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Speech Separation

® Speech rarely occurs in isolation
O .. but recognizing mixed speech is a problem
o .. for humans and machines
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Speech Separation Scenarios

® [nteractive voice systems
o human-level understanding Is expected

® Speech prostheses
o crowds: # | complaint of hearing aid users

® Archive analysis
o identifying and isolating speech
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® Surveillance...
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How Can Ve Separate?

® By between-sensor differences (spatial cues)
o ‘'steer a null’ onto a compact interfering source

® By finding a ‘separable representation’
o spectral! but speech Is broadband
o periodicity! maybe — for voiced speech
o something more signal-specific...
® By inference (based on knowledge/models)
O speech Is redundant
— use part to guess the remainder
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Auditory Scene Analysis

® Listeners organize sound mixtures
into discrete perceived sources
based on within-signal cues (audio + ...)
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Speech Mixtures: Spatial Separation

Brungart

® Task: Coordinate Response Measure
o “Ready Baron go to green eight now”
0 256 variants, | 6 speakers
o correct = color and number for “Baron”

® Accuracy as a function of spatial separation:
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Separation by Vocal Differences

® CRM varying the level and voice character
O (same spatial location)
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Varying the Number of Voices

® Two voices OK;

More than two voices harder
O (same spatial origin)
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Machine Separation

® Problem: of combinations are not

combinations of
O voice Is easy to characterize when In isolation
o redundancy needed for real-world communication
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Separation Approaches

ICA
* Multi-channel
* Fixed filtering
* Perfect separation
— maybel!

target x

mix

interferencen "

spectro
gram

CASA / Model-based
* Single-channel
* [ime-varying filtering
* Approximate

Separation

A
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A

® Very different approaches!
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Independent Component

Analysis

® Central idea:
Search unmixing space

to maximize independence of outputs
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|CA Limitations

® Cancellation is very finicky
o hard to get more than ~ |0 dB rejection

Mixture Scatter Kurtosis vs. 0

0.8 w12
A D
X ko]
E 0.6 5 10}
X
0.4
8 L
0.2
6 L
O L
4+
-0.2
..\
0.4+t o~ ] 2r
s
0.6 : : . . . ; 0 i i i i
-0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0 0.2 0.4 0.6 0.8 1

mix 1 0/x

® The world is not instantaneous, fixed, linear
o subband models for reverberation
O continuous adaptation

® Needs spatially-compact interfering source

Lab X
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Computational Auditory
Scene Analysis

® Central idea:
Segment time-frequency into sources
based on perceptual grouping cues
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CASA Preprocessing

® Correlogram:a 3rd “periodicity” axis
o envelope of wideband channels follows pitch

short-time
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Time-Frequency (T-F) Masking

® “Local Dominance” assumption
Feal
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O oracle masks are remarkably effectivel

O |mix — max(male, female)| < 3dB for ~80% of cells
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CASA limitations

® Driven by local features
O problems with aperiodic sources...

® |imitations of

o need to identify single-source regions
O cannot undo overlaps — leaves gaps
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Combining Spatial + T-F Masking

° based on
inter-channel properties

o multiple channels make
CASA-like masks better

® T-F masking after ICA

o cancellation can remove energy within 1-F cells
Lab
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Outline

"he Speech Separation problem
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Source Separation
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O Separation vs. inference
o Model-based separation
o Speech Fragment Decoding
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Separation vs. Inference

® |deal separation is rarely possible
O 1.e. NO projection can completely remove overlaps

® Overlaps = Ambiguity
O scene analysis = find “most reasonable™ explanation

® Ambiguity can be expressed probabilistically
O |.e. posteriors of sources {S;} given observations X:

P({S;}] X) o P(X[{S;}) P(1S;)

® Better — better inference
0. learn from examples!

o>
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Model-Based Separation

® Central idea:
Employ strong
to disambiguate possible sources
©{S;} = argmaxs; P(X | {S:})

® e.g.fit speech-trained Vector-Quantizer
to mixed spectrum:

O separate via [-F mask (again) ¥
Lab
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Can Models Do CASA!?

can learn harmonicity, onset
0 ..to subsume rules/representations of CASA
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o]
o

[ TN fﬂ T YRR 0 U ¥ W
5 M EIRCRERG ) I h‘“\ R
GE) ' | 'il' ',I -' !. f 4] I l,|« | '.,II" u 1'|. :
< 40 li ‘u' L ! 1 il W T . §
g & il I b( '+ | ‘11 A bl {1
2 ' | ' L ool AR 1 0 A (A, SR 5 Tr |
=20 bR AN | RN s o
| ot e 1 Bl i kil ) Lt
. ) il il i1 11 MR el s eudlh A -“
0 100 200 300 400 500 600 700

O can capture spatial info too

® (Can also capture sequential structure
O e.g. consonants follow vowels
o .. like people do!?

® But: need source-specific models

.. for every possible source
Lgp ©use model adaptation?
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Separation with ASR Models

® Drive separation engine
to match outputs to existing speech models

v

Mic, Filter 1
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o ASR includes a very detalled source model
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Separation or Description!?

® Are isolated waveforms required!?
o clearly sufficient, but may not be necessary
o not part of perceptual source separation!

® |ntegrate separation with application!?

oeg.
\separation [ ———— :
mix | | tfmasking |' words mix identif | findbest | words
! > + resynthesis [7> ASR ™= — ] target engrgy | words model [
5 1 i} I
| | identify .| speech speech
| | target energy '| models models
| f |
! source |
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Lab o words output = abstract description of signal 2
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Missing Data Recognition

® Speech models p(xIM) are multidimensional...
O need values for all dimensions to evaluate p(e)

® But: can make inferences given O plwn
just a of dimensions x, )

o p(xM) :/p(xk,xu\M)dxu

X
peaey) N pla)

® Hence, missing data recognition:
Present data mask P(x|q) =
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The Speech Fragment Decoder

® Match ‘uncorrupt’ i Observation
spectrum to ASR Yo
models using Source
missing data X(F)
.
freq

® |oint search for model M and
to maximize:

P(M,S|Y) = P(M)jP(X|M).

Isolated Source Model

o>
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Using CASA cues

P(X|Y,S)
P(X)

P(M,S|Y) = P(M)jP(X|M)- dX - P(S|Y)

® CASA can help search

o consider only segregations made from CASA
chunks

® (CASA can rate

O construct to reward CASA qualities:

A

I_ O b Frequency Proximity Common Onset Harmonicity 'l'
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Speech-Fragment Recognition

® CASA-based fragments give extra gain
over missing-data recognition
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Concluding Remarks
o Evaluation
o Connecting to Perception
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Evaluation

® How to measure separation performance!?
o depends what you are trying to do

® SNR!?
O energy (and distortions) are not created equal
o different nonlinear components

® |ntelligibility? et
O rare for nonlinear processing |

to improve intelligibility \

' ' . [ Reduced
O |istening tests expensive \

>

Y -

Transmission
errors

optimum Agressiveness
o P e r'fo rmance ? 3 ofgprocessing
O separate-then-recognize too simplistic;
ASR needs to accommodate separation I
Lab
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“Speech Separation Challenge”

® Mixed and Noisy Speech ASR task
defined by Martin Cooke and Te-Won Lee

o short, grammatically-constrained utterances:

<command:4><color:4><preposition:4><letter:25><number:10><adverb:4>

e.g. "bin white at M 5 soon"

® Results to be presented at Interspeech’06
O http://www.dcs.shef.ac.uk/~martin/SpeechSeparationChallenge.htm

® See also “Statistical And Perceptual Audition”

workshop
o http://www.sapa2006.org/

Lab
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More Realistic Evaluation

® Real-world speech tasks
o crowded environments
O applications:
communication, command/control, transcription

Personal Audio - Speech + Noise
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Reconnecting to Perception

® People are (still) much better at speech
recognition, including mixtures

® Can we model

human separation
with ASR!?

o “Glimpse model™:
MD ASR using
oracle local SNR

o Listeners identify
high SNR islands?
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Summary & Conclusions

® [isteners do well separating speech
O using spatial location
O using source-property variations

® Machines do less well
o difficult to apply enough constraints
o need to exploit signal detall

® Models capture constraints
o learn from the real world
O adapt to sources
° state (= recognition)
is a promising approach to separation

Lab
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Sources / See Also
® NSF/AFOSR Montreal Workshops '03,°04

o www.ebire.org/speechseparation/
o labrosa.ee.columbia.edu/Montreal2004/ b
o as well as the resulting book...

i '\‘ . iy
r Wy i |yl (I il‘mﬂl ld;\lw Il

i 0 :w wrw

lm'
® Hanse meeting:
o www.lifescl.sussex.ac.uk/home/Chris Darwin/
Hanse/

® Deliang Wang’s ICASSP’04 tutorial

o www.cse.ohio-state.edu/~dwang/presentation.html
® Martin Cooke’s NIPS’02 tutorial

o www.dcs.shef.ac.uk/~martin/nips.ppt 0
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