Sound, Mixtures, and Learning

Dan Ellis
dpwe@ee.columbia.edu
Laboratory for Recognition and Organization of Speech and Audio (LabROSA)
Electrical Engineering, Columbia University http://labrosa.ee.columbia.edu/

Outline

(1) Human sound organization
(2) Computational Auditory Scene Analysis
(3) Speech models and knowledge

4 Sound mixture recognition
(5) Learning opportunities

Human sound organization

- Analyzing and describing complex sounds:
- continuous sound mixture \rightarrow distinct events
- Hearing is ecologically grounded
- reflects 'natural scene' properties
- subjective not canonical (ambiguity)
- mixture analysis as primary goal

Sound mixtures

- Sound 'scene' is almost always a mixture
- always stuff going on
- sound is 'transparent' - but big energy range

- Need information related to our 'world model'
- i.e. separate objects
- a wolf howling in a blizzard is the same as a wolf howling in a rainstorm
- whole-signal statistics won't do this
- 'Separateness' is similar to independence
- objects/sounds that change in isolation
- but: depends on the situation e.g. passing car vs. mechanic's diagnosis

Auditory scene analysis

(Bregman 1990)

- How do people analyze sound mixtures?
- break mixture into small elements (in time-freq)
- elements are grouped in to sources using cues
- sources have aggregate attributes
- Grouping 'rules' (Darwin, Carlyon, ...):
- cues: common onset/offset/modulation, harmonicity, spatial location, ...

(after Darwin, 1996)

Cues to simultaneous grouping

- Elements + attributes

- Common onset
- simultaneous energy has common source
- Periodicity
- energy in different bands with same cycle
- Other cues
- spatial (ITD/IID), familiarity, ...

The effect of context

- Context can create an 'expectation': i.e. a bias towards a particular interpretation
- e.g. Bregman's "old-plus-new" principle: A change in a signal will be interpreted as an added source whenever possible

- a different division of the same energy depending on what preceded it

Outline

(1) Human sound organization
(2) Computational Auditory Scene Analysis

- sound source separation
- bottom-up models
- top-down constraints
(3) Speech models and knowledge
(4) Sound mixture recognition
(5) Learning opportunities

(2)Computational Auditory Scene Analysis (CASA)

- Goal: Automatic sound organization ; Systems to 'pick out' sounds in a mixture
- ... like people do
- E.g. voice against a noisy background
- to improve speech recognition
- Approach:
- psychoacoustics describes grouping 'rules’
- ... just implement them?

CASA front-end processing

- Correlogram:

Loosely based on known/possible physiology

- linear filterbank cochlear approximation
- static nonlinearity
- zero-delay slice is like spectrogram
- periodicity from delay-and-multiply detectors

The Representational Approach

(Brown \& Cooke 1993)

- Implement psychoacoustic theory

- 'bottom-up’ processing
- uses common onset \& periodicity cues
- Able to extract voiced speech:

Problems with 'bottom-up' CASA

- Circumscribing time-frequency elements
- need to have 'regions', but hard to find
- Periodicity is the primary cue
- how to handle aperiodic energy?
- Resynthesis via masked filtering
- cannot separate within a single t-f element
- Bottom-up leaves no ambiguity or context
- how to model illusions?

Restoration in sound perception

- Auditory 'illusions' = hearing what's not there
- The continuity illusion

- SWS

- duplex perception

Adding top-down constraints

Perception is not direct

 but a search for plausible hypotheses- Data-driven (bottom-up)...

- objects irresistibly appear
vs. Prediction-driven (top-down)

- match observations with parameters of a world-model
- need world-model constraints...

Aside: Optimal techniques (ICA, ABF)

(Bell \& Sejnowski etc.)

- General idea:

Drive a parameterized separation algorithm to maximize independence of outputs

- Attractions:
- mathematically rigorous, minimal assumptions
- Problems:
- limitations of separation algorithm ($\mathrm{N} \times \mathrm{N}$)
- essentially bottom-up

Outline

(1) Human sound organization
(2) Computational Auditory Scene Analysis
(3) Speech models and knowledge

- automatic speech recognition
- subword states
- cepstral coefficients
(4) Sound mixture recognition
(5) Learning opportunities

(3) Speech models \& knowledge

- Standard speech recognition

- 'State of the art' word-error rates (WERs):
- 2% (dictation) - 30% (telephone conversations)

Speech units

- Speech is highly variable
- simple templates won't do
- spectral variation (voice quality)
- time-warp problems
- Match short segments (states), allow repeats
- model with pseudo-stationary slices of $\sim 10 \mathrm{~ms}$

- Speech models are distributions $p(X \mid q)$

Speech features: Cepstra

- Idea: Decorrelate \& summarize spectral slices:

$$
X_{m}[l]=I D F T\{\log |S[m H, k]|\}
$$

- easier to model:

- C_{0} 'normalizes out' average log energy
- Decorrelated pdfs fit diagonal Gaussians
- DCT is close to PCA for log spectra

Acoustic model training

- Goal: describe $p(X \mid q)$ with e.g. GMMs

- Training data labels from:
- manual phonetic annotation
- 'best path' from earlier classifier (Viterbi)
- EM: joint estimation of labels \& pdfs

HMM decoding

- Feature vectors cannot be reliably classified into phonemes

- Use top-down constraints to get good results
- allowable phonemes
- dictionary of known words
- grammar of possible sentences
- Decoder searches all possible state sequences
- at least notionally; pruning makes it possible

Outline

(1) Human sound organization
(2) Computational Auditory Scene Analysis
(3) Speech models and knowledge
4) Sound mixture recognition

- feature invariance
- mixtures including
- general mixtures
(5) Learning opportunities

4
 Sound mixture recognition

- Biggest problem in speech recognition is background noise interference
- Feature invariance approach
- use features that reflect only speech
- e.g. normalization, mean subtraction
- but: non-static noise?
- Or: more complex models of the signal
- HMM decomposition
- missing-data recognition
- Generalize to other, multiple sounds

Feature normalization

- Idea: feature variations, not absolute level
- Hence: calculate average level \& subtract it: $X[k]=S[k]-\operatorname{mean}\{S[k]\}$
- Factors out fixed channel frequency response:

$$
\begin{gathered}
s[n]=h[n] * e[n] \\
\log |S[k]|=\log |H[k]|+\log |E[k]|
\end{gathered}
$$

- Normalize variance to handle added noise?

N2_SNR5/MGG95958

Lab

HMM decomposition

(e.g. Varga \& Moore 1991, Roweis 2000)

- Total signal model has independent state sequences for 2+ component sources
model 2

- New combined state space $q^{\prime}=\left\{q_{1} q_{2}\right\}$
- new observation pdfs for each combination

$$
p\left(X^{i} \mid q_{1}^{i}, q_{2}^{i}\right)
$$

Problems with HMM decomposition

- $O\left(q_{k}\right)^{N}$ is exponentially large...
- Normalization no longer holds!
- each source has a different gain
\rightarrow model at various SNRs?
- models typically don't use overall energy C_{0}
- each source has a different channel H[k]
- Modeling every possible sub-state combination is inefficient, inelegant and impractical

Missing data recognition
 (Cooke, Green, Barker @ Sheffield)

- Energy overlaps in time-freq. hide features
- some observations are effectively missing
- Use missing feature theory...
- integrate over missing data x_{m} under model M

$$
p(x \mid M)=\int p\left(x_{p} \mid x_{m}, M\right) p\left(x_{m} \mid M\right) d x_{m}
$$

- Effective in speech recognition

- Problem: finding the missing data mask

Maximum-likelihood data mask

- Search of sound-fragment interpretations

- Decoder searches over data mask K : $p(M, K \mid x) \propto p(x \mid K, M) p(K \mid M) p(M)$
- how to estimate $p(K)$

Multi-source decoding

- Search for more than one source

- Mutually-dependent data masks
- Use CASA processing to propose masks
- locally coherent regions
- $p(K \mid q)$
- Theoretical vs. practical limits

General sound mixtures

- Search for generative explanation:

Outline

(1) Human sound organization
(2) Computational Auditory Scene Analysis
(3) Speech models and knowledge

4 Sound mixture recognition
(5) Opportunities for learning

- learnable aspects of modeling
- tractable decoding
- some examples

5
 Opportunities for learning

- Per model feature distributions $P(Y \mid M)$
- e.g. analyzing isolated sound databases
- Channel modifications $P(X \mid Y)$
- e.g. by comparing multi-mic recordings
- Signal combinations $P\left(O \mid\left\{X_{i}\right\}\right)$
- determined by acoustics
- Patterns of model combinations $P\left(\left\{M_{i}\right\}\right)$
- loose dependence between sources
- Search for most likely explanations
$P\left(\left\{M_{i}\right\} \mid O\right) \propto P\left(O \mid\left\{X_{i}\right\}\right) P\left(\left\{X_{i}\right\} \mid\left\{M_{i}\right\}\right) P\left(\left\{M_{i}\right\}\right)$
- Short-term structure: repeating events

Source models

- The speech recognition lesson: Use the data as much as possible
- what can we do with unlimited data feeds?
- Data sources
- clean data corpora
- identify near-clean segments in real sound
- Model types
- templates
- parametric/constraint models
- HMMs

What are the HMM states?

- No sub-units defined for nonspeech sounds
- Final states depend on EM initialization
- labels
- clusters
- transition matrix
- Have ideas of what we'd like to get
- investigate features/initialization to get there

Tractable decoding

- Speech decoder notionally searches all states
- Parametric models give infinite space
- need closed-form partial explanations
- examine residual, iterate, converge
- Need general cues to get started
- return to Auditory Scene Analysis:
- onsets
- harmonic patterns
- then parametric fitting
- Need multiple hypothesis search, pruning, efficiency tricks
- Learning?

Parameters for new source events

- e.g. from artificial (hence labeled) mixtures

Example: Alarm sound detection

- Alarm sounds have particular structure
- people 'know them when they hear them'
- Isolate alarms in sound mixtures

- sinusoid peaks have invariant properties

- Learn model parameters from examples

Example: Music transcription (e.g. Masataka Goto)

- High-quality training material: Synthesizer sample kits
- Ground truth available: Musical scores
- Find ML explanations for scores
- guide by multiple pitch tracking (hyp. search)

- Applications in similarity matching

Summary

- Sound contains lots of information
... but it's always mixed up
- Psychologists describe ASA
... but bottom-up computer models don't work
- Speech recognition works for isolated speech
... by exploiting top-down, context constraints
- Speech in mixtures via multiple-source models
... practical combinatorics are the main problem
- Generalize this idea for all sounds
... need models of 'all sounds'
... plus models of channel modification
... plus ways to propose segmentations
... plus missing-data recognition

Further reading

[BarkCE00]	J. Barker, M.P. Cooke \& D. Ellis (2000). "Decoding speech in the presence of other sound sources," Proc. ICSLP-2000, Beijing. ftp://ttp.icsi.berkeley.edu/pub/speech/papers/icslp00-msd.pdf
[Breg90]	A.S. Bregman (1990). Auditory Scene Analysis: the perceptual organi- zation of sound, MIT Press.
[Chev00]	A. de Cheveigné (2000). "The Auditory System as a Separation Machine," Proc. Intl. Symposium on Hearing. http://www.ircam.fr/pcm/cheveign/sh/ps/ATReats98.pdf
[CookE01]	M. Cooke, D. Ellis (2001). "The auditory organization of speech and other sources in listeners and computational models," Speech Commu- nication (accepted for publication). http://www.ee.columbia.edu/~dpwe/pubs/tcfkas.pdf
[Ellis99]	D.P.W. Ellis (1999). "Using knowledge to organize sound: The predic- tion-driven approach to computational auditory scene analysis...,"
Speech Communications 27.	
http://www.ee.columbia.edu/~dpwe/pubs/spcomcasa98.pdf	

