Speech Separation in Humans and Machines

Dan Ellis

Laboratory for Recognition and Organization of Speech and Audio Dept. Electrical Eng., Columbia Univ., NY USA

dpwe@ee.columbia.edu

http://labrosa.ee.columbia.edu/

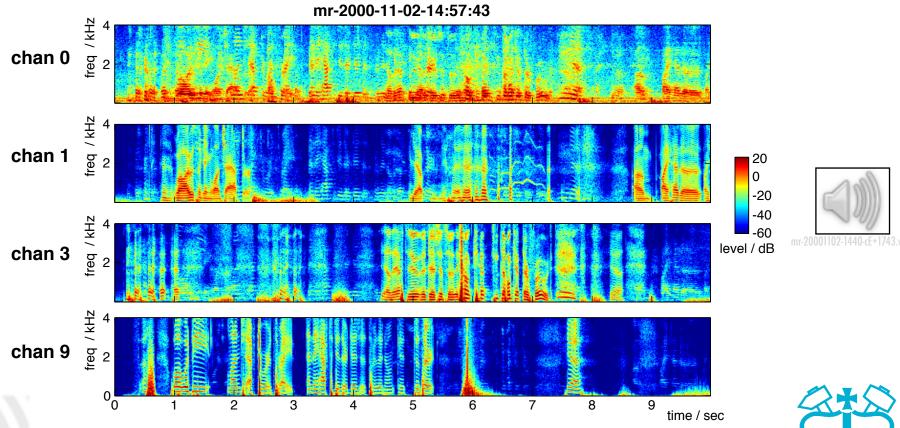
- I. The Speech Separation Problem
- 2. Human Performance
- 3. Source Separation
- 4. Source Inference
- 5. Concluding Remarks

1. Speech Separation

Speech rarely occurs in isolation

- o.. but recognizing mixed speech is a problem
- o.. for humans and machines

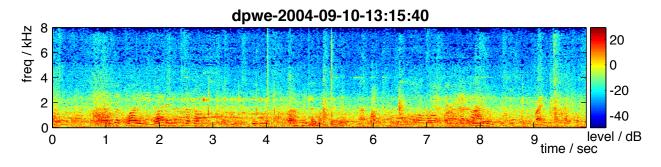
Speech Separation - Dan Ellis



2005-11-28 - 2/35

Speech Separation Scenarios

- Interactive voice systems
 - o human-level understanding is expected
- Speech prostheses
 - o crowds: # I complaint of hearing aid users
- Archive analysis
 - o identifying and isolating speech



Surveillance...

How Can We Separate?

- By between-sensor differences (spatial cues)
 - o 'steer a null' onto a compact interfering source
- By finding a 'separable representation'
 - o spectral? but speech is broadband
 - o periodicity? maybe for voiced speech
 - o something more signal-specific...
- By inference (based on knowledge/models)
 - speech is redundant
 - → use part to guess the remainder

Outline

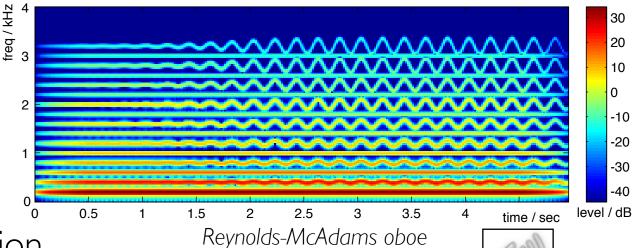
- 1. The Speech Separation problem
- 2. Human Performance
 - scene analysis
 - o speech separation by location
 - o speech separation by voice characteristics
- 3. Source Separation
- 4. Source Inference
- 5. Concluding Remarks

Auditory Scene Analysis

Darwin & Carlyon'95

 Listeners organize sound mixtures into discrete perceived sources based on within-signal cues (audio + ...)

common onset+ continuityharmonicity



- o spatial, modulation, ...
- o learned "schema"

Speech Mixtures: Spatial Separation

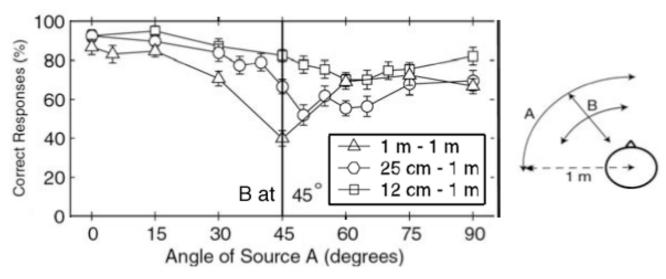
Brungart et al.'02

COLUMBIA UNIVERSITY

- Task: Coordinate Response Measure
 - o "Ready Baron go to green eight now"

Cm 117274

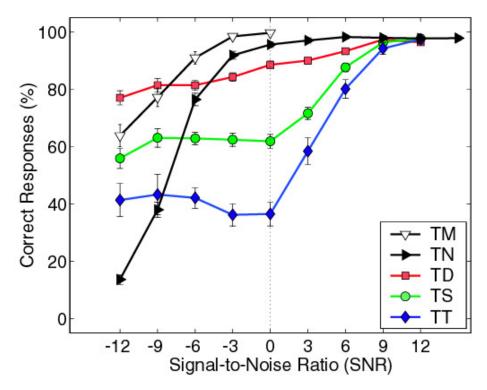
- 256 variants, 16 speakers
- o correct = color and number for "Baron"
- Accuracy as a function of spatial separation:



Separation by Vocal Differences

Brungart et al.'0 l

- CRM varying the level and voice character
 - (same spatial location)



o energetic vs. informational masking

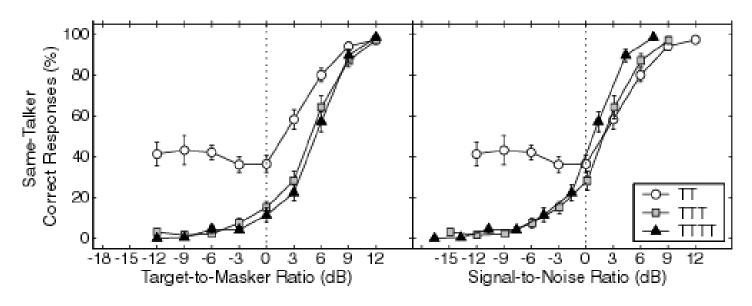
Varying the Number of Voices

Brungart et al.'0 l

Two voices OK;

More than two voices harder

• (same spatial origin)



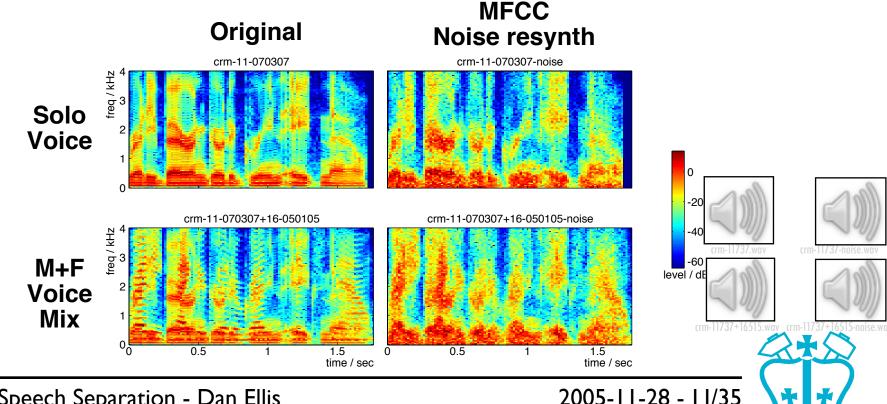
• mix of N voices tends to speech-shaped noise...

Outline

- 1. The Speech Separation problem
- 2. Human Performance
- 3. Source Separation
 - Independent Component Analysis
 - Computational Auditory Scene Analysis
- 4. Source Inference
- 5. Concluding Remarks

Machine Separation

- Problem: Features of combinations are not combinations of features
 - voice is easy to characterize when in isolation
 - redundancy needed for real-world communication

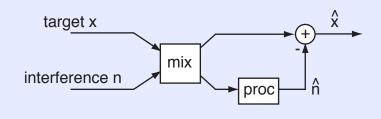


COLUMBIA UNIVERSITY

Separation Approaches

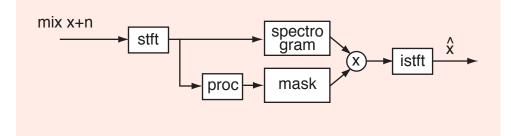
ICA

- Multi-channel
- Fixed filtering
- Perfect separation– maybe!



CASA / Model-based

- Single-channel
- Time-varying filtering
- Approximate
 Separation



Very different approaches!

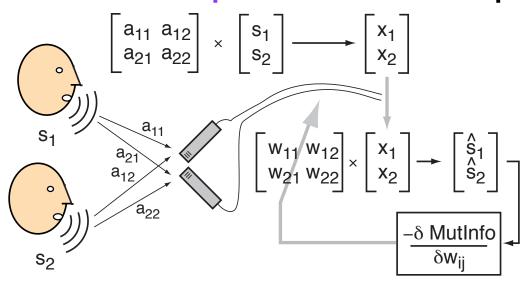
Independent Component Analysis Bell 8

Bell & Sejnowski'95 Smaragdis'98

Central idea:

Search unmixing space

to maximize independence of outputs

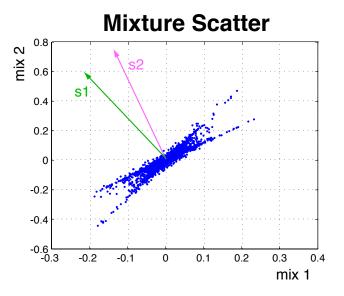


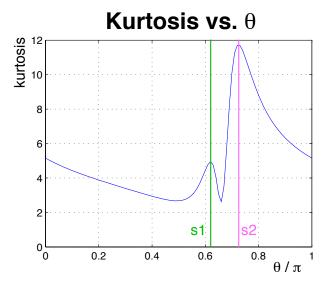
o simple mixing

→ a good solution (usually) exists

ICA Limitations

- Cancellation is very finicky
 - hard to get more than ~ 10 dB rejection





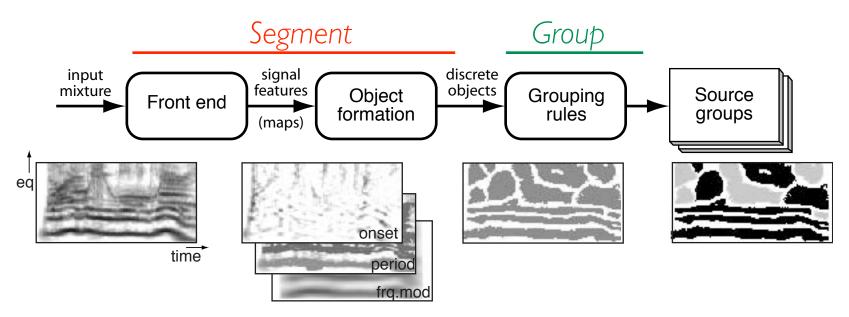
- The world is not instantaneous, fixed, linear
 - o subband models for reverberation
 - o continuous adaptation
 - Needs spatially-compact interfering sources

Computational Auditory Scene Analysis Brown

Central idea:

Brown & Cooke'94 Okuno et al.'99 Hu & Wang'04 ...

Segment time-frequency into sources based on perceptual grouping cues

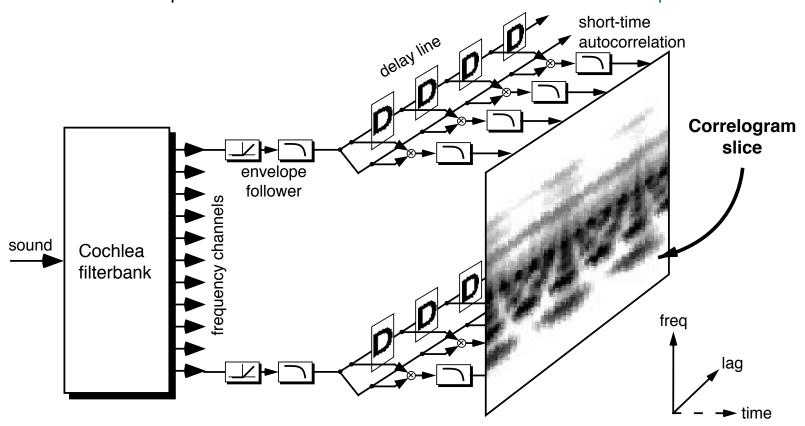


o... principal cue is harmonicity

CASA Preprocessing

Slaney & Lyon '90

- Correlogram: a 3rd "periodicity" axis
 - o envelope of wideband channels follows pitch

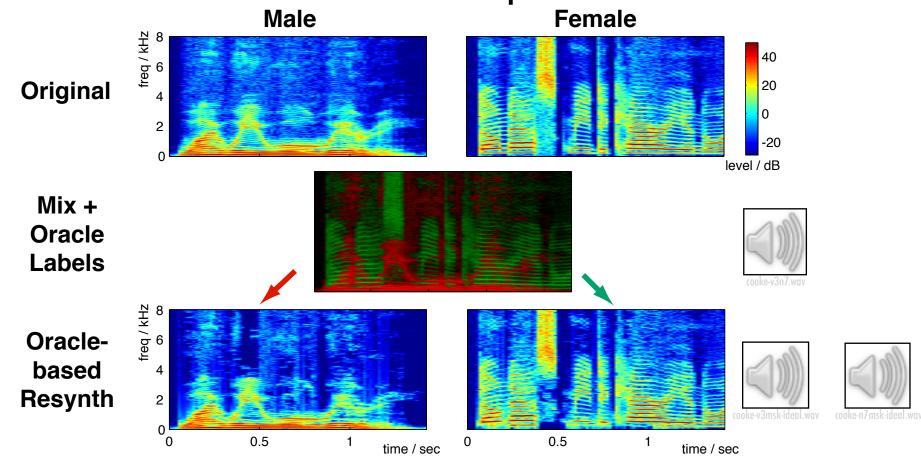


o c/w Modulation Filtering [Schimmel & Atlas '05]

2005-11-28 - 16/35

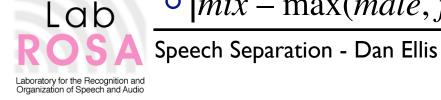
Time-Frequency (T-F) Masking

"Local Dominance" assumption



o oracle masks are remarkably effective!

 $\circ |mix - max(male, female)| < 3dB for ~80\% of cells$

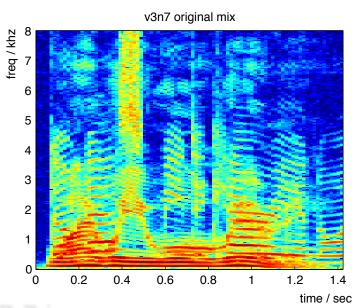


20

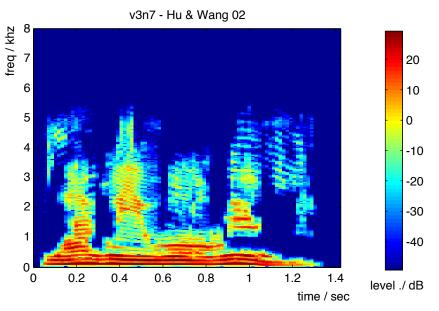
COLUMBIA UNIVERSITY

CASA limitations

- Driven by local features
 - o problems with aperiodic sources...
- Limitations of T-F masking
 - o need to identify single-source regions
 - o cannot undo overlaps leaves gaps



Speech Separation - Dan Ellis

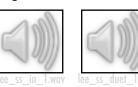


Wang '04

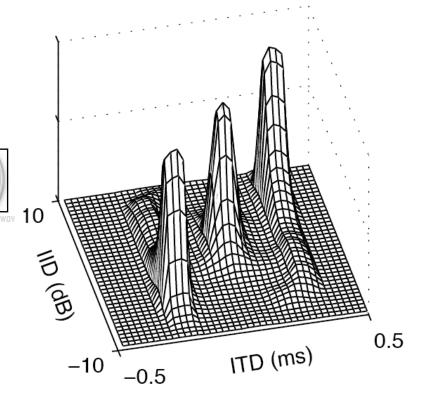
Combining Spatial + T-F Masking

 T-F masks based on inter-channel properties

[Roman et al. '02], [Yilmaz & Rickard '04]



multiple channels make
 CASA-like masks better



T-F masking after ICA

[Blin et al. '04]

cancellation can remove energy within T-F cells

Outline

- 1. The Speech Separation problem
- 2. Human Performance
- 3. Source Separation
- 4. Source Inference
 - Separation vs. inference
 - Model-based separation
 - Speech Fragment Decoding
- 5. Concluding Remarks

Separation vs. Inference

Ellis'96

- Ideal separation is rarely possible
 - o i.e. no projection can completely remove overlaps
- Overlaps ⇒ Ambiguity
 - scene analysis = find "most reasonable" explanation
- Ambiguity can be expressed probabilistically
 - \circ i.e. posteriors of sources $\{S_i\}$ given observations X:

$$P(\lbrace S_i\rbrace | X) \propto P(X | \lbrace S_i\rbrace) P(\lbrace S_i\rbrace)$$

combination physics source models

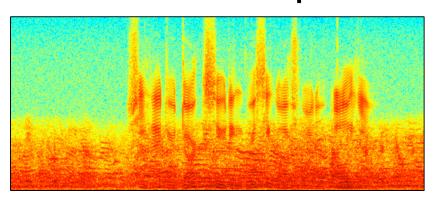
- Better source models → better inference
 - o .. learn from examples?

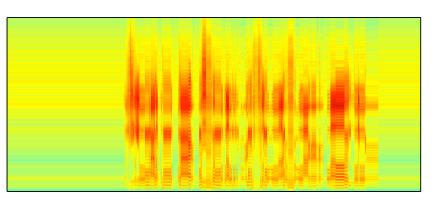
Model-Based Separation

Central idea:

Varga & Moore'90 Roweis'03...

- Employ strong learned constraints to disambiguate possible sources
- $\circ \{S_i\} = \operatorname{argmax}_{S_i} P(X \mid \{S_i\})$
- e.g. fit speech-trained Vector-Quantizer to mixed spectrum:



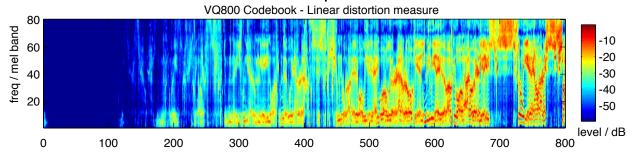


from Roweis'03

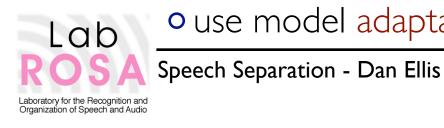
o separate via T-F mask (again)

Can Models Do CASA?

- Source models can learn harmonicity, onset
 - ... to subsume rules/representations of CASA



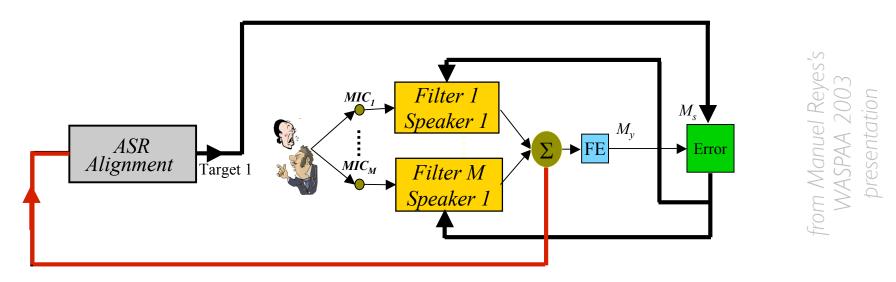
- o can capture spatial info too [Pearlmutter & Zador'04]
- Can also capture sequential structure
 - o e.g. consonants follow vowels
 - ... like people do?
- But: need source-specific models
 - ... for every possible source
 - use model adaptation? [Ozerov et al. 2005]



Separation with ASR Models

Drive separation engine
 to match outputs to existing speech models

Seltzer et al. '02
Reyes et al. '03

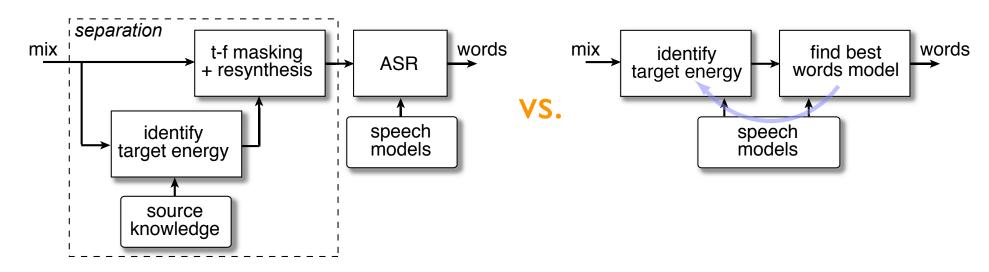


ASR includes a very detailed source model

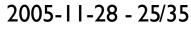
Separation or Description?

- Are isolated waveforms required?
 - o clearly sufficient, but may not be necessary
 - o not part of perceptual source separation!
- Integrate separation with application?
 - o e.g. speech recognition

Speech Separation - Dan Ellis



• words output = abstract description of signal



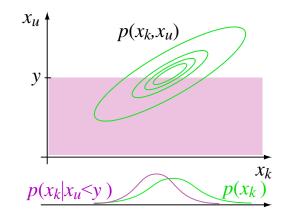
2+

COLUMBIA UNIVERSITY

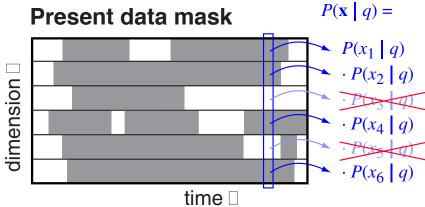
Missing Data Recognition

Cooke et al. '0 l

- Speech models p(x|M) are multidimensional...
 - \circ need values for all dimensions to evaluate $p(\bullet)$
- But: can make inferences given just a subset of dimensions x_k $p(x_k|M) = \int p(x_k, x_u|M) dx_u$



Hence, missing data recognition:



o hard part is finding the mask (segregation)

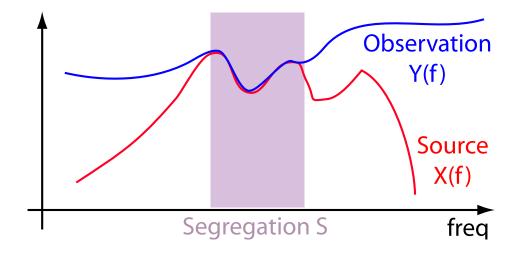
Speech Separation - Dan Ellis

Laboratory for the Recognition and Organization of Speech and Audio

The Speech Fragment Decoder

Barker et al. '05

 Match 'uncorrupt' spectrum to ASR models using missing data



 Joint search for model M and segregation S to maximize:

$$P(M, S|Y) = P(M)\int P(X|M) \cdot \frac{P(X|Y, S)}{P(X)} dX \cdot P(S|Y)$$
Isolated Source Model

Segregation Model

Using CASA cues

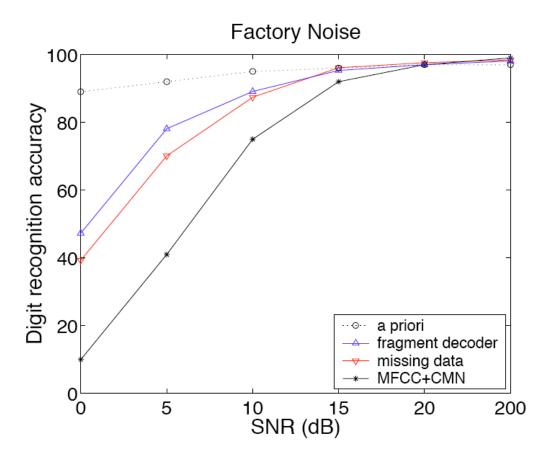
$$P(M, S|Y) = P(M) \int P(X|M) \cdot \frac{P(X|Y, S)}{P(X)} dX \cdot P(S|Y)$$

- CASA can help search
 - consider only segregations made from CASA chunks
- CASA can rate segregation
 - \circ construct P(S|Y) to reward CASA qualities:



Speech-Fragment Recognition

 CASA-based fragments give extra gain over missing-data recognition



from Barker et al. '05

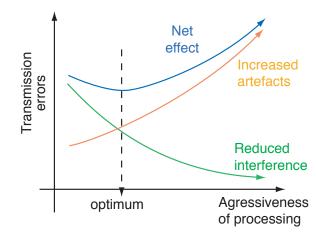
Outline

- The Speech Separation problem
- 2. Human Performance
- 3. Source Separation
- 4. Source Inference
- 5. Concluding Remarks
 - Evaluation
 - Connecting to Perception

Evaluation

- How to measure separation performance?
 - o depends what you are trying to do
- SNR?
 - o energy (and distortions) are not created equal
 - o different nonlinear components [Vincent et al. '06]
- Intelligibility?
 - rare for nonlinear processing to improve intelligibility
 - listening tests expensive
- ASR performance?

• separate-then-recognize too simplistic; ASR needs to accommodate separation



"Speech Separation Challenge"

- Mixed and Noisy Speech ASR task defined by Martin Cooke and Te-Won Lee
 - o short, grammatically-constrained utterances:

<command:4><color:4>preposition:4><letter:25><number:10><adverb:4>

e.g. "bin white at M 5 soon"

- Results to be presented at Interspeech'06
 - http://www.dcs.shef.ac.uk/~martin/SpeechSeparationChallenge.htm
- See also "Statistical And Perceptual Audition" workshop
 - http://www.sapa2006.org/

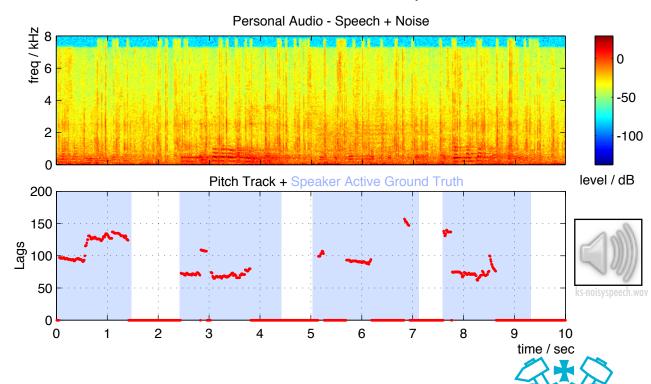
More Realistic Evaluation

Real-world speech tasks

- crowded environments
- applications:
 communication, command/control, transcription

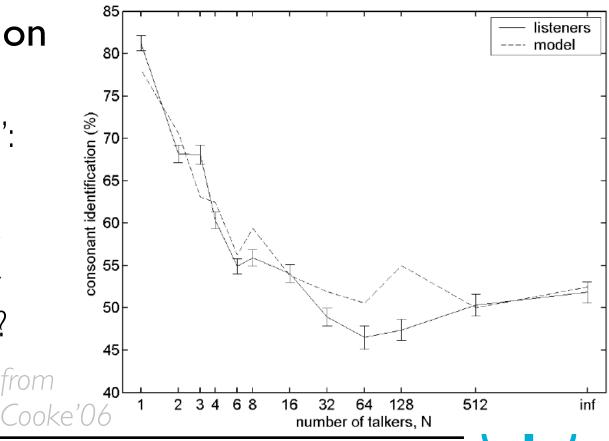
Metric

- human intelligibility?
- diarization' annotation (not transcription)



Reconnecting to Perception

- People are (still) much better at speech recognition, including mixtures
- Can we model human separation with ASR?
 - "Glimpse model":MD ASR using oracle local SNR
 - Listeners identify high SNR islands?

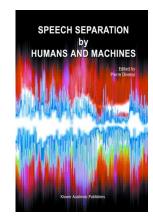


Summary & Conclusions

- Listeners do well separating speech
 - using spatial location
 - using source-property variations
- Machines do less well
 - o difficult to apply enough constraints
 - o need to exploit signal detail
- Models capture constraints
 - o learn from the real world
 - adapt to sources
- Inferring state (≈ recognition)
 is a promising approach to separation

Sources / See Also

- NSF/AFOSR Montreal Workshops '03, '04
 - www.ebire.org/speechseparation/
 - o <u>labrosa.ee.columbia.edu/Montreal2004/</u>
 - o as well as the resulting book...



- Hanse meeting:
 - www.lifesci.sussex.ac.uk/home/Chris_Darwin/ Hanse/
- DeLiang Wang's ICASSP'04 tutorial
 - www.cse.ohio-state.edu/~dwang/presentation.html
- Martin Cooke's NIPS'02 tutorial
 - www.dcs.shef.ac.uk/~martin/nips.ppt

References 1/2

- [Barker et al. '05] J. Barker, M. Cooke, D. Ellis, "<u>Decoding speech in the presence of other sources</u>," Speech Comm. 45, 5-25, 2005.
- [Bell & Sejnowski '95] A. Bell & T. Sejnowski, "An information maximization approach to blind separation and blind deconvolution," Neural Computation, 7:1129-1159, 1995.
- [Blin et al.'04] A. Blin, S. Araki, S. Makino, "A sparseness mixing matrix estimation (SMME) solving the underdetermined BSS for convolutive mixtures," ICASSP, IV-85-88, 2004.
- [Bregman '90] A. Bregman, Auditory Scene Analysis, MIT Press, 1990.
- [Brungart '01] D. Brungart, "Informational and energetic masking effects in the perception of two simultaneous talkers," JASA 109(3), March 2001.
- [Brungart et al. '01] D. Brungart, B. Simpson, M. Ericson, K. Scott, "Informational and energetic masking effects in the perception of multiple simultaneous talkers," JASA 110(5), Nov. 2001.
- [Brungart et al. '02] D. Brungart & B. Simpson, "The effects of spatial separation in distance on the informational and energetic masking of a nearby speech signal", JASA 112(2), Aug. 2002.
- [Brown & Cooke '94] G. Brown & M. Cooke, "Computational auditory scene analysis," Comp. Speech & Lang. 8 (4), 297–336, 1994.
- [Cooke et al. '01] M. Cooke, P. Green, L. Josifovski, A. Vizinho, "Robust automatic speech recognition with missing and uncertain acoustic data," Speech Communication 34, 267-285, 2001.
- [Cooke'06] M. Cooke, "A glimpsing model of speech perception in noise," submitted to JASA.
- [Darwin & Carlyon '95] C. Darwin & R. Carlyon, "Auditory grouping" Handbk of Percep. & Cogn. 6: Hearing, 387–424, Academic Press, 1995.
- [Ellis'96] D. Ellis, "Prediction-Driven Computational Auditory Scene Analysis," Ph.D. thesis, MIT EECS, 1996.
- [Hu & Wang '04] G. Hu and D.L. Wang, "Monaural speech segregation based on pitch tracking and amplitude modulation," IEEE Tr. Neural Networks, 15(5), Sep. 2004.
- [Okuno et al. '99] H. Okuno, T. Nakatani, T. Kawabata, "Listening to two simultaneous speeches," Speech Communication 27, 299–310, 1999.

COLUMBIA UNIVERSITY

Laboratory for the Recognition and Organization of Speech and Audio

References 2/2

- [Ozerov et al. '05] A. Ozerov, P. Phillippe, R. Gribonval, F. Bimbot, "One microphone singing voice separation using source-adapted models," Worksh. on Apps. of Sig. Proc. to Audio & Acous., 2005.
- [Pearlmutter & Zador '04] B. Pearlmutter & A. Zador, "Monaural Source Separation using Spectral Cues," Proc. ICA, 2005.
- [Parra & Spence '00] L. Parra & C. Spence, "Convolutive blind source separation of non-stationary sources," IEEE Tr. Speech & Audio, 320-327, 2000.
- [Reyes et al. '03] M. Reyes-Gómez, B. Raj, D. Ellis, "Multi-channel source separation by beamforming trained with factorial HMMs," Worksh. on Apps. of Sig. Proc. to Audio & Acous., 13–16, 2003.
- [Roman et al. '02] N. Roman, D.-L. Wang, G. Brown, "Location-based sound segregation," ICASSP, I-1013-1016, 2002.
- [Roweis '03] S. Roweis, "Factorial models and refiltering for speech separation and denoising," EuroSpeech, 2003.
- [Schimmel & Atlas '05] S. Schimmel & L. Atlas, "Coherent Envelope Detection for Modulation Filtering of Speech," ICASSP, I-221-224, 2005.
- [Slaney & Lyon '90] M. Slaney & R. Lyon, "A Perceptual Pitch Detector," ICASSP, 357-360, 1990.
- [Smaragdis '98] P. Smaragdis, "Blind separation of convolved mixtures in the frequency domain," Intl. Wkshp. on Indep. & Artif. I Neural Networks, Tenerife, Feb. 1998.
- [Seltzer et al. '02] M. Seltzer, B. Raj, R. Stern, "Speech recognizer-based microphone array processing for robust hands-free speech recognition," ICASSP, I-897-900, 2002.
- [Varga & Moore '90] A. Varga & R. Moore, "Hidden Markov Model decomposition of speech and noise," ICASSP, 845–848, 1990.
- [Vincent et al. '06] E. Vincent, R. Gribonval, C. Févotte, "Performance measurement in Blind Audio Source Separation." IEEE Trans. Speech & Audio, in press.
- [Yilmaz & Rickard '04] O.Yilmaz & S. Rickard, "Blind separation of speech mixtures via time-frequency masking," IEEE Tr. Sig. Proc. 52(7), 1830-1847, 2004.

Speech Separation - Dan Ellis

Laboratory for the Recognition and Organization of Speech and Audio 2005-11-28 - 38/35

