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Seamless Warping of Diffusion Tensor Fields
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Abstract—To warp diffusion tensor fields accurately, tensors
must be reoriented in the space to which the tensors are warped
based on both the local deformation field and the orientation of
the underlying fibers in the original image. Existing algorithms
for warping tensors typically use forward mapping deformations
in an attempt to ensure that the local deformations in the warped
image remains true to the orientation of the underlying fibers;
forward mapping, however, can also create “seams” or gaps and
consequently artifacts in the warped image by failing to define
accurately the voxels in the template space where the magnitude
of the deformation is large (e.g., Jacobian 1). Backward
mapping, in contrast, defines voxels in the template space by
mapping them back to locations in the original imaging space.
Backward mapping allows every voxel in the template space to
be defined without the creation of seams, including voxels in
which the deformation is extensive. Backward mapping, however,
cannot reorient tensors in the template space because information
about the directional orientation of fiber tracts is contained in the
original, unwarped imaging space only, and backward mapping
alone cannot transfer that information to the template space. To
combine the advantages of forward and backward mapping, we
propose a novel method for the spatial normalization of diffusion
tensor (DT) fields that uses a bijection (a bidirectional mapping
with one-to-one correspondences between image spaces) to warp
DT datasets seamlessly from one imaging space to another. Once
the bijection has been achieved and tensors have been correctly
relocated to the template space, we can appropriately reorient
tensors in the template space using a warping method based on
Procrustean estimation.

Index Terms—Bijection, diffusion tensor image (DTI), DTI
warping, procrustean estimation.

I. INTRODUCTION

DIFFUSION tensor imaging (DTI) quantifies the diffusion
of water molecules in living tissues. In traditional anatom-

ical magnetic resonance (MR) images of the human brain, both
white matter and gray matter appear as homogeneous, inter-
nally undifferentiated tissues [1]–[3]. However, because water
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molecules diffuse preferentially along nerve fibers, fiber tracts
can be reconstructed using the diffusion tensors (DTs) estimated
in DT datasets. Thus, DTI can be used as a tool for mapping
anatomical connectivity within the human brain.

To compare how brains differ across individuals or groups of
individuals, brain images from any magnetic resonance imaging
(MRI) modality are first coregistered into a common coordinate
(or “template”) space, a process termed “spatial normalization.”
Normalizing DT datasets, however, is particularly complex. A
tensor geometrically represents a probabilistic measure of the
local diffusion properties of water molecules, and each voxel
of a DT dataset contains a second-order tensor, expressed as a
3 3 symmetric mathematical matrix, that is positive definite
and varies in orientation and shape across the brain. Thus, spa-
tial normalization of DT datasets requires both that voxels be
displaced to the correct location in the template space (typically
a canonical brain to which the brains of individuals in a study
population are coregistered on a voxel-by-voxel basis) and that
the directional orientation of tensors within the template space
be adjusted to reflect accurately the modified orientation in the
template space of the corresponding fibers in the original image.
In addition, the general shape of each tensor must be maintained
throughout the warping process to avoid erroneously altering
local measurements of diffusivity.

Several methods have been developed to address these
complexities in the warping and spatial normalization of DT
datasets. The finite strain (FS) [4] method calculates the QR-de-
composition (the orthogonal matrix triangularization) [5], [6]
of a locally linear approximation of the displacement field
while maintaining the rotational component that is needed to
reorient the tensor. Another method, preservation of principal
direction (PPD) [4], estimates the reorientation of the tensor at
a particular voxel by examining the spatial transformation of
the tensor along one or two of its principal eigenvectors. The
multiple channel normalization method (MCN) [7], a variant
of the PPD method, simultaneously uses all components of the
tensor while successively updating tensor orientation in the
registration process. Another approach, tensor normalization
[8], employs the AIR coregistration package [9], [10] together
with the PPD tensor reorientation strategy [4]. In addition,
a technique for the nonrigid registration of 3-D tensors [11]
reorients tensors using a Jacobian matrix extracted from the
local deformation field (DF). Finally, a unique normalization
algorithm for DT datasets based on Procrustean Estimation
determines a reorientation matrix statistically for each tensor by
considering the fiber orientation and DF in each voxel within a
small neighborhood around it [12].

All of these methods for spatially normalizing DT datasets
across individuals are based on a forward mapping strategy, in
which point-to-point correspondences across subjects are de-
fined at each grid point (the center of a voxel, where the tensor is
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Fig. 1. Forward and backward mappings. In forward mapping procedures, seams (depicted in the template space with a red “�”) will occur when pixels in the
original imaging space (black dots) are distributed only to their immediately neighboring grid points in the template space (orange dots). Consequently, artifacts
(an example is represented by a blue dot in the figure) will be introduced at locations of a partial seam (e.g., location P1 generates a seam at the grid point of the
blue dot but location P2 does not). In contrast, if backward mapping is used, every discrete location (voxel) in the template space will receive its corresponding
value from a point in the original imaging space. However, this description of backward mapping applies only to scalar images. In DTI, backward mapping alone
is insufficient for warping of tensor maps because of the additional need to reorient the tensors (Fig. 2).

located) by mapping locations from the original imaging space
to locations in a template space, usually no longer at grid points
(Fig. 1). However, forward mapping can generate seams in the
tensor dataset—i.e., areas in the template space where tensor
data are absent because the DF that is used to warp the orig-
inal to the template space has enlarged a region locally within
the original imaging space. Such seams can significantly im-
pair the quality of DTI data by introducing artifacts, as we will
demonstrate. Backward mapping obviates the problem of intro-
ducing seams in the template space by mapping each grid point
in the template space back to a point in the original imaging
space, thereby defining every grid point in the template space
using information interpolated from the original imaging space.
This backward mapping is complete and by definition will in-
troduce no seams into the warped dataset. If the same mapping
could thus be used to warp a DT dataset in the original imaging
space into the template space, seams would be eliminated from
the template space. Backward mapping, however, merely de-
fines correspondences between points in the template space with
those in the original space; it cannot determine how tensors in
the original space should be reoriented in template space, be-
cause that reorientation requires information about the direc-
tional orientation of tensors in the DT dataset existing within
the original imaging space only. By definition, backward map-
ping cannot transfer that information from a DT dataset in the
original imaging space to the template before the normalization
procedure is completed. Thus, any procedure that uses backward
mapping for warping or normalizing DT datasets must include
an additional procedure that adjusts the orientation of tensors in
the template space based on the information about tensor orien-
tation in the original imaging space.

We propose a method of spatial normalization that seamlessly
warps DT datasets using a bijection, a combination of forward
and backward mappings in which the correspondence between
locations in the original imaging space and the template space is
one-to-one. In combination with seamless warping, our method

also uses Procrustean estimation to reorient tensors appropri-
ately in the template space based on local deformation and ori-
entation of the corresponding tensor in the original imaging
space. We demonstrate the effectiveness of our procedure in four
experiments using both simulated and in vivo data.

II. BACKGROUND

A. Forward and Backward Mapping in DTI Datasets

In any coregistration of images, correspondences are estab-
lished between the pixels of an original imaging space and those
of a template imaging space, typically using techniques of either
forward or backward mapping. Backward mapping is usually
the standard operation in coregistering images, because of the
significant and inherent limitations of forward mapping.

Forward mapping requires that values in the original imaging
space are interpolated to be distributed to grid points in the
template space; this distribution may be problematic, however,
when the original and template images are not of similar resolu-
tion or scale, or when the deformation across the imaging spaces
varies nonlinearly. In these instances, seams will occur if the
value of the relocated voxel from the original imaging space is
distributed only to immediately neighboring voxels in the tem-
plate space, leaving some voxels without data (Fig. 1).

Seams can be avoided in forward mapping procedures only
through the application of mapping algorithms that are com-
plex, time-consuming, and relatively difficult to implement. For
example, a mapping algorithm can remedy seams by interpo-
lating to every voxel covered by a deformed voxel in the target
space the value of this voxel carried from the original imaging
space. However, such mapping algorithms may fail to produce
smooth transitions between neighboring voxels and potentially
may create artifacts. Forward mapping is currently only used
in real-time applications when many texels (small regions of
adjacent pixels or voxels in an image) are likely to map to a
single pixel or voxel of the template space, as is the case, for



XU et al.: SEAMLESS WARPING OF DIFFUSION TENSOR FIELDS 287

Fig. 2. Reorientation of a tensor field during warping. (a) Original tissue.
(b) Incorrect warping of tensors (they are merely relocated but not reoriented).
(c) Correct warping of the tensors (they are also appropriately reoriented along
the direction of the nerve fiber).

example, when playing digital video files on a computer screen
[13]. Splatting1 can compensate for seams in this type of image
that are caused by mismatches in sampling densities; splatting,
however, requires so-called “footprint”2 calculations [14],
which are time-demanding and labor-intensive. In contrast,
backward mapping generates warped images by finding a value
in the original imaging space for each voxel (i.e., at each grid
point) of the template space, thereby avoiding the creation of
seams when the original image is warped to the template. Thus,
backward mapping has become the preferred method for image
coregistration and for almost all types of deformation of scalar
images (e.g., warping, morphing, and texture mapping).

Unlike scalar images, however, DT datasets contain in their
tensors high-dimensional information about the diffusivity of
water. Thus, the warping of DT datasets requires not only deter-
mining the correct correspondence between voxels in the orig-
inal and template imaging spaces, but also the avoiding of seams
and the geometrically appropriate reorientation of tensors at
each voxel in the template space, a reorientation that is based
on the geometric orientation of tensors locally within the orig-
inal imaging space (Fig. 2). Reorienting tensors in this way will
permit more accurate and more valid fiber tracking within the
warped image in the template space. Backward mapping allows
for the seamless displacement of voxels, but it does not in it-
self provide a means for reorienting tensors appropriately in the
template space, as we discuss in more detail below. To meet
the requirements for both seamless warping and the appropriate
reorientation of tensors, we therefore combine backward and
forward mapping to create a bijection, ensuring that the corre-
spondence between voxels across the images is constrained to
be one-to-one in both directions. Thus, the backward mapping
aspect of the bijection provides a seamless displacement of ten-
sors, whereas its forward mapping aspect provides information
necessary for an accurate reorientation of tensors in the tem-

1Splatting: A method of image rendering in which the final image is gener-
ated by computing for each voxel in the volume dataset its contribution to the
final image. The algorithm works by virtually “throwing” the voxels onto the
imaging plane or volume. In this process, every voxel in the object space leaves
a “footprint” in the imaging space that will represent the object.

2Footprint: In a splatting procedure, the footprint defines a scope within which
the effect of a thrown voxel contributes to the resulting image.

Fig. 3. Effect of spatial transformation on tensors. This figure illustrates the
importance of removing the scaling component of a displacement field during
DTI warping in order to preserve the shape of the tensor. (a) Original tissue.
(b) Incorrect warping, in which the overall shape of the tensors is altered be-
cause of the presence of the scaling component within the displacement field.
(c) Correct warping, in which the shape of the tensors has been preserved.

plate space according to their orientation in the original imaging
space.

B. Reorienting Tensors

The correct reorientation of tensors in warped DT datasets,
which is crucially important to the accurate reconstruction of
fiber tracts in the template space, must take into account the
orientation of tensors in the original image together with the
local deformation that is induced through the warping proce-
dure. When normalizing scalar images, the scalar value for each
voxel of the image (e.g., a gray-scale intensity) is simply trans-
ferred to the template space according to a displacement vector,
thereby forming the warped image in the template space. This
approach, however, cannot be used to warp tensor fields (at least,
not without considerable modification) because the application
of displacement vectors alone will erroneously alter the posi-
tion of tensors relative to one another within the warped image
[Fig. 2(a)], with individual tensors no longer reflecting the cor-
rect geometric orientations in local neighborhoods within fiber
tracts [Fig. 2(b)]. Instead, tensors should ideally continue to be
reoriented along the direction of the fiber after warping within
the template space [Fig. 2(c)].

In addition, warping tensors according to the spatial trans-
formation that is calculated between the original and template
spaces will also produce inaccurate results by altering the shape
of individual tensors, thereby also altering measurements of
local diffusivity and distorting inferences concerning tissue
microstructure that are based on those measures of local diffu-
sivity. Consider a simple case of spatial transformation in which
a zoom-in scaling effect visually widens a reconstructed fiber
bundle [Fig. 3(a)]. The tensors will be incorrectly stretched by
direct application of a spatial transformation alone to the image
[Fig. 3(b)], when in fact the actual width of the fiber bundle
(and consequently the local diffusion characteristics and the
tensor’s shape) should not change [Fig. 3(c)].

Moreover, shearing effects during the warping procedure will
introduce a rotational component to a tensor’s warping [4], [15].
This rotational component will appropriately tilt tensors that are
not originally parallel to the applied force (top two rows of ten-
sors in Fig. 4); however, it will leave unchanged those tensors
that are originally aligned parallel to the shearing force (lower
two rows of tensors in Fig. 4). Thus, any strategy used to reorient
tensor fields must account for both the orientation of underlying
fibers in the original imaging space as well as for the effects of
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Fig. 4. Differing tensor orientations prescribe differing rotational effects within the same spatial transformation. Tensor reorientation depends on knowledge both
of the DF that imposes the spatial transformation and the tensor’s orientation in the original imaging space. Shearing force should introduce a rotation that will
affect only tensors that are not parallel to the direction of the shearing force (tensors in the top two rows in this figure). However, applying the rotational component
to all tensors directly, without considering a tensor’s original orientation, will result in tensors being reoriented incorrectly, including those tensors that are parallel
to the shearing force (tensors in the bottom two rows in this figure). (a) Tissue structure in the original imaging space. (b) Correct reorientation during horizontal
shearing. (c) Incorrect reorientation caused by applying the rotational component to all tensors indiscriminately.

local deformation on the orientation. Moreover, using only the
local deformation, without considering the original orientation
of underlying fiber tracts, may generate an inaccurate reorien-
tation of tensors [Fig. 4(c)]. For example, in the nonrigid regis-
tration technique [11], calculating the Jacobian matrix (which is
irrelevant to the orientation of local underlying fibers) and ap-
plying it to the local tensor will reorient the tensor, even if the
tensor should not be reoriented.

One common solution to the problem of tensor reorientation
during spatial normalization is to assume that the orientation of
fibers in the original imaging space runs along the same direc-
tion as the primary eigenvector of the tensor at each voxel, as
would be the case if DT datasets were noise free. This in fact is
the assumption made when using the PPD method of fiber reori-
entation during forward mapping [4]: an affine transformation

is estimated from the DF, and then tensors are reoriented ac-
cording to the rotation produced by the spatial transformation
when applied to the primary eigenvector. The PPD method re-
quires inclusion of the second eigenvector to handle reorienta-
tion of oblate tensors—i.e., tensors in which the first and second
eigenvalues are similar to one another but considerably dissim-
ilar to the third eigenvalue. Although this approach generates
a reasonable first approximation to the correct reorientation of
tensors, it is sensitive to errors in estimating and to noise-in-
duced errors in estimating the primary or secondary eigenvec-
tors of a tensor field.

To address the problem of accurately reorienting tensors
during the spatial normalization of DT datasets, we reorient
tensors using a method based on Procrustean Estimation
[12]. We apply it in combination with a bijection mapping,
which determines a complete set of point-to-point correspon-
dences between the original and template imaging spaces.
Procrustean Estimation accounts for noise by assuming that the
true orientation of underlying fiber tracts follows a statistical
distribution that can be estimated from tensor measurements

in the neighborhood of the voxel under consideration. Accord-
ingly, reorientation of the tensor is determined statistically by
an estimator that identifies the optimal rotation of the tensor
during spatial transformation.

III. METHODS FOR SEAMLESS WARPING OF DT DATASETS

A. Overview

The seamless warping of a DTI dataset using bijection map-
ping comprises two stages of image processing: 1) generation
of a bijection map, which ensures that the bidirectional corre-
spondence between the original and template imaging spaces is
constrained to a one-to-one correspondence between locations
in both imaging spaces and in both mapping directions and 2)
the warping of one DTI dataset into the space of another, which
includes both the relocation and appropriate reorientation of ten-
sors from the original space to the template space.

The general procedures that are involved in bijection mapping
are as follows. We first establish a voxel-wise one-directional
correspondence between the original and template imaging
spaces by coregistering the fractional anisotropy (FA) maps
[16]–[18] for DT datasets in both the original and template
imaging spaces (Fig. 5, Steps 1 and 2). FA maps are scalar im-
ages derived from DTI datasets that represent general indices of
directionally constrained diffusion. We chose to use FA-maps
to establish voxel-wise correspondences between the original
and template imaging spaces because of the wide availability
of algorithms for coregistering scalar-based images. Represen-
tative algorithms include HAMMER [19] and algorithms that
warp scalar images based on the dynamics of fluid-flow [20],
[21]. Moreover, an FA-map, unlike a conventional -weighted
image, always coregisters perfectly with its corresponding
DT dataset, because both the FA map and DT dataset contain
identical geometric distortions of brain morphology; thus a
displacement field derived from a scalar FA-map can be used
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Fig. 5. Overview of the seamless warping procedure for DTI Datasets. A one-directional mapping of correspondences between an original and a template imaging
space (i.e., a DF in either forward or backward direction) is generated based on the FA-maps associated with the DT images in the two imaging spaces. Bijection
map of these correspondences is then generated by reversing the one-directional map. Backward component of the bijection map is subsequently used to determine
the location of the tensors from the original imaging space within the template space. Forward component of the bijection map, in contrast, is used to estimate the
proper directional orientation of the tensor in the template space based on its orientation in the original imaging space. Steps 1–4 constitute the first stage of our
procedure (see Section III), and Steps 5–6 constitute its second stage.

to deform its corresponding DT dataset with high fidelity. The
correspondence map generated by coregistering the FA-maps
of the DT datasets in the original and template spaces therefore
defines a displacement vector at each voxel in one imaging
space that points to a corresponding voxel in the other imaging
space, thus constituting the first DF of the bijection mapping
(Fig. 5, Step 3). We then generate the second DF that
is a reverse mapping of DF (Fig. 5, Step 4). A bijection is thus
created in which the two deformation fields constrain each other
to one-to-one correspondences consistently between voxels in
each of the imaging spaces. The consistency is defined as

, where is a location coordinate, for example,
in the original imaging space.

Finally, we seamlessly warp DT datasets using this derived bi-
jection. The seamless warping itself entails two substeps. 1) We
use the backward mapping component of the bijection mapping
to find a tensor in the original space that corresponds with each
voxel in the template space. We then relocate all tensors in the
original space to the corresponding destinations in the template
space (Fig. 5, Step 5). 2) We use Procrustean Estimation to re-
orient the tensors within the template space based on the known
orientation information of tensors in the original imaging space
and the local DF contained in the forward mapping component
of the bijection mapping (Fig. 5, Step 6).

B. Algorithm for Generating a Bijection Displacement Field

A bijection displacement field combines the displacement
fields of forward and backward mapping. To generate

based on DF, we need to estimate a backward displacement
vector at each grid point in the template space by interpolating
the correspondences defined by DF to all points on the grid.
Linear and B-spline interpolations are well-known methods
for the interpolation of deformation fields. However, linear
interpolation is inappropriate for the highly nonlinear process
of deforming a DT dataset from one imaging space to another.
Moreover, B-spline interpolation is usually most suitable for
interpolating data that are regularly spaced; the sample data
available in the target space that we use to calculate
are not regularly spaced, however, because those sample data
are defined by DF, which is usually highly nonlinear. We
have therefore developed an alternative method for nonlinear
interpolation, which we will now describe.

Suppose we want to calculate the mapping from imaging
space to imaging space at a location in space . If we
have a group of mapping samples at locations in the neigh-
borhood around and if the probability density function (pdf)
of is , then can be computed as follows:

(1)

Given that a one-directional DF ( ): maps locations
from imaging space to imaging space , then for any location
a in , represents a location in that can serve as a map-
ping sample for locations within the neighborhood of .
The DF is generally highly nonlinear; therefore, is usu-
ally not regularly spaced. Because we want the bijection cor-
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respondence to be smooth, and because a neighboring sample
will resemble the true mapping better than will a remote sample,
we estimate the pdf based on the Euclidean distance between
the sample and the location under consideration, with the as-
sumption that the distribution is Gaussian. Thus, for any loca-
tion , the reverse mapping can be obtained as

(2)

where , and are locations, and is the pdf. Notice that
and are in space .

In real digital images, we have only a discrete version of DF,
in which all DF vectors defined on grid points in A map to non-
grid points in B (Fig. 1); however, a reverse must be de-
fined in on grid points as well. Therefore, we compute the
discrete version of the reverse as follows:

(3)

Because DF is highly nonlinear, the neighborhood around some
grid points in space may not receive an adequate number of
samples and thus lack data. We, therefore, use super-sampling
(which will produce a finer image resolution, in contrast to sub-
sampling) to generate closer and more influential samples. The
larger the variation is, the greater the number of voxels in-
cluded in calculating the reverse mapping field. The more voxels
included in the calculation, the smoother the reverse mapping.

C. Procrustean Tensor Reorientation (PTR)

To reorient tensors properly in the template space, we first
must determine the orientation of the underlying fibers in the
original imaging space. We therefore approximate this orienta-
tion statistically based on the primary eigenvectors of tensors
in the vicinity of the voxel of interest. The shape of this neigh-
borhood is also estimated to follow the principal direction of
the fiber tract. This procedure is expressed in pseudo-code as
follows.

PTR 1. Find an image warping transformation for FA
or coregistered -weighted images, using an available
method for warping scalar images, such as HAMMER
[19], fluid-flow based nonlinear deformation [20], [21],
SPM [22], [23], or AIR [24], [25]. Then, to reorient
the diffusion tensor properly at any given voxel, do the
following.
PTR 2. Draw random samples of the fiber direction from a
neighborhood around the given location of interest. These
samples are assumed to follow a pdf that is related to the
underlying fiber direction; they are also assumed to be the
primary eigenvectors of the diffusion tensors in the vicinity
of the voxel of interest.

PTR 3. Adapt the shape of the neighborhood so that it be-
comes elongated along the direction of the samples drawn
in Step PTR 2.
PTR 4. Upon convergence of the shape of the neigh-
borhood, proceed to Step PTR 5; otherwise, go to Step
PTR 2.
PTR 5. Collect all random samples from the neighborhood
and find their new directions after image warping via the
transformation in Step PTR 1.
PTR 6. Estimate the rotation matrix that minimizes the
mean square error between the pairs of directions before
and after image warping in Step PTR 5.
PTR 7. Reorient the diffusion tensor of the voxel of in-
terest according to the estimated rotation matrix in Step
PTR 6.

We now detail the crucial mathematical components of our
procedure for tensor reorientation, including neighborhood es-
timation, calculation of the required rotation for proper direc-
tional reorientation, and sample weighting.

Estimating the Rotation Matrix: If we assume the absence of
noise in the tensor measurements, finding a rotation matrix
that maps the principal direction (PD) of the tensor at a partic-
ular location to its deformed configuration by the displacement
field is relatively straightforward. Let be the coordinates of
a given voxel. Let be the corresponding tensor that is mea-
sured at that location. Assume that the orientation of the under-
lying fiber that passes through is known and is represented
by a unit vector . By applying the warping transformation, the
vector is mapped to a new vector, which is then normalized
to be a vector ’ with unit magnitude. The rotation of to ’
is represented by a unitary matrix that is then applied to

, reorienting it to . Note that the shape of
the tensor does not change; rather, its eigenvectors are simply
rotated by .

In real imaging datasets, of course, we do not know the true
orientation of the underlying fibers. Rather, the PD of a tensor is
a noisy, probabilistic observation of a fiber’s direction. Assume
temporarily, however, that we do know the pdf of the orientation
of the fiber tract in the neighborhood of a particular voxel. Then
we can perform random samplings of this distribution, each time
generating a vector . For each such vector at location , its
deformed configuration v’ is determined by a straightforward
application of the displacement field to the vector and then nor-
malization of the resulting vector ,
where is the displacement field obtained through Step PTR 1,
and is a small constant that enforces local sampling. This pro-
cedure yields a number of orientations and their respective de-
formed configurations. The rotation matrix that best fits this set
of measurements is then determined.

Next, suppose that we know the pdf of the vector , which
is denoted by . Then we seek the matrix that minimizes
the following expression:

(4)

where denotes the expected value of its argument. An es-
timator for the rotation matrix (ERM) at location is deter-
mined as follows.
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ERM 1: Perform samplings of the pdf , thereby gen-
erating a number of unit vectors ; arrange the vectors
to form the columns of a matrix .
(N.B. The true pdf is actually unknown. See subsection
“neighborhood sampling strategy” below for details on
processing the pdf and resampling).
ERM 2: Find the configuration for each sample, , after
applying the displacement field, and normalize it to a unit
length vector, . Use these vectors to form the columns of
another matrix .
ERM 3: Compute the transformation matrix U so that
minimizes

The well-known solution to this problem is called Procrustean
Estimation [5], a term originating from the Procrustes fitting
procedure, which minimizes differences in size, location, and
orientation across structured entities. Here, can be obtained
from operations on two matrices, and , that are components
of the singular value decomposition (SVD) of

(5)

(6)

This expression minimizes the following:

(7)

where is the singular value of matrix . The
effect of Procrustean Estimation can be interpreted as the ap-
proximate rotational transformation that minimizes the differ-
ences between point coordinate-pairs in and . When we
use normalized vectors to form and , all samples contribute
equally in Procrustean Estimation. This estimation always pro-
duces a pure rotation. Thus, in summary, if a statistical repre-
sentation of the orientation of an underlying fiber tract is known
through , then the matrix can be determined statistically.

is the matrix that best approximates the rotational
component of the displacement field along the direction implied
by .

Neighborhood Sampling Strategy: Because in practice the pdf
of tensor measurements at each voxel is unknown, we consider
a small neighborhood around location from which we
draw samples of the vector . We assume that if the neighbor-
hood is relatively small around , and if the direction of
the underlying fiber remains approximately constant, then any
variations of the samples in the direction of the primary eigen-
vector measured at points within reflect the variations im-
plied by . As one option for generating random samples of

drawn from , we could attempt to estimate from
samples obtained from by assuming the presence of a
Gaussian or similar stochastic distribution, and then applying a
random sampling procedure to generate a large number of rep-
resentative samples, as described in Step ERM 1. This method,
however, depends on an arbitrary and likely invalid assumption
of the distribution of vectors in the neighborhood of . Random
sampling that involves a large number of voxels across an image
would also be excessively time-consuming.

As an alternative, we can directly use the samples in
in Step ERM 1, thus eliminating the weakness of assuming a
specific statistical distribution of the samples. In this case, the
samples from effectively replace the pdf ; (4) now
becomes

(8)

We have assumed that the samples in follow ;
therefore, should not include heterogeneous regions or
differently oriented fibers, because this would violate our as-
sumption that is approximately constant within . Be-
cause white matter fiber bundles are physically thin, elongated
structures, we propose using an ellipsoidal neighborhood whose
precise shape is dictated by the shape of the tensor field in the
neighborhood around . The neighborhood for sampling (NFS)
is determined according to the following iterative procedure:

NFS 1: Select a value, , for the volume of the neighbor-
hood from which samples are drawn.
NFS 2: Determine the ellipsoidal neighborhood, ,
around that has the same volume , axis ratio, and ori-
entation as the tensor at .
NFS 3: Calculate the average tensor, , of the tensors
within .
NFS 4: Keeping the same volume , update the ellipsoidal
neighborhood, , at , with the same axis ratio, and
orientation as those of the tensor .
NFS 5: If the change in shape of the is lower than
a previously specified threshold, terminate the iteration;
otherwise, go to Step NFS 3.

The volume of the ellipsoidal neighborhood and the resam-
pling density are held constant during this procedure to ensure
that the same number of samples of the vector is used for each
voxel in the image.
Weighted Procrustean Estimation: So far we have assumed that
all samples drawn from are weighted equally, and we have
used equally weighted samples as a first approximation in the
experiments reported in this paper. However, using a weighted
sum (i.e., an integral) in (8) may be desirable for two reasons.
First, vectors that are drawn from a location farther away
from are more likely to belong to a slightly differing distribu-
tion , depending on the variability of curvature in the fiber
tract. Second, the ratios of the eigenvalues associated with the
measured vectors represent confidence in the directionality
of the vectors, and vice versa. Voxels that have higher diffu-
sion anisotropy support a more reliable estimation of the orien-
tation of the major tensor; for example, samples drawn from thin
and elongated ellipsoids should be weighted more than samples
drawn from relatively shorter and rounder ellipsoids.

Extending the algorithm using weighted sums is straightfor-
ward, in that it changes (8) to

(9)
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where FA is fractional anisotropy and is the distance from the
sample to the location under consideration. In this case,
rather than forms the columns of matrix , and ’ rather
than ’ forms the columns of matrix . As long as the vectors
of the corresponding columns in both matrices are of the same
weighted length, this extended Procrustean Estimation produces
a rotation that operates the same as discussed previously.
Longer vectors, however, will influence the estimate to a rel-
atively greater degree.

D. Warping the DT Dataset and Reorienting the Second PD
of a DT

We first use backward mapping to determine for each voxel
in the template space a corresponding voxel in the space

of the original image. However, is usually not located at
a grid location, and therefore to calculate tensor at ,
we either interpolate neighboring tensors or we interpolate the
raw diffusion-weighted images from which the tensors are esti-
mated. The displacement field defines where the tensor should
be relocated, and our reorientation algorithm then decides how
to rotate the tensor correctly, based on the tensor’s original ori-
entation using the forward mapping component of the bijection.

Until now, our discussion of tensor reorientation has focused
on the first principal direction, , of a given tensor. However,
reorienting the alone may not produce a correct reorienta-
tion of the second PD . Thus, the reorientation for
must be estimated as well. Because the three PDs of a tensor
span an orthogonal space, we calculate the reorientation of the

only on a plane that is perpendicular to the reoriented
. Suppose is the rotation matrix corresponding to .

We denote as the projection of vector on , and
’ the projection of the displaced on . For computing

the rotation matrix corresponding to , we use and
’ as the components to form the columns of and in

Steps ERM 1 and ERM 2, respectively. Thus, rotates the
tensor along the axis , in which is
the reorientation matrix that we are trying to identify. In this
way, both the first and second PDs, and consequently the third
PD, are appropriately reoriented. This strategy is similar to that
used in the PPD method previously discussed [4], except that
Procrustean Estimation is employed.

IV. EXPERIMENTS AND RESULTS

We designed four experiments to assess the effectiveness of
our algorithms for seamless warping. In the first experiment, we
measured the accuracy of our algorithm for generating bijection
displacement fields. In the second experiment, we used simu-
lated datasets to show that our DTI warping procedure seam-
lessly warps tensor fields while appropriately positioning and
reorienting all tensors. In addition, we showed that artifacts nor-
mally caused by seams were likewise removed. In the third ex-
periment, we compared results from the warping of images of
phantoms using our bijectional mapping algorithm with results
using forward mapping alone. In the fourth experiment, we used
in vivo datasets to assess whether our seamless DTI warping al-
gorithm has any advantages over the DTI warping algorithms

that use only forward mapping. In this head-to-head compar-
ison, we conclude that our algorithm fulfills the goals of seam-
less warping and produces a better image quality by eliminating
artifacts caused by seams.

A. Experiment 1

Experimental Design: Using a collection of 54 one-di-
rectional deformation fields (

resolutions mm ), we first constructed 54
bijections and then tested the consistency of the two-directional
components (both forward and backward) of the bijection.
In this experiment, we were only concerned with assessing
whether our algorithm could generate bijections based on
one-directional mappings. We were not concerned with how
the deformation fields were generated or on what subject
populations they were tested. We therefore selected the largest
dataset of deformation fields that we had collected to date to
provide the greatest statistical power for testing the mentioned
consistency. These 54 deformation fields were generated using
a nonlinear deformation algorithm based on fluid flow [20],
[21], described in a previous study [26]; the entire sample
contained 55 subjects, with the dataset from one healthy subject
selected randomly as the template for spatial normalization.
The first stage of the proposed seamless warping algorithm
[i.e., (3)], was applied to generate the bijection version of the
mapping fields. To measure the consistency of correspondence
of these bidirectional maps, we compared the coordinates
of each voxel with ) and calculated
the average errors and standard deviations of spatial corre-
spondence based on: . To
simplify the procedure of generating bijection for applications
in this real-world dataset, we used mm and repeated the
procedure for generating bidirectional maps at 1, 2, and 3 levels
of super-sampling, corresponding to the insertion of 0, 1, and,
2 samples between neighboring displacement vectors in DF at
the original resolution.
Results: The average error of our bidirectional map was approx-
imately 0.07 mm (Fig. 6). Our results show that super-sampling
increases the accuracy and decreases the variability in esti-
mating the bijection, especially when estimating at locations
where the magnitude of deformations has been extreme. It is
important to note, however, that although the average error and
variability decreased slightly at higher levels of super-sampling,
the computational cost of increasing the level of super-sam-
pling increased exponentially. In our dataset, we found that
the cost-benefit trade-off of accuracy versus computational
demands was optimal at a super-sampling level of 2. Run-
ning on a SUN Solaris workstation with one 900 MHZ CPU,
the generation of a bijection for a DF having dimensions of
256 256 80 voxels required approximately 45 min at a
super-sampling level of 1 and 185 min at a level of 2.

B. Experiment 2

Experimental Design: We used simulated datasets to demon-
strate the effectiveness of our algorithm for producing seamless
and correctly reoriented tensor datasets. We tested its ability to
produce artifact-free results compared with DTI warpings that
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Fig. 6. Measurement of the consistency of bidirectional mapping. This figure shows the average error and standard deviation of our algorithm for generating
bijections. Level of super-sampling refers to the number of new samples to be inserted between two neighboring mapping vectors in the DF at the original level of
resolution.

use forward mapping. We synthesized a 3-D DT dataset con-
taining four bundles of fibers running horizontally, vertically,
or perpendicular to the field of view [Fig. 7(a)]. Tensors were
defined as having eigenvalues 0.5, 0.3, 0.05, and consequently

[16], [17]. The first and second principal direc-
tions of the tensor field in the original space were color-coded
using the common schema of mapping horizontal to red, ver-
tical to green, and perpendicular to blue [Figs. 7(a) and (b)].
We also displayed the vector view of the principal directions of
the tensor field [Fig. 7(c)]. We warped this tensor image using
the displacement field of a vortex, in which the rotational dis-
placement was least in the center of the image and progressively
greater toward its perimeter [Fig. 7(d)]. We applied our algo-
rithm of seamless warping using bijection mapping. Then we re-
peated these procedures using conventional DTI warping based
on forward mapping.

We quantified differences in these warped datasets by com-
paring their signal-to-noise ratios (SNRs). We first generated
and then warped the scalar FA-map of the original tensor field
using the vortex DF. This warped FA-map was taken as
ground truth for signal reference in the foreground and back-
ground of the dataset. To examine closely how the magnitude
of the deformation affected signal-to-noise ratio (SNR), we cal-
culated SNR in varying bands of the determinant value of the
Jacobian matrix for the DF by masking the image with differing
thresholds in which was constrained by in the DF.
As is well known, should always be positive for topology-pre-
served warping, which was the case in this simulation.
indicates local contraction; indicates neither contraction
nor expansion; and indicates local expansion.
Results: The direction of displacement in the vortex field obvi-
ously was not parallel to the orientation of the underlying tissue.

Therefore, virtually every tensor (except at the central point of
the image) experienced a shearing force that was not parallel to
its original orientation. The vortex DF should therefore have de-
formed each of the four fibers and appropriately reoriented their
tensors. Color maps [Fig. 7(e) and (f)] demonstrated that the
extracted and of each tensor in the warped field were
appropriately reoriented using our method, in that the ’s
followed the orientations of the deformed fibers and the ’s
were simultaneously correctly rotated. In Fig. 7, the circum-
stances for Fiber 4 differed somewhat from those of the other
fibers because this particular fiber received rotational forces but
no shearing along its vectors. Therefore, its was ro-
tated along its and thus was not reoriented by the forces and
by our algorithm, whereas its was reoriented. In contrast,
compared with the of the DT dataset warped using forward
mapping [Fig. 7(g)], the warped image contained seams in lo-
cations where the deformation was relatively extreme [Fig. 7(g)
inset], even though the tensors were mostly relocated and re-
oriented properly. A vector view of the of the deformed
tensor field [Fig. 7(h)] shows more intuitively how the tensors
were correctly repositioned and reoriented. In central portions
of the image [Fig. 7(e) and (f)] where the displacement was min-
imal and of similar in magnitude across voxels, the structure of
the warped tensor field changed only slightly from the original
image. The thickness of the synthesized fibers changed appro-
priately according to the degree of local stretching that was im-
posed by the displacement field.

Whereas the SNR of the warped image generated with our
bijectional map for simulated data was perfect ,
the SNR based on forward mapping alone dropped rapidly from
87.7 to 3.0 (for ) and then
monotonically to 0.6 (for ) (Fig. 8). The SNR
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Fig. 7. Improvement in fiber reorientation and removal of seams in a simulated dataset. (a) and (b) Color maps of the first two PDs, PD1 and PD2, of tensors in
the simulated dataset. Red = horizontal orientation; green = vertical orientation; blue = orientation perpendicular to the plane of viewing. (c) Vector view of
the PD1 of the tensors. (d) Depicts the vortex-like displacement field that was applied to the simulated dataset; the yellow rectangle is a reference that represents
the size of the simulated, original imaging space. (e) and (f) Color maps of PD1 and PD2 of the warped dataset in the template space that was constructed using
our bijection seamless warping. Every voxel in the warped image is properly defined. (g) Counterpart of (e) that was produced by warping the DTI dataset using
forward mapping. Here, seams appear (see inset) at locations of extreme local deformation. (h)Vector view of PD1 of the deformed DT field. (X, Y, and Z denote
the coordinate system).

showed a significant transition from to and then
kept declining as grew larger. Because we used in our simu-
lation a unified tensor with and tested SNR on the
resulting FA maps, the decrease in SNR indicated a decrease in
average FA, suggesting the degradation of tensors when warping
uses a forward mapping strategy.

C. Experiment 3

Experimental Design: We constructed a phantom to measure
how accurately fiber tracts can be recovered after normalization
using our seamless warping algorithm compared with a con-
ventional forward-mapping one. We synthesized five datasets,
each of which included a realistic 3-D tensor field and a real
3-D -weighted image. The 3-D -weighted images are only
used as geometrical references for their realistic anatomy in
the process of synthesizing the corresponding DT datasets. We
first randomly selected from our larger morphometric database
one -weighted image that served as a template. We manu-
ally drew a number of curves in this image, simulating two
major fiber bundles crossing through the corpus callosum to
the opposite hemisphere. We then randomly selected from our
database five additional brains with varying morphology. Using
the elastic warping algorithm STAR [27], guided in part by
a number of manually drawn sulcal curves [28], we warped
the template to five different configurations reflecting the cor-
tical and subcortical anatomy of the five brains. We also spa-

tially transformed the curves representing fibers of the corpus
callosum using the same transformation. (We transformed the
mathematical expression of the graphical curves but not the
image voxels underlined by the curves, so that no seams would
be generated in this preparatory step.) We thereby generated
five synthetic brains with differing realistic anatomies and fiber
tracts. These synthetic brains differed from one another in gen-
eral shape as well as in local features, such as the morphology
of their gyri, sulci, and cerebral ventricles.

Based on the five -weighted brains and their coregistered,
simulated fiber tracts, we subsequently synthesized five corre-
sponding tensor fields in the presence of random noise. Because
the direction of the synthesized fibers was known, the tensor
field was generated by taking the known orientation of the fibers
as one of the eigenvectors having a corresponding eigenvalue
of 1.0 and randomly selecting the other two orthogonal direc-
tions that had less prominent eigenvalues of 0.2 and 0.1, corre-
sponding to an FA value equal to 0.834 [16], [17].

Within the remaining volume of each brain, we defined
tensors that were nearly isotropic

. For regions outside of the brain, tensors
were defined as zero. FA values in both of these nonfiber regions
were thus very close (0.0117) to or equal to 0. We then reversely
calculated the attenuation ratio of the diffusion-weighted signal
to simulate measurements obtained from living brains in an
MRI scanner. Gaussian additive noise was then superimposed
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and the tensors were reconstructed. The shapes of the noise-su-
perimposed tensors thus could range from prolate to spherical,
and consequently their FA values could range from 0.0 to 1.0.

Based on the theory of DTI [29], [30], we reversed the process
of DTI reconstruction to simulate noise (SN) in raw imaging
data and subsequently in tensors as follows.

SN 1 Select a set of directions,
, that are evenly distributed in 3-D space.

These will serve as the directions along which the diffu-
sion-weighted (DW) images are measured.
SN 2 Recover the attenuation ratio of DW measurements
along each selected direction .
For each noise-free tensor , calculate every
along the th direction.

where is the -value and is the gradient direction
vector.
SN 3 Add to a noise component having a Gaussian
distribution of

.
SN 4 Reconstruct the ’s to a noise-su-
perimposed tensor using linear regression.

After noise was added, tensors in the brain that were origi-
nally nonzero became degraded (usually a tensor’s FA was low-
ered and its orientation was modified), whereas regions outside
the brain were replaced by noise-superimposed tensors that had
random orientations and FA values. We then normalized the five
simulated DT datasets to the selected template with displace-
ment fields that were generated by HAMMER [19] based on the
warping and coregistration of their corresponding T1-weighted
images (HAMMER was used for this purpose simply because
it is a readily available and accurate tool for the normalization
of scalar images). By averaging across the corresponding ten-
sors in each volume, we obtained the average tensor field. Note
that here we used T1-weighted images instead of an FA-map
for generating the displacement fields for spatial normalization,
because the DT datasets were simulated based on the anatomy
of T1-weighted images; they therefore were perfectly coregis-
tered. Also note that we intentionally used STAR for data prepa-
ration and HAMMER for normalization, so that registration er-
rors would not likely be covered by the same algorithm, thereby
making our experiment more valid.

To measure the deviation of warped fibers, we calculated the
voxel-wise difference in orientation of the PD between the tem-
plate and the average PD across the five brains warped into the
template space. Because PD and -PD represent the same orien-
tation of the primary direction of the diffusion tensor, the de-
viation at each voxel was measured within the range (0 , 90 ).
We repeated this calculation of PD differences using forward
mapping procedures for the reorienting of tensors. We compared
the differences in PDs of the tensors using the proposed seam-
less warping with the differences in PDs using forward warping
alone in order to determine whether our method of reorientation
offered an improvement over the conventional approach to DTI
warping.
Results: When simulating noise, we used 6 spatial directions
[31] evenly distributed in 3-D space (algorithm steps SN 1
SN 4). Table I shows that in fiber bundles (excluding tensors

that lie on the boundary between heterogeneous tissues types),
the average variance of the PD generated from forward map-
ping is 5.70 . Although this value already is quite small, our
seamless warping procedure managed to reduce PD variance
by 26.0%. When taking into account the boundaries of warped
fibers where partial volume and some interpolations between
well-defined fibers and undefined regions already introduced er-
rors, improvement was approximately 9.8%. The results show
that our proposed seamless DTI warping algorithm substantially
outperformed the forward mapping algorithm with Procrustean
estimation, which itself was already quite robust.

D. Experiment 4

Experimental Design: We demonstrate here the effectiveness
of our seamless warping algorithm using in vivo datasets from
13 healthy human subjects. After subjects provided written
informed consent, they were scanned on a Phillips 3T MRI
scanner using a single-shot EPI sequence with the SENSE par-
allel imaging scheme: SENSitivity Encoding, SENSE reduction
factor , imaging matrix 96 96, FOV 240 240 mm,
nominal resolution 2.5 mm, zero-filled to a 256 256; axial
slices thickness 2.5 mm parallel to the anterior–posterior com-
missure line; total 50–55 slices whole brain coverage without
gaps. Diffusion weighting was encoded along 30 independent
directions and the -value 700 s/mm . Five additional images
with minimal diffusion weighting ( s/mm ) were also
acquired with gradient applied along slice-direction. The scan-
ning time of a single dataset took 20–25 min.

The raw diffusion-weighted images were first realigned using
AIR [32], [33] to remove motion that occurred during the scan.
Subsequently, all individual images were visually inspected to
discard slices that contained motion artifact, after which the re-
maining images were added for each slice. Because the DWI
data have only minimal distortion around the sinuses [12], no
distortion corrections were necessary. The pixel intensities of
the multiple diffusion-weighted images were then fitted to ob-
tain the six elements of the diffusion tensor.

We selected one subject randomly from this pool of 13 sub-
jects as a template, and then calculated the DF from the dataset
for each subject to the template space using HAMMER [19]
applied to their FA-maps. We then used a forward mapping
strategy and our bijection approach to warp data from each in-
dividual subject to the template brain. Thus, we obtained two
sets of warping for all 13 subjects coregistered in the common
template space.
Results Fig. 9 shows a typical slice of the warped dataset from
one representative subject using the forward mapping strategy
[Fig. 9(a)] or our bijection approach [Fig. 9(b)]. Although the
two color maps are similar in general, artifacts caused by seams
(described in Fig. 1) at several locations for forward mapping
do not appear in the bijection-derived map. We attribute such
artifacts mainly to the seams generated by forward mapping.
Similar artifacts occurred throughout the imaging volume.

Fig. 10(a) shows the PD color map of the average of all 13
datasets normalized using our bijection warping strategy. The
blue fiber bundles, which indicate fiber pathways running in
the inferior-superior direction within the posterior limb of the
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Fig. 8. SNR with forward mapping. SNR drops significantly at expanded locations, where the determinant of the Jacobian matrix of local deformation is greater
than 1.0. In contrast, the corresponding SNR with bijection warping remained at +8 (not shown).

TABLE I
COMPARISON OF PD VARIANCE USING FORWARD AND

SEAMLESS BACKWARD DTI WARPING

Fig. 9. Differences between forward and bijection mappings in in vivo datasets.
Left: PD colormap of a warped DTI dataset, generated with forward mapping.
Zig-zag shaped artifacts (in the yellow ellipse) and the blurring artifacts (in the
yellow circle) are caused by seams. Right: PD color map of the same subject
generated with bijection mapping. Note the absence of the artifacts.

internal capsule, are brighter and more clearly delineated than
are those generated by forward mapping [Fig. 10(b)]. Conse-
quently, fiber tracking on these structures was, therefore, easier
and more robust [Fig. 10(c)]. Finally, the average error for the
12 bijections generated for this experiment was consistently
0.093–0.097 mm, with a standard deviation at 0.17 mm.

V. DISCUSSION

We have proposed a method for warping DT datasets that
uses a bijection DF along with Procrustean Estimation to re-
orient tensors appropriately in a template imaging space. By
combining forward and backward mapping under the constraint
of consistency (see Section III-A), our method achieved seam-
less warping and proper geometric reorientation of tensors in
the warped template space using information about the local de-
formation and geometric orientation of tensors in the original
imaging space. Moreover, our method generated reverse defor-
mation fields with a high degree of accuracy. We demonstrated
that the bijection map generated using this algorithm is a con-
sistent one-to-one map (as defined quantitatively in Section III),
having an average error of less than 0.1 mm between the for-
ward and backward mapping components of the bijection. We
also found that using a level of detail of 2 in super-sampling is
optimal in terms of the cost-benefit trade-off of accuracy versus
computational demands, in that more extensive super-sampling
provides only slightly better mapping accuracy but with expo-
nentially increasing computational demands. Nevertheless, in
areas of extreme deformation, a higher level of super-sampling
may be needed to achieve better accuracy, and in these instances,
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Fig. 10. Averaged DTI dataset from 13 subjects using bijection warping. (a) PD colormap (using the same color schema as in Fig. 7) of a single axial slice in
the averaged tensor map. Blue fiber bundles (arrows) are exquisitely sharp, allowing easy fiber tracking. Fibers on the left (L-Fiber) or right (R-Fiber) side of the
image are tracked in (c) using these two blue strips as seed points. (b) Close-up comparison of the blue strips in (a) for the averaged results using a warping based
on forward mapping (upper panel) and a warping based on bijection mapping (lower panel). Although the two views look similar, subtle differences can be found:
the blue strips at the arrows in the upper panel are thicker and fuzzier compared with the same blue strips in the lower panel, representing a less distinct delineation
of fiber bundles; in addition, the boundary of the reddish region in the yellow dotted loop is sharper in the lower panel than is the same region in the upper panel,
again showing a clearer delineation of tissue organization. Both indicate that the bijection warping method preserves signal better than forward mapping does.
(c) Tracked fibers are embedded in a triplanar view of the color map of average PDs in the template space. Note that the colors of the two reconstructed fiber
bundles (red and green) do not carry directional information, but are used purely for the purposes of identifying the two fiber bundles. This is a left dorsal anterior
perspective (viewed from the left, above the forehead). The reconstructed fiber bundles track to the dorsum of the brain in the region of premotor and sensorimotor
cortices. CC=corpus callosum; L-Fiber=fiber tracts in the left hemisphere; R-Fiber = fiber tracts in the right hemisphere.

adaptive super-sampling that is based on the magnitude of defor-
mation may be desirable for generating a more accurate bijec-
tion mapping. Finally, although throughout this paper we have
presumed that the bijection is initiated using a forward mapping,
the bijection can be initiated with a backward mapping as well.

Using FA measurements as indices of tensor morphology, we
have demonstrated that seamless warping of DT datasets using
bijection robustly preserves tensor morphology. In contrast, we
also demonstrated quantitatively that when using forward map-
ping, the SNR of DT datasets decreased significantly at loca-
tions of extreme deformation , thereby creating seams
and consequently artifacts (Fig. 9).

We used Procrustean Estimation to estimate tensor rotation
instead of directly averaging their PDs. Although Procrustean
Estimation may appear more complex than other methods for
estimating rotation, it is actually quite elegant mathematically
and computationally efficient. By comparison, averaging tensor
orientations based on their PDs to estimate tensor rotation is
much more complicated, because many more orientations are
considered within a given neighborhood. This is the case be-
cause both of the eigenvectors and represent the same ori-
entation, and thus both and are reasonable
and meaningful average orientations of and . Procrustean
Estimation, on the other hand, essentially calculates the rota-
tion that minimizes, in terms of least-squares, the differences
of corresponding coordinate pairs, and these differences are ro-
tation-invariant. Therefore, whereas the coordinates entered in
matrixes and (in algorithm ERM) are relative positions de-
rived from PD vectors, Procrustean Estimation is free from the
dilemma of interpolating orientations.

A central and long standing issue in the processing of DT
datasets has been the technical difficulty of achieving an accu-
rate normalization of images from this modality alone. Normal-
ization of DT datasets before generating FA maps, fiber tracts,

PD color maps, and other measurements derived from DT data
is more efficient than performing normalization on these mea-
surements after these measures are generated because, without
an initial normalization, each set of measurements must be nor-
malized individually to the template space. In contrast, if all DT
datasets are first normalized to a template space, all of these
measurements can then be derived directly in the template space
and therefore do not require spatial normalization individually.
Thus, normalizing DT datasets first, before generating measure-
ments derived from DT data, drastically reduces the number of
times that normalization must be performed (as well as elimi-
nating the duplication of data and need for additional storage
space that are required in order to normalize each set of mea-
surements separately).

Despite these considerable advantages of spatial normaliza-
tion prior to calculation of derivative measures, investigators
sometimes choose the less efficient of these two options be-
cause of the known technical difficulty of accurately normal-
izing datasets that contain high-dimensional information. In-
deed a common practice is to normalize each set of derived mea-
sures (e.g., FA maps, fiber tracts) without normalizing the DT
datasets themselves (although even this approach is challenging,
in that the derived measurements may also contain high-dimen-
sional information that makes them difficult to normalize). Our
algorithm addresses these various problems and challenges by
providing a means for normalizing DT datasets more accurately
prior to calculation of derivative measures.

Our seamless warping procedure in principle makes possible
the accurate interpolation of tensors because of its use of bijec-
tion (see Section III-D). In general, interpolating DWI data and
then calculating a new tensor based on those data is the most pre-
cise way to interpolate a tensor. However, because this method
requires the use of all raw DW data for interpolating tensors, raw
DW data must either be saved or recovered, the latter being com-
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putationally demanding (e.g., the Stejskal equation [34] can be
applied in reverse to tensors, the calculated baseline image,
and gradient directions in order to recover DWI data, similar
to our approach in the Procedure SN, as described in Section
IV-C). Moreover, conventional DTI warping typically uses for-
ward mapping procedures that require interpolation of tensors
in the target space. DWI data, however, are usually not readily
available for interpolation in the target space, the methods for in-
terpolating tensors directly in the target space are computation-
ally demanding, and their accuracy is questionable. Our method
for seamless warping, in contrast, accurately interpolates ten-
sors in the original space because the backward mapping com-
ponent in the bijection allows convenient access to the raw DWI
data in the original imaging space, thereby allowing for the ef-
ficient and accurate interpolation of DWI data.

In our experiments, we used trilinear interpolation of tensor
components for tensor interpolation, because we found that the
slight gain in accuracy obtained from interpolating DWI data in
the original space did not justify its additional expense of data
management and computation. Use of trilinear interpolation is
justified because DTI data usually do not change significantly
within a small neighborhood (particularly not within the dis-
tance of the single voxel over which we interpolated). Linear
interpolation of tensors thus provides a very nice and efficient
approximation of the true values of tensors reconstructed from
interpolated DWI data, and for these reasons it is the method
most commonly used for tensor interpolation.

VI. CONCLUSION

Techniques that have been widely used to normalize scalar
images to a template have been difficult to extend to DTI
datasets. The greatest impediments to spatial normalization
of DTI datasets have been the two-fold challenge of avoiding
the introduction of seams (and thereby artifacts) into the tem-
plate space while reorienting tensors in a way that preserves
both their morphology and the integrity of underlying fiber
tracts as identified in the original imaging space. Our seamless
warping algorithm using bijection combined with Procrustean
Estimation has successfully overcome these difficulties. DT
datasets contain high-dimensional measurements of diffusivity
that must be preserved during the warping procedure because
they reflect the local structure of biological tissues. Thus any
technique for spatial normalization that is extended from the
domain of traditional scalar imaging to DTI likely requires
careful and substantial modification to ensure preservation
of that biologically relevant information. Indeed, this same
cautionary note applies to the extension of scalar techniques
to any MRI modality other than anatomical imaging. Future
work should develop similar valid and robust algorithms for the
processing and analysis of data from multiple MRI modalities
within a spatially normalized template.
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