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Abstract. Remotely sensed (RS) data is a major source to obtain spatial data required for hy-
drological models. The challenge for the future is to obtain besides the more direct observable
data (landcover, leaf area index, digital elevation model and evapotranspiration), non-visible
data such as soil characteristics, groundwater depth and irrigation practices. In this study we
have explore the option of using inverse modeling to obtain these non-RS-visible data. For
a command area in Haryana, India, we applied for the 2000–2001 rabi season a RS-GIS-
combined inverse modeling approach to derive non-RS-visible data required in the regional
application of hydrological models. A Genetic Algorithm loaded stochastic physically based
soil-water-atmosphere-plant model (SWAP) was developed for the inverse problem and used
in the study. The results showed good agreement with the inventoried data such as soil hy-
draulic properties, sowing dates, groundwater depths, irrigation practices and water quality.
The derived data could be used to predict the state of the system at any time in the cropping
season, which can be used to evaluate operational management strategies.

Key words: evapotranspiration, Genetic Algorithm, inverse modeling, irrigation system char-
acteristics, operational management, simulation models

Introduction

The two major threats to agricultural production in and arid semi-arid regions
are water shortage and salinity. Numerous field experiments have been under-
taken to study their impacts on production in irrigated agriculture over the last
decades. These experiments have contributed substantially to our knowledge
and understanding of the soil-water-salt-plant relationships and have been
used successfully to manage water more productively. However, two major
constraints have become evident: (1) the limitations to predict long-term ef-
fects and (2) the impact on scales beyond the field level. Simulation models
can be useful tools to overcome these limitations of this so-called classical ap-
proach to field experiments (Droogers et al. 2000a). Models dealing with the
complex soil-water-salt-plant relationships are readily available these days,
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but are still mostly field scale in nature. Bresler & Dagan (1983) argued
that estimation errors in spatial data might be much larger than errors caused
by models. Therefore, careful consideration to the spatially attributed data is
paramount in developing and understanding productive and sustainable water
management in irrigated agriculture. Recently, these physically based field
scale models have been applied successfully in a distributed mode, where
an area is divided in so-called homogenous sub-areas (e.g. Droogers et al.
2000b), but obtaining spatial data have been a major constraint.

Developments in remote sensing (RS) techniques have eased the process
of obtaining spatially distributed data. Land cover, digital elevation models,
snow cover, cloudiness, rainfall, and more recently evapotranspiration and
biomass estimates are information obtainable from RS. Accuracy of these
data depends on sensor used, number of images, and the amount of ground
truthing included. These data are essential for hydrological models, but phys-
ically based field scale models require additional data often not observable
from RS such as soil hydraulic properties, sowing dates, water management
practices and depth to groundwater.

Before the advent of advanced spatial information systems and methods,
media scaling was often used in deriving soil hydraulic properties for regional
studies. In media scaling (Miller & Miller 1956) a scaling factor is derived
to describe the representative characteristics of the soil in a regional scale,
and then modeling is done with the scaled parameters. The areal outputs are
obtained from averaging the outputs of the series of simulations.

Inverse modeling is a promising technique to obtain data difficult to
measure directly. Inverse modeling differs from parameter estimation. The
objective of inverse modeling is to obtain the value of one or more physical
entities, while parameter estimation is used to get observed and simulated
values as close as possible by changing values of, often, non-physical model
parameters. This means that for inverse modeling a physically based model is
required. In reality no model is purely physically based or purely parametric
based so the difference between inverse modeling and parameter estimation
might be sometime blurred.

The inverse modeling approach was also applied in deriving the so-called
effective soil hydraulic functions that could represent the hydrological charac-
teristics of a region (Feddes et al. 1993a). In recent years, regional application
of field scale models has been made possible by using GIS data. This ap-
proach is based on dividing a region in sub-regions and assuming that within
each sub-region the spatial variation is negligible. For each sub-region a one-
dimensional model could be applied (e.g. Droogers et al. 2000b; Ines et al.
2001). Soil hydraulic parameters in this case could be estimated using pedo-
transfer functions, where easily measurable soil characteristics (texture, bulk
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density) are converted to required soil hydraulic functions (e.g. Tsuji et al.
1994; Wösten et al. 1998).

The inverse method offers an interesting research avenue at the regional
scale where RS data could be used as reference data. Evapotranspiration has
been given focus on this regard (Feddes et al. 1993b). Soil moisture was
also attempted but is less attractive due to soil depth limitation (Burke et al.
1997). Evapotranspiration is promising because of its two components, the
soil evaporation, which describes most of the activities at the upper 10–15 cm
of soil (Allen et al. 1998), while the transpiration accounts for the activities
as far as the roots can influence. Jhorar et al. (2001) investigated the use of
evapotranspiration (ET) and transpiration (T) to estimate the effective soil
hydraulic functions of three soils using a physically based field scale model
SWAP (Van Dam et al. 1997) and a parameter estimator PEST (Watermark
1994). They concluded that ET is enough to obtain the so-called effective
soil hydraulic functions (retention and hydraulic conductivity curve), which
were able to estimate ET, but did not relate this to actual soil characteristics.
Ines & Droogers (2002) studied the use of measured ET and soil moisture
as criteria, rather than simulated data, to obtain soil hydraulic characteristics.
They concluded that ET is not enough to derive the soil hydraulic parameters,
but that soil water was more adequate.

Droogers & Bastiaanssen (2002) used RS-derived ET from Landsat TM
data for two acquisition days in estimating the spatial distributions of soil
hydraulic parameters, emergence date and irrigation practices using an exten-
ded SWAP model, in an irrigation system at Gediz Basin, western Turkey.
The spatial data obtained were used to understand the regional water balance
and to estimate irrigation performance indicators. The means and standard
deviations of the three variables were set as unknown and were estimated.
The spatial distributions of RS-derived ET during these two dates were used
to match the simulated ET distribution at these dates from several SWAP
simulations. In their study, a manual fitness was used in changing the values
of the means and standard deviations until the spatial distributions of ET from
SWAP approximately agree with the ET derived from RS. They concluded
that a robust automated optimization procedure, non-sensitive to local optima,
could improve the parameter estimation substantially. Genetic Algorithms
(GAs) are proven to be flexible and robust in complex search and optimization
problems and have been applied to numerous water resources studies (e.g.
Wang 1991; McKinney & Lin 1994; Cieniawski et al. 1995; Franchini 1996;
Oliviera & Loucks 1997; Seibert 2000). A GA mimics the process of natural
selection and adaptation in developing the ultimate species that can withstand
the test of the environment. In the words of Goldberg (1989): “The implicit
parallelism in the search of a solution allows the algorithm to explore multiple
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points in the search space, which lessens the probability of being trapped to a
local optimum; this attribute made GA distinct from its traditional cousins”.
In other words: since GA includes also a random search component, local
minimum can be avoided. This makes the GA technique potentially strong
for applications in highly non-linear cases such as soil-water-salt-plant in-
teractions. The main drawback of GA is the high number of function calls
required for finding an optimum.

The objective of this study is to explore options to obtain spatial data for
an irrigation system using an inverse modeling approach based on remotely
sensed evapotranspiration estimates, a physically sound simulation model and
an optimization procedure based on Genetic Algorithms.

Methodology

Study area

The Bata Minor is an offtake from the Sirsa Branch (29.75◦N, 76.38◦E) of the
Bhakra Irrigation System at Kaithal, Haryana, India. The minor has a length
of 19 km with a cultivated command area of 3669 ha. It has a design discharge
of 0.65 m3s−1. Climate in the study area is semi-arid with normal annual
rainfall of 500 to 600 mm. Three dominant seasons are experienced during
the year, the summer (March to June), the rainy season, which starts from mid
June to the end of September and the winter season (November to February).
Cropping pattern varies from rice during the kharif (wet) season and wheat
during the rabi (dry) season with some patches of sugarcane, mustard, cotton,
millet and fodder crop. Problems of water shortage and salinity are prevalent
in the area and are impacting significantly the levels of production. Water dis-
tribution is based on warabandi principle, which is a supply driven rotational
water delivery system. The water availability problem seems to be distributed
equally to the constituents. Farmers have access to shallow tubewells and use
groundwater to supplement the available surface water. Groundwater quality
is varying along the command area.

RS model SEBAL

Surface Energy Balance Algorithm for Land generally known as SEBAL
(Bastiaanssen et al. 1998) is a remote sensing model for estimating daily
actual ET of land surfaces. SEBAL calculates the instantaneous and 24-h
surface heat flux. SEBAL is based on the well-known surface energy balance
equations:

Rn = K ↓ −K ↑ +L ↓ −L ↑ (1)
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Rn = H +G+ λET (2)

whereRn is net radiation,K ↓ andK ↑ are incoming and outgoing shortwave
radiation, L ↓ and L ↑ are incoming and outgoing longwave radiation, H is
sensibel heat flux, G is soil heat flux, and λET is latent heat flux. All units in
W m−2.

Remotely sensed estimates of surface albedo, surface temperature and
surface thermal infrared emissivity are used to compute reflected shortwave
and emitted longwave radiation away from the land surface. The soil heat
flux is computed as an empirical fraction of the net radiation using surface
temperature, surface albedo and the NDVI. The sensible heat flux is computed
first for two specific land surfaces: one pixel with high surface temperature
where latent heat flux is negligible (dry pixel) and one for cold pixel where
sensible heat flux is negligible (wet pixel). The aerodynamic resistance is the
transfer coefficient for heat transport and is calculated from the logarithmic
wind profile between the blending height, where the wind speed is areally
constant and surface roughness length for momentum transfer. Combining
the aerodynamic resistance with the extremes of sensible heat flux allows the
assessment of the range of near-surface vertical air temperature differences
in the specially selected land surfaces. The near surface temperature is used
to interpret the vertical air temperature differences over the region of interest
assuming linearity between the surface temperature and the vertical thermal
gradients in the air layer adjacent to the land-atmosphere interface. The res-
ulting evaporative fraction describes the energy partitioning of the surface
energy balance as the latent heat flux/net available energy fraction, with the
net available energy being defined as the difference in net radiation and soil
heat flux. The instantaneous evaporative fraction is shown in literature to be
similar to the 24-h evaporative fraction (Brutsaert & Chen 1996), thus allows
the estimate of the daily latent heat flux. Detailed description of SEBAL can
be found in Bastiaanssen et al. (1998).

Two Landsat 7 images, February 4 and March 8, 2001, were used in this
study. These were strategically chosen such that the crops would be at their
early (development) and late season stage.

The extended SWAP model with Genetic Algorithm

The SWAP model
The SWAP model (Van Dam et al. 1997) is a one-dimensional detailed agro-
hydrological model that is capable of simulating the relationships of the soil,
weather, water and plants with high physical basis. The core of the model is
the Richards’ equation where the transport of soil water is based on head
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differences in space and time. The Mualem-Van Genuchten equations are
used to describe the soil hydraulic functions (Van Genuchten, 1980):

θ(h) = θres + θsat − θres
(1 + |αh|n)m (3)

K(Se) = KsatS
λ
e

[
1 −

(
1 − S 1

m
e

)m]2

(4)

Se = θ − θres
θsat − θres (5)

where θ is volumetric water content (cm3 cm−3), h is matric pressure head
(cm), θres is residual water content (cm3 cm−3), θsat is saturated water content
(cm3 cm−1),K is hydraulic conductivity (cm d−1),Ksat is saturated hydraulic
conductivity (cm d−1), α (cm−1, n (–) and λ (–) are fitting parameters, and m
is defined as 1 − 1/n.

The water balance is solved by considering two boundary conditions,
the top and bottom boundaries. These could be either flux or head con-
trolled. Evapotranspiration is estimated using the Penman-Monteith equation
as defined by Allen et al. (1998). SWAP calculates the actual ET in a two-step
approach. First, potential ET is calculated using the minimum value of canopy
resistance and the actual air resistance, and then actual ET is calculated using
the root water uptake reduction due to water and/or salinity stress based on
the method of Feddes (1978) and Maas & Hoffman (1977), the compounded
effect is assumed as multiplicative. Field and regional drainage system can be
also modeled. The model is also capable to handle the transport of solute in
the soil profile. Crop growth can be studied using the linear production model
of Doorenbos & Kassam (1979) and a detailed crop growth model WOFOST
(Supit et al. 1994). The detailed crop model was used in this study.

The SWAPGA stochastic model
The original one-dimensional SWAP model was applied at the regional scale
by assuming a normal distribution for the following six input data: soil para-
meters (α and n, emergence dates, depth to groundwater, irrigation practices
and irrigation water quality. This means that the spatial variation for the entire
area is described by 12 parameters: the mean and standard deviation for each
of the six parameters. The Genetic Algorithm was used as optimization pro-
cedure for these parameters with as search criteria the spatial distributions of
RS-derived actual ET of wheat during February 4 and March 8, 2001 (see Eq.
6). Genetic Algorithms are mathematical models of natural genetics that try to
mimic the power of nature to develop the fittest species that could withstand
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the test of the environment. Timeline is an element to the development of
species. Natural selection and reproduction are operating in every generation
to arrive with the best individual, which is a set of solution to the search and
optimization problem. The three genetic operators: selection, crossover and
mutation are invoked repeatedly until the fittest is developed. Comprehensive
references of GAs can be found in Goldberg (1989), Michalewicz (1996),
Haupt & Haupt (1998) and among others.

A slightly modified version of the Carrol’s securGA (small-elitist-creep-
uniform-restarting GA; Carroll 1998) as described by Yang et al. (1998) was
applied in this case. We called this version modified-µGA (Ines & Droogers
2002). An overview of the integrated model is shown in Figure 1.

The stochastic input data used are: soil properties (α and n in eq. 3),
emergence dates, groundwater depth, irrigation practices and the quality of ir-
rigation water (combined surface and groundwater). Irrigation practices were
expressed in one single parameter: the maximum allowable water stress for
the crop defined as the ratio of actual over potential crop transpiration. All
the stochastic input data were assumed to be normally distributed and are
expressed by their means and standard deviations.

The means and standard deviations of the selected unknown parameters
are coded in the GA, with 10-bits string each. GA will try to come up with
the best possible combination of the parameter estimators. A total of 150 gen-
erations is used in this application and, based on the performance of previous
generations GA will change the 10-bits string for each parameter. At the end
of the 150 generations the best, not necessarily the last, is considered as the
optimal. Each 10-bits string (individual) has to produce a spatial distribution
of actual ET over time. A bootstrap routine was used for this where 50 real-
izations for each model parameter, defined by mean and standard deviation,
was used in the simulations. The relatively small number of generations and
low resampling rate are mainly due to computational time (about 24 hours on
a Pentium 4), which would not be a main constraint in the near future.

Fitness function
The fitness function determines the measure of each string, which would be
used as a basis of their occurrence in the future generations. As mentioned
before, the spatial distributions of the ET for wheat from SEBAL (ETSEBAL)
and SWAP (ETSWAP ) during February 4 and March 8 are used as criteria. To
use this distribution of ET values clusteres with a class width of 0.2 min each,
were calculated. The fitness function used is:

f itness(k) = 1
1

2NT

∑2
T=1

∑NTT
j=1 |ETSEBAL − ETSWAP |Tj

(6)
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Figure 1. The extended SWAP model with Genetic Algorithm.

where, NT is the number of ET class during time of acquisition (T ), fitness is
the string measure, k is the position of string and j , a running index.

SWAP input data

Weather data from a station in the vicinity of the Bata Minor were used in
the simulations as upper boundary condition for the SWAP model. The soil
in the area ranges from clay loam to sandy clay loam. The groundwater depth
is high (about 200 cm below ground surface) at the head reach and low at
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Figure 2. Spatial distribution of ET over the study area as derived from Landsat 7 images: (a)
February 4 and (b) March 8, 2001.

the tail reach during the onset of the season, and receded to about 450–500
cm at the end of the cropping season. In the modeling, since the problem is
highly parameterized, an assumption that depth to groundwater is spatially
variable but not over time was applied. A 500 cm soil profile was used in the
simulations. Salinity of soil is prevalent in the area; an average of 4 dS m−1

was used as the initial load in the soil profile. At the onset of simulations it
was assumed that a pre-season irrigation was done that brought the soil water
status at field capacity (h = −100 cm).

The ratio of actual over potential transpiration was used as irrigation
scheduling criterion. Irrigation depth was based on the amount of water
required to bring a field back to field capacity plus 20 mm.

Results and discussions

Remotely sensed evapotranspiration estimates

Figure 2 shows the spatial distribution of ET over the entire study area as
calculated using SEBAL. It is evident from the figure that some crops are
still developing on February 4 and others are transpiring at higher rates. On
March 8, all the crops in the area are established. This indicates the variabil-
ity of sowing dates and water management practices as influenced by water
availability and quality.

To delineate the wheat crop areas, the ET from non-cropped areas was ig-
nored by assuming that areal ET of wheat would follow a normal distribution.
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Figure 3. RS-derived actual ET in Bata Minor on (a) February 4 and (b) March 8, 2001.

This was achieved by manually adjusting the “skewed normal distribution” to
a regular normal distribution (Figure 3).

The inverse modeling

Figure 4 shows the results of the GA search for the best possible combinations
of parameter estimators. Interesting is that the best solutions was already
found at the 9th generation and that during the remaining 141 generations
the GA could not find a better solution. Main reason might be that the
modified-µGA as applied here is very efficient in finding a global maximum.
Other reason for this is that the initial parameters were selected close to
the optimum. Also the low sampling rate of 50 for the bootstrapping might
have resulted in a stronger random search than a converging search. More
theoretical research is required, but is beyond the scope of this publication.
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Figure 4. The evolution of results in the inverse modeling with GA.

The final solution, as found at the 9th generation, translates to an average
error of 1.2 and 1.6% of SWAP versus SEBAL predictions to the spatial
distributions of actual ET (wheat) in February 4 and March 8, respectively.
Figure 5 shows the comparison of SEBAL and the predicted ET by SWAP
with the best GA solution. The solution could be further improved by trying
to alter the sensitive parameter(s) in SWAP as regards to ET estimation, such
as the minimum value of crop resistance, rcrop. It should be noted that the
procedure in estimating ET in SEBAL is not similar to SWAP, but both have
high physical bases.

Derived spatial data

Table 1 shows the GA solution to the inverse problem. The soil parameters
α and n have means of 0.021 and 1.41 with a coefficient of variation of 1.19
and 0.03, respectively. These values indicate that soil variability in the area is
high for the retention curve and that hydraulic conductivity is fairly constant
over the region. The mean emergence date is November 22 with a standard
deviation of 7 days. This means that between November 15 and 29, about
68% of the area has crops grown already. As was mentioned earlier, only the
spatial variability of groundwater is accounted in the inverse modeling and
no temporal variation was assumed.

The water management practice expressed as the irrigation scheduling
criteria reflects the water availability problem in the area, which was more
serious during this season as the irrigation authority has altered the time al-
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Figure 5. The fitted spatial distribution of actual ET (wheat) in (a) February 4 and (b) March
8. SEBAL is the ET derived from RS and SWAPGA is from the inverse modeling.

Table 1. Regional characteristics of the study area based on the Genetic Algorithm solution
to the inverse problem.

Stochastic variables Mean Standard deviation Coefficient of variation

α (soil parameter) 0.0212 0.0252 1.19

n (soil parameter) 1.4144 0.0381 0.03

Emergence date November 22 7 days

Depth to groundwater (cm) 435 33.5 0.08

Irrigation scheduling 0.72 0.28 0.39

Irrigation quality (dS m−1) 2.4 0.74 0.31
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lowed for the minors to be operating, from the normal 14 days to 7 days. The
rotation is usually expected every 14 days. Farmers have access to ground-
water but the quality is also variable and some areas in the command are
not suitable for irrigation. In areas that are of better quality such as the head
reach region, groundwater use is tremendous. Accessibility is not the only
determinant in groundwater use. The availability of capital when irrigation
is needed might also restrict the fanners to use groundwater at the time re-
quired. The high standard deviation (0.28) of the irrigation criteria confirms
the above statements. The well-to-do farmer irrigates his crop as it is required
from groundwater (the resource they can control) but the meager one waits
for the surface water to flow in the canal or might have use groundwater
but not at the time required. Salinity stress could also impact this variable.
The derived irrigation water quality value (salinity) seems in agreement with
qualitative information. It should be reiterated that this value here is the com-
bined surface and groundwater quality. The surface water has superior quality
for irrigation based from measurements, which is confirmed by the relatively
high standard deviation of 0.74 dS m−1.

Validation

A full validation was not possible since many of the data was unknown, which
was in fact the driving force to perform this study. However, some indications,
based on limited data collection and qualitative observations, of the reliability
of the results obtained are discussed here.

Data inventory during the rabi season (2000–2001) was used to verify the
estimated parameter values from the inverse modeling (Agrawal et al. 2002).
The mean values of soil hydraulic properties (α and n have good agreement
to the published data of soils within the vicinity of the area (Bastiaanssen
et al. 1996). Figure 6 shows the retention curve as derived from the inverse
modeling and data published by Agrawal et al. (2002).

The emergence dates can be validated using the sowing dates. Figure 7
shows the variability of the sowing dates in the minor resulting from field
observations. The assumption that emergence date is normally distributed ap-
pears to be realistic. The mean of the sowing dates was DOY 322 (November
17) with standard deviation of 8 days. Assuming a germination period of 7
days, the mean of emergence date would be DOY 328 (November 23) with 8
days standard deviation. The GA solution highly agrees with the actual data
(mean November 22, standard deviation 7 days).

Data on the depth to groundwater at the end of the cropping season ranges
from 450–500 cm, which is highly comparable to the solution found from the
inverse modeling. However, since we considered depth to groundwater con-
stant during the season to reduce the number of parameters to be estimated,
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Figure 6. Comparison of the published and the derived mean pF curve by inverse modeling.
IM stands for inverse modeling, SCL for sandy clay loam and confidence interval is hatched.

this depth to groundwater is somewhat artificial. At the same time, ground-
water levels deeper than 200 cm do not affect ET and are therefore difficult
to assess and the model is not sensitive to changes in groundwater below 200
cm (Ines & Droogers 2002). So in terms of validation we can only state that
our results confirm that the area has a non-shallow groundwater table.

During the cropping season, based on the collected data, the total depth
of irrigation given by the farmers ranged from 180–435 mm (Agrawal et al.
2002) as compared to 200–670 mm from the inverse modeling.

According to our results the average amount of water applied for irrigation
was 390 mm while inflow from the canals was about 115 mm for the season.
This means that irrigation by groundwater was around 70%. This figure is in
the same order as resulting from the estimated mean salinity of irrigation
water of 2.4 dS m−1 (Table 1). Groundwater has a salinity level of 4 dS
m−1, canal water negligible, which leads to the conclusion that about 60%
of irrigation water should origin from groundwater. In terms of validation it
is remarkable that these two figures, although based on different methods,
are relatively close. This 60–70% groundwater irrigation seems to be in the
direction of qualitative observations and discussions with farmers, where we
obtained a figure of about 50%.
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Figure 7. Actual sowing dates of wheat in Bata Minor during rabi season, 2000–2001 (n =
108 farmers). DOY means day of year.

Areal water balance

The main advantage of the stochastic approach is that the spatial data com-
bined with the SWAP model can be used to provide distributed output for the
entire season. Figure 8 shows the areal water balance over the study area con-
sidering the wheat grown areas using the derived stochastic input data from
inverse modeling. The loss of water through soil evaporation is significant
during the cropping season, which could be mostly incurred at the begin-
ning of crop growth and after the winter season. The beneficial water loss
through transpiration ranges from 270–350 mm. Interesting to note is that,
considerable upward flux (negative values) is observed in the system during
the entire season. This could be attributed to the significant tensions in the
upper regions of the soil profile because of less water applied from irrigation.
These observations might have happened when the depth to groundwater is
far above the mean value. Ines & Droogers (2002) observed in their study that
groundwater levels lower than 200 cm could not influence ET, but this was
observed only in a water stress-free system.
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Conclusions

A clear understanding of irrigation water practices and irrigation system
characteristics is essential to develop alternatives for improved water manage-
ment options. For long-term trends and for system wide analysis, simulation
models are the appropriate tools. The main drawback of applying these
models is the lack of spatial data at a satisfactory level of accuracy. The
RS-GA-combined modeling approach as presented in this study proves to
be promising to the regional application of physically based field scale mod-
els. Inverse modeling was used successfully to extract these data required in
regional modeling.

The Genetic Algorithm approach was proven to be effective in this
methodology. However, since the number of objective function evaluations
depends on the number of individuals in a population, computational time is
significant, especially in this application because spatial distribution of ET
over time should be generated, which further compounded the computational
time. This constraint, however, seems to be overcome in the near future with
increasing computing capabilities. Further testing of the integrated model
should be done in the future especially to cheek the impact of increased
resampling rate to the GA performance.

The confirmation that groundwater is important in the area is one of
the interesting results from this study. Attempts to access the amount of
groundwater versus surface water used for irrigation were so far mainly
based on questionnaires. The methodology applied here might be an attractive
alternative, but further studies are required.

For this study only two RS images were used. Increasing this amount
would increase the accuracy of the results and enables at the same time to
assess more parameters than in the current study. Further work will be done
along these lines.

The generated stochastic input data can be used to provide spatial de-
scriptions of the system during the periods of RS data acquisition and the
future because of the dynamic nature of simulation models. This means that
when the adequate initial conditions are established from inverse modeling,
an opportunity to get an idea on the status of the system after the cropping
season with the present management practices is possible.

Along these lines, further studies should go beyond the characterization of
the system and the current irrigation practices, and should focus on improved
water management to increase the water productivity at irrigation system
level. The datasets obtained from this study and the developed stochastic
simulation model and optimization algorithm can be used for this purpose.
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Figure 8. Areal water balance over the study area by applying the fitted distributed input data
in the stochastic SWAP model.
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