brought to you

Sound content analysis for indexing and understanding

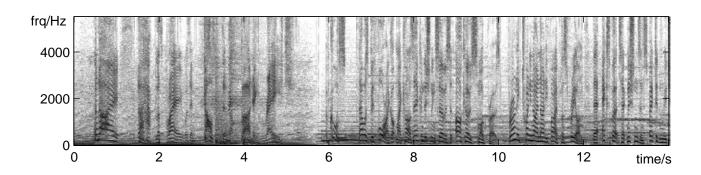
Dan Ellis
International Computer Science Institute, Berkeley CA
<dpwe@icsi.berkeley.edu>

Outline

- 1 Sound content analysis
- 2 Speech recognition
- 3 Auditory scene analysis
- 4 Audio content indexing
- Conclusions

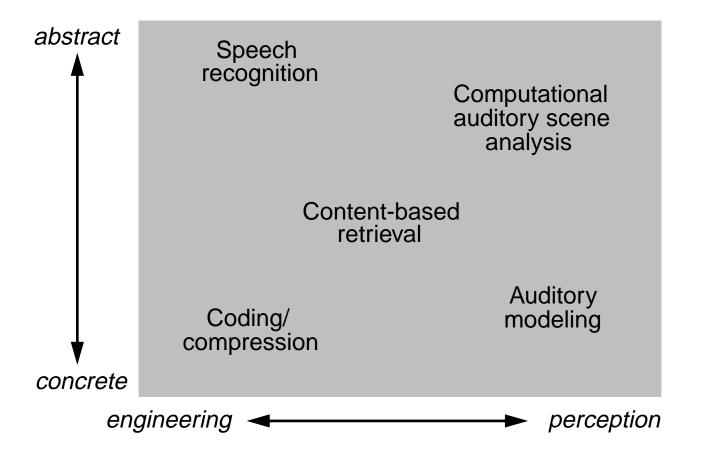
Sound content analysis

Overall goal: 'Useful' data from sound



- which depends on the goal
- Involving:
 - continuous → discrete
 - source separation
 - extract 'semantic' content \times \text{words} actions/events

The space of sound analysis research



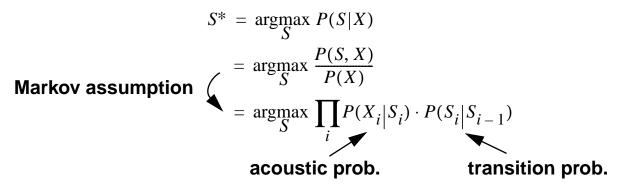
Outline

- 1 Sound content analysis
- Speech recognition
 - Classic speech recognition
 - The connectionist-HMM hybrid
 - Strength through combinations
- 3 Auditory scene analysis
- 4 Audio content indexing
- Conclusions

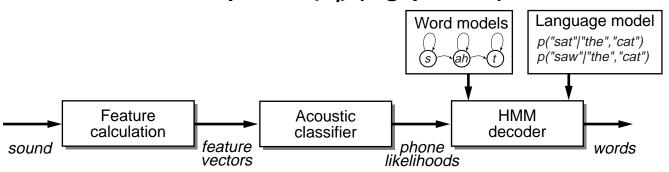
2

Speech recognition: Dictation

• Observations $X = \{X_1...X_N\} \rightarrow \text{States } S = \{S_1...S_N\}$



• State sequence $\{S_i\}$ (e.g. phones) define words

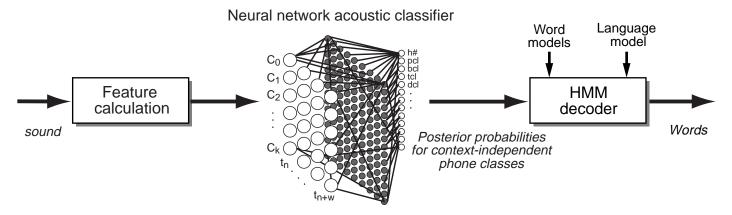


- Training (on large datasets) is the key
 - EM iteration for acoustic & transition probs.

The connectionist-HMM hybrid

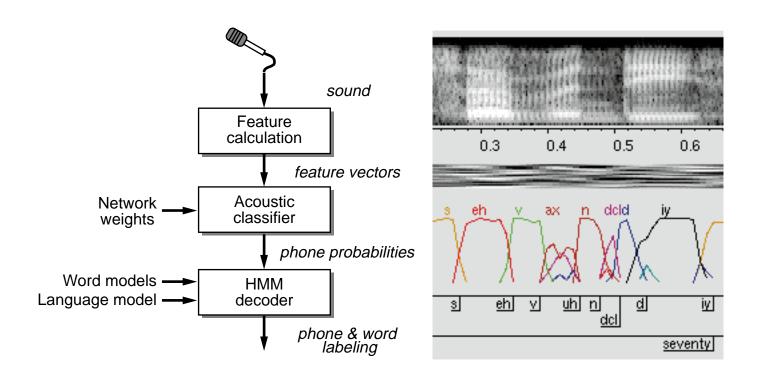
(Morgan & Bourlard, 1995)

- P(X_i|S_i) is acoustic likelihood model
 - model distribution with, e.g., Gaussian mixtures
- Replace with posterior, P(S_i|X_i):



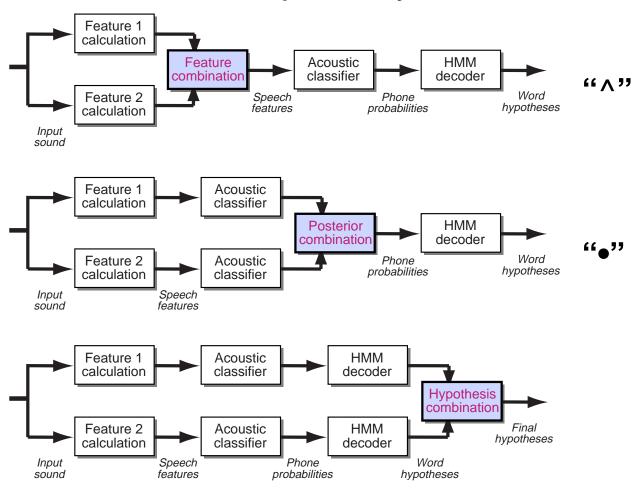
- neural network estimates phone given acoustics
- discriminative
- Simpler structure for research

Visualizing speech recognition



Combination schemes

How to use complementary features?



Combining feature streams

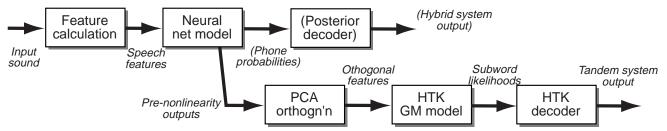
- How to allocate feature dimensions to models?
 - lower-dimension models train more quickly
 - higher-dimension models find more interactions
- PLP & MSG for Aurora (digits in noise):
 - PLP are 'conventional' features
 - MSG developed as robust alternative
 - Evaluate by word-error rate (WER) compared to default baseline

Features	Parameters	baseline WER ratio
plp12•dplp12	136k	97.6%
plp12^dplp12	124k	89.6%
msg3a•msg3b	145k	101.1%
msg3a^msg3b	133k	85.8%
plp12•dplp12•msg3a•msg3b	281k	76.5%
plp12^dplp12^msg3a^msg3b	245k	74.1%
plp12^dplp12•msg3a^msg3b	257k	63.0%

Tandem connectionist models

(with Hermansky et al., OGI)

How can we combine neural net & GM models?

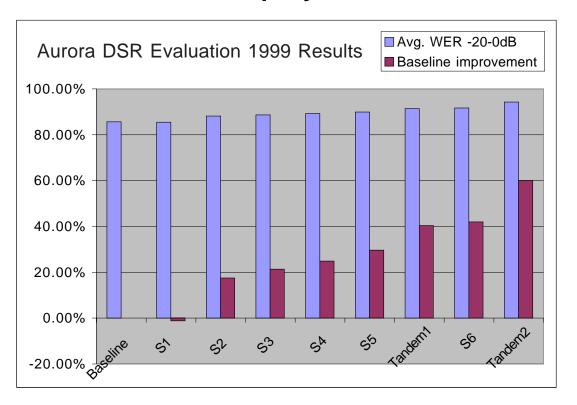


- (GMM system does not know they are phones)
- Result: better performance than either alone!
 - neural net has trained discriminatively
 - GMM HMMs learn context-dependent structure
 - →extract complementary info from training data

System-features	baseline WER ratio
HTK-mfcc	100.0%
Hybrid-mfcc	84.6%
Tandem-mfcc	64.5%
Tandem-plp+msg	47.2%

Aurora "Distributed SR" evaluation

7 telecoms company submissions:



Tandem systems from OGI-ICSI-Qualcomm

Outstanding issues in speech recognition

Are we on the right path?

- useful dictation products exist
- evaluation results improve every year
- .. but appear to be asymptoting

Is dictation enough?

- a useful focus initially
- .. but not speech understanding
- .. and has skewed research

What should be our research priorities?

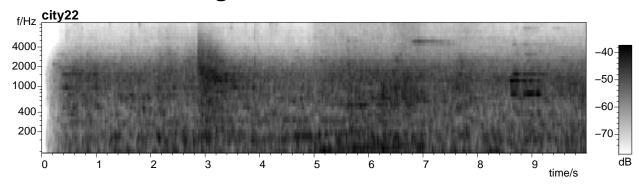
- straight ASR research is hard to fund
- need to look at harder domains
- need to connect it to applications

Outline

- 1 Sound content analysis
- 2 Speech recognition
- 3 Auditory scene analysis
 - Psychological phenomena
 - Computational modeling
 - Prediction-driven analysis
 - Incorporating speech
- 4 Audio content indexing
- **5** Conclusions

Auditory Scene Analysis (ASA)

"The organization of sound scenes according to their inferred sources"



- Sounds rarely occur in isolation
 - need to 'separate' for useful information
- Human audition is very effective
 - computational models have a lot to learn

Psychology of ASA

Extensive experimental research

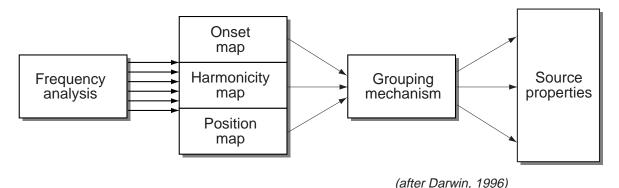
- perception of simplified stimuli (sinusoids, noise)

"Auditory Scene Analysis" [Bregman 1990]

- first: break mixture into small *elements*
- elements are *grouped* in to sources using *cues*

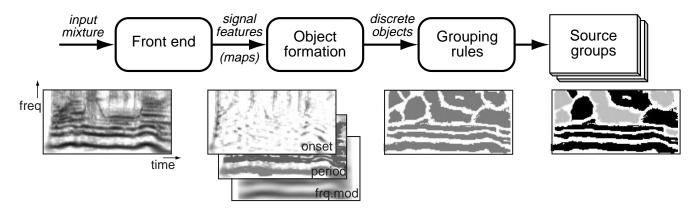
Grouping 'rules' (Darwin, Carlyon, ...):

- common onset/offset/modulation, harmonicity, spatial location, ...
- relate to intrinsic (ecological) regularities



Computational Auditory Scene Analysis (CASA)

• Literal model of Bregman... (e.g. Brown 1992):

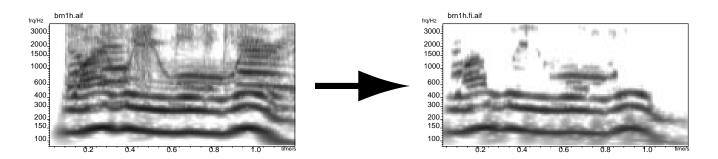


Goals

- identify and segregate different sources
- resynthesize separate outputs!

Grouping model results

Able to extract voiced speech:



Limitations

- resynthesis via filter-mask
- *only* periodic targets
- robustness of discrete objects

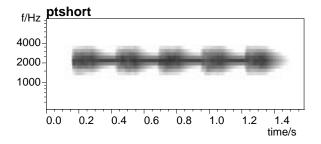
Context, expectations & predictions

Perception is not *direct* but a *search* for *plausible hypotheses*

Bregman's "old-plus-new" principle:

A change in a signal will be interpreted as an added source whenever possible

E.g. the 'continuity illusion':

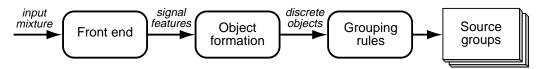


- tones alternates with noise bursts
- noise is strong enough to mask tone
 ... so listener discriminate presence
- continuous tone perceived for gaps ~100s of ms

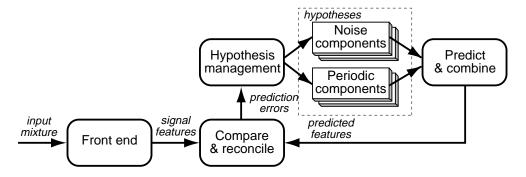
→ Inference acts at low, preconscious level

Modeling top-down processing: 'Prediction-driven' CASA (PDCASA):

Data-driven...



vs. Prediction-driven



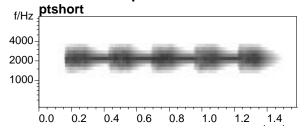
PDCASA key features:

- 'complete explanation' of all scene energy
- vocabulary of periodic/noise/transient elements
- multiple hypotheses
- explanation hierarchy

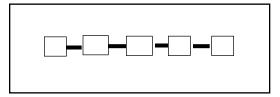
PDCASA for the continuity illusion

Subjects hear the tone as continuous

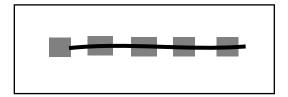
... if the noise is a plausible masker



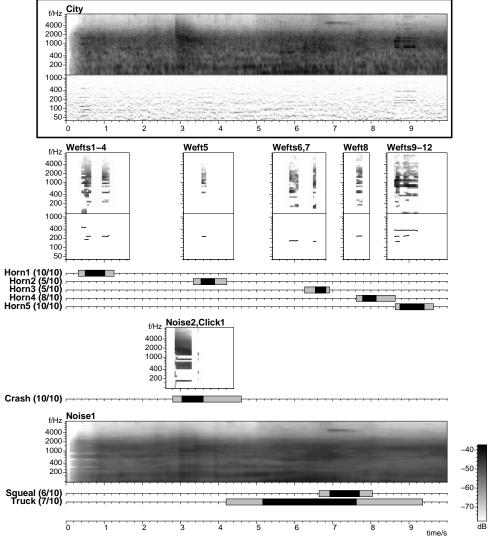
Data-driven analysis gives just visible portions:



Prediction-driven can infer masking:

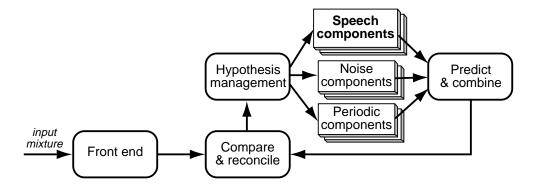


PDCASA analysis of a complex scene



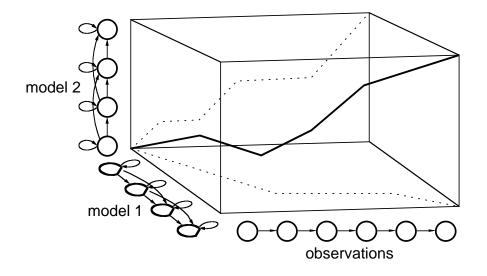
CASA for speech recognition

- Data-driven: CASA as preprocessor
 - problems with 'holes' (but: Okuno)
 - doesn't exploit knowledge of speech structure
- Missing data (Cooke &c, de Cheveigné)
 - CASA cues distinguish present/absent
 - RESPITE project: modifications to recognizer
- Prediction-driven: speech as component
 - same 'reconciliation' of speech hypotheses
 - need to express 'predictions' in signal domain



Other signal-separation approaches

- HMM decomposition (RK Moore '86)
 - recover combined source states directly



- Blind source separation (Bell & Sejnowski '94)
 - find exact separation parameters by maximizing statistic e.g. signal independence

Outstanding issues in CASA

What is the architecture?

- data-driven versus prediction-driven
- representations at different levels
- hypothesis search

How to combine different cues?

- priority of different cues
- resolving conflicting cues
- bottom-up versus top-down

How to exploit training data?

- .. the big lesson from speech recognition

Evaluation

- .. a more subtle lesson

Outline

- 1 Sound content analysis
- 2 Speech recognition
- 3 Auditory scene analysis
- 4 Audio content indexing
 - Spoken document retrieval
 - Handling nonspeech audio
 - Object-based analysis and retrieval
 - Audio-video content organization
- 5 Conclusions

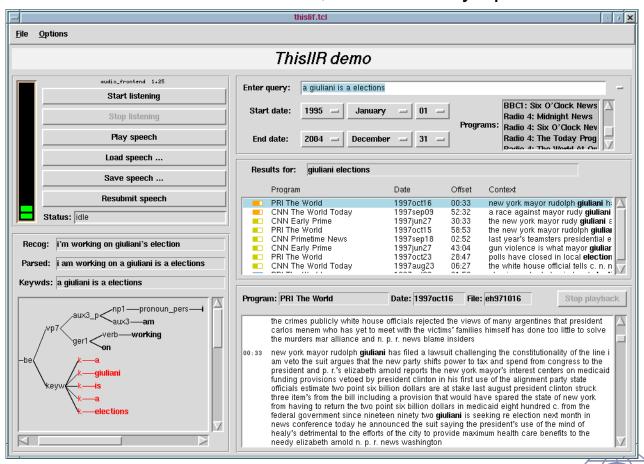
Audio content indexing: Spoken document retrieval (SDR)

- Idea: speech recognition transcripts as indexes
- Best broadcast news systems are not great
 - 15-30% WER on real broadcasts
- Word errors vary in their impact:
- F0: THE VERY EARLY RETURNS OF THE NICARAGUAN PRESIDENTIAL ELECTION SEEMED TO FADE BEFORE THE LOCAL MAYOR ON A LOT OF LAW
- F4: AT THIS STAGE OF THE ACCOUNTING FOR SEVENTY SCOTCH ONE LEADER DANIEL ORTEGA IS IN SECOND PLACE THERE WERE TWENTY THREE PRESIDENTIAL CANDIDATES OF THE ELECTION
- F5: THE LABOR MIGHT DO WELL TO REMEMBER THE LOST A MAJOR EPISODE OF TRANSATLANTIC CONNECT TO A CORPORATION IN BOTH CONSERVATIVE PARTY OFFICIALS FROM BRITAIN GOING TO WASHINGTON THEY WENT TO WOOD BUYS GEORGE BUSH ON HOW TO WIN A SECOND TO NONE IN LONDON THIS IS STEPHEN BEARD FOR MARKETPLACE
 - Good enough for information retrieval (IR)
 - e.g. TREC-8 average precision:
 reference transcript ~ 0.5
 30% WER ~ 0.4

Thematic Indexing of Spoken Language

(with Sheffield, Cambridge, BBC)

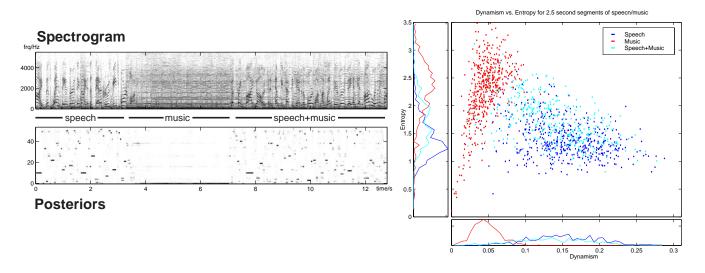
- SDR for BBC broadcast news archive
 - 1000+ hr archive, automatically updated



Speech and nonspeech

(with Gethin Williams)

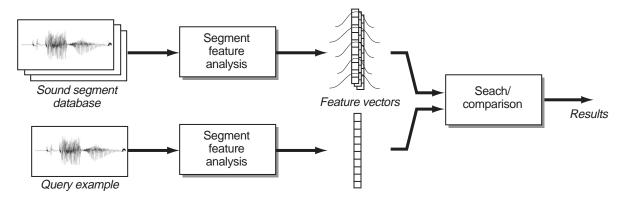
- ASR run over entire soundtracks?
 - for nonspeech, result is nonsense
- Watch behavior of speech acoustic model:
 - average per-frame entropy
 - 'dynamism' mean-squared 1st-order difference



• 1.3% error on 2.5 second speech-music testset

Element-based audio indexing

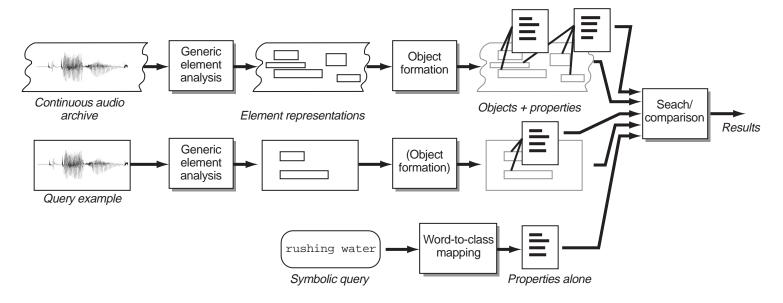
- Search for nonspeech audio databases
 - e.g. Muscle Fish 'SoundFisher' for SFX libraries
- Segment-level features



- well-performing features:
 spectral centroid, dynamics, tonality ...
- Each segment is an object
 - not applicable to continuous recordings

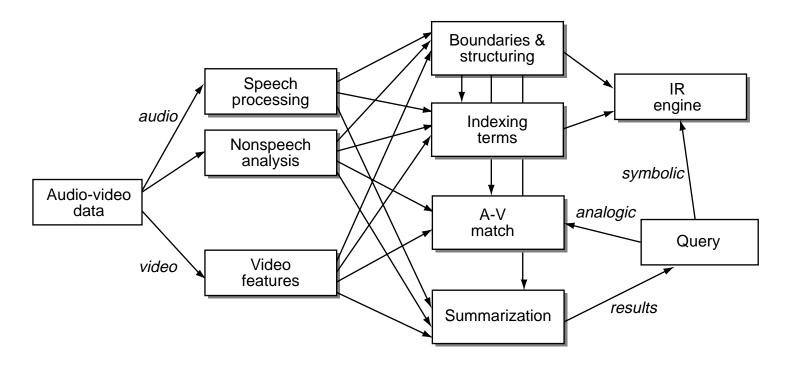
Object-based audio indexing

- Using 'generic sound elements'
 - decompose sound into elements; match subsets
 - how to generalize?
 - how to use segment-style features?
- Form into objects for higher-order properties
 - CASA-type object formation (onset, harmonicity)



Audio-video organization & retrieval

How it might work...



AV indexing components

Recovering broad temporal structure

- speaker turns; speech & music; repetition
- characteristic of genres e.g. news shows
- indexible attributes in themselves

Posing queries:

- term-based
- proximity to examples
- dynamic audio-visual sketches?

How to define index/query terms?

- different kinds of terms: literal versus thematic
- machine learning of event classes

Summarization

- for displaying 'hits': impacts usability
- text / image / video / sound
- tricks e.g. to find most salient words

Open issues in audio indexing

Information from speech

- multiple, confidence-tagged results? (not WER)
- prosodics; emphasis; speaking style
- speaker tracking, identity, character

Information from nonspeech

- how to define objects
- how to match symbolic search terms

Integrating audio and video

- combining information for search elements
- forms of query

Related applications

- 'structured content' encoders (e.g. MPEG4SA)
- semantic hearing aids; robot monitors

Outline

- 1 Sound content analysis
- 2 Speech recognition
- 3 Auditory scene analysis
- 4 Audio content indexing
- **5** Conclusions

5

Conclusions:

The state of sound content analysis

Speech recognition:

- focussed application, practical results
- powerful statistical pattern recognition tools
- able to exploit large training sets

Computational Auditory Scene Analysis:

- real-world sounds are mixtures
- discover advanced ecological constraints
- results still rather preliminary

Content-based retrieval:

- compelling problem; forgiving application
- leveraging audio-visual correlations
- fertile ground for research

