
High Throughput Heavy Hitter Aggregation

Orestis Polychroniou
Department of Computer Science

Columbia University

orestis@cs.columbia.edu

Kenneth A. Ross
Department of Computer Science

Columbia University

kar@cs.columbia.edu ∗

ABSTRACT
Heavy hitters are data items that occur at high frequency
in a data set. Heavy hitters are among the most important
items for an organization to summarize and understand dur-
ing analytical processing. In data sets with sufficient skew,
the number of heavy hitters can be relatively small. We
take advantage of this small footprint to compute aggregate
functions for the heavy hitters in fast cache memory.

We design cache-resident, shared-nothing structures that
hold only the most frequent elements from the table. Our
approach works in three phases. It first samples and picks
heavy hitter candidates. It then builds a hash table and
computes the exact aggregates of these candidates. Finally,
if necessary, a validation step identifies the true heavy hitters
from among the candidates based on the query specification.

We identify trade-offs between the hash table capacity and
performance. Capacity determines how many candidates
can be aggregated. We optimize performance by the use of
perfect hashing and SIMD instructions. SIMD instructions
are utilized in novel ways to minimize cache accesses, be-
yond simple vectorized operations. We use bucketized and
cuckoo hash tables to increase capacity, to adapt to different
datasets and query constraints.

The performance of our method is an order of magnitude
faster than in-memory aggregation over a complete set of
items if those items cannot be cache resident. Even for item
sets that are cache resident, our SIMD techniques enable
significant performance improvements over previous work.

1. INTRODUCTION
Databases allow users to process vast amounts of data.

Nevertheless, due to the limitations of human perception,
the conclusions we draw from this volume of information
are often summarized in a few words or charts. One way to
narrow down the volume of information presented is to focus
on the most important items among those being analyzed.

∗This work was supported by NSF grants IIS-0915956 and
IIS-1049898.

One measure of importance is the total contribution an
item makes to the whole. Items that contribute the most
are called heavy hitters. Heavy hitters can be defined in
terms of item counts, or in terms of other measures such
as total sales. They may be defined in absolute terms (e.g.,
items occuring more than 1% of the time) or in relative terms
(e.g., the top 100 items). In many real-world datasets, skew
in the data distribution means that aggregate data about a
small number of heavy hitters convey a lot of information.
Our goal is to identify the heavy hitters and calculate exact
aggregates (count, sum, etc.) for those elements.

Now that systems with very large main memories are
available, the performance bottleneck has shifted from I/O
to CPU and memory [15]. Modern commodity processors
are multi-core systems. Parallelism and the ability to scale
to many execution units have become primary performance
considerations. Many database algorithms have been re-
designed in the context of in-memory multicore platforms
[2, 5]. With such issues in mind, we focus on parallel com-
putation of heavy hitters from a memory-resident dataset.

Recent work on in-memory aggregation has shown that
sharing a common aggregation data structure among many
cores is a bad idea when there are heavy hitters [6]. Con-
tention for popular data items causes significant delays, seri-
alizing execution and prevents full utilization of the parallel
hardware. A solution to this problem is to keep a private
running aggregate for each heavy hitter on each core, to
avoid coordination overheads. The final totals can be com-
bined at the end in negligible time.

When the number of grouping keys for an aggregate com-
putation is limited, aggregation can be very fast. Under such
conditions, Ye et al. was able to aggregate over one billion
records per second on a commodity machine [23]. However,
when the grouping cardinality increased beyond the CPU L1
cache capacity, performance dropped by an order of magni-
tude, even for distributions with heavy hitters that are likely
to remain cache-resident. The latency of accesses to memory
for non-heavy hitters dominated the performance.

In this work, instead of computing the aggregates for the
whole table, we will only compute the aggregates of a few
heavy hitter elements. By ignoring the non-heavy hitters,
the entire aggregation is done in-cache, and the throughput
is an order of magnitude higher. Further, by using novel
branch-free SIMD implementations of various aggregation
data structures, we are able to get additional speed improve-
ments, significantly beyond the performance of Ye et al. [23]
even for cache-resident aggregates.

To identify the heavy hitters, we use a sampling step prior

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161441542?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

to aggregating the full data. In a billion-element data set,
the cost of sampling even a million elements in advance is
small relative to the cost of scanning the base data. A large
sample gives us strong statistical guarantees about the like-
lihood that items that are not quite heavy hitters in the
sample, according to a specified frequency threshold, might
turn out to be heavy hitters in the full data set. One can
tune the sample size and/or the number of elements cho-
sen to reduce the probability of missing a heavy hitter to a
vanishingly small number.

If one is not satisfied with a probabilistic guarantee, or if
one wants to find the top heavy hitters without specifying
a frequency threshold, then we provide a second class of
algorithm that dynamically determines a threshold. The
basic idea is to count both matches and nonmatches for keys
in the aggregation table. The biggest nonmatch count gives
us an upper bound on the contribution of an item whose key
was not explicitly inserted into the table. We can tune the
number of keys and nonmatch counts to explore trade-offs
between the number of heavy hitters explicitly counted, the
bound on heavy hitters that might have been missed, and
the overall performance of the algorithm.

Another trade-off that we explore is the design of the hash
table used to perform the aggregation. A simple hash table
based on perfect hashing, without overflows or chaining, is
very efficient. However, the birthday paradox ensures that
only a limited number of entries can be inserted before a
collision is encountered. This collision bound can be ex-
tended by iterating through many random hash functions
(using a fixed time budget for this process) and choosing
the function with the highest occupancy before a collision.
The bound can also be extended by having a smaller number
of hash buckets that can each hold more than one element.
Alternatively, schemes based on cuckoo hashing [20] offer
higher occupancy guarantees, at the cost of using multiple
hash functions and looking up more than one hash cell per
key. We show how one might choose between the various
alternatives given one’s application constraints.

Whichever method is used, our heavy hitter capacity will
be limited by the size of the L2 cache memory. Even in
a typical L1 cache with size of 32KB, we are able to store
a few thousand keys along with counts and other data. A
few thousand keys may be a small fraction of the keys in
a dataset. Nevertheless, for data with Zipfian skew, the
top thousand heavy hitters capture a large (and presumably
interesting) fraction of the data. In the event that the user
needs even more heavy hitters, we can fall back on standard
aggregation methods. If the top thousand or so items satisfy
the user most of the time, then it is a net win to use our
specialized heavy-hitter methods because they are so much
faster than standard aggregation.

In some cases, such as for uniformly distributed data, we
may not identify any heavy hitters. Even in such cases,
the nonmatch counts will allow us to bound the maximum
frequency possible for all items. This behavior should not be
considered a failure of the algorithm. The absence of heavy
hitters beyond a certain threshold may be all that the user
needs, such as when the task involves looking for outliers.
In such cases, a fast heavy-hitter algorithm is better than a
slower complete aggregate computation for all keys.

Much prior work on heavy hitters (discussed in Section 2)
has focused on streaming applications, where memory is lim-
ited and one typically uses just one pass through the data.

We emphasize that our target application is not streaming,
but rather data analytics and decision support.

Summarizing our contributions:

• We introduce a novel approach to aggregate for heavy
hitter elements with cache resident structures. Focus-
ing on the most important items, we preserve the qual-
ity of the resulting summary and benefit from fast in-
cache processing.

• We accelerate our method by the use of perfect hash-
ing and SIMD instructions to eliminate branching and
minimize cache accesses. SIMD instructions are uti-
lized in a novel non-uniform way, beyond simple vec-
torized operations.

• By utilizing bucketized and cuckoo hash tables, we can
increase the capacity at the cost of speed. Increased
capacity allows more heavy hitters. We adapt to each
dataset and query constraints and pick the best option
between the alternatives.

In the following section we present related work. In Sec-
tion 3 we formulate the problem and present key concepts.
In Section 4 we describe our approach in more detail, giving
illustrative examples. In Section 5 we show our experimen-
tal evaluation. In Section 6 we describe refinements and
conclude in Section 7.

2. RELATED WORK
Heavy hitters have been extensively studied in data stream

analysis. For some data stream scenarios, such as those mo-
tivated by network traffic analysis within a router, memory
is limited and data is available only within a narrow time
window. Under such conditions, many algorithms approxi-
mate heavy hitter counts because there is not sufficient space
to maintain complete count information. As previously men-
tioned, our work does not assume limited memory or a sin-
gle pass through the data. We also aim to compute exact
counts and other aggregates, rather than an approximation,
for items that are heavy hitters.

Counter based algorithms for heavy hitter identification in
streams include Frequent [13, 18], Lossy Counting [16], and
Space Saving [17]. Challenges include determining which
elements to count, and how to approximate the counts par-
ticularly when new elements become frequent in the stream.
Sketch based algorithms include Count Sketches [4] and Count
Min Sketches [8]. Such algorithms compute summaries of
the distribution that allow the approximate inference of heavy
hitters and other queries. See [7] for an extensive analysis.

Aggregation on modern multi-core CPUs has been studied
in [5, 6, 23]. A small local table stores frequent keys to
avoid contention between threads in shared data structures.
While these methods work well for a small number of keys
that stay cache resident, the throughput deteriorates rapidly
in the presence of more distinct keys, even for heavy hitter
distributions. By focusing on heavy hitter aggregates alone,
our method runs more than an order of magnitude faster.

Database algorithms that are sensitive to modern hard-
ware have been studied in several contexts. MonetDB/X100
[3] has been designed with CPU cache performance in mind.
HIQUE [14] and HyPer [19] provide query compilation for
efficient execution. Staged databases [12], describe breaking
up execution in stages and process a group of sub-requests

at each stage, thus exploiting data and work commonal-
ity. Apart from aggregation, hash joins have also been re-
designed for modern multicore CPUs [2].

Single Instruction Multiple Data (SIMD) instructions have
been used to speed up database algorithms [24], including
hash probing in bucketized cuckoo hash tables [22]. The
primary benefit is the reduction of cache accesses. SIMD
execution has a secondary benefit of being able to avoid
branches for many inner-loop computations [22, 24], an im-
portant benefit since branch mispredictions can be a signif-
icant performance overhead. Most past work on SIMD op-
erations uses them in arrays of elements of the same type,
performing many instances of the same operation using one
instruction. We go beyond this kind of uniform processing,
handling different kinds of work in each SIMD cell.

3. CONCEPTUAL DESIGN

3.1 Definitions
We use two different definitions for heavy hitter elements.

The first is by specifying a minimum frequency. This fre-
quency serves as a lower bound that aggregated groups must
satisfy to be included in the output of the query. The second
way is by keeping the top-K results, after sorting them in
descending order of aggregated count.

The frequency-bound specification requires the user to de-
fine the frequency that distinguishes heavy hitters from the
rest of the keys, as in the following SQL query.

select product_id, count(*)

from sales

group by product_id

having count(*) > 0.001 * (select count(*)

from sales);

With top-K queries the user does not need to specify a
frequency threshold to distinguish the heavy hitters, as in
the SQL query below.

select product_id, count(*)

from sales

group by product_id

order by count(*) desc

limit 1000;

Additional aggregates may be included in the select clause
to generate more information. Heavy hitters defined by
weighted counts are discussed in Section 6.1.

3.2 Sampling
The first step of the process is sampling the data to ex-

tract heavy hitter candidates. Since the cost of sampling is
known in advance, we can explicitly decide on the sample
size so that it does not take more than a small fraction of
the total time. In our target scenarios with billions of input
records, we will be able to construct relatively large samples
containing millions of elements. Such large samples will help
us obtain good statistical bounds on the likelihood that we
have sampled all true heavy hitters.

3.2.1 Frequency Bound Queries
Suppose that the user specifies a threshold of p, so that

any items occurring with a relative frequency above p are

considered heavy hitters. Let n be the size of a random sam-
ple of the items. Consider a single item x that we hypothe-
size is a heavy hitter, i.e., we hypothesize that x’s frequency
in the full data set is at least p. We observe the number of
times c that x occurs in the sample. How much less than np
does c have to be, before we have high confidence that our
hypothesis that x is a heavy hitter, is wrong?

To quantify this probability, we assume conservatively
that x has a true frequency of exactly p. Then, assum-
ing uniform sampling, the distribution of c is binomial with
parameters n and p. Then we can use Chernoff’s inequal-
ity to obtain an upper bound on the cumulative probability
F (k;n, p) that at most k items were observed in a binomial
sample of size n and probability p. Suppose that we reject
x if c/n < fp, where f is a parameter with 0 < f ≤ 1. Thus
k = nfp, but since there are at most 1/p true heavy hitters,
we multiply by 1/p to conservatively bound the probability
that some true heavy hitter has been rejected.

Pmiss =
1

p
· F (nfp;n, p) ≤ 1

p
· e−

np(1−f)2

2

This bound is quite strong, and decays exponentially in n
and p. For example, suppose n = 106, p = 2×10−4. Setting
f = 1/2, we expect a count of 200 in the sample, and will
reject x if its count is less than 100. The probability that a
true heavy hitter has a count less than 100 is bounded by
0.5 × 10−6 · e−25 ≈ 7 × 10−8.

The f parameter will affect how many elements we must
include in our table in the aggregation phase. In the ex-
ample above, we would compute aggregates for all elements
with sample counts of at least 100. We are trading space for
accuracy, and need to make sure that our table structures
have sufficient capacity. We are also implicitly trading time
for accuracy, because faster hashing schemes are available
when fewer items need to be stored (see Section 3.4). Alter-
natively, we can tune the sample size n to improve accuracy
at the cost of a more time-consuming sampling phase. The
query optimizer can evaluate the options by choosing the
configuration that minimizes execution time under a given
accuracy requirement.

If even a miniscule probability of missing a heavy hitter
is unacceptable, then the validation method described in
Section 3.3 can be used instead.

3.2.2 Top-K Queries
For top-K queries, we also use sampling to identify the

most likely heavy hitter candidates for the aggregation phase.
We clearly need to include the top K items from the sample.
We include more items (subject to capacity constraints) for
two reasons. First, it could well be that items outside the
top K in the sample are in the top K of the full data set,
so all items with counts close to that of the Kth item in the
sample should be included. Second, by counting additional
items with high counts (even if not sufficiently high to be in
the top K), we will be able to improve the accuracy of the
validation step described in Section 3.3.

3.3 Validation
In addition to aggregating a set of candidate heavy hit-

ters, we can also simultaneously compute aggregates for non-
candidates. Rather than aggregating non-candidates indi-
vidually, we group them into hash buckets and compute an
aggregate for each bucket. Similarly to the sketch-based

techniques described in Section 2, the largest aggregate A
among all hash buckets provides a conservative empirical
bound on the heaviest hitter that is not among the candi-
dates. If there are K candidates with aggregate above A,
then we know we have the top-K. For frequency bound
queries, if A is below the user-defined threshold, then we
know that only candidates can be heavy hitters.

The quality of the bounds derived by aggregating the non-
candidates will depend on the heavy hitter distribution, as
well as the number of buckets. The sample itself can pro-
vide an estimate of the fraction of the data set that is con-
centrated in the non-candidates, which will be useful when
choosing the number of hash buckets for the non-candidates.
Using more buckets gives a better accuracy bound, but may
slow down computation because the hash table may need to
reside in the L2 cache rather than the L1 cache.

Even with good choices for the parameters the validation
step may fail. Failure may happen for one of several reasons:

• The user is too ambitious. For frequency bound queries,
the user’s threshold is too fine. For top-K queries, the
specified K is too big.

• The user is not especially ambitious when specifying
K for a top-K query. Nevertheless, the distribution
is such that the Kth element reaches sufficiently far
into a range where there are many items with similar
counts.

• There is sufficient skew in the non-candidate counts
that the maximum count among the non-candidate
buckets is high. As previously mentioned, we can ex-
pand the number of candidates (subject to capacity
constraints) to reduce both the mean and variance of
non-candidate counts.

If a user truly wants information about many items, then a
complete aggregation of the dataset may be necessary. For
experimental guidance about what constitutes “too many,”
see Section 5.5. In general, for datasets with sufficient skew,
we will be able to successfully and efficiently identify hun-
dreds of heavy hitters.

3.4 Perfect Hashing
The basic structure we will build upon is the regular hash

table, which we will heavily optimize for throughput. As
our hash function, we will use multiplicative hashing. Mul-
tiplicative hashing is a very fast hashing method, and the
class of multiplicative hash functions is universal [9]. For
any given key size and table size, a hash function is deter-
mined by a single randomly chosen odd multiplier of size
matching the key size. Once we have identified the candi-
date keys to aggregate from the sample, we decide on the
hash multiplier. The goal is to map those candidate keys
into the table perfectly, i.e., without collisions. A collision-
free table will allow a simpler implementation and improve
performance by eliminating branching and chaining.

While a random hash function may exhibit a few colli-
sions (due to the birthday paradox), we have sufficient time
to try a fairly large number of multipliers to find one that is
collision-free on the candidates. On our experimental plat-
form, we were able to try 105 multipliers in 50–60ms and
were able to find a perfect function for roughly 250 keys out
of 2048 slots. If we need to fit more keys, we will shift the
design to a bucketized hash table. A 4-wide bucketized hash

table would fit roughly 820 keys under the same conditions.
We can compute the probability of overflowing any bucket
of an m-wide n-sized table, using an O(nm) algorithm [11]
and then compute the expected fill rate after a number of
tries. In order to further increase the fill rate up to 99%, we
will use cuckoo hashing [20]. Cuckoo hashing uses two hash
functions and perfectly hashes keys by moving colliding el-
ements to their alternative hashed position. A flat cuckoo
hash table will further increase the occupancy to 60–65%.
Merging the two techniques results in the bucketized cuckoo
table, which allows 90–92% occupancy in the 2-wide version,
and 98–99% in the 4-wide version [22].

Multiplicative hashing can perform poorly in cuckoo hash-
ing schemes [10], although the poor behavior is less notice-
able in bucketized cuckoo hashing [22]. Since we are re-
peating the process a few thousand times to get as many
keys as possible in the table, we overcome this problem and
achieve very high occupancy rates. Insertion time, normally
a weaker point of cuckoo hashing for bigger hash tables, is
not an issue here.

4. DESIGN FOR PERFORMANCE
To get high performance, we must implement our meth-

ods so that they run efficiently on modern architectures. In
particular, we used all of the cores available on our hard-
ware platform, and use SIMD instructions in novel ways
to maximize processor utilization. At the same time, we
use no conditional branches within the inner loop, avoiding
performance pitfalls caused by branch mispredictions. The
use of perfect hashing (Section 3.4) is essential to avoid the
branching implicit in chaining. We also tune our methods
for the required number of candidate heavy hitters. As we
shall see experimentally, with fewer heavy hitters one can
obtain better throughput.

4.1 Update with SIMD
A straightforward hash probe inner loop implementation

for computing a count and sum for each group might be (in
the C programming language):

if (key == table[hash].key) {

table[hash].count++;

table[hash].sum += value; }

The if test typically leads to a conditional branch in the
inner loop. To avoid conditional branches, when we probe
a key we have to execute an update to the aggregate of the
table whether or not there was a match.

We start with two ideas previously used for branch and
SIMD optimization. First, control dependencies can be con-
verted into data dependencies by treating the result of the
comparison as a variable [21]. Second, comparison results
can be used as masks for subsequent operations [24]. We
call this general approach nullification and illustrate it by
rewriting the loop above as:

equal = (key != table[hash].key ? 1 : 0) - 1;

table[hash].count -= equal;

table[hash].sum += value & equal;

The binary representation of −1 is a word containing all
1 bits, making it suitable for masking. When there is no
match, the mask is zero and the sum and count are un-
changed. The compiler generated predicated CMOV instruc-
tions to do the updates. After this simple change, the
(scalar) code runs 8% faster.

The next step is to transform this implementation into one
that uses SIMD. For the discussion below we assume a 128-
bit SIMD register type as in Intel’s SSE instruction set, but
the principles used would also apply to other SIMD sizes.
A SIMD register can be interpreted as four 32-bit values, or
as two 64-bit values. For the example above, we assume a
32-bit key, a 32-bit integer count, and a 64-bit integer sum.

A novel aspect of our approach is that we use SIMD data
types containing different types of cell data, in contrast to
typical vectorization optimizations that work on simple ar-
rays of values of the same type. For example, in our hash
cell for the sum/count example, we will pack a key, a count,
and a sum into a single 128-bit SIMD unit. We assume
SIMD operations are available for bitwise AND, for 32-bit
vectorized comparisons, for 64-bit vectorized addition, and
for 32-bit vector shuffling. SIMD vector comparisons give a
zero cell when the comparison fails, and an “all 1” cell if the
comparison succeeds. Figure 1 shows how data flows during
the probe/aggregation process.

Key

Key Cnt Sum

Key 0 00

-1|0 X XX

Equality
(32-bit)

Key Cnt Sum

Value

Value 1 00

X -1|0 X-1|0
Add

(64-bit)

Value Logical
And

1|00 Value | 0

Key

Figure 1: SIMD method for count, sum(value).

Cells labeled “X” are unimportant; we don’t care what
values they hold. Note that the value goes into the low-
order (leftmost) bits of the 64-bit vector; the data repre-
sentation is little-endian. The 1|0 goes into the high-order
bits, so that it will increment the count but not the key. The
hash table entry is loaded only once, and stored only once,
unlike the scalar code. The speed of this method (which will
be described in more detail in Section 5) is 76% better than
the original scalar code.

Key

Key
1

Cnt
1

Key
2

Cnt
2

Sum 1 Sum 2

Key 0 00

Equality
(32-bits)

Key
1

Cnt
1

Key
2

Cnt
2

Key 0 0Key

0 0
-1|0
(K2)

-1|0
(K1)

0 0

Sum 1 Sum 2

Value

Value 0 00

0 0Value Value Logical
And

Sub
(32-bits)

Value | 0
(K1)

Value | 0
(K2)

Add
(64-bits)

Figure 2: 2-wide table for count, sum(value).

SIMD techniques become even more useful for bucketized
hash tables. Figures 2 and 3 show SIMD probe implemen-
tations for buckets of size 2 and 4 respectively. Note the
subtraction of -1 to increment the count and the shuffle of
32-bit masks to nullify 64-bit sums.

To compute min and max values, we use specific max and
min SIMD instructions that avoid branching. If the numbers

are unsigned, we nullify the max update by turning the value
to 0 by “and”-ing with the key comparison mask. For min
update we turn the value to -1 by “or”-ing with the mask’s
bitwise inverse.1

Key
Key

1
Key

2
Key

3
Key

4

Sum 1 Sum 2

Key 0 00

Value

0 0Value 0 Logical
And

Sum 3 Sum 4

Cnt
1

Cnt
2

Cnt
3

Cnt
4

Key
1

Key
2

Key
3

Key
4

Key Key Key Key Equality
(32-bits)

Cnt
1

Cnt
2

Cnt
3

Cnt
4

Sub
(32-bits)

-1|0
(K1)

-1|0
(K2)

-1|0
(K3)

-1|0
(K4)

0 ValueValue 0

-1|0
(K3)

-1|0
(K4)

-1|0
(K4)

-1|0
(K1)

-1|0
(K1)

-1|0
(K2)

-1|0
(K2)

Logical
And

Value | 0
(K2)

Value | 0
 (K1)

Value | 0
(K4)

Value | 0
(K3)

Sum 3 Sum 4

Sum 1 Sum 2

Add
(64-bits)

Add
(64-bits)

Key

Value
-1|0
(K3)

Figure 3: 4-wide table for count, sum(value).

When the aggregation operations required from the query
are more complicated, the payloads are longer and flat tables
become significantly faster than a wider bucketized table.
They have less data to update and need fewer loads and
stores. To alleviate this problem with bucketized tables,
we divide payloads per key and access only the ones in the
same offset as the matched key. Figure 4 shows one example
query. The new element in this example is the “min value
& index” step that finds the index within the SIMD vector
of the smallest value. There is an SSE4.1 instruction that
provides this functionality. Figure 4 also illustrates the use
of SIMD for max and min aggregates.

One last interesting case occurs when we want to use a
single SIMD entry to derive both the candidate and non-
candidate match counts for validation, as described in Sec-
tion 3.3. In a hash cell entry we keep a “Yes” count that
counts matches, and an “All” count that counts both matches
and nonmatches that hash to this bucket. The non-candidate
count can be computed at the end by subtracting the Yes-
count from the All-count. We start counts with 1 instead of
0. (At the end of the computation we subtract 1.) We can
then generate cells in SIMD registers that are guaranteed
to be 0 by comparing the count with zero; we then shuffle
and move it to the key offset. Figure 5 shows our inner loop
implementation in this case for a simple count aggregation.

This way of computing non-candidate counts, which we
call a “piggyback table,” assumes that we use one non-
candidate count per hash bucket. In Section 4.2 we will
also consider alternative implementations where the non-
candidate counts are stored separately and the number of
counts can be chosen independent of the number of can-
didates. The methods will be compared experimentally in
Section 5.

Versions for other combinations of aggregates are similar
to those described above (e.g., use of floating point columns).
For cuckoo versions, we perform the same basic operations
on multiple hash entries. We read all table entries before
writing any of them. In the event that multiple hash func-
tions yield the same slot for a key, only one of the writes
will be effective, so we avoid double counting.

1If we need signed numbers, we can store them in unsigned
format and add or subtract the appropriate offset before
displaying them. For simple sums (ie. sum(value)), we sub-
tract the count ×231, offline at the end instead of doing
conversions with each update.

Key
1

Key
2

Key
3

Key
4 Sum^2 1 Sum 1

Cnt
1

Cnt
2

Cnt
3

Cnt
4

Max
1

Max
2

Max
3

Max
4

Min
1

Min
2

Min
3

Min
4 Sum^2 2 Sum 2 Sum^2 3 Sum 3 Sum^2 4 Sum 4

Key
1

Key
2

Key
3

Key
4

Key

Key Key 0 0 0

Equality
(32-bits)

Value

Value Value 0 1 0

Cnt
1

Cnt
2

Cnt
3

Cnt
4

-1|0
(K1)

-1|0
(K2)

-1|0
(K3)

-1|0
(K4)

Sub
(32-bits)

Val ValVal Val

0|-1
(K1)

0|-1
(K2)

0|-1
(K3)

0|-1
(K4)

Max
1

Max
2

Max
3

Max
4

Max
(32-bits)

Min
1

Min
2

Min
3

Min
4

Logical
And

Key Key Key Key Logical
Or

Min
(32-bits)

Logical
Xor

Min
Value &
Index

Multiply
(32 to 64-bit)

ValueValue^2

Logical
And-Not Value

 Index

Sum^2 In. Sum In.

Add
(64-bit)

Value | 0
(K In.)

Value^2 |0
(K In.)

-1 -1 -1 -1

 1

 2
 3

NOT

Figure 4: 4-wide table for count, max(value), min(value), sum(value), sum(value*value).

While implementing these SIMD methods, we sometimes
observed that pure SIMD implementations were not always
best. For example, it was better to leave the hash compu-
tation in scalar code rather than converting it to vectorized
code. Since SIMD instructions are performed in different
circuits from scalar instructions, the code is more efficiently
parallelized by the out-of-order CPU if both kinds of in-
structions are being used. If the processor is already SIMD-
limited, then adding more SIMD instructions will slow it
down, while leaving the scalar pipeline underutilized.

Key
Key Yes All 0

Key 0 00

-1|0 0 -1X

Equality
(32-bits)

Key Yes All 0

0 -1|0 0-1

Sub
(32-bits)

Key

Figure 5: Piggyback table for count.

4.2 Non-Candidate Counters
As discussed in Section 3.3, we use non-candidate counts

to validate our heavy hitter candidates. The most generic
implementation is to maintain a table of counts that is sep-
arate from the table containing the candidates. We can fine
tune the size of the candidate and non-candidate tables to
match the dataset distribution. Since smaller tables will
fit in faster memory, we aim to limit the size of the tables
subject to our accuracy requirements.

Suppose that we have assembled our heavy hitter candi-
dates and we know (or estimate) that they have a cumula-
tive frequency of A. If 1 − A is much larger than A, then
an equal number of non-candidate counters would not help
at all. We need more non-candidate counters to dilute the
1 −A to below the desired threshold.

Let m denote the number of non-candidate counters, and
n the total count among all non-candidates as estimated
from the sample. It is overly optimistic to simply divide n
by m to derive a threshold, since the true threshold will be
the count in the largest hash bucket, not the average bucket
count. We would like to obtain an estimate b(m,n) of the
total count in the largest bucket. We can use the algorithm

of [11], which is somewhat optimistic because it assumes n
independent choices; in our case duplicate keys map to the
same slot. Nevertheless, it is likely to be a reasonable es-
timate if the individual item frequencies are small among
the non-candidates. Alternatively, one could try several dif-
ferent m values on the sample to get an empirical estimate
for b(n,m). As previously mentioned, the inclusion of ad-
ditional keys in the candidates table can reduce individual
item frequencies among the non-candidates, and thus the
b(n,m) estimate.

For frequency based queries with threshold p, we need to
choose m such that b(n,m) < pN where N is the total data
size. For top-K queries, if CK is the relative frequency of the
Kth item in the sample, we need b(n,m) < CKN . Larger
values of m will help the accuracy thresholds and will only
significantly hurt performance once a cache size threshold is
crossed. One will typically make one of a small number of
choices for m, based on the capacity of each cache level.

Ideally, we would like to update only one of the two tables
each time. Branching code could achieve that. However, it
would make the throughput dependent on the dataset distri-
bution, because of mispredictions that will occur. Instead,
we always update both tables, nullifying only the update to
the candidates table. The non-candidates table is updated
every time. At the end of the probing loop, we subtract each
candidate’s count from its respective non-candidate table lo-
cation to obtain the true non-candidate counts.

With 32-bit counters, it takes over 4 billion elements to
overflow a counter. If there is a risk of overflow, we can pause
the aggregation every 2 billion items, and look for items with
counts above 2 billion. For each item found, we add 2 billion
to a separate 64-bit counter for that item, and subtract 2-
billion from the count in the hash table. The performance
impact is minor since the hash table would be scanned so
rarely. Threads can perform this process independently.

5. EXPERIMENTAL EVALUATION

5.1 Platform
The platform we used for our experiments has two Intel

E5620 processors based on the Nehalem architecture, each
with 4 cores. The L1 data cache is 32KB, the L2 cache is
256KB and is private per core, the L3 is 12MB and shared
on each chip. The processors run at 2.4 GHz and support
simultaneous multithreading of 2 threads per core and SIMD
version SSE4.2. The total memory is 48GB.

Unless otherwise noted, keys and values are 4-bytes. Data
is stored columnwise as arrays. That way, unneeded data for
each row does not need to be read from RAM. For perfor-
mance and capacity experiments, we ran the experiments 25
times and report the median numbers.

To calibrate our methods, we measured the performance
of a simple parallel scan of a set of records, performing a
simple bitwise SIMD OR of each column with either a regis-
ter, successive elements of an L1-resident array (with wrap-
around), or successive elements of an L2-resident array. Us-
ing a register tests pure throughput, while the other cases
test the additional cost of a SIMD cache load and store.2

Table 1 shows the throughput achieved. These numbers
represent upper bounds on the performance of any heavy
hitter method on this platform.

Cache Updates 1 column 2 columns
None 8.05 4.05
L1 resident 7.28 3.67
L2 resident 4.55 2.29

Table 1: Upper bounds (billions of records / sec).

5.2 Queries and Table Structures
For our initial experiments we use four queries, chosen to

reflect increasing complexity. We already used three of them
in Section 4.1, in the figures describing the SIMD data flow.
These queries will be evaluated in both a frequency based
manner, and using a top-K formulation.

Q1: select count(*)

from table group by key ...

Q2: select count(*), sum(value)

from table group by key ...

Q3: select count(*), min(value), max(value)

from table group by key ...

Q4: select count(*), min(value), max(value),

sum(value), sum(value * value)

from table group by key ...

We consider distributions for the key column based of
the Zipf distribution that allows the degree of skew to be
varied according to a parameter θ. In these experiments we
used one billion rows and one million distinct keys. In the
sampling phase, using 16 threads, we sample and assemble
counts for 1,000,000 entries in 20 ms. (This is a very small
fraction of the total processing time, and is not included
in the measurements below.) We uniformly pick elements
from the dataset, ignoring possible duplicates. We do not
use the optimization of counting all elements inside each
cache line we fetch, which would improve sampling speed but
damage the quality of the sample due to possible correlations
of neighboring elements.

We will use a variety of configurations determined by: (a)
the hash table bucket size (1, 2, or 4 elements); (b) whether
conventional hashing or cuckoo hashing is used; (c) whether
8 threads (“SMT off”) or 16 threads (“SMT on”) are used;

2In our cache update we OR four elements at once using
SIMD. If we use scalar code to update one element at a
time, the performance decreases by about 40%.

and (d) the hash table footprint (either L1 resident or L2
resident). When SMT is on, there are two threads sharing
the same L1/L2 cache, and so each is allocated half the
space. When we also compute non-candidate counts, we
consider (i) using the same cache level for both tables; (ii)
a “hybrid” with an L1 resident candidate table and an L2
resident non-candidate table; and (iii) a piggyback table.

To determine the capacity of a hashing scheme, we set a
time budget of 50ms (not included in the measurements),
which is small relative to the cost of processing one billion
rows. The number of multipliers we can try in this time
budget depends on the scheme. For cuckoo tables, we can
try a few thousands. Otherwise, they can be from a few
millions down to a few hundred thousands. For example, an
L1-sized 4-wide table on Q1 can try half a million multipli-
ers. To see how sensitive the capacity is to the time spent
choosing multipliers, we tried a 5 sec. budget, and found
that the capacity increased by no more than 20%. Thus,
investing more time choosing multipliers is not advisable.

When the hash table entry size is a power of 2, the table
size is usually a power of 2 as well. Hashing against a power
of 2 buckets is faster, as it uses shifting instead of a second
multiplication (for multiplative hashing). If we generalize
our methods to support any query, we will come across cases
where the hash table entries are not powers of 2. We can
choose to either pad this space or use it. If we pad it, we keep
the same throughput; if we use it, we lose some performance
but gain extra capacity and/or validation accuracy.

We observed that seemingly minor changes to the inner
loop code sometimes resulted in a noticeable (5–10%) per-
formance change, particularly for L1-resident tables that are
operating close to the hardware limit. While we tried hard
to optimize the code, it is possible that an alternative in-
struction order, for example, could perform slightly better.
This phenomenon is less visible in L2 resident tables where
the latencies of slower cache accesses mask instruction laten-
cies. When there are multiple implementations that answer
the same query using different SIMD methods, we show the
performance of the best one for the given setting.

5.3 Throughput vs. Capacity
Figure 6 shows the throughput (in billions of records per

second) of various configurations as a function of the capac-
ity of the candidate table. The four rows of charts corre-
spond to the four queries of Section 5.2. The first column of
Figure 6 displays L1 resident tables and the second column
displays L2 resident tables. The third column presents the
hybrid scheme that fits the candidate table in the L1 cache
and has a table of non-candidate counts in the L2 cache. We
used 106 distinct keys and a randomly generated Zipfian key
distribution with θ = 1.3

Not all methods are suitable for all queries. We are in-
terested in the configurations that are on the skyline, i.e.,
there is no other configuration greater in both throughput
and capacity. The capacity of methods decreases with the
complexity of the query, since we use space for aggregate

3The throughput rates we see in this experiment are slightly
biased by the cumulative frequency of heavy hitters in the
column. If there is enough of a concentration of frequency in
a small number of heavy hitters, then the most frequently
accessed items will be L1-resident even when the table is
sized for the L2 cache. When we spread the distribution
more evenly throughout an L2 resident table, we observed a
modest 10–15% performance decrease.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 1000 2000 3000 4000 5000th
ro

ug
hp

ut
 (

bi
lli

on
 r

ec
or

ds
 p

er
 s

ec
)

capacity (# keys)

count - L1

SMT on
SMT off

1-wide Regular
2-wide Regular
4-wide Regular
1-wide Cuckoo
2-wide Cuckoo
4-wide Cuckoo

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 5000 10000 15000 20000 25000 30000 35000 40000th
ro

ug
hp

ut
 (

bi
lli

on
 r

ec
or

ds
 p

er
 s

ec
)

capacity (# keys)

count - L2

SMT on
SMT off

1-wide Regular
2-wide Regular
4-wide Regular
1-wide Cuckoo
2-wide Cuckoo
4-wide Cuckoo

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 1000 2000 3000 4000 5000th
ro

ug
hp

ut
 (

bi
lli

on
 r

ec
or

ds
 p

er
 s

ec
)

capacity (# keys)

count - L1/L2

SMT on
SMT off

1-wide Regular
2-wide Regular
4-wide Regular
1-wide Cuckoo
2-wide Cuckoo
4-wide Cuckoo

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 1000 2000 3000 4000 5000th
ro

ug
hp

ut
 (

bi
lli

on
 r

ec
or

ds
 p

er
 s

ec
)

capacity (# keys)

count, sum(value) - L1

SMT on
SMT off

1-wide Regular
2-wide Regular
4-wide Regular
1-wide Cuckoo
2-wide Cuckoo
4-wide Cuckoo

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 5000 10000 15000 20000 25000 30000 35000 40000th
ro

ug
hp

ut
 (

bi
lli

on
 r

ec
or

ds
 p

er
 s

ec
)

capacity (# keys)

count, sum(value) - L2

SMT on
SMT off

1-wide Regular
2-wide Regular
4-wide Regular
1-wide Cuckoo
2-wide Cuckoo
4-wide Cuckoo

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 1000 2000 3000 4000 5000th
ro

ug
hp

ut
 (

bi
lli

on
 r

ec
or

ds
 p

er
 s

ec
)

capacity (# keys)

count, sum(value) - L1/L2

SMT on
SMT off

1-wide Regular
2-wide Regular
4-wide Regular
1-wide Cuckoo
2-wide Cuckoo
4-wide Cuckoo

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 1000 2000 3000 4000 5000th
ro

ug
hp

ut
 (

bi
lli

on
 r

ec
or

ds
 p

er
 s

ec
)

capacity (# keys)

count, max(value), min(value) - L1

SMT on
SMT off

1-wide Regular
2-wide Regular
4-wide Regular
1-wide Cuckoo
2-wide Cuckoo
4-wide Cuckoo

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 5000 10000 15000 20000 25000 30000 35000 40000th
ro

ug
hp

ut
 (

bi
lli

on
 r

ec
or

ds
 p

er
 s

ec
)

capacity (# keys)

count, max(value), min(value) - L2

SMT on
SMT off

1-wide Regular
2-wide Regular
4-wide Regular
1-wide Cuckoo
2-wide Cuckoo
4-wide Cuckoo

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 1000 2000 3000 4000 5000th
ro

ug
hp

ut
 (

bi
lli

on
 r

ec
or

ds
 p

er
 s

ec
)

capacity (# keys)

count, min(value), max(value) - L1/L2

SMT on
SMT off

1-wide Regular
2-wide Regular
4-wide Regular
1-wide Cuckoo
2-wide Cuckoo
4-wide Cuckoo

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 1000 2000 3000 4000 5000th
ro

ug
hp

ut
 (

bi
lli

on
 r

ec
or

ds
 p

er
 s

ec
)

capacity (# keys)

count, max(value), min(value), sum(value), sum(value*value) - L1

SMT on
SMT off

1-wide Regular
2-wide Regular
4-wide Regular
1-wide Cuckoo
2-wide Cuckoo
4-wide Cuckoo

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 5000 10000 15000 20000 25000 30000 35000 40000th
ro

ug
hp

ut
 (

bi
lli

on
 r

ec
or

ds
 p

er
 s

ec
)

capacity (# keys)

count, min(value), max(value), sum(value), sum(value*value) - L2

SMT on
SMT off

1-wide Regular
2-wide Regular
4-wide Regular
1-wide Cuckoo
2-wide Cuckoo
4-wide Cuckoo

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 1000 2000 3000 4000 5000th
ro

ug
hp

ut
 (

bi
lli

on
 r

ec
or

ds
 p

er
 s

ec
)

capacity (# keys)

count, min(value), max(value), sum(value), sum(value*value) - L1/L2

SMT on
SMT off

1-wide Regular
2-wide Regular
4-wide Regular
1-wide Cuckoo
2-wide Cuckoo
4-wide Cuckoo

Figure 6: Throughput vs. capacity skyline for L1 & L2 tables and hybrid L1/L2 table.

calculation. For example, Q2 and Q3 need double the space
of Q1, so they fit almost half as many elements. Q4 needs
double the space of Q2 and Q3. These restrictions do not
apply to the separate table of non-candidate counters.

For the simple count(*) aggregation, all regular hash ta-
bles have a throughput of about 3.3 billion records per sec-
ond. For simple aggregation workloads, such as count, the
4-wide table is slightly faster than the flat table: The data
is already vectorized, so fewer instructions are needed in the
inner loop. The number of instructions becomes less impor-
tant when we access more than one column or use cuckoo
hash tables, as there is more overlap with cache accesses.

Comparing the first two columns of Figure 6, there is a
clear trade-off between capacity and throughput. The L2-
resident table is about 25% slower, but the key capacity is
much larger, by up to a factor of 8.

Bucketized tables increase capacity by allowing more keys
to be perfectly hashed. For the 2-wide table, we can hash
twice as many candidates as the basic table, and for the 4-
wide table we almost quadruple the number of candidates.

Since the probability of fewer collisions does not scale lin-
early, these ratios drop as we go from L1-resident to L2.

SMT is mostly important for faster configurations. The
SMT enabled versions give a 10% increase in the throughput
for regular tables. For a regular 4-wide table running Q1,
SMT increases throughput from 2.9 to 3.3 billion records
per second. On the 4-wide cuckoo table that runs Q4, the
increase due to SMT is marginal, while the number of keys
supported is halved. Thus SMT should not be used when
we need many candidates or larger non-candidate tables.

As the select clause of the query becomes more compli-
cated, hash tables need to hold and update a longer payload.
The performance impact is more noticeable in bucketized
hash tables. We showed (Figure 4) a way to bypass long re-
writes by extracting the offset of the matched key to work on
a single payload. Still, this technique is not fast enough to
always be our best choice; for 2-wide tables, it is more effi-
cient to process both payloads, even if at most one aggregate
may change its values.

Comparing the first and third columns of Figure 6 shows

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 200 400 600 800 1000 1200 1400 1600th
ro

ug
hp

ut
 (

bi
lli

on
 r

ec
or

ds
 p

er
 s

ec
)

capacity (# keys)

L1-resident hybrid table (L1 splitted 1:1)

SMT on
SMT off

1-wide Regular
2-wide Regular
4-wide Regular
1-wide Cuckoo
2-wide Cuckoo
4-wide Cuckoo

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 200 400 600 800 1000 1200 1400 1600th
ro

ug
hp

ut
 (

bi
lli

on
 r

ec
or

ds
 p

er
 s

ec
)

capacity (# keys)

L1-resident hybrid table (L1 splitted 1:3)

SMT on
SMT off

1-wide Regular
2-wide Regular
4-wide Regular
1-wide Cuckoo
2-wide Cuckoo
4-wide Cuckoo

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 200 400 600 800 1000 1200 1400 1600th
ro

ug
hp

ut
 (

bi
lli

on
 r

ec
or

ds
 p

er
 s

ec
)

capacity (# keys)

L1-resident piggyback table

SMT on
SMT off

1-wide Regular
3-wide Regular
1-wide Cuckoo
3-wide Cuckoo

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 2000 4000 6000 8000 10000 12000th
ro

ug
hp

ut
 (

bi
lli

on
 r

ec
or

ds
 p

er
 s

ec
)

capacity (# keys)

L2-resident hybrid table (L2 splitted 1:1)

SMT on
SMT off

1-wide Regular
2-wide Regular
4-wide Regular
1-wide Cuckoo
2-wide Cuckoo
4-wide Cuckoo

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 2000 4000 6000 8000 10000 12000th
ro

ug
hp

ut
 (

bi
lli

on
 r

ec
or

ds
 p

er
 s

ec
)

capacity (# keys)

L2-resident hybrid table (L2 splitted 1:3)

SMT on
SMT off

1-wide Regular
2-wide Regular
4-wide Regular
1-wide Cuckoo
2-wide Cuckoo
4-wide Cuckoo

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 2000 4000 6000 8000 10000 12000th
ro

ug
hp

ut
 (

bi
lli

on
 r

ec
or

ds
 p

er
 s

ec
)

capacity (# keys)

L2-resident piggyback table

SMT on
SMT off

1-wide Regular
3-wide Regular
1-wide Cuckoo
3-wide Cuckoo

Figure 7: Throughput / capacity skyline for L1 & L2 tables with miss counters (Q2).

that the overhead of updating an L2-resident non-candidate
count table is about 35% less throughput. We examine other
non-candidate configurations in Figure 7, limited just to Q2.
The first row of Figure 7 contains L1 configurations, while
the second row contains L2 configurations. The first column
divides the space in the cache in a 1:1 ratio between the can-
didate and non-candidate tables. The second column uses
the ratio 1:3. The third column implements the piggyback
table, where the two previously separate tables are merged.

Comparing the L1 and L2 charts of Figure 7, the L2 reg-
ular hash tables are faster than L1 cuckoo tables but usu-
ally have less capacity. The intuition that L1-resident ta-
bles should always perform better than L2-resident tables is
wrong. The cuckoo tables access two locations and execute
almost twice as many instructions.

For most queries, the 4-wide cuckoo configurations are
the slowest. For Q2 they run 20% slower than 2-wide cuckoo
tables. Since the capacity gap between these two methods is
less than 10%, the trade-off favors the 2-wide cuckoo table,
unless the query really needs that extra 10% capacity.

Piggyback tables are faster than hybrid configurations,
where the heavy hitter candidates table and non-candidate
counters table are held separate. When both tables of the
separate versions are in L1, the piggyback is 25% faster.

5.4 Aggregation
In order to demonstrate the efficiency of our SIMD imple-

mentation, we compare it against a state of the art conven-
tional aggregation implementation by Ye et al. [23] using the
same experimental platform. In particular, we ask whether
for grouping sets small enough to fit in cache, do we com-
pute aggregates faster than Ye et al. [23]? In Ye et al.’s
PLAT method, data is partitioned across different threads
and while partitioning, a small local table is created from
the first keys and remains private to each core; collisions are
solved by chaining. With a small number of keys, all data is
hashed using the local tables and there is no need to go to
the global table. Thus, we test the efficiency of our perfect
hashing scheme coupled with SIMD, against an L1-resident
chaining hash table with almost no mispredictions.

We modify our method slightly to conform to the config-
uration described in [23]. In particular, we use 8-byte keys
and values, stored row-wise rather than column-wise. These
modifications have only minor impact on our methods, the
most significant of which is the need for a 64-bit multipli-
cation for hashing rather than a 32-bit multiplication. We
use a query from [23] that computes the count, sum, and
sum-of-squares from an array of (key,value) pairs. We use
two SIMD vectors to store the key, count, sum, and sum-of-
squares in 64-bit cells. We use the same hash function, and
the same degree of parallelism (16 threads) as [23].

For 100 distinct keys, Ye et al. report a throughput of
approximately 1.1 billion records per second. We use the
L1 resident flat table, using half of the L1 cache per core
to use 2 threads. This configuration can support approxi-
mately 120 keys. It runs at 1.9 billion records per second,
a speedup of 72% over Ye et al. For 1000 distinct keys, Ye
et al. report a throughput of 0.7 billion records for heavy
hitter input distributions. To fit 1000 keys we use an L2
resident flat cuckoo table for half L2, enable SMT and use
1/4 of L2 per hardware thread. This configuration fits ap-
proximately 1300 keys. This experiment runs at 1.2 billion
records per second, a 71% speedup. Our implementation of
this particular query is suboptimal, due to the absence of a
matching SIMD instruction for 64-bit multiplication. Still,
we prove that even without SIMD support for every opera-
tion, our method runs significantly faster than the state of
the art conventional aggregation, for the same task.

5.5 Accuracy
The most important attribute of configurations with non-

candidate counters is the accuracy they can achieve, i.e.,
how many heavy hitters can be validated based on the max-
imum non-candidate count. In Figure 8 we show the number
of heavy hitters achieved under Zipfian distributions for dif-
ferent θ using 100,000 distinct keys. Skew decreases as one
moves to the right in Figure 8; θ = 0 is uniform. We use the
same configurations as Figure 7 for the same query Q2.

As expected, from near-uniform distributions we cannot
extract any heavy hitters. For high θ values, we extract the

 0

 100

 200

 300

 400

 500

 600

 700

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

co
rr

ec
t k

ey
s

theta

L1-resident hybrid table (L1 split 1:1)

1-wide Regular
2-wide Regular
4-wide Regular
1-wide Cuckoo
2-wide Cuckoo
4-wide Cuckoo

 0

 100

 200

 300

 400

 500

 600

 700

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

co
rr

ec
t k

ey
s

theta

L1-resident hybrid table (L1 split 1:3)

1-wide Regular
2-wide Regular
4-wide Regular
1-wide Cuckoo
2-wide Cuckoo
4-wide Cuckoo

 0

 200

 400

 600

 800

 1000

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

co
rr

ec
t k

ey
s

theta

L1-resident piggyback table

1-wide Regular
3-wide Regular
1-wide Cuckoo
3-wide Cuckoo

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

co
rr

ec
t k

ey
s

theta

L2-resident hybrid table (L2 split 1:1)

1-wide Regular
2-wide Regular
4-wide Regular
1-wide Cuckoo
2-wide Cuckoo
4-wide Cuckoo

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

co
rr

ec
t k

ey
s

theta

L2-resident hybrid table (L2 split 1:3)

1-wide Regular
2-wide Regular
4-wide Regular
1-wide Cuckoo
2-wide Cuckoo
4-wide Cuckoo

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

co
rr

ec
t k

ey
s

theta

L2-resident piggyback table

1-wide Regular
3-wide Regular
1-wide Cuckoo
3-wide Cuckoo

Figure 8: Correct keys under Zipfian distribution for L1 & L2 tables with miss counters (Q2).

maximum number of distinct keys. The L2-resident tables
allow us to validate 3–8X more heavy hitters than the L1-
resident tables, because the non-candidate distribution is
spread over many more counters. If we need that many
heavy hitters, the L2-resident option is the right choice. If
not, the L1-resident option is faster to compute.

The cuckoo tables validate many more candidates than
the regular tables, and bigger buckets also help, even when
the methods use the same number of miss counters. Ad-
mitting more candidates is lessening the cumulative fre-
quency of the rest of the dataset, dispersing a smaller load
across non-candidate counters and decreasing the validation
threshold. Similarly, it pays to use a 1:1 split rather than a
1:3 split of the cache. Thus, on Zipfian distributions the
space is better utilized for extra heavy hitter candidates
rather than for extra non-candidate counters.

5.6 Wikipedia Data Set
In our final experiment, we will test our method on a

realistic dataset. For this purpose, we used Wikipedia access
data, provided freely by Wikipedia in aggregated form.4 We
assembed files storing URLs and access counts for the period
from the 1st to the 14th of January 2012 for English URLs.
We generate two columns, one representing the URL coded
as a 32-bit unique id, and another coding the time of each
access at hourly granularity. A row is generated for each
Wikipedia page visit, and the rows are randomly shuffled.
The total number of rows is 3,463,321,585 and there are
102,216,378 distinct keys (URLs). We use a sample size of
107 for this dataset, which translates to about 200ms for
sampling (a small overhead relative to the processing time).

The Wikipedia dataset is not as skewed as we initially
expected. The heaviest hitters, which are the main page
and two special index pages, each have a frequency of about
1.5%. The first 100 keys have a cumulative frequency of
6.65%, while the first 10,000 account for 25.3%.

We use the same configurations that we used in Figure 7
and in the hybrid configuration of Figure 6. We are mostly

4http://dumps.wikimedia.org/other/pagecounts-raw/

interested in three results per case: the number of heavy
hitters validated, the number of heavy hitters we estimated
we’d extract based on just the sample, and the frequency
of the minimum-frequency element we extracted. We sum-
marize these results in Table 2 for separate miss counter
table configurations and in Table 3 for piggyback tables.
The results are given in the form extracted/estimated and
the minimum frequency is scaled by 10−4. The numbers
reported are the medians of 25 runs.

In practice, the heavy-hitter count estimates based on the
sample were within 20% of the actual counts 97% of the
time, and within 10% of the actual counts 89% of the time.
The reliability of this estimate is important for the DBMS
to be able to choose the best method for a query.

To extract the most heavy hitters, the best configurations
were the L2-resident ones, as expected. We extract up to 273
heavy hitters using the L2-resident bucketized cuckoo meth-
ods. If fewer heavy hitters are needed, alternative methods
could do the job in less time. The minimum frequency for
the bucketized cuckoo methods is close to the limit imposed
by the size of the non-candidate table. If the non-candidate
table uses 3/4 of the L2 cache, we store 49,152 miss counts.
The best possible frequency bound if candidate counts are
ignored5 is thus about 2 × 10−5. The minimum frequency
of the last heavy hitter in the L2-resident cuckoo tables is
less than 6 × 10−5, a small multiple of the ideal.

We also varied the sample size. With a sample size of 106

rather than 107, the best cuckoo-based scheme identified
235 true heavy hitters rather than 273. With 108 samples
(taking 2 seconds to sample, which is no longer negligible)
the best scheme identifies roughly the same number of heavy
hitters as with 107 samples.

The actual query answers provided some potential in-
sights. The “SOPA” page ranked 29th, and its mean access
date was close to January 14th. The “2012” page ranked
85th, and its mean access date was close to January 1.

5For the Wikipedia data, about 82% of the data remains
when the candidate counts are subtracted; the impact on
this bound is therefore small.

Candidates Non-Cand. Scheme
1-wide 2-wide 4-wide

Time HH. Freq. Time HH. Freq. Time HH. Freq.

L1 ×1/2 L1 ×1/2
Regular 2.32 9 3.62 3.07 10 3.62 3.47 10 3.62
Cuckoo 3.41 12 3.62 3.93 12 3.39 4.78 12 3.45

L1 ×1/4 L1 ×3/4
Regular 2.15 14 3.39 2.55 14 2.95 3.28 16 2.72
Cuckoo 3.47 15 2.78 3.73 16 2.78 4.59 16 2.70

L2 ×1/2 L2 ×1/2
Regular 3.59 92 1.00 3.67 145 0.75 4.11 187 0.69
Cuckoo 4.49 217 0.63 4.67 260 0.61 5.72 273 0.57

L2 ×1/4 L2 ×3/4
Regular 2.77 103 0.95 2.98 146 0.78 3.68 187 0.67
Cuckoo 3.92 215 0.62 4.28 260 0.59 5.38 268 0.57

L1 L2 ×3/4
Regular 2.59 84 0.89 2.83 121 0.88 3.55 141 0.80
Cuckoo 3.74 162 0.73 4.11 179 0.72 5.24 179 0.71

Table 2: time (sec), # heavy hitters, min frequency (×10−4) on Wikipedia with separate tables (Q2).

Size
1-wide 3-wide 1-wide 3-wide

Regular Cuckoo
Time HH. Freq. Time HH. Freq. Time HH. Freq. Time HH. Freq.

L1 1.95 3 152.16 2.62 3 152.16 3.75 3 152.16 4.45 3 152.16
L2 2.57 26 1.92 3.14 16 2.78 4.10 44 1.54 5.36 20 2.47

Table 3: time (sec), # heavy hitters, min freq. (×10−4) on Wikipedia with piggybacked counters (Q2).

Comparing the throughput rates with those of Figure 6,
we notice that for this dataset, they are about 10% lower.
The decrease is due to the lower cumulative frequency of
heavy hitters in the Wikipedia data set compared with the
synthetic Zipf data set. More than 80% of the entries are
dispersed in the non-candidate table, making accesses to the
L2 sized table unlikely to be L1 hits.

Despite the absence of extreme skew, our methods were
effective on the Wikipedia data set. In just a few seconds, we
could compute precise information on hundreds of the most
popular Wikipedia URLs from 3 billion rows of raw page
visit data. The minimum frequency of these heavy hitters
was less than 6 × 10−5.

6. REFINEMENTS

6.1 Weighted Frequencies
While count is a commonly used aggregate for defining

heavy hitters, we can also support other kinds of aggregates.
We need estimates on the sample to give a good estimate
of the final total. Unbounded maxima would not qualify
because a large outlier may be missed in the sample. The
following SQL query uses counts weighted by the product
price, i.e., total sales by product. If the prices are sufficiently
bounded (and positive), the sample will be representative of
the final aggregate.

select product_id, sum(price) from sales, prices

where sales.product_id = prices.product_id

group by product_id

having sum(price) > threshold;

We can support these kinds of queries if the weights are
limited by known bounds. We make a simple modification
in our algorithm to support them: While assembling the
candidatates, we multiply each key count in the sample by
the element’s weight. We must also make sure that if there
are highly weighted items, that we always include them in
the candidate set of heavy hitters, even if their cardinality
in the dataset or the sample is low.

6.2 Compound Queries
For queries that perform some other computation before

calling the heavy hitter operator, we assume that the in-
termediate data is written to RAM. Since this intermediate
memory traffic is sequential, it can proceed at high band-
width and is unlikely to be a performance bottleneck. The
heavy hitter calculation can then proceed without compe-
tition for cache resources. If the intermediate data is too
large, our approach can run on partial data, if we have some
guarantees about the sample quality.

6.3 Two Passes
Suppose the aggregation is complicated and requires a lot

of space in each hash cell. This space reduces the effective-
ness of the validation process by limiting both the candi-
date and non-candidate table cardinalities. In such a case
it might be viable to do the heavy hitter aggregation in two
passes instead of one. In the first pass, we compute only
counts to identify and validate the true heavy hitters. In
the second pass, we compute aggregates only for them.

6.4 Query Compilation
We have generated efficient SIMD configurations for par-

ticular queries. In general, it will be the job of the query
compiler to generate appropriate configurations for a set of
aggregates and data types. On architectures with a different
mix of SIMD capabilities, alternative implementations may
be needed. While we have not explored query compilation
in detail here, we expect that the compilation complexity
is manageable using techniques like those described in [14,
19]. Compilation time is negligible since the size of the inner
loop code is small [19].

6.5 Longer SIMD
Our approach could benefit from longer SIMD registers. If

we use 256-bit registers, as provided in the recent Intel AVX
architecture, we can store four 64-bit keys or eight 32-bit
keys efficiently. These instructions will allow us to process
larger buckets efficiently, giving more trade-off options.

6.6 Applications
Imagine a user interface that allows a user to build a vi-

sualization of a data set based on an aggregation. If the
full aggregation takes too long to be interactive, the system
could instead compute just the heavy hitter aggregates and
display those immediately. The full aggregate could proceed
in the background, or could be deferred until the user ex-
plicitly indicates a need to look beyond the heavy hitters.
By employing a specialized heavy hitter algorithm, such a
system gives results to the user with small response time.

Data mining is another application where heavy hitters
may be directly used. For example, the a-priori algorithm
[1] needs to quickly identify the most frequent itemsets in a
collection. We have highlighted the differences between our
methods and the typical limitations imposed on streaming
methods. Nevertheless, if a streaming application is able to
hold a meaningful time window of data in RAM, our meth-
ods are fast enough to be able to scan that data multiple
times to compute various heavy-hitter metrics.

7. CONCLUSIONS
We have demonstrated a method to quickly aggregate the

heavy hitters of a table, by first sampling them, comput-
ing their exact aggregates and then validating, if required.
By not aggregating all distinct groups, we can focus on a
small working set composed of the most important elements
and build cache-resident structures to hold them, comput-
ing their aggregates very fast. Through perfect hashing and
careful use of SIMD operations, we minimize cache accesses
and can further increase performance close to the hardware
limit, significantly faster than the state of the art conven-
tional aggregation. Using bucketized and cuckoo hashing,
we increased cache utilization and created a menu of op-
tions. We pick the best fit for a given dataset and query.

Our experimental evaluation on both synthetic and real
data shows that we can process up to several billion records
per second for memory-resident data. Our approach leads to
a fuller and more efficient use of modern CPU capabilities.

8. REFERENCES
[1] R. Agrawal and R. Srikant. Fast algorithms for mining

association rules in large databases. In Proc. of the
20th Int. Conf. on Very Large Data Bases, pages
487–499, San Francisco, CA, USA, 1994.

[2] S. Blanas, Y. Li, and J. M. Patel. Design and
evaluation of main memory hash join algorithms for
multi-core CPUs. In Proc. of the 2010 Int. Conf. on
Management of Data, pages 37–48, 2011.

[3] P. Boncz, M. Zukowski, and N. Nes. Monetdb/x100:
Hyper-pipelining query execution. In Proc. of the 2nd
Conf. of Innovative Data Systems Research, 2005.

[4] M. Charikar, K. Chen, and M. Farach-Colton. Finding
frequent items in data streams. In Proc. of the 29th
Int. Colloquium on Automata, Languages and
Programming, pages 693–703, 2002.

[5] J. Cieslewicz and K. A. Ross. Adaptive aggregation on
chip multiprocessors. In Proc. of the 33rd Int. Conf.
on Very Large Data Bases, pages 339–350, 2007.

[6] J. Cieslewicz, K. A. Ross, K. Satsumi, and Y. Ye.
Automatic contention detection and amelioration for
data-intensive operations. In Proc. of the 2010 Int.
Conf. on Management of Data, pages 483–494, 2010.

[7] G. Cormode and M. Hadjieleftheriou. Finding the
frequent items in streams of data. Communications of
the ACM, 52:97–105, Oct. 2009.

[8] G. Cormode and S. Muthukrishnan. An improved
data stream summary: the count-min sketch and its
applications. J. of Algorithms, 55:58–75, April 2005.

[9] M. Dietzfelbinger, T. Hagerup, J. Katajainen, and
M. Penttonen. A reliable randomized algorithm for
the closest-pair problem. Journal of Algorithms,
25:19–51, October 1997.

[10] M. Dietzfelbinger and U. Schellbach. Weaknesses of
cuckoo hashing with a simple universal hash class:
The case of large universes. In Proc. of the 35th Conf.
on Current Trends in Theory and Practice of Comp.
Science, pages 217–228, Berlin, Heidelberg, 2009.

[11] W. J. Ewens and H. S. Wilf. Computing the
distribution of the maximum in balls-and-boxes
problems with application to clusters of disease cases.
Proc. of the Nat. Academy of Sc., 104(27), July 2007.

[12] S. Harizopoulos and A. Ailamaki. StagedDB:
Designing Database Servers for Modern Hardware.
IEEE Data Eng. Bull., 28(2):11–16, 2005.

[13] R. M. Karp, S. Shenker, and C. H. Papadimitriou. A
simple algorithm for finding frequent elements in
streams and bags. ACM Trans. on Database Systems,
28:51–55, March 2003.

[14] K. Krikellas, S. D. Viglas, and M. Cintra. Generating
code for holistic query evaluation. In 26th Int. Conf.
on Data Engineering, pages 613–624, March 2010.

[15] S. Manegold, P. A. Boncz, and M. L. Kersten.
Optimizing database architecture for the new
bottleneck: memory access. The VLDB Journal,
9:231–246, December 2000.

[16] G. S. Manku and R. Motwani. Approximate frequency
counts over data streams. In Proc. of the 28th Int.
Conf. on Very Large Data Bases, pages 346–357.
VLDB Endowment, 2002.

[17] A. Metwally, D. Agrawal, and A. E. Abbadi. An
integrated efficient solution for computing frequent
and top-k elements in data streams. ACM Trans. on
Database Systems, 31:1095–1133, Sept. 2006.

[18] J. Misra and D. Gries. Finding repeating elements.
Technical report, Cornell University, 1982.

[19] T. Neumann. Efficiently compiling efficient query
plans for modern hardware. Proc. of the VLDB
Endowment, 4:539–550, June 2011.

[20] R. Pagh and F. F. Rodler. Cuckoo hashing. Journal of
Algorithms, 51:122–144, May 2004.

[21] K. A. Ross. Selection conditions in main memory.
ACM Trans. on Database Systems, 29:132–161, 2004.

[22] K. A. Ross. Efficient hash probes on modern
processors. In 23rd Int. Conf. on Data Engineering,
pages 1297 –1301, April 2007.

[23] Y. Ye, K. A. Ross, and N. Vesdapunt. Scalable
aggregation on multicore processors. In Proc. of the
7th Int. Workshop on Data Management on New
Hardware, pages 1–9, New York, NY, USA, 2011.

[24] J. Zhou and K. A. Ross. Implementing database
operations using SIMD instructions. In Proc. of the
2002 Int. Conf. on Management of Data, pages
145–156, New York, NY, USA, 2002.

