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Analysis of Indian monsoon daily rainfall on subseasonal to
multidecadal time-scales using a hidden Markov model
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ABSTRACT: A 70-year record of daily monsoon-season rainfall at a network of 13 stations in central western India is
analyzed using a 4-state homogeneous hidden Markov model. The diagnosed states are seen to play distinct roles in the
seasonal march of the monsoon, can be associated with ‘active’ and ‘break’ monsoon phases and capture the northward
propagation of convective disturbances associated with the intraseasonal oscillation. Interannual variations in station rainfall
are found to be associated with the alternation, from year to year, in the frequency of occurrence of wet and dry states; this
mode of variability is well correlated with both all-India monsoon rainfall and an index characterizing the strength of the El
Niño Southern Oscillation. Analysis of low-passed time series suggests that variations in state frequency are responsible for
the modulation of monsoon rainfall on multidecadal time-scales as well. Copyright  2008 Royal Meteorological Society
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1. Introduction

Owing to both its meteorological and economic signifi-
cance, the Indian monsoon has been studied intensively
(e.g. Gadgil, 2003; Webster et al., 1998; Abrol, 1996;
Rai, 2005; Gadgil and Kumar, 2006; Gadgil and Gadgil,
2006). In the present work, daily monsoon rainfall at a
small network of stations is decomposed using a hidden
Markov model (HMM). The HMM is utilized here as a
diagnostic tool; this is a necessary step if such a model is
eventually to be deployed for precipitation downscaling
or simulation (Hughes et al., 1999; Bellone et al., 2000).
To the best of our knowledge HMMs have not previ-
ously been deployed in this regional setting; this renders
the present investigation both novel and of interest gener-
ally, with regard to the diagnostic utility of such models
in the monsoon domain.

The HMM associates observed patterns of daily rainfall
with a small set of ‘hidden states’, which proceed
in time as a first-order Markov process (Hughes and
Guttorp, 1994; Norris, 1997). It may be considered a
parsimonious description of the raw rainfall observations
or, alternatively, as a method of data reduction, by
which the essential structural attributes of the complex
observational data are represented by a small, therefore
more comprehensible, set of parameters.

The HMM also provides a simple means of generating
synthetic precipitation series that have some of the
statistical properties (including spatial covariance) of
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the data to which it is fitted. Here, however, this
is not the goal; in particular, the model employed
includes only seasonal-mean transition probabilities, and
is thus incapable of simulating the rise and fall of the
seasonal cycle. However, once the hidden states are
identified, their progression in time can be recovered,
and intraseasonal variability thereby diagnosed. It is this
diagnosis that lies at the core of the present work.

Monsoon rainfall is highly variable both temporally
and spatially, in particular at the scale of individual
weather stations. The HMM is fitted directly to the
daily station data without any filtering or gridding, yet
is shown to capture characteristic features of rainfall
variability across a broad range of time scales. This
suggests the existence of some mechanism that links
variations occurring on these different scales. It has
been noted, for example, that the ‘active’ and ‘break’
phases that characterize subseasonal monsoon variability
‘add up’ to produce interannual variations (Gadgil and
Asha, 1992; Gadgil, 1995; Goswami and Xavier, 2003;
Goswami, 2005). It is thus of interest to see whether such
aggregation might also play a role in decadal monsoon
fluctuations.

The link between the monsoon and the El Niño South-
ern Oscillation (ENSO) has also received attention (Ras-
musson and Carpenter, 1983; Shukla, 1987; Krishna-
murthy and Goswamy, 2000; Kumar et al., 2006), the
general consensus being that strong El Niño events have
tended to be associated with weak monsoons, at least
up until the late 1970s (Kumar et al., 1999). This link-
age is explored here through canonical correlation anal-
ysis (CCA), applied to the occurrence frequencies of the
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diagnosed states and the station rainfall data. CCA is then
extended, to examine multidecadal variability.

Section 2 describes the datasets employed and Sec-
tion 3 some climatological characteristics of the data. The
HMM is discussed in Section 4, while Section 5 exam-
ines the hidden states in terms of associated atmospheric
composites. Sections 6, 7 and 8 deal with intrasea-
sonal, interannual and multidecadal variability, respec-
tively; a discussion and summary follow, in Sections 9
and 10.

2. Data

A 70-year record of daily rainfall at 13 stations, from the
Global Daily Climatology Network (GDCN; Legates and
Willmott, 1990), constitutes the primary dataset. These
stations were initially chosen to match, by name and
location, a group of records for 1973–2004 that had been
obtained from the Global Surface Summary of Day Data
(NCDC, 2002), with the thought that the two datasets
could be combined. However, given the reasonably
long GDCN data series and their relative freedom from
missing values, as well as potential inhomogeneity issues,
we restrict our attention to this 70-year record.

The GDCN data span the years 1901–1970, with a
station average of only 11 missing days out of 8540,
and no station missing more than 29 days. The stations
themselves are listed in Table I and locations shown
in Figure 1. Although some regions, notably the east-
ern coast, are not sampled, atmospheric circulation com-
posites (discussed in Section 5) suggest that this net-
work captures enough of the spatio-temporal variabil-
ity of the precipitation field for the large-scale features
of the monsoonal circulation to be quite well inferred.
Interannual variations in mean station rainfall are well
correlated (r = 0.86) with the Indian Summer Monsoon
Rainfall (ISMR) index, an average of June–September

Table I. Stations whose records are utilized here.

No. ISTA Station
name

Lat
( °N)

Lon
( °E)

P(R) I

1 5010600 Ahmadabad 23.06 72.63 0.41 15.0
2 5100100 Veraval 20.90 70.36 0.43 11.0
3 5150100 Rajkot 22.30 70.78 0.35 13.7
4 5171200 Surat 21.20 72.83 0.56 15.3
5 11170400 Indore 22.71 75.80 0.54 13.1
6 11180800 Jabalpur 23.20 79.95 0.58 17.4
7 12040300 Aurangabad 19.85 75.40 0.49 10.2
8 12190100 Poona 18.53 73.85 0.58 7.2
9 12230300 Sholapur 17.66 75.90 0.41 10.9

10 19070100 Bikaner 28.00 73.30 0.17 12.1
11 19131300 Jaipur 26.81 75.80 0.36 12.1
12 22021900 Delhi 28.58 77.20 0.30 16.0
13 23351200 Lucknow 26.75 80.88 0.43 17.1

No. = station number used in Figure 1(a).
ISTA = station ID as provided in the dataset.
P(R) = climatological rainfall occurrence probability.
I = mean intensity (rainfall amount on wet days).

rainfall over approximately 300 stations (Sontakke et al.,
1993).

Atmospheric circulation fields are derived from the
National Centers for Environmental Prediction–National
Center for Atmospheric Research (NCEP–NCAR)
reanalysis (Kalnay et al., 1996). Comparisons were
made between composites derived from this dataset and
from the European Centre for Medium-Range Weather
Forecasts reanalysis (ERA-40; Uppala, 2001). Those
from the latter product were found to be somewhat
noisier, perhaps owing to the shorter usable data length
(The period of overlap with the rainfall data is about
half as long for ERA-40.) The NCEP–NCAR data were
therefore utilized.
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Figure 1. Climatological (a) occurrence probability and (b) mean daily intensity (mm) for Jun–Sep 1901–1970. Numbers within station circles
identify stations listed in Table I.
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3. Climatology

3.1. Rainfall – spatial distribution

Figures 1(a) and 1(b) illustrate mean Jun–Sep climato-
logical rainfall occurrence probabilities and mean daily
intensities (rainfall amounts on wet days), respectively,
over the network. Topographic contours from the GLOBE
digital elevation model (Hastings and Dunbar, 1998) are
also shown. Both probabilities and intensities (also given
in Table I), are computed conditional on a minimum daily
rainfall amount of 0.1 mm, the minimum non-zero value
recorded in the dataset.

In Figure 1, high probability and intensity values along
the western coast reflect onshore flow, as shown in
Figure 5(a), impinging on coastal orography (Gadgil,
2003). This orography can also produce sharp gradients
in intensity, as is the case with station 8. The high values
at station 6, on the other hand, arise from convective
systems propagating northwestward from the Bay of
Bengal, reaching across the classical ‘monsoon zone’,
a broad belt extending across the mid-section of the
subcontinent (Figure 5a in Gadgil, 2003). The patterns
shown in Figures 1(a, b) are quite consistent with a
high-resolution (1°) dataset from the India Meteorological
Department (IMD; Rajeevan et al., 2006), including
the low probabilities and intensities to the north and
northwest, (e.g. station 10, lying in arid Rajasthan),
the high intensities at stations 6 and 13 in the main
monsoon zone, and the southeast to northwest intensity
gradient in going from stations 7–9 toward stations
1–4. Absolute amounts do differ somewhat, with the
station data showing generally both higher occurrence
probabilities and mean daily intensities than enclosing
grid boxes in the IMD product. The former may result

from the masking of gridded values below 0.1 mm, the
latter from grid-box averaging.

3.2. Rainfall – seasonal cycle

Figures 2(a,b) illustrate the climatological seasonal cycle
for rainfall occurrence frequency and mean daily intensity
for each of the 13 stations, using pentads. Both variables
exhibit a decided seasonal cycle at all stations. Station 10
again stands out for its relatively low occurrence prob-
abilities, although it clearly participates in the seasonal
cycle. It is less of an outlier in terms of mean intensity;
this can be seen as well in Figure 1.

3.3. Circulation

Figure 5(a) shows mean climatological Jun–Sep horizon-
tal winds at 850 mb and the 500 mb vertical velocity (ω)
from the NCEP–NCAR reanalysis, for 1951–1970. Sev-
eral well-known features of the monsoon circulation are
evident in the plot, including the cross-equatorial Somali
jet along the coast of Africa, the southwesterly to westerly
flow in the Arabian sea, and ascending motion (ω < 0)
concentrated in maxima in the eastern Arabian Sea and
central Bay of Bengal (Xie and Arkin, 1996; Goswami,
2005).

4. Model description

4.1. Basic structure and assumptions

The HMM factorizes the joint distribution of historical
daily rainfall amounts recorded on a network of stations
in terms of a few discrete states, by making two
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Figure 2. Climatological seasonal cycle of (a) occurrence frequency (days pentad−1) and (b) mean daily intensity (mm) for the 13-station dataset,
1901–1970. Occurrence is conditional on a threshold of 0.1 mm.
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conditional independence assumptions: first, that the
rainfall on a given day depends only on the state active
on that day, and second, that the state active on a
given day depends only on the previous day’s state. The
latter assumption corresponds to the Markov property;
the states are considered ‘hidden’ because they are not
directly observable.

The state-associated rainfall patterns comprise a prob-
ability distribution function (PDF) for daily rainfall for
each of the stations. In the present instance these are
three-component mixtures, consisting of a delta func-
tion to represent zero-rainfall days and two exponentials
representing rainfall intensity. Mixed-exponential distri-
butions have been found effective in the representation of
daily precipitation (Woolhiser and Roldán, 1982). Daily
rainfall, conditional on state, is represented as

p(Rm
t = r|St = i) =




pim0 r = 0,
C∑

c=1

pimcλimce−λimcr r > 0,

(1)

where indices i, m and c refer to state, station and mixture
component, respectively, the pimc are weights and t is
time. In the summation, C = 2, i.e. two exponentials
are utilized. Note that while rainfall at each station
is characterized by a PDF that is both station- and
state-specific, the PDFs for all stations are coupled by
state, as per the i subscripts in Equation (1). Thus, the
HMM accounts for spatial dependence in the data. There
are HMM variants that model spatial dependence in
more detail (Kirshner et al., 2004), but we forgo the
additional complexity involved in favour of a more easily
interpreted model. Robertson et al. (2004, 2006) give a
more complete description of the HMM.

4.2. Model selection and fitting

The number of states to be modelled must be speci-
fied a priori; differing objectives may lead to differing
choices in this regard. Use of a small number of states
facilitates diagnosis and model comprehensibility, the
object of this study, while a larger number might be more
suitable for the generation of synthetic data. Models hav-
ing three, four, five and eight states were examined in
detail. Of these, the three-state model was determined
to be suboptimal, particularly in relating the diagnosed
states to the propagating convective disturbances charac-
teristic of the intraseasonal oscillation (ISO, Section 6.3).
On the other hand, the five-state model does not add
much to the descriptions already present with four states
and begins to exhibit ‘state splitting’, the subdivision of
attributes among states. Examination of the eight-state
model confirms the tendency for complexity, but not nec-
essarily clarity, to increase with the number of states.
The Bayesian Information Criterion (Schwarz, 1978) was
applied to fitted models having up to 20 states, (Figure 3)
and indicates that overfitting does not occur when as
many as 10 states are modelled. For the illustrative pur-
poses that are primary here, a model having four hidden

states was thus selected. We show in the following sec-
tions that this model provides a physically meaningful
description of the monsoon and its variability across a
wide range of time-scales.

Parameter estimation was performed by the maxi-
mum likelihood approach, using the iterative expec-
tation–maximization (EM) algorithm (Dempster et al.,
1977; Ghahramani, 2001). The algorithm was initialized
30 times from random starting points, the run utilized
being that with the highest log-likelihood. Estimation
was performed using the Multivariate Nonhomogeneous
Hidden Markov Model Toolbox, developed by one of
the authors (Kirshner, http://www.cs.ualberta.ca/∼sergey/
MVNHMM/).

4.3. Representation in terms of states

Figure 4 shows rainfall occurrence probabilities and mean
intensities for the 4-state model, the former derived from
the pim0 parameter in Equation (1), the latter from the
mean values and weights of the mixed-exponential dis-
tributions. The four states exhibit distinctly different pat-
terns for both variables: state 4, which might be charac-
terized as the ‘dry’ state, shows small occurrence proba-
bilities, and mean intensities that are small to moderate at
all stations, while state 3, the ‘wet’ state, has relatively
high occurrence probabilities and intensities. State 1 is
also rather wet but shows a substantial southwest to north-
east gradient in mean intensity, while state 2 exhibits a
north to south gradient in both occurrence probability and
mean intensity.

4.4. Transition matrix

From a mechanistic (or generative) point of view, the
HMM transition matrix provides the stochastic ‘engine’
that drives the system from state to state with the progres-
sion of days. Alternatively, and more importantly for our
purposes, the matrix can be regarded as descriptive, sum-
marizing the temporal dependence of the observations in
probabilistic form. The entry in row i, column j gives the
conditional probability of an i –j transition, i.e. the prob-
ability that tomorrow’s state will be j , given that today’s
is i. The transition matrix for the 4-state HMM is shown
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Figure 3. Bayesian information criterion (BIC) for models having
differing numbers of hidden states.
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applies to all plots on that row.

in Table II. Note that the estimated 3–4 and 4–3 prob-
abilities are both null (actually non-zero, but at least 7
orders of magnitude smaller than the other values in the
table); in fact, no direct transitions between these two
states occur. This suggests that some dynamical process
has been encoded by the HMM, such that abrupt changes
between the intense endmember conditions represented
by these two states are unlikely to occur in nature.

The largest values in the transition matrix lie along
the leading diagonal. Since these are the ‘self-transition’
probabilities (i.e. probabilities of remaining in the respec-
tive states from day to day), this feature signals a ten-
dency, for all the states, to persist beyond the length
of the sampling interval (one day). It is this tendency
that accounts for the horizontally banded appearance of
Figure 6(a), the most-likely state sequence (Section 6.1).

The values shown in Table II are time-invariant, and
in essence represent mean transition probabilities for
the entire Jun–Sep season. As will be seen, however,

Table II. Transition matrix for the 4-state HMM. ‘From’
states occupy the rows, ‘to’ states the columns. Thus e.g. the

probability of a transition from state 2 to state 4 is 0.056.

‘To’ state

1 2 3 4

1 0.798 0.031 0.087 0.083
‘From’ 2 0.059 0.776 0.109 0.056
state 3 0.160 0.018 0.823 0.000

4 0.022 0.101 0.000 0.876

there is a pronounced seasonal cycle in the relative
frequency of occurrence of the various states, implying
that in actuality the probabilities must be temporally
modulated. This would clearly present a problem if it
was desired to simulate the rise and fall of the seasonal
cycle, since static transition probabilities can produce
only stationary rainfall series. However, once the states
have been diagnosed, their relative frequency over the
course of the season, and thus the seasonal cycle, as it
exists in the observed rainfall series, can be determined.
This is discussed in more detail in Section 6.

5. Atmospheric correlates

It is of interest to see how the modelled states are
related to the large-scale circulation, since the latter pro-
vides a primary control on rainfall. Figures 5(b–e) show
composited anomalies (with respect to the climatology
shown in Figure 5(a)) for states 1–4, respectively, for
the 4-state HMM.

Generation of these composites requires several steps.
First, the raw daily rainfall values must be expressed
in terms of the hidden states they represent. This is
accomplished here by means of the Viterbi algorithm
(Section 6), which returns a ‘most-likely’ sequence of
states, given the state definitions and transition matrix.
Each day in the rainfall record is thus identified with
its associated state. The days diagnosed as representing
each of the states are then collected, with all the
days representing state 1 placed in one group, the days
representing state 2 in a second group, and so on. The
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Figure 5. (a) Horizontal winds at 850 mb (vectors, m s−1) and 500 mb vertical velocity (colours, Pa s−1) for the Jun–Sep mean climatology for
1951–1970. (b)–(e) show anomalies with respect to (a), for states 1–4, respectively.

composites are formed by taking the arithmetic average
of the wind and vertical velocity fields for each of these
groups, then subtracting the mean Jun–Sep climatology
(shown in Figure 5(a)) to produce anomalies.

State 3 (Figure 5(d)), the wet state, is seen to be asso-
ciated with an amplification of the mean seasonal pattern,
along with landward displacements of the two centres of
ascending motion that straddle the subcontinent. Anoma-
lous cyclonic circulation is present over these centers.
There is also anomalous onshore flow from the Arabian
Sea, as well as an anticyclonic circulation to the south-
west of the Indian peninsula. These features are consistent
with the high occurrence probabilities and intensities on

the western coast, extending toward the northeast, that
characterize this state (Figures 4(e,f)). In addition, the
more or less zonal band of anomalous ascending motion
can be identified with the often-described ‘monsoon
trough’ (e.g. Rao, 1976). Here, this band extends broadly
in a northwestward direction from the Bay of Ben-
gal, lying squarely over the monsoon zone as identified
by Gadgil (2003). This atmospheric configuration also
corresponds well with the dominant mode of intrasea-
sonal variability identified by Annamalai et al. (1999)
via empirical orthogonal function (EOF) analysis, and
associated with the ‘active’ monsoon phase (Goswami,
2005).
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The composite for state 4 (Figure 5(e)), the ‘dry’ state,
is opposite in sense to that of state 3, with anomalous
descent over much of the subcontinent, and anticyclonic
circulation anomalies where state 3 presents cyclonic
ones. This pattern is consistent with the lower occurrence
probabilities and intensities shown in Figures 4(g,h).

State 1 exhibits higher occurrence probabilities than
state 3 for some stations in the northeastern part of the
domain; the band of anomalous ascending motion seen
in the corresponding composite (Figure 5(b)), although
configured somewhat differently than in state 3, can
still be seen to correspond to the classical monsoon
trough. However, the mean intensities here show a
strong gradient (Figure 4(b)), with values increasing
from southwest to northeast. In the composite we see
anomalous anticyclonic circulation centrally located in
the Arabian Sea, while a single centre of anomalous
ascent occurs near the northeastern part of the domain,
near the Himalayan escarpment. Thus, high pressure
brings dry conditions to the coastal stations, while the
anomalous ascent is located in a position consistent with
higher inland rainfall intensities.

Finally, state 2 (Figure 5(c)) shows anomalous east-
erly inflow from the Bay of Bengal, resembling in this
sense the dry state. State 2 is also opposed to state 1 (cf.
Figure 5(b)), in that there is now anomalous cyclonic
activity, with associated rising motion, near the south-
west coast, while the north central region shows anoma-
lous descent and anticyclonic circulation. These proper-
ties, like those of the other composites, are reflected in
the maps of occurrence probability and mean intensity
(Figures 4(c,d)).

Broadly speaking, the circulation anomalies associated
with states 1 and 2 can be said to be similar to those
associated with 3 and 4, respectively, but weaker, and
with the regions of strongest anomalous ascent or descent
displaced to the north. States 1 and 3, with anomalous
ascending motion over the subcontinent, and in particular
the monsoon zone, may both be considered ‘wet’, while
state 2, with its anomalous descending motion, shows
stronger affinities to the dry state (state 4), most clearly
in the northern part of the domain.

Among the questions that naturally arise from inspec-
tion of these figures is that of the relationship between
the diagnosed states and the wet and dry intraseasonal-
scale phenomena known as ‘active’ and ‘break’ phases
of the monsoon. This question is taken up in Section 6,
along with some other aspects of intraseasonal variabil-
ity, as viewed through the prism of state decomposition.
The rainfall patterns associated with the diagnosed states
appear, in any event, to correspond quite sensibly with
known large-scale monsoon-related circulation regimes
(Gadgil, 2003).

6. Intraseasonal variability: Breaks and ISO

6.1. Viterbi sequence

Once the parameters of the HMM have been estimated,
the most likely daily sequence of states can be determined

using the Viterbi algorithm (Forney, 1978), a dynamic
programming scheme. The Viterbi sequence, which
expresses the time evolution of rainfall patterns over the
entire data period in terms of the hidden states, is shown
for the 4-state model in Figure 6(a). Figure 6(b) shows
the climatological sequence for 1901–1970, accumulat-
ing days-in-state over the 70 years.

Figures 6(a,b) reveal a systematic progression in state
occurrence over the course of the monsoon season.
During the first half of June, state 4 (the dry state)
dominates, while during the core of the rainy season
states 1 and 3 assume primary importance. State 2 plays a
quasi-transitional role, first appearing as a bridge between
dry and wet conditions in late June, almost disappearing
during the wettest part of the season, then returning
in September, with increasing representation toward the
end of that month. After mid-September the dry state
once again becomes dominant. Figure 6(b) also reveals
a subtle evolution of precipitation patterns during the
core rainy season, with July favouring state 3 but a shift
toward state 1 in August.

Over the 70-year data period the four states occur on an
average of 34, 22, 30 and 36 days, respectively, during
the 122-day Jun–Sep season, with standard deviations
10.3, 7.9, 11.8 and 15.2 days, indicating considerable
interannual variability. Variability on longer time-scales
is also suggested by Figure 6(a).

6.2. Monsoon breaks

Figures 6(a,b) both show clearly the dominance of state 4
during the early and late stages of the monsoon. This state
also occurs sporadically during the Jul–Aug core of the
rainy season, however, suggesting a possible association
with monsoon breaks. Gadgil and Joseph (2003) provide
a listing of breaks for 1901–1989, as defined by rainfall
thresholds in the western and eastern sectors of the
monsoon zone. These thresholds were chosen in order
that there be a good correspondence between breaks so
defined and breaks as identified in a broad range of other
studies, so their listing can be considered representative.

Gadgil and Joseph identify an average of 8.8 break
days during Jul–Aug for 1901–1970, while the average
number of dry-state days is 7.9. Standard deviations of the
Gadgil and Joseph and state 4 series are 6.3 and 7.4 days,
respectively. There are nine years in which the Gadgil and
Joseph listing shows no break days, and in each of these
years there are no occurrences of the dry state. However,
there are five additional years in which the dry state does
not occur, in which Gadgil and Joseph do indicate breaks.
Interannual variations in the number of break and state-
4 days are highly correlated (r = 0.76, significant at the
0.0001 level in a one-sided test).

Correspondence between the particular days when
breaks are diagnosed and those days when the Viterbi
algorithm identifies state 4 can be expressed in the form
of a 2 × 2 contingency table and evaluated by means
of the χ2 test, either summing over years, or consider-
ing the entire dataset as a single long sequence. In either
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Figure 6. (a) Viterbi sequence of most likely states, 1901–1970. (b) Corresponding daily climatology, accumulating days-in-state over the 70-year
data period. Colours indicate states 1–4.

case, the number of overlapping days (332 for the 70-year
sequence) significantly exceeds the number expected by
chance alone (78), the test statistic being significant at
values beyond software precision. A bootstrap test indi-
cated that this result has not been biased on account of
serial autocorrelation; we therefore conclude that there
exists a high degree of correspondence between occur-
rence of the HMM dry state and monsoon break days.

One characteristic break pattern defined by the IMD is
described thus:

There are periods when the monsoon trough is located
close to the foothills of the Himalayas, which leads to a
striking decrease of rainfall over most of the country, but
increase along the Himalayas, parts of northeast India
and southern peninsula. (Gadgil and Joseph, 2003).

With respect to the composites, this situation would
appear to correspond most closely to state 1, which shows
a region of anomalous ascent located near the Himalayan
foothills (Figure 5(b)). Rainfall occurrence probabilities
for state 1, however, are uniformly moderate to high
(Figure 4(a)), quite different from those of the dry state.

Clues to this conundrum may be found in the amount
distribution, shown in Figure 4(b), and, somewhat more
cryptically, in the Viterbi sequence (Figure 6(a)). In the
former, amounts in the southern part of the domain
are seen to be small compared to those in the north,
consistent with northward migration of the zone of

intense rainfall, while close examination of the latter
reveals that nearly all occurrences of the dry state are
preceded by state 1, despite the comparable prevalence
of state 3 during Jul–Aug (1693 and 1627 days for
states 1 and 3, respectively). Given these frequencies, it
is striking that of the 88 state-4-diagnosed breaks, 81
are immediately preceded by state 1, the remainder by
state 2.

These observations suggest that state 1 may describe
a phase in the northward propagation of monsoon dis-
turbances (Annamalai et al., 1999), occurring as a low-
pressure trough reaches the Himalayan foothills but
before the anomalous large-scale sinking motion asso-
ciated with state 4 has become established. This notion
is corroborated by the null probability of 3–4 and 4–3
state transitions, as discussed in Section 4.4.

6.3. Intraseasonal oscillation

Within-season monsoon variability has been described in
terms of the so-called intraseasonal oscillation (Anna-
malai et al., 1999; Goswami and Mohan, 2001; Goswami,
2005), a quasi-cyclical behaviour having a rather broad
spectral signature, but with principal activity in the 10–20
and 30–60-day bands (Goswami and Mohan, 2001). Two
centres of convective activity are involved, one extend-
ing along the monsoon trough, which is then character-
ized as a tropical convergence zone (TCZ) and extends
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from the northern Bay of Bengal northwestward over
the Indian landmass, and a second lying in the Indian
Ocean between 0° and 10 °S. The detailed time evolution
of the ISO is apparently complex, consisting, according
to Goswami and Mohan (2001) of

. . . fluctuations of the TCZ between the two locations and
repeated propagation from the southern to the northern
position. . .

Annamalai et al. (1999) in fact refer to the northward
propagation of convective activity as ‘non-periodic’. In
any event, the two ‘phases’ of the ISO, i.e. with con-
vective centres of action located over the two preferred
zones, are to be associated with the active and break
phases of the monsoon, the northerly location correspond-
ing to the active phase.

In the light of this description, states 1 and 3
(Figures 5(b,d)) can clearly be identified with the active
phase, while state 4 and, to a lesser extent, state 2 may
be identified with the break phase. However, for the lat-
ter two states there is little in the vertical motion field
south of the Equator (region not shown in these plots)
to suggest deep convection. Thus, while some aspects
of a correspondence between the state composites and
the ISO seem reasonably clear, the structure of the dry
state does not appear to correspond in all particulars to
the canonical break-phase description of Goswami and
Mohan (2001).

The HMM is sensitive not only to differing patterns of
rainfall occurrence and intensity per se, but also to the
relative frequency with which these patterns are man-
ifest. Thus, a distinctive pattern that occurred on only
a very small number of days would tend to be sub-
sumed into a state having greater representation among
the observations. A propagating pattern would then most
likely find expression in terms of its more temporally
persistent phases. Ghil and Robertson (2002) consider
the relationship between persistence, atmospheric states
and oscillatory modes in the context of a ‘wave-particle
duality’. The modes, or ‘slow phases’ in their terminol-
ogy, are thus more likely to be captured by the state
descriptions.

6.4. Propagation of convective disturbances

We focus here on the Jul–Aug core of the wet sea-
son. During these months the monsoon is fully active,
the dry periods at the beginning of June and end of
September being excluded. Transition probabilities for
Jul–Aug, estimated from the Viterbi sequence, are shown
in Table III (cf. Table II, which applies to the entire
Jun–Sep season, and where transitions to the dry state
from states 1 and 2 are considerably more likely). We
consider the off-diagonal elements in this array, from
which most likely sequences of states may be deduced.
Exclusion of elements on the main diagonal is equiva-
lent to considering only transitions from one state to a
different state, thus ignoring self-transitions. Attention is

thereby directed to the temporal patterns of intraseasonal
variability, rather than the daily transitions.

The most likely sequence, thus defined, varies accord-
ing to which state is taken as the starting point, but
if we think of the ISO as described by Goswami and
Mohan (2001), i.e. as an alternation between two cen-
tres of convective activity (with propagation from south
to north), we can think of a complete ‘cycle’ as extend-
ing from break to break – a break occurring when the
locus of convection lies to the south of the Equator.
Beginning with a break (state 4), the most likely state
sequence is then 4–2–3–1. Figure 7 shows compos-
ites of 850 mb relative vorticity corresponding to the
wind fields of Figures 5(b–e). Viewed in the 4–2–3–1
sequence, the plots show a northward progression of the
band of positive vorticity, beginning, in state 4, at the
southern extremity of the subcontinent. This would be
consistent with the northward-propagating disturbances
described by Goswami and Mohan (2001).

The Markov chain, of course, follows some mixture
of all the paths permitted by the transition matrix; thus,
there is considerable stochastic variability in the actual
progression of states. Nevertheless, the 4–2–3–1 pattern
is frequently found intact in the Viterbi sequence.

In summary, much in the state composites is consis-
tent with the ISO, as it has been variously described.
However, it should be remembered that the states are
not regular snapshots in time, constrained to follow one
another in a deterministic order. Furthermore, the data
have not been filtered to retain only ISO-band variability,
and thus contain information about all time-scales.

6.5. Other aspects of intraseasonal variability

From Table III it can be seen that another ‘preferred’
sequence consists of an alternation between states 1
and 3, and also that the 1–3 transition probability is
about twice that of 1–4. An alternation between states 1
and 3 is consistent with the maintenance of generally
heavy precipitation during Jul–Aug, and the less frequent
excursions to state 4 with the occasional occurrence of
breaks. Stochastic switching between these two transi-
tional modes would be consistent with the intermittent
character of northward propagation associated with the
ISO, as described by both Annamalai et al. (1999) and
Goswami (2005).

A feature of interest in Figure 6(b) involves the shift
in dominance, during the peak Jul–Aug period, from

Table III. July–August transition probabilities.

‘To’ state

1 2 3 4

1 0.847 0.014 0.091 0.047
‘From’ 2 0.066 0.763 0.158 0.013
state 3 0.132 0.009 0.859 0.000

4 0.050 0.106 0.000 0.844

Copyright  2008 Royal Meteorological Society Q. J. R. Meteorol. Soc. 134: 875–887 (2008)
DOI: 10.1002/qj



884 A. M. GREENE ET AL.

−2
0

0

0

1
2

2

Eq

40

10

20

30

−1

−1

0

0 0

0

0

1

1 1
1

2

2

4

−7
−3

−1
−1

−1−1

−1 −1

1

1 1

1 1

3

5 7

120906030

Eq

40

10

20

30
−3

−1

−1

−1

−1
−1

−1

1

1

1

3
3

3

3

3

5

7

120906030

(a) (b)

(c) (d)

Figure 7. Relative vorticity anomaly composites (10−6 s−1) for the 4-state model: (a)–(d) show states 1–4, respectively.

state 3 toward state 1. This may reflect an increasing
tendency toward the dry state (nearly always preceded by
state 1 but never by state 3), and ultimately the end of
the rainy season itself, as July turns to August. Increasing
predominance of state 1 as the season matures may also
be viewed as a tendency, with time, for convection to
occur preferentially in the more northerly reaches of the
country.

7. Interannual variations – Influence of ENSO

The four-state model comprises two ‘wet’ and two ‘dry’
states, with states 3 and 4 the more intense in these two
categories, respectively, and 1 and 2 the more attenuated.
Over the course of a full season, the number of days
spent in each of the states can thus signal relatively wet
or dry years; the unfolding in time of these variations
constitutes what we would call interannual variability,
but now expressed in terms of frequency of occurrence
(FO) of the model’s hidden states. These occurrence
frequencies, which apply to the station network as whole,
may in turn be thought of as representing interannual
variations in the large-scale circulation. (Indeed, this has
been demonstrated in Section 5.) On the other hand,
the states are related to the station rainfall through the
structure of the HMM. Thus, state FO links the large
spatial scale of the circulation fields with the small
scales of station rainfall. This linkage is explored in what
follows.

The number of days in a given year assigned to
each of the states may be computed from the Viterbi
sequence. Correlation coefficients for the four FO series
thus obtained and the NINO3.4 index (Barnston et al.,
1994) are –0.18, –0.16, –0.45 and 0.56 for states 1
to 4, respectively. The first two of these values are not

statistically significant (two-sided test), even at a level of
0.10, while the latter two prove significant at better than
0.001 (on 68 degrees of freedom, dof) This indicates a
tendency for El Niño (La Niña) years to be associated
with increased FO of the dry (wet) state, consistent with
the sense of the historical ENSO-monsoon relationship.
The NINO3.4 index is also anticorrelated with the
ISMR (r = −0.63), indirectly linking FO to this broad-
scale metric. These relationships confirm the large-scale
character of state FO, as would be expected from the
results of Section 5.

The relationship between FO and station rainfall cannot
be considered for each of the states separately, because
FO need not (indeed, cannot) vary independently among
states. In addition, there exists the possibility that within-
state variation (changes in the character of the states),
if systematic, could cause station rainfall variations to
diverge from what variations in FO alone would lead us to
expect. Canonical correlation analysis (CCA; e.g. Wilks,
2006) offers a means of addressing these potentially
confounding aspects of the FO–rainfall linkage, and
is thus employed here in order to characterize that
relationship.

CCA identifies pairs of patterns across two fields, such
that the temporal correlation between members of a pair
is maximized. The original variables can be projected
onto the diagnosed patterns to estimate the degree to
which the actual behaviour of the fields is captured by
them. In the CCA performed here, the method of Barnett
and Preisendorfer (1987), in which the original data are
first expressed, or ‘filtered’, in terms of EOFs, is utilized.
Moron et al. (2008) have performed a similar analysis,
as part of an investigation of Senegalese rainfall.

The two ‘fields’ analyzed, each having annual values,
are the state FO series and the mean daily station rainfall
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amounts. Initially, all series are filtered to remove decadal
and longer-period variability. This is done by first gen-
erating smoothed versions of the series, using 11-year
running means. These smoothed versions are then sub-
tracted from the original series, leaving the shorter-period
variations as a residual. The Kolmogorov–Smirnov test
did not lead to a rejection of the null hypothesis of nor-
mality for any of the resulting state or station series; CCA
was thus applied without any transformation of variables.

Figures 8(a,b) illustrate, respectively, the FO and
station rainfall patterns corresponding to the leading
mode of covariability. The correlation between the two
canonical variates for this mode is 0.92, while the patterns
themselves explain 48% of the variance of the FO field
and 33% of the variance of the rainfall amounts. A Monte
Carlo significance test that involves scrambling the time
indices while retaining spatial field structure indicates that
the correlation value is significant at better than 0.001.
The next two modes also have significant correlation
coefficients and explain 14% and 12% of the rainfall
variance, respectively. Thus, the leading CCA mode on
subdecadal time-scales consists of an alternation between
states 3 and 4, the wet and dry states, coupled to a rainfall
pattern in which mean seasonal amounts change in the
same sense at all stations, becoming wetter (drier) when
state 3 (4) predominates. From the HMM perspective,
then, ENSO modulates monsoon rainfall through the
agency of the state frequencies, producing lower (higher)
counts for state 3 (4) in El Niño years, vice versa for La
Niña years.

The leading canonical variate time series for the FO
series is well correlated with the ISMR index (r =
0.81, significant at better than 0.0001). This can be
taken as additional confirmation that the HMM state
decomposition, based on only a 13-station network, has
captured patterns that are implicitly descriptive of this
broadly representative index.

Potential utility of the HMM as a predictive downscal-
ing tool was tested for the interannual case by attempt-
ing to forecast precipitation over the station network for
each year, using a CCA fitted to the remaining data
years. The four FO series were utilized as predictors,
and all three significantly correlated CCA modes, which

together explain 60% of the station rainfall variance, were
utilized. The correlation between observed and cross-
validated forecast station rainfall series was 0.49±0.13
(1σ ), and the mean RMS error 1.7 mm, or 30% of the
seasonal mean daily amount (averaged over both stations
and years). For the stations with higher correlations this
represents potentially useful forecast skill. It should be
kept in mind, however, that these measures assume a
perfect forecast of the state frequencies, which will not
be the case in practice.

8. Multidecadal behaviour

Figure 9 shows the smoothed FO time series, in which
subdecadal variability is suppressed. Series for states 1
and 2 do not exhibit marked long-term trends, although
decadal variations are evident. Series for states 3 and
4 trend in opposite directions, however, the former
increasing. This tendency, of states 3 and 4 to vary in
opposite senses, also characterizes decadal variations, and
suggests similarities with the interannual case.

Figures 8(c,d) show the first canonical patterns for the
smoothed data, which are seen to be similar to those
for the interannual series. The first three correlations are
also significant (at 0.001) in this case, and explain 52%,
24% and 7% of the station rainfall variance, respectively.
The smoothed ISMR is also well correlated with the first
FO canonical variate (r = 0.85, p value of 0.015 for a
two-way test on 5 dof), so an appreciable fraction of the
decadal variance can be related to the state frequencies,
even though the states themselves are diagnosed with
respect to daily data. Thus, it appears that decadal
variations of the ISMR amount in part to an aggregation,
over many years, of wet and dry states. This can be
viewed as an extension of the intraseasonal–interannual
relation identified by Goswami and Mohan (2001).

9. Discussion

The homogeneous HMM is utilized here as a diagnos-
tic tool, and provides a compact description of daily
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rainfall variability over the station network. The rela-
tionships detailed, between variations in FO of the diag-
nosed states, station rainfall distributions and various
monsoon features (large-scale atmospheric flow, ISO, all-
India monsoon rainfall, ENSO interaction, longer-period
variability) indicate that this description contains much
information about real physical processes.

Well-defined atmospheric modes corresponding to the
states are consistent with both the state rainfall patterns
and the large-scale structure of the monsoon. This corre-
spondence may owe something to the fact that the mon-
soon is a large-scale phenomenon, whose modes might be
accessible in this way from any similar network meeting
some minimal sampling requirement.

It was shown that year-to-year fluctuations in the first
CCA mode, representing inverse variations in the FO
of states 3 and 4, play an important role in monsoon
variations on even decadal time-scales. The possibility
that there are, in addition, low-frequency modes of
variability whose expression is similar to the behaviour
that is here attributed to the aggregation of wet and dry
states over decade-length periods cannot be ruled out.
However, such modes are not amenable to discovery
through the agency of the HMM.

10. Summary and conclusions

A homogeneous hidden Markov model is applied to daily
Indian monsoon rainfall on a network of 13 stations in
west central India, for the years 1901–1970. The HMM
associates patterns of rainfall received at the stations with
a set of hidden states, that progress in time as a first-order
Markov process. For the purposes of the present work, a
model having four hidden states is found to be optimal,
in that it captures sufficient detail to represent essential
features of monsoon variability, while retaining adequate
interpretive simplicity for the purposes of the present
exposition. To the best of our knowledge, application of

a statistical model of this type in the Indian monsoon
domain has not previously been attempted.

The diagnosed states were found to play distinct roles
in the seasonal march of the monsoon, and the associated
atmospheric composites to correspond sensibly with state
rainfall characteristics. Episodes of dry-state occurrence
during the peak rainy season were shown to correspond
well with independently diagnosed monsoon breaks,
while detailed analysis of the time evolution of ‘most
likely’ states revealed a correspondence with phases in
the northward propagation of convective disturbances
characteristic of the ISO. This evidence lends credence
to the HMM representation of monsoon spatio-temporal
variability, and suggests that such models may also find
use in other monsoon-dominated circulation regimes.

On interannual time scales, a strong relationship
between ENSO and monsoon rainfall is found for the
period under study. Canonical correlation analysis iden-
tifies a primary mode in which the occurrence frequencies
of the driest and wettest states vary in opposing senses.
Both all-India monsoon rainfall and a typical ENSO index
are found to project strongly onto this mode, implying
that the state frequencies are strongly coupled to both sea-
sonal rainfall totals and ENSO. These relationships per-
sist on decadal time-scales, suggesting that long-period
fluctuations in monsoon rainfall can ultimately be linked
to interannual variations in state FO. This diagnosis,
which has not been made previously, differs from that of
Moron et al., (2008) with respect to Senegalese rainfall,
in which decadal variability was found to be primarily a
consequence of within-state variation, while interannual
variability was more strongly influenced by FO.

A preliminary experiment utilizing the diagnosed FO
series as predictors suggested that the HMM may prove
useful in this regional setting as a statistical downscaling
tool, although better quantification awaits further investi-
gation. A related application, in an area of research that
has received increasing attention of late, is the gener-
ation of weather-within-climate data, in the context of
long-range climate change studies. The model validation
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presented here represents an important step toward the
realization of these applications.
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