Machine Recognition of Sounds in Mixtures

Outline Computational Auditory Scene Analysis Speech Recognition as Source Formation Sound Fragment Decoding Results & Conclusions

Dan Ellis <dpwe@ee.columbia.edu> LabROSA, Columbia University, New York

Jon Barker <j.barker@dcs.shef.ac.uk> SPandH, Sheffield University, UK

1 Computational Auditory Scene Analysis (CASA)

 Human sound organization: Auditory Scene Analysis

- composite sound signal \rightarrow separate percepts
- based on ecological constraints
- acoustic cues \rightarrow perceptual grouping
- Computational ASA:
 Doing the same thing by computer

...?

What is the goal of CASA?

- Separate signals?
 - output is unmixed waveforms
 - underconstrained, very hard ...
 - too hard? not required?
- Source classification?
 - output is set of event-names
 - listeners do more than this...
- Something in-between? Identify independent sources + characteristics
 - standard task, results?

Segregation vs. Inference

Source separation requires attribute separation

- sources are characterized by attributes (pitch, loudness, timbre + finer details)
- need to identify & gather different attributes for different sources ...
- Need representation that segregates attributes
 - spectral decomposition
 - periodicity decomposition

• Sometimes values can't be separated

- e.g. unvoiced speech
- maybe infer factors from probabilistic model?

 $p(O, x, y) \rightarrow p(x, y | O)$

 or: just skip those values, infer from higher-level context

2003-04-29

Outline

1 Computational Auditory Scene Analysis

2 Speech Recognition as Source Formation

- Standard speech recognition
- Handling mixtures

3 Sound Fragment Decoding

4 Results & Conclusions

Speech Recognition as Source Formation

- Automatic Speech Recognition (ASR): the most advanced sound analysis
- ASR extracts abstract information from sound
 - (i.e. words)
 - even in mixtures (noisy backgrounds) .. a bit
- ASR is not signal extraction: only certain signal information is recovered
 - .. just the bits we care about
- Not CASA preprocessing for ASR: Instead, approach ASR as an example of CASA
 - words = description of source properties
 - uses strong prior constraints: signal models
 - but: must handle mixtures!

2003-04-29

How ASR Represents Speech

Markov model structure: states + transitions •

Generative model •

but not a good speech generator! -

only meant for inference of p(X|M)

Ellis & Barker

Machine Recognition of Sounds in Mixtures

Sequence Recognition

• Statistical Pattern Recognition:

$$M^* = \underset{M}{\operatorname{argmax}} P(M|X) = \underset{M}{\operatorname{argmax}} \frac{P(X|M) \cdot P(M)}{P(X)}$$

models \checkmark observations

- Markov assumption decomposes into frames: $P(X|M) = \prod_{n} p(x_n|m_n) p(m_n|m_{n-1})$
- Solve by searching over all possible state sequences {*m_n*}.. but with efficient pruning:

Approaches to sound mixture recognition

- Separate signals, then recognize
 - e.g. (traditional) CASA, ICA
 - nice, if you can do it
- Recognize combined signal
 - 'multicondition training'
 - combinatorics..

• Recognize with parallel models

- full joint-state space?
- divide signal into fragments, then use missing-data recognition

2003-04-29

Outline

1 Computational Auditory Scene Analysis

2 Speech Recognition as Source Formation

3 Sound Fragment Decoding

- Missing Data Recognition
- Considering alternate segmentations

4 Results & Conclusions

Sound Fragment Decoding

- Signal separation is too hard! Instead:
 - segregate features into partially-observed sources
 - then classify
- Made possible by missing data recognition
 - integrate over uncertainty in observations for true posterior distribution
 - Goal: Relate clean speech models *P*(*X*|*M*) to speech-plus-noise mixture observations
 - .. and make it tractable

•

3

Missing Data Recognition

- Speech models $p(\mathbf{x}|m)$ are multidimensional...
 - i.e. means, variances for every freq. channel
 - need values for all dimensions to get $p(\bullet)$
- But: can evaluate over a subset of dimensions *x_k*

$$p(\mathbf{x}_k|m) = \int p(\mathbf{x}_k, \mathbf{x}_u|m) d\mathbf{x}_u$$

Hence,
 missing data recognition:

2003-04-29 - 12

Ellis & Barker

Machine Recognition of Sounds in Mixtures

Missing Data Results

- Estimate static background noise level *N*(*f*)
- Cells with energy close to background are considered "missing"

- must use spectral features!
- But: nonstationary noise → spurious mask bits
 - can we try removing parts of mask?

Ellis & Barker

Comparing different segregations

• Standard classification chooses between models *M* to match source features *X*

$$M^* = \underset{M}{\operatorname{argmax}} P(M|X) = \underset{M}{\operatorname{argmax}} P(X|M) \cdot \frac{P(M)}{P(X)}$$

• Mixtures: observed features *Y*, segregation *S*, all related by P(X|Y, S)

• Joint classification of model and segregation:

$$P(M, S|Y) = P(M) \int P(X|M) \cdot \frac{P(X|Y, S)}{P(X)} dX \cdot P(S|Y)$$

- P(X) no longer constant

Ellis & Barker

Calculating fragment matches

 $P(M, S|Y) = P(M) \int P(X|M) \cdot \frac{P(X|Y, S)}{P(X)} dX \cdot \frac{P(S|Y)}{P(X)}$

- *P*(*X*|*M*) the clean-signal feature model
- P(X|Y,S)/P(X) is X 'visible' given segregation?
- Integration collapses some bands...
- P(S|Y) segregation inferred from observation
 - just assume uniform, find S for most likely M
 - or: use extra information in *Y* to distinguish *S*'s...
- Result:
 - probabilistically-correct relation between clean-source models *P*(*X*|*M*) and inferred, recognized source + segregation *P*(*M*,*S*|*Y*)

Using CASA features

- P(S|Y) links acoustic information to segregation lacksquare
 - is this segregation worth considering?
 - how likely is it?
- **Opportunity for CASA-style information to** ۲ contribute
 - periodicity/harmonicity:

these different frequency bands belong together

- onset/continuity:

this time-frequency region must be whole

Fragment decoding

• Limiting *S* to whole fragments makes hypothesis search tractable:

- choice of fragments reflects $P(S|Y) \cdot P(X|M)$ i.e. best combination of segregation and match to speech models
- Merging hypotheses limits space demands
 - .. but erases specific history

Multi-Source Decoding

• Match multiple models at once?

- disjoint subsets of cells for each source
- each model match $P(M_X|S_X,Y)$ is independent
- masks are mutually dependent: $P(S_1, S_2|Y)$

Outline

1 Computational Auditory Scene Analysis

2 Speech Recognition as Source Formation

3 Sound Fragment Decoding

4 Results & Conclusions

- Speech recognition
- Alarm detection

4 Speech fragment decoder results

• Simple *P*(*S*|*Y*) model forces contiguous regions to stay together

- big efficiency gain when searching S space

Clean-models-based recognition rivals trained-in-noise recognition

Ellis & Barker

Alarm sound detection

- Alarm sounds have particular structure
 - people 'know them when they hear them'
 - clear even at low SNRs

- Why investigate alarm sounds?
 - they're supposed to be easy
 - potential applications...
- Contrast two systems:
 - standard, global features, P(X|M)
 - sinusoidal model, fragments, P(M,S|Y)

• Both systems commit many insertions at 0dB SNR, but in different circumstances:

Noise	Neural net system			Sinusoid model system		
	Del	Ins	Tot	Del	Ins	Tot
1 (amb)	7 / 25	2	36%	14 / 25	1	60%
2 (bab)	5 / 25	63	272%	15 / 25	2	68%
3 (spe)	2 / 25	68	280%	12 / 25	9	84%
4 (mus)	8 / 25	37	180%	9 / 25	135	576%
Overall	22 / 100	170	192%	50 / 100	147	197%

Summary & Conclusions

- Scene Analysis
 - necessary for useful hearing
- Recognition
 - a model domain for scene analysis
- Fragment decoding
 - recognition with partial observations
 - combines segmentation & model fitting
- Future work
 - models of sources other than speech
 - simultaneous 'perception' of multiple sources

