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a b s t r a c t

We present an innovative approach to explore water management options in irrigated

agriculture considering the constraints of water availability and the heterogeneity of

irrigation system properties. The method is two-folds: (i) system characterization using

a stochastic data assimilation procedure where the irrigation system properties and

operational management practices are estimated using remote sensing (RS) data; and

(ii) water management optimization where we explored water management options under

various levels of water availability. We set up a soil–water–atmosphere–plant model

(SWAP) in a deterministic–stochastic mode for regional modeling. The distributed data,

e.g. sowing dates, irrigation practices, soil properties, depth to groundwater and water

quality, required as inputs for the regional modeling were estimated by minimizing the

residuals between the distributions of field-scale evapotranspiration (ET) simulated by the

regional application of SWAP, and by surface energy balance algorithm for land (SEBAL)

using two Landsat7 ETM+ images. The derived distributed data were used as inputs in

exploring water management options. Genetic algorithm was used in data assimilation

and water management optimizations. The case study was conducted in Bata minor

(lateral canal), Kaithal, Haryana, India during 2000–2001 rabi (dry) season. Our results

showed that under limited water condition, regional wheat yield could improve further if

water and crop management practices are considered simultaneously and not indepen-

dently. Adjusting sowing dates and their distribution in the irrigated area could improve

the regional yield, which also complements the practice of deficit irrigation when water

availability is largely a constraint. This result was also found in agreement with the
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scenario that water is non-limited with the exception that the farmers have more degrees of

freedom in their agricultural activities. An improvement of the regional yield to 8.5% is

expected under the current scenario.

# 2006 Elsevier B.V. All rights reserved.
1. Introduction

Water plays a vital role in meeting the demand for food of the

growing population. Irrigated agriculture, in fact, is considered

as the major user of water in the world (Seckler et al., 1999).

Recent studies suggest that the trend in the use of water is

increasing significantly leading to some conclusions that

water scarcity problem could be inevitable in the near future.

Water scarcity would tighten more the competition of water

causing more pressure into its utilization (Seckler et al., 1998).

Under this circumstance a paradigm shift appears to be

necessary, from a demand driven water management into a

more supply driven one.

To realize this, a better understanding of the processes

affecting the use of water in agriculture is necessary. Crop

level analysis is important in this case, and upscaling the

procedure to the system level is equally important to account

for the impacts of system heterogeneities (Ines et al., 2002).

Seckler (1996), Molden (1997), Ines et al. (2002), among others,

proposed water-saving concepts in irrigated agriculture,

where water productivity is proposed as a more practical

measure for an effective water use in agriculture. Compared to

the conventional notion of efficiencies (Bos and Nugteren,

1990; Bos, 1997) water productivity is considered as a more

effective measure in evaluating the performance of an

irrigation system. Efficiency indicators describe only the ratio

of water flows (i.e. going out versus coming in) and deal with

losses that can be partially recovered back into the system (in

case of water re-use). Water productivity relates to crop

outputs per unit water input or unit water output and when

considering productivity per unit evapotranspiration (ET)

there are no more losses recoverable back into the system.

Applying these concepts in the field, however, requires

rigorous experiments and data collection, opening opportu-

nities to develop methods and techniques to explore their

potentials in managing irrigated agriculture under limited

water condition. Recent studies used remote sensing (RS),

geographic information system (GIS) and simulation models to

explore these concepts by assessing performance indicators

and water balances in an irrigation system (e.g. Droogers and

Kite, 1999; Droogers et al., 2000; Droogers and Bastiaanssen,

2002; Bastiaanssen et al., 2004). They are, however, more

diagnostic in nature because only the performance indicators

were evaluated and not the management strategies that could

possibly improve the performance of the irrigation system. A

more proactive approach appears to be necessary in this regard.

In exploring ways to improve the use of water in irrigated

agriculture, it is always important to consider the issue of

optimal water use considering the limited water resource and

the limitations of the irrigation system per se, e.g. soil/water

quality, heterogeneity in soils, etc. Usually, irrigation planning

problems are based on area allocation approach wherein
cultivated areas are allocated to crops to optimize an

objective (Lakshminarayana and Rajagopalan, 1977; Jesus

et al., 1987; Paudyal and Gupta, 1990; Raman et al., 1992).

Under a situation when cropping pattern already exists,

addressing the water allocation problem seems to be less

explored. A proactive approach should be able to assist water

managers to plan the distribution of water or sowing dates or

the combination of both in the irrigated area considering the

limitations of water supply and the system to maximize an

objective. Generally, this type of problem is highly combina-

torial in nature and sometimes the decision variables are

implicit functions of the objective function requiring power-

ful search and optimization procedures (e.g. genetic algo-

rithms) and system tools in the implementation (Mostesinos

et al., 2001). This is compounded by the issue of heterogeneity

in the irrigation system. Along this line, stochastic modeling

(e.g. Hopmans, 1988; Hopmans and Stricker, 1989) could be

extremely useful to explore water saving at the system level.

It can be easily applied to describe the extent of the

population (fields) that lowly utilizes the water resources,

which should be ascribed to a water saving program.

This paper aims to present an innovative approach to

explore water management options in irrigated agriculture

using a combined RS-simulation modeling and genetic

algorithm optimization. The method is two-folds: (i) system

characterization using a stochastic data assimilation proce-

dure where the irrigation system properties and operational

management practices are estimated using RS data; and (ii)

water management optimization where we explored water

management options under various levels of water avail-

ability. We applied the method to an irrigation system during a

wheat cropping season in Northwest India.
2. Methodology

2.1. Description of the study area

The case study was conducted in Bata minor at Kaithal,

Haryana, India during the 2000–2001 rabi (dry) season

(November–April). The minor (lateral canal) is about 19 km

long offtaking from Sirsa Branch of the Bhakra Irrigation

System (at 27.758N, 76.388E). The command area is about

3669 ha and a design discharge of 0.65 m3 s�1. Climate in the

study area is characterized as semi-arid with a normal annual

rainfall of 500–600 mm. Three dominant seasons are experi-

enced in a year; summer from March to June, the rainy season,

which starts from mid June to the end of September and

winter from November to February. Cropping pattern varies

from rice during the kharif (wet) season and wheat during the

rabi (dry) season with some patches of sugarcane, mustard,

cotton, millet and fodder crop.
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The distribution of water is based on thewarabandi principle,

which is a supply driven fixed-time rotational water delivery

system (Berkoff and Huppert, 1987). Under this water delivery

system, water distribution is implemented by rostering where

the minors (laterals) along the main distributary canal (e.g.

Sirsa Branch) are classified into different groups, e.g. A, B, C,

etc., wherein each group will receive water on a rotational

basis and at a fixed time allocation. When water is allowed to

flow in the minor, the field canal (watercourse) outlets are all

open along the minor from head to tail reach, receiving a

continuous flow of water. Ideally, each farm holding in the

command area of a watercourse gets the full supply in the

watercourse for a specified period of time, proportional to its

size (Berkoff and Huppert, 1987). Water is usually allowed to

flow in the minor for two weeks depending on the available

supply during the growing season. The rotation among the

group of minors is also expected in a period of two weeks

(Tyagi et al., 2005).

The problems of water shortage and salinity are pre-

valent in the study area impacting significantly to the levels

of crop production (Boumans et al., 1988; Singh and Singh,

1997; Sakthivadivel et al., 1999). Water availability problem

seems to be distributed among the system constituents

with better opportunities for the head reach farmers. The

farmers also use groundwater to supplement the available

surface water during the growing season. Groundwater

quality, however, varies in the command area with better

qualities in the upstream than the downstream region.

Evaluating these problems at the system level requires an

innovative approach that would enable us to account for the

spatial and temporal extents of the problems during the

cropping season. Remote sensing combined with stochastic

modeling and optimization procedures would be extremely

useful in evaluating such problems at the system level.

Fig. 1 shows the location of the study area in the Bhakra,

Irrigation System.
Fig. 1 – Location of the study area in the Bhakra Irrigation
2.2. Modeling framework

Fig. 2a shows the general framework of the study where there

are two main procedures done: (i) system characterization;

and (ii) water management optimization. Our regional

modeling domain was represented by the regional application

of a soil–water–atmosphere–plant model (SWAP; Van Dam

et al., 1997), which requires distributed data, e.g. sowing dates,

irrigation dates and frequencies, soil hydraulic properties,

depth to groundwater, etc. as inputs for simulations and were

derived from remote sensing data using a stochastic data

assimilation scheme (Fig. 2b). In deriving these distributed

input data, the distributions of ET calculated from surface

energy algorithm for land (SEBAL; Bastiaanssen et al., 1998)

were matched with the distributed ET simulated by the

regional application of SWAP using genetic algorithm (GA).

The derived distributed data are then used as inputs to the

regional application of SWAP to solve our water management

optimization model with the aim of exploring the best

management options under given water management sce-

narios. Genetic algorithm was used both for data assimilation

and optimization procedures. Details of the methods are

discussed below.

2.2.1. Setting up SWAP for regional modeling
The heterogeneity of the system is accounted for by applying

SWAP in a deterministic–stochastic mode (e.g. Hopmans,

1988; Hopmans and Stricker, 1989). We assumed that the

probability density functions (pdfs) of selected stochastic

variables, e.g. sowing dates, irrigation application criterion,

soil hydraulic properties, water quality and depth to

groundwater are known. Knowing the pdf, a value of a

random variable can be derived from the distribution

function. We assumed the pdfs to be normal because we

did not have data on the distributions of these variables

during the conduct of the study. We used a parametric
, System, Haryana, India (Sakthivadivel et al., 1999).
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Fig. 2 – (a) Modeling framework used in the study: (i) system characterization (bold dashed line enclosure), and (ii) exploring

water management options (thin dashed line enclosure). (b) Schematic of the stochastic data assimilation technique where

the distributions of ET calculated by SEBAL are matched with SWAP simulations using genetic algorithm.
bootstrap to resample the distributions to generate dis-

tributed input data for the regional application of SWAP to

produce results that could describe the spatial and temporal

behaviour of the hydrologic system given the current

climatic and environmental conditions. SWAP is used to

simulate the physical processes of the homogenous land

unit derived by bootstrapping.

SWAP is a physically-based, field scale agro-hydrological

model used to simulate the interrelationships of the soil,

water, atmosphere and plant system. The model can be

applied under variably saturated flows hence favorable for

water management studies in irrigated agriculture. SWAP

solves the 1D Richards’ equation (Eq. (2.1)) to simulate the soil

water movement in the soil profile, where u is the soil water

(cm3 cm�3), h the pressure head (cm), K the unsaturated

hydraulic conductivity (cm d�1); z the soil depth taken positive

upwards (cm),C the water capacity (du/dh) (cm�1). Sa is the sink

term (cm3 cm�3 d�1) defined in case of uniform root distribu-

tion in Eq. (2.2), where Tp is the potential transpiration
(cm d�1), zr the rooting depth (cm) and aw is a reduction factor

as a function of h and accounts for water deficit and oxygen

stress (Feddes et al., 1978):

@u

@t
¼ CðhÞ @h

@t
¼ @ KðhÞ @h=@zþ 1ð Þ½ �

@z
� SaðhÞ (2.1)

SaðhÞ ¼ awðhÞ
Tp

jzrj
(2.2)

The soil hydraulic functions are defined by the Mualem-Van

Genuchten (MVG) equations (Eqs. (2.3) and (2.4)), where Se is

the relative saturation (–), ures and usat are the residual and

saturated soil water contents (cm3 cm�3), a (cm�1), n (–), m (–)

and l (–) are shape parameters of the retention and the

conductivity functions, Ksat is the saturated hydraulic

conductivity (cm d�1); m = 1 � 1/n. These functions describe

the capacity of the soil to store, release and transmit water

under different environmental and boundary conditions.

The soil hydraulic parameters a, n, ures, usat, Ksat and l are
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Fig. 3 – Estimated spatial ET from Landsat7 ETM+ for: (a)

February 2 and (b) March 8, 2001 using SEBAL (after Ines

and Droogers, 2002b).
unique for each soil type and have to be determined for the

model applications.

Se ¼
uðhÞ � ures

usat � ures
¼ 1

1þ jahjn
� �m

(2.3)

KðhÞ ¼ KsatS
l½1� ð1� S1=m

e Þm�2 (2.4)

SWAP is capable of accounting for several combinations of the

top and bottom boundary conditions. It is equipped with

numerical crop growth simulation model, e.g. WOFOST (Boo-

gaard et al., 1998) and water management modules for crop

simulation and irrigation and drainage studies. The model

simulates both the fate and transport of soil water and solutes.

The potential evapotranspiration (ETp) is calculated by Pen-

man-Monteith equation, where the components, potential

transpiration (Tp) and soil evaporation (Ep), are partitioned

using leaf area index (LAI) or soil cover fraction (SC) of the

homogenous land unit. As the soil dries, the model reduces

ETp into ETa (actual ET), where the Ep component is reduced to

Ea according to some established empirical relationships or by

Darcy’s law applied in the soil surface, and Tp into Ta using a

water stress reduction factor. The model has been used in

various applications and has been well validated under differ-

ent climatic and environmental conditions (e.g. Wesseling and

Kroes, 1998; Droogers et al., 2000; Droogers and Bastiaanssen,

2002; Van Dam, 2000; Sarwar et al., 2000; Ahmad et al., 2002).

2.2.2. Stochastic data assimilation
We used a modified-microGA (Carroll, 1998; Ines and Droogers,

2002a) to estimate the means (m0s) and standard deviations

(s0s) of the selected stochastic variables namely, sowing dates,

irrigation application criterion (Ta/Tp), soil hydraulic proper-

ties (i.e. the a and n in the MVG equations), depth to

groundwater and water quality. We chose these variables as

stochastic as they are believed to be the most sensitive

affecting the spatial and temporal variations of ET in the study

area (Droogers et al., 2001a; Droogers et al., 2001b; Ines and

Droogers, 2002a; Jhorar et al., 2002). The modified-microGA

uses a micro population to sample the global search space. The

steps used for the stochastic parameter estimation technique

are given as follows:
(1) C
ode the parameters (i.e. means and standard deviations

of each variable) into binary sub-strings (0s and 1s) and

arrange them as an array to form a chromosome.
(2) In
itialize the micro-population to generate initial set of

chromosomes.
(3) E
valuate each chromosome by decoding them into their

decimal values (base 10) and use them as inputs for the

regional SWAP modeling. Here, the probability density

function of each variable in a chromosome is resampled to

generate a combination of deviates that would represent

a homogenous soil unit to be simulated by SWAP. The

resampling is done many times to generate a distribution of

ET in the system. The fitness of a chromosome is evaluated

by comparing the distributions of ET simulated by SWAP

and from SEBAL for the specific days of interest (Fig. 2b).
(4) B
ased on their fitness, the chromosomes are selected to

mate (now in binary form) in the mating pool. Each

selected chromosome is randomly paired a mate then
exchange genetic information via crossover, and subject to

mutation (in this case creep mutation; Carroll, 1998). In a

modified-microGA the population is allowed to restart if

the bits’ positions in the micro-population are nearly 90%

similar.
(5) S
teps 3–4 are repeated to many generations until the

solution is achieved. Further details on genetic algorithms

can be seen in Goldberg (1989).

We applied the method to the wheat (Triticum aestivum)

cropped areas in the study area during the 2000–2001 rabi

season. We used two Landsat 7ETM+ images obtained in

February 4 and March 8, 2001. Fig. 3a and b show the distr-

ibutions of ET calculated by SEBAL for the selected images.

The wheat cropped areas were delineated by truncating the

skewed ET distribution to form a normal curve and the pixels

under the normal curve are the only ones used in the ana-

lysis. Table 1 shows the results of the data assimilation

procedure. The results are used as inputs to the water

management optimization. Further details can be seen in

Ines and Droogers (2002b).

2.2.3. Water management optimization model
2.2.3.1. Model formulation. After system characterization, we

explored water management options using a simple water

management optimization model described as follows. We

assume the properties, ki ¼ fp j¼1; ��� ;mg, of an irrigation system
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Table 1 – Genetic algorithm solution for the regional
inverse problema

Stochastic variables Mean S.D.

a 0.0212 0.0252

n 1.4144 0.0381

Emergence date November 22 7 days

Depth to groundwater 435 cm 33.5 cm

Irrigation scheduling (Ta/Tp) 0.72 0.28

Irrigation water quality 2.4 dS m�1 0.74 dS m�1

Note: Ta, actual transpiration; Tp, potential transpiration.
a After Ines and Droogers (2002b).
as stochastic, i.e. p j ¼ Nðm j; s
2
j Þ, where i = 1, . . ., N; j is a running

index for system properties; m the number of system proper-

ties of interest, a regional water management optimization

model can be formulated as follows. Consider N 2M, where

N is the number of random simulation units (i.e. k1, k2, . . ., kN�1,

kN); and M the population of simulation units in the system

(S), the objective function—maximizing regional yield (Zmax),

can be defined as:

Zmax ¼max
N2M

1
N

XN
i¼1

Yi

 !
(2.5)

subject to these constraints:
a) w
ater availability

1
N

XN
i¼1

Iri ¼ QaveS (2.6)
b) r
ange of water management practices

m1 min � m1 � m1 max (2.7)

s1 min � s1 � s1 max (2.8)
c) r
ange of crop management practices

m2 min � m2 � m2 max (2.9)
s2 min � s2 � s2 max (2.10)

we define the above variables in Eqs. (2.5) and (2.6) in funct-

ional forms as:

Iri ¼ ffNðm1; s
2
1Þ; Nðm2; s

2
2Þ; Nðm3; s

2
3Þ; Nðm4; s

2
4Þgi (2.11)

Yi ¼ ffNðm1; s
2
1Þ; Nðm2; s

2
2Þ; Nðm5; s

2
5Þgi (2.12)

QaveS ¼ f ðQc;QgwÞS (2.13)

The definitions of the variables and parameters in Eqs. (2.5)–

(2.13) are given as follows. The decision variables are defined

by the: (i) water management variable, represented by the

irrigation scheduling criteria practiced by the farmers (Ta/Tp)

expressed by the parameters, m1 (mean) and s1 (standard

deviation); (ii) crop management variable represented by the

emergence dates of the crops (a surrogate for sowing dates in

SWAP) expressed by parameters, m2 and s2. The seasonal

irrigation (Ir) in a random simulation unit i is a function of
the water and crop management practices [i.e m1, s1 and m2, s2]

and soil properties [i.e. m3 and s3 for a; m4 and s4 for n]. Yield (Y)

is a function of crop and water management [i.e. m1, s1 and m2,

s2] and water quality (i.e. m5, s5). Crop yield is simulated by

WOFOST (Boogaard et al., 1998), a dynamic, process-based,

crop simulation model. WOFOST responds systematically to

the stresses caused by the management and water quality

variables considered. Definitions of the other variables are

given as follows: QaveS is the seasonal average water available

in system S (boundary of M) from canal and groundwater

supply; Qc the canal water; Qgw the groundwater; seasonal

average water available is defined as an areal-average water

supply (ha mm ha�1).

2.3. Genetic algorithm implementation

Take the relaxed constraints:

LL � 1

N

XN
i¼1

Iri � UL (2.13)

where

LL ¼ ð1� fÞQaveS (2.14)

UL ¼ ð1þ fÞQaveS (2.15)

Here, we used f = 0.05, this value is arbitrarily chosen to

give bounds to the optimal region of the system-wise,

seasonal average of Ir; the narrower the non-penalized

region around Qave, the more-unique the solutions would

be. The water management optimization model was

implemented in GA using the penalty approach of Goldberg

(1989) (Eq. (2.16)), where fitness is a measure of the chromo-

some, k ¼ fm1; s1;m2; s2g, ’‘ is a penalty used to penalize a

chromosome violating Eqs. (2.14) and (2.15). Limit is the

bounds ½‘ ¼ 1ðLLÞ; 2ðULÞ� of the allowable range of average

water use.

fitness ðkÞmax ¼Max
1
N

XN
i¼1

Yi �
X2

‘¼1

’‘
1
N

XN
i¼1

Iri � Limit‘

 !2
8<
:

9=
;
(2.16)

In the application, the means and standard deviations of the

water quality variable and soil properties are assumed to be

initially known and taken from Table 1. Since the groundwater

table is relatively deep, we assumed the soil (500 cm depth) to

be free-draining (the bottom boundary condition in under unit

hydraulic gradient). This condition, however, is not always

wise to impose because we exclude entirely the interaction

between the vadose zone and the groundwater. The soil sys-

tem was assumed to be relatively dry during the start of

simulations. It was assumed that the soil has an average initial

salinity level of 4 dS m�1. Several water management scenar-

ios were considered to observe the solutions of the water

management optimization model, when water is severely

limiting (Qave � 200 mm), and when it is non-limiting

(Qave � 600 mm). The procedure used to solve the water opti-

mization problem is similar to steps 1–5 in Section 2.2.2, only,

the fitness function used is given by Eq. (2.16), and the chro-

mosome is given by k.
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2.4. Water productivity

We evaluated three levels of water productivity using the

optimal combinations of management practices—PWIrrigated,

PWDepleted and PWProcess (Eqs. (2.17)–(2.19)) (Molden, 1997),

where PW stands for water productivity (kg m�3), ETa for

actual evapotranspiration (mm), Ta for actual transpiration

(mm), N is the number of random homogeneous units, C a

constant equal to 0.1 ha mm m�3 and i an index for homo-

genous land unit.

PWIrrigated ¼ C
1
N

XN
i¼1

Y

Ir

� �
i

; if Iri ¼ 0; PWIrrigated ¼ 0 (2.17)

PWDepleted ¼ C
1
N

XN
i¼1

Y

ETa

� �
i

(2.18)

PWProcess ¼ C
1
N

XN
i¼1

Y

Ta

� �
i

(2.19)

PWIrrigated defines the efficiency of the total irrigation to pro-

duce an economic yield. PWDepleted defines the yield conver-

sion per unit of ET loss. PWProcess defines a higher order

of water use efficiency, where the actual amount of water

transpired is related to yield.
Fig. 4 – Solution of the water management optimization

model when average seasonal water available in the

system, QaveS = 200 mm: (a) evolution of maximum fitness

and (b) average yield and irrigation as a function of

number of generations.

Table 2 – Best management options derived by genetic
algorithma

Average
water
supply (mm)

Water
managementb

Crop
managementc

Mean S.D. Mean S.D.

200 0.68 0.03 November 11 12

300 0.73 0.28 November 11 20

400 0.88 0.13 November 26 2

500 0.93 0.06 November 18 10

600 0.94 0.06 November 18 19

Note: A 91 mm rainfall was recorded during the cropping season.
a Genetic algorithm parameters used in the water management

optimization are as follows: population size, 10; number of

generation, 10; probability of crossover, 0.50; probability of creep

mutation, 0.10; length of string, 40 bits; penalty coefficient, 10 for

any violation; and the rate of resampling in extended SWAP is

250.
b Irrigation scheduling criterion, Ta/Tp (a 100 mm of water is

applied when this criterion is met).
c Sowing dates, represented here by the emergence dates;

standard deviation (S.D.) is in number of days.
3. Results and discussions

3.1. Best management options

Fig. 4a and b show the solution of GA to the water

management optimization model when the average water

available is�200 mm. GA is capable of converging to the most

probable combination of the crop and water management

practices to achieve the best possible regional yield while not

violating the imposed average water use limits. Similar

trends are observed with the other water management

scenarios (Table 2). The limited number of generations was

deliberately used to minimize the computational time

because every chromosome (k) in a generation is resampled

250 times to capture the spatial behaviour of the system

(Table 2). This option was wise because with the solute

transport module invoked together with normal SWAP

routines require significant amount of time to complete

simulations for one cropping season. The problem of

computational time would not be a big hindrance in the

near future. Cieniawski et al. (1995) and Cai et al. (2001)

observed that GA can arrive at the global or near global

solution between 10 and 20 generations even with complex

water management optimization models. We tried extending

the number of generations to solve our water management

scenario (�200 mm) and found approximately similar results

after the 10th generation (Fig. 4b).

The results in Table 2 show that when water is very

limited, equitable water distribution can increase the overall

system performance. This means that the limited water

supply should be spread equitably among the stake-

holders. This finding is analogous to the principle of

warabandi (Berkoff and Huppert, 1987; Bandaragoda, 1998).

In this case, �68% of the farmers can allow water stress
(1 � Ta/Tp) levels between 29 and 35% to their crops before

irrigation. To achieve this, a wider distribution of sowing

dates is required and they should be done earlier in the

growing season. During times when water is non-limiting
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(�600 mm) high equity of water distribution will result to

better benefits for the farmers. It is obvious, however, that the

farmers have to share the convenience of the abundant water

supply as they have also higher degrees of freedom in their

planting activities.

The results also show that when water supply is just

enough (�400 mm), a relative degree of inequity in water

distribution can be tolerated. The farmers should sow their

seeds at later dates and in a synchronized manner; from

November 24 to 28 about 68% of the area should be grown

to wheat crops already. This is difficult to achieve without

farm mechanization. It is likely, however, that this result

is sub-optimal as it is very different from the trends in

Table 2.
Fig. 5 – (a) Crop yields at different levels of water availability ge

Distributions of yields and water productivity relative to irrigatio

with optimization (N = 250 realizations) for 2000–2001 rabi (dry)
For the real world case scenario (�300 mm) the solution

shows a good agreement between the optimal water manage-

ment practice with that of the existing one (Tables 1 and 2),

only, the optimal sowing date should be done earlier with

wider distribution in the growing season. Early sowing dates

may not be always possible since the previous crop could be

still standing in the field. The reason is unclear why equity in

water distribution should not be of high priority in this case. A

possible explanation could be, the wider distribution of sowing

dates may give some farmers greater degrees of freedom to

use more water than the others. However, this may have

resulted to the collective improvement of the expected

regional yield of wheat, as this is only the objective of the

water management optimization model.
nerated from the best management practices. (b)

n applied, PWIrrigated: (i) measured (N = 108 farmers) and (ii)

season. (Legend: (*) outliers, (*) extreme values).



a g r i c u l t u r a l w a t e r m a n a g e m e n t 8 3 ( 2 0 0 6 ) 2 2 1 – 2 3 2 229
Note that these analyses were based on the assumption

that average water supply comes from surface and ground-

water. Debates on the extent of groundwater contribution to

surface water for surface irrigation can be addressed by the

results in Table 1 as follows: the average salinity level of the

irrigation water according to Table 1 is 2.4 dS m�1, since we

know that the salinity level of canal water is less than 0.5 and

of groundwater about 4 dS m�1, the ratio of groundwater to

canal water is approximately 60—40, near to the estimates of

Tyagi et al. (2005) for 2000–2001 rabi season in Bata minor.

Exploring further this approach to estimate groundwater use

in surface irrigation is certainly promising.

3.2. Crop yields and water productivity

Fig. 5a shows the expected regional yields with the different

water management scenarios. Apparently, there are outliers

at the lower ends of the distributions—these are probably the

simulated yields with very little amount of irrigation

combined with high levels of salinity. Considering the
Fig. 6 – (a) Water productivity relative to: irrigation applied, PWIrr

the best management practices; (b) evapotranspiration, PWDeple

the best management practices; and (c) crop transpiration, PWPr

the best management practices. (Legend: (*) outliers, (*) extrem
quartiles (q1, q3) above the outliers, with very limited water

supply, about 50% of the farmers could still expect yields

between 4500 and 5200 kg ha�1. The earlier date of sowing

could have contributed to the yield level due to the effect of

higher accumulated solar radiation. For the actual case, the

expected regional yield is �4800 kg ha�1 (slightly below the

median), which is about 8.5% higher than the observed

average yield (�4400 kg ha�1, Hussain et al., 2003). From our

cropped area delineation procedure in Section 2.2.2, about

90% of the total command area of Bata minor was planted to

wheat during 2000–2001 rabi season, very near to the data

collected by Tyagi et al. (2005) from 108 farmers. Translating

the possible improvement in the volume of produce would

be on the order of 1.4 Mt of wheat grains. Fig. 5b shows the

distributions of yield and water productivity with current

practices and with optimization. Integrated stochastic

modeling seems to allow more opportunities for sampling

the system giving more chance to explore the system better

provided that all the models used are properly calibrated.

Obviously, with higher water supply increases the produc-
igated, at different levels of water availability generated from

ted, at different levels of water availability generated from

ocess, at different levels of water availability generated from

e values).
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tivity of wheat as there is enough water to meet the crop

water and leaching requirements (Fig. 5a). But as the law of

diminishing return holds, there is an optimum point where

the marginal benefit justifies any further increase in water

inputs—beyond this point, water can be saved. The decrease

in yield could be attributed to the excess water, which causes

oxygen stress to the crops. SWAP applies the product of daily

stresses (water/oxygen and salt) to reduce the actual biomass

production in a day. The sink of wheat ET during the rabi (dry)

season caused by reduced irrigation applications will be

replenished by rainfall during the monsoon period. Some of

the salts that would possibly accrue in the surface will be

washed out by surface runoff into the surface drainage

system (Section 2.1). In future modeling, however, consider-

ing the salinity built-up in the soil surface as a constraint

in the optimization problem would provide a broader

consideration of the existing problems in the study area.

Fig. 6a–c show the water productivities calculated from

the derived optimal management strategies. Water produc-

tivities vary with levels of water supply. An intrinsic

property of PWIrrigated is that it decreases asymptotically

with increasing water supply (Ines, 2002). No linear relation-

ship either is observed on the amount of water applied and

PWDepleted, and PWProcess. This is likely to be explained by the

limiting factors that dominate crop growth when water

applied is very limited or in abundant supply, which are

salinity, water and oxygen stress. Due to the effect of

antecedent soil moisture and rainfall in the growing season

(here, 91 mm), crops still could produce some yields when

water is very limited. Relatively higher yield with low ET

would produce high PWDepleted. Note here that wheat is

moderately tolerant to salts. As the depth of water applied

increases, ET also increases, and the yield tends to increase

as this also reduces the levels of water and salinity stress

experienced by the crops. But at some point where the

atmospheric demand is fully met, ET does not increase any

longer; the excess water would be loss through surface

runoff or by percolation, thus leaching the salts. As

mentioned above, too much water would induce oxygen

stress to the crops, reducing crop yields under such a

condition. Note also that we considered the soil as spatially

variable in the analysis, hence, it does not have similar

hydraulic behavior in every homogenous land unit. A recent

survey of Zwart and Bastiaanssen (2004) shows that the

measured water productivities (PWDepleted) of wheat ranged

from 0.6 to 1.7 kg m�3 which coincides with our results

(Fig. 6b for 300 mm scenario). The observed average

PWIrrigated is 1.5 kg m�3, our solution suggests an optimal

value of PWIrrigated�1.8 kg m�3 (Fig. 6a) and average PWProcess

of �1.6 kg m�3 (Fig. 6c).

3.3. Implications to water management

Equitable water distribution can improve the performance of

the irrigation system. When equity is high, fairness to

farmers’ share to what is available in the system is highly

regarded. In our perspective, it appears that a rotational

water delivery scheme at the minor (lateral) level could

improve further the performance of a warabandi system.

From field observations, the only portion of the canal
hierarchy where flexibility could happen under this rigid

water delivery scheme is at the minor canal. The periods

when water is allowed to flow in the canal are windows of

opportunity to rotate the water deliveries to the field canals

(Section 2.1). There is a limitation of this observation. The

minor canals are not designed to handle such a rotational

water delivery. An option is to make a zonation along minor

canals, e.g. head, middle and tail sections (meaning group of

watercourses), where rotation can be done in an equitable

manner every time water is available. Slight structural

amendment could be done in this case like installing water

level control structures at each zone boundary. The offtake

structure of the minor could control the flow of water in the

canal. Note, however, that every decision made at the lower

level of the canal hierarchy could impact to the decisions

upstream because of the possible change in the flow regime.

Further study is needed to evaluate this hypothesis, perhaps

using a canal water management model coupled with an

agro-hydrological model.

A need to delineate the impact of groundwater in the

solution is necessary to make better recommendations for the

real situation in the field. As mentioned earlier, making use of

the different salinity levels of groundwater and canal water in

combination with inverse modeling allows estimating this

groundwater contribution (Gieske et al., 2000; Ahmad et al.,

2002).
4. Summary and conclusions

The purpose of this paper is to explore water management

options in irrigated agriculture by using a combined RS-

simulation modeling and genetic algorithm optimization. We

used remote sensing to characterize our regional system via a

stochastic data assimilation approach, and then the derived

data were used as inputs to our water management

optimization model. Although the analyses were limited to

the conditions imposed in the water management optimiza-

tion model, some basic but useful findings have been drawn on

how to make use to the best possible way the limited water

supply available in an irrigation system.

Results showed that regional crop productivity can be

improved by considering water and crop management

practices as one, not as independent entities under limited

water condition. Adjusting sowing dates and their distribu-

tions in the irrigated area were found to impact positively the

regional yield. This management option could complement

the practice of deficit irrigation. On the average, the farmers

could allow their crops to experience water stress of about 27%

before irrigation, with the current conditions in the study area.

This could result to an increase of about 8.5% in the expected

regional wheat yield and regional water productivity (PWPro-

cess) of �1.6 kg m�3.

When water supply is very limited, high equity in water

distribution could result to a better performance of the

irrigation system, and this should be also complemented by

an earlier date of sowing in the growing season with wider

distribution. This is also true when water is non-limited but

the farmers have higher degrees of freedom in their planting

activities. There is an optimum point where the benefit would
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justify additional use of water for irrigation, beyond this point,

water should be saved.

In a more proactive mode, if seasonal climate forecast is

available, the approach can be applied to explore water

management decisions before the wheat growing season

(Hansen and Ines, 2005). In future modeling, we recommend

considering the salinity built-up in the soil surface as a

constraint in the optimization problem. This would provide

a broader consideration of the existing problems in the

study area.
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