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Audio Information Extraction 

 

• Analyzing and describing complex sounds:

 

- continuous sound mixture 

 

→

 

 distinct objects & events

 

• Human listeners as the prototype

 

- strong subjective impression when listening
- ..but hard to ‘see’ in signal
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Bregman’s lake

 

“Imagine two narrow channels dug up from the edge of a 
lake, with handkerchiefs stretched across each one.  
Looking only at the motion of the handkerchiefs, you are 
to answer questions such as: How many boats are there 
on the lake and where are they?”   

 

(after Bregman’90)

 

• Received waveform is a mixture

 

- two sensors, N signals ...

 

• Disentangling mixtures as primary goal

 

- perfect solution is not possible
- need knowledge-based 

 

constraints
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The information in sound

 

• Hearing confers evolutionary advantage

 

- optimized to get ‘useful’ information from sound

 

• Auditory perception is 

 

ecologically

 

 grounded

 

- scene analysis is preconscious (

 

→

 

 illusions)
- special-purpose processing reflects 

‘natural scene’ properties
- subjective 

 

not

 

 canonical (ambiguity)
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Positioning AIE

 

• Domain

 

- text ... speech ... music ... general audio

 

• Operation

 

- recognize ... index/retrieve ... organize
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AIE Applications

 

• Multimedia access

 

- sound as complementary dimension
- need all modalities for complete information

 

• Personal audio

 

- continuous sound capture quite practical
- different kind of indexing problem

 

• Machine perception

 

- intelligence requires awareness
- necessary for communication

 

• Music retrieval

 

- area of hot activity
- specific economic factors
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Outline

 

Audio information extraction

Speech, music, and other

 

- Speech recognition: Tandem modeling
- Multi-speaker processing: Meeting recorder
- Music classification
- Other sounds

 

General sound organization

Future work & summary
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Automatic Speech Recognition (ASR)

 

• Standard speech recognition structure:

• ‘State of the art ’ word-error rates (WERs):

 

- 2% (dictation) - 30% (telephone conversations)

 

• Can use multiple streams...
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Tandem speech recognition

 

(with Hermansky, Sharma & Sivadas/OGI, Singh/CMU, ICSI)

 

• Neural net estimates phone posteriors;
but Gaussian mixtures model finer detail

• Combine them!

• Train net, then train GMM on net output

 

- GMM is ignorant of net output ‘meaning’
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Tandem system results

 

• It works very well ( ‘Aurora ’ noisy digits):

 

System-features Avg. WER 20-0 dB Baseline WER ratio

 

HTK-mfcc 13.7% 100%

Neural net-mfcc 9.3% 84.5%

Tandem-mfcc 7.4% 64.5%

 

Tandem-msg+plp 6.4% 47.2%
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Relative contributions

 

• Approx relative impact on baseline WER ratio
for different components:

plp
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Inside Tandem systems:
What ’s going on?

 

• Visualizations of the net outputs

• Neural net normalizes away noise
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Tandem for large vocabulary recognition

 

• CI Tandem front end + CD LVCSR back end

• Tandem bene fits reduced:
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‘Tandem-domain ’ processing

 

(with Manuel Reyes)

 

• Can we improve the ‘tandem ’ features with 
conventional processing (deltas, 
normalization)?

• Somewhat..

 

Processing Avg. WER 20-0 dB Baseline WER ratio

 

Tandem PLP mis-
match baseline (24 els)

11.1% 70.3%

Rank reduce @ 18 els 11.8% 77.1%

Delta 

 

→

 

 PCA 9.7% 60.8%

PCA 
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 Norm 9.0% 58.8%
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Tandem vs. other approaches

 

• 50% of word errors corrected over baseline

• Beat ‘bells and whistles ’ system
using large-vocabulary techniques
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Missing data recognition

 

(Cooke, Green, Barker @ Sheffield)

 

• Energy overlaps in time-freq. hide features

 

- some observations are effectively missing

 

• Use missing feature theory...

 

- integrate over missing data 

 

x
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• Effective in speech recognition

 

- trick is finding good/bad data mask
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Maximum-likelihood data mask
(Jon Barker @ Sheffield)

• Search of sound-fragment interpretations

- also search over data mask K:

• Modeling mask likelihoods p(K) ... 

"1754" + noise

Common Onset/Offset

Multisource
Decoder

Spectro-Temporal Proximity

Mask split into subbands

stationary noise estimate

`Grouping' applied within bands:

"1754"

Mask based on
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Multi-source decoding

• Search for more than one source

• Mutually-dependent data masks

• Use CASA processing to propose masks
- locally coherent regions
- p(K|q)

• Theoretical vs. practical limits

O(t)

K1(t)
q1(t)

K2(t)
q2(t)
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The Meeting Recorder project
(with ICSI, UW, SRI, IBM)

• Microphones in conventional meetings
- for summarization/retrieval/behavior analysis
- informal, overlapped speech

• Data collection (ICSI, UW, ...):

- 100 hours collected, ongoing transcription
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Crosstalk cancellation
(with Sam Keene)

• Baseline speaker activity detection is hard:

• Noisy crosstalk model: 

• Estimate subband C Aa from A ’s peak energy

- ... then linear inversion
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Speaker localization
(with Huan Wei Hee)

• Tabletop mics form an array;
time differences locate speakers

• Ambiguity:
- mic positions not fixed
- speaker motions

• Detect speaker activity, overlap
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Music analysis: Structure recovery
(with Rob Turetsky)

• Structure recovery by similarity matrices
(after Foote)

- similarity distance 
measure?

- segmentation & 
repetition structure

- interpretation at different 
scales:
notes, phrases, 
movements

- incorporating musical 
knowledge:
‘theme similarity’
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Music analysis: Lyrics extraction
(with Adam Berenzweig)

• Vocal content is highly salient, 
useful for retrieval

• Can we find the singing? 
Use an ASR classi fier:

• Frame error rate ~20% for segmentation based 
on posterior-feature statistics

• Lyric segmentation + transcribed lyrics
→ training data for lyrics ASR...
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Artist similarity

• Train network to discriminate speci fic artists:

• Focus on vocal segments for consistency
- accuracy (21 artists) 57% →→→→ 65%
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Ground truth in artist similarity
(with Berenzweig, Whitman@MIT, Lawrence@NEC)

• For training audio-based similarity measures

• Extend partial ratings to a complete set?

• e.g. Erd ös distance
- music guide →→→→ first-order similarities
- hop count →→→→ total distance
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Subjective veri fication of metrics

• How can we choose between different 
proposed ‘ground truth ’ metrics?

• Collect subjective judgments via web ‘game ’:

• Compare user responses to predictions from 
different models
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Alarm sound detection

• Alarm sounds have particular structure
- people ‘know them when they hear them’

• Isolate alarms in sound mixtures

- sinusoid peaks have invariant properties

- cepstral coefficients are easy to model

fr
eq

 / 
H

z

1 1.5 2 2.5
0

1000

2000

3000

4000

5000

time / sec
1 1.5 2 2.5

0

1000

2000

3000

4000

5000 1

1 1.5 2 2.5
0

1000

2000

3000

4000

5000

time / sec

fr
eq

 / 
H

z
P

r(
al

ar
m

)

0 1 2 3 4 5 6 7 8 9

0

2000

4000

0.5

1

Speech + alarm



Lab
ROSA

AIE @ MIT - Dan Ellis 2002-04-23 - 28

Outline

Sound organization

Speech, music, and other

General sound organization
- Computational Auditory Scene Analysis
- Audio Information Retrieval

Future work & summary

1

2

3

4



Lab
ROSA

AIE @ MIT - Dan Ellis 2002-04-23 - 29

Computational Auditory
Scene Analysis (CASA)

• Goal: Automatic sound organization ;
Systems to ‘pick out ’ sounds in a mixture
- ... like people do

• E.g. voice against a noisy background
- to improve speech recognition

• Approach:
- psychoacoustics describes grouping ‘rules’
- ... can we implement them?

CASA
Object 1 description
Object 2 description
Object 3 description
...
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CASA front-end processing

• Correlogram:
Loosely based on known/possible physiology

- linear filterbank cochlear approximation
- static nonlinearity
- zero-delay slice is like spectrogram
- periodicity from delay-and-multiply detectors
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Adding top-down cues

Perception is not direct
but a search for plausible hypotheses

• Data-driven (bottom-up)...

vs. Prediction-driven (top-down) (PDCASA)

• Motivations
- detect non-tonal events (noise & click elements)
- support ‘restoration illusions’...

• Machine Learning for sound models
- corpus of isolated sounds?

input
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features

discrete
objects

Front end Object
formation
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PDCASA and complex scenes
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Audio Information Retrieval
(with Manuel Reyes)

• Searching in a database of audio
- speech .. use ASR
- text annotations .. search them
- sound effects library?

• e.g. Muscle Fish “ SoundFisher”  browser
- define multiple ‘perceptual’ feature dimensions
- search by proximity in (weighted) feature space

- features are ‘global’ for each soundfile,
no attempt to separate mixtures 

Segment
feature
analysis

Sound segment
database

Segment
feature
analysis

Seach/
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Results
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Audio Retrieval: Results

• Musclefish corpus
- most commonly reported set

• Features
- mfcc, brightness, bandwidth, pitch ...
- no temporal sequence structure

• Results: 
- 208 examples, 16 classes

Global features: 41% corr HMM models: 81% corr.

 Mu Sp Env An Mec Mu Sp Env An Mec

Musical
59/
46

24 2 19
136/

6
2 1 5

Speech 11/ 6 4 5 1 14/ 2 5 3 1

Eviron. 7/ 2 1 7/ 1

Animals 2 1/ 2 4/ 1

Mechan 1 4 1 8/ 4 3 3 12/ 
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What are the HMM states?

• No sub-units defined for nonspeech sounds

• Final states depend on EM initialization
- labels
- clusters
- transition matrix

• Have ideas of what we’d like to get
- investigate features/initialization to get there
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CASA for audio retrieval

• When audio material contains mixtures, 
global features are insufficient

• Retrieval based on element/object analysis:

- features are calculated over grouped subsets

Generic
element
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Outline

Sound organization

Speech, music, and other

General sound organization
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General sound mixtures

• Search for generative explanation:

Source
models

Source
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Automatic audio-video analysis
(with Prof. Shih-Fu Chang, Prof. Kathy McKeown)

• Documentary archive management
- huge ratio of raw-to-finished material
- costly manual logging
- missed opportunities for cross-fertilization

• Problem: term ↔↔↔↔ signal mapping
- training corpus of past annotations
- interactive semi-automatic learning
- need object-related features

A/V 
segmentation

and   
feature 

extraction 

text 
processing 

concept 
discovery 

A/V feature 
unsupervised 

clustering 
A/V data 

MM Concept Network
annotations 

A/V 
features 

terms 

generic 
detectors 

Multimedia 
Fusion: 

Mining 
Concepts & 

Relationships
Complex 
Spatio-

Temporal 
Classification  

Question 
Answering 



Lab
ROSA

AIE @ MIT - Dan Ellis 2002-04-23 - 40

The ‘Machine listener’

• Goal: An auditory system for machines
- use same environmental information as people

• Signal understanding
- monitor for particular sounds
- real-time description

• Scenarios

- personal listener → summary of your day
- future prosthetic hearing device
- autonomous robots
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LabROSA Summary
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•  Broadcast
•  Movies
•  Lectures

•  Meetings
•  Personal recordings
•  Location monitoring

•  Speech recognition
•  Speech characterization
•  Nonspeech recognition

• Object-based structure discovery & learning

•  Scene analysis
•  Audio-visual integration
•  Music analysis

•  Structuring
•  Search
•  Summarization
•  Awareness
•  Understanding
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Summary: Audio Info Extraction

• Sound carries information
- useful and detailed
- often tangled in mixtures

• Various important general classes
- Speech: activity, recognition
- Music: segmentation, clustering
- Other: detection, description

• General processing framework
- Computational Auditory Scene Analysis
- Audio Information Retrieval

• Future applications
- Ubiquitous intelligent indexing
- Intelligent monitoring & description


