Model-Based Separation in Humans and Machines

Dan Ellis

Laboratory for Recognition and Organization of Speech and Audio Dept. Electrical Eng., Columbia Univ., NY USA

dpwe@ee.columbia.edu

http://labrosa.ee.columbia.edu/

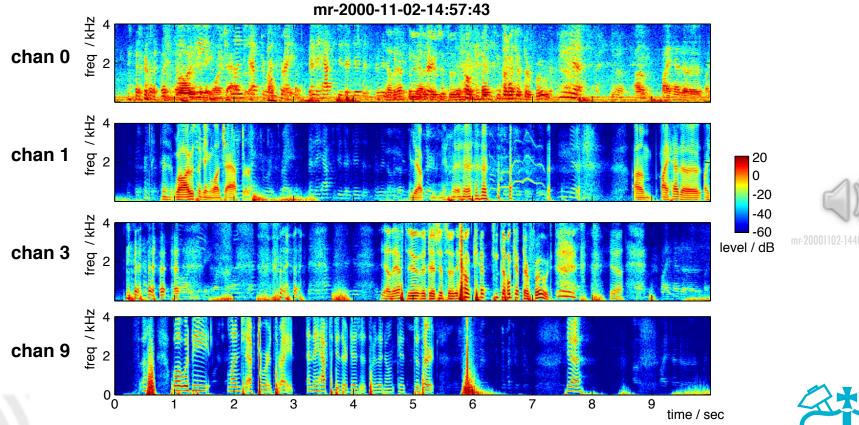
- Audio Source Separation
- 2. Human Performance
- 3. Model-Based Separation

Audio Source Separation

Sounds rarely occurs in isolation

- o.. but organizing mixtures is a problem
- o.. for humans and machines

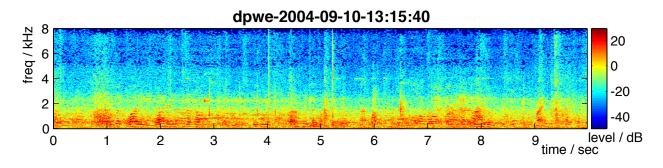
Model-based Separation - Dan Ellis



2006-03-08 - 2/19

Audio Separation Scenarios

- Interactive voice systems
 - o human-level understanding is expected
- Speech prostheses
 - o crowds: # I complaint of hearing aid users
- Multimedia archive analysis
 - o identifying and isolating speech, other events



Surveillance...

How Can We Separate?

- By between-sensor differences (spatial cues)
 - o 'steer a null' onto a compact interfering source
- By finding a 'separable representation'
 - o spectral? but speech is broadband
 - o periodicity? maybe for voiced speech
 - o something more signal-specific...
- By inference (based on knowledge/models)
 - speech is redundant
 - → use part to guess the remainder

Outline

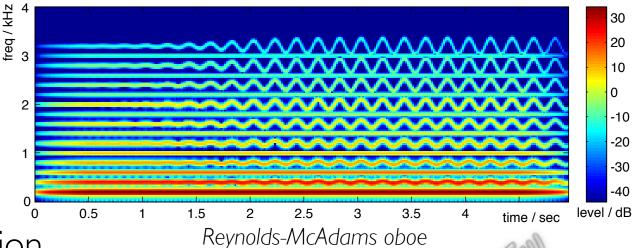
- 1. Audio Source Separation
- 2. Human Performance
 - scene analysis
 - o speech separation by location
 - speech separation by voice characteristics
- 3. Model-Based Separation

Auditory Scene Analysis

Darwin & Carlyon'95

 Listeners organize sound mixtures into discrete perceived sources based on within-signal cues (audio + ...)

common onset+ continuityharmonicity

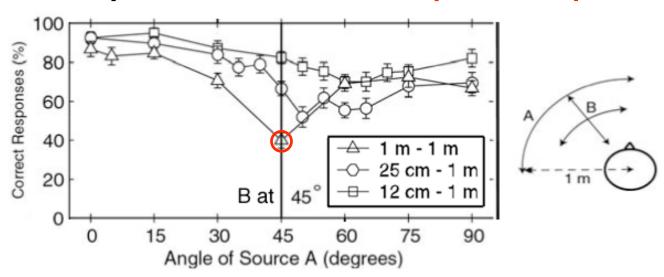


- o spatial, modulation, ...
- o learned "schema"

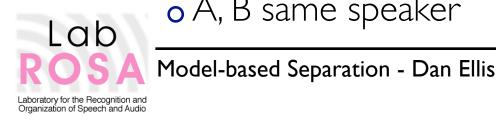
Speech Mixtures: Spatial Separation Brungart et al.'02

- Task: Coordinate Response Measure
 - o "Ready Baron go to green eight now"

- 256 variants, 16 speakers
- o correct = color and number for "Baron"
- Accuracy as a function of spatial separation:



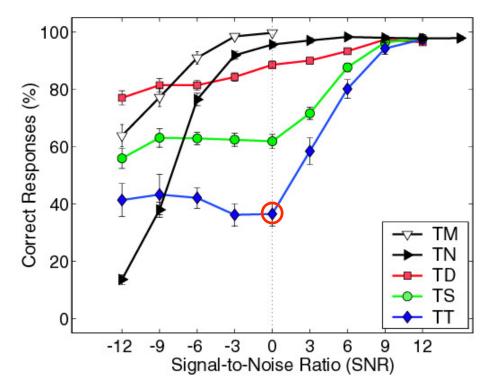
o Range effect



Separation by Vocal Differences

Brungart et al.'0 l

- CRM varying the level and voice character
 - (same spatial location)



o energetic vs. informational masking

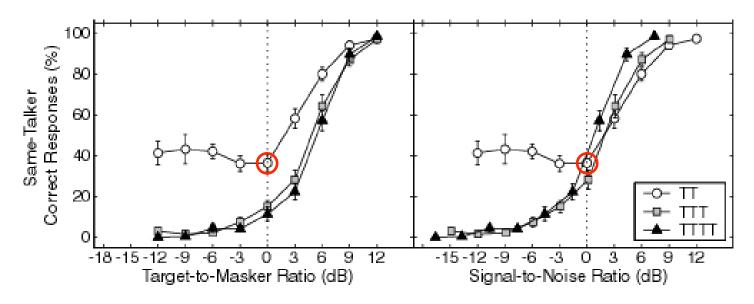
Varying the Number of Voices

Brungart et al.'0 l

Two voices OK;

More than two voices harder

• (same spatial origin)



• mix of N voices tends to speech-shaped noise...

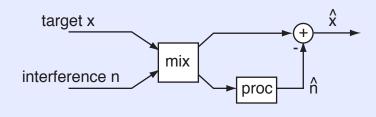
Outline

- 1. Audio Source Separation
- 2. Human Performance
- 3. Model-Based Separation
 - Separation vs. Inference
 - The Speech Fragment Decoder

Separation Approaches

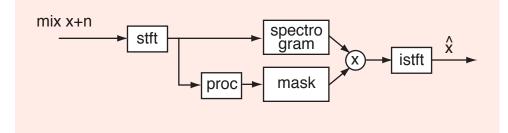
ICA

- Multi-channel
- Fixed filtering
- Perfect separation– maybe!



CASA / Model-based

- Single-channel
- Time-varying filtering
- Approximate separation



Very different approaches...

Separation vs. Inference

Ellis'96

- Ideal separation is rarely possible
 - o i.e. no projection can completely remove overlaps
- Overlaps ⇒ Ambiguity
 - scene analysis = find "most reasonable" explanation
- Ambiguity can be expressed probabilistically
 - \circ i.e. posteriors of sources $\{S_i\}$ given observations X:

$$P(\lbrace S_i \rbrace | X) \propto P(X | \lbrace S_i \rbrace) P(\lbrace S_i \rbrace)$$

combination physics source models

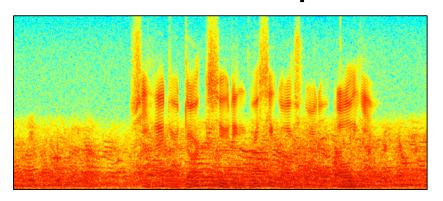
- Better source models → better inference
 - o .. learn from examples?

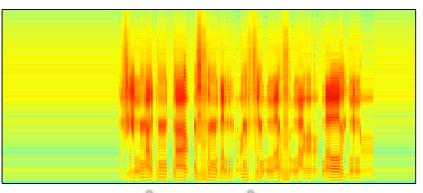
Model-Based Separation

Central idea:

Varga & Moore'90 Roweis'03...

- Employ strong learned constraints to disambiguate possible sources
- $\circ \{S_i\} = \operatorname{argmax}_{\{S_i\}} P(X \mid \{S_i\})$
- e.g. fit speech-trained Vector-Quantizer to mixed spectrum:





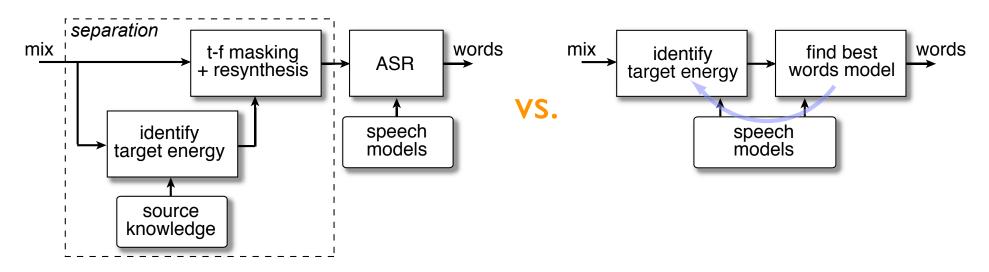
from Roweis'03

• separate via T-F mask

2006-03-08 - 13/19

Separation or Description?

- Are isolated waveforms required?
 - o clearly sufficient, but may not be necessary
 - o not part of perceptual source separation!
- Integrate separation with application?
 - o e.g. speech recognition

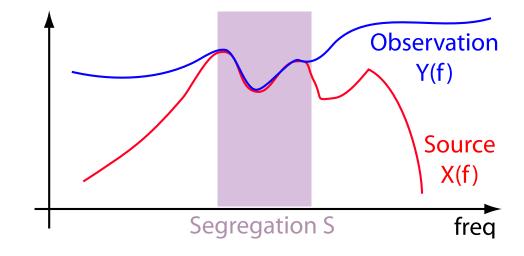


words output = abstract description of signal

The Speech Fragment Decoder

Barker et al. '05

 Match 'uncorrupt' spectrum to ASR models using missing data



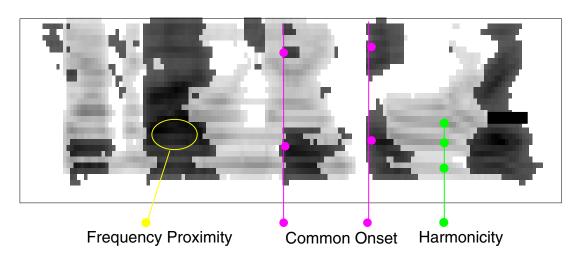
 Joint search for model M and segregation S to maximize:

$$P(M, S|Y) = P(M) \int P(X|M) \cdot \frac{P(X|Y, S)}{P(X)} dX \cdot P(S|Y)$$
Isolated Source Model Segregation Model

Using CASA cues

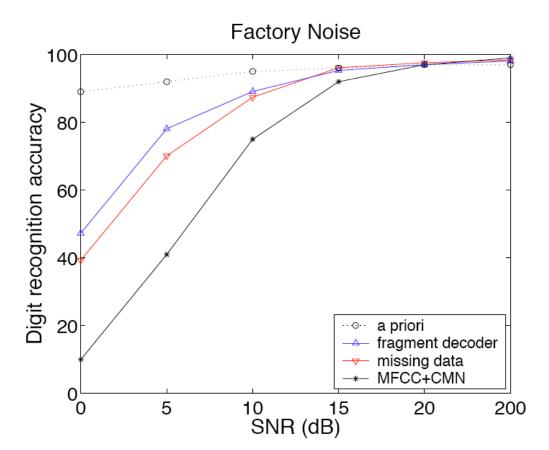
$$P(M, S|Y) = P(M) \int P(X|M) \cdot \frac{P(X|Y, S)}{P(X)} dX \cdot P(S|Y)$$

- CASA can help search
 - consider only segregations made from CASA chunks
- CASA can rate segregation
 - \circ construct P(S|Y) to reward CASA qualities:



Speech-Fragment Recognition

 CASA-based fragments give extra gain over missing-data recognition



from Barker et al. '05

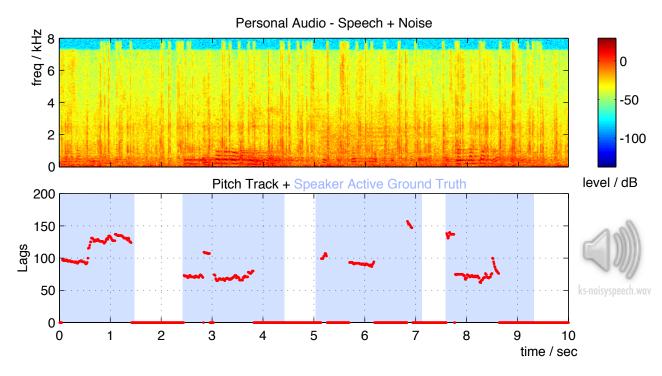
Evaluating Separation

Real-world speech tasks

- crowded environments
- o M. Cooke & T.-W. Lee "Speech Separation Challenge"

Metric

- human intelligibility?
- 'diarization'annotation(but nottranscription)



Summary & Conclusions

- Listeners do well separating speech
 - using spatial location
 - using source-property variations
- Machines do less well
 - o difficult to apply enough constraints
 - o need to exploit signal detail
- Models capture constraints
 - o learn from the real world
 - adapt to sources
- Inferring state (≈ recognition)
 is a promising approach to separation

Sources / See Also

- NSF/AFOSR Montreal Workshops '03, '04
 - o www.ebire.org/speechseparation/
 - o <u>labrosa.ee.columbia.edu/Montreal2004/</u>
 - o as well as the resulting book...

- Hanse meeting:
 - www.lifesci.sussex.ac.uk/home/Chris_Darwin/ Hanse/
- DeLiang Wang's ICASSP'04 tutorial
 - www.cse.ohio-state.edu/~dwang/presentation.html
- Martin Cooke's NIPS'02 tutorial
 - www.dcs.shef.ac.uk/~martin/nips.ppt

References 1/2

- [Barker et al. '05] J. Barker, M. Cooke, D. Ellis, "<u>Decoding speech in the presence of other sources</u>," Speech Comm. 45, 5-25, 2005.
- [Bell & Sejnowski '95] A. Bell & T. Sejnowski, "An information maximization approach to blind separation and blind deconvolution," Neural Computation, 7:1129-1159, 1995.
- [Blin et al.'04] A. Blin, S. Araki, S. Makino, "A sparseness mixing matrix estimation (SMME) solving the underdetermined BSS for convolutive mixtures," ICASSP, IV-85-88, 2004.
- [Bregman '90] A. Bregman, Auditory Scene Analysis, MIT Press, 1990.
- [Brungart '01] D. Brungart, "Informational and energetic masking effects in the perception of two simultaneous talkers," JASA 109(3), March 2001.
- [Brungart et al. '01] D. Brungart, B. Simpson, M. Ericson, K. Scott, "Informational and energetic masking effects in the perception of multiple simultaneous talkers," JASA 110(5), Nov. 2001.
- [Brungart et al. '02] D. Brungart & B. Simpson, "The effects of spatial separation in distance on the informational and energetic masking of a nearby speech signal", JASA 112(2), Aug. 2002.
- [Brown & Cooke '94] G. Brown & M. Cooke, "Computational auditory scene analysis," Comp. Speech & Lang. 8 (4), 297–336, 1994.
- [Cooke et al. '01] M. Cooke, P. Green, L. Josifovski, A. Vizinho, "Robust automatic speech recognition with missing and uncertain acoustic data," Speech Communication 34, 267-285, 2001.
- [Cooke'06] M. Cooke, "A glimpsing model of speech perception in noise," submitted to JASA.
- [Darwin & Carlyon '95] C. Darwin & R. Carlyon, "Auditory grouping" Handbk of Percep. & Cogn. 6: Hearing, 387–424, Academic Press, 1995.
- [Ellis'96] D. Ellis, "Prediction-Driven Computational Auditory Scene Analysis," Ph.D. thesis, MIT EECS, 1996.
- [Hu & Wang '04] G. Hu and D.L. Wang, "Monaural speech segregation based on pitch tracking and amplitude modulation," IEEE Tr. Neural Networks, 15(5), Sep. 2004.
- [Okuno et al. '99] H. Okuno, T. Nakatani, T. Kawabata, "Listening to two simultaneous speeches," Speech Communication 27, 299–310, 1999.

Laboratory for the Recognition and Organization of Speech and Audio

References 2/2

- [Ozerov et al. '05] A. Ozerov, P. Phillippe, R. Gribonval, F. Bimbot, "One microphone singing voice separation using source-adapted models," Worksh. on Apps. of Sig. Proc. to Audio & Acous., 2005.
- [Pearlmutter & Zador '04] B. Pearlmutter & A. Zador, "Monaural Source Separation using Spectral Cues," Proc. ICA, 2005.
- [Parra & Spence '00] L. Parra & C. Spence, "Convolutive blind source separation of non-stationary sources," IEEE Tr. Speech & Audio, 320-327, 2000.
- [Reyes et al. '03] M. Reyes-Gómez, B. Raj, D. Ellis, "Multi-channel source separation by beamforming trained with factorial HMMs," Worksh. on Apps. of Sig. Proc. to Audio & Acous., 13–16, 2003.
- [Roman et al. '02] N. Roman, D.-L. Wang, G. Brown, "Location-based sound segregation," ICASSP, I-1013-1016, 2002.
- [Roweis '03] S. Roweis, "Factorial models and refiltering for speech separation and denoising," EuroSpeech, 2003.
- [Schimmel & Atlas '05] S. Schimmel & L. Atlas, "Coherent Envelope Detection for Modulation Filtering of Speech," ICASSP, I-221-224, 2005.
- [Slaney & Lyon '90] M. Slaney & R. Lyon, "A Perceptual Pitch Detector," ICASSP, 357-360, 1990.
- [Smaragdis '98] P. Smaragdis, "Blind separation of convolved mixtures in the frequency domain," Intl. Wkshp. on Indep. & Artif. I Neural Networks, Tenerife, Feb. 1998.
- [Seltzer et al. '02] M. Seltzer, B. Raj, R. Stern, "Speech recognizer-based microphone array processing for robust hands-free speech recognition," ICASSP, I-897-900, 2002.
- [Varga & Moore '90] A. Varga & R. Moore, "Hidden Markov Model decomposition of speech and noise," ICASSP, 845–848, 1990.
- [Vincent et al. '06] E. Vincent, R. Gribonval, C. Févotte, "Performance measurement in Blind Audio Source Separation." IEEE Trans. Speech & Audio, in press.
- [Yilmaz & Rickard '04] O.Yilmaz & S. Rickard, "Blind separation of speech mixtures via time-frequency masking," IEEE Tr. Sig. Proc. 52(7), 1830-1847, 2004.

Model-based Separation - Dan Ellis

Laboratory for the Recognition and Organization of Speech and Audio 2006-03-08 - 22/19

