Machine Recognition of Sounds in Mixtures

Outline

(1) Computational Auditory Scene Analysis
(2) Speech Recognition as Source Formation
(3) Sound Fragment Decoding
(4) Results \& Conclusions

Dan Ellis dpwe@ee.columbia.edu
LabROSA, Columbia University, New York
Jon Barker j.barker@dcs.shef.ac.uk
SPandH, Sheffield University, UK

Ellis \& Barker
Machine Recognition of Sounds in Mixtures

(1)Computational Auditory Scene Analysis (CASA)

- Human sound organization:

Auditory Scene Analysis

- composite sound signal \rightarrow separate percepts
- based on ecological constraints
- acoustic cues \rightarrow perceptual grouping
- Computational ASA:

Doing the same thing by computer
...?

Ellis \& Barker

What is the goal of CASA?

- Separate signals?
- output is unmixed waveforms
- underconstrained, very hard ...
- too hard? not required?
- Source classification?
- output is set of event-names
- listeners do more than this...
- Something in-between? Identify independent sources + characteristics
- standard task, results?

Segregation vs. Inference

- Source separation requires attribute separation
- sources are characterized by attributes (pitch, loudness, timbre + finer details)
- need to identify \& gather different attributes for different sources ...
- Need representation that segregates attributes
- spectral decomposition
- periodicity decomposition
- Sometimes values can't be separated
- e.g. unvoiced speech
- maybe infer factors from probabilistic model?

$$
p(O, x, y) \rightarrow p(x, y \mid O)
$$

- or: just skip those values, infer from higher-level context

Ramayn sixam in

Outline

(1) Computational Auditory Scene Analysis

(2) Speech Recognition as Source Formation

- Standard speech recognition
- Handling mixtures
(3) Sound Fragment Decoding
(4) Results \& Conclusions

Speech Recognition as Source Formation

- Automatic Speech Recognition (ASR): the most advanced sound analysis
- ASR extracts abstract information from sound
- (i.e. words)
- even in mixtures (noisy backgrounds) .. a bit
- ASR is not signal extraction: only certain signal information is recovered
- .. just the bits we care about
- Not CASA preprocessing for ASR: Instead, approach ASR as an example of CASA
- words = description of source properties
- uses strong prior constraints: signal models
- but: must handle mixtures!

How ASR Represents Speech

- Markov model structure: states + transitions

State Transition Probabilities

- Generative model
- but not a good speech generator!

- only meant for inference of $p(X \mid M)$

Sequence Recognition

- Statistical Pattern Recognition:

$$
\begin{aligned}
& M^{*}=\underset{M}{\operatorname{argmax}} P(M \mid X)=\underset{M}{\operatorname{argmax}} \frac{P(X \mid M) \cdot P(M)}{P(X)}
\end{aligned}
$$

- Markov assumption decomposes into frames:

$$
P(X \mid M)=\prod_{n} p\left(x_{n} \mid m_{n}\right) p\left(m_{n} \mid m_{n-1}\right)
$$

- Solve by searching over all possible state sequences $\left\{m_{n}\right\}$.. but with efficient pruning:

Laboratory for the Recognntion and
Organizaion of Speech and Audio

Approaches to sound mixture recognition

- Separate signals, then recognize
- e.g. (traditional) CASA, ICA
- nice, if you can do it
- Recognize combined signal
- 'multicondition training'
- combinatorics..
- Recognize with parallel models
- full joint-state space?
- divide signal into fragments, then use missing-data recognition

Outline

(1) Computational Auditory Scene Analysis

(2) Speech Recognition as Source Formation
(3) Sound Fragment Decoding

- Missing Data Recognition
- Considering alternate segmentations
(4) Results \& Conclusions

3 Sound Fragment Decoding

- Signal separation is too hard!

Instead:

- segregate features into partially-observed sources
- then classify
- Made possible by missing data recognition
- integrate over uncertainty in observations for true posterior distribution
- Goal:

Relate clean speech models $P(X \mid M)$ to speech-plus-noise mixture observations

- .. and make it tractable

Missing Data Recognition

- Speech models $p(\mathbf{x} \mid m)$ are multidimensional...
- i.e. means, variances for every freq. channel
- need values for all dimensions to get $p(\bullet)$
- But: can evaluate over a subset of dimensions x_{k}
$p\left(\left.\mathbf{x}_{k}\right|^{m}\right)=\int p\left(\mathbf{x}_{k}, \mathbf{x}_{u} \mid m\right) d \mathbf{x}_{u}$
- Hence,
missing data recognition:

- hard part is finding the mask (segregation)

Missing Data Results

- Estimate static background noise level $N(f)$
- Cells with energy close to background are considered "missing"

Factory Noise

- must use spectral features!
- But: nonstationary noise \rightarrow spurious mask bits
- can we try removing parts of mask?

Ellis \& Barker
Machine Recognition of Sounds in Mixtures
2003-04-29-13

Comparing different segregations

- Standard classification chooses between models M to match source features X

$$
M^{*}=\underset{M}{\operatorname{argmax}} P(M \mid X)=\underset{M}{\operatorname{argmax}} P(X \mid M) \cdot \frac{P(M)}{P(\nmid X)}
$$

- Mixtures: observed features Y, segregation S, all related by $P(X \mid Y, S)$

- Joint classification of model and segregation:
$P(M, S \mid Y)=P(M) \int P(X \mid M) \cdot \frac{P(X \mid Y, S)}{P(X)} d X \cdot P(S \mid Y)$
- $P(X)$ no longer constant

Calculating fragment matches

$$
P(M, S \mid Y)=P(M) \int P(X \mid M) \cdot \frac{P(X \mid Y, S)}{P(X)} d X \cdot P(S \mid Y)
$$

- $\quad P(X \mid M)$ - the clean-signal feature model
- $P(X \mid Y, S) / P(X)$ - is X 'visible' given segregation?
- Integration collapses some bands...
- $\quad P(S \mid Y)$ - segregation inferred from observation
- just assume uniform, find S for most likely M
- or: use extra information in Y to distinguish S 's...
- Result:
- probabilistically-correct relation between clean-source models $P(X \mid M)$ and inferred, recognized source + segregation $P(M, S \mid Y)$

Using CASA features

- $\quad P(S \mid Y)$ links acoustic information to segregation
- is this segregation worth considering?
- how likely is it?
- Opportunity for CASA-style information to contribute
- periodicity/harmonicity: these different frequency bands belong together
- onset/continuity:
this time-frequency region must be whole

Fragment decoding

- Limiting S to whole fragments makes hypothesis search tractable:

- choice of fragments reflects $P(S \mid Y) \cdot P(X \mid M)$ i.e. best combination of segregation and match to speech models
- Merging hypotheses limits space demands
- .. but erases specific history

Multi-Source Decoding

- Match multiple models at once?

- disjoint subsets of cells for each source
- each model match $P\left(M_{x} \mid S_{x}, Y\right)$ is independent
- masks are mutually dependent: $P\left(S_{1}, S_{2} \mid Y\right)$

Outline

(1) Computational Auditory Scene Analysis
(2) Speech Recognition as Source Formation
(3) Sound Fragment Decoding
(4) Results \& Conclusions

- Speech recognition
- Alarm detection

(4) Speech fragment decoder results

- Simple $P(S \mid Y)$ model forces contiguous regions to stay together
- big efficiency gain when searching S space

- Clean-models-based recognition rivals trained-in-noise recognition

Ellis \& Barker
Machine Recognition of Sounds in Mixtures

Alarm sound detection

- Alarm sounds have particular structure
- people 'know them when they hear them'
- clear even at low SNRs

- Why investigate alarm sounds?
- they're supposed to be easy
- potential applications...
- Contrast two systems:
- standard, global features, $P(X \mid M)$
- sinusoidal model, fragments, $P(M, S \mid Y)$

Alarms: Results

MLP classifier output

Sound object classifier output

- Both systems commit many insertions at 0dB SNR, but in different circumstances:

Noise	Neural net system			Sinusoid model system		
	Del	Ins	Tot	Del	Ins	Tot
1 (amb)	$7 / 25$	2	36%	$14 / 25$	1	60%
2 (bab)	$5 / 25$	63	272%	$15 / 25$	2	68%
3 (spe)	$2 / 25$	68	280%	$12 / 25$	9	84%
4 (mus)	$8 / 25$	37	180%	$9 / 25$	135	576%
Overall	$\mathbf{2 2 / 1 0 0}$	170	$\mathbf{1 9 2 \%}$	$\mathbf{5 0 / 1 0 0}$	147	$\mathbf{1 9 7 \%}$

Ellis \& Barker

Summary \& Conclusions

- Scene Analysis
- necessary for useful hearing
- Recognition
- a model domain for scene analysis
- Fragment decoding
- recognition with partial observations
- combines segmentation \& model fitting
- Future work
- models of sources other than speech
- simultaneous 'perception' of multiple sources

