5’-tcgacaattgtaccgggcccaagcttct-3’ 

This 
study 

7) speI-PphzA1-FOR 
 

8) xhoI-PphzA1-REV 

5’-cgccactagtttcctgcgtaccgaaagaat-3’ 
 

5’-cgagctcgagcgagagggctctccaggtat-3’ 

This 
study 

9) speI-PphzA2-FOR 
 

10) xhoI-PphzA2-REV 

5’-cgccactagtgcctgctcaactgaatcgac-3’ 
 

5’-cgagctcgagagttcgaatcgactggcatc-3’ 

This 
study 

Primers for deletion strains   
phz1-US-1 

 
 

phz1-US-2 

5’-GGACTAGTAGAACAGCACCATGTC-3’ 
 
 

5’-CCCATCCACTAAATTTAAATATGTACC-3’ 

This 
study 

phz1-DS-1 
 
 

phz1-DS-2 

5’-TATTTAAATTTAGTGGATGGGCGCTA-3’ 
 
 

5’-GGACTAGTCATGCACACCCAGTTCAC-3’ 

This 
study 

phz2-US-1 
 
 

phz2-US-2 

5’-GCGACTAGTGCTGATCTGGAATGGCG-3’ 
 
 

5’-
CCCATCCACTAAATTTAAATACAACCGTTGG

TACTCTCG-3’ 

This 
study 

phz2-DS-1 
 
 
 
 

phz2-DS-2 

5’-
TATTTAAATTTAGTGGATGGGCACCGCTACC

TGCAAC-3’ 
 
 
 

5’-GCGACTAGTGGGTTTCTTCGATCACTAC-3’ 

This 
study 

pqsABC-US-1 
 

5’-
ggaattgtgagcggataacaatttcacacaggaaacagctAGAGGC

This 
study 
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pqsABC-US-2 

TCCGATCACCCTAT-3’ 
 
 

5’-
CTCAGCACACCAGCACCTCGTCTGGCCCCGA

TAGTGATA-3’ 

pqsABC-DS-3 
 
 
 
 

pqsABC-DS-4 

5’-
TATCACTATCGGGGCCAGACGAGGTGCTGGT

GTGCTGAG-3’ 
 
 

5’-
ccaggcaaattctgttttatcagaccgcttctgcgttCTGAACCGT

AGGTCAGGACCAG-3’ 

This 
study 

pqsL-US-1 
 
 
 
 

pqsL-US-2 

5’-
ggaattgtgagcggataacaatttcacacaggaaacagctCGCCTG

TTCCTCAAGTACG-3’ 
 
 

5’-
GCTGATAGGAACGCTCGCCCTGCCCACTACC

ACCAC-3’ 

This 
study 

pqsL-DS-3 
 
 
 

pqsL-DS-4 

5’-
GTGGTGGTAGTGGAGCAGGGCGAGCGTTCC

TATCAGC-3’ 
 
 

5’-
ccaggcaaattctgttttatcagaccgcttctgcgttCTCGAACAG

GTGTTCCTCAATC-3’ 

This 
study 

pqsH-US-1 
 
 
 

pqsH-US-2 

5’-
ggaattgtgagcggataacaatttcacacaggaaacagctGATATC

CACATCCACGGTGTC-3’ 
 

5’-
TATTCCTCAGCCAGACGCTCGATGCCTGCCT

TGGTGAAT-3’ 

This 
study 

pqsH-DS-3 
 
 
 

pqsH-DS-4 

5’-
ATTCACCAAGGCAGGCATCGAGCGTCTGGCT

GAGGAATA-3’ 
 
 

5’-
ccaggcaaattctgttttatcagaccgcttctgcgttctgatGGAGAT

GCTCTGCACCTTGT-3’ 

This 
study 
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pqsE-US-1 
 
 
 

pqsE-US-2 

5’-
ggaattgtgagcggataacaatttcacacaggaaacagctGCAATC

ATGACCTGGTAGGG-3’ 
 

5’-
ATGCTCCCCAGGTGCAGTCCAACAGGCACA

GGTCATC-3’ 

This 
study 

pqsE-DS-3 
 
 
 

pqsE-DS-4 

5’-
GATGACCTGTGCCTGTTGGACTGCACCTGGG

GAGCAT-3’ 
 

5’-
ccaggcaaattctgttttatcagaccgcttctgcgttCTGACAGGC

ACAACTGGCGATAG-3’ 

This 
study 

phzH-US-1 
 
 
 
 

phzH-US-2 

5’-
ggaattgtgagcggataacaatttcacacaggaaacagctGTTTCG

ACCAAGGAGGTCAG-3’ 
 
 

5’-
GCTCACCTGGGTGTTGAAGTGTATCGGTCAT

GGCGAAGAT-3’ 

This 
study 

phzH-DS-3 
 
 
 
 

phzH-DS-4 

5’-
ATCTTCGCCATGACCGATACACTTCAACACC

CAGGTGAGC-3’ 
 
 

5’-
ccaggcaaattctgttttatcagaccgcttctgcgttCTGATCGCTT

CCTCGACTCCATC-3’ 

This 
study 

phzM-US-1 
 
 
 
 

phzM-US-2 

5’-
ggaattgtgagcggataacaatttcacacaggaaacagctCACTCG

ACCCAGAAGTGGTT-3’ 
 
 

5’-
GTTGAGAGTTCCGGTTCAGGTATCAAATTAC

GCGCAGCAG-3’ 

This 
study 

phzM-DS-3 
 
 
 
 

phzM-DS-4 

5’-
CTGCTGCGCGTAATTTGATACCTGAACCGGA

ACTCTCAAC-3’ 
 
 

5’-
ccaggcaaattctgttttatcagaccgcttctgcgttctgatGCTGGT

This 
study 
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ACGCCTGAGCAT-3’ 

phzS-US-1 
 
 
 
 

phzS-US-2 

5’-
ggaattgtgagcggataacaatttcacacaggaaacagctAAGGTC

AACGCGGTACAGAT-3’ 
 
 

5’-
CCATCGATATCCTCATTGCCGCGACCGAAGA

CTGAGAAGA-3’ 

This 
study 

phzS-DS-3 
 
 
 
 

phzS-DS-4 

5’-
TCTTCTCAGTCTTCGGTCGCGGCAATGAGGA

TATCGATGG-3’ 
 
 

5’-
ccaggcaaattctgttttatcagaccgcttctgcgttctgatACGCGA

ACATTTCCGAGTC-3’ 

This 
study 
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Supplementary Figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 1 (S1). HPLC quantification of PYO and PCA from 
colonies grown on 1% tryptone and 1% agar plates. Quantification of 
phenazines extracted from the agar on which biofilms were grown for 3 or 6 days. 
The PYO+PCA concentrations from the wild type strain are similar to that of the 
Δphz1 strain, indicating that the phz2 operon is sufficient for production of wild 
type levels of these phenazines. Error bars indicate standard deviation of three 
independent experiments 
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Supplementary Figure 2 (S2). HPLC traces of phenazines extracted from day 6 
biofilms. Phenazines were extracted from agar and submitted to HPLC analysis for 
separation and quantification at a wavelength of 366nm. The phenazines PYO, PCN 
and PCA were able to be detected in the wild type strain. The Δphz and Δphz2 
strains did not produce detectable levels of any phenazines. Arrow indicates where 
PCA peak would be expected in the Δphz2 strain. This suggests that phz2 is 
necessary for phenazine production in biofilms. HPLC conditions and protocol were 
adapted from Dietrich et al., 2006. Observed retention times for PYO and PCA 
agree with their results (~10min and ~20min respectively). 
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Supplementary Figure 3 (S3). Complementation with phz2 restores PCA 
production and rescues wrinkled morphology. phz2 complementation strain was 
made by inserting multi-copy plasmid containing the entire phz2 operon into the 
Δphz2 strain. (A) Colony morphology assay shows that the Δphz2::phz2 strain 
regains wild type morphology. Control strain containing empty vector 
(Δphz2::pUCP18) shows wrinkled morphology similar to Δphz strain. (B) 
Quantification of PCA production from deletion and complemented strains shows 
that complementation with phz2 restores PCA production. The Δphz2 and 
Δphz2::pUCP18 strains show no detectable phenazines. Error bars indicate 
standard deviation of three independent experiments 
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Supplementary Figure 4 (S4). HHQ positively regulates the expression of phz2 in 
the planktonic environment. We assayed for expression of the phz2 operon using a 
yfp-reporter plasmid containing the 500 bp upstream promoter elements of phz2. We 
inserted this reporter plasmid into the WT, ΔpqsAC (no quinolones) and ΔpqsHL (HHQ) 
strains and monitored growth (OD500) and yfp expression in planktonic cultures for 20 
hours. (A) Quinolone signaling is necessary for wild type expression of phz2 as 
ΔpqsAC::A2YFP and ΔpqsR::A2YFP exhibited a severe reduction in phz2 expression. 
(B) Quinolone-dependent expression of phz2 is achieved specifically though HHQ. The 
ΔpqsHL::A2YFP strain produces exclusively HHQ (unable to produce PQS or HQNO) 
and is able to induce expression of phz2 although not to wild type levels. This suggests 
that HHQ-dependent expression of phz2 may be more prominent in the biofilm 
environment. Error bars represent the standard deviation of one experiment performed in 
biological triplicates. Experiment was repeated three additional times with similar 
results.    
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Chapter 3. Individual phenazines perform unique roles in P. aeruginosa PA14 biofilm 

development  

 

This chapter is adapted from a manuscript that is in preparation (Recinos and Okegbe, et al., 

2012) 

 

3.1. Introduction 

Bacteria typically grow and persist in multicellular communities called biofilms. Biofilm 

development depends greatly on the availability and production of exogenous and endogenous 

signals. In addition to their roles as modulators of gene expression, these molecules can also be 

important substrates for energy metabolism, with one role sometimes taking precedent over the 

other in a condition- or species-dependent manner1. Examples of exogenous signals include the 

respiratory substrates oxygen and nitrate, while endogenous signals include quorum-sensing 

compounds such as N-acyl homoserine lactones2,3.  

The opportunistic pathogen Pseudomonas aeruginosa produces a class of small redox-active 

molecules called phenazines. Phenazines are produced in stationary phase during growth in 

planktonic batch cultures and regulate a specific set of targets that have been implicated in 

phenazine modification and transport4. Phenazines can also act as metabolic substrates by 

accepting electrons from the intracellular pyridine nucleotide pool5,6. This activity enables 

survival of P. aeruginosa batch cultures in the absence of alternate respiratory chain oxidants by 

mediating electron transfer to an external, inaccessible substrate. Phenazine reduction and redox 
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cycling may be important in the biofilm context, where consumption of oxygen or nitrate by cells 

at the surface, combined with poor diffusion through the densely-packed community, leads to 

steep gradients of substrate availability7. Bacteria at depth in biofilms could benefit from the 

production of redox mediators that shuttle electrons from cells to areas of the biofilm where 

oxidants are present. 

P. aeruginosa biofilm morphogenesis is strongly influenced by the presence of phenazines. P. 

aeruginosa biofilms that are unable to produce phenazines form hyper-wrinkled colonies when 

grown on solid agar containing a rich, complex growth medium. Such colonies wrinkle earlier 

during development when compared to those formed by the wild type, which remain relatively 

smooth4. Although recent studies have demonstrated that one phenazine, pyocyanin (PYO), does 

not restore the wild-type phenotype, the physiological effects of individual pseudomonad 

phenazines in the biofilm context have not been thoroughly explored. Interestingly, exogenous 

addition of phenazine-1-carboxylate (PCA), the precursor to PYO, gives rise to a wild-type 

morphology, indicating that specific phenazines perform distinct roles in colony maturation.  

Pseudomonas aeruginosa produces a diversity of phenazines from the precursor molecule 

chorismic acid. Chorismic acid is converted to PCA, which can then be modified to produce 

other phenazines8. The enzyme PhzM methylates PCA to produce 5-methyl-carboxylic acid (5-

MCA). Various modifications to 5-MCA give rise to PYO, aeruginosin A, and aeruginosin B9. 

While the monooxygenase responsible for PYO production, PhzS, is known, enzymes required 

for aeruginosin production have not been identified 10. PhzS can act directly on PCA to produce 

1-hydroxyphenazine. Finally, PCA can also be transformed by the enzyme PhzH to give rise to 

phenazine-1-carboxamide (PCN) (Figure 20A).  
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While P. aeruginosa and other phenazine-producing pseudomonads possess mechanisms that 

allow them to cope with and benefit from the redox activity of phenazines, phenazines are toxic 

for a diversity of other organisms. In the context of mammalian host infections, PYO and PCA 

are the primary phenazines that have been evaluated as virulence factors and it has been 

suggested that they contribute to P. aeruginosa pathogenicity in part by inhibiting the host 

immunological response11,12 . PYO contributes to the virulence of P. aeruginosa during lung 

infection in mice and humans13,14. Other pseudomonads, such as P. fluorescens and P. 

chlororaphis, thrive in the plant rhizosphere and produce the phenazines PCA and PCN, 

respectively, as a defense against fungal phytopathogens. 15-17. The diverse lifestyles of these 

pseudomonad species share the common theme of biofilm formation: P. aeruginosa forms 

oxygen-limited cellular aggregates during acute and chronic infections, while pseudomonad 

plant commensals form biofilms on roots in soil. However, the unique roles of individual 

phenazines in pseudomonad biofilm physiology have not been evaluated in detail. 

Given the varying chemical properties exhibited by individual phenazines, we wondered if 

different phenazines have distinct physiological effects in the biofilm context. Our laboratory has 

previously reported increased PCN production in biofilms compared to planktonic cultures. This 

finding suggests that the environment plays a role in determining the type of phenazines that are 

made. We hypothesized that specific ratios of phenazines are required for wild-type colony 

morphogenesis. To address this, we generated mutants in the phenazine biosynthetic pathway 

that produced altered phenazine profiles. We investigated whether changing the relative amounts 

of the phenazines produced would have an effect on colony morphology and redox balancing for 

cells in biofilms. This work revealed primary roles for PCN and 5-MCA in biofilm physiology 

and development. 
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3.2. Results 

3.2.1. Phenazine-1-carboxamide (PCN) is a major phenazine produced during colony 

biofilm development 

Previous studies have established high pressure liquid chromatography (HPLC) as a method for 

the accurate separation and quantification of phenazines8,18. Using HPLC, we determined the 

repertoire of phenazines produced by P. aeruginosa strain PA14 under different environmental 

conditions. Planktonic cultures were grown in 1% tryptone liquid medium in glass tubes with 

constant shaking to stationary phase before sampling. Culture supernatants were filtered through 

a 0.2 µm pore and analyzed immediately by HPLC. Biofilms were grown for 6 days on 1% 

tryptone, 1% agar containing the dyes Congo Red Coomassie Blue before the agar was extracted 

with water and similarly filtered before HPLC analysis. The HPLC solvent system consisted of 

an aqueous acidic running buffer with a gradient of acetonitrile. This protocol enabled detection 

of the phenazines PYO, PCA, and PCN (Figure 20B). We are unable to detect 5-MCA and the 

aeruginosins using this method. For simplicity, we will refer to 5-MCA alone for the remainder 

of the text with the implicit assumption that Aeruginosins may also be produced whenever this 

compound is made. PYO and PCA were present in the traces from both planktonic cultures and 

biofilms with elution peaks at ~10 min and ~20 min, respectively. The biofilm sample showed a 

large peak at 17 min. Extracts from biofilms of the ΔphzH mutant lacked this peak (Figure S5). 

PCA levels were similar for planktonic cultures and biofilms. In contrast, PYO was the 

predominant phenazine in planktonic culture, while PCN was the major phenazine produced by 

biofilms (Figure 20C). This suggests that downstream modification of PCA is regulated in a 

condition-dependent manner. 



88 

 

 

 

 

 

 

 

Figure 20 A-B. Influence of growth environment on the phenazine production 
dynamics of PA14. (A) Diagram showing the enzymes that catalyze the synthesis of 
phenazine-1-carboxylic acid (PCA) which is the precursor to pyocyanin (PYO), 
phenazine-1-carboxamide (PCN), 1-hydroxyphenazine (1-OH-PHZ) and Aeruginosin A 
and B. The intermediate molecule 5-methyl-carboxylic acid (5-MCA) is the precursor to 
both PYO and the Aeruginosins. (B) HPLC traces showing the separation and detection 
of phenazines produced by wild type PA14. Phenazines were extracted from planktonic 
culture supernatants (Bottom) or from agar on which biofilms were grown for 6 days 
(Top). We can accurately detect PYO, PCN and PCA from these modes of growth. We 
were not able to detect 1-OH-PHZ or 5-MCA/Aeruginosins under our conditions.  
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3.2.2. Characterization of phenazine biosynthetic mutants grown as biofilms 

The observation that phenazine profiles vary with growth regime led us to hypothesize that 

different combinations of phenazines bear functional importance. To test this, we first created a 

panel of mutants that would only produce distinct combinations of phenazines. We made 

individual, double and triple deletions of genes encoding the biosynthetic enzymes PhzH, PhzM, 

and PhzS in order to shift phenazine production towards PCN (ΔphzMS), PCA (ΔphzHM) or 5-

Figure 20C. PA14 shifts from PYO to PCN production in response to 
growth in biofilm environment instead of planktonically. Quantification of 
PYO, PCN and PCA using HPLC analysis shows that PCN is produced in large 
quantities during biofilm growth compared to growth in planktonic cultures. In 
contrast, PYO is produced in lower quantities in biofilms, suggesting that the 
PYO:PCN ratio is modulated by the growth environment. Error bars indicate 
standard deviation of three independent experiments 
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MCA (ΔphzHS)9,19 production. The combination of phenazines produced by the mutant strains is 

shown in Table 4. 

 

 

 

 

We assessed phenazine production of these mutants grown planktonically (Figure 21A) and as 

biofilms (Figure 21B). Phenazine production dynamics differed in these two modes of growth. 

Figure 21. Phenazine quantification of phz deletion mutants grown in 
P. aeruginosa PA14 planktonic cultures or biofilms. (A) Quantification 
of extracted phenazines after 16 h of growth. PYO is produced at higher 
levels than PCN in this environment. (B) Quantities of PYO, PCN and 
PCA released into the agar by colony biofilms grown for 2 days. Error 
bars indicate standard deviation of three independent experiments 
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PCA levels were elevated in biofilms of strains lacking the glutamine amidotransferase PhzH 

compared to those of wild-type biofilms. Furthermore, ΔphzH mutant biofilms showed an 

increase in PYO production, and the ΔphzS and the ΔphzHS strains also show an increase in 

production of the 5-MCA and aeruginosins compared to wild type (data not shown). Together 

with the results that PCN is produced in large quantities in biofilms, these results suggest that the 

pool of PCA is divided into two pathways. One pathway represents the large portion of the PCA 

pool that is used by PhzH to make PCN, while the other pathway consists of the portion of the 

PCA pool that is used by PhzM to synthesize 5-MCA. The P. aeruginosa biofilm phenazine 

profile shifts toward 5-MCA and/or PYO when PCN production is not possible. These results 

demonstrate that a large portion of the PCA pool is utilized for PCN production during growth in 

biofilms. 

 

3.2.3. PCN and 5-MCA play major roles in colony morphogenesis 

We next tested the effects of different phz gene mutations on colony morphology. Previous 

studies have shown that mutant strains that are unable to produce any phenazines exhibit a 

wrinkled morphology4. Using our mutant panel, we asked which phenazines were needed to 

maintain smooth colony morphology. We found that both PCN and 5-MCA were required for 

wild-type (smooth) development of colonies (Figure 22), as only the wild type and ΔphzS 

biofilms maintained smooth morphologies for 2 days of incubation. Further support for the 

synergy between PCN and 5-MCA was exhibited by the ΔphzS and ΔphzHS strains. Abolishing 

PCN synthesis in the ΔphzS (smooth) background led to a wrinkled morphology. Strains that 

contain deletions of the phzH and/or the phzM genes, leading to loss of PCN and/or 5-MCA 
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production, respectively, began wrinkling earlier and more severely than strains that produce 

both PCN and 5-MCA. On the other hand, comparison of the wild type and the ΔphzS strains 

showed that PYO was not necessary for smooth colony development. This is in agreement with 

the previously published finding that complementation with PYO could not rescue a wrinkled 

morphology20. Additionally, PCA production alone (ΔphzHMS strain) was not sufficient to 

support wild-type development, suggesting that the development of colony morphology is 

governed by the synergistic activity of PCN and 5-MCA.  

 

 

 

 

 

 

 

Figure 22. PCN and 5-MCA function synergistically to maintain a wild type (smooth) 
colony morphology. Phenazine deletion mutants were grown on 1% tryptone, 1% agar 
plates supplemented with the dyes Congo red and Coomassie blue for 2 days. The graph 
shows the phenazines that are produced by each of the phenazine mutant strains. Only the 
strains that produce both 5-MCA and PCN (WT and ΔphsS) are able to maintain a wild type 
colony morphology. Strains with phzH and phzM deletions exhibit earlier and more severe 
wrinkling. Quantification of additive levels of PYO, PCA and PCN are shown. As the total 
levels of PYO, PCA and PCN produced do not correlate with wrinkling, this suggests that it 
is the type of phenazines produced and not the total amount that govern colony morphology. 
It should be noted that we have no suitable method to quantify 5-MCA. Standard deviation 
of three independent experiments are shown for quantification of phenazines. 
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3.2.4. PCN and 5-MCA affect the intracellular redox state of cells in biofilms 

Previous work has shown that redox metabolism is a key driver of colony morphogenesis, and 

that phenazine production alters the intracellular redox state of cells in biofilms. Different 

phenazines have different redox potentials and other chemical properties, and thus vary in their 

ability to act as electron acceptors. We wondered whether the colony morphotypes arising from 

mutations in specific phz genes might correlate with production of specific phenazines and/or the 

average intracellular redox state of bacteria in the community. We extracted NADH and NAD+ 

from our phenazine mutants grown planktonically and as biofilms, and measured their levels 

using an enzymatic cycling assay.  

In planktonic cultures, most mutants that produced at least one phenazine maintained an 

NADH/NAD+ ratio similar to that of the wild type (Figure 23A). Only the ΔphzH mutant 

(lacking PCN) had a significantly lower ratio compared to the wild type, indicating that the 

phenazines produced by this strain (likely the PYO, 5-MCA, and aeruginosins in particular) are 

significantly stronger oxidizers of NADH than PCN. This result also suggests that the small 

amount of PCN produced by wild-type planktonic cultures lessens the production levels of these 

stronger oxidizers. In biofilms, however, the effects of mutations in various phz genes on the 

intracellular redox state were different from those observed in planktonic cultures. The 

NADH/NAD+ ratio of the ΔphzH mutant was similar to that of the Δphz strain, indicating that 

the phenazines produced by the ΔphzH strain are not sufficient to maintain the NADH/NAD+ 

balance. This is in contrast to the findings in planktonic culture, which indicated that the 

combination of PYO, PCA and 5-MCA produced by the ΔphzH strain was sufficient to oxidize a 
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large portion of the NADH pool. These data suggest that PCN plays a major role in redox 

balancing in biofilms, but not in the planktonic environment.  

 

 

 

 

 

Figure 23. PCN balances the intracellular redox state in biofilms but not in the 
planktonic environment. Phenazines are redox-active molecules that can maintain 
redox homeostasis. Ratio of extracted of NAD+ and NADH from phenazine mutant 
strains grown in planktonic cultures (A) and in biofilms (B). Mutants that produce a 
combination of PCA, PCN and 5-MCA produce NADH/NAD+ ratios similar to that 
of the wild type strain in planktonic culture. In biofilms, loss of PCN (ΔphzH, 
ΔphzHS strains) leads to a higher NADH/NAD+ ratios, suggesting that PCN is 
important for maintaining redox homeostasis in biofilms.  Error bars represent the 
standard deviation of one experiment performed in biological triplicates. Experiment 
was repeated three additional times with similar results.    
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Previous studies evaluating the Δphz mutant and the effects of exogenously added oxidants on 

morphology have suggested that colony wrinkling is an adaptation that allows bacteria in 

biofilms to cope with electron acceptor limitation. The NADH/NAD+ ratio of cells in Δphz 

mutant biofilms reaches a maximum immediately before or coinciding with the induction of 

wrinkling, leading to the hypothesis that a reduced intracellular redox state can trigger the 

smooth-wrinkled transition. After wrinkling, the NADH/NAD+ ratio in Δphz mutant biofilms is 

similar to that of the wild type. It therefore appears that the either the production of phenazines 

or the increased availability of oxygen (that arises from the increased surface area) associated 

with the wrinkled morphology can serve to oxidize the intracellular redox state of cells in 

biofilms.  

Interestingly, although the NADH/NAD+ ratios of cells from our ΔphzH and Δphz mutants were 

similar, the colony morphotypes were different, with the ΔphzH mutant exhibiting an 

intermediate morphology that bore more resemblance to the wild type. This suggests that PCN is 

necessary for the maintenance of a wild-type intracellular redox state, but that the increased 

NADH/NAD+ ratio in this biofilm is not sufficient to induce wrinkling to the extent observed in 

the Δphz mutant. A further exaggerated version of this result was observed for the ΔphzS mutant, 

as this mutant phenocopied with wild type with respect to colony morphology, but showed an 

even more pronounced increase in the NADH/NAD+ ratio than the ΔphzH mutant. This suggests 

that the small amount of PYO produced in biofilms is also necessary for oxidation of the 

intracellular redox state. That the ΔphzHS mutant exhibited a similar NADH/NAD+ ratio as the 

Δphz mutant combined with its increased wrinkling suggests that lack of PYO and PCN is 

sufficient to induce the morphotypic transition toward the Δphz morphology. 
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Because the ΔphzM and ΔphzHM mutants exhibited almost as much wrinkling as the Δphz 

mutant, it is difficult to decouple the effects of the phenazines they produce from the effects of 

increased colony surface area on the intracellular redox state. However, their increased 

NADH/NAD+ ratios relative to the wild type combined with their wrinkled morphologies 

suggests that 5-MCA is an important oxidant and regulator of morphogenesis in the P. 

aeruginosa biofilm context. 

 

 

 

 

 

 

Figure 24. Synergistic effect of phenazines within biofilms. Proposed model of how the 
synergistic effects of individual phenazines affect colony development. Growth in the 
biofilm environment leads to the creation of different microenvironments, including 
oxygen and nutritional gradients. Based on our results, we propose that the functions of 
PYO, PCN and 5-MCA are governed by the different environmental niches present within 
biofilms. For example, the signaling and redox balancing properties of PYO may be 
important in aerobic zones while PCN and 5-MCA may assert their functions in anaerobic 
zones. PCN affects colony morphology through redox balancing while 5-MCA may affect 
colony development through non-redox balancing properties such as signaling.   
 



97 

 

3.3. Discussion 

The phenazine PCA can be converted to PCN or 5-MCA and subsequently PYO. We found that 

in planktonic cultures the majority of PCA modification leads to production of PYO. In contrast, 

in biofilms a substantial amount was converted to PCN, suggesting an adaptation of phenazine 

combinations to different environments. 

Phenazine production is important for P. aeruginosa wild-type colony biofilm development4,20. 

We evaluated the contributions of individual phenazines to biofilm morphogenesis through a 

detailed physiological characterization of mutants lacking the specific phenazine biosynthetic 

enzymes PhzH, PhzS and PhzM. We found that wild-type colony morphogenesis required 

production of PCN and 5-MCA, two phenazines that are often overlooked in the context of P. 

aeruginosa pathogenicity. Strains with deletions of the enzymes phzH and phzM, which are 

responsible for PCN and 5-MCA synthesis, respectively, exhibited wrinkling significantly earlier 

in development than strains able to produce PCN and 5-MCA (Figure 22). This finding suggests 

that there may be a temporal aspect to phenazine-dependent biofilm formation. In support of this 

hypothesis, Maddula et al. found that altering the ratio of phenazines had significant effects on 

initial attachment, architecture and dispersal of biofilms in Pseudomonas chlororaphis 30-8421.  

Closer examination of the morphologies of the mutants shows that while both the ΔphzH and 

ΔphzM mutants wrinkled, the wrinkling of the ΔphzM mutants was more severe. The ΔphzM 

wrinkling phenotype also seems to be dominant over the ΔphzH wrinkling phenotype, as seen in 

the ΔphzHM mutant strain (Figure 22). Although the ΔphzHM mutant showed more rugosity 

than either of the individual mutants, it still exhibited a phenotype that differed from the Δphz 
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mutant in that it lacked the ability to spread to the same extent as this strain. This observation 

suggests a role for PCA in inhibition of colony spreading. 

Interestingly, deletion of phzS alone suggested that PYO production does not play a role in 

maintaining a smooth colony architecture (Figure 22). This agrees with previous work that found 

PYO cannot rescue the wrinkled morphology 20. However, deleting phzS in the ΔphzH 

background lead to a more wrinkled morphology than was observed for either mutant alone, 

implying that the effects of PYO can substitute for those of PCN. 

The observation that mutants unable to produce 5-MCA and PCN form more structurally 

complex communities (similar to that of the Δphz strain) with increased surface area lead us to 

propose that this morphogenetic switch is a response to redox imbalance. Our results support this 

hypothesis for PCN, as a mutant unable to produce PCN could not balance the NADH/NAD+ 

ratio in biofilms. It is very interesting that these results were not recapitulated in the planktonic 

environment, as all phenazines should have the same properties in both environments. However, 

the ratio of the phenazines produced in each environment may be important. A possible 

explanation for the difference in ratios between the two environments is that PYO production 

from 5-MCA requires molecular oxygen. Bacterial cultures grown planktonically with shaking 

are sufficiently aerated, which may lead to a higher PYO::PCN ratio. In the biofilm environment, 

where steep oxygen gradients exist, PYO is not produced in large quantities and does not have an 

effect on colony morphology (Figure 23). It is possible that the microenvironments within the 

colony dictate the ratio of phenazines produced. The idea that different types and concentrations 

of phenazines affect the morphological features of a community is reminiscent of morphogens 

affecting development in eukaryotic organisms. Further studies are needed to elucidate the 
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connection between individual phenazines and colony morphology and establish these already 

multi-faceted molecules as morphogens within the bacterial community. 

Based on our findings we propose a model that highlights the synergistic functions of phenazines 

in P. aeruginosa biofilms (Figure 24). Conversion of PCA to PCN, 5-MCA, and PYO requires 

the addition of functional groups derived from glutamine, S-adenosylmethionine, and molecular 

oxygen, respectively. The oxygen limitation experienced by cells in biofilms may be responsible 

for the increased production and/or importance of PCN and 5-MCA in this context. Due to the 

heterogeneity of the biofilm environment, there may be further variation in the ratios of 

phenazines present in specific biofilm microenvironments. Cell in biofilms may depend on the 

redox balancing properties of PCN in regions lacking sufficient oxygen. Intercellular signaling 

may be the more relevant physiological role of PYO in the biofilm context as its production 

would be limited in regions where redox balancing is most needed. The redox potentials and 

reactivity of individual phenazines are somewhat consistent with their apparent roles in redox 

balancing. These properties have not been assessed for 5-MCA. Whether a role in signaling or 

redox balancing is more significant for the functionality of 5-MCA remains an open question. 

 

3.4. Future Directions 

Our model shows the two essential appropriations of the PCA pool in response to the 

heterogeneous microenvironment of biofilms (Figure 24). However, additional investigations 

need to be performed in order to confirm our model. First, we need to confirm that 5-MCA is 

produced under anaerobic conditions. This would prove that both PCN and 5-MCA are needed 
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under anaerobic conditions to maintain the development of the colony. Investigations into the 

enzymatic properties of the methyltransferase PhzM show that this enzyme is not oxygen 

dependent. However, it has also been suggested that PhzM necessitates a transient interaction 

with the oxygen dependent PhzS for its activity22,23. To show that 5-MCA is present 

anaerobically we could: (1) probe for the presence of 5-MCA in anaerobically grown planktonic 

cultures and (2) create reporter constructs for PhzM and PhzH in order to visualize their 

localization using colony thin sections. The latter method would be performed using fluorescent 

probes that can function under anaerobic conditions as GFP requires oxygen to function24.  

Secondly, we will confirm the functions of PCN and 5-MCA in the biofilm environment. Our 

results show that PCN is needed to balance the intracellular NADH/NAD+ ratio of cells within 

biofilms. We can confirm that the PCN effects on redox homeostasis are wide ranging by 

measuring the extracellular redox potential within biofilms. This will establish a more direct 

connection between the phenazine-reduced extracellular environment and morphological 

changes of the colony. By inserting a redox sensitive microelectrode probe within the biofilm we 

can measure the environmental redox potential inside biofilms of phenazine mutants that isolate 

PCN and 5-MCA production. One caveat to this assay is that the microelectrode is sensitive to 

any redox changes in the environment and cannot discriminate as to their cause (pH, other redox 

active molecules, etc.).  

Our results suggest that the role of 5-MCA in colony development may not depend on its redox 

properties. 5-MCA is transformed by an unknown enzyme to produce the aeruginosins. The 

aeruginosins are hydrophilic and difficult to isolate from P. aeruginosa cultures9,19. Novel 

isolation techniques will be employed so that we may accurately purify and quantitate 5-MCA. 
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Once 5-MCA is isolated, we can investigate its properties including its potential role as a 

signaling factor. This can be investigated using DNA microarray analysis of cells that have been 

treated with exogenous 5-MCA, or by using mutants that are only able to produce 5-MCA.  

 

3.5. Materials and Methods 

3.5.1. Bacterial Strains and Growth Conditions 

All strains were grown at 37°C in Luria-Bertani (LB) broth or 1% tryptone (Teknova) and 

shaken at 250rpm. Biofilms were grown on 1% tryptone/1% agar plates. Coomasie Blue (20 

µg/mL) and Congo Red (40 µg/mL) were added to plates used for morphology assays. Both were 

purchased from EMD. 

 

3.5.2. Construction of mutants 

We generated unmarked deletions of the phenazine modifying enzymes phzH, phzM, phzS in 

PA14. Deletion of phenazine biosynthetic genes has been described previously18. Here we 

describe the protocol for generating the unmarked deletion of phzH: The 5′ region (~1 kb in 

length) of the sequence flanking phzH was amplified using the primer pair #1 and the 3′ region 

(~1 kb in length) of the sequence flanking phzH with primer pair #2 (Table 6). These flanking 

DNA fragments were joined using overlap extension PCR. The resulting PCR product, 

containing a deletion of phzH, was cloned into BamHI and EcoRI site in the mobilizable plasmid 

pMQ30. pMQ30 is a suicide plasmid for PA14 and contains an ColEI origin of replication that 
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does not function in PA14 but replicates in E. coli strains containing the pir gene; a gentamicin 

resistance gene (aacC1); an oriT from RP4 that allows for mobilization by E. coli strains 

carrying RP4-derivatives on their chromosome (E. coli BW29427); and the counterselectable 

sacB gene. The resulting deletion plasmid was transformed into E. coli BW29427 and mobilized 

into PA14 using biparental conjugation25. PA14 single recombinants (merodiploid containing the 

intact phzH gene and the deleted gene) were selected on LB agar containing gentamicin. PhzH 

deletion mutants were generated by selecting for a resolved merodiploid (double recombinant) 

by identifying strains that grew in the presence of 10% sucrose (these strains lost the sacB 

containing plasmid because sacB is toxic in the presence of sucrose). Strains with properties of a 

double recombination were further analyzed by PCR to determine if phzH has been deleted and 

one was selected. The deletion of phzM, phzS and the rest of the strains in Table 5 were made in 

a similar manner using primer pairs shown in Table 6. 

 

3.5.3. Quantification of phenazines from biofilms and liquid cultures 

For phenazine quantification from biofilms assay, starter cultures were grown for approximately 

16 hours in LB. Ten microliters from these stationary-phase cultures were spotted on 1% 

tryptone/1% agar plates. These were then grown for three days. Five of these colonies were then 

scraped from the plate and the agar was broken into pieces and put into a 50ml conical with 3ml 

of water to extract phenazines. The tubes were then placed on a rotator for approximately 16 

hours. Two hundred microlitres from the overnight extraction was then centrifuged twice at 

13,000 x g for 5min to remove any debris. A final centrifugation of the aliquots in spin columns 

(0.2 µm filter pore size) at 13 000 x g was done to remove any cells. The cleared extract was 
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then loaded directly onto a Waters Symmetry C18 reverse-phase column (5 mm particle size; 4.6 

x 250 mm) in a Beckman SystemGold set up with a photodiode array detector. Phenazines were 

separated in a gradient of water-0.01% TFA (solvent A) to acetonitrile-0.01% TFA (solvent B) at 

a flow rate of 0.6 ml/min in the following method: linear gradient from 0 to 5% solvent B from 0 

to 2 min, linear gradient to 83% solvent B from 2 to 22 min, then a linear gradient to 0% solvent 

B from 22 to 24 min. The total method time was 39 min. Retention times for PYO, PCA and 

PCN averaged 10.9, 20.9 and 17.5 respectively. System Gold 32 Karat Software was used to 

calculate the area under each peak in absorbance units in the 366 nm channel. Phenazine 

standards at known concentrations were used to calculate conversion factors for PYO and PCA 

and were 8 x 10-6 mM/AU and 9.5 x 10-6 mM/AU respectively as has been previously found18. 

For liquid cultures grown in 1% Tryptone medium, 200 microliter samples were taken after 

being grown for approximately 16 hours. These were then prepared for HPLC analysis using the 

same method as above. 

 

3.5.4.  Extraction and quantification of intracellular NADH and NAD+  

Extraction of NADH and NAD+ was carried out according to the method described in San et al26. 

For planktonic cultures grown in 1% tryptone, cells were first grown for 16 hours after which 

they were diluted to an OD500 of 0.05. Cells were then grown for 5 hours to an OD500 of 0.9. 

Two 1-ml samples of culture were placed in two separate microcentrifuge tubes and centrifuged 

at 16,000 g for 1 min. For colonies grown as biofilms, samples were taken over the course of 

development. At each time point, three colonies growing on 1% tryptone and 1% agar plates 
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amended with 40µg/ml Congo red and 20µg/ml coomassie blue dyes were scraped off the agar 

plate using sterile razor blades and resuspended in 1ml of 1% tryptone. The more developed 

colonies were disrupted using a pellet disrupter. For each resuspended colony, two 450-µl 

samples were placed into two separate microcentrifuge tubes and centrifuged at 16,000 rcf for 1 

min. Supernatant was removed and pellets were resuspended in 300 microliter of 0.2 M NaOH 

(for NADH extraction) or 0.2 M HCl (for NAD+ extraction). These lysates were incubated for 10 

min at 50°C, then for 10 min on ice. While vortexing, 300 microliter of 0.1 M HCl (for NADH) 

or 0.1 M NaOH (for NAD+) were added drop wise to neutralize the solutions. They were then 

centrifuged for 5 min at 16,000 rcf. Supernatants were removed to fresh tubes and stored at -

80°C until quantification. 

Relative or absolute NADH and NAD+ were quantified using a modification of the enzyme 

cycling assay developed by Bernofsky and Swan27. Briefly, a master reagent mix was prepared 

with 1x Bicine buffer (1.0 M, pH 8.0), 3x water, 1x 40 mM EDTA, 1x100% ethanol, 1x 4.2 mM 

thiazolyl blue (MTT), and 2x 16.6 mM phenazine ethosulfate (PES); 90 microliter aliquots were 

dispensed into individual wells of a 96-well microtiter plate. Five microliter of standard or 

sample was added to each well. The plate was warmed to 30°C, then the cycling reaction was 

started by the addition of 5 microliter of alcohol dehydrogenase (Sigma #A-3263) prepared at 

347 units/mL in 0.1 M Bicine (pH 8.0). The microtiter plate was incubated at 30°C, mixed by 

brief shaking, and read every 30-60 seconds for absorbance at 570 nm, which is the spectral peak 

of MTT that increases upon reduction. Slopes arising from plots of absorbance at 570 nm over 

time were generated for NADH and NAD+ standards as well as all samples. Standard curves 

were used to calculate the absolute concentrations, and values were normalized to optical density 

of the original cell culture sample where appropriate. 
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3.7.  Appendix 

 

Supplementary Figure 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 5 (S5). HPLC traces show that the large 17min 
peak is that of PCN. HPLC analysis of phenazines produced by WT, Δphz, 
ΔphzM and ΔphzH strains extracted from day 6 biofilms. A strain with a 
deletion of the glutamine amidotransferase PhzH known to catalyze the 
formation of PCN (ΔphzH strain) does not produce PCN. Arrow indicates 
where PCN peak would appear.   



108 

 

Tables 

Table 4. Phenazines produced by mutant strains 

 

 

 

 

 

 

 

 

 

Table 5. Strains used in Chapter 3 

 
 

Strain Comments/Genotype Source or Reference 

P.aeruginosa   

PA14 Clinical Isolate, UCBPP-14 Dietrich et. al., 2006 

Δphz 
PA14 with deletions in the phzA1-G1 and the 

phzA2-G2 operons 
Dietrich et. al., 2006 

ΔphzH PA14 with deletion of the phzH gene This study 

ΔphzM PA14 with deletions of the phzM gene This study 

ΔphzS PA14 with deletions of the phzS gene This study 

ΔphzMS PA14 with deletions of phzM and phzS genes This study 

ΔphzHM PA14 with deletions of phzM, phzH genes This study 

ΔphzHS PA14 with deletions of phzH and phzS genes This study 

Strain Phenazines Produced 
WT PCA, PCN, PYO, 5-MCA 
Δphz No phenazines 

ΔphzH PCA, PYO, 5-MCA 
ΔphzM PCA, PCN 
ΔphzS PCA, PCN, 5-MCA 

ΔphzHM PCA 
ΔphzMS PCA, PCN 
ΔphzHS PCA, 5-MCA 
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E.coli   

UQ950 

E. coli DH5α λ(pir) host for cloning; F-Δ(argF-
lac)169 Φ80 

dlacZ58(ΔM15) glnV44(AS) rfbD1 gyrA96(NalR) 
recA1 endA1 

spoT1 thi-1 hsdR17 deoR λpir+ 

D. Lies, Caltech 

BW29427 

Donor strain for conjugation: thrB1004 pro thi rpsL 
hsdS lacZ 

ΔM15RP4–1360 Δ(araBAD)567 ΔdapA1341::[erm 
pir(wt)] 

W. Metcalf, 
University of Illinois 
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Table 6. Primers used in Chapter 3  
 

 

 

Primer Sequence Source 
phzH-US-1 

 
 
 
 

phzH-US-2 

5’-
ggaattgtgagcggataacaatttcacacaggaaacagctGTTTCGACCAAGGAGGTCAG-

3’ 
 
 

5’-GCTCACCTGGGTGTTGAAGTGTATCGGTCATGGCGAAGAT-3’ 

This 
study 

phzH-DS-3 
 
 
 
 

phzH-DS-4 

5’-ATCTTCGCCATGACCGATACACTTCAACACCCAGGTGAGC-3’ 
 
 

5’-
ccaggcaaattctgttttatcagaccgcttctgcgttCTGATCGCTTCCTCGACTCCATC-3’ 

This 
study 

phzM-US-1 
 
 
 
 

phzM-US-2 

5’-
ggaattgtgagcggataacaatttcacacaggaaacagctCACTCGACCCAGAAGTGGTT-

3’ 
 
 

5’-GTTGAGAGTTCCGGTTCAGGTATCAAATTACGCGCAGCAG-3’ 

This 
study 

phzM-DS-3 
 
 
 
 

phzM-DS-4 

5’-CTGCTGCGCGTAATTTGATACCTGAACCGGAACTCTCAAC-3’ 
 
 

5’-ccaggcaaattctgttttatcagaccgcttctgcgttctgatGCTGGTACGCCTGAGCAT-3’ 

This 
study 

phzS-US-1 
 
 
 
 

phzS-US-2 

5’-
ggaattgtgagcggataacaatttcacacaggaaacagctAAGGTCAACGCGGTACAGAT-

3’ 
 
 

5’-CCATCGATATCCTCATTGCCGCGACCGAAGACTGAGAAGA-3’ 

This 
study 

phzS-DS-3 
 
 
 
 

phzS-DS-4 

5’-TCTTCTCAGTCTTCGGTCGCGGCAATGAGGATATCGATGG-3’ 
 
 

5’-ccaggcaaattctgttttatcagaccgcttctgcgttctgatACGCGAACATTTCCGAGTC-
3’ 

This 
study 
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Chapter 4. Species-specific residues calibrate SoxR sensitivity to redox-active molecules 

 

This chapter is adapted from a manuscript that has been submitted for publication (Sheplock, 

M.S., Recinos D.A. et al., 2012). Most of the work was done in Dr. Monica Chander’s 

laboratory. I contributed the experiments addressing the sensitivity of P. aeruginosa SoxR to 

redox active drugs and the ability of E. coli and S. coelicolor SoxR to modulate P. aeruginosa 

colony morphology (Figure 25C and Figure S6).  

 

4.1. SUMMARY 

 

In enterics, the transcription factor SoxR triggers a global stress response by sensing a broad 

spectrum of redox-cycling compounds. In the non-enteric bacteria Pseudomonas aeruginosa and 

Streptomyces coelicolor, SoxR is activated by endogenous redox-active small molecules and 

only regulates a small set of genes. We investigated if the more general response in enterics is 

reflected in the ability of SoxR to sense a wider range of redox-cycling compounds. Indeed, 

while E. coli SoxR is tuned to compounds that span a redox range of -450 to +80 mV, P. 

aeruginosa and S. coelicolor SoxR are less sensitive to molecules with redox potentials below -

300 mV. Using a mutagenic approach, we pinpointed three amino acids that contribute to the 

reduced sensitivity of P. aeruginosa and S. coelicolor SoxR. Notably these residues are not 

conserved in enteric homologs. We further identified a motif within the sensor domain that tunes 

the redox-reactivity of SoxR from enterics – inhibiting constitutive activity while allowing 
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sensitivity to drugs with low redox potentials. Our findings highlight how small alterations in 

structure can lead to the evolution of proteins with distinct redox-sensing properties. 

 

4.2. INTRODUCTION 

 

Iron-sulfur clusters (Fe-S) are remarkably diverse in structure and chemistry. Different cluster 

types span a wide range of redox potentials and the redox potential of a single cluster type can be 

further tuned by changing its molecular environment (Beinhert, 2000). These features enabled 

the evolution of Fe-S proteins that perform crucial and versatile functions as metabolic enzymes, 

components of electron transport chains, and redox-sensing regulators of gene expression. The 

latter act as molecular switches that are either activated or inactivated by specific redox signals 

(such as oxygen, hydrogen peroxide, superoxide, nitric oxide, or redox-active small molecules) 

to regulate important aspects of bacterial development and physiology. For example, FNR, a 

[4Fe-4S] protein, controls the switch between aerobic and anaerobic metabolism in Escherichia 

coli in response to molecular oxygen (Khoroshilova et al., 1997); IscR, also a [4Fe-4S] protein, 

increases the production of Fe-S cluster biogenesis machinery under conditions of oxidative 

stress (Zheng et al., 2001; Yeo et al., 2006); and SoxR, a [2Fe-2S] protein, mediates an oxidative 

stress response to redox-cycling drugs in the enteric bacteria E. coli and Salmonella enterica 

(Hidalgo and Demple, 1996). Within this group of redox-sensing transcription factors SoxR is 

unique in that, unlike the other proteins that are regulated by assembly/disassembly of their Fe-S 

clusters, the activity of SoxR is modulated by reversible one-electron oxidation-reduction of its 

[2Fe-2S] clusters (Ding et al., 1996; Gaudu and Weiss, 1996; Ding and Demple, 1997; Gaudu et 

al., 1997). 
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In E. coli (and related enteric bacteria), SoxR senses redox stress imposed by a broad collection 

of redox-active compounds including viologens, phenazines and quinones (Table 8; Gu and 

Imlay, 2011). SoxR transduces these redox signals into a global defense program via a second 

transcription factor, SoxS. SoxR is a constitutively expressed regulator bound to the soxS 

promoter poised to detect stress. In the absence of oxidants, SoxR exists in a quiescent state with 

reduced [2Fe-2S] clusters and soxS is not expressed. Exposure to redox-cycling drugs causes 

oxidation of SoxR’s [2Fe-2S] centers, and the oxidized protein activates soxS expression by 

mediating structural changes in the promoter DNA that allow RNA polymerase to initiate 

transcription (Hidalgo et al., 1995). SoxS in turn recruits RNA polymerase to transcribe >100 

genes, some of which encode proteins that reestablish redox balance and repair oxidant-induced 

damage (Pomposiello et al., 2001). The SoxRS system in enterics allows for rapid amplification 

of the stress signal into a stress response geared towards oxidants.   

 

The SoxRS regulon is unique to enterics. Although soxR is widely distributed (and highly similar 

at the amino acid level) across the Gram-negative Proteobacteria and the Gram-positive 

Actinobacteria, soxS is present exclusively in enterobacteria. An extensive bioinformatic analysis 

of soxS-deficient genomes predicted that in non-enterics SoxR directly regulates a relatively 

small set of genes that encode putative oxygenases, oxidoreductases, or transporters (Dietrich et 

al., 2008). This has been verified for the γ-Proteobacterium Pseudomonas aeruginosa and the 

Actinomycete Streptomyces coelicolor, both soil-dwelling organisms notable for producing 

redox-active secondary metabolites. The SoxR regulon in P. aeruginosa consists of a Resistance-

Nodulation-Division (RND) efflux pump MexGHI-OmpD (PA4205-4208), a major facilitator 

superfamily (MFS) transporter (PA3718), and a monooxygenase (PA2274) (Palma et al., 2005). 
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In S. coelicolor, SoxR regulates a monooxygenase (SCO1909) with homology to PA2274, two 

oxidoreductases (SOC2478, SCO4266), an epimerase/dehydratase (SCO1178), and an ABC 

transporter (SCO7008) (Dela Cruz et al., 2010; Shin et al., 2011). In these bacteria SoxR-

regulated genes are induced in stationary phase during the production and secretion of redox-

active metabolites – phenazines in the case of P. aeruginosa and the benzochromanequinone 

polyketide actinorhodin in the case of S. coelicolor (Dietrich et al., 2006; Dela Cruz et al., 2010; 

Shin et al., 2011). This is not a mere correlation as expression of each SoxR regulon is dependent 

on production of the redox-active compounds by the microbe (Dietrich et al., 2006; Dela Cruz et 

al., 2010; Shin et al., 2011). These observations support the view that SoxR evolved to regulate 

the machinery that processes/transports endogenous redox-active metabolites in producer 

organisms. The enterobacteria (which do not produce redox-active secondary metabolites) are 

unique in that SoxR regulates only one gene, soxS. They may have acquired soxR via lateral gene 

transfer, taking advantage of its redox-sensing abilities to regulate a generalized stress response 

(SoxS regulon) against toxic redox-cycling compounds.  

 

Given that SoxR performs distinct functions in different bacteria, we asked if the differences in 

SoxR functionality are manifested only by its regulons, or if SoxR from different species also 

sense different inputs. We hypothesized that SoxR from P. aeruginosa and S. coelicolor sense 

redox molecules that resemble their endogenous activators (phenazines and anthraquinones, 

respectively), while E. coli SoxR, given its involvement in a general stress response, senses a 

broader spectrum of redox-active compounds. Here we report that the non-enteric SoxR proteins 

are indeed more restricted in the range of molecules they sense compared to their E. coli 

counterpart, and we have identified key features that contribute to the differential sensitivities. 
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This study provides insight into the evolutionary fine-tuning of this redox-sensing transcription 

factor that adapted it to serve the needs of organisms with different physiologies.  

 

4.3. RESULTS 

 

4.3.1. SoxR protects E. coli, but not P. aeruginosa or S. coelicolor, against redox-

cycling drugs 

 

In E. coli and related enterobacteria, SoxR mediates a general stress response against redox-

cycling compounds by activating the SoxS regulon. By contrast, non-enterics lack a SoxS 

regulon. Instead, SoxR directly regulates a small set of genes, making a general stress response 

unlikely. To test this, we exposed soxR deletion mutants of E. coli (which contains soxS), the 

Gram-negative P. aeruginosa PA14, and the Gram-positive S. coelicolor M145 (both of which 

lack soxS) to a diverse array of redox-cycling compounds using a filter disk assay. In agreement 

with previous reports, an E. coli ∆soxR mutant was more sensitive to most tested redox-cycling 

agents such as pyocyanin (Pyo), plumbagin (PB), and 4-nitroquinoline-N-oxide (4NQO), 

compared to wild type (Greenberg et al. 1990; Tsaneva and Weiss, 1990; Fig. 1A). The E. coli 

∆soxR mutant was no more sensitive to the viologen diquat (DQ) than wild type, and a previous 

study had shown this to also be true for paraquat (PQ), another viologen (Greenberg et al., 1990). 

This appears to be a strain-specific phenomenon, since a different E. coli ∆soxR mutant strain 

was more sensitive to PQ than wild type (Tsaneva and Weiss, 1990). In contrast to E. coli, the S. 

coelicolor ∆soxR mutant and wild type were equally sensitive to all tested compounds (Fig. 

25B). P. aeruginosa was generally more resistant to all drugs tested in this study. The wild type 
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and ∆soxR mutant were resistant to Pyo, PB, and 4NQO, and were equally sensitive to DQ (Fig. 

25C). It is worth noting that the P. aeruginosa ∆soxR mutant has a colony morphology 

phenotype (Dietrich et al., 2008), which can be reverted by complementation with E. coli or P. 

aeruginosa SoxR (Fig. S6). 

 

 

  

Figure 25. S. coelicolor and P. 
aeruginosa ∆soxR mutants are not 
hypersensitive to superoxide-generating 
agents. Paper disks soaked with solutions 
of the indicated compounds were placed 
on bacterial lawns of wild type (black 
columns) or ∆soxR mutant (grey columns) 
growing on nutrient agar plates. Zones of 
growth inhibition around the disks were 
recorded after 24 h at 37°C for E. coli (A) 
or 48 h at 30°C for S. coelicolor (B) and 
P. aeruginosa (C). The data represent the 
means of 3 to 5 replicates ± standard 
deviations (bars; some not visible). 
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4.3.2. P. aeruginosa and S. coelicolor SoxRs sense a narrower spectrum of redox 

drugs than E. coli SoxR 

 

Our finding that SoxR did not contribute to resistance against redox-cycling agents in P. 

aeruginosa and S. coelicolor is consistent with the notion that the enteric-specific SoxS regulon 

governs a general stress response. To explore the hypothesis that the SoxR regulons in P. 

aeruginosa and S. coelicolor may be specific to phenazines and actinorhodin, respectively, we 

posited that SoxR itself might be optimized to sense specific redox inputs. Given the role of 

SoxR in E. coli as a general stress-response regulator, we predicted this protein would respond to 

a broad spectrum of redox-cycling molecules, while P. aeruginosa and S. coelicolor SoxRs 

would only respond to molecules that resemble their endogenous activators, i.e. phenazines and 

anthraquinones, respectively.   

 

To quantify the SoxR response to a wide spectrum of redox-cycling compounds, we employed a 

ß-galactosidase assay in E. coli. The three soxR genes (each with an N-terminal histidine-tag) 

were transformed into an E. coli ∆soxRS mutant lysogenized with a λ[soxS promoter-lacZ 

reporter] (Table 9). Transformed cells were grown to exponential phase and then treated with 

representative drugs that span a wide range of redox potentials and belong to different structural 

classes (Table 8). The phenazines Pyo and phenazine-1-carboxylic acid (PCA) are produced by 

P. aeruginosa, while phenazine methosulfate (PMS) is synthetic.  
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E. coli SoxR was strongly activated (albeit to different extents) by all nine drugs tested (Fig. 

26A). P. aeruginosa SoxR was activated at levels comparable to E. coli SoxR by PCA, PB, Pyo, 

methylene blue (MB), 4NQO, PMS, and actinorhodin (Act), but at significantly lower levels by 

Figure 26. P. aeruginosa and S. coelicolor SoxRs 
sense a narrower spectrum of redox-active 
compounds than E. coli SoxR.  
(A). E. coli strain EH46 expressing histidine-tagged 
E. coli SoxR (white columns), P. aeruginosa SoxR 
(light grey columns), S. coelicolor SoxR (dark grey 
columns) or empty vector (black columns) were 
treated with 200 µM PQ, 200 µM DQ, 500 µM 
PCA, 25 µM PB, 20 µM Pyo, 25 µM MB, 50 µM 
4NQO, 20 µM PMS or 25 µM Act for 1 h before the 
assay for ß-galactosidase activity.   
(B).  P. aeruginosa SoxR activity normalized to that 
of E. coli SoxR indicates that the former displays 
reduced sensitivity to drugs with redox potentials 
below -300 mV. 
(C).  The Act-deficient S. coelicolor strain M511 
was grown for 20 h in R5- medium, then exposed for 
30 min to 1 mM PQ, 1 mM DQ, 500 µM PCA, 100 
µM PB, 10 µM Pyo, 25 µM MB, 1 mM 4NQO, 10 
µM PMS or 10 µM Act. qRT-PCR was performed 
on RNA extracted from these cells to detect 
induction of SoxR-target genes SCO2478 (dark grey 
columns) and SCO4266 (light grey columns). 
Signals were standardized to the level of the 
housekeeping sigma factor, hrdB, and fold-induction 
was normalized to untreated M511 cells.   
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the viologens PQ and DQ (Fig. 26A). PQ elicited 15-fold lower ß-galactosidase activity in cells 

expressing P. aeruginosa SoxR compared with E. coli SoxR. Ethyl viologen, which has a similar 

midpoint redox potential as PQ (-480 mV), was also a weak inducer of P. aeruginosa SoxR 

activity (data not shown). The response to DQ, which has a higher redox potential than PQ (-360 

mV) was more robust (2200 Miller units), but still only about half that of E. coli SoxR (4600 

Miller units). Thus P. aeruginosa SoxR has low sensitivity to drugs with redox potentials more 

negative than ~ -300 mV (Fig. 26B).   

 

In stark contrast to the high levels of ß-galactosidase activity produced by E. coli and P. 

aeruginosa SoxR, S. coelicolor SoxR produced very low signals (Fig. 26A). As such we were 

unable to draw any meaningful conclusions about S. coelicolor SoxR activation using the 

heterologous E. coli system. We therefore investigated this transcription factor’s activity in its 

native background. Because this protein is activated by the endogenous metabolite Act, it was 

necessary to monitor its response to exogenous drugs in S. coelicolor M511, a strain that does 

not synthesize Act (Table 9). Cells were grown for 20 h in liquid culture before a 30 min 

exposure to the redox-cycling drugs listed in Table 8. SoxR activity was assessed by monitoring 

the expression levels of two of its target genes, SCO2478 and SCO4266, by quantitative real-

time PCR (qRT-PCR). In addition to Act, PCA, PB, Pyo, MB, 4NQO and PMS induced SoxR-

target gene expression to high levels over background (Fig. 26C). Drug-induced expression of 

SCO2478 and SCO4266 was SoxR-dependent since these mRNAs were not detectable in 

M511∆soxR cells that were similarly treated (data not shown). Similar to P. aeruginosa SoxR, 

only the viologens PQ and DQ failed to activate SoxR to any appreciable level (Fig. 26C). Thus, 
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S. coelicolor and P. aeruginosa SoxR sense redox-active molecules in the same range of redox 

potential. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 27 A. Sequence comparison of SoxR homologs. A BLAST analysis was 
performed for E. coli SoxR against all available bacterial genomes. The 250 closest 
homologs were aligned using ClustalW, and shown is an alignment of five of these SoxR 
proteins from the enterics E. coli (ECO), Shigella flexneri (SHIG), Salmonella 
enterica (SAL), and the non-enterics P. aeruginosa (PA), and S. coelicolor (SCO). Black, 
dark grey or light grey boxes surrounding residues indicate 100%, 80-100% or 60-80% 
similarity between all 250 SoxRs (Blosum62 score matrix with threshold of 1). H1-H4 
indicate the two helix-turn-helix motifs that form the DNA binding domain; H5 indicates 
the dimerization helix. The four conserved cysteine residues that anchor the [2Fe-2S] 
cluster are indicated by exclamation marks (!). A three-residue, hypervariable motif in the 
[2Fe-2S] region is indicated by a box. In most enterics this motif is RSD. Other residues 
that influence the redox-sensing properties of E. coli SoxR are marked by asterisks 
(Chander and Demple, 2004). The serine residue that was changed to a stop codon to 
construct the C-terminal truncated S. coelicolor SoxR mutant is underlined.   
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The inability of S. coelicolor SoxR to complement an E. coli ∆soxR mutant could result from 

inefficient protein expression or failure to effect soxS transcription. We confirmed that this 

protein is stably expressed in E. coli by immunoblot analysis (Fig. S7A). Furthermore, S. 

Figure 27 B. Alignment tree of SoxR homologues. Based on the 
alignment of 250 SoxRs (A) a tree was generated using the Geneious 
neighbor joining method. For clarity only one member of each 
represented species is shown. Species that contain the RSD motif in 
SoxR are highlighted in yellow; these are all enterics excepting 
Pseudomonas nitroreducens and Sphingopyxis alaskensis. P. 
aeruginosa and S. coelicolor SoxR are highlighted in blue.    



122 
 

coelicolor SoxR binds efficiently to the E. coli soxS promoter in vitro (Fig. S7B) and in vivo 

(Fig. S7C), and stimulates transcription of the soxS gene in vitro (Fig. S7D). Interestingly, the C-

terminus of S. coelicolor SoxR has an additional 22-residues not present in homologs from 

enterics or pseudomonads (Fig. 27A). In fact, an extended C-terminal region is found in SoxR 

proteins from several other Streptomyces species (data not shown) and is peculiar to this genus. 

Given that this is the most obvious structural difference between S. coelicolor SoxR and its E. 

coli and P. aeruginosa counterparts, we asked if this region could be involved in the regulation 

of S. coelicolor SoxR. To test this, we constructed a mutant that lacks the extreme C-terminal 22-

residues by engineering a stop codon at position 154 (see Fig. 27A). We confirmed that the 

mutant is expressed in E. coli and interacts with the soxS promoter (Fig. S7B). The 

transcriptional activity of this protein in response to PMS was measured in the E. coli ∆soxRS 

mutant lysogenized with λ[soxS promoter-lacZ reporter] (Table 9). Figure 28A shows that PMS 

induced similar ß-galactosidase levels in cells expressing wild type or truncated S. coelicolor 

SoxR proteins. Deletion of the C-terminus also did not affect the activity of this protein when 

expressed in a S. coelicolor ∆soxR strain. Wild type SoxR and the truncated mutant were equally 

efficient at activating the SoxR-target genes SCO4266 and SCO1178 as assessed by qPCR (Fig. 

28B). Thus, the extreme C-terminal region is dispensible for S. coelicolor SoxR function, and at 

this point we have no ready explanation for why S. coelicolor SoxR failed to complement the E. 

coli ∆soxR mutant. 
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4.3.3. Mutations in specific residues alter the redox-sensitivity of P. aeruginosa SoxR 

 

The transcriptional assays described in figure 26 demonstrated that P. aeruginosa and S. 

coelicolor SoxR were more selective than E. coli SoxR, with reduced sensitivity to compounds 

with low redox potentials (viologens). The activation profiles for P. aeruginosa and S. coelicolor 

SoxR (responsive to PMS but not PQ) were reminiscent of E. coli SoxR mutant proteins that 

were reported several years ago (Chander et al. 2003; Chander and Demple, 2004). In those 

Figure 28. The extended C-terminal 
region of S. coelicolor SoxR is not 
important for function. 
(A) E. coli cells (strain EH46) 
expressing histidine-tagged wild type 
E. coli or S. coelicolor soxR alleles, or 
the S. coelicolor C-terminal truncated 
mutant from pSE380-based plasmids 
were either untreated (grey columns) 
or treated with 20 µM PMS (black 
columns) for 1 h before the assay for 
ß-galactosidase activity.  
(B)  qRT-PCR was performed on 
RNA isolated from the following S. 
coelicolor strains: WT/pSET152, 
∆soxR/pSET152, and a ∆soxR strain 
complemented with wild type soxR 
(H-SoxR) or the C-terminal truncated 
mutant (H-∆C), grown in R5- liquid 
medium for 3 days. The expression 
levels of SoxR target genes, SCO4266 
(grey columns) and SCO1178 (black 
columns) were standardized to the 
level of hrdB and normalized to 
expression in WT/pSET152. 
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studies, nine residues were identified that, when individually changed, rendered E. coli SoxR 

insensitive to PQ, but fully responsive to PMS (residues marked by asterisks in Fig. 27A). It was 

suggested that changes in these residues alter the redox-reactivity of SoxR, rendering the protein 

hyposensitive to certain redox signals. Thus, while these mutant proteins are still activated by the 

strongly oxidizing drug PMS (redox potential of +80 mV), they are unresponsive to the less 

oxidizing drug PQ (redox potential of -440 mV). Only two of these residues are conserved in P. 

aeruginosa and S. coelicolor SoxR (Fig. 27A). We hypothesized that changing the other seven 

residues in P. aeruginosa or S. coelicolor SoxR to those found in E. coli SoxR might decrease 

their drug-selectivity, i.e. that the mutant proteins would respond to PQ. To exclude any SoxR-

independent differences between the species, such as drug uptake, we expressed the mutant 

proteins in E. coli. Because S. coelicolor SoxR is not active in E. coli, we focused our 

comparison on P. aeruginosa and E. coli SoxR. 
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We individually mutated five of the aforementioned residues in P. aeruginosa SoxR (V64I, 

R82H, P84L, A94S, L125R) and analyzed the resulting variants using the ß-galactosidase assay 

described previously. As shown before, while E. coli SoxR was activated with similar efficiency 

by both PQ and PMS, wild type P. aeruginosa SoxR was strongly activated by PMS but very 

weakly by PQ (Fig. 29). Mutant proteins R82H and A94S resembled wild type P. aeruginosa 

SoxR (Fig. 29). Two mutations, V64I and P84L, conferred PQ-sensitivity to P. aeruginosa 

SoxR, essentially converting this protein into its E. coli counterpart (Fig. 29). The L125R 

mutation, which alters a residue in the [2Fe-2S] cluster region, rendered P. aeruginosa SoxR 

Figure 29. Mutations that alter drug-selectivity of P. 
aeruginosa SoxR. EH46 cells expressing wild type E. coli or P. 
aeruginosa soxR alleles, or P. aeruginosa soxR mutant alleles 
from pSE380-based plasmids were untreated (red columns), or 
treated with 200 µM PQ (green columns) or 20 µM PMS (blue 
columns) for 1 h before the assay for ß-galactosidase activity. 
The results represent the means and standard errors of three 
independent experiments. 
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constitutively active; in untreated cells, this variant displayed ~80% of the activity obtained in 

the presence of PQ or PMS (Fig. 29).   

 

The constitutive activity displayed by the L125R P. aeruginosa SoxR variant was unexpected, 

given that E. coli SoxR (which has an Arg in this position) is not constitutive. It is interesting 

that only SoxR homologs from enteric species contain an Arg in this position, which is replaced 

by a hydrophobic residue (typically Leu) in SoxR from every non-enteric species analyzed (Fig. 

27A and data not shown). We hypothesized that the presence of Arg within the [2Fe-2S] domain 

makes SoxR constitutively active, as was observed with the L125R P. aeruginosa SoxR variant. 

The fact that E. coli SoxR is not constitutive might be attributed to other amino acids in this 

vicinity that modulate E. coli SoxR activity, tuning it so that it is only active in the presence of 

redox-active drugs. A closer examination of the SoxR sequences from enteric and non-enteric 

bacteria revealed that while the [2Fe-2S] cluster domain is highly conserved, SoxR homologs 

from enteric species all contain the hydrophilic “RSD” motif within this region that is absent in 

SoxRs from other bacteria including P. aeruginosa, which instead contains the sequence LQA 

(Figs. 27A and 27B). In fact, only two non-enteric species, Pseudomonas nitroreducens and 

Sphingopyxis alaskensis contain RSD within the sensor domain (Fig. 27B). If the Ser and Asp 

residues within this motif are indeed responsible for preventing constitutive activity, then one 

would predict that introduction of these residues into the L125R P. aeruginosa variant would 

dampen the constitutive phenotype, while still allowing sensitivity to PQ. To test this hypothesis, 

we introduced a triple mutation in P. aeruginosa SoxR simultaneously replacing L125, Q126, 

A127 with RSD, such that the [2Fe-2S] cluster domain was now an exact replica of E. coli SoxR, 

and assayed the ability of this protein to activate soxS transcription in the absence of redox-
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cycling drugs, or in the presence of PQ or PMS. Fig. 29 shows that the RSD triple mutant more 

closely resembles E. coli SoxR than P. aeruginosa SoxR, in that it is responsive to PQ. While 

this variant still displays partial constitutive activity, this is considerably diminished when 

compared to the L125R single mutant. This can be attributed to introduction of the additional 

two mutations Q126S and A127D. The Q126S or A127D mutations alone did not alter the 

activity of P. aeruginosa SoxR (Fig. 29).  

 

 

 

 

 

 

 

 

Figure 30. Location of key residues in E. coli SoxR. The structure of E. 
coli SoxR protein complexed with the soxS promoter is depicted side-on 
(A) or from the top (B) (Watanabe et al., 2008). Helices labeled h1-h4 
comprise the DNA binding domain; h5 is the dimerization domain; the 
[2Fe-2S] cluster in one monomer is labeled. Residues (I66, L86, R127, 
S128, D129) identified as playing an important role in tuning the redox-
reactivity of SoxR are shown. The images were created using PyMOL. 
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4.4. DISCUSSION 

 

SoxR regulates a global stress response against redox-cycling drugs in E. coli. As such this 

protein is engineered to sense and respond to a wide spectrum of redox-active molecules that 

vary in structure and redox potentials. This is not the case for P. aeruginosa and S. coelicolor in 

which SoxR performs a more specific role as suggested by the small number of genes it regulates 

in response to endogenous redox-active signals. Given the functional differences of SoxR 

homologs across species, we asked if the sensitivities of P. aeruginosa and S. coelicolor SoxR 

were tuned towards compounds that resemble phenazines and Act, respectively. We found this to 

be partially true. While E. coli SoxR was activated by structurally distinct drugs that span a range 

in redox potentials from ~-450 to ~+80 mV, P. aeruginosa and S. coelicolor SoxR were less 

sensitive to compounds with redox potentials below ~-300 mV. Thus SoxR appears tuned to 

sense drugs based on their redox potentials rather than a particular structure.   

 

What is the mechanism underlying SoxR’s differential selectivity for drugs? An earlier study on 

E. coli SoxR had identified residues that, when mutated, reduce the protein’s reactivity to drugs 

with low redox potentials (such as PQ). Five of these residues (Ile66, His84, Leu86, Ser96, 

Arg127) are conserved in SoxR homologs from enterics (which display broad drug selectivity), 

but not in those from non-enterics (which show narrower drug selectivity). Mutation of the 

corresponding residues in P. aeruginosa SoxR to those found in E. coli SoxR revealed that three 

of the five residues individually affected drug-sensitivity. Mutations V64→Ile and Pro84→Leu 

both increased the sensitivity of P. aeruginosa SoxR to PQ, and the variants were 

indistinguishable from E. coli SoxR. Mutation Leu125→Arg resulted in constitutive activity. 



129 
 

These amino acids are conserved in S. coelicolor SoxR (V65, P85, L126; Fig. 3A), which like P. 

aeruginosa SoxR showed reduced sensitivity to viologens (Fig. 26C). These findings emphasize 

the importance of these amino acids in SoxR redox-reactivity, and suggest structural changes that 

E. coli SoxR may have evolved if its soxR gene was acquired by horizontal gene transfer. 

  

SoxR forms a homodimer. Each subunit contains three distinct domains:  a DNA binding domain 

composed of four helices (h1-h4), a coiled-coil dimerization helix (h5) and the C-terminal sensor 

domain that contains the [2Fe-2S] clusters (Fig. 30). The crystal structure for the oxidized SoxR 

dimer bound to DNA shows that helices 3 and 4 within the DNA binding domain make 

hydrophobic contacts with helix 5 within the same subunit (Watanabe et al., 2008). Furthermore, 

the metal binding domain of one subunit is stabilized by interactions with helices 3, 4 and 5 of 

the other monomer. The structure of reduced SoxR is unknown, but using Raman spectroscopy, 

Kobayashi and colleagues (2011) showed that the relative orientations of helices 3 and 4 (in the 

DNA binding domain) and helix 5 (dimerization domain) depend on the redox state of SoxR. It 

is tempting to speculate that transmission of oxidative signals from the [2Fe-2S] clusters to the 

DNA involves an orchestrated rearrangement of the metal binding, dimerization and DNA 

binding domains, thereby explaining how the redox signal may be propagated from the [2Fe-2S] 

clusters to the DNA. Conversely, potential structural changes that result from DNA binding of 

SoxR have dramatic effects on the redox potential of its [2Fe-2S] cluster, highlighting the fine-

tuned feedback between the DNA binding and sensory domains (Gorodetsky et al., 2008). It is 

therefore not surprising that even small changes in the protein structure impact sensing and 

activation. We propose that Ile66, His84, Leu86, Ser96, Arg127 in E. coli SoxR, and their 

counterparts in other species, are some of the key residues that mediate the functional interaction 
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between DNA binding and sensing. Ile66, His84 and Leu86 are located at the interface between 

helix 3 in the DNA binding domain and the dimerization helix 5 (Fig. 30). Leu86, for example, 

which is located just upstream of helix 5, forms hydrophobic interactions with Tyr56 and Ile59 in 

helix 3 (Watanabe et al., 2008). Interestingly, helix 3 also interacts with the sensor domain of the 

second dimer subunit (Fig. 30). Considering that the redox potentials of Fe-S clusters are 

modulated by their immediate environment, any changes affecting these interactions may 

ultimately tune SoxR sensitivity to redox-active compounds. Our findings demonstrate that even 

point mutations can change the sensitivity towards specific compounds. A particularly intriguing 

example is the [2Fe-2S] binding site itself. Although it is remarkably conserved among SoxR 

homologs, it contains a hypervariable stretch of three residues (Fig. 27A). Strikingly, within 

almost all enterics we found it to be conserved as the charged RSD motif (Fig. 27B). In contrast, 

in P. aeruginosa it is replaced by LQA (Fig. 27A). We suggest that these hydrophobic amino 

acids shield the [2Fe-2S] clusters from the solvent, making them less accessible to weakly 

oxidizing drugs like PQ.    

 

When P. aeruginosa SoxR was mutated to replace the LQA motif with RQA, the resulting 

variant displayed strong constitutive activity. Thus having an Arg residue within the [2Fe-2S] 

domain makes SoxR constitutively active. However, when the original LQA motif was mutated 

to RSD (so that the [2Fe-2S] cluster was now identical to that in E. coli SoxR), the level of 

constitutive activity significantly decreased, but the protein still retained the ability to respond to 

PQ. Thus, the RSD motif in enteric SoxRs is essential for fine-tuning the protein’s redox activity 

– preventing constitutive activity while retaining low selectivity for drugs. 
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Our findings give insight into the diversity of SoxR proteins with respect to their ability to sense 

redox-active compounds. They demonstrate how minor changes in the primary sequence can 

lead to the evolution of SoxR proteins with narrow- or broad-range sensing capacities.   

 

 

4.5. EXPERIMENTAL METHODS 

 

4.5.1. Bacterial strains and plasmids 

 

Bacterial strains and plasmids that were utilized or constructed in this study are listed in Table 9. 

 

4.5.2. Redox-cycling drugs 

 

The redox-cycling drugs used in this study are listed in Table 1 along with their chemical 

structures and midpoint redox potentials. All chemicals were purchased from Sigma, with the 

exception of PCA which was purchased from Princeton Biomolecular Research, and γ-

actinorhodin which was extracted from S. coelicolor cells as described by Bystrykh et al (1996). 

PQ, DQ, MB, and PMS were dissolved in water; PB, Pyo, PCA and Act in dimethylsulfoxide; 

4NQO in acetone. 
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4.5.3. Drug susceptibility tests 

 

The effects of various redox active drugs on the growth of wild type and ∆soxR E. coli, P. 

aeruginosa, and S. coelicolor cells were determined using a disk diffusion assay (strains are 

listed in Table 9). E. coli and P. aeruginosa cells were grown for 16 h at 37°C in LB medium, 

100 µL added to 4 mL of melted soft nutrient agar (Difco), then plated on nutrient agar plates 

(Difco). S. coelicolor spores (~108) were similarly plated. Six-millimeter Whatman paper disks 

impregnated with 15 µL of drug were placed onto the agar. E. coli plates were incubated at 37°C 

for 24 h, and P. aeruginosa and S. coelicolor plates at 30°C for 48 h, after which the zone of 

growth inhibition around each disk was recorded.   

 

4.5.4. Cloning of his-tagged soxR genes for complementation analysis in E. coli and 

P. aeruginosa 

 

For complementation analysis in E. coli, the soxR alleles from E. coli, P. aeruginosa, and S. 

coelicolor were expressed as N-terminally histidine-tagged proteins from the plasmid pSE380 

under the control of the trc promoter (Table 9). The coding region of the soxR alleles (including 

the histidine-tag) was PCR-amplified from pET16b-based vectors (Chander and Demple, 2004, 

Gorodetsky et al., 2008, Dela Cruz et al., 2010) using primers pET-F and pET-R (Table 7) and 

Pfu Polymerase (Stratagene). The PCR fragments were digested with BamHI and SalI and 

ligated into pSE380. The resulting plasmids containing soxR alleles with a 10-histidine tag 

attached to the N-terminus were sequenced on both strands and transformed into E. coli strain 

EH46 or EH86 for ß-galactosidase assays (Table 9).  
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For complementation analysis in P. aeruginosa, the histidine-tagged soxR proteins were 

subcloned from pSE380 into the BamHI/SalI site of the vector, pUCp18 (Table 9), and expressed 

under the control of the lac promoter. The resulting clones were sequenced on both strands and 

transformed into P. aeruginosa strain PA14∆soxR (Table 9). 

 

4.5.5. Construction of soxR mutant alleles  

 

Mutations in the P. aeruginosa soxR gene were generated using the GENEART site- 

Directed mutagenesis kit from Invitrogen according to the manufacturer’s instructions. 

Mutations in the S. coelicolor soxR gene were generated using the QuikChange site-directed 

mutagenesis kit from Stratagene following manufacturer’s recommendations. Plasmid pSE380, 

containing the histidine-tagged soxR genes from P. aeruginosa or S. coelicolor were used as 

templates for mutagenesis along with the mutagenic primers listed in Table 7. All mutations 

were verified by DNA sequence analysis. 

 

For expression of the histidine-tagged C-terminal truncated soxR gene in S. coelicolor, the 

coding region (along with the 10-histidine tag) was PCR-amplified from pSE380 using Pfu 

polymerase and primers 380F-Bam and 380R-Bam (Table 7), and subcloned into the BamHI site 

of the integrating vector pSET152, to yield H-∆C. The histidine-tagged WT S. coelicolor soxR 

gene was similarly constructed to yield H-SoxR. The pSET152-based plasmids were introduced 

into the S. coelicolor ∆soxR strain M145-1A by intergenic conjugation from E. coli 

ET12567/pUZ8002. 
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4.5.6. ß-galactosidase assay to measure complementation in an E. coli ∆soxR mutant 

 

The ability of the various SoxR homologs (and mutant derivatives) to complement an E. coli 

∆soxR strain was assessed by measuring ß-galactosidase activity in EH46 cells (Table 9) 

expressing the various histidine-tagged SoxR proteins from pSE380-based plasmids as 

previously described (Chander et al., 2003). Cells were treated with various redox-active drugs 

for 1 h with shaking at 220 rpm. 

 

ß-galactosidase assays were also used to analyze the stable production and soxS promoter 

binding ability of the various SoxR proteins in vivo. Strain EH86 (Table 9) was transformed with 

the aforementioned plasmids and grown for 2.5 h in the absence of oxidative stress before the 

lysates were assayed for ß-galactosidase activity. 

 

4.5.7. qRT-PCR assay in S. coelicolor 

 

Liquid R5- medium (Huang et al. 2001) was inoculated with 107 S. coelicolor spores mL-1 and 

grown at 30°C with shaking at 220 rpm for the indicated times. Cells were harvested by 

incubating with RNAprotect bacterial reagent (Qiagen) for 5 min at room temperature, 

centrifuging for 10 min at 5,000 x g, and frozen at -80°C. Total RNA was extracted and qRT-

PCR assays conducted as previously described (Dela Cruz et al., 2010). The primers used for 

qRT-PCR are listed in Table 7. 
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4.5.8. Construction of P. aeruginosa mexG-gfp reporter strains and Gfp fluorescence 

quantification 

 

The mexG promoter region was PCR-amplified from PA14 genomic DNA using primers 

pmexG-F and pmexG-R (Table 7), and cloned into the HindIII/EcoRI site of the vector pYL122 

(Table 9). The pmexG-gfp reporter fusion was integrated into the attB site of P. aeruginosa PA14 

or PA14∆soxR using a previously described protocol (Lequette and Greenberg, 2005). 

To quantify Gfp fluorescence, the pmexG-gfp reporter strains expressing histidine-tagged E. coli 

or P. aeruginosa soxR from pUCp18, were grown in LB medium supplemented with 

carbenicillin (300 µg mL-1) for 16 h at 37°C. Cultures were then diluted 100-fold and grown for 

an additional 3 h (to logarithmic phase), before finally diluting to an optical density of 0.05 at 

500 nm into a 96-well plate (Costar). The optical density and fluorescence was monitored for 19 

h using a Synergy 4-plate reader (BioTek). The excitation wavelength was 488 nm; emission 

wavelength was 520 nm. Data was acquired using the Gen5 program. 
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4.7. Appendix 

Supplementary Figures 

 
A.  

 
B . 

 
 
 
 

Supplementary Figure 6 (S6). Complementation of P. aeruginosa ΔsoxR mutant 
by E. coli or P. aeruginosa SoxR. 
(A) Growth of WT, ΔSoxR, ΔSoxR::PAsoxR, ΔSoxR::ECsoxR, ΔSoxR::pUC strains on 
agar plates. Colony development was followed for 6 days. Images for day 2 are shown 
(B) GFP fluorescence quantification of ΔsoxRpmexgfp strains complemented with 
plasmids containing PA and EC SoxR in planktonic cultures. The mexGHI-opmD 
operon encodes a transporter that regulates the export of phenazines (Dietrich, et al., 
2008). The phenazine pyocyanin regulates the expression of this operon through 
SoxR. Quantifying mexgfp expression is a proxy for signaling through SoxR. 
Strains were diluted to a 0.05 OD. The OD500 and gfp fluorescence were then 
monitored for 19 hours.  
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Supplementary Figure 7 (S7). SoxR protein expression, soxS promoter binding, 
and in vitro transcription of the soxS gene. 
(A) SoxR protein levels in E. coli. EH46 cells expressing empty vector (pSE380) or 
histidine-tagged SoxR proteins from E. coli (His-EC SoxR), P. aeruginosa (His-PA 
SoxR), or S. coelicolor (His-SC SoxR) were grown at 37°C for 2.5 h.  Total cell 
extract (50 µg per lane) was resolved on a 15% SDS-polyacrylamide gel and 
subjected to immunoblot analysis using anti-histidine antibody (GE Healthcare).  
Purified histidine-tagged E. coli SoxR (10 ng) was loaded as a control.  His-SC 
SoxR migrates as a higher molecular weight species than His-EC and His-PA SoxR.   
 
(B) SoxR binding to soxS promoter in vivo. E. coli strain EH86 (ΔsoxRS 
lysogenized with λ[16bp soxS promoter-lacZ reporter) was transformed with vector 
control, histidine-tagged E. coli, P. aeruginosa or S. coelicolor soxR genes, C-
terminal truncated S. coelicolor soxR, or the E. coli DNA binding variant G15D. 
The wild type soxS promoter has a 19-bp spacer separating the -10 and -35 
elements. The shortened (16-bp) soxS promoter renders soxS transcription 
constitutive and promoter occupation by SoxR prevents access to RNA polymerase 
(Hidalgo and Demple, 1997). Low ß-galactosidase activity in this background thus 
indicates specific promoter binding by SoxR, while high ß-galactosidase activity 
indicates defective promoter binding as demonstrated by cells expressing the E. coli 
SoxR DNA-binding mutant G15D (Fig. 2D, Chander et al. 2003). The values shown 
represent the means and standard errors of three independent experiments.  
 
(C)  SoxR protein binding to soxS promoter in vitro. A DIG-end-labeled fragment 
(180 bp) containing the soxS promoter was incubated with 1 nM or 10 nM purified 
histidine-tagged SoxR proteins from E. coli (EC), S. coelicolor (SC), or P. 
aeruginosa (PA).  Protein-bound complexes [C] were separated from free DNA [F] 
on a 5% native polyacrylamide gel.  SoxR binding specificity was demonstrated by 
the addition of a 500-fold molar excess of unlabeled probe (Comp. DNA).    
(D) Transcription of the soxS gene in vitro. Purified histidine-tagged SoxR proteins 
(250 nM) from E. coli (EC), P. aeruginosa (PA), or S. coelicolor (SC) were 
incubated with a plasmid containing the soxS and bla genes, E. coli σ70-RNA 
polymerase, and four ribonucleotide triphosphates for 15 min at 37°C.  The soxS 
and bla transcripts were quantified by primer extension analysis as described 
(Chander and Demple, 2004).  Reactions were electrophoresced on 8% 
polyacrylamide, 6 M urea gels and quantified on a Storm phosphorimager.  The bla 
gene is a SoxR-independent transcript and serves as a loading control.  The amount 
of soxS mRNA is reported as a percent of the amount obtained with E. coli SoxR. 
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TABLES 

Table 7. Primers used in Chapter 4 
 

Cloning Sequence (5’ - 3’) 
pET-F CGC GTC GAC TCA CTA TAG GGG AAT TGT G 
pET-R GCT TTG TTA GCA GCC G 
380F-Bam CCG CCG GAT CCG ACA TCA TAA CGG TTC TGG C 
380R-Bam GCA GAT CTG TCA TGA TG 
pmexG-F TAC CAA GCT TCT CGT GGC CAA CCA GAA TAG 
pmexG-R TTG CGA ATT CGT CGT TCCT TGT GCT GGT C 
 
PA Mutagenic* Sequence (5’ - 3’) 
PA-V64I AAG GTC GCC CAG CGG ATC GGC ATT CCC CTC G 

PA-R82H CCC TGC CGG CCG GGC ACA GCC CTA GCG CGG C 
PA-P84L CGG CCG GGC GCA GCC TTA GCG CGG CGG ACT G 
PA-A94S TGG GCG CGC CTG TCG TCG CAG TGG AAG GAG G 
PA-L125R GCG GCT GCC TGT CGC GCC AGG CCT GCC CGT TG 
PA-Q126S GGC TGC CTG TCG CTC TCG GCC TGC CCG TTG CG 
PA-A127D GCC TGT CGC TCC AGG ACT GCC CGT TGC GCA AC 
PA-RSD GCG GCT GCC TGT CGC GCT CGG ACT GCC CGT TGC GCA AC 

 
SCO Mutagenic* Sequence (5’ - 3’) 
SCO-S154stop GGA GCG CCG CGG CTG AAC CGC CAG GGG C 

 
qRT-PCR Sequence (5’ - 3’) Amplicon Size (bp) 
hrdB-F CAT GCG CTT CGG ACT CA hrdB 95 
hrdB-R ACT CGA TCT GGC GGA TG 
1178-F TCA AGG TCC GGC AGG TCT A SCO1178  82 
1178-R CCG TCC TCC TGC TTG GT 
2478-F GAG ATC ACC CCG AAA CTG G SCO2478 104 
2478-R AAG TGC CAG TCG ATG ACG TT 
4266-F GAT GGG CAT CCT CCA GTT C SCO4266  104 
4266-R CGT TCT TCG CGT ACT GCA C 
 
 
* Sequence of forward primers used to mutagenize P. aeruginosa and S. coelicolor soxR genes cloned in 

plasmid pSE380 using either Invitrogen’s GENEART site-directed mutagenesis kit (for P. aeruginosa) or 
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Stratagene QuikChange site-directed mutagenesis kit (for S. coelicolor). Underlined sequence indicates 

change from original nucleotide. Reverse primers are complementary to forward primers. 

 

Table 8. Redox drugs used in Chapter 4*  

Class Drug Structure Redox potential 
(mV) 

Viologen Paraquat (PQ) 

 

-440  
(Skeckhan and 
Kuwana, 1974) 

Viologen Diquat (DQ)  

 

-361 
(Steckhan and 
Kuwana, 1974) 

Phenazine Phenazine-1-carboxylic 
acid (PCA) 

 

-177 
(Price-Whelan et al., 

2006) 

Napthoquinone Plumbagin (PB)  -135 
(Hakura et al., 1994) 

Phenazine Pyocyanin (Pyo) 

 

-34 
(Friedheim and 

Michaelis, 1931) 

Phenothiazine Methylene blue (MB)  +11 
(Kamat et al. 1987) 

Quinoline 4-Nitroquinoline-N-
oxide (4NQO) 

 +74 
(Biaglow et al. 

1978) 

Phenazine Phenazine methosulfate 
(PMS) 

 +80 
(Moffet et al., 2003) 

Anthraquinone γ-Actinorhodin (Act) 

 

Unknown 
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* Drugs are arranged in order of increasing midpoint redox potential. The redox potentials are 

reported versus the normal hydrogen electrode (NHE).
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Table 9. Bacterial strains and plasmids used in Chapter 4 

Strain/plasmid             Genotype/description            Source/reference 
E. coli 

GC4468  K12 rpsL thi soxR+ soxS+   Greenberg et al. (1990) 
DJ901   ∆(soxRS) derivative of GC4468   Greenberg et al. (1990) 
EH46   DJ901 lysogenized with λ(soxS promoter-lacZ) Hidalgo and Demple (1997) 
EH86     DJ901 lysogenized with mutant soxS promoter mutant-lacZ)      Hidalgo and Demple (1997) 

 
P. aeruginosa 

PA14   Clinical isolate UCBPP-PA14       Rahme et al. (1995) 
PA14∆soxR  PA14 with a deletion in soxR   Dietrich et al. (2006) 
WTpmexgfp        PA14 with insert of mexG promoter fused to gfp reporter                This study 
∆soxRpmexgfp PA14∆soxR with insert of mexG promoter fused to gfp reporer This study 

 
S. coelicolor 

M145   SCP1-, SCP2-     Kieser et al. (2000) 
M145-1A  M145 with a deletion in soxR   Dela Cruz et al. (2010) 
M511   ∆actII-ORF4 derivative of M145  Floriano and Bibb (1996) 
M511∆soxR  ∆soxR derivative of M511   Dela Cruz et al. (2010) 

 
Plasmids 

pSE380                 trc promoter-containing plasmid with lacIq gene (Ampicillinr)      Invitrogen 
pSE380:H-ECO   N-terminally histidine-tagged E. coli soxR gene in pSE380      This study 
pSE380:H-PA   N-terminally histidine-tagged P. aeruginosa soxR gene in pSE380    This study 
pSE380:H-SCO   N-terminally histidine-tagged S. coelicolor soxR gene in pSE380      This study 
pSET152  Apramycinr lacZα MCS reppUC                    Bierman (1992) 
pSET152:H-SCO  N-terminally histidine-tagged S. coelicolor soxR gene in pSET152     This study 
pSET152:H-∆C    N-terminally histidine-tagged truncated S. coelicolor soxR gene        This study 
pUCp18 Carbenicillinr, Broas host vector                                                          Schweizer (1991) 
pUC:ECsoxR N-terminally histidine-tagged E. coli soxR gene in pUCp18           This study 
pUC:PAsoxR  N-terminally histidine-tagged P. aeruginosa soxR gene                 This study 
pYL122 Ampicillinr, rhlA-gfp transcription fusion in mini-CTX-lacZ             Lequette (2005) 
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Chapter 5. Conclusions and Future Directions 

Pseudomonas aeruginosa is an opportunistic pathogen that has the capacity to inhabit a variety 

of environments. One of the defining characteristics of P. aeruginosa is its ability to produce a 

class of redox-active molecules known as phenazines. Phenazines are multi-faceted molecules 

with a variety of biochemical properties. Recent research has found that phenazines are not only 

virulence factors but can also act as signaling molecules to aid in P. aeruginosa’s adaptation to 

its environment1,2,3. For example, phenazines modulate the development of multicellular 

communities known as biofilms4. Like many bacteria, P. aeruginosa forms biofilms in diverse 

environments. The formation of biofilms involves a concerted effort by billions of bacteria and 

the process involves many signaling molecules including phenazines. However, exactly how 

phenazines modulate biofilm formation has yet to be elucidated. 

In this work, we have investigated how phenazines affect biofilm development. It is well 

established that growth in a sessile biofilm is different from a planktonic environment and leads 

to global transcriptomic and proteomic changes5-7. I began by investigating how growth in the 

biofilm affected phenazine production when compared to growth in the planktonic environment. 

P. aeruginosa contains two redundant 7-gene operons that are responsible for phenazine 

production8. The role and regulation of phenazine production through one of the operons (phz1) 

has been studied in the planktonic environment9. The role and regulation of the second phenazine 

operon (phz2), however, had yet to be elucidated. We investigated the regulation of the phz2 

operon and its contribution to colony biofilm development in P. aeruginosa strain PA14. We 

found that phenazine production in biofilms is mediated exclusively through the phz2 operon, 

phz2 expression is required for biofilm development and host colonization and phz2 is regulated 
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by quinolones, which are prominent signaling molecules in P. aeruginosa’s QS system. We then 

investigated the roles of individual phenazines in colony development and the specificity of 

SoxR activation by redox-active molecules. We found that the effects of individual phenazines 

are not redundant and may be used in combination to modulate colony development (Chapter 3). 

SoxR is a transcription factor that is activated by redox-active molecules including 

phenazines3,10. Our investigations into SoxR specificity showed that SoxR activation in P. 

aeruginosa is tuned to specific redox potentials, which are similar to those of phenazines 

(Chapter 4). Together, these findings have expanded our knowledge about the role of phenazine 

production in biofilms. When biofilms form in the host, they enhance P. aeruginosa’s already 

heightened ability to resist antibiotics. This is thought to be due to the steric hindrance caused by 

the polysaccharides that compose the biofilm matrix as they prevent antibiotics from reaching 

the bacterial cells11. Elucidating the mechanism of how phenazines are regulated and how they 

modulate colony development may lead to new strategies for designing therapeutics that prevent 

biofilm maturation. 

One of the major questions we addressed in this work is how phenazine production is affected by 

growth in the biofilm environment. More specifically, we addressed the regulation of phz2 and 

its role in phenazine production. Previous work had established that the Pseudomonas quinolone 

signal (PQS) regulates the phz1 operon in the planktonic environment12,13. Due to the fact that 

the upstream regulatory elements between the phz1 and phz2 are different, we hypothesized that 

phenazine production and regulation may differ in an environment-dependent manner. We found 

that phz2 is responsible for all of the phenazine production in the colony and host environments. 

We also found that both PQS and its precursor 2-heptyl-4-quinolone (HHQ) regulate the phz2 

operon. Since production of PQS, but not HHQ, is oxygen-dependent, we hypothesize that the 
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HHQ/phz2 regulation may have evolved as an adaptation to allow for phenazine production 

under the micro- or anaerobic regions of the biofilm environment. These results suggest that the 

environment-dependent expression of the phz2 operon aids P. aeruginosa in adapting to its 

environment. It is tempting to speculate that the phenazine operons have been maintained in the 

P. aeruginosa genome based on their environment-specific activities. Further experiments are 

required to validate this hypothesis. First we need to address the expression of the phz2 operon in 

anaerobic environments. Using reporter constructs that function without oxygen, we will 

quantify the expression of phz2 in a spatial and temporal manner within biofilms. This will tell 

us if there is a difference in expression between aerobic and anaerobic zones. Another test of our 

hypothesis are fitness assays. For example, competition assays can be performed on agar plates 

or in lung infection models using our phenazine operon mutants.in co-culture with other bacteria. 

This will test if the second phenazine operon gives P. aeruginosa an advantage and allows it to 

thrive in the biofilm or host environments.  

Another major question we addressed is which phenazines are important for colony 

development. In other words, why does P. aeruginosa produce different phenazines? Previous 

work had established that phenazines are important for and may have distinct effects on colony 

development4. We found that phenazine-1-carboxamide (PCN) and 5-methylphenazium (5-

MCA) have synergistic effects and are both necessary for normal colony development. Based on 

our results, we propose that the functions of phenazines are governed by the different 

environmental niches present within biofilms. For example, the signaling and redox balancing 

properties of pyocyanin (PYO), whose production is oxygen-dependent, may be important in 

aerobic zones while the oxygen-independent phenazines PCN and 5-MCA may assert their 

functions in anaerobic zones. Based on our results, we hypothesize that PCN affects colony 
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morphology through redox balancing while 5-MCA may affect colony development through 

non-redox balancing properties such as signaling. However, more work needs to be done to 

validate our model. First, we need to confirm that 5-MCA is produced under anaerobic 

conditions. We could probe for the presence of 5-MCA in anaerobically grown planktonic 

cultures or create reporter constructs for PhzM and PhzH in order to visualize their localization 

using colony thin sections. The latter method would be performed using fluorescent probes that 

can function under anaerobic conditions. 

Our results suggest that the role of 5-MCA in colony development may not depend on its redox 

properties. 5-MCA is transformed by an unknown enzyme to produce the aeruginosins14,15. The 

aeruginosins are hydrophilic and difficult to isolate from P. aeruginosa cultures. Novel isolation 

techniques will be employed to accurately purify and quantitate 5-MCA. Once 5-MCA is 

isolated, we can investigate its properties including its potential role as a signaling factor. This 

can be investigated using DNA microarray analysis of cells that have been treated with 

exogenous 5-MCA, or by using mutants that are only able to produce 5-MCA.  

Lastly, we investigated how phenazines elicit a response that affects colony development. 

Phenazines are signaling molecules that affect the expression of genes involved in many cellular 

processes through several transcription factors3. The best-studied phenazine-dependent 

transcription factor is SoxR. In enterics, SoxR triggers a global stress response by sensing a 

broad spectrum of redox-cycling compounds16,17. In the non-enteric bacteria Pseudomonas 

aeruginosa and Streptomyces coelicolor, SoxR is activated by endogenous redox-active small 

molecules and only regulates a small set of genes3,18. We investigated the specificity of SoxR and 

its ability to respond to molecules with specific redox potentials. We found that while E. coli 
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SoxR is tuned to compounds that span a redox range of -450 to +80 mV, P. aeruginosa and S. 

coelicolor SoxR are less sensitive to molecules with redox potentials below -300 mV. Our 

findings give insight into the diversity of SoxR proteins with respect to their ability to sense 

redox-active compounds. They demonstrate how minor changes in the primary sequence can 

lead to the evolution of SoxR proteins with narrow- or broad-range sensing capacities. Future 

studies can be directed at elucidating the specific residues within the iron-sulfur core of SoxR 

that transduce the redox signals. Our results pointed to five residues that may be important for 

the functional interaction between DNA binding and response. Further mutagenesis studies of 

these residues and their counterparts in other species may help pinpoint the key residues needed 

for the conformational change in SoxR.  

In summary, Pseudomonas aeruginosa is a versatile bacterium that can inhabit diverse 

environments such as water, air, soil and host organisms. Phenazine production and formation of 

multi-cellular communities are two important aspects of its physiology that help this bacterium 

adapt to different environments. The work presented in this thesis represents novel and important 

findings towards an elucidation of the mechanism of phenazine regulation and function in the 

biofilm and host environments. The knowledge gained by these studies can be used as the basis 

for further investigation into P. aeruginosa community formation as well as the development of 

new therapeutics against P. aeruginosa infections.  
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