brought to you l

Sound, Mixtures, and Learning

Dan Ellis <dpwe@ee.columbia.edu>

Laboratory for Recognition and Organization of Speech and Audio (LabROSA)

Electrical Engineering, Columbia University http://labrosa.ee.columbia.edu/

Outline

- 1 Human sound organization
- Computational Auditory Scene Analysis
- 3 Speech models and knowledge
- 4 Sound mixture recognition
- **5** Learning opportunities

Human sound organization

Analyzing and describing complex sounds:

- continuous sound mixture → distinct events

Hearing is ecologically grounded

- reflects 'natural scene' properties
- subjective not canonical (ambiguity)
- mixture analysis as primary goal

Sound mixtures

Sound 'scene' is almost always a mixture

- always stuff going on
- sound is 'transparent' but big energy range

Need information related to our 'world model'

- i.e. separate objects
- a wolf howling in a blizzard is the same as a wolf howling in a rainstorm
- whole-signal statistics won't do this

'Separateness' is similar to independence

- objects/sounds that change in isolation
- but: depends on the situation e.g.
 passing car vs. mechanic's diagnosis

Auditory scene analysis

(Bregman 1990)

- How do people analyze sound mixtures?
 - break mixture into small *elements* (in time-freq)
 - elements are *grouped* in to sources using *cues*
 - sources have aggregate attributes
- Grouping 'rules' (Darwin, Carlyon, ...):
 - cues: common onset/offset/modulation, harmonicity, spatial location, ...

(after Darwin, 1996)

Cues to simultaneous grouping

Elements + attributes

Common onset

- simultaneous energy has common source

Periodicity

- energy in different bands with same cycle

Other cues

- spatial (ITD/IID), familiarity, ...

The effect of context

- Context can create an 'expectation':
 i.e. a bias towards a particular interpretation
- e.g. Bregman's "old-plus-new" principle:

A change in a signal will be interpreted as an added source whenever possible

 a different division of the same energy depending on what preceded it

Outline

- 1 Human sound organization
- Computational Auditory Scene Analysis
 - sound source separation
 - bottom-up models
 - top-down constraints
- 3 Speech models and knowledge
- 4 Sound mixture recognition
- 5 Learning opportunities

2 Computational Auditory Scene Analysis (CASA)

- Goal: Automatic sound organization;
 Systems to 'pick out' sounds in a mixture
 - ... like people do
- E.g. voice against a noisy background
 - to improve speech recognition
- Approach:
 - psychoacoustics describes grouping 'rules'
 - ... just implement them?

CASA front-end processing

Correlogram:
 Loosely based on known/possible physiology

- linear filterbank cochlear approximation
- static nonlinearity
- zero-delay slice is like spectrogram
- periodicity from delay-and-multiply detectors

The Representational Approach

(Brown & Cooke 1993)

Implement psychoacoustic theory

- 'bottom-up' processing
- uses common onset & periodicity cues
- Able to extract voiced speech:

Problems with 'bottom-up' CASA

- Circumscribing time-frequency elements
 - need to have 'regions', but hard to find
- Periodicity is the primary cue
 - how to handle aperiodic energy?
- Resynthesis via masked filtering
 - cannot separate within a single t-f element
- Bottom-up leaves no ambiguity or context
 - how to model illusions?

Restoration in sound perception

- Auditory 'illusions' = hearing what's not there
- The continuity illusion

SWS

- duplex perception

Adding top-down constraints

Perception is not *direct* but a *search* for *plausible hypotheses*

Data-driven (bottom-up)...

objects irresistibly appear

vs. Prediction-driven (top-down)

- match observations
 with parameters of a world-model
- need world-model constraints...

Aside: Optimal techniques (ICA, ABF)

(Bell & Sejnowski etc.)

General idea:

Drive a parameterized separation algorithm to maximize independence of outputs

Attractions:

- mathematically rigorous, minimal assumptions

Problems:

- limitations of separation algorithm (N x N)
- essentially bottom-up

Outline

- 1 Human sound organization
- 2 Computational Auditory Scene Analysis
- 3 Speech models and knowledge
 - automatic speech recognition
 - subword states
 - cepstral coefficients
- 4 Sound mixture recognition
- 5 Learning opportunities

3

Speech models & knowledge

Standard speech recognition

- State of the art' word-error rates (WERs):
 - 2% (dictation) 30% (telephone conversations)

Speech units

- Speech is highly variable
 - simple templates won't do
 - spectral variation (voice quality)
 - *time-warp* problems
- Match short segments (states), allow repeats
 - model with pseudo-stationary slices of ~ 10 ms

• Speech models are distributions p(X|q)

Speech features: Cepstra

Idea: Decorrelate & summarize spectral slices:

$$X_m[l] = IDFT\{\log|S[mH, k]|\}$$

easier to model:

- C₀ 'normalizes out' average log energy
- Decorrelated pdfs fit diagonal Gaussians
 - DCT is close to PCA for log spectra

Acoustic model training

• Goal: describe p(X|q) with e.g. GMMs

Training data labels from:

- manual phonetic annotation
- 'best path' from earlier classifier (Viterbi)
- EM: joint estimation of labels & pdfs

HMM decoding

Feature vectors cannot be reliably classified into phonemes

- Use top-down constraints to get good results
 - allowable phonemes
 - dictionary of known words
 - grammar of possible sentences
- Decoder searches all possible state sequences
 - at least notionally; pruning makes it possible

Outline

- 1 Human sound organization
- 2 Computational Auditory Scene Analysis
- 3 Speech models and knowledge
- Sound mixture recognition
 - feature invariance
 - mixtures including
 - general mixtures
- 5 Learning opportunities

Sound mixture recognition

- Biggest problem in speech recognition is background noise interference
- Feature invariance approach
 - use features that reflect only speech
 - e.g. normalization, mean subtraction
 - but: non-static noise?
- Or: more complex models of the signal
 - HMM decomposition
 - missing-data recognition
- Generalize to other, multiple sounds

Feature normalization

- Idea: feature variations, not absolute level
- Hence: calculate average level & subtract it:

$$X[k] = S[k] - \max\{S[k]\}$$

Factors out fixed channel frequency response:

$$s[n] = h[n] * e[n]$$

$$\log |S[k]| = \log |H[k]| + \log |E[k]|$$

Normalize variance to handle added noise?

HMM decomposition

(e.g. Varga & Moore 1991, Roweis 2000)

 Total signal model has independent state sequences for 2+ component sources

- New combined state space $q' = \{q_1 \ q_2\}$
 - new observation pdfs for each combination

$$p(X^i | q_1^i, q_2^i)$$

Problems with HMM decomposition

- $O(q_k)^N$ is exponentially large...
- Normalization no longer holds!
 - each source has a different gain
 → model at various SNRs?
 - models typically don't use overall energy C_0
 - each source has a different *channel H[k]*
- Modeling every possible sub-state combination is inefficient, inelegant and impractical

Missing data recognition

(Cooke, Green, Barker @ Sheffield)

- **Energy overlaps in time-freq. hide features**
 - some observations are effectively *missing*
- Use missing feature theory...
 - integrate over missing data x_m under model M $p(x|M) = \int p(x_p|x_m, M)p(x_m|M)dx_m$

Effective in speech recognition

Problem: finding the missing data mask

Maximum-likelihood data mask

(Jon Barker @ Sheffield)

Search of sound-fragment interpretations

Decoder searches over data mask K:

$$p(M, K|x) \propto p(x|K, M)p(K|M)p(M)$$

- how to estimate p(K)

Multi-source decoding

Search for more than one source

- Mutually-dependent data masks
- Use CASA processing to propose masks
 - locally coherent regions
 - p(K|q)
- Theoretical vs. practical limits

General sound mixtures

Search for generative explanation:

Analysis structure

Outline

- 1 Human sound organization
- 2 Computational Auditory Scene Analysis
- 3 Speech models and knowledge
- 4 Sound mixture recognition
- Opportunities for learning
 - learnable aspects of modeling
 - tractable decoding
 - some examples

Opportunities for learning

- Per model feature distributions P(Y|M)
 - e.g. analyzing isolated sound databases
- Channel modifications P(X|Y)
 - e.g. by comparing multi-mic recordings
- Signal combinations $P(O|\{X_i\})$
 - determined by acoustics
- Patterns of model combinations $P(\{M_i\})$
 - loose dependence between sources
- Search for most likely explanations $P(\{M_i\}|O) \propto P(O|\{X_i\})P(\{X_i\}|\{M_i\})P(\{M_i\})$
 - Short-term structure: repeating events

Source models

- The speech recognition lesson:
 Use the data as much as possible
 - what can we do with unlimited data feeds?
- Data sources
 - clean data corpora
 - identify near-clean segments in real sound
- Model types
 - templates
 - parametric/constraint models
 - HMMs

What are the HMM states?

- No sub-units defined for nonspeech sounds
- Final states depend on EM initialization
 - labels
 - clusters
 - transition matrix
- Have ideas of what we'd like to get
 - investigate features/initialization to get there

Tractable decoding

- Speech decoder notionally searches all states
- Parametric models give infinite space
 - need closed-form partial explanations
 - examine residual, iterate, converge
- Need general cues to get started
 - return to Auditory Scene Analysis:
 - onsets
 - harmonic patterns
 - then parametric fitting
- Need multiple hypothesis search, pruning, efficiency tricks
- Learning?
 Parameters for new source events
 - e.g. from artificial (hence labeled) mixtures

Example: Alarm sound detection

- Alarm sounds have particular structure
 - people 'know them when they hear them'
- Isolate alarms in sound mixtures

sinusoid peaks have invariant properties

Learn model parameters from examples

Example: Music transcription (e.g. Masataka Goto)

- High-quality training material: Synthesizer sample kits
- Ground truth available:
 Musical scores
- Find ML explanations for scores
 - guide by multiple pitch tracking (hyp. search)

Applications in similarity matching

Summary

- Sound contains lots of information
 - ... but it's always mixed up
- Psychologists describe ASA
 - ... but bottom-up computer models don't work
- Speech recognition works for isolated speech
 - ... by exploiting top-down, context constraints
- Speech in mixtures via multiple-source models
 - ... practical combinatorics are the main problem
- Generalize this idea for all sounds
 - ... need models of 'all sounds'
 - ... plus models of channel modification
 - ... plus ways to propose segmentations
 - ... plus missing-data recognition

Further reading

[BarkCE00] J. Barker, M.P. Cooke & D. Ellis (2000). "Decoding speech in the presence of other sound sources," *Proc. ICSLP-2000*, Beijing. ftp://ftp.icsi.berkeley.edu/pub/speech/papers/icslp00-msd.pdf

[Breg90] A.S. Bregman (1990). Auditory Scene Analysis: the perceptual organization of sound, MIT Press.

[Chev00] A. de Cheveigné (2000). "The Auditory System as a Separation Machine," Proc. Intl. Symposium on Hearing. http://www.ircam.fr/pcm/cheveign/sh/ps/ATReats98.pdf

[CookE01] M. Cooke, D. Ellis (2001). "The auditory organization of speech and other sources in listeners and computational models," *Speech Communication* (accepted for publication). http://www.ee.columbia.edu/~dpwe/pubs/tcfkas.pdf

[Ellis99] D.P.W. Ellis (1999). "Using knowledge to organize sound: The prediction-driven approach to computational auditory scene analysis...," *Speech Communications* 27. http://www.ee.columbia.edu/~dpwe/pubs/spcomcasa98.pdf

[Roweis00] S. Roweis (2000). "One microphone source separation.," *Proc. NIPS* 2000. http://www.ee.columbia.edu/~dpwe/papers/roweis-nips2000.pdf

