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ABSTRACT

Statistical inference in two non-standard

regression problems

Emilio Seijo

This thesis analyzes two regression models in which their respective least

squares estimators have nonstandard asymptotics. It is divided in an intro-

duction and two parts. The introduction motivates the study of nonstandard

problems and presents an outline of the contents of the remaining chapters.

In part I, the least squares estimator of a multivariate convex regression func-

tion is studied in great detail. The main contribution here is a proof of the

consistency of the aforementioned estimator in a completely nonparametric

setting. Model misspecification, local rates of convergence and multidimen-

sional regression models mixing convexity and componentwise monotonicity

constraints will also be considered. Part II deals with change-point regres-

sion models and the issues that might arise when applying the bootstrap to

these problems. The classical bootstrap is shown to be inconsistent on a sim-

ple change-point regression model, and an alternative (smoothed) bootstrap

procedure is proposed and proved to be consistent. The superiority of the al-

ternative method is also illustrated through a simulation study. In addition, a



version of the continuous mapping theorem specially suited for change-point

estimators is proved and used to derive the results concerning the bootstrap.
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Jos’é Blanchet, professor Zhiliang Ying, and professor Bodhisattva Sen. I

truly appreciate the time they took to read through my work.

I am also grateful to all my classmates and friends at Columbia. I

would like to acknowledge all the help that I received, especially during my

first couple of years in the Ph.D. program, from Tyler McCormick, Subhankar

Sadhukan, Johannes Ruf and Gerardo Hernández del Valle. My discussions

with them were always illustrative and taught me a lot about probability,

statistics and programming. I also want to recognize the work of all the staff

vii



at Columbia, and particularly Anthony Cruz and Dood Kalicharan. They

were an integral part of my success at Columbia.

I am thankful to professor Moulinath Banerjee, from the University of

Michigan, and Souvik Gosh. Their help was essential for the completion of

this work.

Last but not least, I want to thank my family and friends for all their

support. I am particularly grateful to my parents and Alejandra, for their

ever present support and advice.

viii



ix



1

Chapter 1

Introduction

This dissertation comprises the statistical analysis of two regression models.

The first of these is a regression problem in which the regressand is a convex

function of a possibly multidimensional regressor. The other one is the so-

called change-point regression problem, and it consists in estimating a jump

discontinuity (change-point) in an otherwise smooth curve. Though quite

different in nature, these problems share a common characteristic: both can

be solved with least squares estimation procedures which exhibit nonstandard

asymptotics.

A sequence of consistent estimators in a point estimation problem is

said to have nonstandard asymptotics if the estimators converge to a non-

Gaussian limiting distribution at a rate other than n−1/2. A trivial example

arises in the estimation of θ > 0 given a random sample from a Uniform(0, θ)

distribution. In this case, the maximum likelihood estimator (MLE), which is

the maximum of the sample, converges at rate n−1 to an Exponential (θ−1)

distribution. This problem does not satisfy the regularity conditions that are

usually assumed for MLE’s (see either Lehmann and Casella (1998) or van der

Vaart (1998)). Thus, the standard asymptotic theory of the parametric MLE
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does not apply and the result has to be deduced via direct calculations. De-

spite its simplicity, this problem illustrates the fact that nonstandard problems

require specially tailored solutions.

Nonstandard problems are frequently encountered outside the realm of

parametric statistical inference and some of them have been carefully studied

in the literature. For instance, Kim and Pollard (1990) show a family of

cube-root asymptotic problems arising from a wide array of applications while

Groeneboom et al. (2001) prove that the univariate least squares estimator in

convex regression exhibits nonstandard asymptotics (see Section 3.1) In this

context, this thesis presents an illustration of the issues that might arise in

nonstandard problems and the techniques that can be used to deal with them.

The first part of the thesis deals with multidimensional convex regres-

sion. This problem involves the estimation of a function with a multidimen-

sional argument subject to a shape-restriction (convexity). We will define the

least squares estimator in multiple dimensions, provide means for its compu-

tations, describe its finite sample properties and prove its strong consistency

(and that of its subdifferentials). This is one of the main contributions of this

thesis as it constitutes the first attempt to solve this problem in a completely

nonparametric setting.

In addition to the consistency of the least squares estimator in multidi-

mensional convex regression, we will treat some other topics regarding convex

function estimation. In Section 3.1 we describe the complete local asymp-

totic theory in the one-dimensional case, illustrating that convex regression

is a nonstandard problem. In Section 3.2 we will generalize the methods of

Chapter 2 to the case in which the regression function is known to be convex

and monotone in some subset of the coordinates of its argument. We will

argue that the least squares estimator is also consistent in this situation. In
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Section 3.3 we will describe some results regarding the behavior of the least

squares estimators under misspecified models. We will finish the first part

of the thesis by providing a conjecture about local rates of convergence for

the least squares estimator in the regular stochastic design convex regression

model in dimensions 2 and 3. Besides the conjecture itself, the methods used

in this section might be of independent interest. We will define a family of

“localizing” functions that can be used to analyze the local properties of the

least squares estimator. To the best of our knowledge, this thesis represents

the first attempt to achieve this in a multidimensional scenario.

In change-point regression problems one tries to estimate a jump-

discontinuity in an otherwise smooth function given a finite random sample.

Change-point estimators tend to have the following characteristics: they con-

verge at rate n−1; their asymptotic theory is related to two-sided compound

processes rather than to Gaussian processes; their limiting distributions have

too many nuisance parameters, some of them living in infinite-dimensional

spaces; despite being M-estimators, their asymptotic law cannot be deduced

from the classical argmax continuous mapping theorem; the classical boot-

strap yields inconsistent confidence intervals (for the concept of consistent

bootstrap procedures, see Section 5.2.1). The second part of this document

will illustrate all these properties of change-point problems and show ways to

deal with them.

As mentioned in the previous paragraph, one of the peculiarities of

change-point estimators is that they can usually be cast as M-estimators, but

the traditional argmax continuous mapping theorem (see Theorem 3.2.2 in

page 286 of van der Vaart and Wellner (1996)) cannot be used to derive their

limiting laws. This happens because, in the limit, they are maximizers of two-

sided compound Poisson processes which have multiple maximizers, almost



4

surely. To remedy this situation, we force change-point estimators to be the

smallest maximizers of their respective objective functions and then prove a

version of the continuous mapping theorem pertinent to the situation. We

carry this task in Chapter 4 and provide some examples in which the theorem

can be applied.

Other relevant properties of change-point problems are that their limit-

ing distributions depend on many nuisance parameters and that the classical

bootstrap yields inconsistent confidence intervals. As the classical bootstrap

is one of the most popular inferential techniques that avoid dealing with nui-

sance parameters, we carefully analyze this situation in Chapter 5. The failure

of the classical bootstrap in nonstandard problems has been documented in

several instances. For example, Bose and Chatterjee (2001), Abrevaya and

Huang (2005) and Sen et al. (2010) have documented failure of the classical

bootstrap in nonstandard, M-estimation problems (the former) and cube-root

asymptotic problems (the latter 2). In Section 5.4 we will argue that the two

most common bootstrap methods used in regression problems are inconsistent

in the simplest change-point regression problem. Subsequently, two consistent

methods for this problem will be provided in Section 5.5. While doing this,

we will prove a consistency theorem for triangular arrays of random variables

that might be of independent interest (see Proposition 5.3.3).

There are two main contributions of the analyses carried out in Chap-

ters 4 and 5. On the one hand, the continuous mapping theorem of Chapter

4 is a convergence result that can be applied to many situations involving

estimation of jump-discontinuities (see Li and Ling (2012) for an application

in the context of threshold autoregressive models). On the other hand, the

analysis of the consistency of the bootstrap schemes in Chapter 5 illustrates

that the classical bootstrap cannot be trusted in change-point problems (as it
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fails in the simplest of such problems), but that smoothed bootstrap schemes

are a consistent, easy-to-implement alternative. In addition, this work pro-

vides another instance of the inconsistency of the classical bootstrap in a

nonstandard situation.



Part I

Convex Regression

6
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Chapter 2

Multivariate Convex Regression

2.1 Least squares estimation of a multivariate

convex regression function

Consider a closed, convex set X ⊂ Rd, for d ≥ 1, with nonempty interior and

a regression model of the form

Y = φ(X) + ε (2.1)

where X is a X-valued random vector, ε is a random variable with E (ε |X ) =

0, and φ : Rd → R is an unknown convex function. Given independent

observations (X1, Y1), . . . , (Xn, Yn) from such a model, we wish to estimate φ

by the method of least squares, i.e., by finding a convex function φ̂n which

minimizes the discrete L2 norm(
n∑
k=1

|Yk − ψ(Xk)|2
) 1

2

among all convex functions ψ defined on the convex hull of X1, . . . , Xn. In

this paper we characterize the least squares estimator, provide means for its

computation, study its finite sample properties and prove its consistency.
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The problem just described is a nonparametric regression problem with

known shape restriction (convexity). Such problems have a long history in

the statistical literature with seminal papers like Brunk (1955), Grenander

(1956) and Hildreth (1954) written more than 50 years ago, albeit in sim-

pler settings. The former two papers deal with the estimation of monotone

functions while the latter discusses least squares estimation of a concave func-

tion whose domain is a subset of the real line. Since then, many results on

different nonparametric shape restricted regression problems have been pub-

lished. For instance, Brunk (1970) and, more recently, Zhang (2002) have

enriched the literature concerning isotonic regression. In the particular case

of convex regression, Hanson and Pledger (1976) proved the consistency of

the least squares estimator introduced in Hildreth (1954). Some years later,

Mammen (1991) and Groeneboom et al. (2001) derived, respectively, the rate

of convergence and asymptotic distribution of this estimator. Some alterna-

tive methods of estimation that combine shape restrictions with smoothness

assumptions have also been proposed for the one-dimensional case; see, for

example, Birke and Dette (2006) where a kernel-based estimator is defined

and its asymptotic distribution derived.

Although the asymptotic theory of the one-dimensional convex regres-

sion problem is well understood, not much has been done in the multidimen-

sional scenario. The absence of a natural order structure in Rd, for d > 1,

poses a natural impediment in such extensions. A convex function on the

real line can be characterized as an absolutely continuous function with in-

creasing first derivative (see, for instance, Folland (1999), Exercise 42.b, page

109). This characterization plays a key role in the computation and asymp-

totic theory of the least squares estimator in the one-dimensional case. By

contrast, analogous results for convex functions of several variables involve
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more complicated characterizations using either second-order conditions (as

in Dudley (1977), Theorem 3.1, page 163) or cyclical monotonicity (as in

Rockafellar (1970), Theorems 24.8 and 24.9, pages 238-239). Interesting dif-

ferences between convex functions on R and convex functions on Rd are given

in Johansen (1974) and Brons̆tĕın (1978).

Recently there has been considerable interest in shape restricted func-

tion estimation in multidimension. In the density estimation context, Cule

et al. (2010) deal with the computation of the nonparametric maximum like-

lihood estimator of a multidimensional log-concave density, while Cule and

Samworth (2010), Schuhmacher et al. (2009) and Schuhmacher and Dümbgen

(2010) discuss its consistency and related issues. Seregin and Wellner (2009)

study the computation and consistency of the maximum likelihood estimator

of convex-transformed densities. This paper focuses on estimating a regres-

sion function which is known to be convex. To the best of our knowledge this

is the first attempt to systematically study the characterization, computation,

and consistency of the least squares estimator of a convex regression function

with multidimensional covariates in a completely nonparametric setting.

In the field of econometrics some work has been done on this multidi-

mensional problem in less general contexts and with more stringent assump-

tions. Estimation of concave and/or componentwise nondecreasing functions

has been treated, for instance, in Banker and Maindiratta (1992), Matzkin

(1991), Matzkin (1993), Beresteanu (2007) and Allon et al. (2007). The first

two papers define maximum likelihood estimators in semiparametric settings.

The estimators in Matzkin (1991) and Banker and Maindiratta (1992) are

shown to be consistent in Matzkin (1991) and Maindiratta and Sarath (1997),

respectively. A maximum likelihood estimator and a sieved least squares es-

timator have been defined and techniques for their computation have been
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provided in Allon et al. (2007) and Beresteanu (2007), respectively.

The method of least squares has been applied to multidimensional con-

cave regression in Kuosmanen (2008). We take this work as our starting point.

In agreement with the techniques used there, we define a least squares estima-

tor which can be computed by solving a quadratic program. We argue that

this estimator can be evaluated at a single point by finding the solution to a

linear program. We then show that, under some mild regularity conditions,

our estimator can be used to consistently estimate both, the convex function

and its subdifferentials.

Our work goes beyond those mentioned above in the following ways:

Our method does not require any tuning parameter(s), which is a major

drawback for most nonparametric regression methods, such as kernel-based

procedures. The choice of the tuning parameter(s) is especially problematic

in higher dimensions, e.g., kernel based methods would require the choice of

a d × d matrix of bandwidths. The sets of assumptions that most authors

have used to study the estimation of a multidimensional convex regression

function are more restrictive and of a different nature than the ones in this

paper. As opposed to the maximum likelihood approach used in Banker and

Maindiratta (1992), Matzkin (1991), Allon et al. (2007) and Maindiratta and

Sarath (1997), we prove the consistency of the estimator keeping the distri-

bution of the errors unspecified; e.g., in the i.i.d. case we only assume that

the errors have zero expectation and finite second moment. The estimators in

Beresteanu (2007) are sieved least squares estimators and assume that the ob-

served values of the predictors lie on equidistant grids of rectangular domains.

By contrast, our estimators are unsieved and our assumptions on the spatial

arrangement of the predictor values are much more relaxed. In fact, we prove

the consistency of the least squares estimator under both fixed and stochastic
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design settings; we also allow for heteroscedastic errors. In addition, we show

that the least squares estimator can also be used to approximate the gradients

and subdifferentials of the underlying convex function.

It is hard to overstate the importance of convex functions in applied

mathematics. For instance, optimization problems with convex objective

functions over convex sets appear in many applications. Thus, the question of

accurately estimating a convex regression function is indeed interesting from

a theoretical perspective. However, it turns out that convex regression is

important for numerous reasons besides statistical curiosity. Convexity also

appears in many applied sciences. One such field of application is microe-

conomic theory. Production functions are often supposed to be concave and

componentwise nondecreasing. In this context, concavity reflects decreasing

marginal returns. Concavity also plays a role in the theory of rational choice

since it is a common assumption for utility functions, on which it represents

decreasing marginal utility. The interested reader can see Hildreth (1954),

Varian (1982a) or Varian (1982b) for more information regarding the impor-

tance of concavity/convexity in economic theory.

This chapter is organized as follows. In Section 2.2 we discuss the

estimation procedure, characterize the estimator and show how it can be

computed by solving a positive semidefinite quadratic program and a lin-

ear program. Section 2.3 starts with a description of the deterministic and

stochastic design regression schemes. The statement and proof of our main

results are also included in Section 2.3. In Section 2.4 we provide the proofs of

the technical lemmas used to prove the main theorem. The appendix contains

some auxiliary results from convex analysis and linear algebra that might be

of independent interest.
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2.2 Characterization and finite sample prop-

erties

We start with some notation. For convenience, we will regard elements of the

Euclidian space Rm as column vectors and denote their components with up-

per indices, i.e, any z ∈ Rm will be denoted as z = (z1, z2, . . . , zm). The sym-

bol R will stand for the extended real line. Additionally, for any set A ⊂ Rd

we will denoted as Conv (A) its convex hull and we’ll write Conv (X1, . . . , Xn)

instead of Conv ({X1, . . . , Xn}). Finally, we will use 〈·, ·〉 and | · | to denote

the standard inner product and norm in Euclidian spaces, respectively.

For X = {X1, . . . , Xn} ⊂ X ⊂ Rd, consider the set KX of all vectors

z = (z1, . . . , zn)′ ∈ Rn for which there is a convex function ψ : X → R

such that ψ(Xj) = zj for all j = 1, . . . , n. Then, a necessary and sufficient

condition for a convex function ψ to minimize the sum of squared errors is

that ψ(Xj) = Zj
n for j = 1, . . . , n, where

Zn = argmin
z∈KX

{
n∑
k=1

∣∣Yk − zk∣∣2} . (2.2)

The computation of the vector Zn is crucial for the estimation proce-

dure. We will show that such a vector exists and is unique. However, it should

be noted that there are many convex functions ψ satisfying ψ(Xj) = Zj
n for

all j = 1, . . . , n. Although any of these functions can play the role of the

least squares estimator, there is one such function which is easily evaluated in

Conv (X1, . . . , Xn). For computational convenience, we will define our least

squares estimator φ̂n to be precisely this function and describe it explicitly in

(2.7) and the subsequent discussion.

In what follows we show that both, the vector Zn and the least squares

estimator φ̂n are well-defined for any n data points (X1, Y1), . . . , (Xn, Yn). We
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will also provide two characterizations of the set KX and show that the vector

Zn can be computed by solving a positive semidefinite quadratic program.

Finally, we will prove that for any x ∈ Conv (X1, . . . , Xn) one can obtain

φ̂n(x) by solving a linear program.

2.2.1 Existence and uniqueness

We start with two characterizations of the set KX . The developments here

are similar to those in Allon et al. (2007) and Kuosmanen (2008).

Lemma 2.2.1 (Primal Characterization) Let z = (z1, . . . , zn) ∈ Rn. Then,

z ∈ KX if and only if for every j = 1, . . . , n, the following holds:

zj = inf

{
n∑
k=1

θkzk :
n∑
k=1

θk = 1,
n∑
k=1

θkXk = Xj, θ ≥ 0, θ ∈ Rn

}
, (2.3)

where the inequality θ ≥ 0 holds componentwise.

Proof: Define the function g : Rd → R by

g(x) = inf

{
n∑
k=1

θkzk :
n∑
k=1

θk = 1,
n∑
k=1

θkXk = x, θ ≥ 0, θ ∈ Rn

}
(2.4)

where we use the convention that inf(∅) = +∞. By Lemma A.0.6 in the

Appendix, g is convex and finite on the Xj’s. Hence, if zj satisfies (2.3) then

zj = g(Xj) for every j = 1, . . . , n and it follows that z ∈ KX .

Conversely, assume that z ∈ KX and g(Xj) 6= zj for some j. Note that

g(Xk) ≤ zk for any k from the definition of g. Thus, we may suppose that

g(Xj) < zj. As z ∈ KX , there is a convex function ψ such that ψ(Xk) = zk

for all k = 1, . . . , n. Then, from the definition of g(Xj) there exist θ0 ∈ Rn

with θ0 ≥ 0 and θ1
0 + . . .+ θn0 = 1 such that θ1

0X1 + . . .+ θn0Xn = Xj and

n∑
k=1

θk0ψ(Xk) =
n∑
k=1

θk0z
k < zj = ψ(Xj) = ψ

(
n∑
k=1

θk0Xk

)
,
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which leads to a contradiction because ψ is convex. �

We now provide an alternative characterization of the set KX based on

the dual problem to the linear program used in Lemma 2.2.1.

Lemma 2.2.2 (Dual Characterization) Let z ∈ Rn. Then, z ∈ KX if and

only if for any j = 1, . . . , n we have

zj = sup
{
〈ξ,Xj〉+ η : 〈ξ,Xk〉+ η ≤ zk ∀ k = 1, . . . , n, ξ ∈ Rd, η ∈ R

}
. (2.5)

Moreover, z ∈ KX if and only if there exist vectors ξ1, . . . , ξn ∈ Rd such that

〈ξj, Xk −Xj〉 ≤ zk − zj ∀ k, j ∈ {1, . . . , n}. (2.6)

Proof: According to the primal characterization, z ∈ KX if and only if the

linear programs defined by (2.3) have the zj’s as optimal values. The linear

programs in (2.5) are the dual problems to those in (2.3). Then, the duality

theorem for linear programs (see Luenberger (1984), page 89) implies that the

zj’s have to be the corresponding optimal values to the programs in (2.5).

To prove the second assertion let us first assume that z ∈ KX . For

each j ∈ {1, . . . , n} take any solution (ξj, ηj) to (2.5). Then by (2.5), ηj =

zj−〈ξj, Xj〉 and the inequalities in (2.6) follow immediately because we must

have 〈ξj, Xk〉+ηj ≤ zk for any k ∈ {1, . . . , n}. Conversely, take z ∈ Rn and as-

sume that there are ξ1, . . . , ξn ∈ Rd satisfying (2.6). Take any j ∈ {1, . . . , n},

ηj = zj − 〈ξj, Xj〉 and θ to be the vector in Rn with components θk = δkj,

where δkj is the Kronecker δ. It follows that 〈ξj, Xk〉+ ηj ≤ zk ∀ k = 1, . . . , n

so (ξj, ηj) is feasible for the linear program in (2.5). In addition, θ is feasible

for the linear program in (2.3) so the weak duality principle of linear program-

ming (see Luenberger (1984), Lemma 1, page 89) implies that 〈ξ,Xj〉+η ≤ zj

for any pair (ξ, η) which is feasible for the problem in the right-hand side of
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(2.5). We thus have that zj is an upper bound attained by the feasible pair

(ξj, ηj) and hence (2.5) holds for all j = 1, . . . , n. �

Both, the primal and dual characterizations are useful for our purposes.

The primal plays a key role in proving the existence and uniqueness of the

least squares estimator. The dual is crucial for its computation.

Lemma 2.2.3 The set KX is a closed, convex cone in Rn and the vector Zn

satisfying (2.2) is uniquely defined.

Proof: That KX is a convex cone follows trivially from the definition of the

set. Now, if z /∈ KX , then there is j ∈ {1, . . . , n} for which zj > g(Xj) with

the function g defined as in (2.4). Thus, there is θ0 ∈ Rn with θ0 ≥ 0 and

θ1
0+. . .+θn0 = 1 such that θ1

0X1+. . .+θn0Xn = Xj and
∑n

k=1 θ
k
0z

k < zj. Setting

δ = 1
2

(
zj −

∑n
k=1 θ

k
0z

k
)

it is easily seen that for all ζ ∈
∏n

k=1(zk − δ, zk + δ)

we still have
∑n

k=1 θ
k
0ζ

k < ζj and thus ζ /∈ KX . Therefore we have shown that

for any z /∈ KX there is a neighborhood U of z with U ⊂ Rn \KX . Therefore,

KX is closed and the vector Zn is uniquely determined as the projection of

(Y1, . . . , Yn) ∈ Rn onto the closed convex set KX (see Conway (1985), Theo-

rem 2.5, page 9). �

We are now in a position to define the least squares estimator. Given

observations (X1, Y1), . . . , (Xn, Yn) from model (2.1), we take the nonpara-

metric least squares estimator to be the function φ̂n : Rd → R defined by

φ̂n (x) = inf

{
n∑
k=1

θkZk
n :

n∑
k=1

θk = 1,
n∑
k=1

θkXk = x, θ ≥ 0, θ ∈ Rn

}
(2.7)

for any x ∈ Rd. Here we are taking the convention that inf(∅) = +∞. This

function is well-defined because the vector Zn exists and is unique for the
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sample. The estimator is, in fact, a polyhedral convex function (i.e., a convex

function whose epigraph is a polyhedral; see Rockafellar (1970), page 172)

and satisfies, as a consequence of Lemma A.0.6,

φ̂n(x) = sup
ψ∈KX ,Zn

{ψ(x)},

where KX ,Zn is the collection of all convex functions ψ : Rd → R such that

ψ(Xj) ≤ Zj
n for all j = 1, . . . , n. Thus, φ̂n is the largest convex function that

never exceeds the Zj
n’s. It is immediate that φ̂n is indeed a convex function (as

the supremum of any family of convex functions is itself convex). The primal

characterization of the set KX implies that φ̂n(Xj) = Zj
n for all j = 1, . . . , n.

2.2.2 Finite sample properties

In the following lemma we state some of the most important finite sample

properties of the least squares estimator defined by (2.7).

Lemma 2.2.4 Let φ̂n be the least squares estimator obtained from the sample

(X1, Y1), . . . , (Xn, Yn). Then,

(i)
n∑
k=1

(ψ(Xk)− φ̂n(Xk))(Yk− φ̂n(Xk)) ≤ 0 for any convex function ψ which

is finite on Conv (X1, . . . , Xn);

(ii)
n∑
k=1

φ̂n(Xk)(Yk − φ̂n(Xk)) = 0;

(iii)
n∑
k=1

Yk =
n∑
k=1

φ̂n(Xk);

(iv) the set on which φ̂n <∞ is Conv (X1, . . . , Xn);

(v) for any x ∈ Rd the map (X1, . . . , Xn, Y1, . . . , Yn) 7→ φ̂n(x) is a Borel-

measurable function from Rn(d+1) into R.



17

Proof: Property (i) follows from Moreau’s decomposition theorem, which

can be stated as:

Consider a closed convex set C on a Hilbert space H with inner product 〈·, ·〉

and norm ‖·‖. Then, for any x ∈ H there is only one vector xC ∈ C satisfying

‖x− xC‖ = argminξ∈C{‖x− ξ‖}. The vector xC is characterized by being the

only element of C for which the inequality 〈ξ−xC, x−xC〉 ≤ 0 holds for every

ξ ∈ C (see Moreau (1962) or Song and Zhengjun (2004)).

Taking ψ to be κφ̂n and letting κ vary through (0,∞) gives (ii) from

(i). Similarly, (iii) follows from (i) by letting ψ to be φ̂n ± 1. Property (iv)

is obvious from the definition of φ̂n.

To see why (v) holds, we first argue that the map (X1, . . . , Xn, Y1,

. . . , Yn) 7→ Zn is measurable. This follows from the fact that Zn is the so-

lution to a convex quadratic program and thus can be found as a limit of

sequences whose elements come from arithmetic operations with (X1, . . . , Xn,

Y1, . . . , Yn). Examples of such sequences are the ones produced by active set

methods, e.g, see Boland (1997); or by interior-point methods (see Kapoor

and Vaidya (1986) or Mehrotra and Sun (1990)). The measurability of φ̂n(x)

follows from a similar argument, since it is the optimal value of a linear pro-

gram whose solution can be obtained from arithmetic operations involving just

(X1, . . . , Xn, Y1, . . . , Yn) and Zn (e.g., via the well-known simplex method; see

Nocedal and Wright (1999), page 372 or Luenberger (1984), page 30). �

2.2.3 Computation of the estimator

Once the vector Zn defined in (2.2) has been obtained, the evaluation of φ̂n at a

single point x can be carried out by solving the linear program in (2.7). Thus,

we need to find a way to compute Zn. And here the dual characterization
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proves of vital importance, since it allows us to compute Zn by solving a

quadratic program.

Lemma 2.2.5 Consider the positive semidefinite quadratic program

min
∑n

k=1 |Yk − zk|2

subject to 〈ξk, Xj −Xk〉 ≤ zj − zk ∀ k, j = 1, . . . , n

ξ1, . . . , ξn ∈ Rd, z ∈ Rn.

(2.8)

Then, this program has a unique solution Zn in z, i.e., for any two solutions

(ξ1, . . . , ξn, z) and (τ1, . . . , τn, ζ) we have z = ζ = Zn. This solution Zn is the

only vector in Rn which satisfies (2.2).

Proof: From Lemma 2.2.2 if (ξ1, . . . , ξn, z) belongs in the feasible set of this

program, then z ∈ KX . Moreover, for any z ∈ KX there are ξ1, . . . , ξn ∈ Rd

such that (ξ1, . . . , ξn, z) belongs to the feasible set of the quadratic program.

Since the objective function only depends on z, solving the quadratic pro-

gram is the same as getting the element of KX which is the closest to Y . This

element is, of course, the uniquely defined Zn satisfying (2.2). �

The quadratic program (2.8) is positive semidefinite. This implies certain

computational complexities, but most modern nonlinear programming solvers

can handle this type of optimization problems. Some examples of high-

performance quadratic programming solvers are CPLEX, LINDO,

MOSEK and QPOPT. Here we present two simulated examples to illustrate

the computation of the estimator when d = 2. The first one, depicted in

Figure 2.1a corresponds to the case where φ(x) = |x|2. Figure 2.1b shows

the convex function estimator when the regression function is the hyperplane

φ(x) = −x1 + x2. In both cases, n = 256 observations were used and the

errors were assumed to be i.i.d. from the standard normal distribution. All

the computations were carried out using the MOSEK optimization toolbox
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Figure 2.1: The scatter plot and nonparametric least squares estimator of

the convex regression function when (a) φ(x) = |x|2 (left panel); (b) φ(x) =

−x1 + x2 (right panel).

for Matlab and the run time for each example was less than 2 minutes in

a standard desktop PC. We refer the reader to Kuosmanen (2008) for addi-

tional numerical examples (although the examples there are for the estimation

of concave, componentwise nondecreasing functions, the computational com-

plexities are the same).

2.3 Consistency of the least squares estimator

The main goal of this paper is to show that in an appropriate setting the

nonparametric least squares estimator φ̂n described above is consistent for

estimating the convex function φ on the set X. In this context, we will prove

the consistency of φ̂n in both, fixed and stochastic design regression settings.

Before proceeding any further we would like to introduce some nota-

tion. For any Borel set X ⊂ Rd we will denote by BX the σ-algebra of Borel

subsets of X. Given a sequence of events (An)∞n=1 we will be using the notation
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[An i.o.] and [An a.a.] to denote limAn and limAn, respectively.

Now, consider a convex function f : Rd → R. This function is said

to be proper if f(x) > −∞ for every x ∈ Rd. The effective domain of f ,

denoted by dom(f), is the set of points x ∈ Rd for which f(x) < ∞. The

subdifferential of f at a point x ∈ Rd is the set ∂f(x) ⊂ Rd of all vectors ξ

satisfying the inequality

〈ξ, h〉 ≤ f(x+ h)− f(x) ∀ h ∈ Rd.

The elements of ∂f(x) are called subgradients of f at x (see Rockafellar

(1970)). For a set A ⊂ Rd we denote by A◦, A and ∂A its interior, closure and

boundary, respectively. We write Ext(A) = Rd \ A for the exterior of the set

A and diam(A) := supx,y∈A |x−y| for the diameter of A. We also use the sup-

norm notation, i.e., for a function g : Rd → R we write ‖g‖A = supx∈A |g(x)|.

To avoid measurability issues regarding some sets, specially those in-

volving the random set-valued functions {∂φ̂n(x)}x∈X◦ , we will use the symbols

P∗ and P∗ to denote inner and outer probabilities, respectively. We refer the

reader to van der Vaart and Wellner (1996), pages 6-15, for the basic prop-

erties of inner and outer probabilities. In this context, a sequence of (not

necessarily measurable) functions (Ψn)∞n=1 from a probability space (Ω,F ,P)

into R is said to converge to a function Ψ almost surely (see van der Vaart

and Wellner (1996), Definition 1.9.1-(iv), page 52), written Ψn
a.s.−→ Ψ, if

P∗ (Ψn → Ψ) = 1. We will use the standard notation P (A) for the probabil-

ities of all events A whose measurability can be easily inferred from the mea-

surability of the random variables {φ̂n(x)}x∈X, established in Lemma 2.2.4.

Our main theorems hold for both, fixed and stochastic design schemes,

and the proofs are very similar. They differ only in minor steps. Therefore,

for the sake of simplicity, we will denote the observed values of the regressor

variables always with the capital letters Xn. For any Borel set X ⊂ Rd, we



21

write

Nn(X) = #{1 ≤ j ≤ n : Xj ∈ X}.

The quantities Xn and Nn(X) are non-random under the fixed design but

random under the stochastic one.

2.3.1 Fixed Design

In a “fixed design” regression setting we assume that the regressor values are

non-random and that all the uncertainty in the model comes from the response

variable. We will now list a set of assumptions for this type of design. The

one-dimensional case has been proven, under different regularity conditions,

in Hanson and Pledger (1976).

(A1) We assume that we have a sequence (Xn, Yn)∞n=1 satisfying

Yk = φ(Xk) + εk

where (εn)∞n=1 is an i.i.d. sequence with E (εj) = 0, E
(
ε2j
)

= σ2 < ∞

and φ : Rd → R is a proper convex function.

(A2) The non-random sequence (Xn)∞n=1 is contained in a closed, convex set

X ⊂ Rd with X◦ 6= ∅ and X ⊂ dom(φ).

(A3) We assume the existence of a Borel measure ν on X satisfying:

(i) {X ∈ BX : ν(X) = 0} = {X ∈ BX : X has Lebesgue measure 0}.

(ii) 1
n
Nn(X)→ ν(X) for any open rectangle X ⊂ X◦.

Condition (A1) may be replaced by the following:
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(A4) We assume that we have a sequence (Xn, Yn)∞n=1 satisfying

Yk = φ(Xk) + εk

where φ : Rd → R is a proper convex function and (εn)∞n=1 is an inde-

pendent sequence of random variables satisfying

(i) E (εn) = 0 ∀ n ∈ N and lim 1
n

∑n
k=1 E (|εk|) > 0.

(ii)
∑∞

n=1

Var(ε2n)
n2 <∞.

(iii) supn∈N{E (ε2n)} <∞.

Under these conditions we define σ2 := limn→∞
1
n

∑n
j=1 E

(
ε2j
)
.

The raison d’etre of condition (A4) is to allow the variance of the error terms

to depend on the regressors. We make the distinction between (A1) and (A4)

because in the case of i.i.d. errors it is enough to require a finite second

moment to ensure consistency.

2.3.2 Stochastic Design

In this setting we assume that (Xn, Yn)∞n=1 is an i.i.d. sequence from some

Borel probability measure µ on Rd+1. Here we make the following assumptions

on the measure µ:

(A5) There is a closed, convex set X ⊂ Rd with X◦ 6= ∅ such that µ(X×R) =

1. Also,∫
X×R

y2µ(dx, dy) <∞.

(A6) There is a proper convex function φ : Rd → R with X ⊂ dom(φ)

such that whenever (X, Y ) ∼ µ we have E (Y − φ(X)|X) = 0 and

E (|Y − φ(X)|2) = σ2 <∞. Thus, φ is the regression function.
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(A7) Denoting by ν(·) = µ((·)× R) the x-marginal of µ, we assume that

{X ∈ BX : ν(X) = 0} = {X ∈ BX : X has Lebesgue measure 0}.

We wish to point out some conclusions that one can draw from these

assumptions. Consider the class of functions

Kν :=

{
ψ : Rd → R | ψ is convex with

∫
|ψ(x)|2ν(dx) <∞

}
.

Then for any X ⊂ X the following holds∫
X×R

ψ(x)(y − φ(x))µ(dx, dy) = 0 ∀ψ ∈ Kµ;

so we get that φ is in fact the element of Kµ which is the closest to Y in the

Hilbert space L2(X × R,BX×R, µ). This follows from Moreau’s decomposition

theorem (see the proof of Lemma 2.2.4).

Additionally, conditions {A5-A7} allow for stochastic dependency be-

tween the error variable Y − φ(X) and the regressor X. Although some level

of dependency can be put to satisfy conditions {A2-A4}, the measure µ al-

lows us to take into account some cases which wouldn’t fit in the fixed design

setting (even by conditioning on the regressors).

2.3.3 Main results

We can now state the two main results of this paper. The first result shows

that assuming only the convexity of φ, the least squares estimator can be used

to consistently estimate both φ and its subdifferentials ∂φ(x).

Theorem 2.3.1 Under any of {A1-A3}, {A2-A4} or {A5-A7} we have,

(i) P

(
sup
x∈X
{|φ̂n(x)− φ(x)|} → 0 for any compact set X ⊂ X◦

)
= 1.
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(ii) For every x ∈ X◦ and every ξ ∈ Rd

lim
n→∞

lim
h↓0

φ̂n(x+ hξ)− φ̂n(x)

h
≤ lim

h↓0

φ(x+ hξ)− φ(x)

h
almost surely.

(iii) Denoting by B the unit ball (w.r.t. the Euclidian norm) we have

P∗

(
∂φ̂n(x) ⊂ ∂φ(x) + εB a.a.

)
= 1 ∀ ε > 0, ∀ x ∈ X◦.

(iv) If φ is differentiable at x ∈ X◦, then

sup
ξ∈∂φ̂n(x)

{|ξ −∇φ(x)|} a.s.−→ 0.

Our second result states that assuming differentiability of φ on the entire X◦

allows us to use the subdifferentials of the least squares estimator to consis-

tently estimate ∇φ uniformly on compact subsets of X◦.

Theorem 2.3.2 If φ is differentiable on X◦, then under any of {A1-A3},

{A2-A4} or {A5-A7} we have,

P∗

 sup
ξ∈∂φ̂n(x)
x∈X

{|ξ −∇φ(x)|} → 0 for any compact set X ⊂ X◦

 = 1.

2.3.4 Proof of the main results

Before embarking on the proofs, one must notice that there are some state-

ments which hold true under any of {A1-A3}, {A2-A4} or {A5-A7}. We list

the most important ones below, since they’ll be used later.

• For any set X ⊂ X we have

Nn(X)

n

a.s.−→ ν(X). (2.9)
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• The strong law of large numbers implies that for any Borel set X ⊂ X

with positive Lebesgue measure we have

1

Nn(X)

∑
Xk∈X

1≤k≤n

(Yk − φ(Xk))
a.s.−→ 0 (2.10)

and also

lim
n→∞

1

n

∑
1≤k≤n

(Yk − φ(Xk))
2 = σ2 a.s. (2.11)

We would like to point out that in the case of condition A4, A4-(iii)

allows us to obtain (2.10) from an application of a version of the strong

law of large number for uncorrelated random variables, as it appears

in Chung (2001), page 108, Theorem 5.1.2. Similarly, condition A4-(ii)

implies that we can apply a version the strong law of large numbers

for independent random variables as in Williams (1991), Lemma 12.8,

page 118 or in Folland (1999), Theorem 10.12, page 322 to obtain (2.11).

• For any Borel subset X ⊂ X with positive Lebesgue measure,

#{n ∈ N : Xn ∈ X} a.s.−→ +∞ (2.12)

Proof of Theorem 2.3.1. We will only make distinctions among the

design schemes in the proof if we are using any property besides (2.9), (2.10),

(2.11) or (2.12). For the sake of clarity, we divide the proof in steps.

Step I: We start by showing that for any set with positive Lebesgue measure

there is a uniform band around the regression function (over that set) such

that φ̂n comes within the band at least at one point for all but finitely many

n’s. This fact is stated in the following lemma (proved in Section 2.4.1).
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Lemma 2.3.1 For any set X ⊂ X with positive Lebesgue measure we have,

P
(

inf
x∈X

{
|φ̂n(x)− φ(x)|

}
≥M i.o.

)
= 0 ∀ M >

σ√
ν(X)

.

Step II: The idea is now to use the convexity of both, φ and φ̂n, to show

that the previous result in fact implies that the sup-norm of φ̂n is uniformly

bounded on compact subsets of X◦. We achieve this goal in the following two

lemmas (whose proofs are given in Sections 2.4.2 and 2.4.3 respectively).

Lemma 2.3.2 Let X ⊂ X◦ be compact with positive Lebesgue measure. Then,

there is a positive real number KX such that

P
(

inf
x∈X
{φ̂n(x)} < −KX i.o.

)
= 0.

Lemma 2.3.3 Let X ⊂ X◦ be a compact set with positive Lebesgue measure.

Then, there is KX > 0 such that

P

(
sup
x∈X
{φ̂n(x)} ≥ KX i.o.

)
= 0.

Step III: Convex functions are determined by their subdifferential mappings

(see Rockafellar (1970), Theorem 24.9, page 239). Moreover, having a uniform

upper bound KX for the norms of all the subgradients over a compact region

X imposes a Lipschitz continuity condition on the convex function over X (see

Rockafellar (1970), Theorem 24.7, page 237); the Lipschitz constant being

KX. For these reasons, it is important to have a uniform upper bound on the

norms of the subgradients of φ̂n on compact regions. The following lemma

(proved in Section 2.4.4) states that this can be achieved.

Lemma 2.3.4 Let X ⊂ X◦ be a compact set with positive Lebesgue measure.

Then, there is KX > 0 such that

P∗

 sup
ξ∈∂φ̂n(x)
x∈X

{|ξ|} > KX i.o.

 = 0.
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Step IV: For the next results we need to introduce some further notation.

We will denote by µn the empirical measure defined on Rd+1 by the sample

(X1, Y1), . . . , (Xn, Yn). In agreement with van der Vaart and Wellner (1996),

given a class of functions G on D ⊂ Rd+1, a seminorm ‖·‖ on some space

containing G and ε > 0 we denote by N(ε,G, ‖ · ‖) the ε covering number of

G with respect to ‖ · ‖.

Although Lemmas 2.3.5 and 2.3.7 may seem unrelated to what has

been done so far, they are crucial for the further developments. Lemma 3.5

(proved in Section 2.4.5) shows that the class of convex functions is not very

complex in terms of entropy. Lemma 2.3.7 is a uniform version of the strong

law of large numbers which proves vital in the proof of Lemma 2.3.8.

Lemma 2.3.5 Let X ⊂ X◦ be a compact rectangle with positive Lebesgue

measure. For K > 0 consider the class GK,X of all functions of the form

ψ(X)(Y − φ(X))1X(X) where ψ ranges over the class DK,X of all proper con-

vex functions which satisfy

(a) ‖ψ‖X ≤ K;

(b)
⋃

ξ∈∂ψ(x)
x∈X

{ξ} ⊂ [−K,K]d.

Then, for any ε > 0 we have

lim
n→∞

N(ε,GK,X,L1(X× R, µn)) <∞ almost surely,

and there is a positive constant Aε <∞, depending only on (X1, . . . , Xn), K

and X, such that the covering numbers N( ε
n

∑n
j=1 |Yj − φ(Xj)|,GK,X,L1(X ×

R, µn)) are bounded above by Aε, for all n ∈ N, almost surely.

The proofs of Lemmas 2.3.7 and 2.3.8 (given in Sections 2.4.7 and 2.4.8 re-

spectively) are the only parts in the whole proof where we must treat the
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different design schemes separately. To make the argument work, a small

lemma (proved in Section 2.4.6) for the set of conditions {A2-A4} is required.

We include it here for the sake of completeness and to point out the difference

between the schemes.

Lemma 2.3.6 Consider the set of conditions {A2-A4} and a subsequence

(nk)
∞
k=1 such that

lim
k→∞

1

nk

nk∑
j=1

E
(
ε2j
)

= σ2.

Let (Xm)∞m=1 be a an increasing sequence of compact subsets of X satisfying

ν(Xm)→ 1. Then,

lim
m→∞

lim
k→∞

1

nk

∑
{1≤j≤nk:Xj∈Xm}

E
(
ε2j
)

= σ2.

We are now ready to state the key result on the uniform law of large numbers.

Lemma 2.3.7 Consider the notation of Lemma 2.3.5 and let X ⊂ X◦ be any

finite union of compact rectangles with positive Lebesgue measure. Then,

sup
ψ∈DK,X


∣∣∣∣∣∣ 1n

∑
{1≤j≤n:Xj∈X}

ψ(Xj)(Yj − φ(Xj))

∣∣∣∣∣∣
 a.s.−→ 0.

Step V: With the aid of all the results proved up to this point, it is now

possible to show that Lemma 2.3.1 is in fact true if we replace M by an

arbitrarily small η > 0. The proof of the following lemma is given in Section

2.4.8.

Lemma 2.3.8 Let X ⊂ X◦ be any compact set with positive Lebesgue measure.

Then,

(i) P
(

inf
x∈X
{φ(x)− φ̂n(x)} ≥ η i.o.

)
= 0 ∀ η > 0,
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(ii) P

(
sup
x∈X
{φ(x)− φ̂n(x)} ≤ −η i.o.

)
= 0 ∀ η > 0.

Step VI: Combining the last lemma with the fact that we have a uniform

bound on the norms of the subgradients on compacts, we can state and prove

the consistency result on compacts. This is done in the next lemma (proof

included in Section 2.4.9).

Lemma 2.3.9 Let X ⊂ X◦ be a compact set with positive Lebesgue measure.

Then,

(i) P
(

inf
x∈X
{φ̂n(x)− φ(x)} < −η i.o.

)
= 0 ∀ η > 0,

(ii) P

(
sup
x∈X
{φ̂n(x)− φ(x)} > η i.o.

)
= 0 ∀ η > 0,

(iii) sup
x∈X
{|φ̂n(x)− φ(x)|} a.s.−→ 0.

Step VII: We can now complete the proof of Theorem 2.3.1. Consider the

class C of all open rectangles R such that R ⊂ X◦ and whose vertices have

rational coordinates. Then, C is countable and
⋃
R∈CR = X◦. Observe that

Lemmas 2.3.2 and 2.3.3 imply that for any finite union A := R1 ∪ · · · ∪ Rm

of open rectangles R1, . . . ,Rm ∈ C there is, with probability one, n0 ∈ N

such that the sequence (φ̂n)∞n=n0
is finite on Conv (A). From Lemma 2.3.9

we know that the least squares estimator converges at all rational points in

X◦ with probability one. Then, Theorem 10.8, page 90 of Rockafellar (1970)

implies that (i) holds if X◦ is replaced by the convex hull of a finite union

of rectangles belonging to C. Since there are countably many of such unions

and any compact subset of X◦ is contained in one of those unions, we see that

(i) holds. An application of Theorem 24.5, page 233 of Rockafellar (1970) on

an open rectangle C containing x and satisfying C ⊂ X◦ gives (ii) and (iii).

Note that (iv) is a consequence of (iii). �
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Proof of Theorem 2.3.2. To prove the desired result we need the follow-

ing lemma (whose proof is provided in Section 2.4.10) from convex analysis.

The result is an extension of Theorem 25.7, page 248 of Rockafellar (1970),

and might be of independent interest.

Lemma 2.3.10 Let C ⊂ Rd be an open, convex set and f a convex function

which is finite and differentiable on C. Consider a sequence of convex func-

tions (fn)∞n=1 which are finite on C and such that fn → f pointwise on C.

Then, if X ⊂ C is any compact set,

sup
x∈X

ξ∈∂fn(x)

{|ξ −∇f(x)|} → 0.

Defining the class C of open rectangles as in the proof of Theorem 2.3.1, one

can use a similar argument to obtain Theorem 2.3.2 from an application of

Theorem 2.3.1 and the previous lemma. �

2.4 Proofs of auxiliary lemmas

Here we prove the lemmas involved in the proof of the main theorem. To

prove these, we will need additional auxiliary results from matrix algebra and

convex analysis, which may be of independent interest and are proved in the

Appendix.

2.4.1 Proof of Lemma 2.3.1

We will first show that the event[
infx∈X

{
φ̂n(x)− φ(x)

}
≥M i.o.

]
has probability zero. Under this event,

there is a subsequence (nk)
∞
k=1 such that infx∈X

{
φ̂nk(x)− φ(x)

}
≥M ∀ k ∈ N.
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Then (2.10) implies that for this subsequence, with probability one, we have

lim
k→∞

1

Nnk(X)

∑
Xj∈X

{Yj − φ̂nk(Xj)} ≤ −M. (2.13)

On the other hand, it is seen (by solving the corresponding quadratic pro-

gramming problems; see, e.g., Exercise 16.2, page 484 of Nocedal and Wright

(1999)) that for any η > 0, m ∈ N

inf

{
1

m

∑
1≤j≤m

|ξj|2 :
1

m

∑
1≤j≤m

ξj ≥ η, ξ ∈ Rm

}
= η2, (2.14)

inf

{
1

m

∑
1≤j≤m

|ξj|2 :
1

m

∑
1≤j≤m

ξj ≤ −η, ξ ∈ Rm

}
= η2. (2.15)

For 0 < δ < M , using (2.15) with η = M − δ together with (2.12) and (2.13)

we get that, with probability one, we must have

lim
k→∞

1

nk

nk∑
j=1

(Yj − φ̂nk(Xj))
2 ≥ ν(X)(M − δ)2.

Letting δ → 0 we actually get

lim
k→∞

1

nk

nk∑
j=1

(Yj− φ̂nk(Xj))
2 ≥ ν(X)M2 > σ2 = lim

k→∞

1

nk

nk∑
j=1

(Yj−φ(Xj))
2 a.s.

which is impossible because φ̂nk is the least squares estimator. Therefore,

P
(

inf
x∈X

{
φ̂n(x)− φ(x)

}
≥M i.o.

)
= 0.

A similar argument now using (2.14) gives

P

(
sup
x∈X

{
φ̂n(x)− φ(x)

}
≤ −M i.o.

)
= 0,

which completes the proof of the lemma. �

Before we prove Lemmas 2.3.2 and 2.3.3, we need some additional re-

sults from matrix algebra. For convenience, we state them here, but postpone

their proofs to Section B in the Appendix.
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We first introduce some notation. We write ej ∈ Rd for the vector

whose components are given by ekj = δjk, where δjk is the Kronecker δ. We

also write e = e1 + . . .+ ed for the vector of ones in Rd. For α ∈ {−1, 1}d we

write

Rα =

{
d∑

k=1

θkαkek : θ ≥ 0, θ ∈ Rd

}

for the orthant in the α direction. For any hyperplaneH defined by the normal

vector ξ ∈ Rd and the intercept b ∈ R, we write H = {x ∈ Rd : 〈ξ, x〉 = b},

H+ = {x ∈ Rd : 〈ξ, x〉 > b} and H− = {x ∈ Rd : 〈ξ, x〉 < b}. For r > 0

and x0 ∈ Rd we will write B(x0, r) = {x ∈ Rd : |x− x0| < r}. We denote by

Rd×d the space of d × d matrices endowed with the topology defined by the

‖ · ‖2 norm (where ‖A‖2 = sup|x|≤1{|Ax|} and can be shown to be equal to

the largest singular value of A; see Harville (2008)).

Lemma 2.4.1 Let r > 0. There is a constant Rr > 0, depending only on r

and d, such that for any ρ∗ ∈ (0, Rr) there are ρ, ρ∗ > 0 with the property:

for any α ∈ {−1, 1}d and any d-tuple of vectors β = {x1, . . . , xd} ⊂ Rd such

that xj ∈ B(αjrej, ρ) ∀ j = 1, . . . , d, there is a unique pair (ξα,β, bα,β), with

ξα,β ∈ Rd, |ξα,β| = 1 and bα,β > 0 for which the following statements hold:

(i) β form a basis for Rd.

(ii) x1, . . . , xd ∈ Hα,β := {x ∈ Rd : 〈ξα,β, x〉 = bα,β}.

(iii) min
1≤j≤d

{|ξjα,β|} > 0.

(iv) B(0, ρ∗) ⊂ H−α,β.

(v) {x ∈ Rd : |x| ≥ ρ∗} ∩ Rα ⊂ H+
α,β.

(vi) B(−αjrej, ρ) ⊂ {x ∈ Rd : 〈ξα,β, x〉 < 0} for all j = 1, . . . , d.



33

  

x
1

x
-1

x
2

x
-2

Figure 2.2: Explanatory diagram for (a) Lemma 2.4.1 (left panel); (b) Lemma

2.4.2 (right panel).

(vii) For any w1 ∈ B
(

0, ρ∗
16
√
d

)
and w2 ∈ B

(
3ρ∗
8
√
d
α, ρ∗

8
√
d

)
we have

min
1≤j≤d

{(
X−1
β (w1 + t(w2 − w1))

)j}
> 0 ∀ t ≥ 1

where Xβ = (x1, . . . , xd) ∈ Rd×d is the matrix whose j’th column is xj.

Figure 2.2a illustrates the above lemma when d = 2 and α = (1, 1). The

lemma states that whatever points x1 and x2 are taken inside the circles

of radius ρ around α1re1 and α2re2, respectively, B(0, ρ∗) and {x ∈ Rd :

|x| ≥ ρ∗} ∩ Rα are contained, respectively, in the half-spaces H−α,β and H+
α,β.

Assertion (vii) of the lemma implies that all the points in the half line {w1 +

t(w2−w1}t≥1 should have positive co-ordinates with respect to the basis β as

they do with respect to the basis {αjej}dj=1. We refer the reader to Section

B.1 for a complete proof of Lemma 2.4.1.

We now state two other useful results, namely Lemma 2.4.2 and Lemma

2.4.3, but defer their proofs to Section B.2 and Section B.3 respectively.

Lemma 2.4.2 Let r > 0 and consider the notation of Lemma 2.4.1 with the

positive numbers ρ, ρ∗ and ρ∗ as defined there. Take 2d vectors {x±1, . . . , x±d}
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⊂ Rd such that x±j ∈ B(±rej, ρ) and for α ∈ {−1, 1}d write βα = {xα11, xα22,

. . . , xαdd}, ξα = ξα,βα, bα = bα,βα and Hα = Hα,β, all in agreement with the

setting of Lemma 2.4.1. Then, if K = Conv (x±1, . . . , x±d) we have:

(i) K =
⋂
α∈{−1,1}d{x ∈ Rd : 〈ξα, x〉 ≤ bα}.

(ii) K◦ =
⋂
α∈{−1,1}d{x ∈ Rd : 〈ξα, x〉 < bα}.

(iii) ∂K =
⋃
α∈{−1,1}d Conv (xα11, . . . , xαdd) .

(iv) ∂K =
(⋃

α∈{−1,1}d{x ∈ Rd : 〈ξα, x〉 = bα}
)⋂(⋂

α∈{−1,1}d{x ∈ Rd : 〈ξα, x〉 ≤ bα}
)
.

(v) B(0, ρ∗) ⊂ K◦.

(vi) ∂B(0, ρ∗) ⊂ Ext(K).

Figure 2.2b illustrates Lemma 2.4.2 for the two-dimensional case. Intuitively,

the idea is that as long as the points x±1 and x±2 belong to B(±re1, ρ) and

B(±re2, ρ), respectively, we will have B(0, ρ∗) and ∂B(0, ρ∗) as subsets of K◦

and Ext(K), respectively.

  

Z(1,1)

Z(-1,-1) Z(1,-1)

Z(-1,1)

X(1,1)

X(1,-1)X(-1,-1)

X(-1,1)

  

α
0
 = (1,1)

z
0

x

X*

B
2

B
1

X*

A
1

Z
1

A
2

Z
2

Figure 2.3: Explanatory diagram for (a) Lemma 2.4.3 (left panel); (b) Lemma

2.3.2 (right panel).
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Lemma 2.4.3 Let [a, b] ⊂ Rd be a compact rectangle and r > 0, with r < 1
d−2

if d ≥ 3. For each α ∈ {−1, 1}d write zα = a+
∑d

j=1
1+αj

2
(bj − aj) ej so that

{zα}α∈{−1,1}d is the set of vertices of [a, b]. Then, there is ρ > 0 such that if

xα ∈ B(zα + r(zα − z−α), ρ) ∀ α ∈ {−1, 1}d, then

[a, b] ⊂ Conv
(
xα : α ∈ {−1, 1}d

)◦
.

Figure 2.3a describes Lemma 2.4.3 in the two-dimensional case. As long as the

points x(±1,±1) are chosen in the balls of radius ρ around z(±1,±1) +r(z(±1,±1)−

z(∓1,∓1)), Conv
(
x(±1,±1)

)
will contain Conv

(
z(±1,±1)

)
.

2.4.2 Proof of Lemma 2.3.2

Since any compact subset of X◦ is contained in a finite union of compact

rectangles, it is enough to prove the result when X is a compact rectangle

[a, b] ⊂ X◦. Let r = 1
4

min1≤k≤d{bk − ak} and choose ρ ∈ (0, 1
4
r), ρ∗ > 0 and

0 < ρ∗ <
1
2
r such that the conclusions of Lemmas 2.4.1 and 2.4.2 hold for any

α ∈ {−1, 1}d and any β = (z1, . . . , zd) ∈ Rd×d with zj ∈ B(αjrej, ρ). Take

N ∈ N such that

1

N
max
1≤k≤d

{bk − ak} < 1

32d
ρ∗ (2.16)

and divide X into Nd rectangles all of which are geometrically identical to

1
N

[0, b − a]. Let C be any one of the rectangles in the grid and choose any

vertex z0 of C satisfying

z0 = argmax
z∈C

{
max
1≤j≤d

{
zj − aj, bj − zj

}}
.

Then, from the definition of z0 and r, there is α0 ∈ {−1, 1}d such that

B(z0, r) ∩ (z0 +Rα0) ⊂ X.
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Additionally, define

B1 = B

(
z0,

ρ∗

16
√
d

)
,

B2 = B

(
z0 +

3ρ∗

8
√
d
α0,

ρ∗

8
√
d

)
,

Aj = B(z0 + αj0rej, ρ) ∩ (z0 +Rα0) ∀ j = 1, . . . , d,

A−j = B(z0 − αj0rej, ρ) ∀ j = 1, . . . , d.

Observe that all the sets in the previous display have positive Lebesgue mea-

sure and that the A−j’s are not necessarily contained in X. Let M1 = ‖φ‖X,

M0 >
σ√

min{ν(B1),ν(B2),ν(A1),...,ν(Ad)}
, M = M1 +M0 and KC > 6M . Also, notice

that C ⊂ B1 because of (2.16). We will argue that

P

(
inf
x∈C
{φ̂n(x)} ≤ −KC i.o.

)
= 0. (2.17)

From Lemma 2.3.1, we know that

P

(
d⋂
j=1

[
inf
x∈Aj

{∣∣∣φ̂n(x)− φ(x)
∣∣∣} < M0 a.a.

])
= 1, (2.18)

so there is, with probability one, n0 ∈ N such that infx∈Aj

{∣∣∣φ̂n(x)− φ(x)
∣∣∣} <

M0 for any n ≥ n0 and any j = 1, . . . , d.

Assume that the event
[
infx∈C{φ̂n(x)} < −KC i.o.

]
is true. Then, there

is a subsequence nk such that infx∈C{φ̂nk(x)} < −KC for all k ∈ N. Fix any

k ≥ n0. We know that there is X∗ ∈ C ⊂ B1 such that φ̂nk(X∗) ≤ −KC.

In addition, for j = 1, . . . , d, there are Zαj0j
∈ Aj such that |φ̂nk(Zαj0j) −

φ(Zαj0j
)| < M0, which in turn implies φ̂nk(Zαj0j

) < M . Pick any Z−αj0
∈ A−j

and let K = Conv (Z±1, . . . , Z±d) = z0 + Conv (Z±1 − z0, . . . , Z±d − z0).

Take any x ∈ B2. We will show the existence ofX∗ ∈ Conv
(
Zα1

01, . . . , Zαd0d

)
such that x ∈ Conv (X∗, X

∗), as shown in Figure 2.3b for the case d = 2. We

will then show that the existence of such an X∗ implies that

|φ(x)− φ̂nk(x)| > M0. (2.19)
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Consequently, since x is an arbitrary element of B2 we will have[
inf
x∈C
{φ̂n(x)} ≤ −KC i.o.

]
∩

(
d⋂
j=1

[
inf
x∈Aj

{∣∣∣φ̂n(x)− φ(x)
∣∣∣} < M0 a.a.

])

⊂
[

inf
x∈B2

{|φ(x)− φ̂nk(x)|} ≥M0 i.o.

]
.

But from Lemma 2.3.1, the event on the right is a null set. Taking (2.18)

into account, we will see that (2.17) holds and then complete the argument

by taking KX = maxC{KC}.

To show the existence of X∗ consider the function ψ : R → Rd given

by ψ(t) = X∗ + t(x−X∗). The function ψ is clearly continuous and satisfies

ψ(0) = X∗ and ψ(1) = x ∈ B2 ⊂ K◦. That B2 ⊂ K◦ is a consequence

of Lemma 2.4.1, (iv). The set K is bounded, so there is T > 1 such that

ψ(T ) ∈ Ext(K) = Rd \K. The intermediate value theorem then implies that

there is t∗ ∈ (1, T ) such that X∗ := ψ(t∗) ∈ ∂K. Observe that by Lemma

2.4.2 (iii) we have

∂K =
⋃

α∈{−1,1}d
Conv (Zα11, . . . , Zαdd) .

Lemma 2.4.1 (i) implies that {Zα1
01−z0, . . . , Zαd0d−z0} forms a basis of Rd so we

can write X∗− z0 =
∑d

j=1 θ
j(Zαj0j

− z0). Moreover, Lemma 2.4.1 (vii) implies

that θj > 0 for every j = 1, . . . , d as θ = (θ1, . . . , θd) = (Zα1
01 − z0, . . . , Zαd0d −

z0)−1(X∗ − z0). Here we apply Lemma 2.4.1 (vii) with w1 = X∗ ∈ B1,

w2 = x ∈ B2 and t∗ > 1.

For α ∈ {−1, 1}d consider the pair (ξα, bα) ∈ Rd × R as defined in

Lemma 2.4.2 for the set of vectors {Z±1−z0, . . . , Z±d−z0} (here we move the

origin to z0). Observe that Lemma 2.4.1 (ii) implies that 〈ξα0 , Zαj0j
−z0〉 = bα0

for all j = 1, . . . , d. Consequently, 〈ξα0 , X
∗ − z0〉 = bα0

∑d
j=1 θ

j, but since
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X∗ ∈ ∂K, Lemma 2.4.2 (iv) implies that 〈ξα0 , X
∗ − z0〉 ≤ bα0 and hence∑d

j=1 θ
j ≤ 1. Additionally, for α 6= α0 we can write 〈ξα, X∗ − z0〉 as

d∑
j=1

θj〈ξα, Zαj0j − z0〉 =
∑
αj=αj0

θjbα +
∑
αj 6=αj0

θj〈ξα, Zαj0j − z0〉 < bα (2.20)

as 〈ξα, Zαj − z0〉 = bα (by Lemma 2.4.1 (ii)) and 〈ξα, Z−αj − z0〉 < 0 (by

Lemma 2.4.1 (vi)) for every j = 1, . . . , d. Since 〈ξα, w − z0〉 = bα for

all w ∈ Conv (Zα11, . . . , Zαdd) and all α ∈ {−1.1}d, (2.20) and the fact

that X∗ ∈ ∂K imply that X∗ ∈ Conv
(
Zα1

01, . . . , Zαd0d

)
. Hence φ̂n(X∗) ≤∑d

j=1 θ
jφ̂nk(Zαj0j

) < M . We therefore have

φ̂nk(X
∗) < M , φ̂nk(X∗) < −KC, (2.21)

X∗ +
1

t∗
(X∗ −X∗) = x. (2.22)

Since X∗ ∈ B1 and d ≥ 1 we have

|z0 −X∗| <
1

8
ρ∗. (2.23)

By using the triangle inequality we get the following bounds

1

4
ρ∗ < |z0 − x| <

1

2
ρ∗. (2.24)

And from Lemma 2.4.1 (iv) and the fact that 〈ξα0 , X
∗〉 = bα0 we also obtain

|z0 −X∗| ≥ ρ∗. (2.25)

From (2.22) we know that t∗ = |X∗−X∗|
|x−X∗| . Using the triangle inequality with

(2.23), (2.24) and (2.25) one can find lower and upper bounds for |X∗−X∗| (as

|X∗−X∗| ≥ |X∗−z0|−|z0−X∗|) and |x−X∗| (as |x−X∗| ≤ |x−z0|+|z0−X∗|),

respectively, to obtain t∗ ≥ 7
5
. Then, (2.21) and (2.22) imply

φ̂nk(x) ≤
(

1− 1

t∗

)
φ̂nk(X∗) +

1

t∗
φ̂nk(X

∗) ≤ −2

7
KC +

5

7
M < −M.
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Consequently,

|φ(x)− φ̂nk(x)| > M −M1 = M0.

This proves (2.19) and completes the proof. �

2.4.3 Proof of Lemma 2.3.3

Assume without loss of generality that X is a compact rectangle. Let {zα : α ∈

{−1, 1}d} be the set of vertices of the rectangle. Then, there is r ∈ (0, 1) such

that B(zα, r) ⊂ X◦ ∀ α ∈ {−1, 1}d. Recall that from Lemma 2.4.3, there is

0 < ρ < 1
2
r such that for any {ηα : α ∈ {−1, 1}d} if ηα ∈ B(zα+ r

2
(zα−z−α), ρ)

then X ⊂ Conv
(
ηα : α ∈ {−1, 1}d

)
.

Let Aα = B(zα + 1
2
r(zα − z−α), ρ

2
) and M0 >

σ√
min{ν(Aα):α∈{−1,1}d}

and

choose

M1 = sup
x∈Conv(

⋃
α∈{−1,1}d Aα)

{|φ(x)|}.

Take KX > M0 +M1. Since

P

 ⋂
α∈{−1,1}d

[
inf
x∈Aα
{|φ̂n(x)− φ(x)|} < M0, a.a.

] = 1

by Lemma 2.3.1, there is, with probability one, n0 ∈ N such that for any

n ≥ n0 we can find ηα ∈ Aα, α ∈ {−1, 1}d, such that |φ̂n(ηα)− φ(ηα)| < M0.

It follows that φ̂n(ηα) ≤ KX ∀ α ∈ {−1, 1}d. Now, using Lemma 2.4.3 we have

X ⊂ Conv
(
ηα : α ∈ {−1, 1}d

)
and the convexity of φ̂n implies that φ̂n(x) ≤ KX

for any x ∈ X. �

2.4.4 Proof of Lemma 2.3.4

Assume that X = [a, b] is a rectangle with vertices {zα : α ∈ {−1, 1}d}.

The function ψ(x) = infη∈Ext(X){|x − η|} is continuous on Rd so there is
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x∗ ∈ ∂X such that ψ(x∗) = infx∈∂X{ψ(x)}. Observe that ψ(x∗) > 0 because

x∗ ∈ ∂X ⊂ X◦. By Lemma 2.4.3, there is a r < 1
2
ψ(x∗) for which there exists

ρ < 1
4
r such that whenever ηα ∈ Aα := B

(
zα + 3

4
r
(
zα−z−α
|zα−z−α|

)
, ρ
)

for any

α ∈ {−1, 1}d and

Kz = Conv

(
zα +

1

2
r

(
zα − z−α
|zα − z−α|

)
: α ∈ {−1, 1}d

)
Kη = Conv

(
ηα : α ∈ {−1, 1}d

)
we have

X ⊂ Kz ⊂ K◦η ⊂ Kη ⊂ X◦. (2.26)

Let M0 >
σ√

min{ν(Aα):α∈{−1,1}d}
and M1 ∈ R be such that

P
(

inf
x∈X
{φ̂n(x)} ≤ −M0 i.o.

)
= 0 and M1 = sup

x∈Conv(
⋃
α∈{−1,1}d Aα)

{φ(x)}.

From Lemmas 2.3.1 and 2.3.2 we can find, with probability one, n0 ∈ N such

that infx∈X{φ̂n(x)} > −M0 and infx∈Aα{|φ̂n(x)−φ(x)|} < M0 for any n ≥ n0.

Define

M = M1 +M0

KX =
4|b− a|

rmin1≤j≤d{bj − aj}
M

and take any n ≥ n0. Then, for any α ∈ {−1, 1}d we can find ηα ∈ Aα such

that |φ̂n(ηα) − φ(ηα)| < M0. Then, (2.26) implies that φ̂n(x) ≤ M ∀x ∈ X.

Take then x ∈ X and ξ ∈ ∂φ̂n(x). A connectedness argument, like the one

used in the proof of Lemma 2.3.2, implies that there is t∗ > 0 such that

x+ t∗ξ ∈ ∂Kη. But then we must have t∗ >
rmin1≤j≤d{bj−aj}

2|ξ||b−a| as a consequence

of (2.26), since the smallest distance between ∂Kz and ∂X is
rmin1≤j≤d{bj−aj}

2|b−a|

and ∂Kη ⊂ Ext(Kz). This can be seen by taking a look at Figure 2.4, which

shows the situation in the two dimensional case. Thus, using the definition
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Kη

Kz

X

Figure 2.4: The smallest distance between ∂Kz and ∂X is at least

rmin1≤j≤d{bj−aj}
2|b−a| .

of subgradients,

rmin1≤j≤d{bj − aj}
2|ξ||b− a|

〈ξ, ξ〉 ≤ 〈ξ, t∗ξ〉 ≤ φ̂n(x+ t∗ξ)− φ̂n(x) ≤ 2M

which in turn implies |ξ| ≤ KX. We have therefore shown that, with proba-

bility one, we can find n0 ∈ N such that |ξ| ≤ KX ∀ ξ ∈ ∂φ̂n(x), ∀ x ∈ X, ∀

n ≥ n0. This completes the proof. �

2.4.5 Proof of Lemma 2.3.5

This Lemma is a direct consequence of Theorem 6 in Brons̆tĕın (1976) (see

also Corollary 2.7.10 in page 164 of van der Vaart and Wellner (1996)). Nev-

ertheless, to make this thesis a bit more self-contained, we now present a proof

based on elementary computations.

The result is obvious for conditions {A1-A3} and {A5-A7} when σ2 =

0. So we assume that σ2 > 0 for {A1-A3} and {A5-A7}. Let ε > 0 and
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M = supx∈X{|x|}. Choose δ > 0 satisfying

ε
2(2M+K

√
d+1)

n

∑n
j=1 |Yj − φ(Xj)|

< δ <
ε

(2M+K
√
d+1)

n

∑n
j=1 |Yj − φ(Xj)|

(2.27)

for n large. Notice that δ is well-defined and the quantity on the left is

positive, finite and bounded away from 0 as lim 1
n

∑n
j=1 |Yj − φ(Xj)| > 0 a.s.

under any set of regularity conditions (for {A2-A4}, conditions A4-(i) and

A4-(iii) imply that we can apply the version of the strong law of large number

for uncorrelated random variables, as it appears in Chung (2001), page 108,

Theorem 5.1.2 to the sequence (|εj|)∞j=1; for {A1-A3} and {A5-A7} this is

immediate as σ2 > 0). The definition of the class DK,X implies that all its

members are Lipschitz functions with Lipschitz constant bounded by K
√
d,

a consequence of Rockafellar (1970), Theorem 24.7, page 237. Hence, (2.27)

implies that

sup
|x−y|<δ

x,y∈X,ψ∈DK,X

{|ψ(x)− ψ(y)|} ≤ ε
1
n

∑n
j=1 |Yj − φ(Xj)|

.

Now, define Nn ∈ N by Nn =
⌈

diam(X)
δ

⌉
∨
⌈

2K
√
d

δ

⌉
, where d·e denotes the ceiling

function. Observe that (2.27) implies

Nn− 1 ≤
(

diam(X) ∨ 2K
√
d
) 2(2M +K

√
d+ 1)

ε

(
1

n

n∑
j=1

|Yj − φ(Xj)|

)
.

(2.28)

Then, we can divide the rectangles X and [−K,K]d in Nd
n subrectangles, all

of which have diameters less than δ. In other words, we can write

[−K,K]d =
⋃

1≤j≤Nd
n

Rj

X =
⋃

1≤j≤Nd
n

Vj
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with diam(Rj) < δ and diam(Vj) < δ ∀ j = 1, . . . Nd
n. In the same way, we

can divide the interval [−K,K] in Nn subintervals I1, . . . , INn each having

length less than δ. For each j = 1, . . . , Nd
n, let ξj and xj be the centroids of

Rj and Vj respectively and for j = 1, . . . , Nn let ηj be the midpoint of Ij.

Consider the class of functions Hn,ε defined by

Hn,ε =

{
max

(s,t,j)∈S
{〈ξs, · − xt〉+ ηj} : S ⊂ {1, . . . , Nd

n}2 × {1, . . . , Nn}
}
.

Observe that the number of elements in the class Hn,ε is bounded from above

by 2N
2d+1
n . Now, take any ψ ∈ DK,X. Pick any Ξj ∈ ∂ψ(Xj). Then, for any

j such that Xj ∈ X, there are sj, tj ∈ {1, . . . , Nd
n} and τj ∈ {1, . . . , Nn} such

that |Ξj − ξsj |, |Xj − xtj | and |ψ(xtj)− ητj | are all less than δ. We then have

that

sup
x∈X

{∣∣〈ξsj , x− xtj〉+ ητj − (〈Ξj, x−Xj〉+ ψ(Xj))
∣∣}

≤ 2M |ξsj − Ξj|+K
√
d|xtj −Xj|+ δ < (2M +K

√
d+ 1)δ (2.29)

by an application of the Cauchy-Schwarz inequality. But then, (2.27) implies

that if we define the functions ψ̃ and g as

ψ̃(x) = max
Xj∈X
{〈Ξj, x−Xj〉+ ψ(Xj)},

g(x) = max
Xj∈X
{〈ξsj , x− xtj〉+ ητj}

then we have

ψ̃(Xj) = ψ(Xj) for j such that Xj ∈ X, (2.30)

‖g − ψ̃‖X ≤
ε

1
n

∑n
j=1 |Yj − φ(Xj)|

(from (2.29)), (2.31)

g ∈ Hn,ε. (2.32)

Note that (2.30) follows from the definition of subgradients. All these facts

put together give that for any f(x, y) = ψ(x)(y − φ(x)) ∈ GK,X, ψ ∈ DK,X
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there is g ∈ Hn,ε such that∫
X

|f(x, y)− g(x)(y − φ(x))|µn(dx, dy) < ε

and hence

N(ε,GK,X,L1(X× R, µn)) ≤ #Hn,ε ≤ 2N
2d+1
n .

But then, the strong law of large numbers and (2.28) give that limNn <∞ a.s.

Furthermore, by replacing ε with ε
n

∑n
j=1 |Yj−φ(Xj)| in the entire construction

just made, we can see that the covering numbers

N
(
ε
n

∑n
j=1 |Yj − φ(Xj)|,GK,X,L1(X× R, µn)

)
depend neither on the Y ’s nor

on φ. Taking Bε =
(

diam(X) ∨K
√
d
)

2(2M+K
√
d+1)

ε + 1 and Aε = 2B
2d+1
ε it is seen

that the second part of the result holds. �

2.4.6 Proof of Lemma 2.3.6

Note that for every m, we have

1

nk

∑
1≤j≤nk

E
(
ε2j
)
≤ 1

nk

∑
Xj∈Xm
1≤j≤nk

E
(
ε2j
)

+
Nnk(X \ Xm)

nk
sup
j∈N
{E
(
ε2j
)
}.

Taking limit inferior on both sides as k →∞, we get

σ2 ≤ lim
k→∞

1

nk

∑
Xj∈Xm
1≤j≤nk

E
(
ε2j
)

+ ν(X \ Xm) sup
j∈N
{E
(
ε2j
)
}.

Now taking the limit as m → ∞ we get the result because the opposite

inequality is trivial. �

2.4.7 Proof of Lemma 2.3.7

We may assume that X is a compact rectangle. Here we need to make a

distinction between the design schemes. In the case of the stochastic design,
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the proof is an immediate consequence of Lemma 2.3.5 and Theorem 2.4.3,

page 123 of van der Vaart and Wellner (1996). Thus, we focus on the fixed

design scenario.

For notational convenience, we write M = supj∈N{E
(
ε2j
)
} and

∑
Xj∈X

instead of the more cumbersome
∑

1≤j≤n:Xj∈X. Letting εj = Yj − φ(Xj) (and

using the same notation as in the proof of Lemma 2.3.7) first observe that the

random quantity

sup
ψ∈DK,X


∣∣∣∣∣∣ 1n

∑
{Xj∈X}

ψ(Xj)εj

∣∣∣∣∣∣
 = sup

m∈N

 sup
g∈H

n, 1m


∣∣∣∣∣∣ 1n

∑
{Xj∈X}

g(Xj)εj

∣∣∣∣∣∣

 .

by (2.30), (2.31) and (2.32) and is thus measurable.

All of the following arguments are valid for both, {A1-A3} and {A2-

A4}. Lyapunov’s inequality (which states that for any random variable X

and 1 ≤ p ≤ q ≤ ∞ we have ‖X‖p ≤ ‖X‖q) and the strong law of large

numbers imply

lim
m→∞

1

m

∑
1≤j≤m

|εj| = lim
m→∞

1

m

∑
1≤j≤m

E (|εj|) ≤
√
M a.s. (2.33)

Let η > 0. From Lemma 2.3.5 we know that the covering numbers

an := N
(
η
n

∑n
j=1 |Yj − φ(Xj)|,GK,X,L1(X× R, µn)

)
are not random and uniformly

bounded by a constant Aη. Therefore, for any n ∈ N we can find a class

An ⊂ DK,X with exactly an elements such that {ψ(x)(y − φ(x))}ψ∈An forms

an
(
η
n

∑n
j=1 |Yj − φ(Xj)|

)
-net for GK,X with respect to L1(X×R, µn). It follows

that

sup
ψ∈DK,X


∣∣∣∣∣∣ 1n
∑
Xj∈X

ψ(Xj)εj

∣∣∣∣∣∣
 ≤ η

n

∑
1≤j≤n

|εj| + sup
ψ∈An


∣∣∣∣∣∣ 1n
∑
Xj∈X

ψ(Xj)εj

∣∣∣∣∣∣
 . (2.34)
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With (2.34) in mind, we make the following definitions

Bn = sup
ψ∈An


∣∣∣∣∣∣ 1n
∑
Xj∈X

ψ(Xj)εj

∣∣∣∣∣∣
 ,

Cn = sup
ψ∈An


∣∣∣∣∣∣ 1n

∑
1≤j≤b

√
nc2: Xj∈X

ψ(Xj)εj

∣∣∣∣∣∣
 ,

Dn = sup
ψ∈Ak

n2≤k<(n+1)2


∣∣∣∣∣∣1k

∑
n2<j≤k: Xj∈X

ψ(Xj)εj

∣∣∣∣∣∣
 ,

where b·c denotes the floor function. Now, pick δ > 0 and observe that

P (Bn > δ) = P

 ⋃
ψ∈An

∣∣∣∣∣∣
∑
Xj∈X

ψ(Xj)εj

∣∣∣∣∣∣ > nδ


≤

∑
ψ∈An

1

n2δ2
M
∑
Xj∈X

ψ(Xj)
2 ≤ K2MAη

nδ2
.

The Borel-Cantelli Lemma then implies that P (Bn2 > δ i.o.) = 0. Letting

δ → 0 through a decreasing sequence gives

Bn2
a.s.−→ 0. (2.35)

On the other hand, the definition of Cn implies that

Cn ≤
b
√
nc2

n
Bb√nc2 +

η

n

∑
1≤j≤b

√
nc2
|εj| (2.36)

which together with (2.35) and (2.33) gives

limCn ≤ η
√
M almost surely. (2.37)

Note that (2.36) is a consequence of the fact that for any ψ ∈ An, there exists

g ∈ Ab√nc2 such that if Jn = {1 ≤ j ≤ b
√
nc2 : Xj ∈ X}, then∣∣∣∣∣ 1n ∑

j∈Jn

ψ(Xj)εj

∣∣∣∣∣ ≤
∣∣∣∣∣ 1n ∑

j∈Jn

(ψ(Xj)− g(Xj))εj

∣∣∣∣∣+

∣∣∣∣∣ 1n ∑
j∈Jn

g(Xj)εj

∣∣∣∣∣
≤

(
b
√
nc2

n

)
η

b
√
nc2

∑
1≤j≤b

√
nc2
|εj|+

b
√
nc2

n
Bb√nc2 .
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Now, a similar argument to the one used in (2.35) gives

P (Dn > δ) = P

 ⋃
ψ∈Ak

n2≤k<(n+1)2

∣∣∣∣∣∣
∑

n2<j≤k:Xj∈X

ψ(Xj)εj

∣∣∣∣∣∣ > kδ




≤
∑
ψ∈Ak

n2≤k<(n+1)2

P

∣∣∣∣∣∣
∑

n2<j≤k:Xj∈X

ψ(Xj)εj

∣∣∣∣∣∣ > kδ


≤

∑
ψ∈Ak

n2≤k<(n+1)2

K2M(k − n2)

k2δ2
≤ K2MAη(2n+ 1)2

n4δ2
.(2.38)

Again, one can use (2.38) and the Borel-Cantelli Lemma to prove that

P (Dn > δ i.o.) = 0 and then let δ → 0 through a decreasing sequence to

obtain

Dn
a.s.−→ 0. (2.39)

Finally, one sees that

sup
ψ∈An


∣∣∣∣∣∣ 1n
∑
Xj∈X

ψ(Xj)(Yj − φ(Xj))

∣∣∣∣∣∣
 = Bn ≤ Cn +Db√nc,

which combined with (2.37) and (2.39) gives

limBn ≤ η
√
M almost surely.

Taking (2.34) into account we get

lim
n→∞

sup
ψ∈DK,X


∣∣∣∣∣∣ 1n

∑
1≤j≤n:Xj∈X

ψ(Xj)(Yj − φ(Xj))

∣∣∣∣∣∣
 ≤ 2η

√
M almost surely.

Letting η → 0 we get the desired result. �
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2.4.8 Proof of Lemma 2.3.8

We can assume, without loss of generality, that X is a finite union of compact

rectangles. Consider a sequence (Xm)∞m=1 satisfying the following properties:

(a) X ⊂ Xm ⊂ X◦ ∀ m ∈ N.

(b) ν(Xm) > 1− 1
m
∀ m ∈ N.

(c) Xm ⊂ Xm+1 ∀ m ∈ N.

(d) Every Xm can be expressed as a finite union of compact rectangles with

positive Lebesgue measure.

The existence of such a sequence follows from the inner regularity of Borel

probability measures on Rd and from the fact that since X◦ is open, for any

compact set F ⊂ X◦ we can find a finite cover composed by compact rectangles

with positive Lebesgue measure and completely contained in X◦. Also, from

Lemmas 2.3.2, 2.3.3 and 2.3.4 and the fact that X ⊂ dom(φ), for any m ∈ N

we can find Km > 0 such that

‖φ‖Xm ≤ Km and P
(
‖φ̂n‖Xm > Km i.o.

)
= 0; (2.40)

sup
x∈Xm
ξ∈∂φ(x)

{|ξ|} ≤ Km and P∗

 sup
x∈Xm

ξ∈∂φ̂n(x)

{|ξ|} > Km i.o.

 = 0. (2.41)

Fix η > 0 and consider the sets

A =
[
inf
x∈X
{φ(x)− φ̂n(x)} ≥ η i.o.

]
B =

[
‖φ̂n‖Xm ≤ Km a.a.

]
C =

[
sup
x∈Xm

ξ∈∂φ̂n(x)

{|ξ|} ≤ Km a.a.

]
.

Suppose now that A∩B∩C is known to be true. Then, there is a subsequence

(nk)
∞
k=1 such that infx∈X{φ(x)−φ̂nk(x)} ≥ η ∀ k ∈ N and 1

nk

∑nk
j=1 E

(
ε2j
)
→ σ2.
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Taking (2.40) and (2.41) into account, we have that for k large enough the

inequality

1

nk

nk∑
j=1

(Yj − φ̂nk(Xj))
2 ≥ 1

nk

∑
Xj∈Xm

(Yj − φ(Xj))
2

+
2

nk

∑
Xj∈Xm

(Yj − φ(Xj))(φ(Xj)− φ̂nk(Xj)) +
1

nk

∑
Xj∈Xm

(φ(Xj)− φ̂nk(Xj))
2

implies

1

nk

nk∑
j=1

(Yj − φ̂nk(Xj))
2 ≥ 1

nk

∑
Xj∈Xm

(Yj − φ(Xj))
2 +

Nnk(X)

nk
η2 − 4 sup

ψ∈DKm,Xm


∣∣∣∣∣∣ 1

nk

∑
{1≤j≤nk:Xj∈Xm}

ψ(Xj)(Yj − φ(Xj))

∣∣∣∣∣∣
 .

Thus, from Lemma 2.3.7 we can conclude that

lim
k→∞

1

nk

∑
1≤j≤nk

(Yj − φ̂nk(Xj))
2 ≥ ν(Xm)σ2 + ν(X)η2 if {A1-A3} hold.

Under {A2-A4} and {A5-A7} the left-hand side of the last display is bounded

from below by

lim
k→∞

1

nk

∑
Xj∈Xm

(Yj − φ(Xj))
2 + ν(X)η2

and ∫
Xm

(y − φ(x))2µ(dx, dy) + ν(X)η2,

respectively.

Finally, using (a)-(d), the strong law of large numbers (for {A2-A4}

we can apply a version of the strong law of large numbers for independent

random variables thanks to condition A4-(ii); see Williams (1991), Lemma

12.8, page 118 or Folland (1999), Theorem 10.12, page 322) and Lemma 2.3.6

we can let m→∞ to see that, under any of {A1-A3}, {A2-A4} or {A5-A7},

lim
k→∞

1

nk

∑
1≤j≤nk

(Yj − φ̂nk(Xj))
2 ≥ σ2 + ν(X)η2
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which is impossible because φ̂nk is the least squares estimator.

Therefore P∗ (A ∩B ∩ C) = 0 and, since P∗ (B ∩ C) = 1,

P (A) = P
(

inf
x∈X
{φ(x)− φ̂n(x)} ≥ η i.o.

)
= 0.

This finishes the proof of (i). The second assertion follows from similar argu-

ments. �

2.4.9 Proof of Lemma 2.3.9

We can assume, without loss of generality, that X is a finite union of compact

rectangles. Pick KX such that

sup
x∈X

ξ∈∂φ(x)

{|ξ|} ≤ KX and P∗

 sup
x∈X

ξ∈∂φ̂n(x)

{|ξ|} > KX i.o.

 = 0.

Let η > 0 and δ = η
3KX

. We can then divide X in M subrectangles {C1, . . . , CM}

all having diameter less than δ. Define the events

A =

[ ⋂
1≤k≤M

inf
x∈Ck
{φ̂n(x)− φ(x)} < η

3
a.a.

]

B =

[
sup
x∈X

ξ∈∂φ̂n(x)

{|ξ|} ≤ KX a.a.

]
.

We will show that A∩B ⊂
[
supx∈X{φ̂n(x)− φ(x)} ≤ η a.a.

]
. Suppose A∩B

is true. Then, there is N ∈ N such that for any n ≥ N we can find Ξn,k ∈ Ck
such that φ̂n(Ξn,k) − φ(Ξn,k) <

η
3
. Moreover, we can make N large enough

such that for any n ≥ N , KX is an upper bound for all the subgradients of φ̂n

on X. Then, for any ξ ∈ Ck we obtain from the Lipschitz property,

φ̂n(ξ)− φ(ξ) = (φ̂n(Ξn,k)− φ(Ξn,k)) + (φ(Ξn,k)− φ(ξ)) + (φ̂n(ξ)− φ̂n(Ξn,k))

≤ η

3
+KXδ +KXδ ≤ η.
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Therefore,

sup
x∈Ck
{φ̂n(x)− φ(x)} ≤ η ∀ 1 ≤ k ≤M ∀ n ≥ N

which implies

sup
x∈X
{φ̂n(x)− φ(x)} ≤ η ∀ n ≥ N.

Considering Lemmas 2.3.8-(ii) and 2.3.4; A∩B ⊂
[
supx∈X{φ̂n(x)− φ(x)} ≤ η a.a.

]
and P∗ (A ∩B) = 1 we obtain (ii). The first assertion follows from similar

arguments and (iii) is a direct consequence of (i) and (ii). �

2.4.10 Proof of Lemma 2.3.10

Throughout this proof we will denote by B the unit ball (w.r.t. the euclidian

norm) in Rd. From Theorem 25.5, page 246 on Rockafellar (1970) we know

that f is continuously differentiable on C. Let

h∗ = inf
ξ∈X,η∈Rd\C

{|ξ − η|} > 0.

Pick ε > 0. We will first show that there is nε ∈ N such that

〈ξ, η〉 ≤ 〈∇f(x), η〉+ε, ∀ ξ ∈ ∂fn(x), ∀ x ∈ X, ∀ η ∈ B, ∀ n ≥ nε. (2.42)

Suppose that such an nε does not exist. Then, there is an increasing sequence

(mn)∞n=1 such that for any n ∈ N we can find xmn ∈ X, ξmn ∈ ∂fmn(xmn),

ηmn ∈ B satisfying 〈ξmn , ηmn〉 > 〈∇f(xmn), ηmn〉 + ε. But X and B are both

compact, so there are x∗ ∈ X, η∗ ∈ B and a subsequence (kn)∞n=1 of (mn)∞n=1

such that xkn → x∗ and ηkn → η∗. Then, for any 0 < h < h∗ we have

fkn(xkn + hηkn)− fkn(xkn)

h
≥ 〈ξkn , ηkn〉 > 〈∇f(xmn), ηkn〉+ ε ∀ n ∈ N,

and therefore

lim
n→∞

lim
h↓0

fkn(xkn + hηkn)− fkn(xkn)

h
≥ 〈∇f(x∗), η∗〉+ ε.
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But this is impossible in view of Theorem 24.5, page 233 on Rockafellar (1970).

It follows that we can choose some nε ∈ N with the property described in

(2.42). By noting that −B = B, we can conclude from (2.42) that

|〈ξ, η〉 − 〈∇f(x), η〉| ≤ ε ∀ ξ ∈ ∂fn(x), ∀ x ∈ X, ∀ η ∈ B, ∀ n ≥ nε.

By taking ηξ = ξ−∇f(x)
|ξ−∇f(x)| when ξ 6= ∇f(x) we get

sup
x∈X

ξ∈∂fn(x)

{|ξ −∇f(x)|} ≤ ε ∀ n ≥ nε.

Since ε > 0 was arbitrarily chosen, this completes the proof. �
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Chapter 3

Additional topics regarding

convex regression

3.1 The one-dimensional case

In this section we elaborate a bit more on what is known about the convex

regression problem with a unidimensional predictor. For simplicity, we assume

no ties among the X’s. As stated before, a function f : R → R is convex if

it is absolutely continuous in dom(f)◦ with a nondecreasing first derivative.

This fact yields the following characterization of the set KX defined in Section

2.2:

KX :=

{
z ∈ Rn :

z(j) − z(j−1)

X(j) −X(j−1)

≤ z(j+1) − z(j)

X(j+1) −X(j)

∀ j = 2, . . . , n− 1

}
, (3.1)

where X(1) ≤ . . . ≤ X(n) are the order statistics and each z(j) represents the

component of z that corresponds to the index k for which Xk = X(j). The

vector Zn defined in (2.2) can now be computed by solving the program

min
∑n

k=1 |Yk − zk|2

subject to z(j)−z(j−1)

X(j)−X(j−1)
≤ z(j+1)−z(j)

X(j+1)−X(j)
∀ j = 2, . . . , n− 1.

(3.2)
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Moreover, the value of φ̂n(x) for any x ∈ Conv (X1, . . . , Xn) = [X(1), X(n)] can

be obtained by linearly interpolating the points (X(1), Z
(1)), . . . , (X(n), Z

(n)).

A direct comparison between (3.1), (3.2) and the interpolating pro-

cedure against their multidimensional counterparts might be illustrative: as

opposed to the simple, straightforward characterization given by (3.1), Lem-

mas 2.2.1 and 2.2.2 are much more complex and require the solution of linear

programs; the positive definite quadratic program (3.2) is computationally

a lot simpler than the semidefinite problem (2.8); evaluating φ̂n via linear

interpolation is evidently more convenient than solving (2.7).

All these simplifications are consequence of the aforementioned charac-

terization of convex functions on the real line. This fact also plays a key role

in the derivation of the rate of convergence and asymptotic distribution. The

rate of convergence was shown to be n−2/5 in Mammen (1991). Groeneboom

et al. (2001) showed that for any x ∈ X◦ on which φ is twice continuously

differentiable with φ
′′
(x) 6= 0,

n2/5κx,φ(φ̂n(x)− φ(x)) H
′′
(0)

where H is a (well-defined) random continuous function majorizing∫ t

0

W (s)ds+ t4

with W being a standard, two-sided Brownian motion, and

κx,φ =

(
24

Var (ε)2 φ′′(x)

)1/5

.

3.2 Convex and componentwise monotone re-

gression functions

As explained in Section 2.1, concave regression arises naturally in economet-

rics. Production and utility functions are often assumed not only concave,
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but also componentwise nondecreasing. In this section we adapt the method

of least squares for such situations. As there is no mathematical reason to

restrict ourselves to concave and componentwise nondecreasing functions, we

will expand the framework of Chapter 2 to functions that are convex and

monotone (nondecreasing or nonincreasing) in a given set of directions. Con-

sidering the notation of Section 2.2, we make the following definition:

Definition 3.2.1 (α-monotone function) Let α ∈ {−1, 0, 1}d. A function

f : Rd → R is said to be α-monotone if f(x) ≤ f(x + rαjej) for all r ≥ 0,

x ∈ Rd and j ∈ {1, . . . , d}, where ej is the unit vector in the j-th direction

(i.e., the vector with components ekj = δkj with δkj denoting the Kronecker δ).

In other words, f : Rd → R is α-monotone if it is nondecreasing in all

components j for which αj = 1 and nonincreasing in those for which αj =

−1. Additionally, we write Rd
+ and Rd

− for the nonnegative and nonpositive

orthants, respectively, and for any α ∈ {−1, 0, 1}d define

Rd
α :=

{
x ∈ Rd : αjxj ≥ 0 if |αj| = 1 and xj = 0 if αj = 0

}
; (3.3)

R̃d
α :=

{
x ∈ Rd : αjxj ≥ 0 if |αj| = 1

}
. (3.4)

For example, if α1 := (−1, 0, 1), α2 := (1, 1, 1) and α3 := (0, 1, 0), then

R3
α1

= R−×{0}×R+, R3
α2

= R3
+ and R3

α3
= {0}×R+×{0}. Accordingly we

would also have R̃3
α1

= R− × R× R+, R̃3
α2

= R3
+ and R̃3

α3
= R× R+ × R.

Remark: A function f will be α-monotone if and only if f(x) ≤ f(y)

whenever (y − x) ∈ Rd
α. For a proof of this statement, see Lemma A.0.7.

3.2.1 The convex, α-monotone least squares estimator:

computation and finite sample properties

For the remainder of this section, we will fix an α ∈ {−1, 0, 1}d and take the

regression function φ in (2.1) to be convex and α-monotone. The develop-
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ments here are quite similar to those in Chapter 2, so we omit some of the

details. Given the observed values (X1, Y1), . . . , (Xn, Yn), we write QαX for

the collection of all vectors z ∈ Rn for which there is a convex, α-monotone

function ψ satisfying ψ(Xj) = zj for every j = 1, . . . , n. We now have the

following characterizations.

Lemma 3.2.1 Let z ∈ Rn. Then, z ∈ QαX if and only if the following holds

for every j = 1, . . . , n:

zj = inf

{
n∑
k=1

θkzk :
n∑
k=1

θk = 1, ϑ+
n∑
k=1

θkXk = Xj, θ ≥ 0, θ ∈ Rn, ϑ ∈ Rd
−α

}
.

Proof: The proof is very similar to that of Lemma 2.2.1. The difference

being that we use Lemma A.0.8 and the function

hα(x) = inf

{
n∑
k=1

θkzk :
n∑
k=1

θk = 1, ϑ+
n∑
k=1

θkXk = x, θ ≥ 0, θ ∈ Rn, ϑ ∈ Rd
−α

}

instead of Lemma A.0.6 and the function g. �

The dual characterization analogous to that in Lemma 2.2.2 is given in

the following result. Its proof is just an application of the duality theorem of

linear programming, so we omit it. Recall the definition of Rd
α and R̃d

α given

in (3.3) and (3.4).

Lemma 3.2.2 Let z ∈ Rn. Then, z ∈ QαX if and only if for every j = 1, . . . , n

we have

zj = sup
{
〈ξ,Xj〉+ η : 〈ξ,Xk〉+ η ≤ zk ∀ k = 1, . . . , n, ξ ∈ R̃d

α, η ∈ R
}
.

Moreover, z ∈ QαX if and only if there exist vectors ξ1, . . . , ξn ∈ R̃d
α such that

〈ξj, Xk −Xj〉 ≤ zk − zj ∀ k, j ∈ {1, . . . , n}.
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Just as in the previous case, we can use both characterizations to show the

existence and uniqueness of the vector

Wn = argmin
z∈QαX

{
n∑
k=1

∣∣Yk − zk∣∣2}
and then define the nonparametric least squares estimator by

ϕ̂n (x) = inf

{
n∑
k=1

θkW k
n :

n∑
k=1

θk = 1, ϑ+

n∑
k=1

θkXk = x, θ ∈ Rn, ϑ ∈ Rd−α

}
.

Here, the vector Wn can also be computed by solving the corresponding

quadratic program

min
∑n

k=1 |Yk − zk|2

subject to 〈ξk, Xj −Xk〉 ≤ zj − zk ∀ k, j = 1, . . . , n

ξ1, . . . , ξn ∈ R̃d
α, z ∈ Rn.

which differs from the program (2.8) just because here the ξj’s have sign

restrictions. The estimator enjoys analogous finite dimensional properties to

those listed in Lemma 2.2.4. For the sake of completeness, we include them

in the following lemma.

Lemma 3.2.3 Let ϕ̂n be the convex, α-monotone least squares estimator ob-

tained from the sample (X1, Y1), . . . , (Xn, Yn). Then,

(i)
n∑
k=1

(ψ(xk) − ϕ̂n(Xk))(Yk − ϕ̂n(Xk)) ≤ 0 for any convex, α-monotone

function ψ which is finite on Conv (X1, . . . , Xn);

(ii)
n∑
k=1

ϕ̂n(Xk)(Yk − ϕ̂n(Xk)) = 0;

(iii)
n∑
k=1

Yk =
n∑
k=1

ϕ̂n(Xk);

(iv) the set on which ϕ̂n <∞ is Conv (X1, . . . , Xn) + Rd
−α;

(v) for any x ∈ Rd the map (X1, . . . , Xn, Y1, . . . , Yn) 7→ ϕ̂n(x) is a Borel-

measurable function from Rn(d+1) into R.
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3.2.2 The convex, α-monotone least squares estimator:

consistency

With similar arguments to those used in Section 2.3 it can be shown that

the convex, α-monotone least squares estimator and its subdifferentials are

consistent. A careful analysis of their respective proofs shows that Theorems

2.3.1 and 2.3.2 still hold with φ̂n replaced by ϕ̂n when φ is convex and α-

monotone. These proofs relied essentially on two key facts:

(i) The finite sample properties of φ̂n established in Lemma 2.2.4.

(ii) The vector (φ̂n(X1), . . . , φ̂n(Xn))′ ∈ Rn is the L2 projection of (Y1, . . . ,

Yn) on the closed, convex cone KX of all evaluations of proper convex

functions on (X1, . . . , Xn). Also, note that (φ(X1), . . . , φ(Xn))′ ∈ KX .

We know from Lemma 3.2.3 that ϕ̂n has similar finite sample properties

to those of its convex counterpart. Note that if φ is convex and α-monotone,

(φ(X1), . . . , φ(Xn))′ ∈ QαX and (ϕ̂n(X1), . . . , ϕ̂n(Xn))′ ∈ Rn is the L2 projec-

tion of (Y1, . . . , Yn) onto QαX . Finally, as the space of convex and α-monotone

functions on X is a subspace of the space of convex functions on X , the

entropy bounds derived in Lemma 2.3.5 still hold.

From these considerations and the nature of the arguments used to

prove Theorems 2.3.1 and 2.3.2, it follows that the consistency theorems 2.3.1

and 2.3.2 remain true for the convex, α-monotone least squares estimator.

3.3 Behavior under misspecified model

In this section we analyze behavior of the convex least squares estimator on

scenarios in which the actual regression function is not convex. It turns out

that the estimator has asymptotic regularity in the sense that even in such
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cases there is a well-defined convex function to which it converges almost

surely. The arguments presented here are based on those in Lim and Glynn

(2012).

Consider the following situation: we are given an i.i.d. sequence (Xn, Yn)∞n=1

from some Borel probability measure µ on Rd+1 satisfying the following con-

ditions:

(I) There is a closed, convex set X ⊂ Rd with X◦ 6= ∅ such that µ(X×R) =

1. Also,∫
X×R

y2µ(dx, dy) <∞.

(II) There is a function φ : Rd → R with X ⊂ dom(φ) such that whenever

(X, Y ) ∼ µ we have E (Y − φ(X)|X) = 0 and E (|Y − φ(X)|2) = σ2 <

∞. Thus, φ is the regression function. Note that φ is not necessarily

convex.

(III) Denoting by ν(·) = µ((·)× R) the x-marginal of µ, we assume that

{X ∈ BX : ν(X) = 0} = {X ∈ BX : X has Lebesgue measure 0}.

(IV) ∫
Rd
x2ν(dx) <∞.

Defining the set Kν by

Kν :=

{
ψ : Rd → R | ψ is convex with

∫
|ψ(x)|2ν(dx) <∞

}
,

it can be seen that Kν is a closed, convex cone in L2(Rd,BRd , ν). Consequently,

from Moreau’s decomposition theorem (see the proof of Lemma 2.2.4) there
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is a unique convex function φ̂ ∈ Kν which satisfies the equations∫
Rd

(φ− φ̂)2dν = inf
ψ∈Kν

{∫
Rd

(φ− ψ)2dν

}
;∫

Rd
(φ− φ̂)(ψ − φ̂)dν ≤ 0 ∀ ψ ∈ Kν .

Since whenever (X, Y ) ∼ µ we have E (Y |X) = φ(X), it is straightforward to

see that φ̂ is the only function satisfying∫
X×R

(ψ(x)− φ̂(x))(y − φ̂(x))µ(dx, dy) ≤ 0 ∀ ψ ∈ Kν .

From the arguments in Lim and Glynn (2012) it can be concluded that,

under (I)-(IV), Theorems 2.3.1 and 2.3.2 hold with φ̂ replacing φ. Note that

under {A5-A7} in Section 2.3 we obviously have φ̂ = φ. This is a remarkable

property of the convex least squares estimator. Even if the regression model

is misspecified by the researcher, the estimator has asymptotic regularity.

It always converges to the Hilbert space projection of the actual regression

function φ onto the closed convex cone Kν in L2(Rd,BRd , ν). The interested

reader can look at all the details in Lim and Glynn (2012).

3.4 A conjecture about local rates of conver-

gence

In this section we focus on the stochastic design regression model described

in Section 2.3.2. Our aim is to state a conjecture about the local rate of

convergence of the convex least squares estimator, namely, the rate at which

φ̂n(x0) − φ(x0) converges to 0 for a given x0 ∈ X ◦. To do this, we will first

introduce some additional notation and assumptions and then prove some

facts about convex functions and empirical processes to provide the substance

for the conjecture.
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3.4.1 Some further notation and assumptions

We will now proceed to introduce some notation in addition to that introduced

in Section 2.3. Consider a convex function f : Rd → R. The closure of f is the

greatest lower semicontinuous function majorized by f . A convex function is

called closed if it equals its closure. The epigraph of f is the subset of Rd+1

given by: epi(f) := {(x, y) ∈ Rd × R = Rd+1 : y ≥ f(x)}. Additionally, we

will denote by f ∗ the convex conjugate function of f (or its Legendre-Fenchel

transform). This function is given by

f ∗(ξ) := sup
x∈Rd
{〈ξ, x〉 − f(x)}.

The methods that will be used to back the conjecture of this section

require an additional assumption on the convex regression function φ. We

have to impose a condition stronger than mere convexity, which will be labeled

as condition (A8).

(A8) There is a neighborhood U ⊂ X of x0 and two constants C, c > 0

such that the marginal density of X under µ, denoted by fν , and the

function x 7→ µ (|Y − φ(X)|2|X = x) are continuous on U ; φ and ∇φ
are continuously differentiable and Lipschitz on U , respectively; and

c|x1 − x2|2 ≤ φ(x2)− φ(x1)− 〈∇φ(x1), x2 − x1〉 ≤ C|x1 − x2|2 (3.5)

for all x1, x2 ∈ U .

Note that (3.5) will be satisfied whenever φ is twice continuously differentiable

with nonsingular Hessian in some neighborhood of x0. However, we do not

assume second order differentiability.
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3.4.2 On the measurability of subdifferentials and sub-

gradients

In what follows we will provide some facts about set-valued measurable func-

tions and random convex functions that will allow us to avoid the use of inner

and outer probabilities.

It follows from Lemma 2.2.4 that φ̂n(x) is measurable for any x ∈ Rd.

According to the arguments in the second paragraph of page 6 in Rockafellar

(1969), this statement, together with the fact that P (Conv (X1, . . . , Xn) 6= ∅) =

1, implies that φ̂n is a normal convex integrand (see page 5 of Rockafellar

(1969)). Consequently, the corresponding subdifferential mappings (∂φ̂n)∞n=1

are measurable multifunctions (this follows from Corollary 4.6 in Rockafel-

lar (1969)). More general notions of normal integrands and random lower

semicontinuous functions can be found in Attouch and Wets (1990) and Hess

(1995). For the basic properties of measurable set-valued mappings, the in-

terested reader may look at Aubin and Frankowska (2009).

Given what has been stated in the previous paragraph, Corollary 8.2.13,

page 317 in Aubin and Frankowska (2009) allows us to remove the inner proba-

bilities in Theorems 2.3.1 and 2.3.2 (as the subdifferentials of the least squares

estimators are measurable multifunctions). Moreover, the same result allows

us to guarantee the measurability of the events and random variables consid-

ered in the sequel.

3.4.3 The conjecture and the ideas behind it

Conjecture: Under conditions {A5-A8} for d = 1, 2, 3 we have

(i) φ̂n(x0)− φ(x0) = OP

(
n−

2
d+4

)
;
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(ii) sup
ξ∈∂φ̂n(x0)

{|ξ −∇φ(x0)|} = OP

(
n−

1
d+4

)
.

In what follows the main ideas to back up this claim will be provided.

The remainder of this section constitutes the latest attempt to use these ideas

to prove the conjecture. In the end, it will hopefully be clear what remains

to be done to have a complete proof.

3.4.3.1 “Localizing” the least squares criterion

We will attempt to use in some clever way the “localizing” functions given

in Lemmas A.2.1 and A.2.2 (see Section A.2). Suppose that we are given

a compact, convex set X ⊂ U (where U is given in (A8)) and consider the

functions φ̂
n

and φ̂n given by Lemmas A.2.1 and A.2.2, respectively. Define

ψ̂
n

:= φ̂n− φ̂n and ψ̂n := φ̂n− φ̂n. Then, applying the characterization of the

orthogonal projection on Euclidean spaces (see Lemma 2.4, (i) in Seijo and

Sen (2011b)) these functions yield the inequalities:∑
Xk∈X

(Yk − φ̂n(Xk))ψ̂n(Xk) ≤ 0, (3.6)∑
Xk∈X

(Yk − φ̂n(Xk))ψ̂n(Xk) ≥ 0. (3.7)

Note that the lower bounds in Lemmas A.2.1 and A.2.2 imply that both

of these functions are nonnegative. Thus, there is a continuous, nonnegative

function ψ̂n which is a convex combination of ψ̂
n

and ψ̂n (and thus supported

on X) such that∑
Xk∈X

(Yk − φ̂n(Xk))ψ̂n(Xk) = 0. (3.8)

Before proceeding any further, I would like to compute these “localiz-

ing” functions in a particular example, so that we get a better idea of how they

work. Let f be a quadratic form f(x) = 〈(x−x0), A(x−x0)〉+ 〈b, x−x0〉+ c
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for some symmetric positive definite matrix A and let X := {x ∈ Rd :

〈(x − x0), A(x − x0)〉 ≤ r}. Then, a straightforward calculation shows that

f(x)−f(x) = r2−〈(x−x0), A(x−x0)〉 and f(x)−f(x) = (r−〈(x−x0), A(x−

x0)〉)2 for x ∈ X. This example is particularly illustrative because if the re-

gression function φ is twice continuously differentiable around x0, the corre-

sponding localizing functions will be close to these ones for A = 1
2
∇2φ(x0)

and X will be similar to a ball around x0 under the metric defined by the

Hessian.

Coming back to the derivation of the rate, we can rewrite (3.8) as

follows:∑
Xk∈X

(Yk − φ(Xk))ψ̂n(Xk) =
∑
Xk∈X

(φ̂n(Xk)− φ(Xk))ψ̂n(Xk). (3.9)

The idea is to use this last identity to derive the rate. A description of

how to do it will be presented in the following paragraphs.

For starters, consider α, r0 > 0 and ρ ∈ (0, 1) such that (3.5) holds in

B(x0, r0) and mα,ρ := ρc− 4(α +
√

2α(α + C)) > 0. Define rn as follows:

rn := inf

{
r ≥ 0 :

∥∥∥φ̂n − φ∥∥∥
B(x0,s)

≤ αs2 ∀ r ≤ s ≤ r0

}
. (3.10)

Before elaborating further on the properties of rn, let us introduce some ad-

ditional notation. For any r ≤ r0 let φ̂
n,r

and φ̂n,r be the functions given by

Lemmas A.2.1 and A.2.2, respectively, applied to f = φ̂n over X = B(x0, r).

Define ψ̂
n,r

:= φ̂n,r − φ̂n,r and ψ̂n,r := φ̂n,r − φ̂n. As argued in the derivation

of (3.9), there is λn,r ∈ [0, 1] such that for ψ̂n,r := λn,rψ̂n,r + (1−λn,r)ψ̂n,r ≥ 0

we have:∑
|x0−Xk|≤r

(Yk−φ(Xk))ψ̂n,r(Xk) =
∑

|x0−Xk|≤r

(φ̂n(Xk)−φ(Xk))ψ̂n,r(Xk). (3.11)

We will now summarize the main properties of rn in the following

Lemma:
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Lemma 3.4.1 Under {A5-A8}, the sequence of random variables (rn)∞n=1

converges to zero with probability one. Moreover, let n ∈ N and rn ≤ r ≤ 1
2
r0.

Then,

(i) ‖∂φ̂n −∇φ‖B(x0,r) ≤ 2(α +
√

2α(α + C))r.

(ii) For all w, y ∈ B(x0, r) we have

φ̂n(w)− φ̂n(y)− 〈∂φ̂n(y), w − y〉 ≥ |w − y|(c|w − y| − 4(α +
√

2α(α + C))r)+;

φ̂n(w)− φ̂n(y)− 〈∂φ̂n(y), w − y〉 ≤ |w − y|(C|w − y|+ 4(α +
√

2α(α + C))r);

(iii) sup
|w−x0|≤r

{ψ̂
n,r

(w) ∨ ψ̂n,r(w)} ≤ (C + 4(α +
√

2α(α + C)))r2.

(iv) ψ̂
n,r

(w) ∧ ψ̂n,r(w) ≥ ρ
2
mα,ρr

2 for all w ∈ B(x0, (1− ρ)r)

(v) ‖φ̂n − φ‖B(x0,r) ∨ ‖φ̂n − φ‖B(x0,r) ≤ (α + C + 4(α +
√

2α(α + C)))r2.

In addition, there is a constant MC,α such that whenever rn ≤ r ≤ 1
4
r0 we

have,

(vi) ‖∂φ̂n −∇φ‖B(x0,r) ∨ ‖∂φ̂n −∇φ‖B(x0,r) ≤MC,αr

Proof: The first assertion follows from the fact that rn ≤ 1√
α

√
‖φ̂n − φ‖B(x0,r0)

a.s.−→

0. Now, let w ∈ B(x0, r), δ > 0 and ∂φ̂n(w) stand for any of its ele-

ments (recall that the subdifferential might be multivalued). Assume that

|∂φ̂n(w) − ∇φ(w)| 6= 0. Define yδ := w + rδ

|∂φ̂n(w)−∇φ(w)|(∂φ̂n(w) − ∇φ(w)).

Note then that by (A8), for all δ < r0/r we have that −〈∇φ(w), yδ − w〉 ≤

−φ(y) +φ(w) +C|yδ−w|2. Using the defining property of the subdifferential

(for ∂φ̂n(w)) we get

rδ|∂φ̂n(w)−∇φ(w)| = 〈∂φ̂n(w)−∇φ(w), yδ − w〉

≤ (φ̂n(yδ)− φ(yδ))− (φ̂n(w)− φ(w)) + C|y − w|2

≤ αr2 + α(1 + δ)2r2 + Cr2δ2.
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Consequently, as r0/r ≥ 2,

|∂φ̂n(w)−∇φ(w)| ≤ 2αr + r inf
0<δ≤2

{2α

δ
+ (α + C)δ)}

≤ 2(α +
√

2α(α + C))r.

As w was arbitrarily chosen, this completes the proof of (i). Now, let w, y ∈
B(x0, r). From (i) and the mean value theorem of integral calculus we can

write ∣∣∣(φ̂n(w)− φ̂n(y)− 〈∂φ̂n(y), w − y〉)− (φ(w)− φ(y)− 〈∇φ(y), w − y〉)
∣∣∣ =∣∣∣∣∫ 1

0

〈(∂φ̂n −∇φ)(y + t(w − y)), w − y〉dt+ 〈(∂φ̂n −∇φ)(y), w − y〉
∣∣∣∣ ≤ 4(α+

√
2α(α+ C))r|w−y|.

Putting the last inequality together with (A8) one immediately gets (ii) (via

applications of the Cauchy-Schwartz and triangular inequalities). Further-

more, (iii) and (iv) are easily obtained from the bounds given in Lemma

A.2.1 (iv) and Lemma A.2.2 (v). Finally, (v) follows immediately from (iii)

and (vi) is proved like (i) with (α+C+4(α+
√

2α(α + C))) and 1
2
r0 assuming

the roles of α and r0, respectively. �

3.4.3.2 Some calculations involving empirical processes

For r > 0 consider the following class of functions:

Ca,bx0,r :=

f : B(x0, r)→ R

∣∣∣∣∣∣∣∣∣
f is convex;

‖f‖B(x0,r)
≤ ar2;

‖∂f‖B(x0,r)
≤ br

 ,

where ‖∂f‖B(x0,r)
= sup{|ξ| : ξ ∈ ∂f(x), |x − x0| ≤ r}. Additionally, we

define the class

Ea,bx0,r := (y−φ(x))Ca,bx0,r = {h : Rd×R→ R : h(x, y) = (y−φ(x))f(x) for some f ∈ Ca,bx0,r}.
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Note that Ca,bx0,r is a class of functions in Rd, while Ea,bx0,r is a class of functions

in Rd+1 with measurable envelope ar2|y − φ(x)|1B(x0,r)(x).

We will now introduce some notation. We will denote by µn the empir-

ical measure defined on Rd+1 by the sample (Xn,1, Yn,1), . . . , (Xn,n, Yn,n). In

agreement with van der Vaart and Wellner (1996), given a class of functions

G on D ⊂ Rd+1, a seminorm ‖·‖ on some space containing G and η > 0 we

denote by N(η,G, ‖·‖) the η-covering number of G with respect to ‖·‖. Addi-

tionally, we will be making use of the notation ‖γ‖G for sup
{∫
|f |dγ : f ∈ G

}
for any signed Borel measure γ on Rd+1 (or some other Euclidean space) and

any class G of measurable functions.

The next result presents entropy calculations for the classes Ea,bx0,r and

Ca,bx0,r.

Lemma 3.4.2 Let a, b, r > 0. Then, there is a constant Ba,b,d > 0, depending

only on a, b and d, such that

(i) log
(
N(η, Ca,bx0,r, ‖ · ‖B(x0,r))

)
≤ Ba,b,dr

dη−d/2,

(ii) sup
Q

{
log
(
N
(
ηar2‖ε1B(x0,r)‖Q,2, Ea,bx0,r, ‖ · ‖Q,2

))}
≤ Ba,b,da

−d/2η−d/2, where

ε = y − φ(x), ‖ · ‖Q,2 stands for the L2(Q) norm and the supremum

is taken over all discrete probability measures Q on Rd+1 for which

‖ε1B(x0,r)‖Q,2 > 0.

Proof: For each f ∈ Ca,bx0,r, let fr : B(x0, 1) → R be given by fr(x) =

r−2f(rx). Then, ‖fr‖B(x0,1) ≤ a and ‖∂fr‖B(x0,1) = r−1‖∂f‖B(x0,r) ≤ b. It

follows that {fr}f∈Ca,bx0,r is a subset of the space of all uniformly bounded, uni-

formly Lipschitz (i.e. with uniformly bounded Lipschitz constants) convex

functions on B(x0, 1). Moreover, ‖f − g‖B(x0,r) = r2‖fr− gr‖B(x0,1). It follows

that r−2η-nets for {fr}f∈Ca,bx0,r have a one-to-one correspondence with η-nets

for Ca,bx0,r. Hence, (i) is a consequence of Theorem 6 in Brons̆tĕın (1976) (see
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also Corollary 2.7.10 in page 164 of van der Vaart and Wellner (1996)). For

(ii) note that if Q is any discrete probability measure and f, g ∈ Ca,bx0,r then

‖εf1B(x0,1) − εg1B(x0,1)‖Q,2 ≤ ‖ε1B(x0,r)‖Q,2‖f − g‖B(x0,r). It is now clear that

(ii) follows from (i). �

With the aid of Lemmas 3.4.1 and 3.4.2 we will attempt to derive a

maximal inequality for certain classes Ea,bx0,r. These inequalities will be ex-

pressed in terms of the following quantities defined for δ > 0:

J a,b
x0,r

(δ) := sup
Q

{∫ δ

0

√
1 + log

(
N
(
ηar2‖ε21B(x0,r)‖Q,2, E

a,b
x0,r, ‖ · ‖Q,2

))
dη

}
;

Ia,b(δ) :=

∫ δ

0

√
1 +Ba,b,da−d/2η−d/2dη

where the supremum is again taken over all discrete probability measures Q

on Rd+1 for which ‖ε21B(x0,r)‖Q,2 > 0.

Lemma 3.4.3 Let a, b, r,M > 0 and assume that {A5-A8} hold. Assume

that r is small enough so B(x0, r) ⊂ U and let ςν,r := sup{fν(x)µ (|Y − φ(X)|2|X = x) :

|x− x0| ≤ r} <∞. Then,

P

(
sup

f∈Ca,bx0,r

{
1√
n

∣∣∣∣∣
n∑
k=1

εkf(Xk)

∣∣∣∣∣
}
> M

)
≤ ςν,ra

2πd/2Ia,b(1)

M2Γ
(
d
2

+ 1
) rd+4,

where the right-hand side of the preceding inequality is finite for d = 1, 2, 3.

Proof: Apply Theorem 2.14.1 in page 239 of van der Vaart and Wellner

(1996) to the class Ea,bx0,r (note that the supremum inside the probability is

measurable as Ca,bx0,r is separable under the sup-norm). In view of Lemma

3.4.2 we get:

P

(
sup

f∈Ca,bx0,r

{
1√
n

∣∣∣∣∣
n∑
k=1

εkf(Xk)

∣∣∣∣∣
}
> M

)
≤ 1

M2
E

( sup
f∈Ca,bx0,r

{
1√
n

∣∣∣∣∣
n∑
k=1

εkf(Xk)

∣∣∣∣∣
})2


≤ J a,bx0,r(1)

∫
|x−x0|≤r

a2r4µ
(
|Y − φ(X)|2|X = x

)
fν(x)dx

≤ ςν,ra
2πd/2Ia,b(1)

M2Γ
(
d
2 + 1

) rd+4.
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�

Now, we have the following result.

Lemma 3.4.4 Let

Bn :=
1

n
d+2
d+4 rd+2

n

∑
|Xk−x0|≤rn

εkψ̂n,rn(Xk),

and assume that {A5-A8} hold. Then, there is a constant Kα,ρ,d, depending

only on d, α > 0 and ρ ∈ (0, 1) (the constants involved in in the definition of

rn), such that

lim
n→∞

P
(
|Bn| > b, rn > an−

1
d+4

)
≤ Kα,ρ,d

b2

∞∑
k=1

kd+4

((k − 1) ∨ a)2d+4
.

In particular, for d ∈ {2, 3}, lim
n→∞

P
(
|Bn| > b, rn > an−

1
d+4

)
→ 0 as b → ∞

for any a > 0.

Proof: First note that condition (A8) implies that

sup
|x−x0|≤r

{|φ(x)− φ(x0)− 〈∇φ(x0), x− x0〉|} ≤ Cr2 ∀ 0 ≤ r ≤ r0,

and that ∇φ is Lipschitz on U . Combining these two facts with Lemma 3.4.1

(i), (v) and (vi) there are two constants aα,ρ, bα,ρ > 0, which only depend on

the ρ, α > 0 involved in the definition of rn, such that

φ̂n,s(·)− φ(x0)− 〈∇φ(x0), (·)− x0〉 ∈ Caα,ρ,bα,ρx0,r ;

φ̂
n,s

(·)− φ(x0)− 〈∇φ(x0), (·)− x0〉 ∈ Caα,ρ,bα,ρx0,r ;

φ̂n,s(·)− φ(x0)− 〈∇φ(x0), (·)− x0〉 ∈ Caα,ρ,bα,ρx0,r ∀ rn ≤ s ≤ r ≤
1

4
r0. (3.12)

Let mn := b r0
4
n

1
d+4 c. Then we have

P
(
|Bn| > b, rn > an−

1
d+4

)
≤ P

(
rn > mnn

1
d+4

)
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+
∑

kn
1
d+4≤ r02

P

 1√
n

∣∣∣∣∣∣
∑

|Xk−x0|≤rn

εkψ̂n,rn(Xk)

∣∣∣∣∣∣ > bn
d

2(d+4) rd+2
n , ((k − 1) ∨ a)n−

1
d+4 < rn ≤ kn−

1
d+4

 .

Note that ψ̂n,rn can be written as follows:

ψ̂n,rn = λn,rn(φ̂n,s(·)− φ(x0)− 〈∇φ(x0), (·)− x0〉)

− (1− λn,rn)(φ̂
n,s

(·)− φ(x0)− 〈∇φ(x0), (·)− x0〉)

+ (1− 2λn,r)(φ̂n,s(·)− φ(x0)− 〈∇φ(x0), (·)− x0〉).

Considering (3.12), Lemma 3.4.3 and the last inequality we get:

P
(
|Bn| > b, rn > an−

1
d+4

)
≤ P

(
rn > mnn

1
d+4

)
+

∑
kn

1
d+4≤ r0

4

P

 sup
f∈Caα,ρ,bα,ρ

x0,kn
−1/(d+4)

{
1√
n

∣∣∣∣∣
n∑
k=1

εkf(Xk)

∣∣∣∣∣
}
>
b((k − 1) ∨ a)d+2n−1/2

3


≤ P

(
rn > mnn

1
d+4

)
+

∑
kn

1
d+4≤ r0

4

ςν,ra
2
α,ρπ

d/2Iaα,ρ,bα,ρ(1)

b2((k − 1) ∨ a)2d+4Γ
(
d
2

+ 1
)kd+4.

The result now easily follows, as from Lemma 3.4.1 we know that rn
a.s.−→ 0.

�

3.4.3.3 The consequences of Lemma 3.4.4 and what remains to be

done

If we write Vn :=
1

nrd+2
n

n∑
k=1

ψ̂n,rn(Xk) then it is easily seen (via a Glivenko-

Cantelli type of argument) that there are constants β1, β2 > 0 such that

P (β1 < Vn < β2)→ 1 as n→∞. Moreover, if we let

Un :=

∫ 1

0

(
1

nrd+4
n

n∑
k=1

〈(∂φ̂n −∇φ)(x0 + t(Xk − x0)), Xk − x0〉ψ̂n,rn(Xk)

)
dt
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then it is also easily shown that Un = OP(1). Thus, Lemma 3.4.4 and (3.11)

imply that we have (on the set where rn > an−
1
d+4 ),

n
2
d+4 (φ̂n(x0)− φ(x0))Vn + n

2
d+4 r2

nUn = OP(1). (3.13)

As P (β1 < Vn < β2)→ 1 as n→∞, to obtain the rate for φ̂n(x0)− φ(x0) it

suffices to show that n
2
d+4 r2

nUn = OP(1). Moreover, if we were able to obtain

an asymptotic lower bound for |Un| (just like β1 for Vn), we would actually

get a rate for rn.
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Chapter 4

A continuous mapping theorem

for the smallest argmax

functional

4.1 Introduction

Many estimators in statistics are defined as the maximizers of certain stochas-

tic processes, called objective functions. This procedure for computing esti-

mators is known as M-estimation and is quite common in modern statistics.

A standard way to find the asymptotic distribution of a given M-estimator,

is to obtain the limiting law of the (appropriately normalized) objective func-

tion and then apply the so-called argmax continuous mapping theorem (see

Theorem 3.2.2, page 286 of van der Vaart and Wellner (1996) for a quite gen-

eral version of this result). Chapter 3.2 in van der Vaart and Wellner (1996)

gives an excellent account of M-estimation problems and applications of the

argmax continuous mapping theorem.

Despite its proven usefulness in a wide range of applications, there are
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some M-estimation problems that cannot be solved by an application of the

usual argmax continuous mapping theorem. This is particularly true when

the objective functions converge in distribution to the law of some process

that admits multiple maximizers. This situation arises frequently in problems

concerning change-point estimation in regression settings. In these problems,

the estimators are usually maximizers of processes that converge in the limit

to two-sided, compound Poisson processes that have a complete interval of

maximizers. See, for instance, Kosorok (2008b) (Section 14.5.1, pages 271–

277), Lan et al. (2009), Kosorok and Song (2007), Pons (2003) and Seijo and

Sen (2011a). This issue has been noted before by several authors, such as

Ferger (2004).

The main goal of this chapter is to derive a version of the argmax

continuous mapping theorem specially tailored for situations like the one de-

scribed in the previous paragraph. A distinctive feature of the argmax contin-

uous mapping theorem in this setup is that it requires the weak convergence,

not only of the objective functions, but also of some associated pure jump

processes. Although this requirement has been overlooked by some authors

in the past (we discuss these omissions in Section 4.5), its necessity can be

easily shown; see Section 4.4 for an example.

To illustrate the situations on which our results are applicable, we start

with the following simple problem that arises in least squares change-point

regression. Detailed accounts of this type of models can be found in Kosorok

(2008b) (Section 14.5.1, pages 271–277), Lan et al. (2009) and Seijo and Sen

(2011a). In its simplest form the model considers a random vector X = (Y, Z)

satisfying the following relation:

Y = α01Z≤ζ0 + β01Z>ζ0 + ε, (4.1)

where Z is a continuous random variable, α0 6= β0 ∈ R, ζ0 ∈ [c1, c2] ⊂ R and
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ε is a continuous random variable, independent of Z with zero expectation

and finite variance σ2 > 0. The parameter of interest is ζ0, the change-point.

Given a random sample from this model, the least squares estimator θ̂n of

θ0 = (ζ0, α0, β0) ∈ Θ := [c1, c2] × R2 is obtained by maximizing the criterion

function

Mn (θ) := − 1

n

n∑
i=1

(Yi − α1Zi≤ζ + β1Zi>ζ)
2 ,

i.e.,

θ̂n := (ζ̂n, α̂n, β̂n) = sargmax
θ∈Θ

{Mn(θ)} , (4.2)

where sargmax denotes the maximizer with the smallest ζ value. This dis-

tinction is made as there is no unique maximizer for ζ, in fact, for any α, β,

Mn(·, α, β) is constant on every interval [Z(j), Z(j+1)), where Z(j) stands for

the j-th order statistic. It can be shown, see either Kosorok (2008b) (Section

14.5.1, pages 271–277) or Seijo and Sen (2011a), that n(ζ̂n − ζ0) converges in

distribution to the smallest maximizer a two-sided, compound Poisson pro-

cess. The convergence results in this chapter, Theorems 4.3.1 and 4.3.2, can,

in particular, be applied to derive the asymptotic distribution of this estimator

(see Sections 4.5.1 and 5.3).

Our results will be applicable to M-estimation problems for which the

objective function takes arguments in some compact rectangle K ⊂ Rd, d ≥ 1.

We focus on functions belonging to the Skorohod space DK as defined in

Neuhaus (1971). The elements of DK are functions with finite “quadrant

limits” (generalized one-sided limits) and are “continuous from above” (gen-

eralization of right-continuity) at each point in K. In Section 4.2 we describe

the Skorohod space DK in details and state some fundamental properties of

the sargmax functional. Some of the results developed in this connection
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can also be of independent interest. In Section 4.3 we prove a version of the

continuous mapping theorem for the sargmax functional for elements of DK
which are cádlág in the first component and jointly continuous on the last

d − 1. In Section 4.4 we describe an example that illustrates the necessity

of the convergence of the associated pure jump processes in the results of

Section 4.3. Finally, in Section 4.5 we apply the theorems of Section 4.3 to

the change-point regression problem described above and to the estimation

of a change-point in time and in a covariate in the Cox-proportional hazards

model.

4.2 The Skorohod space DK

4.2.1 Definition and basic properties

We start by recalling the Skorohod space as discussed in Neuhaus (1971). To

simplify notation, we write the coordinates of any vector in Rd with upper

indices. We consider a compact rectangle K = [a, b] = [a1, b1] × · · · × [ad, bd]

for some a < b ∈ Rd with the inequality holding componentwise. For any

space Rm we will write | · | for the Euclidian norm (although the L∞-norm

is used in Neuhaus (1971), the results in there hold if one uses the Euclidian

norm instead). For k ∈ {1, . . . , d}, t ∈ [ak, bk] and s ∈ {ak, bk} we write:

Ik(s, t) :=

 [ak, t) if s = ak,

(t, bk] if s = bk.

Jk(s, t) :=



[ak, t) if s = ak and t < bk,[
ak, bk

]
if s = ak and t = bk,

∅ if s = bk and t = bk,[
t, bk

]
if s = bk and t < bk.
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and for any ρ ∈ V :=
d∏

k=1

{ak, bk}, x = (x1, . . . , xd) ∈ Rd,

Q(ρ, x) :=
d∏

k=1

Ik(ρ
k, xk),

Q̃(ρ, x) :=
d∏

k=1

Jk(ρ
k, xk).

Remark: Some properties of the sets Q̃(ρ, x) are:

(a) Q̃(ρ, x) ∩ Q̃(γ, x) = ∅ for every γ 6= ρ ∈ V and every x ∈ K.

(b) K =
⋃
ρ∈V

Q̃(ρ, x) for every x ∈ K.

Hence,
{
Q̃(ρ, x)

}
ρ∈V

forms a partition of K. We are now in a position to

define the so-called quadrant limits, the concept of continuity from above and

the Skorohod space.

Definition 4.2.1 (Quadrant Limits and Continuity from Above) Consider

a function f : Rd → R, ρ ∈ V and x ∈ K. We say that a number l is the

ρ-limit of f at x if for every sequence {xn}∞n=1 ⊂ Q(ρ, x) satisfying xn → x

we have f(xn)→ l. In this case we write l = f(x+ 0ρ). When ρ = b we may

write f(x + 0+) := f(x + 0b). With this notation, f is said to be continuous

from above at x if f(x+ 0+) = f(x).

Definition 4.2.2 (The Skorohod Space) We define the Skorohod space DK
as the collection of all functions f : K → R which have all ρ-limits and are

continuous from above at every x ∈ K.

Remark: It is easily seen that if f ∈ DK , ρ ∈ V , x ∈ K and {xn}∞n=1 ⊂

Q̃(ρ, x) is a sequence with xn → x, then f(xn)→ f(x+0ρ). This follows from

the continuity from above as Q(ρ, x) ∩Q(b, ξ) 6= ∅ for every ξ ∈ Q̃(ρ, x).
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Before stating some of the most important properties of DK we will

introduce some further notation. Consider the partitions Tj = {aj = tj,0 <

tj,1 < . . . < tj,rj = bj} for j = 1, . . . , d. We define the rectangular partition

R(T1, . . . , Td) determined by T1, . . . , Td as the collection of all rectangles of

the form

R =
d∏

k=1

[tk,jk−1, tk,jk〉 , jk ∈ {1, . . . , rk}, k = 1, . . . , d,

where 〉 stands for “)” or “]” if tk,jk < bk or tk,jk = bk, respectively. With the

aid of this notation, we can now state two important lemmas.

Lemma 4.2.1 Let f ∈ DK. Then, for every ε > 0 there is δ > 0 and

partitions Tj of [aj, bj], j = 1, . . . , d, such that for any R ∈ R(T1, . . . , Td)

and any θ, ϑ ∈ R with |θ − ϑ| < δ the inequality |f(θ) − f(ϑ)| < ε holds.

Furthermore, we can take the partitions in such a way that sup
θ,ϑ∈R
{|θ−ϑ|} < δ

for every R ∈ R(T1, . . . , Td).

Lemma 4.2.2 Every function in DK is bounded on K.

Lemmas 4.2.1 and 4.2.2 are, respectively, Lemma 1.5 and Corollary 1.6

in Neuhaus (1971). Their proofs can be found there.

Let K1 = [a1, b1] and K2 = [a2, b2]×· · ·× [ad, bd], so K = K1×K2. We

will be dealing with functions which are cádlág on the first coordinate and

continuous on the remaining d−1. For this purpose we will turn our attention

to the space D̃K ⊂ DK of all functions f ∈ DK such that f(t, ·) : K2 → R is

continuous ∀ t ∈ K1 and f(·, ξ) : K1 → R is cádlág ∀ ξ ∈ K2.

Remark: It is worth noting that all elements in DK are componentwise

cádlág, so it is really the continuity in the last d− 1 coordinates what makes

D̃K a proper subspace of DK .
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Lemma 4.2.3 Let f ∈ D̃K and ε > 0. Then, there is δ > 0 such that

sup
|ξ−η|<δ
ξ,η∈K2

{|f(t, ξ)− f(t, η)|} ≤ ε ∀ t ∈ K1.

Proof: From Lemma 4.2.1 we can find δ0 > 0 and partitions Tj of [aj, bj],

j = 1, . . . , d such that the conclusions of the lemma hold true with ε replaced

by ε
3
. We take the partitions in such a way that whenever θ and ϑ belong to

the same rectangle, the distance between them is less than δ0. Let s ∈ T1.

Since K2 is compact and f(s, ·) is continuous, we can find δs such that for

any ξ, η ∈ K2 with |ξ−η| < δs we get |f(s, ξ)−f(s, η)| < ε
3
. Let δ = min

s∈T1
{δs}

and pick t ∈ K1 and ξ, η ∈ K2 with |ξ − η| < δ. Take the largest s ∈ T1 with

s ≤ t. Then, |s− t| < δ0 and hence

|f(t, η)−f(t, ξ)| ≤ |f(t, ξ)−f(s, ξ)|+|f(s, η)−f(s, ξ)|+|f(t, η)−f(s, η)| < ε.

The proof is then finished by taking the supremum over ξ and η and noticing

that the choice of δ was independent of t. �

4.2.2 The Skorohod topology

So far we have not yet defined a topology on DK , so we turn our attention

to this issue now. We will start by defining the Skorohod metric as given

in Neuhaus (1971). Then, we will define a second metric on D̃K and show

that it is equivalent to the corresponding restriction of the Skorohod metric.

This second metric will be more natural for the structure of D̃K and will

prove useful in the proof of the continuous mapping theorem for the smallest

argmax functional. In order to define both of these metrics and state some of

their properties, we will need some additional notation.
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Consider a closed interval I ⊂ R and the class ΛI of all functions λ :

I → I which are surjective (onto) and strictly monotone increasing. Define the

function 9 ·9I : ΛI → R by the formula 9λ9I = sup
s 6=t

{∣∣∣∣log

(
λ(t)− λ(s)

t− s

)∣∣∣∣}.

We write ΛK := Λ[a1,b1]×· · ·×Λ[ad,bd] and for λ := (λ1, . . . , λd) ∈ ΛK , 9λ9K :=

max
1≤k≤d

{9λk9[ak,bk]}. In a similar fashion, we define ΛK2 := Λ[a2,b2]×· · ·×Λ[ad,bd]

and for λ ∈ ΛK2 , 9λ9K2 := max
2≤k≤d

{9λk9[ak,bk]}. Note that for (λ1, λ) ∈ ΛK =

ΛK1×ΛK2 we have 9(λ1, λ)9K = 9λ19K1∨9λ9K2 . We will use the sup-norm

notation also: for a function f : A→ R we write ‖f‖A = sup
x∈A
{|f(x)|}.

Definition 4.2.3 (The Skorohod metric) We define the Skorohod metric

dK : DK ×DK → R as follows:

dK(f, g) = inf
λ∈ΛK

{9λ 9K +‖f − g ◦ λ‖K} .

With this definition we can now state the following fundamental result

about the Skorohod space.

Lemma 4.2.4 The Skorohod metric is a metric. If DK is endowed with the

topology defined by dK, then it becomes a Polish space.

For a proof of the last result, we refer the reader to Section 2 in Neuhaus

(1971). We now proceed to define another metric, d̃K , on DK by the formula:

d̃K(f, g) = inf
λ∈Λ[a1,b1]

{
9λ 9[a1,b1] + sup

(t,ξ)∈K1×K2

{|f(t, ξ)− g(λ(t), ξ)|}

}
.

To properly describe the properties of d̃K we need the ball notation for metric

spaces: given a metric space (X, d), r > 0 and x ∈ X we write Bd
r (x) for the

open ball of radius r and center at x with respect to the metric d. Additionally,

the following lemma will prove to be useful.
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Lemma 4.2.5 Let I ⊂ R be any compact interval. Then, for ε > 0 there is

δ > 0 such that for any λ ∈ ΛI with 9λ9I < δ we also have

sup
s∈I
{|λ(s)− s|} < ε.

Proof: Assume that I = [u, v]. It suffices to choose δ < 1
4
∧ ε

2|v−u| . To see

this, observe that for any τ ∈ (0, 1
4
), τ < 2τ − 4τ 2 ≤ log(1 + 2τ) and for any

τ > −1, log(1 + τ) ≤ τ . It follows that for λ ∈ ΛI with 9λ9I < δ and any

s ∈ I, log(1 − 2δ) < −δ ≤ log λ(s)−u
s−u ≤ δ < 2δ − 4δ2 ≤ log(1 + 2δ) and thus,

|λ(s)− s| < 2(s− u)δ ≤ 2|u− v|δ. In the previous inequalities we have made

implicit use of the fact that λ(u) = u. �

The next lemma contains some of the most relevant properties of d̃K .

Lemma 4.2.6 The following statements are true:

(i) d̃K is a metric on DK.

(ii) dK(f, g) ≤ d̃K(f, g) ≤ ‖f − g‖K ∀ f, g ∈ DK.

(iii) If f ∈ D̃K, then for every r > 0 there is δ > 0 such that BdK
δ (f) ⊂

Bd̃K
r (f). Moreover, the metrics dK and d̃K generate the same topology

on D̃K.

(iv) If f is continuous, then for every r > 0 there is δ > 0 such that Bd̃K
δ (f) ⊂

B
‖·‖K
r (f). Moreover, the metrics dK and d̃K and ‖·‖K generate the same

topology on the space of continuous functions on K.

(v) (D̃K , d̃K) is a Polish space.

Proof: It is straightforward to see that (ii) holds. The proof of (i) follows

along the lines of the proof of the analogous results for the classical Skorohod
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metric (see Chapter 3 of Billingsley (1968)). For the sake of brevity we omit

these arguments. For (iii) we use Lemma 4.2.3. Let f ∈ D̃K , r > 0 and

take δ1 > 0 such that the conclusions of Lemma 4.2.3 hold with r
3

replacing

ε. Also, consider δ2 > 0 such that 9λ9K2 < δ2 implies sup
ξ∈K2

{|λ(ξ) − ξ|} < δ1

(whose existence is a consequence of Lemma 4.2.5 applied to each of the

intervals [a2, b2], . . . , [ad, bd]). Let δ = δ2 ∧ r
3

and take g ∈ BdK
δ (f). Find

(λ1, λ) ∈ ΛK = ΛK1×ΛK2 such that 9(λ1, λ)9K < δ and ‖g−f◦(λ1, λ)‖K < r
3
.

Then, for any (t, ξ) ∈ K1 ×K2 we have:

|g(t, ξ)− f(λ1(t), ξ)| ≤ |g(t, ξ)− f(λ1(t), λ(ξ))|+ |f(λ1(t), λ(ξ))− f(λ1(t), ξ)|

<
r

3
+
r

3
,

where the second term in the sum of the right-hand side of the first inequality

in the preceding display is less than r
3

because of Lemma 4.2.3 since 9λ9K2 <

δ2. Taking supremum over (t, ξ) ∈ K and considering that 9λ19K1 <
r
3

we

get that d̃K(f, g) < r. Thus, BdK
δ (f) ⊂ Bd̃K

r (f). Taking (ii) into account we

can conclude that d̃K and dK are equivalent metrics on D̃K .

We now turn out attention to (iv). Let r > 0. Then, there is δ1 > 0 such

that |f(x)− f(y)| < r
2

whenever |x− y| < δ1. Also, there is δ2 > 0 such that

9λ9K1 < δ2 implies sup
t∈K1

{|λ(t)− t|} < δ1. Let δ = δ2 ∧ r
2

and let g ∈ DK with

d̃K(f, g) < δ and λ ∈ ΛK1 such that 9λ 9K1 +‖g(·, ·) − f(λ(·), ·)‖K1×K2 < δ.

Then, for any (t, ξ) ∈ K1 ×K2 we have

|f(t, ξ)− g(t, ξ)| ≤ |f(t, ξ)− f(λ(t), ξ)|+ |f(λ(t), ξ)− g(t, ξ)| < r.

Thus, Bd̃K
δ (f) ⊂ B

‖·‖K
r (f).

To prove (v) it suffices to show that D̃K is a closed subset of DK , as

the latter space is known to be Polish (see Neuhaus (1971)). Let (fn)∞n=1 be

a sequence in D̃K such that fn
dK−→ f for some f ∈ DK . We will show that

f(t, ·) is continuous for every t and that will imply that f ∈ D̃K since f is
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automatically componentwise cádlág. Let (t, ξ) ∈ K1 × K2 = K and ε > 0.

Consider n ∈ N large enough so that dK(f, fn) < ε
3

and take δ1 > 0 such

that the conclusions of Lemma 4.2.3 hold true for fn and ε
3
. Let (λn,1, λn) ∈

ΛK1 × ΛK2 such that 9(λn,1, λn) 9K +‖f − fn ◦ (λn,1, λn)‖K < ε
3
. Since λn is

continuous, there is δ > 0 such that |ξ−η| < δ implies |λn(ξ)−λn(η)| < δ1. It

follows that |fn(λn,1(t), λn(ξ))− fn(λn,1(t), λn(η))| < ε
3

whenever |ξ − η| < δ.

Hence,

|f(t, ξ)− f(t, η)| ≤ |f(t, ξ)− fn(λn,1(t), λn(ξ))|+ |f(t, η)− fn(λn,1(t), λn(η))|

+|fn(λn,1(t), λn(ξ))− fn(λn,1(t), λn(η))|

< ε, ∀ ξ, η ∈ K2 such that |ξ − η| < δ.

It follows that f(t, ·) is continuous for every t ∈ K1. Hence, f ∈ D̃K and D̃K
is closed. �

Remark: Observe that the previous lemma implies that for a convergent

sequence in DK with a limit in D̃K convergence in the d̃K and dK metrics are

equivalent. When the limit is continuous, convergence in any of these metrics

is equivalent to convergence in the sup-norm topology.

4.2.3 The sargmax functional on DK

We now turn our attention to the smallest argmax functional on DK .

Definition 4.2.4 (The sargmax Functional) A function f ∈ DK is said

to have a maximizer at a point x ∈ K if any of the quadrant-limits of x equals

sup
ξ∈K
{f(ξ)}. For any f ∈ DK we can define the smallest argmax of f over

the compact rectangle K, denoted by sargmax
x∈K

{f(x)}, as the unique element

x = (x1, . . . , xd) ∈ K satisfying the following properties:



84

(i) x is a maximizer of f over K,

(ii) if ξ = (ξ1, . . . , ξd) is any other maximizer, then x1 ≤ ξ1,

(iii) if ξ is any maximizer satisfying xj = ξj ∀ j = 1, . . . , k for some k ∈

{1, . . . , d− 1}, then xk+1 ≤ ξk+1.

We say that x is the largest maximizer of f , denoted by largmax
ξ∈K

{f(ξ)}, if it

is a maximizer that satisfies (ii) and (iii) above with the inequalities reversed.

The first question that one might ask is whether or not the sargmax

is well defined for all functions in the Skorohod space. Before attempting to

give an answer, we will use our notation to clarify the concept of a maximizer:

a point x ∈ K is a maximizer of f ∈ DK if

max
ρ∈V
{f(x+ 0ρ)} = sup

ξ∈K
{f(ξ)}.

We can now prove a result concerning the set of maximizers of a function in

DK .

Lemma 4.2.7 The set of maximizers of any function in DK is compact.

Proof: Let f ∈ DK . Since the set of maximizers of f is a subset of the

compact rectangle K, it suffices to show that any convergent sequence of

maximizers converges to a maximizer. Let (xn)∞n=1 be a sequence of max-

imizers with limit x. For each xn we can find ξn with |xn − ξn| < 1
n

and

such that |f(ξn) − maxρ∈V{f(xn + 0ρ)}| < 1/n. Then we have that ξn → x

and |f(ξn) − supξ∈K{f(ξ)}| < 1/n ∀ n ∈ N. Since K is the disjoint union

of {Q̃(ρ, x)}ρ∈V , it follows that there is ρ∗ ∈ V and a subsequence (ξnk)
∞
k=1

such that ξnk ∈ Q̃(ρ∗, x) ∀ k ∈ N. Therefore, the remark stated right after

the definition of the Skorohod space implies that f(ξnk) → f(x + 0ρ∗) and,
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consequently, f(x+ 0ρ∗) = sup
ξ∈K
{f(ξ)}. �

The previous lemma can be used to show that the sargmax functional

is well defined on DK .

Lemma 4.2.8 For each f ∈ DK there is a unique element in x ∈ K such

that x = sargmax
ξ∈K

{f(ξ)}.

Proof: Let f ∈ DK . Since the set of maximizers of f is compact, if we

can show that it is nonempty then the compactness will imply that there is

a unique element x ∈ K satisfying properties (i), (ii) and (iii) of Definition

4.2.4. Hence, it suffices to show that f has at least one maximizer. For this

purpose, for each n ∈ N choose xn such that sup
ξ∈K
{f(ξ)} < f(xn) +

1

n
. Since

K is compact, there is x ∈ K and a subsequence (xnk)
∞
k=1 such that xnk → x.

Just as in the proof of the previous lemma, we can find ρ∗ ∈ V and a further

subsequence (xnks )
∞
s=1 such that xnks ∈ Q̃(ρ∗, x) ∀ s ∈ N. It follows that

f(xnks ) → f(x + 0ρ∗) and hence sup
ξ∈K
{f(ξ)} = f(x + 0ρ∗). Therefore, the set

of maximizers is nonempty and the sargmax is well defined. �

We finish this section with a continuity theorem for the sargmax func-

tional on continuous functions.

Lemma 4.2.9 Let W ∈ DK be a continuous function which has a unique

maximizer x∗ ∈ K. Then, the smallest argmax functional is continuous at W

(with respect to dK, d̃K and the sup-norm metrics).

Proof: Let (Wn)∞n=1 be a sequence converging to W in the Skorohod topol-

ogy. Let ε > 0 be given and G be the open ball of radius ε around x∗

and let δ :=
(
W (x∗)− supx∈K\G {W (x)}

)
/2 > 0. By Lemma 4.2.6 we have
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‖Wn −W‖K < δ for all large n (dK , d̃K and ‖ · ‖K generate the same local

topology on W ). Then

W (x∗) = 2δ + sup
x∈K\G

{W (x)} > δ + sup
x∈K\G

{Wn(x)} .

But ‖Wn −W‖K < δ also implies that sup
x∈K
{Wn(x)} > W (x∗)−δ. The combi-

nation of these two facts shows that if ‖Wn −W‖K < δ, then any maximizer

of Wn must belong to G. Thus, | sargmaxx∈K{Wn(x)} − x∗| < ε for n large

enough. �

4.3 A continuous mapping theorem for the

sargmax functional on functions with jumps

Lemma 4.2.9 shows that the sargmax functional is continuous on continuous

functions with unique maximizers. However, its raison d’être is to fix a unique

maximizer on a function having multiple maximizers. Thus, a continuous

mapping theorem on functions with jumps and possibly multiple maximizers

is desired. We will show a version of the continuous mapping theorem on a

suitable subset of our space D̃K .

To state and prove our version of the continuous mapping theorem for

the sargmax functional, we need to introduce some notation. We start with

the space D0
K consisting of all functions ψ : K1 × K2 → R which can be

expressed as:

ψ (t, ξ) = V0(ξ)1a−1≤t<a1 +
∞∑
k=1

Vk(ξ)1ak≤t<ak+1
+
∞∑
k=1

V−k(ξ)1a−k−1≤t<a−k(4.3)

where (. . . < a−k−1 < a−k < . . . < a0 = 0 < . . . < ak < ak+1 < . . .)k∈N is a se-

quence of jumps and (Vk)k∈Z is a collection of continuous functions. Note that
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D0
K ⊂ D̃K . Observe that the representation in (4.3) is not unique. However,

knowledge of the function ψ and of the jumps (ak)k∈Z completely determines

the continuous functions (Vk)k∈Z.

Our theorem will require not only Skorohod convergence of the ele-

ments of D0
K , but also convergence of their associated pure jump functions.

To define properly these jump functions, we introduce the space S all piece-

wise constant, cádlág functions ψ̃ : R → R such that ψ̃(0) = 0; ψ̃ has jumps

of size 1; and ψ̃(−t) and ψ̃(t) are nondecreasing on (0,∞). For any closed

interval I ⊂ R we introduce the space SI := {f |I : f ∈ S}. We endow the

spaces SI with the usual Skorohod topology dI . Observe that the fact that all

elements of S are cádlág and have jumps of size one implies that any function

in SI has a finite number of jumps on I.

We associate with every ψ ∈ D0
K , expressed as in (4.3), a pure jump

function ψ̃ ∈ S whose sequence of jumps is exactly the ak’s, i.e.,

ψ̃ (t) =
∞∑
k=1

1ak≤t +
∞∑
k=1

1a−k>t. (4.4)

We will show that Skorohod-convergence of functions in D0
K and Skoro-

hod convergence of their associated pure jump functions implies convergence

of the corresponding sargmax and largmax functionals.

The following convergence result is a generalization of both, Lemma

3.1 of Lan et al. (2009) and Lemma A.3 in Seijo and Sen (2011a).

Theorem 4.3.1 Assume that d ≥ 2 and let
(
ψn, ψ̃n

)∞
n=1

, (ψ0, ψ̃0) be func-

tions in D0
K × SK1 such that ψn satisfies (4.3) for the sequence of jumps of

ψ̃n for any n ≥ 0. Assume that (ψn, ψ̃n) → (ψ0, ψ̃0) in D0
K × SK1 (with

the product topology). Suppose, in addition, that ψ0 can be expressed as

(4.3) for the sequence of jumps (. . . < a−k−1 < a−k < . . . < a0 = 0 < . . . < ak

< ak+1 < . . .)k∈N of ψ̃0 and some continuous functions (Vj)j∈Z, each having a
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unique maximizer on K2, with the property that for any finite subset A ⊂ Z

there is only one j ∈ A for which

max
m∈A

{
sup
ξ∈K2

{Vm(ξ)}
}

= sup
ξ∈K2

{Vj(ξ)} . (4.5)

Finally, assume that ψ0 has no jumps at the extreme points of K1. Then,

(i) sargmax
x∈K

{ψn(x)} → sargmax
x∈K

{ψ0(x)} as n→∞;

(ii) largmax
x∈K

{ψn(x)} → largmax
x∈K

{ψ0(x)} as n→∞.

The result is also true when d = 1 under the same assumptions, but taking the

sequence (Vj)j∈Z to be a sequence of constants such that for any finite subset

A ⊂ Z there is a unique j ∈ A such that max
m∈A
{Vm} = Vj.

Proof: We focus on the case when d > 1 as the one-dimensional case is

just Lemma 3.1 of Lan et al. (2009). Without loss of generality, assume that

K1 = [−C,C] for some C > 0.

We can write ψn in the form (4.3) with (. . . < an,−k−1 < an,−k <

. . . < an,0 = 0 < . . . < an,k < an,k+1 < . . .)k∈N being the sequence of jumps of

ψn and Vn,j being the continuous functions. Consequently, ψ̃n, the pure jump

function associated with ψn, can be expressed as (4.4) with jumps at (an,k)k∈Z.

Let Nr and Nl be the number of jumps of ψ̃0 in [0, C] and [−C, 0)

respectively. Let ε > 0 be sufficiently small such that all the points of the form

aj±ε are continuity points of ψ0, for −Nl ≤ j ≤ Nr. Since convergence in the

Skorohod topology of ψ̃n to ψ̃0 implies point-wise convergence for continuity

points of ψ̃0 (see page 121 of Billingsley (1968)), and all of them are integer-

valued functions, we see that ψ̃n(aj − ε) = j − 1 and ψ̃n(aj + ε) = j for any

1 ≤ j ≤ Nr, and ψ̃n(C) = Nr for all sufficiently large n. Thus, for all but

finitely many n’s we have that ψ̃n has exactly Nr jumps between 0 and C and

that the location of the j-th jump to the right of 0 satisfies |an,j − aj| < ε.
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Since ε > 0 can be made arbitrarily small, we get that all the jumps an,j

converge to their corresponding aj for all 1 ≤ j ≤ Nr. The same happens

to the left of zero: for all but finitely many n’s, ψ̃n has exactly Nl jumps in

[−C, 0) and the sequences of jumps (an,−j)
∞
n=1, 1 ≤ j ≤ Nl, converge to the

corresponding jumps a−j.

Let V ∗ = sup {Vj(ξ) : ξ ∈ K2,−Nl ≤ j ≤ Nr}. Our assumptions on

the Vj’s imply that this supremum is actually achieved at some unique vector

ξ∗ ∈ K2 and that there is a unique “flat stretch” at which this supremum is

attained (the last assertion follows form (4.5)).

Suppose, without loss of generality, that the maximum value is achieved

in an interval of the form [ak, ak+1 ∧ C) for a unique k ∈ {1, . . . , Nr}. Now,

write b0 = 0; bj =
aj+C∧aj+1

2
for 1 ≤ j ≤ Nr; and bj =

aj+(−C)∨aj−1

2
for

−Nl ≤ j ≤ −1. Note that the bj’s (for any value of ξ ∈ K2) are continuity

points of both ψ0 and ψ̃0.

Let κ = min−Nl≤j≤Nr+1(C ∧ aj − (−C) ∨ aj−1) be the length of the

shortest stretch. Take 0 < η, δ < κ/4. Considering the convergence of the

jumps of ψn to those of ψ0, there is N ∈ N such that for any n ≥ N , the

following two statements hold:

(a) Consider ρ > 0 such that if 9λ9K1 < ρ, then

sup {|s− λ(s)| : s ∈ [−C,C]} < δ.

The existence of such ρ follows from Lemma 4.2.5. By the convergence

of ψn to ψ0 in the Skorohod topology, there exists λn ∈ ΛK1 such that

9λn9K1 < ρ and

sup
(t,ξ)∈K1×K2

{|ψn(λn(t), ξ)− ψ0(t, ξ)|} < η.

(b) For any 1 ≤ j ≤ Nr (respectively, j = 0, −Nl ≤ j ≤ −1), bj lies some-

where inside the interval (an,j + δ, C ∧ an,j+1 − δ) (respectively (an,−1 + δ,
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an,1 − δ), ((−C) ∨ an,j−1 + δ, an,j − δ)). This follows from what was proven

in the first two paragraphs of this proof.

From (a) we see that |λn(bj)− bj| < δ for all −Nl ≤ j ≤ Nr. But (b) and the

size of δ in turn imply that bj and λn(bj) belong to the same “flat stretch”

of ψn and thus ψn(λn(bj), ξ) = ψn(bj, ξ) = Vn,j(ξ) for all ξ ∈ K2 and all

−Nl ≤ j ≤ Nr. Considering again (b) and the second inequality in (a), we

conclude that ‖Vn,j − Vj‖K2
< η for all −Nl ≤ j ≤ Nr and all n ≥ N . Hence,

all the sequences (Vn,j)
∞
n=1 converge uniformly in K2 to their corresponding

Vj. Consequently:

max
−Nl≤j≤Nr

j 6=k

{
sup
ξ∈K2

Vn,j(ξ)

}
−→ max

−Nl≤j≤Nr
j 6=k

{
sup
ξ∈K2

Vj(ξ)

}
,

max
ξ∈K2

{Vn,k(ξ)} −→ max
ξ∈K2

{Vk(ξ)} = Vk(ξ
∗),

argmax
ξ∈K2

{Vn,k(h1, h2)} −→ argmax
ξ∈K2

{Vk(ξ)} = ξ∗,

lim
n→∞

max
−Nl≤j≤Nr

j 6=k

{
sup
ξ∈K2

Vn,j(ξ)

}
< lim

n→∞
max
ξ∈K2

{Vn,k(ξ)} .

The above, together with (4.5) and the fact that an,k → ak and an,k+1 → ak+1,

imply that

sargmax
x∈K

{ψn(x)} → (ξ∗, ak) = sargmax
x∈K

{ψ0(x)}

largmax
x∈K

{ψn(x)} → (ξ∗, ak+1) = largmax
x∈K

{ψ0(x)}

as n→∞. �

We now present a version of the previous result but for random elements

in D0
K . To prove it, we will use Lemma 4.2 in Prakasa Rao (1969) (which we

present here to ease the exposition). In the remaining of the paper we will

use the symbol  to represent weak convergence.
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Lemma 4.3.1 (Prakasa Rao (1969)) Consider the random vectors {Wnε,Wn,Wε}n∈Nε≥0

and W . Suppose that the following conditions hold:

(i) lim
ε→0

lim
n→∞

P (Wnε 6= Wn) = 0,

(ii) lim
ε→0

P (Wε 6= W ) = 0,

(iii) Wnε  Wε (as n→∞) for every ε > 0.

Then, Wn  W .

In the next theorem we will be taking the sargmax and largmax func-

tionals over rectangles that may not be compact. When this happens, we say

that these functionals are well defined if there is an element in the correspond-

ing rectangle satisfying conditions (i)− (iii) defining the smallest and largest

argmax functionals (see Definition 4.2.4). If we are given a rectangle Θ ⊂ Rd

which can be written as the Cartesian product of possibly unbounded closed

intervals, we will denote by DΘ the collection of functions f : Θ → R whose

restrictions to all compact rectangles K ⊂ Θ belong to DK .

Theorem 4.3.2 Assume that K = K1 ×K2 is a closed rectangle in Rd and

that 0 ∈ K◦1 ⊂ R. Let (Ω,F ,P) be a probability space and let (Ψn,Γn)∞n=1,

(Ψ0,Γ0) be random elements taking values in D0
K ×SK1 such that Ψn satisfies

(4.3) for the sequence of jumps of Γn for any n ≥ 0, almost surely. Moreover,

suppose that, with probability one, we have that: Ψ0 satisfies (4.5); Γ0 has no

fixed time of discontinuity; the sargmax and largmax functionals over K are

finite for Ψ0 (this assumption is essential as K is not necessarily compact).

If the following hold:

(i) For every compact subinterval B1 ⊂ K1 and compact sub-rectangle B :=

B1 ×B2 ⊂ K we have (Ψn,Γn) (Ψ0,Γ0) on DB ×DB1;
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(ii)

(
sargmax

θ∈K
{Ψn(θ)}, largmax

θ∈K
{Ψn(θ)}

)
= OP(1);

then we also have(
sargmax

θ∈K
{Ψn(θ)}, largmax

θ∈K
{Ψn(θ)}

)
 

(
sargmax

θ∈K
{Ψ0(θ)}, largmax

θ∈K
{Ψ0(θ)}

)
.

Proof: Consider C > 0 and let

φn :=

(
sargmax

θ∈K
{Ψn(θ)}, largmax

θ∈K
{Ψn(θ)}

)
φn,C :=

(
sargmax

θ∈[−C,C]d∩K
{Ψn(θ)}, largmax

θ∈[−C,C]d∩K
{Ψn(θ)}

)
,

for all n ≥ 0. To prove the result, we will apply Theorem 4.3.1 and Lemma

4.3.1. Using the notation of the latter, set ε = 1
C

, Wnε = φn,C for n ≥ 1,

Wε = φ0,C , Wn = φn for n ≥ 1 and W = φ0. From (ii) we see that

lim
ε→0

lim
n→∞

P (Wnε 6= Wn) = 0. Our assumptions on Ψ0 and Γ0 imply that

lim
ε→0

P (Wε 6= W ) = 0. Finally, Theorem 4.3.1 and an application of Skoro-

hod’s Representation Theorem (see either Theorem 1.8, page 102 in Ethier

and Kurtz (2005) or Theorems 1.10.3 and 1.10.4, pages 58 and 59 in van der

Vaart and Wellner (1996)) show that Wnε  Wε and hence, from Lemma

4.3.1, we conclude that φn  φ0. �

4.4 On the necessity of the convergence of the

associated pure jump processes

Condition (i) in Theorem 4.3.2 involves the joint convergence of the processes

whose maximizers are being considered and their associated pure jump pro-

cesses. One may ask whether or not this condition is actually necessary for

the weak convergence of the corresponding smallest maximizers. A simple
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counterexample shows that such a condition is indeed essential to guarantee

the desired weak convergence under the assumptions of Theorem 4.3.2.

Let Ψ be a two-sided, right-continuous Poisson process and T±1 :=

± inf{t > 0 : Ψ(±t) > 0}. Consider the following DR-valued random ele-

ments: Ψ0 := −Ψ and Ψn = Ψ0 + 1
n
1[ 12T−1,

1
2
T1). Then, Ψn  Ψ in DI for

every compact interval I (in fact, the weak convergence holds in DR with the

corresponding Skorohod topology). However,(
sargmax

R
{Ψn}, largmax

R
{Ψn}

)
=

1

2

(
sargmax

R
{Ψ0}, largmax

R
{Ψ0}

)
,

for all n ∈ N. It is easily seen that all the conditions of Theorem 3.2 hold, with

the exception of (i). Hence, the weak convergence of the processes Ψn alone is

not enough to guarantee weak convergence of the corresponding maximizers.

4.5 Applications

4.5.1 Stochastic design change-point regression

We start by analyzing the example of the least squares change-point estimator

given by (4.2) in the Introduction. Assume that we are given an i.i.d. sequence

of random vectors {Xn = (Yn, Zn)}∞n=1 defined on a probability space (Ω,A,P)

having a common distribution P satisfying (4.1) for some parameter θ0 :=

(ζ0, α0, β0) ∈ Θ := [c1, c2] × R2. Suppose that Z has a uniformly bounded,

strictly positive density f (with respect to the Lebesgue measure) on [c1, c2]

such that inf |z−ζ0|≤η f(z) > κ > 0 for some η > 0 and that P(Z < c1)∧P(Z >

c2) > 0. For θ = (ζ, α, β) ∈ Θ, x = (y, z) ∈ R2 write

mθ (x) := − (y − α1z≤ζ − β1z>ζ)
2 ,

and Pn for the empirical measure defined by X1, . . . , Xn. Note that Mn (θ) :=

−Pn[mθ] and recall the definition of θ̂n.
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The asymptotic properties of this estimator are well-known and have

been deduced by several authors. They are available, for instance, in Kosorok

(2008b) or Seijo and Sen (2011a). It follows from Proposition 5.3.2 that
√
n(α̂n − α0) = OP (1),

√
n(β̂n − β0) = OP (1) and n(ζ̂n − ζ0) = OP (1).

For h = (h1, h2, h3) ∈ R3, let ϑn,h := θ0 +
(
h1
n
, h2√

n
, h3√

n

)
and

Ên(h) := nPn
[
mϑn,h −mθ0

]
.

A consequence of this rate of convergence result is that with probability tend-

ing to one, we have

ĥn := sargmax
h∈R3

Ên(h) =
(
n(ζ̂n − ζ0),

√
n(α̂n − α0),

√
n(β̂n − β0)

)
.

Write Ĵn for the pure jump process associated with Ên. It is shown in Lemma

5.3.3 that

(a) (Ên, Ĵn) (E∗, J∗) in DK × SI ,

on every compact rectangle K = I × A × B ⊂ R3 for some process E∗ ∈

DR3 with an associated pure jump process J∗. Then, an application of

Theorem 4.3.2 shows that ĥn =
(
n(ζ̂n − ζ0),

√
n(α̂n − α0),

√
n(β̂n − β0)

)
 

sargmax
h∈R3

{E∗(h)}, see Corollary 5.3.1.

We would like to point out that the derivation of the asymptotic distri-

bution of this estimator can also be found in Kosorok (2008b). The arguments

there can be modified to obtain the result from an application of Theorem

4.3.2.

4.5.2 Estimation in a Cox regression model with a change-

point in time

Define Θ := (0, 1) × Rp+2q for given p, q ∈ N. For θ = (τ, ξ) = (τ, α, β, γ) ∈

Θ = (0, 1) × Rp × Rq × Rq consider a survival time T 0, a censoring time C
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and covariate cáglád (left-continuous with right-hand side limits) Rp+q-valued

process Z = (Z1, Z2) where the sample paths of Z1 and Z2 live in Rp and Rq,

respectively. Assume that C and Z have laws G and H, respectively. Note

that G is a distribution on the nonnegative real line and H a probability

measure on the space of left continuous processes with right-hand side lim-

its. In our Cox model with a change-point in time we make the additional

assumption that, conditionally on Z, the hazard function of the survival time

is given by:

λ(t|Z) := lim
∆t↓0

P (t ≤ T 0 < t+ ∆t|T 0 ≥ t; Z(s), 0 ≤ s ≤ t)

∆t

= λ(t)eα·Z1(t)+(β+γ1t>τ )·Z2(t)

where λ is the baseline hazard function and · denotes the standard inner

product on Euclidian spaces. We write Pθ,λ,G,H for the law of (T 0, C, Z). We

would like to point out that we assume that G and the finite dimensional

distributions of Z are all continuous.

Suppose that there is a random sample

(T 0
1 , C1, Z1,1, Z2,1), . . . , (T 0

n , Cn, Z1,n, Z2,n)
i.i.d.∼ Pθ0,λ0,G0,H0

from which we are only able to observe Z1,j, Z2,j, ∆j := 1T 0
j ≤Cj and Tj :=

T 0
j ∧ Cj for j = 1, . . . , n. The goal is to estimate the change-point τ0 ∈ (0, 1)

given these observations.

A standard method of estimation in this setting is via Cox’s partial

likelihood, in which case the likelihood and log-likelihood functions are given

by

Ln(τ, α, β, γ) :=
∏

1≤k≤n
T 0
k≤Ck

e
α·Z1,k(T 0

k )+(β+γ1
T0
k
>τ

)·Z2,k(T 0
k )∑

{1≤j≤n: T 0
k≤T

0
j ∧Cj}

e
α·Z1,j(T 0

k )+(β+γ1
T0
k
>τ

)·Z2,j(T 0
k )
,

ln(θ) := log (Ln(τ, ξ)) = log (Ln(τ, α, β, γ)) .
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In this case, the maximum partial likelihood estimator of the change-point

and the covariate multipliers is given by

θ̂n = (τ̂n, ξ̂n) = (τ̂n, α̂n, β̂n, γ̂n) := sargmax
θ∈Θ

{ln(θ)}.

Pons (2002) derived the asymptotics for this estimator. For u =

(u1, u2, . . . , u1+p+2q) = (u1, v) ∈ R1+p+2q define θn,u =
(
τ0 + u1

n
, ξ0 + v√

n

)
.

Then, under some regularity conditions, Theorem 2 in Pons (2002) shows

that (
n(τ̂n − τ0),

√
n(ξ̂n − ξ0)

)
= sargmax

u∈R1+p+2q : θn,u∈Θ

{ln(θn,u)− ln(θ0)} = OP(1).

It can also be inferred from Proposition 3 and Theorem 3 of the same paper

that Ψn := ln(θn,u) − ln(θ0)  Ψ on DK for every compact rectangle K ⊂

R1+p+2q, where Ψ is a stochastic process of the form

Ψ(u1, v) = Q(u1) + v · W̃ − 1

2
vĨ · v, (4.6)

with Q being a two-sided, compound Poisson process, W̃ a Gaussian random

variable independent ofQ and Ĩ some positive definite matrix on R(p+2q)×(p+2q).

For a detailed description of Q, W̃ and Ĩ we refer the reader to Section 4 of

Pons (2002).

If one defines Γn and Γ to be the pure jump processes associated with

Ψn and Ψ, respectively, it can be shown, using similar techniques as in the

proof of Theorem 3 of Pons (2002), that (Ψn,Γn) (Ψ,Γ) on DB ×DB1 for

every compact subinterval B1 ⊂ R and compact rectangle B := B1 × B2 ⊂

R1+p+2q. Hence, Theorem 4.3.2 can be applied in this situation to conclude

that (
n(τ̂n − τ0),

√
n(ξ̂n − ξ0)

)
 sargmax

u∈R1+p+2q

{Ψ(u)}.

It must be noted that the proof of Theorem 4 in Pons (2002) makes no mention

of the pure jump processes Γn and Γ. On the second sentence of this proof,
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the author claims that the asymptotic distribution follows just from the weak

convergence of the processes Ψn. As we saw in Section 4.4 this fact alone

is not enough to conclude the weak convergence of the smallest maximizers.

Thus, the argument given in this section completes the mentioned proof in

Pons (2002).

4.5.3 Estimating a change-point in a Cox regression

model according to a threshold in a covariate

We will now discuss another application from survival analysis. Consider

again a Cox regression model but now with a covariate process of the form

Z = (Z1, Z2, Z3) where Z1 and Z2 are as in Section 4.5.2 and Z3 is a continuous

random variable in R. We will denote the survival and censoring times as in

Section 4.5.2. We are now concerned with a hazard function of the form

λ(t|Z) = λ(t)eα·Z1(t)+β·Z2(t)1Z3≤ζ+γ·Z2(t)1Z3>ζ ,

for α ∈ Rq, β, γ ∈ Rq and some ζ ∈ I where I is a closed interval entirely

contained in the interior of the support of Z3. We now consider the parameter

space Θ := I × Rp+2q and we write θ = (ζ, ξ) := (ζ, α, β, γ) ∈ Θ. The partial

likelihood and log-likelihood functions are now given by

Ln(ζ, α, β, γ) :=
∏

1≤k≤n
T 0
k≤Ck

e
α·Z1,k(T 0

k )+β·Z2,k(T 0
k )1Z3,k≤ζ+γ·Z2,k(T 0

k )1Z3,k>ζ∑
{1≤j≤n: T 0

k≤T
0
j ∧Cj}

e
α·Z1,j(T 0

k )+β·Z2,j(T 0
k )1Z3,j≤ζ+γ·Z2,j(T 0

k )1Z3,j>ζ
,

ln(θ) := log (Ln(ζ, ξ)) = log (Ln(ζ, α, β, γ)) .

As before, we assume that the observations come from a model with some

specific value θ0 ∈ Θ. Following the notation of Section 4.5.2, for u =

(u1, u2, . . . , u1+p+2q) = (u1, v) ∈ R1+p+2q define θn,u =
(
ζ0 + u1

n
, ξ0 + v√

n

)
.

Then, under some regularity conditions, Theorem 2 in Pons (2003) shows
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that (
n(ζ̂n − ζ0),

√
n(ξ̂n − ξ0)

)
= sargmax

u∈R1+p+2q : θn,u∈Θ

{ln(θn,u)− ln(θ0)} = OP(1).

Lemma 5 and Theorem 3 in Pons (2003) show that Ψn := ln(θn,u) −

ln(θ0)  Ψ on DK for every compact rectangle K ⊂ R1+p+2q, where Ψ is

another stochastic process of the form (4.6) but with different two-sided, com-

pound Poisson process Q, Gaussian random variable W̃ and positive definite

matrix Ĩ. The details can be found in Section 4 of Pons (2003).

Letting Γn and Γ to be the pure jump processes associated with Ψn and

Ψ, respectively, it can be shown that (Ψn,Γn) (Ψ,Γ) on DB×DB1 for every

compact subinterval B1 ⊂ R and compact rectangle B := B1×B2 ⊂ R1+p+2q.

Hence, another application of Theorem 4.3.2 shows that(
n(τ̂n − τ0),

√
n(ξ̂n − ξ0)

)
 sargmax

u∈R1+p+2q

{Ψ(u)}.

As in Pons (2002), the argument to derive the asymptotic distribution given

in the proof of Theorem 5 lacks a proper discussion of the convergence of the

associated pure jump processes. Therefore, the analysis just given can be seen

as a complement to the proof of Theorem 5 in Pons (2003).

More general models involving right censoring for survival times and a

change-point based on a threshold in a covariate can be found in Kosorok and

Song (2007). There, the change-point estimator also achieves a n−1 rate of

convergence. The asymptotic distribution of this estimator also corresponds

to the smallest maximizer of a two-sided, compound Poisson process and can

be deduced from an application of Theorem 4.3.2. We would like to point

out that the above authors omit a discussion about the associated pure jump

processes. They claim the desired stochastic convergence follows from an

application of Theorem 3.2.2 in van der Vaart and Wellner (1996) (see the
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last paragraph of the proof of Theorem 5 in page 985 of Kosorok and Song

(2007)), but this theorem cannot be applied as the maximizer of a compound

Poisson process is not unique. Thus, a proper application of Theorem 4.3.2

would complete the argument in Kosorok and Song (2007).
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Chapter 5

Change-point regression and

the bootstrap

5.1 Introduction

Change-point models may arise when a stochastic system is subject to sudden

external influences and are encountered in almost every field of science. In

the simplest form the model considers a random vector X = (Y, Z) satisfying

the following relation:

Y = α01Z≤ζ0 + β01Z>ζ0 + ε, (5.1)

where Z is a continuous random variable, α0 6= β0 ∈ R, ζ0 ∈ [a, b] ⊂ R and ε

is a continuous random variable, independent of Z with zero expectation and

finite variance σ2 > 0. The parameter of interest is ζ0, the change-point.

Despite its simplicity, model (5.1) captures the inherent “non-standard”

nature of the problem: The least squares estimator of the change-point ζ0

converges at a rate of n−1 to a minimizer of a two-sided, compound Poisson

process that depends crucially on the entire error distribution, the marginal
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density of Z, among other nuisance parameters; see Pons (2003), Kosorok

(2008b) (Section 14.5.1, pages 271–277) or Koul et al. (2003). Therefore, it

is not practical to use this limiting distribution to build a confidence interval

(CI) for ζ0. Bootstrap methods bypass the estimation of nuisance parameters

and are generally reliable in
√
n-convergence problems. In this chapter we

investigate the performance (both theoretically and through simulation) of

different bootstrap schemes to build CIs for ζ0. We hope our analysis will

help illustrate the issues that arise when the bootstrap is applied in such

non-standard problems.

The problem of estimating a jump-discontinuity (change-point) in an

otherwise smooth curve has been under study for at least the last forty years.

More recently, it has been extensively studied in the nonparametric regression

and survival analysis literature; see for instance Gijbels et al. (1999), Dempfle

and Stute (2002), Pons (2003), Kosorok and Song (2007), Lan et al. (2009) and

the references therein. Bootstrap techniques have also been applied in many

instances in change point models. Dümbgen (1991) proposed asymptotically

valid confidence regions for the change-point by inverting bootstrap tests in

a one-sample problem. Hǔsková and Kirch (2008) considered bootstrap CIs

for the change-point of the mean in a time series context. Kosorok and Song

(2007) use a form of parametric bootstrap to estimate the distribution of the

estimated change-point in a stochastic design regression model that arises in

survival analysis. Gijbels et al. (2004), in a slightly different setting, suggested

a bootstrap procedure for model (5.1), but did not give a complete proof of

its validity.

Our work goes beyond those cited above as follows: We present strong

theoretical and empirical evidence to suggest the inconsistency of the two most

natural bootstrap procedures in a regression setup – the usual nonparametric
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bootstrap (i.e., sampling from the empirical cumulative distribution function

(ECDF) of (Y, Z), often also called as bootstrapping “pairs”) and the “resid-

ual” bootstrap. The bootstrap estimators built by both of these methods

are the smallest maximizers of certain stochastic processes. We show that

these processes do not have any weak limit in probability. This fact strongly

suggests not only inconsistency but also the absence of any weak limit for

the bootstrap estimators. In addition, we prove that independent sampling

from a smooth approximation to the marginal of Z and the centered ECDF

of the residuals, and the m out of n bootstrap from the ECDF of (Y, Z) yield

asymptotically valid CIs for ζ0. The finite sample performance of the different

bootstrap methods shows the superiority of the proposed smoothed bootstrap

procedure. We also develop a series of convergence results which generalize

those obtained in Kosorok (2008b) to triangular arrays of random vectors and

can be used to validate the consistency of any bootstrap scheme in this setup.

Although we develop our results in the setting of (5.1), our conclusions

have broader implications (as discussed in Section 5.7). They extend imme-

diately to regression functions with parametrically specified models on either

side of the change-point. The smoothed bootstrap procedure can also be mod-

ified to work in more general nonparametric settings. Gijbels et al. (1999)

consider jump-point estimation in the more general setup of non-parametric

regression and develop two-stage procedures to build CI for the change-point.

In the second stage of their procedure, they localize to a neighborhood of

the change-point and reduce the problem to exactly that of (5.1). Lan et al.

(2009) consider a two-stage adaptive sampling procedure to estimate the jump

discontinuity. The second stage of their method relies on an approximate CI

for the change-point, and the bootstrap methods developed here can be im-

mediately used in their context.
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The chapter is organized in the following manner: In Section 5.2 we

describe the problem in greater detail, introduce the bootstrap schemes and

describe the appropriate notion of consistency. In Section 5.3, we prove a se-

ries of convergence results that generalize those obtained in Kosorok (2008b).

These results will constitute the general framework under which the bootstrap

schemes will be analyzed. In Section 5.4 we study the inconsistency of the

standard bootstrap methods, including the ECDF and residual bootstraps.

In Section 5.5 we propose two bootstrap procedures and show their consis-

tency. We compare the finite sample performance of the different bootstrap

methods through a simulation study in Section 5.6. Finally, in Section 5.7 we

discuss the consequences of our analysis in more general change-point regres-

sion models. To ease the exposition, we have relegated many of the proof and

some auxiliary results to Section 5.9.

5.2 The problem and the bootstrap schemes

Assume that we are given an i.i.d. sequence of random vectors {Xn = (Yn, Zn)}∞n=1

defined on a probability space (Ω,A,P) having a common distribution P sat-

isfying (5.1) for some parameter θ0 := (α0, β0, ζ0) ∈ Θ := R2 × [a, b]. This

is a semi-parametric model with an Euclidean parameter θ0 and two infinite-

dimensional parameters – the distributions of Z and ε. We are interested in

estimating ζ0, the change-point. For technical reasons, we will also assume

that P(|ε|3) <∞. Here, and in the remaining of the paper, we take the con-

vention that for any probability distribution µ, we will denote the expectation

operator by µ(·). In addition, we suppose that Z has a uniformly bounded,

strictly positive density f (with respect to the Lebesgue measure) on [a, b] such

that inf |z−ζ0|≤η f(z) > κ > 0 for some η > 0 and that P(Z < a)∧P(Z > b) > 0.
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For θ = (ζ, α, β) ∈ Θ, x = (y, z) ∈ R2 write

mθ (x) := − (y − α1z≤ζ − β1z>ζ)
2 , (5.2)

Pn for the empirical measure defined by X1, . . . , Xn,

Mn (θ) := Pn (mθ) = − 1

n

n∑
i=1

(Yi − α1Zi≤ζ + β1Zi>ζ)
2 , (5.3)

and M (θ) := P (mθ). The function Mn is strictly concave in its first two

coordinates but càdlàg (right continuous with left limits) in the third; in

fact, piecewise constant and with n jumps (w.p. 1). Thus, Mn has unique

maximizing values of α and β, but an entire interval of maximizers for ζ. For

this reason, we define the least squares estimator of θ0 to be the maximizer of

Mn over Θ with the smallest ζ, and denote it by

θ̂n := (ζ̂n, α̂n, β̂n) = sargmax
θ∈Θ

{Mn(θ)} ,

where sargmax stands for the smallest argmax functional, as defined in 4.2.4.

The asymptotic properties of this least squares estimator are well known.

It is shown in Kosorok (2008b), pages 271–277, that
√
n(α̂n − α0) = OP (1),

√
n(β̂n − β0) = OP (1) and n(ζ̂n − ζ0) = OP (1). The asymptotic distribution

of n(ζ̂n− ζ0) is that of the smallest argmax of a two-sided compound Poisson

process. However, the limiting process depends on the distribution of ε and

the value of the density of Z at ζ0. Thus, there is no straightforward way

to build CIs for ζ0 using this limiting distribution. In this connection we

investigate the performance of bootstrap procedures for constructing CIs for

ζ0.

5.2.1 Bootstrap

We start with a brief review of the bootstrap. Given a sample Wn =

{W1,W2, . . . , Wn}
iid∼ L from an unknown distribution L, suppose that the
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distribution function Hn of some random variable Rn ≡ Rn(Wn, L) is of in-

terest; Rn is usually called a root and it can in general be any measurable

function of the data and the distribution L. The bootstrap method can be

broken into three simple steps:

(i) Construct an estimator L̂n of L from Wn.

(ii) Generate W∗
n = {W ∗

1 , . . . ,W
∗
mn}

iid∼ L̂n given Wn.

(iii) Estimate Hn by Ĥn, the conditional CDF of Rn(W∗
n, L̂n) given Wn.

Let d denote the Prokhorov metric or any other metric metrizing weak con-

vergence of probability measures. We say that Ĥn is weakly consistent if

d(Hn, Ĥn)
P→ 0; if Hn has a weak limit H, this is equivalent to Ĥn con-

verging weakly to H in probability. Similarly, Ĥn is strongly consistent if

d(Hn, Ĥn)
a.s.→ 0.

The choice of L̂n mostly considered in the literature is the ECDF.

Intuitively, an L̂n that mimics the essential properties (e.g., smoothness) of

the underlying distribution L can be expected to perform well. Despite being

a good estimator in most situations, the ECDF can fail to capture some

properties of L that may be crucial for the problem under consideration. This

is especially true in nonstandard problems. In Section 5.4 we illustrate this

phenomenon (the inconsistency of the ECDF bootstrap) when n(ζ̂n − ζ0) is

the random variable (root) of interest.

We denote by X = σ ((Xn)∞n=1) the σ-algebra generated by the sequence

(Xn)∞n=1 and write PX (·) = P (· |X) and EX (·) = E (· |X). We approximate

the CDF of ∆n = n(ζ̂n − ζ0) by PX (∆∗n ≤ x), the conditional distribution

function of ∆∗n = mn(ζ∗n − ζ̂n) and use this to build a CI for ζ0, where ζ∗n is

the least squares estimator of ζ0 obtained from the bootstrap sample. We will
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now introduce four bootstrap schemes that arise naturally in this problem

and investigate their consistency properties in Sections 5.4 and 5.5.

Scheme 1 (ECDF bootstrap): Draw a bootstrap sample (Y ∗n,1, Z
∗
n,1), . . . ,

(Y ∗n,n, Z
∗
n,n) from the ECDF of (Y1, Z1), . . . , (Yn, Zn); probably the most widely

used bootstrap scheme.

Scheme 2 (Bootstrapping residuals): This is another widely used boot-

strap procedure in regression models. We first obtain the residuals

ε̂n,j := Yj − α̂n1Zj≤ζ̂n − β̂n1Zj>ζ̂n for j = 1, . . . , n,

from the fitted model. Note that these residuals are not guaranteed to have

mean 0, so we work with the centered residuals, ε̂n,1− ε̄n, . . . , ε̂n,n− ε̄n, where

ε̄n =
∑n

j=1 ε̂n,j/n. Letting Pεn denote the empirical measure of the centered

residuals, we obtain the bootstrap sample (Y ∗n,1, Z1), . . . , (Y ∗n,n, Zn) as follows:

1. Sample ε∗n,1, . . . , ε
∗
n,n independently from Pεn.

2. Fix the predictors Zj, j = 1, . . . , n, and define the bootstrapped re-

sponses at Zj as Y ∗n,j = α̂n1Zj≤ζ̂n + β̂n1Zj>ζ̂n + ε∗n,j.

Scheme 3 (Smoothed bootstrap): Notice that in (5.1) Z is assumed to

have a density which arises in the limiting distribution of ∆n. A successful

bootstrap scheme must mimic this underlying assumption, and we accomplish

this in the following:

1. Choose an appropriate nonparametric smoothing procedure (e.g., kernel

density estimation) to build a distribution F̂n with a density f̂n such that

‖F̂n − F‖∞
a.s.→ 0 and f̂n → f uniformly on some open interval around

ζ0 w.p. 1, where f is the density of Z.
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2. Get i.i.d. replicates Z∗n,1, . . . , Z
∗
n,n from F̂n and sample, independently,

ε∗n,1, . . . , ε
∗
n,n from Pεn.

3. Define Y ∗n,j = α̂n1Z∗n,j≤ζ̂n
+ β̂n1Z∗n,j>ζ̂n

+ ε∗n,j for all j = 1, . . . , n.

Scheme 4 (m out of n bootstrap): A natural alternative to the usual non-

parametric bootstrap (i.e., generating bootstrap samples from the ECDF)

considered widely in non-regular problems is to use the m out of n boot-

strap. We choose a nondecreasing sequence of natural numbers {mn}∞n=1

such that mn = o(n) and mn → ∞ and generate the bootstrap sample

(Y ∗n,1, Z
∗
n,1), . . . , (Y ∗n,mn , Z

∗
n,mn) from the ECDF of (Y1, Z1), . . . , (Yn, Zn). Al-

though there are a number of methods available for choosing the mn in ap-

plications, there is no satisfactory solution to this problem and the obtained

CIs usually vary with changing mn.

We will use the framework established by our convergence theorems in

Section 5.3 to prove that schemes 3 and 4 above yield consistent bootstrap

procedures for building CIs for ζ0. We will also give strong empirical and the-

oretical evidence for the inconsistency of schemes 1 and 2. Note that schemes

1 and 2 are the two most widely used resampling techniques in regression

models (see pages 35-36 of Efron (1982); also see Freedman (1981) and Wu

(1986)). Thus in this change–point scenario, a typical nonstandard problem,

we see that the two standard bootstrap approaches fail. The failure of the

usual bootstrap methods in nonstandard situations is not new and has been

investigated in the context of M-estimation problems by Bose and Chatter-

jee (2001) and in situations giving rise to n1/3 asymptotics by Abrevaya and

Huang (2005) and Sen et al. (2010). But the change-point problem consid-

ered in this paper is indeed quite different from the nonstandard problems

considered by the above authors – one key distinction being that compound
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Poisson processes, as opposed to Gaussian processes, form the backbone of

the asymptotic distributions of the estimators – and thus demands an inde-

pendent investigation. We will also see later that the performance of scheme

3 clearly dominates that of the m out of n bootstrap procedure (scheme 4),

the general recipe proposed in situations where the usual bootstrap does not

work (see Lee and Pun (2006) for applications of the m out of n bootstrap

procedure in some nonstandard problems). Also note that the performance

of the m out of n bootstrap scheme crucially depends on m (see e.g., Bickel

et al. (1997)) and the choice of this tuning parameter is tricky in applications.

5.3 A uniform convergence result

In this section we generalize the results obtained in Kosorok (2008b), pages

271–277, to a triangular array of random variables. Consider the triangular

array

{Xn,k = (Yn,k, Zn,k)}n∈N1≤k≤mn defined on a probability space (Ω,A,P), where

(mn)∞n=1 is a nondecreasing sequence of natural numbers such that mn →∞.

Throughout the entire paper we will always denote by E the expectation

operator with respect to P. Furthermore, assume that for each n ∈ N,

(Xn,1, . . . , Xn,mn) constitutes a random sample from an arbitrary bivariate

distribution Qn with Qn(Y 2
n,1) < ∞ and let Mn(θ) := Qn(mθ) for all θ ∈ Θ,

where mθ is defined in (5.2). Let P be a bivariate distribution satisfying (5.1).

Recall that M(θ) := P(mθ) and θ0 := sargmaxM(θ).

Let θn := (ζn, αn, βn) be given by

θn = sargmax
θ∈Θ

{Qn(mθ)}.

Note that Qn need not satisfy model (5.1) with (ζn, αn, βn). The existence of

θn is guaranteed as Qn(mθ) is a quadratic function in α and β (for a fixed
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ζ) and bounded and cádlág as a function in ζ. For each n, let P∗n be the

empirical measure produced by the random sample (Xn,1, . . . , Xn,mn), and

define the least squares estimator θ∗n = (ζ∗n, α
∗
n, β

∗
n) ∈ Θ to be the smallest

argmax of M∗
n(θ) := P∗n(mθ). If Q is a signed Borel measure on R2 and F is

a class of (possibly) complex-valued functions defined on R2, write ‖Q‖F :=

sup {|Q(f)| : f ∈ F}. If g : K ⊂ R3 → R is a bounded function, write

‖g‖K := supx∈K |g(x)|. Also, for (z, y) ∈ R2 and n ∈ N we write

ε̃n := ε̃n (z, y) = y − αn1z≤ζn − βn1z>ζn . (5.4)

Let M > 0 be such that |αn| ≤ M for all n. We define the following three

classes of functions from R2 into R:

F := {1I (z) : I ⊂ R is an interval} ,

G := {yf(z) : f ∈ F} ∪ {|y + α|f(z) : f ∈ F , |α| ≤M} ,

H := {y2f(z) : f ∈ F}.

In what follows, we will derive conditions on the distributions Qn that will

guarantee consistency and weak convergence of θ∗n.

5.3.1 Consistency and the rate of convergence

We provide first a consistency result for the least squares estimator, whose

proof we include in the Appendix (see Section 5.9.1). To this end, we consider

the following set of assumptions:

(I) ‖Qn − P‖F → 0,

(II) ‖Qn − P‖G → 0,

(III) ‖Qn − P‖H → 0,

(IV) θn → θ0.
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Proposition 5.3.1 Assume that (I)-(IV) hold. Then, θ∗n
P−→ θ0.

To guarantee the right rate of convergence, we need to assume stronger

regularity conditions. In addition to those of Proposition 5.3.1, we require the

following:

(V) There are η, ρ, L > 0 with the property that for any δ ∈ (0, η), there is

N > 0 such that the following inequalities hold for any n ≥ N :

inf
1√
mn
≤|ζ−ζn|<δ2

{
1

|ζ − ζn|
Qn(1ζ∧ζn<Z≤ζ∨ζn)

}
> ρ, (5.5)

sup
|ζ−ζn|<δ2

{|Qn(ε̃n1ζ∧ζn<Z≤ζ∨ζn)|} ≤ Lδ
√
mn

, (5.6)

sup
|ζ−ζn|<δ2

{|Qn(ε̃n1Z≤ζ∧ζn)|+ |Qn(ε̃n1Z>ζ∨ζn)|} ≤ L
√
mn

. (5.7)

We would like to point out some facts about (V). It must be noted that (5.6)

and (5.7) automatically hold in the case where Z and ε̃n are independent

under Qn with Qn(ε̃n) = 0. Also, (5.5) is easily seen to hold when the Z’s,

under Qn, have densities fn converging uniformly to f in some neighborhood

of ζ0, where f is the density of Z under P; by a consequence of the classical

mean value theorem of calculus.

With the aid of these conditions, Proposition 5.3.1 and Theorem 3.4.1,

page 322, of van der Vaart and Wellner (1996) we can now state and prove

(see Section 5.9.2) the rate of convergence result.

Proposition 5.3.2 Assume that (I)-(V) hold. Then
√
mn(α∗n−αn) = OP (1),

√
mn(β∗n − βn) = OP (1) and mn(ζ∗n − ζn) = OP (1).

Propositions 5.3.1 and 5.3.2 provide sufficient conditions on the mea-

sures Qn, the distribution of each element in the nth row of the triangular

array, to achieve the same rate of convergence as the original least squares
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estimators. We would like to highlight that we are not assuming that each

Qn satisfy the model (5.1) with (αn, βn, ζn); all we need is that Qn and θn

approach P and θ0 respectively, in a suitable manner.

5.3.2 Weak Convergence and asymptotic distribution

We start with some additional set of assumptions:

(VI) For any function ψ : R→ C which is either of the form ψ(x) = eiξx for

some ξ ∈ R or defined by ψ(x) = |x|p for p = 1, 2, we have:

mnQn

(
ψ(ε̃n)1ζn− δ

mn
<Z≤ζn+ η

mn

)
→ f(ζ0)(δ+ η)P (ψ(ε)) ∀ η, δ > 0.

(VII)
√
mnQn(ε̃n1Z≤ζn)→ 0 and

√
mnQn(ε̃n1Z>ζn)→ 0.

(VIII) limn→∞Qn(|ε̃n|3) <∞.

Observe that condition (VI) implies, for all η, δ > 0, and p = 1, 2,

√
mnQn

(
|ε̃n|p1ζn− δ

mn
<Z≤ζn+ η

mn

)
→ 0, (5.8)

√
mnQn

(
1ζn− δ

mn
<Z≤ζn+ η

mn

)
→ 0. (5.9)

For h = (h1, h2, h3) ∈ R3, let ϑn,h := θn +
(
h1
mn
, h2√

mn
, h3√

mn

)
and

Ên(h) := mnP∗n
[
mϑn,h −mθn

]
.

We will argue that

h∗n := sargmin
h∈R3

Ên(h) = (mn(ζ∗n − ζn),
√
mn(α∗n − αn),

√
mn(β∗n − βn))

converges in distribution to the smallest argmax of some process involving two

independent normal random variables and a two-sided, compound Poisson

process (independent of the normal variables).
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We will derive the asymptotic distribution of the process Ên and then

apply Theorem 4.3.2 to obtain the limiting distribution of h∗n. We will consider

these stochastic processes as random elements in the Skorohod spaces DK as

given Definition 4.2.2. As a first step in this direction, we express the process

Ên as the sum of the four terms Ân, B̂n, Ĉn and D̂n where

Ân(h1, h2) := 2h2

√
mnP∗n

(
ε̃n1Z≤ζn∧(ζn+

h1
mn

)

)
− h2

2P∗n
(
1
Z≤ζn∧(ζn+

h1
mn

)

)
,

B̂n(h1, h3) := 2h3

√
mnP∗n

(
ε̃n1Z>ζn∨(ζn+

h1
mn

)

)
− h2

3P∗n
(
1
Z>ζn∨(ζn+

h1
mn

)

)
,

Ĉn(h1, h3) := −2mn

(
αn − βn −

h3√
mn

)
P∗n
(
ε̃n1ζn+

h1
mn

<Z≤ζn

)
− mn

(
αn − βn −

h3√
mn

)2

P∗n
(
1
ζn+

h1
mn

<Z≤ζn

)
,

D̂n(h1, h2) := −2mn

(
βn − αn −

h2√
mn

)
P∗n
(
ε̃n1ζn<Z≤ζn+

h1
mn

)
− mn

(
βn − αn −

h2√
mn

)2

P∗n
(
1
ζn<Z≤ζn+

h1
mn

)
.

We define another process E∗n := A∗n +B∗n + C∗n +D∗n where

A∗n(h2) := 2h2

√
mnP∗n (ε̃n1Z≤ζn)− h2

2P∗n (1Z≤ζn) ,

B∗n(h3) := 2h3

√
mnP∗n (ε̃n1Z>ζn)− h2

3P∗n (1Z>ζn) ,

C∗n(h1) := −2mn(αn − βn)P∗n
(
ε̃n1ζn+

h1
mn

<Z≤ζn

)
− mn(αn − βn)2P∗n

(
1
ζn+

h1
mn

<Z≤ζn

)
,

D∗n(h1) := −2mn(βn − αn)P∗n
(
ε̃n1ζn<Z≤ζn+

h1
mn

)
− mn(βn − αn)2P∗n

(
1
ζn<Z≤ζn+

h1
mn

)
.

We work with E∗n instead of Ên as their difference approaches uniformly to 0

in probability, as shown in the next lemma (proved in Section 5.9.3), and the

asymptotic distribution of E∗n is easier to derive.



113

Lemma 5.3.1 Let K ⊂ R3 be a compact rectangle. If conditions (I)-(IV)

and (5.8) and (5.9) hold, then∥∥∥E∗n − Ên∥∥∥
K

P−→ 0.

Therefore, E∗n − Ên
P−→ 0 as random elements of DK. In particular, this

result is true under conditions (I)-(IV) and (VI).

As a first step to finding the asymptotic distribution of (E∗n)∞n=1, we

show that the random sequence is tight in the Skorohod space DK for any

compact rectangle K ⊂ R3. The proof of the next result is given in Section

5.9.4.

Lemma 5.3.2 Let I ⊂ R be a compact interval and assume that conditions

(I)-(VIII) hold. Then, the sequence of R6-valued processes

Ξn(t) :=



√
mnP∗n(ε̃n1Z≤ζn)
√
mnP∗n(ε̃n1Z>ζn)

mnP∗n(1ζn+ t
mn

<Z≤ζn)

mnP∗n(ε̃n1ζn+ t
mn

<Z≤ζn)

mnP∗n(1ζn<Z≤ζn+ t
mn

)

mnP∗n(ε̃n1ζn<Z≤ζn+ t
mn

)


(5.10)

is uniformly tight in R2 × D̃4
I . Also, if K ⊂ R3 is a compact rectangle, the

sequence (E∗n)∞n=1 is uniformly tight in DK.

It now suffices to show convergence of the finite-dimensional distri-

butions of the processes E∗n to the finite dimensional distributions of some

process E∗ ∈ DK to conclude that E∗n converges weakly to E∗ (and thus Ên

too). With this objective in mind, we make the following definitions: Let

Z1 ∼ N (0, σ2P(Z ≤ ζ0)) and Z2 ∼ N (0, σ2P(Z > ζ0)) be two independent
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normal random variables; ν1 and ν2 be, respectively, left-continuous and right-

continuous, homogeneous Poisson processes with rate f(ζ0) > 0; u = (un)∞n=1

and v = (vn)∞n=1 two sequences of i.i.d. random variables having the same

distribution as ε under P. Assume, in addition, that Z1, Z2, ν1, ν2, v and u

are all mutually independent. Then, define the process Ξ = (Ξ(1), . . . ,Ξ(6))′

as

Ξ(t) :=



Z1

Z2

ν1(−t)1t<0∑
0<j≤ν1(−t) vj1t<0

ν2(t)1t≥0∑
0<j≤ν2(t) uj1t≥0


(5.11)

and let E∗ be given by

E∗(h) := 2h2Ξ(1)(h1)− h2
2P(Z ≤ ζ0) + 2h3Ξ(2)(h1)− h2

3P(Z > ζ0)

+ 2(β0 − α0)Ξ(4)(h1)− (α0 − β0)2Ξ(3)(h1)

+ 2(α0 − β0)Ξ(6)(h1)− (α0 − β0)2Ξ(5)(h1) (5.12)

for h = (h1, h2, h3) ∈ R3.

We will now prove weak convergence of the sequence of processes

(Ên)∞n=1 to E∗ and apply Theorem 4.3.2. Recall the notation of Section 4.3

and define the S–valued (pure jump) processes Ĵn, J∗n and J∗ as

J∗n(t) = Ĵn(t) := mnP∗n(1ζn+ t
mn

<Z≤ζn) +mnP∗n(1ζn<Z≤ζn+ t
mn

),

J∗(t) := ν1(−t)1t<0 + ν2(t)1t≥0.

Note that Ĵn, J∗n and J∗ are the jump processes associated with Ên, E∗n and

E∗, respectively.
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Lemma 5.3.3 Let I ⊂ R be a compact interval and K = I × A× B ⊂ R3 a

compact rectangle. If (I)-(VIII) hold, we have

(i) Ξn  Ξ in R2 × D̃4
I ,

(ii) (E∗n, J
∗
n) (E∗, J∗) in DK × SI ,

(iii) (Ên, Ĵn) (E∗, J∗) in DK × SI ,

where  denotes weak convergence.

For a proof of the convergence result, see Section 5.9.5.

To apply Theorem 4.3.2 we first show that the the smallest argmax of

E∗ is well defined. The proof of the next lemma is provided in Section 5.9.6.

Lemma 5.3.4 Consider the process E∗ defined in (5.12). Then, for almost

every sample path of E∗, φ∗ = (φ∗1, φ
∗
2, φ
∗
3) := sargmax

h∈R3

{E∗(h)} is well-defined.

Moreover, φ∗1, φ∗2 and φ∗3 are independent; and φ∗2 and φ∗3 are distributed

as normal random variables with mean 0 and variances σ2/P(Z ≤ ζ0) and

σ2/P(Z > ζ0), respectively.

We now state the distributional convergence result for the sequence of

least squares estimator θ∗n. For a proof, we refer the reader to Section 5.9.7.

Proposition 5.3.3 With the notation of Lemma 5.3.4, if conditions (I)-

(VIII) hold, then

h∗n =


mn(ζ∗n − ζn)
√
mn(α∗n − αn)
√
mn(β∗n − βn)

 sargmax
h∈R3

{E∗(h)}.

If we take Qn = P and mn = n ∀n ∈ N, it is easily seen that θn = θ0 and

conditions (I)-(VIII) hold. Hence, we immediately get the following corollary.
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Corollary 5.3.1 (Asymptotic distribution of the least squares estimators)

For the least squares estimators (ζ̂n, α̂n, β̂n) based on an i.i.d. sequence (Xn)∞n=1

satisfying (5.1), we have

(n(ζ̂n − ζ0),
√
n(α̂n − α0),

√
n(β̂n − β0))′  sargmax

h∈R3

{E∗(h)}.

5.4 Inconsistency of the bootstrap

In this section we argue the inconsistency of the two most common bootstrap

procedures in regression: the ECDF bootstrap (scheme 1) and the resid-

ual bootstrap (scheme 2). Recall the notation and definitions in the begin-

ning of Section 5.2. In particular, note that we have i.i.d. random vectors

{Xn = (Yn, Zn)}∞n=1 from (5.1) with parameter θ0 defined on a probability

space (Ω,A,P) and let Pn be the empirical distribution of the first n data

points. We start by stating two results that will be used in the sequel. We

first show that the least squares estimator θ̂n of θ0 is strongly consistent. This

is an improvement of the result obtained in Kosorok (2008b) and we refer the

reader to Section 5.9.8 for a complete proof. The proof of the second lemma

can be found in Section 5.9.9.

Lemma 5.4.1 Let K ⊂ Θ be any compact rectangle. Then,

(i) ‖Mn −M‖K
a.s.−→ 0,

(ii) Mn
a.s.−→M in DK,

(iii) θ̂n
a.s.−→ θ0.

Lemma 5.4.2 Let K ⊂ R be a compact interval and (mn)∞n=1 be an increasing

sequence of natural numbers such that mn →∞ and mn = O(n). Then,

(i) mγ
n

∥∥∥Pn(ζ̂n + (·)
mn

< Z ≤ ζ̂n)
∥∥∥
K

P−→ 0 for any γ < 1, and
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(ii) mγ
n

∥∥∥Pn (|ε̃n|p1ζ̂n+
(·)
mn

<Z≤ζ̂n

)∥∥∥
K

P−→ 0 for any γ < 1, and p = 1,2.

These statements are still true if 1
ζ̂n+

(·)
mn

<Z≤ζ̂n is replaced by 1
ζ̂n<Z≤ζ̂n+

(·)
mn

.

We introduce some notation. Let (X, d) be a metric space and consider

the X-valued random elements V and (Vn)∞n=1 defined on (Ω,A,P). We say

that Vn converges conditionally in probability to V , almost surely, and write

Vn
PX−→
a.s. V , if

PX(d(Vn, V ) > ε)
a.s.−→ 0 ∀ ε > 0. (5.13)

Similarly, we write Vn
PX−→
P V and say that Vn converges conditionally in prob-

ability to V , in probability, if the left–hand side of (5.13) converges in prob-

ability to 0.

5.4.1 Scheme 1 (Bootstrapping from ECDF)

Consider the notation and definitions of Section 5.2.1. To translate this

scheme into the framework of Propositions 5.3.1, 5.3.2 and 5.3.3, we set mn =

n, Qn = Pn and consider the triangular array
{
X∗n,k = (Y ∗n,k, Z

∗
n,k)
}n∈N

1≤k≤n.

Moreover, from Lemma 5.4.1 we know that θ̂n
a.s.−→ θ0, so we can also take

θn = θ̂n. We first prove that the bootstrapped estimators converge condition-

ally in probability to the true value of the parameters, almost surely.

Proposition 5.4.1 For the ECDF bootstrap, we have θ∗n
PX−→
a.s. θ0.

Proof: Since Y has a second moment under P, it is straightforward

to see that F , G and H are VC-subgraph classes with integrable envelopes 1,

|Y | + M and Y 2, respectively. It follows that all these classes are Glivenko–

Cantelli and therefore conditions (I)-(III) hold w.p. 1. Also, note that, from

Lemma 5.4.1 (iii) condition (IV) holds a.s. The result then follows from
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Proposition 5.3.1. �

Let P∗n be the ECDF of X∗n,1, . . . , X
∗
n,n and recall the definition of the processes

Ân, B̂n, Ĉn, D̂n, Ên, A∗n, B∗n, C∗n, D∗n and E∗n. We then have the following

result.

Lemma 5.4.3 Let K ⊂ R3 be any compact rectangle. Then

Ên − E∗n
PX−→
P 0 in DK .

Proof: We already know that conditions (I)-(IV) hold w.p. 1 under this

bootstrap scheme. But Lemma 5.4.2 implies that (5.8) and (5.9) hold in

probability. Hence, this result follows by arguing through subsequences and

applying Lemma 5.3.1. �

It is evident that condition (VI) doesn’t hold in this situation as we know

that

nPn
(
ζ0 −

η

n
< Z ≤ ζ0 +

δ

n

)
 Poisson

(
f(ζ0)(δ + η)

)
. (5.14)

Hence, we cannot use Proposition 5.3.3 to derive the limit behavior of h∗n.

We will now argue that E∗n, and therefore Ên, does not have any

weak limit in probability. This statement should be thought in terms of the

Prokhorov metric (or any other metric metrizing weak convergence on DK).

If we denote by ρK the Prokhorov metric on the space of probability mea-

sures on DK and by µn the conditional distribution of E∗n given X, to say that

(E∗n)∞n=1 has no weak limit in probability means that there is no probability

measure µ defined on DK such that ρK (µn, µ)
P−→ 0.

The following lemma (proved in Section 5.9.10) will help us show that

the (conditional) characteristic functions corresponding to the finite dimen-

sional distributions of E∗n fail to have a limit in probability, which would, in

particular, imply that E∗n does not have a weak limit in probability.
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Lemma 5.4.4 The following statements hold:

(i) For any two real numbers s < t,
{
nPn(ζ0 + s

n
< Z ≤ ζ0 + t

n
)
}∞
n=1

does

not converge in probability.

(ii) There is h∗ > 0 such that for any h ≥ h∗, the sequences{
nPn(ζ̂n < Z ≤ ζ̂n + h

n
)
}∞
n=1

and
{
nPn(ζ̂n − h

n
< Z ≤ ζ̂n)

}∞
n=1

do not con-

verge in probability.

(iii) For any two real numbers s < t and any measurable function φ : R→ R,{
nPn(φ(Y )1ζ0+ s

n
<Z≤ζ0+ t

n
)
}∞
n=1

does not converge in probability.

(iv) Let φ be a measurable function which is either nonnegative or nonpos-

itive and such that φ(ε + α0) and φ(ε + β0) are nonconstant random

variables with finite second moment. Then, there is h∗ > 0 such that for

any h ≥ h∗{
nPn(φ(Y )1ζ̂n<Z≤ζ̂n+ h

n
)
}∞
n=1

and
{
nPn(φ(Y )1ζ̂n− hn<Z≤ζ̂n

)
}∞
n=1

do not con-

verge in probability.

With the aid of Lemma 5.4.4 we are now able to state our main result.

Lemma 5.4.5 There is a compact rectangle K ⊂ R3 such that neither Ên

nor E∗n has a weak limit in probability in DK.

Proof: Since Lemma 5.4.3 and Slutsky’s lemma show that Ên has a weak

limit in probability if and only if E∗n has a weak limit in probability, it suffices

to argue that the statement is true for E∗n. To prove this, it is enough to show

that there is some h1 such that E∗n(h1, 0, 0) does not converge in distribution.

Pick h1 > 0 and observe that

E∗n(h1, 0, 0) = (α̂n − β̂n)
(
nP∗n

[
(2ε̃n − α̂n + β̂n)1

ζ̂n<Z≤ζ̂n+
h1
n

])
.
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Since α̂n− β̂n
a.s.−→ α0−β0 6= 0 we see that E∗n(h1, 0, 0) will converge weakly in

probability if and only if Λn := nP∗n
[
(2ε̃n − α̂n + β̂n)1

ζ̂n<Z≤ζ̂n+
h1
n

]
converges

weakly in probability.

The conditional characteristic function of Λn is given by

EX

(
eiξΛn

)
=

(
1 +

1

n
nPn

(
(eiξ(2ε̃n+β̂n−α̂n) − 1)1

ζ̂n<Z≤ζ̂n+
h1
n

))n
, (5.15)

which converges in probability if and only if so does

nPn
(

(eiξ(2ε̃n+β̂n−α̂n) − 1)1
ζ̂n<Z≤ζ̂n+

h1
n

)
.

. But note that

nPn
(

(eiξ(2ε̃n+β̂n−α̂n) − 1)1
ζ̂n<Z≤ζ̂n+

h1
n

)
= nPn

(
(eiξ(2Y−β̂n−α̂n) − 1)1

ζ̂n<Z≤ζ̂n+
h1
n

)
.

It is easily seen that (5.14) and the fact that n(ζ̂n − ζ0) = OP(1) imply that

nPn
(
1
ζ̂n<Z≤ζ̂n+

h1
n

)
= OP(1).

Hence,∣∣∣nPn ((eiξ(2Y−β̂n−α̂n) − 1)1
ζ̂n<Z≤ζ̂n+

h1
n

)
− nPn

(
(eiξ(2Y−β0−α0) − 1)1

ζ̂n<Z≤ζ̂n+
h1
n

)∣∣∣
≤ nPn

(
1
ζ̂n<Z≤ζ̂n+

h1
n

)
(|α̂n − α0|+ |β̂n − β0|)|ξ|

P−→ 0.

It follows that EX

(
eiξΛn

)
has a limit in probability if and only if

nPn
(

(eiξ(2Y−β0−α0) − 1)1
ζ̂n<Z≤ζ̂n+

h1
n

)
has a limit in probability. But a necessary condition for the latter to happen

is that its real part,

nPn
(

Re(eiξ(2Y−β0−α0) − 1)1
ζ̂n<Z≤ζ̂n+

h1
n

)
converges in probability. Since Re(eiξ(2Y−β0−α0) − 1) ≤ 0 we can conclude

from (iv) of Lemma 5.4.4 that nPn
(

Re(eiξ(2Y−β0−α0) − 1)1
ζ̂n<Z≤ζ̂n+

h1
n

)
does
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not converge in probability for all h1 ≥ h∗ for some h∗ > 0 large enough. This

in turn implies that, for all h1 ≥ h∗, the conditional characteristic function

in (5.15) does not converge in probability and hence E∗n(h1, 0, 0) has no weak

limit in probability.

Hence, if K is any compact rectangle containing (h∗, 0, 0) the finite

dimensional dimensional distributions of E∗n on K do not have a weak limit in

probability. Therefore, E∗n does not have a weak limit in probability on DK . �

Note that(
n(ζ∗n − ζ̂n),

√
n(α∗n − α̂n),

√
n(β∗n − β̂n)

)
= sargmax

h∈R3

{
Ên(h)

}
.

Thus, the fact that the sequence (Ên)∞n=1 doesn’t have a weak limit in prob-

ability makes the existence of a weak limit in probability for n(ζ∗n − ζ̂n) very

unlikely. However, we do not have a rigorous mathematical proof of this state-

ment. The main difficulty in such a proof is that the sargmax functional is

non-linear and that Ên depends on h3 through indicator functions that do not

converge in the limit.

Remark: It must be noted in this connection that the bootstrap

scheme estimates the distribution of (
√
n(α∗n − α̂n),

√
n(β∗n − β̂n)) correctly,

and in fact, valid bootstrap based inference can be conducted to obtain CIs

for α0 and β0. This follows from the fact that, asymptotically, the maximiz-

ers of Ên(h1, ·, ·) do not depend on h1 (see the expressions for Ân, B̂n, A∗n, B∗n).

We next provide an alternative additional argument that illustrates

the inconsistency of the ECDF bootstrap. Our approach is similar to that of

Kosorok (2008a) and relies on the asymptotic unconditional behavior of

∆̃∗n := (n(ζ∗n − ζ0),
√
n(α∗n − α0),

√
n(β∗n − β0)).
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For h ∈ R3, we write ϑ̃n,h := θ0 +
(
h1
n
, h2√

n
, h3√

n

)
and

Ẽn(h) := nP∗n
[
mϑ̃n,h

−mθ0

]
. (5.16)

This corresponds to centering the objective function around θ0. As in (5.10),

we can define the processes

Ξ̃n(t) =



Ξ̃
(1)
n (t)

Ξ̃
(2)
n (t)

Ξ̃
(3)
n (t)

Ξ̃
(4)
n (t)

Ξ̃
(5)
n (t)

Ξ̃
(6)
n (t)


:=



√
nP∗n(ε1Z≤ζ0)

√
nP∗n(εn1Z>ζ0)

nP∗n(1ζ0+ t
n
<Z≤ζ0)

nP∗n(ε1ζ0+ t
n
<Z≤ζ0)

nP∗n(1ζ0<Z≤ζ0+ t
n
)

nP∗n(ε1ζ0<Z≤ζ0+ t
n
)


(5.17)

and just as in that case, we can also define the process Ẽ∗n by

Ẽ∗n(h) := 2h2Ξ̃(1)
n (h1)− h2

2P∗n(Z ≤ ζ0) + 2h3Ξ̃(2)
n (h1)− h2

3P∗n(Z > ζ0)

+ 2(β0 − α0)Ξ̃(4)
n (h1)− (α0 − β0)2Ξ̃(3)

n (h1)

+ 2(α0 − β0)Ξ̃(6)
n (h1)− (α0 − β0)2Ξ(5)

n (h1).

Then, it can be shown that Ẽn − Ẽ∗n
P−→ 0 in DK for any compact rectangle

K ⊂ R3 and that the sequence (Ẽ∗n)∞n=1 is tight in DK .

In what follows we will describe the limiting distribution of Ẽ∗n, namely

Ẽ∗, and show that the (unconditional) asymptotic distribution of ∆̃∗n is that

of the smallest argmax of Ẽ∗. This result will help us show that the ECDF

bootstrap is inconsistent.

We start by introducing some notation. Recall the definitions of the

random elements Z1, Z2, ν1, ν2, u and v as in the discussion preceding (5.11).

Also let τ = (τn)∞n=1 and κ = (κn)∞n=1 two sequences of i.i.d. Poisson(1)

random variables. Assume, in addition, that Z1, Z2, ν1, ν2, v, u, τ and κ are
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all mutually independent. Then, define the process Ξ̃ = (Ξ̃(1), . . . , Ξ̃(6))′ as

Ξ̃(t) :=



Z1

Z2∑
0<j≤ν1(−t) κj1t<0∑

0<j≤ν1(−t) vjκj1t<0∑
0<j≤ν2(t) τj1t≥0∑

0<j≤ν2(t) ujτj1t≥0


(5.18)

for t ∈ R and let Ẽ∗ be given by

Ẽ∗(h) = 2h2Ξ̃(1)(h1)− h2
2P(Z ≤ ζ0) + 2h3Ξ̃(2)(h1)− h2

3P(Z > ζ0)

+ 2(β0 − α0)Ξ̃(4)(h1)− (α0 − β0)2Ξ̃(3)(h1)

+ 2(α0 − β0)Ξ̃(6)(h1)− (α0 − β0)2Ξ̃(5)(h1) (5.19)

for h = (h1, h2, h3) ∈ R3. Additionally define the S–valued (pure jump)

processes J̃n, J̃∗n and J̃∗ as

J̃∗n(t) = J̃n(t) := nP∗n(1ζ0+ t
n
<Z≤ζ0) + nP∗n(1ζ0<Z≤ζ0+ t

n
), (5.20)

J̃∗(t) := ν1(−t)1t<0 + ν2(t)1t≥0. (5.21)

Lemma 5.4.6 (proved in Section 5.9.11) now states the asymptotic dis-

tribution of Ẽn and of n(ζ∗n − ζ0).

Lemma 5.4.6 Consider the processes Ξ̃n, Ẽn, J̃n, Ξ̃, Ẽ∗ and J̃∗ as defined

in (5.17), (5.16), (5.20), (5.18), (5.19) and (5.21), respectively. Then, un-

conditionally,

(i) Ξ̃n  Ξ̃ in R2 ×D4
I for any compact interval I ⊂ R;

(ii) (Ẽn, J̃n) (Ẽ∗, J̃∗) in DK×SI for any compact interval I ⊂ R and any

compact rectangle K = A×B × I ⊂ R3;
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(iii) ∆̃∗n = sargmaxh∈R3{Ẽn(h)} sargmaxh∈R3{Ẽ∗(h)}.

As a consequence, if the ECDF bootstrap is consistent, the variance of sargmaxh∈R3{Ẽ∗(h)}

must be twice that of sargmaxh∈R3{E∗(h)}.

As analytic expressions for the asymptotic variances of n(ζ∗n − ζ0) and

n(ζ̂n−ζ0) are not known, we use simulations to compute them. As an illustra-

tion, we take ε ∼ N(0, 1), Z ∼ N(0, 1), α0 = −1, β0 = 1 and ζ0 = 0 in (5.1).

We approximate the limiting variances with the sample variances computed

from 20,000 observations from each of the two asymptotic distributions. Our

results are summarized in the following table, which immediately shows that

the asymptotic variance of n(ζ∗n − ζ0) is not twice that of n(ζ̂n − ζ0). Thus

the ECDF bootstrap cannot be consistent.

Random variable Asymptotic Variance

n(ζ̂n − ζ0) 7.620948

n(ζ∗n − ζ0) 63.98377

5.4.2 Scheme 2 (Bootstrapping “residuals”)

Another resampling procedure that arises naturally in a regression setup is

bootstrapping “residuals”. As with scheme 1, bootstrapping the “residuals”

fixing the covariates is also inconsistent. Heuristically speaking, the resam-

pling distribution fails to approximate the density of the predictor at the

change-point ζ0 at rate-n, and this leads to the inconsistency.

We recall the notation of Section 2. There we described the basic

elements of the traditional fixed-design bootstrap of residuals and how to

compute the bootstrap estimates θ∗n. We first show that these bootstrap

estimators converge conditionally in probability (almost surely) to the true

value of the parameter. Then, we will provide a strong argument against
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the consistency of this bootstrap scheme. For notational convenience, we

introduce the process Rn given by

Rn(θ) := − 1

n

n∑
j=1

(
Y ∗n,j − α1Zj≤ζ − β1Zj>ζ

)2 ∀ θ ∈ Θ.

We start by showing that the “centered” empirical distribution for the

least squares residuals, Pεn, converges to the distribution of ε in total variation

distance with probability one and its second moment is an almost surely

consistent estimator of σ2. This lemma will also be useful for the analysis of

the smoothed bootstrap procedure. The proof can be found in Section 5.9.12.

Lemma 5.4.7 Let G and ϕ be, respectively, the distribution and character-

istic functions of ε. Then,

(i) for any η > 0 we have that sup
|ξ|≤η

{∣∣∣∣∫ eiξxdPεn(x)− ϕ (ξ)

∣∣∣∣} a.s.−→ 0;

(ii) ‖Pεn −G‖R
a.s.−→ 0;

(iii)

∫
x2dPεn(x)

a.s.−→ σ2;

(iv)

∫
|x|dPεn(x)

a.s.−→ P(|ε|);

(v) if ε has a finite third moment under P, then

lim
n→∞

∫
|x|3dPεn(x) <∞ almost surely.

The next result (proved in Section 5.9.13) shows that the bootstrapped least

squares estimators converge conditionally in probability with probability one.

Proposition 5.4.2 Let K ⊂ Θ be a compact rectangle. Then,



126

(i) ‖Rn + P∗n(ε̃2n)−Mn − σ2‖K
PX−→
a.s. 0;

(ii) ‖Rn + P∗n(ε̃2n)−M − σ2‖K
PX−→
a.s. 0;

(iii) θ∗n
PX−→
a.s. θ0 and θ∗n − θ̂n

PX−→
a.s. 0.

where Mn and M are defined as in (5.3) and the subsequent paragraph.

Consider the following process

Ên(h) = −
n∑
j=1

(
Y ∗n,j −

(
α̂n +

h1√
n

)
1
Zj≤ζ̂n+

h3
n

−
(
β̂n +

h2√
n

)
1
Zj>ζ̂n+

h3
n

)2

+
n∑
j=1

(ε∗n,j)
2.

Then for n large enough we have that(
n(ζ∗n − ζ̂n),

√
n(α∗n − α̂n),

√
n(β∗n − β̂n)

)′
= sargmax

h∈R3

{
Ên(h)

}
.

Next we argue that the sequence (Ên)∞n=1 does not have a weak limit in proba-

bility and therefore distributional convergence of their corresponding smallest

minimizers seems unreasonable. We refer the reader to Section 5.9.14 for a

complete proof of the statement.

Lemma 5.4.8 There is a compact rectangle K ⊂ R3 such that the sequence

of processes (Ên)∞n=1 does not have a weak limit in probability in DK.

5.5 Consistent bootstrap procedures

Here we will prove that the “smoothed bootstrap” (scheme 3) and the m out of

n bootstrap (scheme 4) procedures yield consistent methods for constructing

confidence intervals around the parameters.
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5.5.1 Scheme 3 (Smoothed Bootstrap)

To show that scheme 3 (smoothed bootstrap + bootstrapping residuals) achieves

consistency we appeal to Propositions 5.3.1, 5.3.2 and 5.3.3 by proving that

the regularity conditions (I)-(VIII) of Section 3 hold for this scheme. Recall

the description of this bootstrap procedure given in Section 5.2. Let f̂n and

F̂n be the estimated smoothed density and distribution function of Z, respec-

tively. For I := [c, d] ⊂ R, a compact interval such that ζ0 ∈ (c, d), we require

the following two properties of f̂n and F̂n:

‖F̂n − F‖R
a.s.−→ 0; (5.22)

‖f̂n − f‖I
a.s.−→ 0. (5.23)

We would want to highlight that these conditions are fulfilled by many den-

sity estimation procedures. In particular, they hold when the density f is

continuous and we let f̂n be the kernel density estimator constructed from a

suitable choice of kernel and bandwidth (e.g., see Silverman (1978)).

Let θn = θ̂n, mn = n and Qn be the distribution that generates the

bootstrap sample. Observe that under Qn, ε̃n and Z are independent and that

Z is a continuous random variable with density f̂n. The next result (proved in

Section 5.9.15) shows that the bootstrapped least squares estimators achieve

the right rate of convergence.

Proposition 5.5.1 If (5.22) and (5.23) hold, then w.p.1, the sequence of

conditional distributions of
(
n(ζ∗n − ζ̂n),

√
n(α∗n − α̂n),

√
n(β∗n − β̂n)

)′
is tight.

Scheme 3 uses an approximation to the density of Z and this turns out

to be crucial. The bootstrap measures now satisfy property (VI) on Section

5.3 and the bootstrap procedure is strongly consistent, as shown in the next

result (proved in Section 5.9.16).
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Proposition 5.5.2 For scheme 3, provided that (5.22) and (5.23) hold, con-

ditions (I)–(VIII) are satisfied with probability one, and thus,
n(ζ∗n − ζ̂n)
√
n(α∗n − α̂n)
√
n(β∗n − β̂n)

 sargmax
h∈R3

{E∗(h)} almost surely.

5.5.2 Scheme 4 (m out of n bootstrap)

For this scheme we will again use the framework established in Section 5.3.

We take (mn)∞n=1 to be any sequence of natural numbers which increases to

infinity, θ̂n = θn and Qn = Pn. The next result (proved in Section 5.9.17)

shows the weak consistency of this procedure.

Proposition 5.5.3 If mn = o(n) and mn → ∞, then conditions (I)–(VIII)

hold (in probability) and we have
n(ζ∗n − ζ̂n)
√
mn(α∗n − α̂n)
√
mn(β∗n − β̂n)

 sargmax
h∈R3

{E∗(h)} in probability. (5.24)

Remark: To prove Proposition 5.5.3, we will, in fact, show that for every

subsequence (nk)
∞
k=1, there is a further subsequence (nks)

∞
s=1, such that (I)-

(VIII) hold w.p. 1 for (nks)
∞
s=1 and (5.24) holds almost surely along the

subsequence (nks)
∞
s=1.

5.6 Simulation experiments

In this section we report the finite sample performance of the different boot-

strap schemes on simulated data. We simulated random draws from four

different models following (5.1). Each of these corresponded to choosing
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different pairs (F,G) of distributions for Z and ε (having mean 0), respec-

tively. The pairs considered were (N(0, 2), N(0, 1)), (4B(4, 6) − 2, N(0, 1)),

(4B(4, 6) − 2,Unif(−1, 1)), and (4B(4, 6) − 2,Γ(4, 2) − 2), where B(·, ·) and

Γ(·, ·) denote the beta and gamma distributions respectively.

For each of these models, we considered 1000 random samples of sizes

n = 50, 100, 200, 500. For each sample, and for each of the bootstrap schemes,

we took 4n bootstrap replicates to approximate the bootstrap distribution.

The following table provides the estimated coverage proportions of nominal

95% CIs and average lengths of the CIs obtained using the 4 different boot-

strap schemes for each of the four models.

At this point, we want to make some remarks about the computation

of the estimators. We used a kernel density estimator based on the Gaus-

sian kernel and chose the bandwidth by the so-called “normal reference rule”

(see Scott (1992), page 131). In the case of the m out of n bootstrap, we

did not use any data driven choice of mn, but tried 3 different possibilities:

dn 4
5 e, dn 9

10 e and dn 14
15 e. We will refer to the fixed-design bootstrapping of

residuals scheme by FDR.

Z ∼ N(0, 2), ε ∼ N(0, 1)

Scheme
n = 50 n = 200 n = 500

Coverage Avg Length Coverage Avg Length Coverage Avg Length

ECDF 0.83 1.14 0.79 0.22 0.81 0.08

Smoothed 0.94 0.94 0.95 0.19 0.95 0.07

FDR 0.83 0.76 0.86 0.16 0.90 0.06

dn4/5e 0.87 0.87 0.91 0.23 0.91 0.08

dn9/10e 0.85 1.02 0.87 0.21 0.87 0.079

dn14/15e 0.85 1.05 0.84 0.21 0.86 0.08
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Z ∼ 4B(4, 6)− 2, ε ∼ N(0, 1)

Scheme
n = 50 n = 200 n = 500

Coverage Avg Length Coverage Avg Length Coverage Avg Length

ECDF 0.80 0.54 0.80 0.11 0.81 0.04

Smoothed 0.96 0.46 0.94 0.11 0.95 0.47

FDR 0.73 0.32 0.77 0.08 0.79 0.03

dn4/5e 0.88 0.53 0.89 0.11 0.90 0.04

dn9/10e 0.85 0.54 0.86 0.11 0.88 0.04

dn14/15e 0.83 0.55 0.84 0.11 0.87 0.04

Z ∼ 4B(4, 6)− 2, ε ∼ Unif(−1, 1)

Scheme
n = 50 n = 200 n = 500

Coverage Avg Length Coverage Avg Length Coverage Avg Length

ECDF 0.80 0.40 0.80 0.08 0.81 0.03

Smoothed 0.94 0.33 0.95 0.08 0.96 0.04

FDR 0.75 0.26 0.77 0.06 0.81 0.02

dn4/5e 0.88 0.36 0.88 0.09 0.91 0.04

dn9/10e 0.85 0.39 0.85 0.08 0.87 0.03

dn14/15e 0.83 0.39 0.84 0.08 0.85 0.03

Z ∼ 4B(4, 6)− 2, ε ∼ Γ(4, 2)− 2

Scheme
n = 50 n = 200 n = 500

Coverage Avg Length Coverage Avg Length Coverage Avg Length

ECDF 0.80 0.49 0.80 0.09 0.81 0.04

Smoothed 0.93 0.36 0.95 0.08 0.96 0.03

FDR 0.76 0.30 0.77 0.06 0.80 0.02

dn4/5e 0.87 0.43 0.88 0.10 0.91 0.03

dn9/10e 0.85 0.46 0.84 0.09 0.88 0.03

dn14/15e 0.83 0.48 0.85 0.09 0.85 0.03

We can see from the table that the smoothed bootstrap scheme out-

performs all the others in terms of coverage. It must also be noted that this

is achieved without a relative increase in the lengths of the intervals. The m

out of n bootstrap with dn4/5e also performs reasonably well. It clearly out-

performs all other m out of n schemes as well as ECDF and FDR bootstrap

procedures (which are inconsistent).

Figure 5.1 shows the histograms of the distribution of n(ζ̂n − ζ0) (ob-

tained from 1000 random samples) and its bootstrap estimates obtained from

the 4 different bootstrap schemes (using 2000 bootstrap samples each) from
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a single data set of size n = 500 from model (5.1) with Z ∼ 4B(4, 6)− 2, ε ∼

Γ(4, 2) − 2, α0 = −1, β0 = 1, ζ0 = 0. The histograms clearly show that the

smoothed bootstrap (top right panel) provides, by far, the best approximation

to both, the actual (top middle panel) and the limiting distributions (top left

panel). In fact, the histograms of the distribution of n(ζ̂n − ζ0) and the cor-

responding smoothed bootstrap estimate are almost indistinguishable. The

m out of n approach, although guaranteed to converge, lacks the efficiency of

the smoothed bootstrap. This may be due to the fact that we do not have an

optimal way of choosing the tuning parameter mn. The smoothed bootstrap

also requires the choice of a tuning parameter, namely, the smoothing band-

width, but the in our analysis the results were very insensitive to the choice

of the bandwidth. This is certainly an advantage for the smoothed bootstrap

procedure.

5.7 More general change-point regression mod-

els

In this section we mention some of the broader implications of our analysis

of (5.1) in the context of more general change-point models in regression. We

can consider a model of the form

Y = ψα0(W,Z)1Z≤ζ0 + ξβ0(W,Z)1Z>ζ0 + ε, (5.25)

where Z is a continuous random variable; W is a random vector of covariates;

α0 ∈ Rp and β0 ∈ Rq are two unknown Euclidian parameters; ψα(w, z) and

ξβ(w, z) are known real-valued functions continuous in (w, z) and twice con-

tinuously differentiable in α and β respectively; ζ0 ∈ [a, b] ⊂ supp(Z) ⊂ R is

the change-point; ε is a continuous random variable, independent of (W,Z)
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Figure 5.1: Histograms of the distribution of n(ζ̂n − ζ0) and its bootstrap

estimates: the asymptotic distribution of n(ζ̂n − ζ0) (top left); the actual

distribution of n(ζ̂n − ζ0) (top middle); the distribution of n(ζ∗n − ζ̂n) for

the smoothed (top right), ECDF (bottom middle) and FDR (bottom right)

schemes; the distribution of mn(ζ∗n − ζ̂n), mn = dn 4
5 e (bottom left).

with zero expectation and finite variance σ2 > 0. We assume that ψα0(W,Z)

is identifiable from ξβ0(W,Z) and that the least squares problems

min
α∈Rp

∑
Zj≤ζ

(Yj − ψα(Wj, Zj))
2

 and min
β∈Rq

∑
Zj>ζ

(Yj − ξβ(Wj, Zj))
2


are well-posed for every possible data set {(Y1, Z1,W1), . . . , (Yn, Zn,Wn)} and

any ζ ∈ supp(Z)◦. We also assume that ψα0(w, ζ0) 6= ξβ0(w, ζ0) for every

value of w.

Like in the simple case, the method of least squares can be used to

compute estimators α̂n, β̂n and ζ̂n. One simply takes the minimizer (α̂n, β̂n, ζ̂n)
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of
n∑
j=1

(
Yj − ψα(Wj, Zj)1Zj≤ζ + ξβ(Wj, Zj)1Zj>ζ

)2

with the smallest ζ-component.

Since the simple model (5.1) is a particular case of (5.25), one can

immediately conclude from our analysis that the usual ECDF and residual

bootstrap procedures will not be consistent. However, the smoothed boot-

strap can be adapted to produce consistent interval estimation. The modified

scheme can be described as follows:

1. Choose some procedure (e.g., kernel density estimation) to build a dis-

tribution F̂n with density f̂n such that f̂n → f uniformly on some open

interval containing ζ0 w.p. 1, where f is the density of Z. Let Pεn
and PWn be the empirical measures of the centered residuals (as in the

description of Scheme 2 in Section 5.2) and W1, . . . ,Wn, respectively.

2. Get i.i.d. replicates Z∗n,1, . . . , Z
∗
n,n from F̂n and sample, independently,

ε∗n,1, . . . , ε
∗
n,n

i.i.d.∼ Pεn and W ∗
n,1, . . . ,W

∗
n,n

i.i.d.∼ PWn . Here we can also keep

Wi’s fixed, i.e., W ∗
n,i = Wi.

3. Define Y ∗n,j = ψα̂n(W ∗
n,j, Z

∗
n,j)1Z∗n,j≤ζ̂n

+ ξβ̂n(W ∗
n,j, Z

∗
n,j)1Z∗n,j>ζ̂n

+ ε∗n,j for

all j = 1, . . . , n.

4. Compute the bootstrap least squares estimators (α∗n, β
∗
n, ζ
∗
n) by taking

the minimizer of
n∑
j=1

(
Y ∗n,j − ψα(W ∗

n,j, Z
∗
n,j)1Z∗n,j≤ζ − ξβ(W ∗

n,j, Z
∗
n,j)1Z∗n,j>ζ

)2

with the smallest ζ-component.

5. Approximate the distribution of n(ζ̂n − ζ0) with the (conditional) dis-

tribution of n(ζ∗n − ζ̂n).
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Although our analysis indicates that this smoothed bootstrap procedure must

be consistent, it is difficult to use our methods to prove consistency in such

generality. However, the proof of consistency for the simple model (5.1) can be

adapted to cover the case of parametric additive models, i.e., when ψα(w, z)

and ξβ(w, z) are of the form

ψα(w, z) =

p∑
j=1

αjgj(w, z), and ξβ(w, z) =

q∑
k=1

βkhk(w, z),

where gj, hk, j = 1, . . . , p, k = 1, . . . , q are known smooth functions.
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5.9 Supplementary Lemmas

In this section we provide the proofs of most of the results stated in the

previous sections. We start by giving an account of a series of technical

lemmas which will aid us in the proof of Propositions 5.3.1, 5.3.2 and 5.3.3.

Lemma 5.9.1 Let α 6= β ∈ R. Consider the class of functions from R2 to R

given by

A =
{
φ(y, z) := (y − α1(−∞,ζ](z)− β1(ζ,∞](z))1I(z)|ζ ∈ R, I ⊂ R is an interval

}
.

Then, A is a VC-subgraph class with envelope |y| + |α| + |β|. There is an

upper bound for the VC-index of A that is independent of α and β. Moreover,

there is a continuous, increasing function JA with JA (1) <∞, which is also

independent of α and β, and satisfies the following property: If D ⊂ A is
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a subclass with envelope B and W1, . . . ,Wn is a random sample, defined on

some probability space (Ω,A,P), from a distribution µ for which µ(B2) <∞

and µn is the empirical measure defined by the sample, then∫
sup
ϕ∈D
{|(µn − µ)(ϕ)|} dP ≤ JA (1)√

n

√
µ(B2).

Proof: We use the same notation as in Lemmas 2.6.17 and 2.6.18, page

147 of van der Vaart and Wellner (1996). Consider the classes of functions

H = {y − α1(−∞,ζ](z) − β1(ζ,∞](z) : ζ ∈ R} and K =
{
1(−∞,ζ](z) : ζ ∈ R

}
.

Then, K is a VC class with VC-index 2. It follows that H = (β − α) ·K +

(y − β) is also VC. Recall that F = {1I(z) : I ⊂ R is an interval}. Letting

[ϕ > t] := {(y, z, t) : ϕ(y, z) > t} for ϕ ∈ A , we see that

{[ϕ > t] : ϕ ∈ A } =

(
R× {F ≤ 0} × (−∞, 0)

)⊔
(
{[ψ > t] : ψ ∈H } u (R× {F > 0} × R)

)
from which it follows that A is VC. Moreover, the VC-indexes of K and

F are two and three for any choice of α and β. Hence, the corresponding

VC-indexes of H and A both have upper bounds independent of α and β.

The existence of the function JA is a consequence of the maximal inequality

3.1 in Kim and Pollard (1990). Note that JA only depends on the VC-index

of the class A , which in turn has an upper bound independent of α and β. �

Lemma 5.9.2 Suppose that (I)-(IV) hold. Then,

(i)
∥∥Qn(ε̃2n1Z≤(·)∧ζn)− σ2P(Z ≤ (·) ∧ ζ0)

∥∥
[a,b]
→ 0,

(ii)
∥∥Qn(|ε̃n|1Z≤(·)∧ζn)− P(|ε|)P(Z ≤ (·) ∧ ζ0)

∥∥
[a,b]
→ 0,

(iii)
∥∥Qn(ε̃n1Z≤(·)∧ζn)

∥∥
[a,b]
→ 0, and
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(iv)
∥∥Qn(1Z≤(·)∧ζn)− P(1Z≤(·)∧ζ0)

∥∥
[a,b]
→ 0.

Also, these statements are true if 1Z≤(·)∧ζn is replaced by any of 1(·)<Z≤ζn,

1ζn<Z≤(·) or 1Z>(·)∨ζn.

Proof: Since ζn → ζ0 and Z is continuous, for any ζ ∈ [a, b], we obtain∣∣P(Y 21Z≤ζ∧ζn)− P(Y 21Z≤ζ∧ζ0)
∣∣ ≤ P(Y 2|1Z≤ζn − 1Z≤ζ0|)→ 0,

|P(|Y − α0|1Z≤ζ∧ζn)− P(|Y − α0|1Z≤ζ∧ζ0)| ≤ P(|Y ||1Z≤ζn − 1Z≤ζ0 |)→ 0,

|P(Y 1Z≤ζ∧ζn)− P(Y 1Z≤ζ∧ζ0)| ≤ P(|Y ||1Z≤ζn − 1Z≤ζ0 |)→ 0,

|P(1Z≤ζ∧ζn)− P(1Z≤ζ∧ζ0)| ≤ P(|1Z≤ζn − 1Z≤ζ0|)→ 0.

Also note that the convergence is uniform in ζ ∈ [a, b]. Thus,∥∥Qn(Y 21Z≤(·)∧ζn)− P(Y 21Z≤(·)∧ζ0)
∥∥

[a,b]
≤ ‖Qn − P‖H

+
∥∥P(Y 21Z≤(·)∧ζn)− P(Y 21Z≤(·)∧ζ0)

∥∥
[a,b]
→ 0

as n → ∞ by (III). Similarly, we also obtain that ‖Qn(|Y − α0|1Z≤(·)∧ζn) −

P(|Y − α0|1Z≤(·)∧ζ0)‖[a,b] → 0, ‖Qn(Y 1Z≤(·)∧ζn) − P(Y 1Z≤(·)∧ζ0)‖[a,b] → 0 and

‖Qn(1Z≤(·)∧ζn)− P(1Z≤(·)∧ζ0)‖[a,b] → 0. This proves (iv).

Finally, (i), (ii) and (iii) follow as consequence of the convergence

αn → α0 and of the following inequalities:∥∥Qn(ε̃2n1Z≤(·)∧ζn)− σ2P(Z ≤ (·) ∧ ζ0)
∥∥

[a,b]

≤
∥∥Qn(Y 21Z≤(·)∧ζn)− P(Y 21Z≤(·)∧ζ0)

∥∥
[a,b]

+ 2|αn − α0|Qn(|Y |) + |α2
n − α2

0|

+ 2|α0|
∥∥Qn(Y 1Z≤(·)∧ζn)− P(Y 1Z≤(·)∧ζ0)

∥∥
[a,b]

+ α2
0

∥∥∥Qn(1Z≤(·)∧ζ̂n)− P(1Z≤(·)∧ζ0)
∥∥∥

[a,b]

and ∥∥Qn(|ε̃n|1Z≤(·)∧ζn)− P(|ε|1Z≤(·)∧ζn)
∥∥

[a,b]
≤∥∥Qn(|Y − α0|1Z≤(·)∧ζn)− P(|Y − α0|1Z≤(·)∧ζ0)

∥∥
[a,b]

+ |αn − α0|.
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and ∥∥Qn(ε̃n1Z≤(·)∧ζn)
∥∥

[a,b]
≤
∥∥Qn(Y 1Z≤(·)∧ζn)− P(Y 1Z≤(·)∧ζ0)

∥∥
[a,b]

+|αn − α0|+ |α0|
∥∥Qn(1Z≤(·)∧ζn)− P(1Z≤(·)∧ζ0)

∥∥
[a,b]

.

The other three cases follow from similar arguments. �

Lemma 5.9.3 Suppose that (I)-(IV) hold. Then,

(i)
∥∥(P∗n −Qn)(ε̃n1Z≤(·)∧ζn)

∥∥
[a,b]

P−→ 0,

(ii)
∥∥(P∗n −Qn)(1Z≤(·)∧ζn)

∥∥
[a,b]

P−→ 0.

Also, these statements are true if 1Z≤(·)∧ζn is replaced by any of 1(·)<Z≤ζn,

1ζn<Z≤(·) or 1Z>(·)∨ζn.

Proof: By the maximal inequality 3.1 from Kim and Pollard (1990) and

Lemma 5.9.1 we see that:

E
(∥∥(P∗n −Qn)(ε̃n1Z≤(·)∧ζn)

∥∥
[a,b]

)
≤ JA (1)
√
mn

√
Qn(ε̃2n)

E
(∥∥(P∗n −Qn)(1Z≤(·)∧ζn)

∥∥
[a,b]

)
≤ JF(1)
√
mn

.

The lemma now follow directly as Qn(ε̃2n) → σ2 (a consequence of Lemma

5.9.2). The other statements are proven similarly. �

5.9.1 Proof of Proposition 5.3.1

Noting that ε̃n = Y − αn1Z≤ζn − βn1Z>ζn , we write

mθ(X) = −(ε̃n + αn − α)21Z≤ζn∧ζ − (ε̃n + βn − α)21ζn<Z≤ζ

−(ε̃n + αn − β)21ζ<Z≤ζn − (ε̃n + βn − β)21Z>ζn∨ζ ,(5.26)
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and therefore

− P∗n(ε̃2n) = M∗
n(θn) ≤M∗

n(θ∗n)

≤ −P∗n[(ε̃n − α∗n + αn)21Z<a]− P∗n[(ε̃n − β∗n + βn)21Z>b].

Letting γ∗n = (α∗n, β
∗
n), noticing that M∗

n(θ̂n) = −P∗n (ε̃2n), and by rearranging

the terms in the above inequality, we get

|γ∗n − γn|2P∗n(Z < a) ∧ P∗n(Z > b) ≤ P∗n
(
ε̃2n1a≤Z≤b

)
+2|γ∗n − γn| (|P∗n (ε̃n1Z<a) |+ |P∗n (ε̃n1Z>b) |) .

Consider P∗n(Z < a). By (ii) of Lemma 5.9.3 we see that |(P∗n − Qn)(Z <

a)| P→ 0 and by (iv) of Lemma 5.9.2 we can show that |(Qn−P)(Z < a)| → 0.

Thus, combining the two, we have P∗n(Z < a)
P−→ P(Z < a). Similarly, we

can show that P∗n(Z < a) ∧ P∗n(Z > b)
P−→ P(Z < a) ∧ P(Z > b) > 0 and

also that |P∗n (ε̃n1Z<a) |+ |P∗n (ε̃n1Z>b) |
P−→ 0. Also, observe that E (P∗n(ε̃2n)) =

Qn(ε̃2n)→ σ2, by assumptions (I)-(III) and so P∗n(ε̃2n) is bounded in L1. Hence,

we can write

|γ∗n − γn|2 ≤ OP(1) + |γ∗n − γn|oP(1)

and therefore |γ∗n − γn| = OP(1) (and, consequently, |γ∗n − γ0| = OP(1)).

We first rewrite mθ(X) as follows:

mθ(X) = −ε̃2n − 2(αn − α)ε̃n1Z≤ζ∧ζn − (αn − α)21Z≤ζ∧ζn

−2(βn − α)ε̃n1ζn<Z≤ζ − (βn − α)21ζn<Z≤ζ

−2(αn − β)ε̃n1ζ<Z≤ζn − (αn − β)21ζ<Z≤ζn

−2(βn − β)ε̃n1Z>ζ∨ζn − (βn − β)21Z>ζ∨ζn . (5.27)

We can then decompose M∗
n as in (5.27), and use Lemmas 5.9.3 and 5.9.2 and

the fact that θn → θ0, to obtain∥∥M∗
n + P∗n(ε̃2n)−Mn −Qn(ε̃2n)

∥∥
K

P−→ 0.∥∥M∗
n + P∗n(ε̃2n)−M − σ2

∥∥
K

P−→ 0
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for every compact K ⊂ Θ. But θ0 is also the unique maximizer of M + σ2

and |γ∗n − γ0| = OP(1). Therefore, the conditions of Corollary 3.2.3 (ii), page

287 of van der Vaart and Wellner (1996), hold and we obtain that θ∗n
P−→ θ0

(and also that θ∗n − θn
P−→ 0). �

5.9.2 Proof of Proposition 5.3.2

We will apply Theorem 3.4.1 of van der Vaart and Wellner (1996) to prove

the result. Let d : R3 × R3 → R be given by d(θ, ϑ) = |(θ2, θ3) − (ϑ2, ϑ3)| +√
|θ1 − ϑ1|. Consider η, ρ, L > 0 as in (V) and a compact rectangle K ⊂ Θ

such that {θ ∈ Θ : d(θ, θn) < η for some n ∈ N} ⊂ K. We can take L large

enough so L > 1 ∨ sup {|θ3 − ϑ2| ∨ |θ2 − ϑ3| : θ, ϑ ∈ K}. Pick n large enough

so we can fix some δ ∈ ( 2
√

2

m
1/4
n

, η). Then, taking also (I)-(IV) into account and

possibly making η smaller, we can find positive constants c1, c2 > 0 and N ∈ N

such that for any n ≥ N , we have (5.5), (5.6), (5.7) and the inequalities:

inf
d(θ,θn)<δ

{
|αn − β|2 ∧ |βn − α|2

}
> c1,

Qn(Z ≤ a) ∧Qn(Z > b) > c2.

Also, let Mn(θ) := M∗
n(θ) + P∗n(ε̃2n) and Mn(θ) := Mn(θ) + Qn(ε̃2n) for all

θ ∈ Θ.

Choose n ≥ N and θ ∈ Θ with δ
2
< d(θ, θn) < δ. Then, considering the

properties of the constants just defined and the expression

Mn(θ)−Mn(θn) = −2(αn − α)Qn(ε̃n1Z≤ζ∧ζn)− (αn − α)2Qn(1Z≤ζ∧ζn)

− 2(βn − α)Qn(ε̃n1ζn<Z≤ζ)− (βn − α)2Qn(1ζn<Z≤ζ)

− 2(αn − β)Qn(ε̃n1ζ<Z≤ζn)− (αn − β)2Qn(1ζ<Z≤ζn)

− 2(βn − β)Qn(ε̃n1Z>ζ∨ζn)− (βn − β)2Qn(1Z>ζ∨ζn)(5.28)

it is seen that the sum of the 1st, 3rd, 5th, and 7th terms in (5.28) can be
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bounded from above by 8L2δ√
mn

. While we also have,

(αn − α)2Qn(1Z≤ζ∧ζn) ≥ c2(αn − α)2,

(βn − β)2Qn(1Z>ζ∨ζn) ≥ c2(βn − β)2,

(βn − α)2Qn(1ζn<Z≤ζ) ≥ c1ρ|ζ − ζn|, if |ζ − ζn| ≥
δ2

8
>

1
√
mn

,

(αn − β)2Qn(1ζ<Z≤ζn) ≥ c1ρ|ζ − ζn|, if |ζ − ζn| ≥
δ2

8
>

1
√
mn

,

and therefore, noting that either (α− αn)2 + (β − βn)2 ≥ δ2

8
or |ζ − ζn| ≥ δ2

8
,

letting c = 1
16
c2 ∧ (c1ρ) and adding all the terms in the previous display, we

get

sup
δ
2
<d(θ,θn)<δ

{Mn(θ)−Mn(θn)} ≤ 8L2

√
mn

δ − 2cδ2 ∀n ≥ N.

Hence, setting δn = 8L2

c
√
mn
∧ 2

√
2

m
1/4
n

we get that

sup
δ
2
<d(θ,θn)<δ

{Mn(θ)−Mn(θn)} ≤ −cδ2 ∀ δn ≤ δ < η, ∀n ≥ N. (5.29)

Next we will show

√
nE

(
sup

d(θ,θn)<δ

{|(Mn −Mn)(θ)− (Mn −Mn)(θn)|}

)
.

√
n

√
mn

δ. (5.30)

Note that, using the expansion (5.27), Mn(θn) =Mn(θn) = 0. To control the

term (Mn−Mn)(θ) observe that it admits a very similar expansion as (5.28)

with the Qn replaced by (P∗n −Qn); in particular, we can write the difference

Mn(θ)−Mn(θ) (by re-arranging the terms) as

− 2(αn − α)(P∗n −Qn)(ε̃n1Z≤ζ∧ζn)− 2(βn − β)(P∗n −Qn)(ε̃n1Z>ζ∨ζn)

−2(βn − α)(P∗n −Qn)(ε̃n1ζn<Z≤ζ)− 2(αn − β)(P∗n −Qn)(ε̃n1ζ<Z≤ζn)

−(αn − α)2(P∗n −Qn)(1Z≤ζ∧ζn)− (βn − β)2(P∗n −Qn)(1Z>ζ∨ζn)

−(αn − β)2(P∗n −Qn)(1ζ<Z≤ζn)− (βn − α)2(P∗n −Qn)(1ζn<Z≤ζ).(5.31)
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Each of these terms can be controlled by using Lemma 5.9.1 as

E
(∥∥(P∗n −Qn)(ε̃n1Z≤(·)∧ζn)

∥∥
[a,b]

)
≤ JA (1)
√
mn

√
Qn(ε̃2n)

E
(∥∥(P∗n −Qn)(ε̃n1(·)<Z≤ζn)

∥∥
|ζ−ζn|<δ2

)
≤ JA (1)
√
mn

√
Qn(ε̃2n1ζn−δ2<Z≤ζn+δ2).

Lemma 5.9.2 implies that Qn(ε̃2n1ζn−δ2<Z≤ζn+δ2) → σ2P(ζ0 − δ2 < Z ≤ ζ0 +

δ2) = σ2{2f(ζ0)δ2 + o(δ2)}. Hence, there is a constant R > 0 such that the

right side of the above equations are bounded byR/
√
mn andR

√
δ2 + o(δ2)/

√
mn.

Using similar arguments, we can in fact make R large enough so that the fol-

lowing inequalities hold too

E
(∥∥(P∗n −Qn)(ε̃n1Z>(·)∨ζn)

∥∥
[a,b]

)
≤ R
√
mn

(5.32)

E
(∥∥(P∗n −Qn)(ε̃n1ζn<Z≤(·))

∥∥
|ζ−ζn|<δ2

)
≤ R
√
mn

√
δ2 + o(δ2). (5.33)

We also assume that R > JF(1). Using (5.32), (5.33), the discussion preceding

the display, and grouping two consecutive terms at a time in the expansion

(5.31), it is easily seen that

√
nE

(
sup

d(θ,θn)<δ

{|(Mn −Mn)(θ)− (Mn −Mn)(θn)|}

)
.

4R
√
n

√
mn

δ

+
4RL
√
n

√
mn

√
δ2 + o(δ2) +

2R
√
n

√
mn

δ2 +
2RL2f(ζ0)

√
n

√
mn

(δ2 + o(δ2)).

Thus by taking η > 0 small enough we can show that (5.30) holds for every n ≥

N and any δ ∈ [δn, η), with δn and N defined as in (5.29). Defining φn(δ) =
√
n√
mn
δ and rn =

√
mn, the hypotheses of Theorem 3.4.1 of van der Vaart

and Wellner (1996) are satisfied (note that Proposition 5.3.1 implies that

d(θn, θ
∗
n)

P−→ 0). Therefore, rnd(θn, θ
∗
n) =

√
mn(α∗n − αn)2 +mn(β∗n − βn)2 +√

mn|ζ∗n − ζn| = OP(1). �
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5.9.3 Proof of Lemma 5.3.1

Let η > 0 be an upper bound for the norm of the elements in K. The maximal

inequality from Kim and Pollard (1990) and Lemma 5.9.1 imply

√
mnE

(∥∥∥(P∗n −Qn)(ε̃n1ζn+
(·)
mn

<Z≤ζn)
∥∥∥
K

)
≤ JA (1)

√
Qn(ε̃2n1ζn− η

mn
<Z≤ζn)

√
mnE

(∥∥∥(P∗n −Qn)(1
ζn+

(·)
mn

<Z≤ζn)
∥∥∥
K

)
≤ JF(1)

√
Qn(1ζn− η

mn
<Z≤ζn).

By (i) and (iv) of Lemma 5.9.2 applied with 1Z≤(·)∧ζn in place of 1(·)<Z≤ζn ,

we see that the righthand side of both the above inequalities go to zero. On the

other hand, using (5.8) and (5.9) it is easy to see that both
√
mn‖Qn(ε̃2n1ζn+

(·)
mn

<Z≤ζn)‖K
and
√
mn‖Qn(1

ζn+
(·)
mn

<Z≤ζn)‖K converge to zero. Now, note that

√
mn

∥∥∥P∗n (ε̃n1ζn+
(·)
mn

<Z≤ζn

)∥∥∥
K

is bounded by

√
mn

∥∥∥(P∗n −Qn)(ε̃n1ζn+
(·)
mn

<Z≤ζn)
∥∥∥
K

+
√
mn

∥∥∥Qn

(
|ε̃n|1ζn+

(·)
mn

<Z≤ζn

)∥∥∥
K

and thus
√
mn

∥∥∥P∗n (ε̃n1ζn+
(·)
mn

<Z≤ζn

)∥∥∥
K

L1−→ 0. Similarly we can bound

√
mn

∥∥∥P∗n (1
ζn+

(·)
mn

<Z≤ζn

)∥∥∥
K

and show that it converges to zero in mean. Fi-

nally, from the expressions

A∗n(h2)− Ân(h2, h1) = 2h2

√
mnP∗n

(
ε̃n1ζn+

h1
mn

<Z≤ζn

)
− h2

2P∗n
(
1
ζn+

(h1
mn

<Z≤ζn

)
,

C∗n(h1)− Ĉn(h3, h1) = 2h3

√
mnP∗n

(
ε̃n1ζn+

h1
mn

<Z≤ζn

)
−
(
2h3

√
mn(αn − βn)− h2

3

)
P∗n
(
1
ζn+

h1
mn

<Z≤ζn

)
we get that

∥∥∥A∗n − Ân∥∥∥
K

L1−→ 0 and
∥∥∥C∗n − Ĉn∥∥∥

K

L1−→ 0. With completely

analogous arguments, it is seen that
∥∥∥B∗n − B̂n

∥∥∥
K

L1−→ 0 and
∥∥∥D∗n − D̂n

∥∥∥
K

L1−→

0 as well. Observing that Ên = Ân + B̂n + Ĉn + D̂n − P∗n(ε̃2n) completes the

proof of the result. �
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5.9.4 Proof of Lemma 5.3.2

It suffices to show that each of the components of (Ξn)∞n=1 is tight. Write

ε̃n,j = ε̃n(Zn,j, Yn,j) and let

rn = mnQn

(
e
i ξ√

mn
ε̃n1Z≤ζn − 1− i ξ

mn

√
mnε̃n1Z≤ζn +

ξ2

2mn

ε̃2n1Z≤ζn

)
≤ m

−1/2
n ξ3Qn|ε̃n|3

6
.

Then, assumption (VIII) implies that rn → 0 as n → ∞. Since the charac-

teristic function of
√
mnP∗n(ε̃n1Z≤ζn) is given by

E
(
eiξ
√
mnP∗n(ε̃n1Z≤ζn )

)
=

(
1 + i

ξ
√
mn

Qn (ε̃n1Z≤ζn)− ξ2

2mn

Qn

(
ε̃2n1Z≤ζn

)
+

rn
mn

)mn
taking the limit as n→∞ we can conclude that

√
mnP∗n(ε̃n1Z≤ζn) N(0,P(Z ≤

ζ0)σ2) by using (VII) and the fact that (1 + βn/n)n → eβ if βn → β. With

similar arguments, it is seen that
√
mnP∗n(ε̃n1Z>ζn)  N(0,P(Z > ζ0)σ2), so

the first two components of the random vector of interest are uniformly tight.

Consider now the processes Γn(t) = mnP∗n(1ζn<Z≤ζn+ t
mn

) and

Ψn(t) = mnP∗n(ε̃n1ζn<Z≤ζn+ t
mn

). For any process Ψ ∈ D̃I , I ⊂ R compact

interval, δ > 0, we write

w
′′

Ψ (δ) = sup {|Ψ(t1)−Ψ(t)| ∧ |Ψ(t2)−Ψ(t)|}

where the supremum is taken over all t1 ≤ t ≤ t2 ∈ I with 0 ≤ t2 − t1 ≤ δ.

Also, for any A ⊂ I, define wΨ (A) = sup
s,t∈A
{|Ψ(t)−Ψ(s)|}. This agrees with

the notation defined in Chapter 14 of Billingsley (1968). Let η > 0 be an

upper bound for the absolute values of the elements of I, consider any ρ > 0,

and define the numbers aρΨ and aρΓ by,

aρΨ =
1

ρ
sup
n∈N

{
mnQn

(
|ε̃n|1ζn<Z≤ζn+ η

mn

)}
aρΓ =

1

ρ
sup
n∈N

{
mnQn

(
1ζn<Z≤ζn+ η

mn

)}
.
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Then, using Markov’s inequality,

lim
n→∞

P

(
sup
t∈I
{|Ψn(t)|} > aρΨ

)
≤ ρ (5.34)

lim
n→∞

P

(
sup
t∈I
{|Γn(t)|} > aρΓ

)
≤ ρ. (5.35)

Now, let ρ, γ > 0 be any pair of positive numbers and assume that I = [a, b].

Then, choose δ < γ
8|b−a|f(ζ0)2

∧ |b−a|
4
∧ 1

f(ζ0)
so there is an integer N ≥ 2 such

that δ < |b−a|
N

< 2δ. Define sj = a + j
N

(b − a) and consider the partition

{a = s0 < s1 < . . . < sN = b} of I. Notice that if Ψ is a step function on I,

for w
′′
Ψ (δ) to be positive, we need at least two jumps in an interval of size

at most δ. Then, the probability that at least two jumps of the process Ψn

happens on any interval (sj−2, sj] is bounded from above by

aj,mn := P

( ⋃
1≤k<l≤mn

[
mn(Zn,k − ζn),mn(Zn,l − ζn) ∈ (sj−2, sj]

])

≤ m2
n

2
Qn

(
ζn +

sj−2

mn

< Z ≤ ζn +
sj
mn

)2

and hence the limit superior of the probability that either Ψn or Γn has

two jumps in any interval of the form (sj−2, sj] is bounded from above by

2|b−a|2f(ζ0)2/N2 by (VI). Therefore, the probability that at least two jumps

happen in any interval of size at most δ is asymptotically bounded from above

by

N∑
i=2

aj,mn ≤
N∑
i=2

2|b− a|2f(ζ0)2/N2 ≤ 4(N − 1)f(ζ0)2|b− a|δ/N ≤ γ.

Thus,

lim
n→∞

P
(
w
′′

Ψn (δ) > ρ
)

< γ (5.36)

The exact same argument can be used to show that

lim
n→∞

P
(
w
′′

Γn (δ) > ρ
)

< γ. (5.37)
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Now, note that

P (wΨn ([a, a+ δ)) > ρ) ≤ P

(
mn⋃
j=1

mn(Zn,j − ζn) ∈ [a, a+ δ) > ρ

)

≤ mnQn

(
ζn +

a

mn

< Z ≤ ζn +
a+ δ

mn

)
which implies that

lim
n→∞

P (wΨn ([a, a+ δ)) > ρ) ≤ δf(ζ0) < γ. (5.38)

A similar analysis leads to the following bounds

lim
n→∞

P (wΨn ([b− δ, b)) > ρ) < γ (5.39)

lim
n→∞

P (wΓn ([a, a+ δ)) > ρ) < γ (5.40)

lim
n→∞

P (wΓn ([b− δ, b)) > ρ) < γ. (5.41)

Putting together (5.34), (5.35), (5.36), (5.37), (5.38), (5.39), (5.40) and (5.41)

and using Theorem 15.3 of Billingsley (1968) we obtain that both sequences

(Ψn)∞n=1 and (Γn)∞n=1 are uniformly tight in D̃I . Similar arguments show

the tightness of the third and fourth components of the process. Therefore,

(Ξn)∞n=1 is uniformly tight. The uniform tightness of (E∗n)∞n=1 now follows from

the fact that (Ξn)∞n=1 is uniformly tight and E∗n is a continuous function of

Ξn. �

5.9.5 Proof of Lemma 5.3.3

In view of Lemma 5.3.2, to show (i) it suffices to show convergence of the finite

dimensional distributions. To this end, consider the real numbers t−N− <
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. . . < t−1 < 0 = t0 < t1 < . . . < tN+ and the linear combination

Wn = µ
√
mnP∗n(ε̃n1Z≤ζn) + λ

√
mnP∗n (ε̃n1Z>ζn)

+

N−∑
j=1

{
ξ−jmnP∗n

(
ε̃n1ζn+

t−j
mn

<Z≤ζn

)
+ η−jmnP∗n

(
1
ζn+

t−j
mn

<Z≤ζn

)}

+

N+∑
j=1

{
ξjmnP∗n

(
ε̃n1ζn<Z≤ζn+

tj
mn

)
+ ηjmnP∗n

(
1
ζn<Z≤ζn+

tj
mn

)}
(5.42)

where µ, λ and the ξj’s and the ηj’s are arbitrary real numbers. Now, set

ξ0 = η0 = 0 and define

µ±j =

N±∑
k=j

η±k and λ±j =

N±∑
k=j

ξ±k. (5.43)

Then grouping terms appropriately we can rewrite Wn as

Wn = µ
√
mnP∗n

(
ε̃n1

Z≤ζn+
t−N−
mn

)
+ λ
√
mnP∗n

(
ε̃n1

Z>ζn+
tN+
mn

)
+

N−∑
j=1

(λ−jmn + µ
√
mn)P∗n

(
ε̃n1ζn+

t−j
mn

<Z≤ζn+
t−j+1
mn

)

+

N−∑
j=1

µ−jmnP∗n
(

1
ζn+

t−j
mn

<Z≤ζn+
t−j+1
mn

)

+

N+∑
j=1

(λjmn + λ
√
mn)P∗n

(
ε̃n1ζn+

tj−1
mn

<Z≤ζn+
tj
mn

)

+

N+∑
j=1

µjmnP∗n
(

1
ζn+

tj−1
mn

<Z≤ζn+
tj
mn

)
.

Using the independence of Xn,1, . . . , Xn,mn , the characteristic function of Wn

is

E
(
eisWn

)
=

[
1 +

N−∑
j=1

Qn

(
(e
is( µ√

mn
+λ−j)ε̃n+isµ−j − 1)1

ζn+
t−j
mn

<Z≤ζn+
t−j+1
mn

)
+Qn

(
(e
i sµ√

mn
ε̃n − 1)1

Z≤ζn+
t−N−
mn

)
+ Qn

(
(e
i sλ√

mn
ε̃n − 1)1

Z>ζn+
tN+
mn

)
+

N+∑
j=1

Qn

(
(e
is( λ√

mn
+λj)ε̃n+isµj − 1)1

ζn+
tj−1
mn

<Z≤ζn+
tj
mn

)]mn
.(5.44)
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Let rn be given by

rn = mnQn

[(
e
i sµ√

mn
ε̃n − 1− i sµ

√
mn

ε̃n +
s2µ2

2mn

ε̃2n

)
1
Z≤ζn+

t−N−
mn

]
≤ s3Qn|ε̃3n|

6
√
mn

.

Condition (VIII) now implies that rn = o(1). But note that

Qn

(
(e
i sµ√

mn
ε̃n − 1)1

Z≤ζn+
t−N−
mn

)
= i

sµ

mn

√
mnQn

(
ε̃1

Z≤ζn+
t−N−
mn

)
−s

2µ2

2mn

Qn

(
ε̃2n1Z≤ζn+

t−N−
mn

)
+

rn
mn

and so (i) of Lemma 5.9.2 together with condition (VII) and (5.8) imply that

mnQn

(
(e
i sµ√

mn
ε̃n − 1)1

Z≤ζn+
t−N−
mn

)
= −s

2µ2

2
σ2P(Z ≤ ζ0) + o(1). (5.45)

Following a completely analogous argument one can show that

mnQn

((
e
i sλ√

mn
ε̃n − 1

)
1
Z>ζn+

tN+
mn

)
= −s

2λ2

2
σ2P(Z > ζ0) + o(1). (5.46)

Now, take 1 ≤ j ≤ N+, and observe that equation (5.8) implies

mn

∣∣∣∣Qn

(
(e
is( λ√

mn
+λj)ε̃n+isµj − eisλj ε̃n+isµj)1

ζn+
tj−1
mn

<Z≤ζn+
tj
mn

)∣∣∣∣
≤ |sλ|

√
mnQn

(
|ε̃n|1ζn+

tj−1
mn

<Z≤ζn+
tj
mn

)
→ 0.

Using (VI) we can write

mnQn

(
(e
is( λ√

mn
+λj)ε̃n+isµj − 1)1

ζn+
tj−1
mn

<Z≤ζn+
tj
mn

)
= (ϕ(sλj)e

isµj − 1)f(ζ0)(tj − tj−1) + o(1)

where ϕ is the characteristic function of ε (under P). Thus,

mn

N+∑
j=1

Qn

(
(e
is( λ√

mn
+λj)ε̃n+isµj − 1)1

ζn+
tj−1
mn

<Z≤ζn+
tj
mn

)

=

N+∑
j=1

(tj − tj−1)f(ζ0)(ϕ(sλj)e
isµj − 1) + o(1). (5.47)
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Similarly, one can prove that

mn

N−∑
j=1

Qn

(
(e
is( µ√

mn
+λ−j)ε̃n+isµ−j − 1)1

ζn+
t−j
mn

<Z≤ζn+
t−j+1
mn

)

=

N−∑
j=1

(t−j+1 − t−j)f(ζ0)(ϕ(sλ−j)e
isµ−j − 1) + o(1). (5.48)

So putting (5.42), (5.43), (5.44), (5.45), (5.46), (5.47) and (5.48) together we

see that,

E
(
eisWn

)
→ exp

[
N−∑
j=1

f(ζ0)(t−j+1 − t−j)

{
ϕ

(
s(

N−∑
k=j

ξ−k)

)
eis

∑N−
k=j η−k − 1

}

−s
2µ2σ2

2
P(Z ≤ ζ0)− s2λ2σ2

2
P(Z > ζ0)

+

N+∑
j=1

f(ζ0)(tj − tj−1)

{
ϕ

(
s(

N+∑
k=j

ξk)

)
e
is
(∑N+

k=j ηk

)
− 1

}]
.(5.49)

But the right-hand side of (5.49) is precisely E
(
eisW

)
where, with the notation

of (5.11), W is given by

W = µZ1 + λZ2 +

N−∑
k=1

ξ−k ∑
0<j≤ν1(−t−k)

vk1t−k<0 + η−kν1(−t−k)1t−k<0


+

N+∑
k=1

ξk ∑
0<j≤ν2(tk)

uk1tk≥0 + ηkν2(tk)1tk≥0


and thus Wn  W . From the fact that µ, λ, the ξj’s and the ηj’s were

arbitrarily chosen, by the Cramer-Wold device

(
Ξn(t−N−), . . . ,Ξn(t−1),Ξn(t1), . . . ,Ξn(tN+)

)′
 
(
Ξ(t−N−), . . . ,Ξ(t−1),Ξ(t1), . . . ,Ξ(tN+)

)′
.

This gives the convergence of the finite dimensional distributions, prov-

ing (i). An application of the continuous mapping theorem shows that (i)

implies (ii). Further, Lemma 5.3.1 and (ii) now imply (iii). �
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5.9.6 Proof of Lemma 5.3.4

Every sample path of E∗ = E∗(h1, h2, h3) can be written as

2h2Z1 − h2
2P(Z ≤ ζ0) + 2h3Z2 − h2

3P(Z > ζ0) + 1h1<02(α0 − β0)

ν1(−h1)∑
j=1

vj

−(α0 − β0)2ν1(−h1)1h1<0 + 1h1≥02(β0 − α0)

ν2(h1)∑
j=1

uj − 1h1≥0(α0 − β0)2ν2(h1).

From this last expression it is obvious that for any fixed h1, the E∗(h1, ·, ·) gets

maximized at φ∗2 = Z1/P(Z ≤ ζ0) and φ∗3 = Z2/P(Z > ζ0). The independence

of the three co-ordinates follows from the fact that φ∗2 depends only on Z1,

φ∗3 depends only on Z2, and φ∗1 depends only on u, v, ν1 and ν2. Since E∗ is

piecewise constant in the third argument h3, to complete the proof it is enough

to show that E∗(h1, φ
∗
1, φ
∗
2) → −∞ as |h1| → ∞. But this follows from the

law of the iterated logarithm (applied to the random walks defined by the vi’s

and ui’s) together with the fact that ν1(t)∧ν2(t)
a.s.−→∞ as t→∞. Note that∑ν1(−h1)

j=1 vj and
∑ν2(h1)

j=1 uj are of ordersO(
√
ν1 log log ν1) andO(

√
ν2 log log ν2)

a.s. as h1 → −∞ and h1 →∞, respectively. �

5.9.7 Proof of Proposition 5.3.3

Lemma 5.3.4 and the fact that the ui’s and the vi’s come from a continuous

distribution, show that (E∗, J∗) satisfy the hypotheses of Theorem 4.3.2, and

in particular that (4.5) holds. Moreover, Proposition 5.3.2 shows that the

sequence (mn(ζ∗n − ζn),
√
mn(α∗n − αn),

√
mn(β∗n − βn))′ is tight. The result

now follows from a direct application of Theorem 4.3.2. �
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5.9.8 Proof of Lemma 5.4.1

We expand mθ(X) as in (5.26) but with ε = Y − α01Z≤ζ0 − β01Z>ζ0 in place

of ε̃n to get

mθ(X) = −(ε+ α0 − α)21Z≤ζ0∧ζ − (ε+ β0 − α)21ζ0<Z≤ζ

−(ε+ α0 − β)21ζ<Z≤ζ0 − (ε+ β0 − β)21Z>ζ0∨ζ . (5.50)

Letting γ̂n = (α̂n, β̂n), we can also bound Mn(θ0) using a similar argument as

in the proof of Proposition 5.3.1 to obtain

|γ̂n − γ0|2Pn(Z < a) ∧ Pn(Z > b)

≤ Pn
(
ε21a≤Z≤b

)
+ 2|γ̂n − γ0| (|Pn (ε1Z<a) |+ |Pn (ε1Z>b) |) .

By the strong law of large numbers

Pn(Z < a) ∧ Pn(Z > b)
a.s.−→ P(Z < a) ∧ P(Z > b)

Pn
(
ε21a≤Z≤b

) a.s.−→ σ2P (a ≤ Z ≤ b) and

|Pn (ε1Z<a) |+ |Pn (ε1Z>b) |
a.s.−→ 0.

Therefore, w.p. 1 we can write

|γ̂n − γ0|2 ≤ O(1) + |γ̂n − γ0|o(1)

and thus the sequence (γ̂n − γ0)∞n=1 is bounded w.p. 1.

Now, take any compact set K ⊂ Θ and consider the classes of functions

K1 =
{

(ε+ α0 − α)2 1(−∞,ζ∧ζ0]

}
θ∈K

K2 =
{

(ε+ β0 − α)2 1(ζ0,ζ]

}
θ∈K

K3 =
{

(ε+ α0 − β)2 1(ζ,ζ0]

}
θ∈K

K4 =
{

(ε+ β0 − β)2 1(ζ∨ζ0,∞)

}
θ∈K .

If A∗ is an upper bound for the norm of the elements in K, we can see

that each of these classes is a VC-subgraph class with integrable envelope
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(|ε| + A∗ + |γ0|)2. With the notation ‖Q‖F = sup {|Qf | : f ∈ F} for classes

of functions F and probability measures Q, a combination of Theorems 2.6.7

and 2.4.3 of van der Vaart and Wellner (1996) shows that all four quantities

‖Pn − P‖Kj , j = 1, 2, 3, 4, converge to zero almost surely. Therefore using

(5.50), we get the inequality

‖Mn −M‖K ≤
∑

1≤j≤4

‖Pn − P‖Kj

which now implies (i) ( Since Mn,M ∈ DK , ‖Mn −M‖K is measurable.).

The second assertion follows immediately from (ii).

Consider a family of compact rectangles Θn ⊂ Θn+1 such that Θ =

∪∞n=1Θn. Then, since the sequence (γ̂n − γ0)∞n=1 is almost surely bounded,

w.p. 1 we have that there is some m ∈ N such that Θm contains both θ0 and

the entire sequence (θ̂n)∞n=1. Finally, from (5.27) with θn replaced by θ0 it is

seen that

M(θ) = −σ2 − (α0 − α)2P(Z ≤ ζ ∧ ζ0)− (α0 − β)2P(ζ < Z ≤ ζ0)

−(α− β0)2P(ζ0 < Z ≤ ζ)− (β0 − β)2P(Z > ζ ∨ ζ0).

As α0 6= β0 and Z has a strictly positive density on [a, b], the last equation

shows that M satisfies the conditions of Lemma 4.2.9. Since the event that

Mn →M in DΘk for all k ∈ N has probability one, Lemma 4.2.9 allows us to

conclude that sargmax(Mn) = θ̂n
a.s.−→ θ0. �

5.9.9 Proof of Lemma 5.4.2

Let ρ, δ > 0. We know from Corollary 5.3.1 that the sequences (
√
n(α̂n − α0))

∞
n=1,(

n(ζ̂n − ζ0)
)∞
n=1

and
(
nPn

(
ζ0 − h

n
< Z ≤ ζ0 + h

n

))∞
n=1

, for any h > 0, are all

stochastically bounded. Thus, since mn = O(n) there is L > 0 such that
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P
(
mn|ζ̂n − ζ0| > L

)
< ρ and P

(√
mn|α̂n − α0| > L

)
< ρ for any n ∈ N.

Therefore,

P

(
mγ
n

∥∥∥∥Pn(ζ̂n +
(·)
mn

< Z ≤ ζ̂n)

∥∥∥∥
K

> δ

)
≤ mγ

n

δ
E

(
Pn
(
ζ0 −

L+ η

mn

< Z ≤ ζ0 +
L

mn

))
+ P

(
mn|ζ̂n − ζ0| > L

)
≤ f(ζ0)

η + 2L

δ
mγ−1
n + o

(
mγ−1
n

)
+ ρ,

so by letting n→∞ and then ρ→ 0 we get (i).

We prove (ii) for when p = 1, the case p = 2 follows from similar

arguments. Note that if mn|ζ̂n − ζ0| ≤ L, then mγ
n‖Pn(|ε̃n|1ζ̂n+

(·)
mn

<Z≤ζ̂n)‖K
can be bounded by

mγ
n

∥∥∥Pn (|ε|1ζ0− L
mn

+
(·)
mn

<Z≤ζ0+ L
mn

)∥∥∥
K

+mγ
n|α̂n−α0|

∥∥∥∥Pn(ζ0 −
L

mn
+

(·)
mn

< Z ≤ ζ0 +
L

mn
)

∥∥∥∥
K

.

But just as in the proof of (i), we have

P

(
mγ
n

∥∥∥Pn(|ε|1
ζ̂n+

(·)
mn

<Z≤ζ̂n
)
∥∥∥
K
> δ

)
≤ P

(
mγ
n

∥∥∥Pn (|ε|1ζ0− L
mn

+
(·)
mn

<Z≤ζ0+ L
mn

)∥∥∥
K
>
δ

2

)
+

P

(
mγ
n|α̂n − α0|Pn(ζ0 −

L

mn
+

η

mn
< Z ≤ ζ0 +

L

mn
) >

δ

2

)
+ P

(
mn|ζ̂n − ζ0| > L

)
≤ 2mγ

n

δ
E
(
Pn
(
|ε|1ζ0− L

mn
+ η
mn

<Z≤ζ0+ L
mn

))
+

P

(
mγ
n|α̂n − α0|Pn(ζ0 −

L

mn
+

η

mn
< Z ≤ ζ0 +

L

mn
) >

δ

2

)
+ P

(
mn|ζ̂n − ζ0| > L

)
≤ f(ζ0)E (|ε|) 2(η + 2L)

δ
mγ−1
n + o

(
mγ−1
n

)
+

P

(
mγ
n|α̂n − α0|Pn(ζ0 −

L

mn
+

η

mn
< Z ≤ ζ0 +

L

mn
) >

δ

2

)
+ ρ.

The result follows again by letting n→∞ and ρ→ 0. �

The next results will be useful to support our conjecture of inconsis-

tency of some of our bootstrap scenarios.

Lemma 5.9.4 Let λ,B > 0, ρ ∈ (0, 1
2
) and Hλ be the distribution function

of a Poisson random variable with mean λ. For each value of λ write Lρλ+B =
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min {n ∈ N : Hλ+B(n) > ρ} and Uρ
λ = max {n ∈ N : 1−Hλ(n) > ρ}. Then,

there is λ∗ > 0 such that Lρλ+B < Uρ
λ for all λ ≥ λ∗.

Proof: Let cλ be the median (i.e. cλ = min{n ∈ N : Hλ(n) > 1
2
}.) of Hλ.

Observe that cλ ≤ Uρ
λ . According to Hazma (1995), |cλ − λ| < log(2) for any

positive λ. Letting bxc denote the greatest integer less than or equal to x, we

have

|Hλ+B(cλ+B)−Hλ+B(cλ)|

≤ |Hλ+B(λ+B + log(2))−Hλ+B(λ− log(2))|

≤ (B + 2 log(2))e−(λ+B) (λ+B)bλ+Bc

bλ+Bc!
→ 0 as λ→∞.

as the Poisson mass function has a maximum at bλ+Bc. Therefore,

limλ→∞Hλ+B(Uρ
λ) ≥ 1/2. But we also note that supn∈N{Hλ+B(n+1)−Hλ+B(n)} →

0 as λ→∞. Thus,

lim
λ→∞

Hλ+B(Lρλ+B + 1) = ρ <
1

2
≤ lim

λ→∞
Hλ+B(Uρ

λ).

It follows that Uρ
λ > Lρλ+B for all λ sufficiently large. �

Lemma 5.9.5 Let λ,B > 0, 0 < ρ < 1
2
, µ and ν be two nondegenerate Borel

probability measures on R and Hµ,λ denote the compound Poisson distribution

with intensity λ and compounding distribution µ. For each value of λ write

Lρν,λ+B = inf {s ∈ R : Hν,λ+B(s) ≥ ρ} and Uρ
µ,λ = sup {s ∈ R : 1−Hµ,λ(s) ≥ ρ}.

In addition, assume that
∫
x2ν(dx),

∫
x2µ(dx) < ∞ and that

∫
xν(dx) ≤∫

xµ(dx). Then there is λ∗ > 0 such that Lρν,λ+B < Uρ
µ,λ for all λ ≥ λ∗. More-

over, let 0 < r < 1, suppose that there is another Borel probability measure

γ on R, also satisfying
∫
x2γ(dx) < ∞, and define νγ := rB

λ+B
γ + λ+(1−r)B

λ+B
µ

with its corresponding constant Lρνγ ,λ+B = inf
{
s ∈ R : Hνγ ,λ+B(s) ≥ ρ

}
. Then

there is λ∗ > 0 such that Lρνγ ,λ+B < Uρ
µ,λ for all λ ≥ λ∗.
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Proof: Denote by Φ the standard normal distribution and zα the lower

α-quantile of Φ (i.e. Φ(zα) = α). Also, write cµ :=
∫
xµ(dx), dµ :=

∫
x2µ(dx)

and define the corresponding quantities cν and dν for ν. For any possible

value of λ and µ denote by Tµ,λ a random variable with distribution Hµ,λ.

It is easily seen (as, for instance, in Theorem 2.1 of Möhle (2005)) that

Sµ,λ :=
Tµ,λ − λcµ√

λdµ
 Φ as λ → ∞. Since the standard normal distribu-

tion is continuous, the distributions of Sµ,λ converge uniformly on R to Φ as

λ→∞.

Let 1 < κ < 1/(2ρ). Then, since the distributions of Sµ,λ converge

uniformly to Φ, there is λ1 such that 1 − Φ

(
Uρµ,λ−λcµ√

λdµ

)
< κρ for λ > λ1

and λ2 > 0 such that Φ

(
Lρν,λ+B−(λ+B)cν√

(λ+B)dν

)
< κρ for all λ > λ2. These two

inequalities in turn imply that

Uρ
µ,λ > λcµ −

√
λdµzκρ,

Lρν,λ+B < (λ+B)cν +
√

(λ+B)dνzκρ.

Since cµ ≥ cν we can find λ3 such that

(λ+B)cν +
√

(λ+B)dνzκρ < λcµ −
√
λdµzκρ for all λ ≥ λ3.

The first part of the result now follows by taking λ∗ := λ1∨λ2∨λ3. To prove

the result for the measure νγ it suffices to see that we also have
Tνγ ,λ+B − (λ+B)cνγ√

(λ+B)dνγ
 

Φ, as λ → ∞ (this is easily seen by analyzing the characteristic functions).

The rest follows from the same argument used to prove the first part of the

lemma. �

5.9.10 Proof of Lemma 5.4.4

Proof of (i): Let s < t. Note that (Zn)∞n=1 is a collection of i.i.d. random

variables and nPn(ζ0 + s
n
< Z ≤ ζ0 + t

n
) is permutation invariant, so the
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Hewitt-Savage 0-1 law (see page 304 of Billingsley (1986)) implies that any

convergent subsequence must converge to a constant. On the other hand,

Lemma 5.3.3 implies that nPn(ζ0 + s
n
< Z ≤ ζ0 + t

n
) Poisson((t− s)f(ζ0)).

Therefore,
(
nPn(ζ0 + s

n
< Z ≤ ζ0 + t

n
)
)∞
n=1

has no almost surely convergent

subsequence.

Proof of (ii): Now, let δ ∈ (0, 1
4
). From Proposition 5.3.2 we know that

there is Bδ > 0 such that P
(
n|ζ̂n − ζ0| ≤ Bδ

)
> 1− δ for any n ∈ N. Choose

h > 2Bδ and take any increasing sequence of natural numbers nk. Write

T̂k = nkPnk(ζ̂nk < Z ≤ ζ̂nk + h
nk

), Sk = nkPnk(ζ0 − Bδ
nk

< Z ≤ ζ0 + h+Bδ
nk

)

and Tk = nkPnk(ζ0 + Bδ
nk

< Z ≤ ζ0 + h−Bδ
nk

). Then,
{
nk|ζ̂nk − ζ0| ≤ Bδ

}
⊂{

Sk ≥ T̂k ≥ Tk

}
and therefore we have P

(
T̂k ≥ Tk

)
∧ P

(
Sk ≥ T̂k

)
> 1− δ

for all k.

We know that Tk  Poisson((h − 2Bδ)f(ζ0)) and Sk  Poisson((h +

2Bδ)f(ζ0)), so in view of Lemma 5.9.4 with B = 4Bδf(ζ0) and λ = (h −

2Bδ)f(ζ0), there is a number h∗ > 2Bδ large enough so that whenever h ≥

h∗ we can find two numbers N1,h < N2,h ∈ N with the property that,

limk→∞P (Tk > N2,h) > 2δ and limk→∞P (Sk ≤ N1,h) > 2δ. Thus, for h ≥ h∗,

P (Tk > N2,h) > 2δ and P (Sk ≤ N1,h) > 2δ for all but a finite number of k’s.

Therefore, for any k large enough, P (Tk > N2,h)∧P (Sk ≤ N1,h) > 2δ. Using

the fact that P
(
Sk ≥ T̂k ≥ Tk

)
> 1 − δ we get that P

(
T̂k ≥ Tk > N2,h

)
∧

P
(
N1,h ≥ Sk ≥ T̂k

)
> δ for all but finitely many k’s. Thus, whenever h ≥ h∗,

P
(
T̂k ≥ Tk > N2,h, i.o.

)
> δ and P

(
N1,h ≥ Sk ≥ T̂k, i.o.

)
> δ.

But for every k ∈ N, the events
{
T̂k ≥ Tk > N2,h

}
and

{
N1,h ≥ Sk ≥ T̂k

}
are permutation-invariant on the i.i.d. random vectors X1, . . . , Xnk . Hence,

the Hewitt-Savage 0-1 law implies that P
(
T̂k ≥ Tk > N2,h, i.o.

)
= 1 and

P
(
N1,h ≥ Sk ≥ T̂k, i.o.

)
= 1. SinceN1,h < N2,h it follows that T̂k = nkPnk(ζ̂nk <

Z ≤ ζ̂nk + h/nk) does not have an almost sure limit. But the choice of
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the subsequence nk was arbitrary and independent of h∗ so we can con-

clude that for any h ≥ h∗, the sequence
{
nPn(ζ̂n < Z ≤ ζ̂n + h

n
)
}∞
n=1

does

not converge in probability. Proceeding analogously, we can prove the same

for
{
nPn(ζ̂n − h

n
< Z ≤ ζ̂n)

}∞
n=1

.

Proof of (iii): We introduce some notation, for any two Borel probability

measures µ and ν on R we write µFν for their convolution and for λ > 0

we write CPoisson(µ, λ) for the compound Poisson distribution with inten-

sity λ and compounding distribution µ. Let µα and µβ be, respectively, the

distributions under P of φ(ε+ α0) and φ(ε+ β0).

Observe that depending on whether t < 0, s < 0 < t or s > 0 we have

that nPn(φ(Y )1ζ0+ s
n
<Z≤ζ0+ t

n
) converges weakly to CPoisson(µα, (t− s)f(ζ0)),

CPoisson(µα, sf(ζ0))FCPoisson(µβ, tf(ζ0)) or CPoisson(µβ, (t− s)f(ζ0)), re-

spectively. This follows easily from convergence of the corresponding char-

acteristic functions. Considering that {(Yn, Zn)}∞n=1 is a collection of i.i.d.

random vectors and that nPn(φ(Y )1ζ0+ s
n
<Z≤ζ0+ t

n
) is permutation invariant

for (Y1, Z1), . . . , (Yn, Zn) the same argument as in (i) applies here as well.

Proof of (iv): We keep the notation used in the proof of (iii). The argument

here is quite similar to the one used to show (ii). Assume without loss of

generality that φ ≤ 0.

Now, let δ ∈
(
0, 1

4

)
and N ∈ N. From Proposition 5.3.2 we know that

there is Bδ > 0 such that P
(
n|ζ̂n − ζ0| ≤ Bδ

)
> 1− δ for any n ∈ N. Choose

h > 2Bδ and take any increasing sequence of natural numbers nk. Write

T̂ φk,h = nkPnk(φ(Y )1ζ̂nk<Z≤ζ̂nk+ h
nk

), Sφk,h = nkPnk(φ(Y )1
ζ0−

Bδ
nk
<Z≤ζ0+

h+Bδ
nk

) and

Tφk,h = nkPnk(φ(Y )1
ζ0+

Bδ
nk
<Z≤ζ0+

h−Bδ
nk

). Then,
{
nk|ζ̂nk − ζ0| ≤ Bδ

}
⊂
{
Sφk,h ≤ T̂ φk,h ≤ T φk,h

}
and therefore we have P

(
T̂ φk,h ≤ T φk,h

)
∧P

(
Sφk,h ≤ T̂ φk,h

)
> 1− δ for all k.

We know that T φk,h  CPoisson(µβ, (h− 2Bδ)f(ζ0)) and

Sφk  CPoisson(µα, 2Bδf(ζ0))FCPoisson(µβ, (h+Bδ)f(ζ0))
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≡ CPoisson

(
Bδ

h+ 2Bδ

µα +
h+Bδ

h+ 2Bδ

µβ, (h+ 2Bδ)f(ζ0)

)
,

as k →∞.

An application of Lemma 5.9.5 with µ = ν = µβ, γ = µα, B =

4Bδf(ζ0), r = 1
4

and λ = (h− 2Bδ)f(ζ0), shows the existence of an h∗ > 2Bδ

large enough so that whenever h ≥ h∗ we can find two numbers R1,h > R2,h ∈

N with the property that limk→∞P
(
T φk,h < R2,h

)
> 2δ and limk→∞P

(
Sφk,h ≥ R1,h

)
>

2δ. Thus, for h ≥ h∗, P
(
T φk,h < R2,h

)
> 2δ and P

(
Sφk,h ≥ R1,h

)
> 2δ for all

but a finite number of k’s. Therefore, for any k large enough, P
(
T φk,h < R2,h

)
∧

P
(
Sφk,h ≥ R1,h

)
> 2δ. Using the fact that P

(
Sφk,h ≤ T̂ φk,h ≤ T φk,h

)
> 1 − δ

we get that P
(
T̂ φk,h ≤ T φk,h < R2,h

)
∧ P

(
R1,h ≤ Sφk,h ≤ T̂ φk,h

)
> δ for all but

finitely many k’s. Thus, whenever h ≥ h∗,

P
(
T̂ φk,h ≤ T φk,h < R2,h, i.o.

)
> δ and P

(
R1,h ≤ Sφk,h ≤ T̂ φk,h, i.o.

)
> δ.

The argument relying on the Hewitt-Savage 0-1 law applied in the proof of

(ii) can be used to finish this proof.

A completely analogous proof applies for
{
nPn(φ(Y )1ζ̂n− hn<Z≤ζ̂n

)
}∞
n=1

. �

5.9.11 Proof of Lemma 5.4.6

We start by computing the characteristic functions of the weak limits of the

last two components of the process Ξ̃n as defined in (5.17). Let gn(ξ) and

ψn(ξ) be the (unconditional) characteristic functions of nP∗n(1ζ0<Z≤ζ0+ t
n
) and

nP∗n(ε1ζ0<Z≤ζ0+ t
n
), respectively. Fix ξ ∈ R and write

Λn := EX

(
e
iξnP∗n(ε1

ζ0<Z≤ζ0+
t
n

)
)
,

Ψn := nPn
((

eiξε − 1
)

1ζ0<Z≤ζ0+ t
n

)
,

Ψ∗ξ :=
∑

1≤k≤ν(t)

(
eiξεk − 1

)
,



158

where (ν(s))s≥0 is a Poisson process with rate f(ζ0) independent of (εn)∞n=1.

Then, ψn(ξ) = E (Λn) and |Λn| ≤ 1. By the conditional independence of the

bootstrap samples, we have

Λn =

(
1 +

1

n
Ψn

)n
.

We now consider the characteristic functions of the complex-valued random

variables Ψn. Taking into account the independence of the X’s, we obtain

that for any η ∈ R2,

E
(

eiη1Re(Ψn)+iη2Im(Ψn)
)

=

(
1 +

1

n
P
(

eiη1(cos(ξε)−1)+iη2 sin(ξε) − 1
)(

nP(1ζ0<Z<ζ0+ t
n

)
))n

E
(

eiη1Re(Ψn)+iη2Im(Ψn)
)
→ etf(ζ0)E(eiη1(cos(ξε)−1)+iη2 sin(ξε)−1) = E

(
eiη1ReΨ∗ξ+iη2ImΨ∗ξ

)
.

Therefore, Ψn  Ψ∗ξ and, from the continuous mapping theorem, Λn  eΨ∗ξ .

Thus, Lebesgue’s Dominated Convergence Theorem implies

ψn(ξ) = E (Λn)→ E
(
eΨ∗ξ
)

= e
tf(ζ0)

(
E
(

ee
iξε−1

)
−1
)
∀ ξ ∈ R. (5.51)

With simpler arguments, we can also show that

gn(ξ)→ e
tf(ζ0)

(
e(e

iξε−1)−1
)
∀ ξ ∈ R. (5.52)

While (5.52) is immediately recognized as the characteristic function of a

compound Poisson process with rate f(ζ0) and compounding distribution

Poisson(1), the characteristic function in (5.51) can be shown to correspond

to another compound Poisson process which can be written as∑
1≤j≤ν(t)

εjτj, (5.53)

where (τn)∞n=1
i.i.d.∼ Poisson(1), (ν(s))s≥0 is a Poisson process with rate f(ζ0),

and (τn)∞n=1, (εn)∞n=1 and (ν(s))s≥0 are mutually independent.
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Therefore, the fifth and sixth components of Ξ̃n as defined in (5.17)

converge, respectively, to a compound Poisson process with rate f(ζ0) and

Poisson(1) as compounding distribution and to the process described in (5.53).

A similar analysis shows the analogous results for the third and fourth com-

ponents of Ξ̃n. The first and second components of Ξ̃n can easily be seen

(by using the Lindeberg-Feller Central Limit Theorem) to be asymptotically

normal with mean 0 and variances σ2P(Z ≤ ζ0) and σ2P(Z > ζ0), respectively.

All these facts indicate that the finite dimensional distributions of the

limiting process of Ξ̃n match those of the process Ξ̃. In fact, we can proceed

as in the proof of Proposition 5.3.3 (i.e., proving tightness and convergence of

the finite dimensional distributions using the Cramer-Wold device) to show

(i) and (ii). For the sake of brevity, we omit the full technical details.

Then, arguing as in Proposition 5.3.2 one can show that the sequence

(
√
n(α∗n−α0),

√
n(β∗n−β0), n(ζ∗n−ζ0)) is stochastically bounded and then con-

clude that the (unconditional) asymptotic distribution of (
√
n(α∗n−α0),

√
n(β∗n−

β0), n(ζ∗n− ζ0) is that of sargmaxh∈R3{Ẽ∗(h)}, with Ẽ∗(h) as defined in (5.18)

and (5.19). For the sake of brevity we omit the full technical details of these

arguments.

As n(ζ∗n − ζ0) = n(ζ∗n − ζ̂n) + n(ζ̂n − ζ0), and if the ECDF bootstrap

were consistent, the conditional distribution of n(ζ∗n− ζ̂n) (given the data) and

the unconditional distribution of n(ζ̂n − ζ0) would have had the same weak

limit. Then, as a consequence of Lemma 3.1 in Sen et al. (2010) (also see

Theorem 2.2 in Kosorok (2008a)) the unconditional asymptotic distribution of

n(ζ∗n−ζ0) must be that of the sum of two independent copies of the asymptotic

distribution of the n(ζ̂n − ζ0). The result now follows. �
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5.9.12 Proof of Lemma 5.4.7

Let Gn be the ECDF of ε1, . . . , εn. We first observe that∫
eiξxdPεn(x) = e−iξε̄nPn

(
eiξε̃n

)
and hence, for any ξ ∈ R with |ξ| ≤ η we have,∣∣∣∣∫ eiξxdPεn(x)− e−iξε̄n

∫
eiξxdGn(x)

∣∣∣∣ =
∣∣Pn (eiξε̃n)− Pn

(
eiξε
)∣∣

≤ |η|Pn (|ε̃n − ε|)

but Pn (|ε̃n − ε|) is bounded from above by

|α̂n − α0|+ (|α0|+ |β0|) |Pn(1Z≤ζ̂n − 1Z≤ζ0)|+ |β̂n − β0|

which goes to zero almost surely as consequence of Lemmas 5.4.1 and 5.9.2

(iv), with Qn = Pn. Thus,

sup
|ξ|≤η

{∣∣∣∣∫ eiξxdPεn(x)− e−iξε̄n
∫
eiξxdGn(x)

∣∣∣∣} a.s.−→ 0

and (i) follows immediately because ε̄n = Pn(ε̃n)
a.s.−→ 0 and Gn converges to G

in total variation distance with probability one. The second assertion is seen

to be true at once because G is assumed to be continuous and condition (i)

implies that the characteristic functions of Pεn converge to the characteristic

function of G on the entire real line with probability one. Statements (ii) and

(iii) are straightforward: On the one hand, we have shown that conditions (I)-

(IV) hold for the ECDF, so Lemma 5.9.2 implies that

∫
x2dPεn(x) = Pn(ε̃2n)−

Pn(ε̃n)2 a.s.−→ σ2. On the other hand,∣∣∣∣∫ |x|dPεn − ∫ |ε|dPn∣∣∣∣ = |Pn(|ε̃n − ε̄n| − |ε|)|

≤ Pn(|ε̃n − ε|) + |ε̄n|
a.s.−→ 0.

To prove (iv), we first notice that∫
|x|3dPεn(x) ≤ |ε̄n|3 + 3|ε̄n|2Pn (|ε̃n|) + 3|ε̄n|Pn

(
ε̃2n
)

+ Pn
(
|ε̃n|3

)
.
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Then, from Lemma 5.9.3 all but the last summand on the right-hand side

converge almost surely. Hence, it suffices to show that limPn (|ε̃n|3) < ∞ w.

p. 1. With this in mind, let Ln = |α0|+ |α̂n|+ |β0|+ |β̂n| and observe that

Pn
(
|ε̃n|3

)
≤ Pn

(
|ε|3
)

+ 3Pn
(
|ε|2
)
Ln + 3Pn (|ε|)L2

n + L3
n.

The result then is an immediate consequence of the third moment assumption

on ε, the strong law of large numbers and the almost sure convergence of the

least squares estimators. �

5.9.13 Proof of Proposition 5.4.2

Just as in the proof of Proposition 5.3.1 we have

− 1

n

n∑
k=1

(ε̃∗n,j)
2 = Rn(θ̂n)

≤ Rn(θ∗n) ≤ − 1

n

n∑
j=1

(ε̃∗n,j + α̂n − α∗n)21Zj<a + (ε̃∗n,j + β̂n − β∗n)21Zj>b

from which we can see that

|γ∗n − γn|2Pn(Z < a) ∧ Pn(Z > b) ≤

1

n

n∑
j=1

(ε̃∗n,j)
21a≤Zj≤b +

2

n
|γ∗n − γn|

(∣∣∣∣∣
n∑
j=1

ε̃∗n,j1Zj<a

∣∣∣∣∣+

∣∣∣∣∣
n∑
j=1

ε̃∗n,j1Zj>b

∣∣∣∣∣
)
.

But the first of the terms on the right-hand side of the previous inequality is

conditionally bounded in L1 (an upper bound for the conditional expectations

is sup
n∈N

{∫
x2dPεn(x)

}
< ∞). The terms

1

n

n∑
j=1

ε̃∗n,j1Zj<a and
1

n

n∑
j=1

ε̃∗n,j1Zj>b

both have zero conditional expectation and conditional variances equal to
1

n
Pn(Z < a)

∫
x2dPεn(x) and

1

n
Pn(Z > b)

∫
x2dPεn(x) respectively. So we

have that∣∣∣∣∣ 1n
n∑
j=1

ε̃∗n,j1Zj<a

∣∣∣∣∣+

∣∣∣∣∣ 1n
n∑
j=1

ε̃∗n,j1Zj>b

∣∣∣∣∣ PX−→
a.s. 0.
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Thus,

|γ∗n − γ̂n| = OPX
(1) almost surely. (5.54)

Now, let Z(k) be the k-th order statistic from the sample (Z1, . . . , Zn) and rk

a number such that Z(k) = Zrk . For any ζ ∈ [a, b] define mζ = max{1 ≤ j ≤

n : Z(j) ≤ ζ ∧ ζ̂n} and observe that we have

1

n

n∑
j=1

ε̃∗n,j1Zj≤ζ∧ζ̂n =
1

n

∑
1≤j≤mζ

ε̃∗n,rj , (5.55)

and thus

sup
ζ∈[a,b]

{∣∣∣∣∣ 1n
n∑
j=1

ε̃∗n,j1Zj≤ζ∧ζ̂n

∣∣∣∣∣
}
≤ max

1≤k≤n

{
1

n

∣∣∣∣∣ ∑
1≤j≤k

ε̃∗n,rj

∣∣∣∣∣
}
. (5.56)

But the indexes rk and the order statistics are functions of Z1, . . . , Zn and

therefore X-measurable. Hence, conditionally,
∑

1≤j≤k

ε̃∗n,rj1Zrj≤ζ∧ζ̂n
is a square

integrable martingale with zero expectation. Hence, from Doob’s submartin-

gale inequality (see Williams (1991), Theorem 14.6, page 137) we get

PX

(
max

1≤k≤n

{
1

n

∣∣∣∣∣ ∑
1≤j≤k

ε̃∗n,rj

∣∣∣∣∣
}
> ρ

)
≤ 1

nρ2
Pn(ε̃2n)

and consequently, equations (5.55) and (5.56) show that

PX

∥∥∥∥∥ 1

n

n∑
j=1

ε̃∗n,j1Zj≤(·)∧ζ̂n

∥∥∥∥∥
[a,b]

> ρ

 ≤ 1

ρ2n
Pn(ε̃2n)

a.s.−→ 0. (5.57)
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Similar arguments give that (5.57) is also true if we replace 1Zj≤(·)∧ζ̂n by any

of 1(·)<Zj≤ζ̂n , 1ζ̂n<Zj≤(·) or 1Zj>(·)∨ζ̂n . Now, if we write Rn like

Rn(θ) = −P∗n(ε̃2n)− 2

n
(α̂n − α)

n∑
j=1

ε̃∗n,j1Zj≤ζ∧ζ̂n − (α̂n − α)2Pn(1Z≤ζ∧ζ̂n)

− 2

n
(β̂n − α)

n∑
j=1

ε̃∗n,j1ζ̂n<Z≤ζ − (β̂n − α)2Pn(1ζ̂n<Z≤ζ)

− 2

n
(α̂n − β)

n∑
j=1

ε̃∗n,j1ζ<Z≤ζ̂n − (α̂n − β)2Pn(1ζ<Z≤ζ̂n)

− 2

n
(β̂n − β)

n∑
j=1

ε̃∗n,j1Z>ζ∨ζ̂n − (β̂n − β)2Pn(1Z>ζ∨ζ̂n),(5.58)

(ii) follows immediately from (5.57), applied for all the four possible types of

indicator functions. Note that the four terms on the far right of all the rows

in the previous display vanish when we subtract Mn from Rn. Lemma 5.4.1

shows that (ii) implies (i), while Corollary 3.2.3 (ii), page 287, of van der

Vaart and Wellner (1996) together with (5.54) allows one to derive (iii) from

(i) and (ii). �

5.9.14 Proof of Lemma 5.4.8

The proof is analogous to the proof of Lemma 5.4.5. We again consider the

number h∗ > 0 defined in the statement of Lemma 5.4.4 and take K ⊂ R3

to be any compact rectangle containing the point (h∗, 0, 0). To prove the

theorem it suffices to show that the sequence (Ên(h1, 0, 0))∞n=1 does not have

a weak limit in probability whenever h1 ≥ h∗ and (0, 0, h1) ∈ K. But in view

of Lemma 5.4.4 this is straightforward because the (conditional) characteristic

function of Ên(h1, 0, 0) is given by(∫
ei2(α̂n−β̂n)ξx−iξ(α̂n−β̂n)2dPεn(x)

)nPn(ζ̂n<Z≤ζ̂n+
h1
n

)

.
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and Lemma 5.4.7 and the strong consistency of the least squares estimator

imply that∫
ei2(α̂n−β̂n)ξx−iξ(α̂n−β̂n)2dPεn(x)

a.s.−→ e−iξ(α0−β0)2ϕ (2(α0 − β0)ξ) .

Thus, for all ξ in a neighborhood of the origin, this characteristic function

will converge if and only if nPn(ζ̂n < Z ≤ ζ̂n + h1
n

) converges. We know that

this is not the case from Lemma 5.4.4. �

5.9.15 Proof of Proposition 5.5.1

We will show that conditions (I)-(V) in Section 5.3 hold w.p. 1 for the boot-

strap measures arising in this scheme. Note that (IV) is a consequence of

Lemma 5.4.1. That ‖Qn − P‖F
a.s.−→ 0 follows immediately from the fact that

‖F̂n − F‖∞
a.s.−→ 0. Now, for any g = yψ ∈ G with ψ ∈ F , we have

Qn(g) = α̂nQn(1Z≤ζ̂nψ) + β̂nQn(1Z>ζ̂nψ),

P(g) = α0P(1Z≤ζ0ψ) + β0P(1Z>ζ0ψ),

from which we see that

‖Qn − P‖G ≤
(
|α̂n − α0|+

∣∣∣β̂n − β0

∣∣∣)+ (|α0|+ |β0|) ‖Qn − P‖F

+ (|α0|+ |β0|)
∫
R
|1z≤ζ̂n − 1z≤ζ0|f̂n(z)dz.

Lebesgue’s dominated convergence theorem shows that the last integral goes

almost surely to zero and the strong consistency of the least squares estimators

and property (I) now yields ‖Qn − P‖G
a.s.−→ 0. Finally, we can write any h ∈ H

in the form h = y2ψ for some ψ ∈ F . Using this representation we obtain,

Qn(h) = α̂2
nQn(1Z≤ζ̂nψ) + β̂2

nQn(1Z>ζ̂nψ) + Pεn(ε̃2n)Qn(ψ),

P(h) = α2
0P(1Z≤ζ0ψ) + β2

0P(1Z>ζ0ψ) + σ2P(ψ),



165

and the triangle inequality then implies that

‖Qn − P‖H ≤ (|α̂2
n − α2

0|+ |β̂2
n − β2

0 |) + (α2
0 + β2

0 + σ2) ‖Qn − P‖F

+ |Pεn(ε̃2n)− P(ε2)|+ (α2
0 + β2

0)

∫
R
|1z≤ζ̂n − 1z≤ζ0 |f̂n(z)dz

a.s.−→ 0.

It remains to show (V). Observe that (5.6) and (5.7) hold automatically be-

cause under Qn, ε̃n and Z are independent. Hence, we only require to show

that (5.5) holds w.p. 1. As (5.23) holds, we have

inf
ζ∈[c,d]

{
f̂n(ζ)

}
a.s.−→ inf

ζ∈[c,d]
{f(ζ)} > 0.

The mean value theorem implies that for any ζ, ξ ∈ [c, d], there is ϑ ∈ [0, 1]

such that |F̂n(ζ)− F̂n(ξ)| = |ξ − ζ|f̂n(ζ + ϑ(ξ − ζ)). It follows that for η > 0

small enough,

inf
0<|ζ−ζ̂n|<δ2

{
1

|ζ − ζ̂n|
|F̂n(ζ)− F̂n(ζ̂n)|

}
≥ inf

ζ∈[c,d]

{
f̂n(ζ)

}
∀ n ∈ N

and consequently (V) holds w.p.1 for all δ < η for all large n. �

5.9.16 Proof of Proposition 5.5.2

We already know that conditions (I)-(V) hold w.p. 1. Condition (VII) holds

automatically because Z and ε̃n are independent under Qn and Qn(ε̃n) = 0.

Lemma 5.4.7 (v) implies that condition (VIII) holds a.s. It remains to prove

(VI).

Write I = [c, d] and consider the sequence of events {AN}N∈N given by

AN =

[
ζ̂n −

δ

n
, ζ̂n +

η

n
∈ I, almost always, ∀ δ, η ∈ (0, N)

]
∩
[
‖f̂n − f‖I → 0

]
.

Fix N ∈ N, let ψ be the function ψ(x) = eiξx for some ξ ∈ R or the function

ψ(x) = |x|p, p = 1, 2, and η, δ > 0 be any positive real numbers smaller than

N . Then,

mnQn(ψ(ε̃n)1ζn− δ
n
<Z≤ζn+ η

n
) = nPεn (ψ)

∫ ζ̂n+ η
n

ζ̂n− δ
n

f̂n(x)dx.
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Lemma 5.4.7 implies that Pεn (ψ)
a.s.−→ P (ψ(ε)). And, when AN holds, we also

have

n

∣∣∣∣∣
∫ ζ̂n+ η

n

ζ̂n− δ
n

f̂n(x)dx−
∫ ζ̂n+ η

n

ζ̂n− δ
n

f(x)dx

∣∣∣∣∣ ≤ 2N
∥∥∥f̂n − f∥∥∥

[c,d]
→ 0.

Hence, condition (VI) holds for all 0 < δ, η < N on AN . But the strong

consistency of the least squares estimators and the conditions on f̂n imply

that each of these events have probability one. Therefore, P (∩N∈NAN) = 1.

Hence, condition (VI) holds w.p.1 and the result follows from an application

of Proposition 5.3.3. �

5.9.17 Proof of Proposition 5.5.3

Since Qn is just the ECDF, the validity of conditions (I)-(IV) follows from the

result established for the regular ECDF bootstrap and Lemma 5.4.1. (VIII)

is a consequence of the strong law of large numbers. It remains to show

(V)-(VII).

We start with (VI). First observe that mnP(ψ(ε)1ζ0− δ
mn

<Z≤ζ0+ η
mn

) →

(δ + η)f(ζ0)P(ψ(ε)). We will proceed as follows: we will first use this simple

observation just made to show that the following equations are true,

mn

∥∥∥Pn(ψ(ε)1
ζ0− (·)

mn
<Z≤ζ0

)− (·)P(ψ(ε))f(ζ0)
∥∥∥
K

P−→ 0 (5.59)

mn

∥∥∥Pn(ψ(ε)1
ζ0<Z≤ζ0+

(·)
mn

)− (·)P(ψ(ε))f(ζ0)
∥∥∥
K

P−→ 0 (5.60)

mn

∥∥∥Pn(ψ(ε̃n)1
ζ̂n− (·)

mn
<Z≤ζ̂n)− Pn(ψ(ε)1

ζ0− (·)
mn

<Z≤ζ0
)
∥∥∥
K

P−→ 0 (5.61)

mn

∥∥∥Pn(ψ(ε̃n)1
ζ̂n<Z≤ζ̂n+

(·)
mn

)− Pn(ψ(ε)1
ζ0<Z≤ζ0+

(·)
mn

)
∥∥∥
K

P−→ 0 (5.62)

for any compact interval K ⊂ R. All these facts put together will give

mn

∥∥∥Pn(ψ(ε̃n)1
ζ̂n− (·)

mn
<Z≤ζ̂n)− (·)P(ψ(ε))f(ζ0)

∥∥∥
K

P−→ 0 (5.63)

mn

∥∥∥Pn(ψ(ε̃n)1
ζ̂n<Z≤ζ̂n+

(·)
mn

)− (·)P(ψ(ε))f(ζ0)
∥∥∥
K

P−→ 0 (5.64)
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for any compact interval K ⊂ R. Having achieved this, we will be able to

conclude that (VI) holds in probability. For if (5.63) and (5.64) are both true,

we can take an increasing sequence of compacts (Kn)∞n=1 whose union is R
and then for any subsequence (nk)

∞
k=1 find a further subsequence (nks)

∞
s=1 such

that

P

(
mnks

∥∥∥∥Pnks (ψ(ε̃nks )1
ζ̂nks

− (·)
mnks

<Z≤ζ̂nks
)− (·)P(ψ(ε))f(ζ0)

∥∥∥∥
Ks

>
1

s

)
<

1

s2

P

(
mnks

∥∥∥∥Pnks (ψ(ε̃nks )1
ζ̂nks

<Z≤ζ̂nks+
(·)

mnks

)− (·)P(ψ(ε))f(ζ0)

∥∥∥∥
Ks

>
1

s

)
<

1

s2
.

The Borel-Cantelli Lemma will then imply that (VI) holds almost surely for

the subsequence (nks)
∞
s=1. Therefore, it suffices to show (5.59), (5.60), (5.61)

and (5.62).

First consider the case where ψ(·) = | · | and a positive number η > 0.

Let t ∈ R and write

rn = nP
(
ei
mn
n
t|ε| − 1− mn

n
t|ε|
)
P(1ζ0<Z≤ζ0+ η

mn
).

Then, |rn| ≤ t2σ2mn
n
mnP(1ζ0<Z≤ζ0+ η

mn
)→ 0. The characteristic function of

mnPn(|ε|1ζ0<Z≤+ η
mn

) can be written as

ϕn(t) =
(

1 + i
mn

n
tP(|ε|)P(1ζ0<Z≤ζ0+ η

mn
) +

rn
n

)n
→ eitηP(|ε|)f(ζ0)

and therefore

mnPn(|ε|1ζ0<Z≤ζ0+ η
mn

)
P−→ ηf(ζ0)P(|ε|).

But

sup
n∈N

{
E

(
mn

∥∥∥Pn(|ε|1
ζ0<Z≤ζ0+

(·)
mn

)
∥∥∥

[0,η]

)}
<∞

and hence the sequence of processes
(
mnPn(|ε|1

ζ0<Z≤ζ0+
(·)
mn

)
)∞
n=1

is tight in

D[0,η]. It follows that

mnPn(|ε|1
ζ0<Z≤ζ0+

(·)
mn

) (·)f(ζ0)P(|ε|) in D[0,η]
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but since the limiting process is continuous and deterministic we actually

obtain∥∥∥mnPn(|ε|1ζ0<Z≤ζ0+ ·
mn

)− (·)f(ζ0)P(|ε|)
∥∥∥

[0,η]

P−→ 0. (5.65)

And with similar arguments one can also prove that∥∥∥mnPn(|ε|1
ζ0− (·)

mn
<Z≤ζ0

)− (·)f(ζ0)P(|ε|)
∥∥∥

[0,η]

P−→ 0. (5.66)

Pick a positive number η > 0. Taking into account that ε1ζ0<Z≤ζ0+ η
mn

=

(y − β0)1ζ0<Z≤ζ0+ η
mn

and the analogous result for ε̃n with ζ̂n and β̂n instead

of ζ0 and β0 we see that

mn

∥∥∥Pn(|ε̃n|1ζ̂n<Z≤ζ̂n+
(·)
mn

)− Pn(|ε|1
ζ0<Z≤ζ0+

(·)
mn

)
∥∥∥

[0,η]
≤

mn

∥∥∥Pn (|Y − β̂n|(1
ζ̂n<Z≤ζ̂n+

(·)
mn

− 1
ζ0<Z≤ζ0+

(·)
mn

))∥∥∥
[0,η]

+

mn

∥∥∥Pn ((|Y − β̂n| − |Y − β0|
)

1
ζ0<Z≤ζ0+

(·)
mn

)∥∥∥
[0,η]

and consequently

mn

∥∥∥Pn(|ε̃n|1ζ̂n<Z≤ζ̂n+
(·)
mn

)− Pn(|ε|1
ζ0<Z≤ζ0+

(·)
mn

)
∥∥∥

[0,η]
≤

mn

∥∥∥Pn (|Y − β0|
(
1
ζ̂n<Z≤ζ̂n+

(·)
mn

− 1
ζ0<Z≤ζ0+

(·)
mn

))∥∥∥
[0,η]

+

|β̂n − β0|mn

∥∥∥Pn (1
ζ̂n<Z≤ζ̂n+

(·)
mn

− 1
ζ0<Z≤ζ0+

(·)
mn

)∥∥∥
[0,η]

+

|β̂n − β0|mn

∥∥∥Pn (1
ζ0<Z≤ζ0+

(·)
mn

)∥∥∥
[0,η]

. (5.67)

We will show that each of the terms on the right-hand side of (5.67) goes to

zero in probability. Since n(ζ̂n − ζ0) = OP(1), we know that for any δ > 0

there is Rδ > 0 such that P
(
n|ζ̂n − ζ0| > Rδ

)
< δ. Then,

P

(
mn

∥∥∥Pn (|Y − β0|
(
1
ζ̂n<Z≤ζ̂n+

(·)
mn

− 1
ζ0<Z≤ζ0+

(·)
mn

))∥∥∥
[0,η]

> δ

)
≤ δ+
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P

(
mnPn

(
|ε|1

ζ0−
Rδ
n
<Z≤ζ0

)
>
δ

3

)
+

P

(
mn

∥∥∥Pn (|ε|1ζ0<Z≤ζ0+
(·)
mn

+
Rδ
n

)∥∥∥
[0,η]

>
δ

3

)
+

P

(
mn|α0 − β0|Pn

(
1
ζ0−

Rδ
n
<Z≤ζ0

)
>
δ

3

)
but from equations (5.65) and (5.66), and the fact that mn

n
→ 0, we actually

get that all the terms of the right-hand side are asymptotically smaller than

δ
3
. Thus,

lim
n→∞

P

(
mn

∥∥∥Pn (|Y − β0|
(
1
ζ̂n<Z≤ζ̂n+

(·)
mn

− 1
ζ0<Z≤ζ0+

(·)
mn

))∥∥∥
[0,η]

> δ

)
< 2δ.

(5.68)

An argument similar in spirit to the one just employed gives

lim
n→∞

P

(
mn

∥∥∥Pn ((1
ζ̂n<Z≤ζ̂n+

(·)
mn

− 1
ζ0<Z≤ζ0+

(·)
mn

))∥∥∥
[0,η]

> δ

)
< δ (5.69)

while equation (5.70), for ξ = 0, and the strong consistency of the least squares

estimator give

|β̂n − β0|mn

∥∥∥Pn (1
ζ0<Z≤ζ0+

(·)
mn

)∥∥∥
[0,η]

P−→ 0.

Then, combining the last identity with (5.67), (5.68) and (5.69) we get

lim
δ→0

lim
n→∞

mnP

(∥∥∥Pn(|ε̃n|1ζ̂n<Z≤ζ̂n+
(·)
mn

)− Pn(|ε|1
ζ0<Z≤ζ0+

(·)
mn

)
∥∥∥

[0,η]
> δ

)
= 0.

Completely analogous arguments prove that

mn

∥∥∥Pn(|ε̃n|1ζ̂n− (·)
mn

<Z≤ζ̂n)− Pn(|ε|1
ζ0− (·)

mn
<Z≤ζ0

)
∥∥∥

[0,η]

P−→ 0.

Since η > 0 was arbitrarily chosen, we have shown (IV) for ψ(·) = | · |. The

case ψ = | · |2 is proven in a very similar manner. For the sake of brevity, we

omit the proof.
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Now, we consider the case where ψ(x) = eiξx for some ξ ∈ R. Again,

fix η > 0. We will proceed in the same way as before. Let t ∈ R and write

ρn = nP
(
ei
mn
n
t cos(ξε) − 1− mn

n
t cos (ξε)

)
P(1ζ0<Z≤ζ0+ η

mn
).

Then, |ρn| ≤ t2mn
n
mnP(1ζ0<Z≤ζ0+ η

mn
)→ 0. The characteristic function of

mnPn(cos (ξε) 1ζ0<Z≤+ η
mn

) can be written as

ϕn(t) =
(

1 + i
mn

n
tP(cos (ξε))P(1ζ0<Z≤ζ0+ η

mn
) +

rn
n

)n
→ eitηP(cos(ξε))f(ζ0)

and therefore

mnPn(cos (ξε) 1ζ0<Z≤ζ0+ η
mn

)
P−→ ηf(ζ0)P(cos (ξε)).

Applying the same arguments to the function sin (ξε) we obtain that

mnPn(sin (ξε) 1ζ0<Z≤ζ0+ η
mn

)
P−→ ηf(ζ0)P(sin (ξε)).

and hence

mnPn(eiξε1ζ0<Z≤ζ0+ η
mn

)
P−→ ηf(ζ0)ϕξ = ηf(ζ0)P(eiξε).

The same tightness argument that was applied to prove (5.65) can be used

here to conclude that∥∥∥mnPn(eiξε1ζ0<Z≤ζ0+ ·
mn

)− (·)f(ζ0)P(eiξε)
∥∥∥

[0,η]

P−→ 0 (5.70)

and similarly∥∥∥mnPn(eiξε1
ζ0− (·)

mn
<Z≤ζ0

)− (·)f(ζ0)P(eiξε)
∥∥∥

[0,η]

P−→ 0. (5.71)

Using the triangular inequality together with the definition of ε̃n we

get

mn

∥∥∥Pn(eiξε̃n1
ζ̂n<Z≤ζ̂n+

(·)
mn

)− Pn(eiξε1
ζ0<Z≤ζ0+

(·)
mn

)
∥∥∥

[0,η]
≤
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mn

∥∥∥Pn (1
ζ̂n<Z≤ζ̂n+

(·)
mn

− 1
ζ0<Z≤ζ0+

(·)
mn

)∥∥∥
[0,η]

+

mn

∥∥∥Pn ((eiξ(Y−β̂n) − eiξ(Y−β0))1
ζ0<Z≤ζ0+

(·)
mn

)∥∥∥
[0,η]

.

But (5.66) implies that

mn

∥∥∥Pn (1
ζ̂n<Z≤ζ̂n+

(·)
mn

− 1
ζ0<Z≤ζ0+

(·)
mn

)∥∥∥
[0,η]

P−→ 0

while (5.70) applied when ξ = 0 and the strong consistency of β̂n yield

mn

∥∥∥Pn ((eiξ(Y−β̂n) − eiξ(Y−β0))1
ζ0<Z≤ζ0+

(·)
mn

)∥∥∥
[0,η]
≤

|β̂n − β0|mn

∥∥∥Pn (1
ζ0<Z≤ζ0+

(·)
mn

)∥∥∥
[0,η]

P−→ 0.

Therefore,

mn

∥∥∥Pn(eiξε̃n1
ζ̂n<Z≤ζ̂n+

(·)
mn

)− Pn(eiξε1
ζ0<Z≤ζ0+

(·)
mn

)
∥∥∥

[0,η]

P−→ 0

which together with (5.70) proves that∥∥∥mnPn(eiξε̃n1
ζ̂n<Z≤ζ̂n+

(·)
mn

)− (·)f(ζ0)P(eiξε)
∥∥∥

[0,η]

P−→ 0.

With completely analogous arguments one shows

mn

∥∥∥Pn(eiξε̃n1
ζ̂n− (·)

mn
<Z≤ζ̂n)− (·)f(ζ0)P(eiξε)

∥∥∥
[0,η]

P−→ 0.

This proves that (VI) holds in probability.

We now proceed to prove that (V) and (VII) hold in probability. Before

embarking in this task, we want to make the following remark. Consider that

class of functions C := {ε1I(z) : I ⊂ R is an interval}. Then, this class has a

square integrable envelope |ε| and P(ψ) = 0 for any ψ ∈ C. Therefore, the

maximal inequality 3.1 from Kim and Pollard (1990) implies that ‖Pn‖C =

OP

(
n−

1
2

)
. Similar observations also show that ‖Pn − P‖F = OP

(
n−

1
2

)
. All
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these considerations, in addition with Corollary 5.3.1, (5.61), (5.62), (5.59)

and (5.60) show that

√
mn(α̂n − α0)

P−→ 0 (5.72)

√
mn(β̂n − β0)

P−→ 0 (5.73)

mn(ζ̂n − ζ0)
P−→ 0 (5.74)

√
mn ‖Pn‖C

P−→ 0 (5.75)

√
mn

∥∥∥Pn(|ε|1
ζ0− (·)

mn
<Z≤ζ0+

(·)
mn

)
∥∥∥
K

P−→ 0 (5.76)

√
mn

∥∥∥Pn(|ε̃n|1ζ̂n− (·)
mn

<Z≤ζ̂n+
(·)
mn

)
∥∥∥
K

P−→ 0 (5.77)

√
mn ‖Pn − P‖F

P−→ 0 (5.78)

for any compact set K ⊂ R.

Let η > 0 be fixed. Take any subsequence (nk)
∞
k=1 and find a further

subsequence (nks)
∞
s=1 such that all the statements in the previous display

happen almost surely with the compact setK taken to beK = [ζ0−2η, ζ0+2η].

Now, for such a subsequence, there is N ∈ N such that mnks
|ζ0 − ζ̂nks | < η

∀ s ≥ N . Then, for any δ > 0 and s ≥ N , the following inequalities are true

sup
|ζ̂nks−ζ|<δ

2

{
|Pnks (ε̃nks1ζ∧ζ̂nks<Z≤ζ∨ζ̂nks )|

}
≤ |α̂nks − α0|+ |β̂nks − β0|+

Pnks (|ε̃nks |1ζ̂nks− η
mnks

<Z≤ζ̂nks+ η
mnks

) + Pnks (|ε|1ζ0− 2η
mnks

<Z≤ζ0+ 2η
mnks

) +
∥∥Pnks∥∥C

sup
|ζ̂nks−ζ|<δ

2

{
|Pnks (ε̃nks1Z≤ζ∧ζ̂nks )|+ |Pnks (ε̃nks1Z>ζ∨ζ̂nks )|

}
≤ |α̂nks − α0|+ |β̂nks − β0|+

Pnks (|ε̃nks |1ζ̂nks− η
mnks

<Z≤ζ̂nks+ η
mnks

) + Pnks (|ε|1ζ0− 2η
mnks

<Z≤ζ0+ 2η
mnks

) +
∥∥Pnks∥∥C .

These last inequalities together with (5.72)-(5.78) imply that

lim
s→∞

√
mnks

sup
|ζ̂nks−ζ|<δ

2

{
|Pnks (ε̃nks1ζ∧ζ̂nks<Z≤ζ∨ζ̂nks )|

}
= 0 a.s.

lim
s→∞

√
mnks

sup
|ζ̂nks−ζ|<δ

2

{
|Pnks (ε̃nks1Z≤ζ∧ζ̂nks )|+ |Pnks (ε̃nks1Z>ζ∨ζ̂nks )|

}
= 0 a.s.
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The previous equations show that (5.6) and (5.7) in (V) as well as (VII) hold

with probability one for the subsequence (nks)
∞
s=1. We conclude by noting

that if κ = inf
z∈[a,b]

{f(z)}, then the mean value theorem implies

inf
1√
mnks

≤|ζ−ζ̂nks |<δ
2

{
1

|ζ − ζ̂nks |
Pnks (1ζ∧ζ̂nks<Z≤ζ∨ζ̂nks )

}
≥ κ−√mnks

∥∥Pnks − P
∥∥
F

which in consequence shows

lim
s→∞

inf
1√
mnks

≤|ζ−ζ̂nks |<δ
2

{
1

|ζ − ζ̂nks |
Pnks (1ζ∧ζ̂nks<Z≤ζ∨ζ̂nks )

}
≥ κ > 0 a. s.

This finishes the proof. �
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Brons̆tĕın, E. M. (1978). Extremal convex functions. Sibirsk. Mat. Zh., 19:10–

18.

Brunk, H. D. (1955). Maximum likelihood estimates of monotone parameters.

Ann. Math. Statist., 26:607–616.

Brunk, H. D. (1970). Estimation of isotonic regression. In Nonparametric

Techniques in Statistical Inference, pages 177–197. Camridge University

Press, New York, NY, USA.

Chung, K. L. (2001). A Course in Probability Theory. Academic Press, San

Diego, CA, USA.

Conway, J. (1985). A Course in Functional Analysis. Springer-Verlag, New

York, NY, USA.



176

Courant, R. and John, F. (1999). Introduction to Calculus and Analysis, Vol.

II/1. Springer, New York, NY, USA.

Cule, M. and Samworth, R. (2010). Theoretical properties of the log-concave

maximum likelihood estimator of a multidimensional density. Electron. J.

Stat., 4:254–270.

Cule, M., Samworth, R., and Stewart, M. (2010). Maximum likelihood esti-

mation of a multidimensional log-concave density. J. R. Stat. Soc. Ser. B

(to appear).

Dempfle, A. and Stute, W. (2002). Nonparametric estimation of a disconti-

nuity in regression. Statist. Neerlandica, 56:233–242.

Dudley, R. M. (1977). On second derivatives of convex functions. Math.

Scand., 41:159–174.

Dümbgen, L. (1991). The asymptotic behavior of some nonparametric change-

point estimators. Ann. Statist., 19:1471–1495.

Efron, B. (1982). The Jackknife, the Bootstrap and Other Resampling Plans.

CBMS-NSF Regional Conference Series in Applied Mathematics, Mono-

graph 38. SIAM, Philadelphia, USA.

Ethier, S. and Kurtz, T. (2005). Markov Processes, Characterization and

Convergence. John Wiley & Sons, New York, NY, USA.

Ferger, D. (2004). A continuous mapping theorem for the argmax-functional

in the non-unique case. Statist. Neerlandica, 48:83–96.

Folland, G. (1999). Real Analysis: Modern Techniques and Their Applica-

tions. John Wiley & Sons, New York, NY, USA.



177

Freedman, D. (1981). Bootstrapping regression models. Ann. Statist., 9:1218–

1228.

Gijbels, I., Hall, P., and Kneip, A. (1999). On the estimation of jump point

in smooth curves. Ann. Inst. Statist. Math., 51:231–251.

Gijbels, I., Hall, P., and Kneip, A. (2004). Interval and band estimation for

curves with jumps. J. Appl. Probab., 41:65–79.

Grenander, U. (1956). On the theory of mortality measurement. Skan. Aktu-

arietidskr, Part II, 39:125–153.

Groeneboom, P., Jongbloed, G., and Wellner, J. (2001). Estimation of a

convex function: characterizations and asymptotic theory. Ann. Statist.,

29:1653–1698.

Hanson, D. L. and Pledger, G. (1976). Consistency in concave regression.

Ann. Statist., 4:1038–1050.

Harville, D. (2008). Matrix Algebra from a Statistician’s Perspective. Springer,

New York, NY, USA.

Hazma, K. (1995). The smallest uniform upper bound on the distance between

the mean and median of binomial and poisson distributions. Statist. Probab.

Lett., 23:21–25.

Hess, C. (1995). On the measurability of the conjugate and the subdifferential

of a normal integrand. J. of Convex Anal., 2:153–165.

Hildreth, C. (1954). Estimates of ordinates of concave functions. J. Amer.

Statist. Assoc., 49:598–619.



178
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Appendix A

Convex analysis

Lemma A.0.6 Let z ∈ Rn, x1, . . . , xn ∈ Rd and define the function g : Rd →

R by

g(x) = inf

{
n∑
k=1

θkzk :
n∑
k=1

θk = 1,
n∑
k=1

θkxk = x, θ ≥ 0, θ ∈ Rn

}
.

Then, g defines a convex function whose effective domain is Conv (x1, . . . , xn).

Moreover, if Kx,z is the collection of all proper convex functions ψ such that

ψ(xj) ≤ zj for all j = 1, . . . , n, then g = supψ∈Kx,z{ψ}.

Proof: To see that g defines a convex function, for any x ∈ Rd write

Ax =

{
θ ∈ Rn :

n∑
k=1

θk = 1,
n∑
k=1

θkxk = x, θ ≥ 0

}
and observe that for any x, y ∈ Rd, t ∈ (0, 1), ϑ ∈ Ay and θ ∈ Ax we have

tθ + (1− t)ϑ ∈ Atx+(1−t)y and hence

g (tx+ (1− t)y)− (1− t)
∑n

k=1 ϑ
kzk

t
≤

n∑
k=1

θkzk.

Taking infimum over Ax and rearranging terms, we get

g (tx+ (1− t)y)− tg(x)

1− t
≤

n∑
k=1

ϑkzk
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and taking now the infimum over Ay gives the desired convexity. The con-

vention that inf(∅) = +∞ shows that the effective domain is precisely the

convex hull of x1, . . . , xn. Finally, for any ψ ∈ Kx,z and x ∈ Conv (x1, . . . , xn)

we have, for θ ∈ Rn with θ ≥ 0, x =
∑n

j=1 θ
jxj and

∑n
j=1 θ

j = 1,

ψ(x) ≤
n∑
j=1

θjψ(xj) ≤
n∑
j=1

θjzj

since ψ(xj) ≤ zj for any j = 1, . . . , n. The definition of g as an infimum then

implies that ψ(x) ≤ g(x) ∀ ψ ∈ Kx,z, x ∈ Conv (x1, . . . , xn). The result then

follows from the fact that g ∈ Kx,z. �

For the following results we use the notation introduced in Section 3.2,

as they will concern α-monotone functions (see Definition 3.2.1).

Lemma A.0.7 Let α ∈ {−1, 0, 1}d and f : Rd → R. Then, f is α-monotone

if and only if f(x) ≤ f(y) for all x, y ∈ Rd such that (y − x) ∈ Rd
α.

Proof: If f is α-monotone and (y − x) ∈ Rd
α then the equation y =

x+
d∑
j=1

αj(αj(yj−xj))ej implies that f(x) ≤ f(y). Conversely, if f(x) ≤ f(y)

whenever (y− x) ∈ Rd
α, as (x+ rαjej)− x = rαjej ∈ Rd

α we can immediately

conclude that f(x) ≤ f(x+ rαjej) for all x ∈ Rd, r ≥ 0 and j = 1, . . . , n. �

Lemma A.0.8 Let z ∈ Rn, x1, . . . , xn ∈ Rd, α ∈ {−1, 0, 1}d and define the

function hα : Rd → R by

hα(x) = inf

{
n∑
k=1

θkzk :
n∑
k=1

θk = 1, ϑ+
n∑
k=1

θkxk = x, θ ≥ 0, θ ∈ Rn, ϑ ∈ Rd
−α

}

Then, hα defines a convex, α-monotone function whose effective domain is

Conv (x1, . . . , xn)+Rd
−α. Moreover, if Qαx,z is the collection of all α-monotone,
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proper convex functions ψ such that ψ(xj) ≤ zj for all j = 1, . . . , n, then

hα = supψ∈Qx,z{ψ}.

Proof: The proof of the convexity of hα is similar to the case of g in

Lemma A.0.6. Now, if x, y ∈ Rd and (y − x) ∈ Rd
α, then for any θ ∈ Rn,

ϑ ∈ Rd
−α with

∑n
k=1 θ

k = 1, ϑ +
∑n

k=1 θ
kxk = y, θ ≥ 0, we also have

ϑ+(x−y)+
∑n

k=1 θ
kxk = x and (ϑ+(x−y)) ∈ Rd

−α. Then, from the definition

of hα we see that hα(x) ≤ hα(y). Thus, h is α-monotone. That the effective

domain of hα is Conv (x1, . . . , xn) + Rd
−α is clear from the fact that for any

x not belonging to that set, the infimum defining hα(x) would be taken over

the empty set. Finally, for any ψ ∈ Qαx,z and x ∈ Conv (x1, . . . , xn) +Rd
−α we

have, for θ ∈ Rn and ϑ ∈ Rd
−α with θ ≥ 0, x = ϑ+

∑n
j=1 θ

jxj and
∑n

j=1 θ
j = 1,

ψ(x) ≤ ψ

(
n∑
j=1

θjxj

)
≤

n∑
j=1

θjψ(xj) ≤
n∑
j=1

θjzj

since ψ(xj) ≤ zj for any j = 1, . . . , n. The definition of hα as an infimum

then implies that ψ(x) ≤ hα(x) ∀ ψ ∈ Qαx,z, x ∈ Conv (x1, . . . , xn) + Rd
−α.

The result then follows from the fact that hα ∈ Qαx,z. �

A.1 Polar coordinates based on boundaries of

convex sets

Usual polar coordinates introduce a parametrization of Rd \ {0} based on the

set (0,∞) × Sd−1 where Sd−1 is the unit sphere in Rd with respect to the

Euclidian norm. This parametrization proves to be very useful for integration

over spherical domains. Our aim in this section is to introduce a similar

parametrization but now replacing Sd−1 with the boundary of an arbitrary
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compact, convex set X ⊂ Rd with nonempty interior. Throughout this section

we will assume that X is a set of this type and that x0 ∈ X ◦ is any point

inside X . We will use the notation B(x, r) to denote the ball in Rd with radius

r and center at x.

Lemma A.1.1 For every x ∈ Rd \ {0} there is a unique tx > 0 such that

x0 +tx(x−x0) ∈ ∂X , x0 +t(x−x0) ∈ X ◦ for all t ∈ (0, tx) and x0 +t(x−x0) ∈

Ext(X ) for all t > tx.

Proof: Without loss of generality we may assume that x0 = 0. Consider the

continuous function ψ : R → Rd given by ψ(t) := tx. Then, ψ(0) ∈ X ◦

and by compactness of X there is M > 0 such that ψ(M) ∈ Rd \ X .

By the intermediate value theorem the set ψ([0,M ]) must be connected in

Rd. It follows that there is t∗ ∈ (0,M) such that ψ(t∗) ∈ ∂X . Now take

0 < t < t∗. Since 0 ∈ X ◦ there is r > 0 such that B(0, r) ⊂ X . But

then, B(tx, t∗−t
t∗
r) ⊂ Conv ({t∗x} ∪B(0, r)) ⊂ X which in turn implies that

ψ(t) ∈ X ◦. Finally, if there was a t > t∗ for which ψ(t) ∈ X , we could switch

the roles of t and t∗ in the previous argument to see that we would have

ψ(t∗) ∈ X ◦, a contradiction. This finishes the proof. �

From the previous lemma we see that we can for every x ∈ Rd there

are a unique ρx := 1
tx
> 0 and ξx ∈ ∂X such that x = x0 + ρxξx. Consider

now the function ΦX : Rd \ {x0} → (0,∞) × ∂X given by ΦX (x) := (ρx, ξx).

Then we have the following result.

Lemma A.1.2 Endow ∂X with the topology induced by the usual topology of

Rd and (0,∞)×∂X with the product topology. Then, ΦX is a homeomorphism.

Proof: Assume, without loss of generality, that x0 = 0. First, ΦX is clearly

invertible with Φ−1
X (ρ, ξ) = ρξ. The inequality |Φ−1

X (ρ1, ξ1) − Φ−1
X (ρ2, ξ2)| ≤
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|ρ1 − ρ2||ξ1| + |ρ2||ξ1 − ξ2| for any ρ1, ρ2 > 0, ξ1, ξ2 ∈ ∂X shows that Φ−1
X is

continuous. On the other hand, for any x ∈ Rd \ {0} and r > 0 we have that

B

(
(tx ∧ 1)x,

tx ∧ 1

tx ∨ 1
r

)
⊂ Conv ({0}, B ((tx ∨ 1)x, r)), where tx = ρ−1

x . The

latter fact implies that ξx is a continuous function of x. Finally, the identity

ρx = |x|
|ξx| shows that ρx is also a continuous function of x. Hence, ΦX is con-

tinuous with continuous inverse. �

We will now present a generalization of the traditional change-of-variables

formula for spherical coordinates. We will denote by λd the Lebesgue measure

on Rd and by τd the measure on (0,∞) given by τd(dt) = td−1dt.

Lemma A.1.3 (Change-of-variables Formula) Consider the Borel mea-

sure mXd (·) = λdΦ
−1
X (·) on (0,∞)×∂X . Then, there is a unique Borel measure

γd−1
X on ∂X such that mXd = τd × γX . Moreover, for any measurable function

f : Rd → C which is either nonnegative or integrable (with respect to λd) we

have:∫
f(x)dx =

∫
f◦Φ−1

X (s, ξ)τd(ds)γX (dξ) =

∫∫
R+×∂X

f(x0+sξ)sd−1dsγX (dξ).

Proof: This result is a generalization of Theorem 2.49 in page 78 of Folland

(1999). We refer the reader to the proof provided there. Although that result

refers only to the case when x0 = 0, X = B(0, 1) and ∂X = Sd−1, all the

arguments remain valid for arbitrary X and x0. �

The measure γX of the previous theorem can be thought as a “surface-

area” measure on ∂X . A more general version of this formula is known in the

geometric measure theory literature as the co-area formula.
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A.2 Restrictions of convex functions to com-

pact, convex subsets of their effective do-

mains

The following results turn out to be useful in the analysis of the local behavior

of convex functions. For a convex function f : Rd → R and a convex set

X ⊂ Rd we denote by KX ,f the class of all convex functions g such that

g(x) ≤ f(x) for all x ∈ Rd \ X ◦.

Lemma A.2.1 Let f : Rd → R be a closed, proper convex function such

that dom(f)◦ 6= ∅ and X ⊂ dom(f)◦ be a compact, convex set with nonempty

interior. Consider the function f : Rd → R given by:

f(x) = sup
ξ∈∂f(y)

y∈Rd\X ◦

{〈ξ, x〉 − f ∗(ξ)}.

Then,

(i) f ≤ f ; in particular f ∈ KX ,f .

(ii) f(x) = f(x) for every x ∈ Rd \ X ◦.

(iii) For x ∈ X we have

f(x) = sup
ξ∈∂f(y)
y∈∂X

{〈ξ, x〉 − f ∗(ξ)}.

(iv) If x ∈ X ◦ then,

f(x)− f(x) = inf
ξ∈∂f(y)
y∈∂X

{f(x)− f(y)− 〈ξ, x− y〉}.
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Proof: Since f is closed, Theorem 12.2, page 104 of Rockafellar (1970)

implies that f = f ∗∗. Thus, from Corollary 12.2.2, page 104 in the same ref-

erence we have f(x) = sup
ξ∈ri(dom(f∗))

{〈ξ, x〉−f ∗(x)}, where ri(dom(f ∗)) denotes

the relative interior of dom(f ∗). But the remarks in page 227 of Rockafellar

(1970) imply that

ri(dom(f ∗)) ⊂
⋃
x∈Rd

∂f(x) ⊂ dom(f ∗) ⊂ Rd.

Therefore we get the following identity

sup
ξ∈dom(f∗)

{〈ξ, x〉 − f ∗(ξ)} = f(x) = sup
ξ∈∂f(y)

y∈Rd

{〈ξ, x〉 − f ∗(ξ)}.

It follows immediately that f ≤ f . Now, let x ∈ Rd \ X ◦. Choose y ∈ X ◦

and consider the one-dimensional convex function fy(t) = f(x + t(y − x)).

Note that ∂fy(t) = (y − x)′∂f(x + t(y − x)) as a consequence of Theorem

23.9, page 225 in Rockafellar (1970). From Lemma A.1.1 there is 0 < t∗ < 1

such that y∗ := x + t∗(y − x) ∈ ∂X . Choose ξ∗ ∈ ∂f(y∗) and ξ ∈ ∂f(y).

Note that 〈ξ∗, y − x〉 ∈ ∂fy(t∗) and 〈ξ, y − x〉 ∈ ∂fy(1) which implies that

〈ξ∗, y − x〉 ≤ 〈ξ, y − x〉 as 0 < t∗ < 1. Thus, using that ξ ∈ ∂f(y) (so

f(y) + f ∗(ξ) = 〈ξ, y〉 by Theorem 23.5 in page 218 of Rockafellar (1970)) we

have

〈ξ, x〉−f ∗(ξ) = 〈ξ, x−y〉+f(y) ≤ f(y∗)−t∗〈ξ, x−y〉 ≤ f(y∗)−t∗〈ξ∗, x−y〉 = 〈ξ∗, x〉−f ∗(ξ∗).

We have thus shown that for any x ∈ Rd \ X ◦, y ∈ X ◦ and ξ ∈ ∂f(y) there

are y∗ ∈ ∂X and ξ∗ ∈ ∂f(y∗) such that 〈ξ, x〉 − f ∗(ξ) ≤ 〈ξ∗, x〉 − f ∗(ξ∗). It

follows that

f(x) = sup
ξ∈∂f(y)

y∈Rd

{〈ξ, x〉−f ∗(ξ)} = sup
ξ∈∂f(y)

y∈Rd\X ◦

{〈ξ, x〉−f ∗(ξ)} = f(x) ∀x ∈ R\X ◦,
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which shows (ii). A similar argument can be used to prove that for any

x ∈ X ◦, any y ∈ Rd \ X ◦ and any ξ ∈ ∂f(y) there are ỹ ∈ ∂X and ξ̃ ∈ ∂f(ỹ)

such that 〈ξ, x〉−f ∗(ξ) ≤ 〈ξ̃, x〉−f ∗(ξ̃). This implies (iii). The last statement

follows from (iii) and the identity f(y) + f ∗(ξ) = 〈y, ξ〉 for all y ∈ Rd and

ξ ∈ ∂f(y). �

Lemma A.2.2 Let f : Rd → R be a closed, proper convex function such

that dom(f)◦ 6= ∅ and X ⊂ dom(f)◦ be a compact, convex set with nonempty

interior. Let f = supψ∈KX ,f{ψ}. Then,

(i) f ≤ f .

(ii) f(x) = f(x) for all x ∈ Rd \ X ◦.

(iii) For every x ∈ X ◦ we have:

f(x) = min
x1,...,xn∈∂X , n∈N
θ1,...,θn≥0,

∑
θj=1∑

θjxj=x

{
n∑
j=1

θjf(xj)

}

(iv) For every x ∈ X ◦ we have:

f(x)− f(x) = min
x1,...,xn∈∂X , n∈N
θ1,...,θn≥0,

∑
θj=1∑

θjxj=x

{
n∑
j=1

θj(f(xj)− f(x))

}
.

(v) For every x ∈ X ◦ and w ∈ X we have:

1

2
inf

ξ∈∂f(x)
y∈∂X

{f(y)−f(x)−〈ξ, y−x〉} ≤ f(x)−f(x) ≤ sup
ξ∈∂f(w)
y∈∂X

{f(y)−f(w)−〈ξ, y−w〉}.

Proof: The first two statements are obvious consequences of the definition

of the function. Now, let F ⊂ Rd+1 be given by F := {(x, t) ∈ epi(f) : x ∈
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Rd \ X ◦} and consider the function

f̃(x) := inf{t : (x, t) ∈ conv(F )} = inf
x1,...,xn∈Rd\X ◦

θ1,...,θn≥0,
∑
θj=1∑

θjxj=x

{
n∑
j=1

θjf(xj)

}
. (A.1)

Note that the infimum in (A.1) is actually a minimum form Corollary 19.1.2

in page 173 of Rockafellar (1970). From Theorem 5.3, page 33 in Rockafellar

(1970) we know that f̃ is a convex function. Note that F ⊂ {(x, t) ∈ epi(g) :

x ∈ Rd\X ◦} for every g ∈ KX ,f . Hence, conv(F ) ⊂ epi(g) and g ≤ f̃ for every

g ∈ KX ,f and, consequently, f̃ ≥ f . On the other hand, from the definition of

f̃ it is obvious that f̃ ≡ f on Rd \ X ◦. Thus, f̃ = f . To show (iii) it suffices

to argue that for x ∈ Rd \ X ◦ we can take the infimum in (A.1) with the

x’s ranging only on ∂X . To achieve this, we will prove that for any x ∈ X ◦

and x1, . . . , xn+1 ∈ Rd \ X ◦ with x ∈ conv(x1, . . . , xn+1), xn+1 ∈ Ext(X )

and x expressed as the convex combination x = θ1x1 + · · · + θn+1xn+1 there

are x̃n+1 ∈ ∂X and nonnegative coefficients θ̃1, . . . , θ̃n+1 such that x can be

expressed as the convex combination x = θ̃1x1 + · · · + θ̃nxn + θ̃n+1x̃n+1 and

θ̃1f(x1) + · · · + θ̃nf(xn) + θ̃n+1f(x̃n+1) ≤ θ1f(x1) + · · · + θn+1f(xn+1). From

Lemma A.1.1, there is 0 < t̃ < 1 such that x̃n+1 = x + t̃(xn+1 − x) ∈ ∂X .

Let θ̃k := t̃θk

t̃+(1−t̃)θn+1 for k = 1, . . . , n and θ̃n+1 := θn+1

t̃+(1−t̃)θn+1 . Then it is easily

seen that x̃n+1 and θ̃1, . . . , θ̃n+1 satisfy the desired condition.

It remains to show (v) as (iv) is an obvious consequence of (iii). For

any x1, . . . , xn ∈ ∂X , any ξ ∈ ∂f(x) and any J ⊂ {1, . . . , n}, if x is the convex

combination of x1, . . . , xn with coefficients θ1, . . . , θn we have:

n∑
k=1

θkf(xk)− f(x) ≥
∑
k∈J

θk(f(xk)− f(x)) +
∑
k/∈J

θk〈ξ, xk − x〉

≥
∑
k∈J

θk(f(xk)− f(x))−
∑
k∈J

θk〈ξ, xk − x〉

≥
∑
k∈J

θk(f(xk)− f(x)− 〈ξ, xk − x〉).
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Applying the same argument to the complement of J and taking infimum

over all elements xk ∈ ∂X and ξ ∈ ∂f(x) we obtain:

n∑
k=1

θkf(xk)− f(x) ≥

(∑
k∈J

θk

)
∨

(∑
k/∈J

θk

)
inf

η∈∂f(x)
y∈∂X

{f(y)− f(x)− 〈η, y − x〉}

≥ 1

2
inf

η∈∂f(x)
y∈∂X

{f(y)− f(x)− 〈η, y − x〉}

Taking the infimum over all possible values of ξ, x1, . . . , xn and θ1, . . . , θn we

obtain the left-hand side inequality in (iv). To obtain the remaining inequality

let w ∈ X and ξ ∈ ∂f(w). Consider x1, . . . , xn and θ1, . . . , θn as before. Note

that −f(x) ≤ −f(w)−〈ξ, x−w〉 = −f(w)−〈ξ, xj−w〉−〈ξ, x−xj〉 for every

j. We then have

n∑
k=1

θkf(xk)− f(x) ≤
n∑
k=1

θk(f(xk)− f(w)− 〈ξ, xk − w〉 − 〈ξ, x− xk〉)

≤
n∑
k=1

θk(f(xk)− f(w)− 〈ξ, xk − w〉)

≤ sup
ξ∈∂f(w)

y∈∂X , w∈X

{f(y)− f(w)− 〈ξ, y − w〉}.

Since this holds for every x1, . . . , xn ∈ ∂X and coefficients θ1, . . . , θn the result

is now evident. �
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Appendix B

Results from linear algebra

Before proving Lemma 2.4.1, we need the following result.

Lemma B.0.3 Let j ∈ {1, . . . , d}, α ∈ {−1, 1}d and ρ∗ > 0. Then, the

optimal value of the optimization problem

min 〈αjej, w2 − w1〉

s.t.
∣∣∣w2 − 3ρ∗

8
√
d
α
∣∣∣ ≤ ρ∗

8
√
d

|w1| ≤ ρ∗
16
√
d

w1, w2 ∈ Rd

is 3
16
√
d
ρ∗ and it is attained at w∗1 = ρ∗

16
√
d
αjej and w∗2 = 3ρ∗

8
√
d
α− ρ∗

8
√
d
αjej.

Proof: Writing w = (w1;w2) with w1, w2 ∈ Rd for any w ∈ R2d, consider

f, g1, g2 : R2d → R defined as:

f(w) = 〈αjej, w2 − w1〉,

g1(w) =
1

2

((
ρ∗

16
√
d

)2

− |w1|2
)
,

g2(w) =
1

2

((
ρ∗

8
√
d

)2

−
∣∣∣∣w2 −

3ρ∗

8
√
d
α

∣∣∣∣2
)
.
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Then, f, g1, g2 are twice continuously differentiable on R2d and the optimiza-

tion problem can be re-written as minimizing f(w) over the set {w ∈ R2d :

g1(w) ≥ 0, g2(w) ≥ 0}. The proof now follows by noting that the vector

w∗ = (w∗1;w∗2) ∈ R2d and the Lagrange multipliers λ∗1 = 16
√
d

ρ∗
and λ∗2 = 8

√
d

ρ∗

are the only ones which satisfy the Karush-Kuhn-Tucker second order nec-

essary and sufficient conditions for a strict local solution to this problem as

stated in Theorem 12.5, page 343 and Theorem 12.6, page 345 in Nocedal and

Wright (1999). �

B.1 Proof of Lemma 2.4.1

Without loss of generality, we may assume that r = 1. Let Rr be 1√
d

and

pick δ ∈
(

0, 1√
d

)
, ρ∗ = 1√

d
− δ and ρ∗ = 2d

1−δ
√
d
. Consider a matrix Z =

(z1, . . . , zd) ∈ Rd×d with columns z1, . . . , zd ∈ Rd and define the function

ξ̃ : Rd×d → Rd as

ξ̃(Z) =

∣∣∣∣∣∣∣∣∣
e1 z1

2 − z1
1 · · · z1

d − z1
1

...
...

...
...

ed zd2 − zd1 · · · zdd − zd1

∣∣∣∣∣∣∣∣∣
where the bars denote the determinant and the equation is written symbol-

ically to express that ξ̃(Z) is a linear combination of the vectors {ej}1≤j≤d

with the cofactor corresponding to the (j, 1)-th position as the coefficient of

ej. This is a common notation for “generalized vector products”; see, for

instance, Courant and John (1999), Section 2.4.b, page 187 for more details.

Since the determinant and all cofactors can be seen as a continuous function

on Rd×d, it follows that ξ̃ is continuous on Rd×d. Now choose α ∈ {−1, 1}d
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and observe that

ξ̃(α1e1, . . . , α
ded) =

(
d∏
j=1

αj

)
α,∣∣∣ξ̃(α1e1, . . . , α

ded)
∣∣∣ =

√
d,

〈ξ̃(α1e1, . . . , α
ded), α

jej〉 =
d∏

k=1

αk ∀ j = 1, . . . , d.

Since Rd×d has the product topology of the d-fold topological product of

Rd with itself, the continuity of ξ̃ and of 〈·, ·〉 imply that we can find ρα ∈(
0, 1√

d
− δ
)

such that if xj ∈ B(αjej, ρα) for any j = 1, . . . , d, β = {x1, . . . , xd}

and Xβ = (x1, . . . , xd), then∣∣∣∣∣∣ξ̃(Xβ)
∣∣∣−√d∣∣∣ < δ,∣∣∣∣∣ ξ̃(Xβ)

|ξ̃(Xβ)|
−
∏

1≤j≤d α
j

√
d

α

∣∣∣∣∣ < δ, (B.1)∣∣∣∣∣
〈
ξ̃(Xβ)

|ξ̃(Xβ)|
, xj

〉
−
∏d

k=1 α
k

√
d

∣∣∣∣∣ < δ ∀ j = 1, . . . , d. (B.2)

Taking this into account, define

ξα,β =

(
d∏
j=1

αj

)
ξ̃(Xβ)

|ξ̃(Xβ)|
, and bα,β = 〈ξα,β, x1〉.

From the definition of the function ξ̃ it is straight forward to see that 〈ξα,β, xj−

x1〉 = 0 ∀j ∈ {1, . . . , d}, so we in fact have

x1, . . . , xd ∈ Hα,β := {x ∈ Rd : 〈ξα,β, x〉 = bα,β}.

Moreover, (B.1) and (B.2) imply

1√
d

+ δ > bα,β >
1√
d
− δ > 0,

min
1≤j≤d

{
|ξjα,β|

}
>

1√
d
− δ > 0.
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For simplicity, and without loss of generality (the other cases follow from

symmetry), we now assume that α = e, the vector of ones. By solving the

corresponding quadratic programming problems, it is not difficult to see that

ρ∗ =
1√
d
− δ < bα,β = inf

〈ξα,β ,x〉≥bα,β
{|x|}

ρ∗ =
2d

1− δ
√
d
>

bα,β

min1≤j≤d{|ξjα,β|}
= sup

〈ξα,β ,x〉≤bα,β
x≥0

{|x|}.

For the first inequality see, for instance, Exercise 16.2, page 484 of Nocedal and

Wright (1999). For the second one, one must notice that 2
√
d > 1√

d
+δ > bα,β

and that the optimal value of the optimization problem must be attained at

one of the vertices of the polytope {x ∈ Rd
+ : 〈ξα,β, x〉 ≤ bα,β}. The latter

statement can be derived from the Karush-Kuhn-Tucker conditions of the

problem.

The inequalities in the last display imply that B(0, ρ∗) ⊂ H−α,β and

{x ∈ Rd : |x| ≥ ρ∗} ∩ Rα ⊂ H+
α,β.

Finally, for x ∈ B(−αjej, 1
2
ρα) we have |x + xj| < ρα and therefore

〈ξα,β, x〉 < −〈ξα,β, xj〉 + ρα < δ − 1√
d

+ ρα < 0. We can then take any

ρ ≤ 1
2

minα∈{−1,1}d{ρα} to make (i)-(vi) be true. We’ll now argue that by

making ρ smaller, if required, (vii) also holds.

Let B1 = B
(

0, ρ∗
16
√
d

)
, B2 = B

(
3ρ∗
8
√
d
α, ρ∗

8
√
d

)
and consider the functions

ϕ, ψ : Rd×d → R given by

ϕ(X) = inf
w1∈B1,w2∈B2

{
min

1≤j≤d

{
(X(w2 − w1))j

}}
,

ψ(X) = sup
w1∈B1

{
max
1≤j≤d

{
(Xw1)j

}}
.

Both of these functions are Lipschitz continuous with the metric induced by

the ‖ · ‖2-norm on Rd×d with Lipschitz constants smaller than ρ∗. To see this,

observe that

|X(w2 − w1)− Y (w2 − w1)| ≤ ‖X − Y ‖2|w2 − w1| ≤
9

16
ρ∗‖X − Y ‖2
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for all w1 ∈ B1, w2 ∈ B2 and X, Y ∈ Rd×d. Also, simple algebra shows that

|min1≤j≤d{xj} −min1≤j≤d{yj}| ≤ |x− y| ∀ x, y ∈ Rd. From these assertions,

one immediately gets the Lipschitz continuity of ϕ. Similar arguments show

the same for ψ.

Let Iα ∈ Rd×d be the diagonal matrix whose j’th diagonal element is

precisely αj. From Lemma B.0.3 it is seen that ϕ(Iα) = 3ρ∗
16
√
d
. On the other

hand, it is immediately obvious that ψ(Iα) = ρ∗
16
√
d
. Using one more time

the continuity of ψ and ϕ and that the topology in Rd×d is the same as the

topology of the d-fold topological product of Rd, for each α ∈ {−1, 1}d we

can find rα for which Xβ = (x1, . . . , xd) ∈ Rd×d and |xj − αjej| < rα for all

j = 1, . . . , d imply |ψ(X−1
β ) − ρ∗

16
√
d
| < ρ∗

32
√
d

and |ϕ(X−1
β ) − 3ρ∗

16
√
d
| < ρ∗

16
√
d
. It

follows that

inf
t≥1

w1∈B1,w2∈B2

{
min

1≤j≤d

{(
X−1
β (w1 + t(w2 − w1))

)j}}

≥ inf
t≥1

w1∈B1,w2∈B2

{
min

1≤j≤d

{(
tX−1

β (w2 − w1)
)j}}− sup

w1∈B1

{
max
1≤j≤d

{(
X−1
β w1

)j}}
≥ ϕ(X−1

β )− ψ(X−1
β ) >

ρ∗

8
√
d
− 3ρ∗

32
√
d

=
ρ∗

32
√
d
> 0.

The proof is then finished by taking ρ ≤ minα∈{−1,1}d
{
rα ∧ ρα

2

}
. �

B.2 Proof of Lemma 2.4.2

Assume again, without loss of generality, that r = 1. Lemma 2.4.1 (ii) and

(vi) imply that xαjj, x−αjj ∈ {x ∈ Rd : 〈x, ξα〉 ≤ bα} for any j = 1, . . . , n and

any α ∈ {−1, 1}d. It follows that, in addition to being convex, ∩α∈{−1,1}d{x ∈

Rd : 〈ξα, x〉 ≤ bα} contains {x±1, . . . , x±d} and hence it must contain K. For

the other contention, take x ∈ ∩α∈{−1,1}d{w ∈ Rd : 〈ξα, w〉 ≤ bα} with x 6= 0

and any α ∈ {−1, 1}d for which x ∈ Rα. Then, 〈ξα, x〉 > 0 for otherwise we
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would have

κx ∈ Rα \ H+
α ∀ κ ≥ 0

which is impossible by (v) in Lemma 2.4.1. Thus, Jx = {α ∈ {−1, 1}d :

〈ξα, x〉 > 0} 6= ∅ and we can define

rx = min
α∈Jx

{
bα
〈ξα, x〉

}
and αx = argmin

α∈Jx

{
bα
〈ξα, x〉

}
.

Note that rx ≥ 1. Since βαx is a basis, there is θ ∈ Rd such that rxx =

θ1xα1
x1 + . . .+ θdxαdxd. But then,

bαx = 〈rxx, ξαx〉 =
d∑

k=1

θk〈xαkxk, ξαx〉 = bαx

d∑
k=1

θk

where the last equality follows from (ii) of Lemma 2.4.1 and therefore θ1+. . .+

θd = 1. Now assume that θj < 0 for some j ∈ {1, . . . , d} and set γx ∈ {−1, 1}d

with γkx = αkx for k 6= j and γjx = −αjx. But then,
∑

k 6=j θ
k = 1 − θj > 1,

〈xαkxk, ξγx〉 = bγx for k 6= j and 〈xαjjj, ξγx〉 < 0 by (ii) and (vi) in Lemma 2.4.1.

Therefore,

〈rxx, ξγx〉 = θj〈x−αjxj, ξγx〉+
∑
k 6=j

θk〈xαkxk, ξγx〉 (B.3)

>
∑
k 6=j

θk〈xαkxk, ξγx〉 > bγx (B.4)

which is impossible because it contradicts the definition of rx. Hence, θ ≥ 0

and we have rxx ∈ Conv (βαx). Note that since 0 belongs in the interior of

∩α∈{−1,1}d{w ∈ Rd : 〈ξα, w〉 ≤ bα}, there there is κ > 0 such that −κx ∈

∩α∈{−1,1}d{w ∈ Rd : 〈ξα, w〉 ≤ bα}. Applying the same arguments as before

to −κx instead of x, we can find r̃x > 0 and α̃x ∈ {−1, 1}d such that −r̃xx ∈

Conv (βα̃x). It follows that −r̃xx, rxx ∈ K and therefore 0, x ∈ K since

rx ≥ 1. Hence, we have proved (i).
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To prove (ii), note that A := ∩α∈{−1,1}d{w ∈ Rd : 〈ξα, w〉 < bα} is open

and, by (i), it is contained in K. Thus, A ⊂ K◦. That K◦ ⊂ A follows from

the fact that if x ∈ K \ A, then 〈ξα, x〉 = bα for some α ∈ {−1, 1}d, which

implies that B(x, τ) ∩ Ext(K) 6= ∅ for all τ > 0 and hence x /∈ K◦.

It is then obvious that (iv) follows from the identity ∂K = K \K◦ and

the fact that K is closed.

Pick any α ∈ {−1, 1}d and observe that (ii) and (vi) from Lemma 2.4.1

imply that for any γ ∈ {−1, 1}d we have

〈ξγ, xαkk〉

 = bγ if γk = αk

< 0 ≤ bγ if γk = −αk

which by (iv) of this lemma show that

xαjj ∈ {w ∈ Rd : 〈ξα, w〉 = bα} ∩
(
∩γ∈{−1,1}d{w ∈ Rd : 〈ξγ, w〉 ≤ bγ}

)
for all α ∈ {−1, 1}d and j = 1, . . . , d. Since the sets on the right-hand side of

the last display are all convex we can conclude that

Conv
(
xα11, . . . , xαjj

)
⊂ {w ∈ Rd : 〈ξα, w〉 = bα}∩

(
∩γ∈{−1,1}d{w ∈ Rd : 〈ξγ , w〉 ≤ bγ}

)
for all α ∈ {−1, 1}d. Thus,

⋃
α∈{−1,1}d Conv

(
xα11, . . . , xαjj

)
⊂ ∂K. Finally,

take x ∈ ∂K. Then, there is αx ∈ {−1, 1}d such that 〈ξαx , x〉 = bαx . Since

βαx is a basis we can again find θ ∈ Rd such that x = θ1xα1
x1 + . . . + θdxαdxd.

Just as before, 〈ξαx , xαjxj〉 = bαx implies that
∑
θj = 1. And again, if θj < 0

for some j, we can take γx ∈ {−1, 1}d with γkx = αkx for k 6= j and γjx = −αjx
and arrive at a contradiction with similar arguments to those used in (B.3)

and (B.4). This shows that x ∈ Conv (βαx) and completes the proof as (v)

and (vi) are direct consequences of (i)− (iv) and Lemma 2.4.1. �
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B.3 Proof of Lemma 2.4.3

Let r ∈ (0, 1
d−2

) if d ≥ 3 and r > 0 if d ≤ 2. Since the geometric properties

of any rectangle depend only on the direction and magnitude of the diagonal,

we may assume without loss of generality that b > 0 and that a = r
1+r

b. This

is because we can define b̃ = (1 + r)(b− a) > 0 and ã = a− r(b− a) to obtain

[a, b] = ã +
[

r
r+1

b̃, b̃
]
. For any α ∈ {−1, 1}d, define αj = α − 2αjej ∈ Rd and

wα = zα+r(zα−z−α). Additionally, define the functions ψα, ϕα : Rd×d×Rd →

R by

ψα(Θ, θ) = 〈e,Θ(zα − θ)〉

ϕα(Θ, θ) = min
1≤j≤d

{
(Θ(zα − θ))j

}
.

Considering Rd×d with the topology generated be the ‖·‖2 norm and Rd×d×Rd

with the product topology, it is easily seen that both functions defined in the

last display are continuous. Now, let Wα ∈ Rd×d be the matrix whose j’th

column is precisely wαj − wα. It is not difficult to see that ψα(W−1
α , wα) =

dr
1+2r

< 1 and ϕα(W−1
α , wα) = r

1+2r
> 0. For instance, one can check that for

α = −e, one has wα = 0 and wαj = 1+2r
1+r

bjej and the result is now evident.

By symmetry, the same is true for any α ∈ {−1, 1}d. Therefore, for any

α ∈ {−1, 1}d there is ρα such that whenever |xαj − wαj | < ρα ∀ j = 1, . . . , d

and Xα is the matrix whose j’th column is xαj − xα, we get

ψα(X−1
α , xα) < 1, (B.5)

ϕα(X−1
α , xα) > 0. (B.6)

Letting ρ = minα∈{−1,1}d {ρα} completes the proof as (B.5) and (B.6) imply

zα ∈ Conv (xα, xα1 , . . . , xαd)
◦. �
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