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Computational Auditory Scene Analysis
(CASA)

 

• Human sound organization:
Auditory Scene Analysis

 

- composite sound signal 

 

→

 

 separate percepts
- based on ecological constraints
- acoustic cues 

 

→

 

 perceptual grouping

 

• Computational ASA:
Doing the same thing by computer

 

...?

1

Object 1 percept

Sound mixture

Object 2 percept
Object 3 percept
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 What is the goal of CASA?

 

• Separate signals?

 

- output is unmixed waveforms
- underconstrained, very hard ... 
- too hard? not required?

 

• Source classification?

 

- output is set of event-names
- listeners do more than this...

 

• Something in-between?
Identify independent sources + characteristics

 

- standard task, results?

CASA ?
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Segregation vs. Inference

 

• Source separation 
requires attribute separation

 

- sources are characterized by attributes
(pitch, loudness, timbre + finer details)

- need to identify & gather different attributes for 
different sources ... 

 

• Need representation that segregates attributes

 

- spectral decomposition
- periodicity decomposition

 

• Sometimes values can’t be separated

 

- e.g. unvoiced speech
- maybe infer factors from probabilistic model?

- or: just skip those values, 
infer from higher-level context

p O x y, ,( ) p x y, O( )→
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Outline
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Speech Recognition
as Source Formation

 

• Automatic Speech Recognition (ASR):
the most advanced sound analysis

• ASR extracts abstract information from sound 

 

- (i.e. words)
- even in mixtures (noisy backgrounds) .. a bit

 

• ASR is not signal extraction:
only certain signal information is recovered

 

- .. just the bits we care about

 

• Not CASA preprocessing for ASR:
Instead, approach ASR as an example of CASA

 

- words = description of source properties
- uses strong prior constraints:  signal models
- but: must handle mixtures!

2
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How ASR Represents Speech

 

• Markov model structure: states + transitions

• Generative model

 

- but not a good speech generator!

- only meant for inference of 
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Sequence Recognition

 

• Statistical Pattern Recognition:

• Markov assumption decomposes into frames:

• Solve by searching over all possible state 
sequences 

 

{

 

m

 

n

 

}

 

.. but with efficient pruning:

M∗ P M X( )
M

argmax 
P X M( ) P M( )⋅

P X( )
---------------------------------------

M
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Approaches to sound mixture recognition

 

• Separate signals, then recognize

 

- e.g. (traditional) CASA, ICA
- nice, if you can do it

 

• Recognize combined signal

 

- ‘multicondition training’
- combinatorics..

 

• Recognize with parallel models

 

- full joint-state space?
- divide signal into fragments, 

then use missing-data recognition
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Outline

 

Computational Auditory Scene Analysis

Speech Recognition as Source Formation

Sound Fragment Decoding

 

- Missing Data Recognition
- Considering alternate segmentations

 

Results & Conclusions
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Sound Fragment Decoding

 

• Signal separation is too hard!
Instead:

 

- segregate features into partially-observed 
sources

- then classify

 

• Made possible by missing data recognition

 

- integrate over uncertainty in observations 
for true posterior distribution

 

• Goal:
Relate clean speech models 

 

P

 

(

 

X

 

|

 

M

 

)

 

to speech-plus-noise mixture observations

 

- .. and make it tractable

3
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Missing Data Recognition

 

• Speech models 

 

p

 

(

 

x|m) are multidimensional...
- i.e. means, variances for every freq. channel
- need values for all dimensions to get p(•)

• But: can evaluate over a 
subset of dimensions xk

• Hence, 
missing data recognition:

- hard part is finding the mask (segregation)

xk

xu

y

p(xk,xu)

p(xk|xu<y ) p(xk )

p xk m( ) p xk xu, m( ) xud∫=

P(x1 | q) 

P(x | q) = 

· P(x2 | q) 
· P(x3 | q) 
· P(x4 | q) 
· P(x5 | q) 
· P(x6 | q) 

Present data mask

time →


di
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 →
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Missing Data Results

• Estimate static background noise level N(f)

• Cells with energy close to background are 
considered “missing”

- must use spectral features!

• But: nonstationary noise → spurious mask bits
- can we try removing parts of mask?

"1754" + noise
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Comparing different segregations

• Standard classification chooses between 
models M to match source features X

• Mixtures: observed features Y, segregation S, 
all related by 

• Joint classification of model and segregation:

- P(X) no longer constant

M∗ P M X( )
M

argmax P X M( )
P M( )
P X( )
--------------⋅

M
argmax = =

P X Y S,( )

freq

Observation
Y(f )

Segregation S

Source
X(f )

P M S Y,( ) P M( ) P X M( )
P X Y S,( )

P X( )
-------------------------⋅ Xd∫ P S Y( )⋅=
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Calculating fragment matches

• P(X|M) - the clean-signal feature model

• P(X|Y,S)/P(X) - is X ‘visible’ given segregation?

• Integration collapses some bands...

• P(S|Y) - segregation inferred from observation
- just assume uniform, find S for most likely M 
- or: use extra information in Y to distinguish S’s...

• Result: 
- probabilistically-correct relation between 

clean-source models P(X|M)
and inferred, recognized source + segregation 
P(M,S|Y)

P M S Y,( ) P M( ) P X M( )
P X Y S,( )

P X( )
-------------------------⋅ Xd∫ P S Y( )⋅=
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Using CASA features

• P(S|Y) links acoustic information to segregation
- is this segregation worth considering?
- how likely is it?

• Opportunity for CASA-style information to 
contribute
- periodicity/harmonicity:

these different frequency bands belong together
- onset/continuity:

this time-frequency region must be whole

Frequency Proximity HarmonicityCommon Onset
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Fragment decoding

• Limiting S to whole fragments 
makes hypothesis search tractable:

- choice of fragments reflects P(S|Y) · P(X|M)
i.e. best combination of segregation
and match to speech models

• Merging hypotheses limits space demands
- .. but erases specific history

Fragments

T1 T2 T3 T4 T5 T6

time

Hypotheses
w1

w2

w3

w4

w5

w6

w7

w8
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Multi-Source Decoding

• Match multiple models at once?

- disjoint subsets of cells for each source
- each model match P(Mx|Sx,Y) is independent

- masks are mutually dependent: P(S1,S2|Y)

Y(t)

S1(t)
M1

S2(t)
M2
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Outline

Computational Auditory Scene Analysis

Speech Recognition as Source Formation

Sound Fragment Decoding

Results & Conclusions
- Speech recognition
- Alarm detection
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Speech fragment decoder results

• Simple P(S|Y) model forces contiguous regions 
to stay together
- big efficiency gain when searching S space

• Clean-models-based recognition 
rivals trained-in-noise recognition

4

"1754" + noise

SNR mask

Fragments

Fragment
Decoder "1754"

0 5 10 15 20 ∞20

40

60

80

100
Factory Noise

D
ig

it 
re

co
gn

iti
on

 a
cc

ur
ac

y 
/ %

SNR (dB)

a priori
multisource
missing data
MFCC+CMN



Ellis & Barker Machine Recognition of Sounds in Mixtures 2003-04-29 - 21

Alarm sound detection

• Alarm sounds have particular structure
- people ‘know them when they hear them’
- clear even at low SNRs

• Why investigate alarm sounds?
- they’re supposed to be easy
- potential applications...

• Contrast two systems:
- standard, global features, P(X|M)
- sinusoidal model, fragments, P(M,S|Y)

time / s

hrn01 bfr02 buz01

level / dB

fr
eq

 / 
kH

z

0 5 10 15 20 25
0

1

2

3

4

-40

-20

0

20
s0n6a8+20



Ellis & Barker Machine Recognition of Sounds in Mixtures 2003-04-29 - 22

Alarms: Results

• Both systems commit many insertions at 0dB 
SNR, but in different circumstances:
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MLP classifier output

Sound object classifier output

Noise
Neural net system          Sinusoid model system

Del Ins Tot Del Ins Tot

1 (amb) 7 / 25 2 36% 14 / 25 1          60%

2 (bab) 5 / 25 63 272% 15 / 25 2          68%

3 (spe) 2 / 25 68 280% 12 / 25 9          84%

4 (mus) 8 / 25 37 180%      9 / 25 135 576%

Overall  22 / 100    170       192%    50 / 100     147       197%
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Summary & Conclusions

• Scene Analysis
- necessary for useful hearing

• Recognition
- a model domain for scene analysis

• Fragment decoding
- recognition with partial observations
- combines segmentation & model fitting

• Future work
- models of sources other than speech
- simultaneous ‘perception’ of multiple sources
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