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Audio Source Separation

® Sounds rarely occurs in isolation
O .. but organizing mixtures is a problem
o .. for humans and machines
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Audio Separation Scenarios

® [nteractive voice systems
o human-level understanding Is expected

® Speech prostheses
o crowds: # | complaint of hearing aid users

® Multimedia archive analysis
o identifying and isolating speech, other events
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How Can We Separate?

® By between-sensor differences (spatial cues)
o ‘'steer a null’ onto a compact interfering source

® By finding a ‘separable representation’
o spectral! but speech Is broadband
o periodicity! maybe — for voiced speech
o something more signal-specific...
® By inference (based on knowledge/models)
O speech Is redundant
— use part to guess the remainder

Lab

Model-based Separation - Dan Ellis 2006-03-08 - 4/19

Laboratory for the Recognition and
QOrganization of Speech and Audio

CorumsiA [JNIVERSITY
IN THE CITY OF NEW YORK



Outline

Audio Source Separation
Human Performance

O scene analysis
O speech separation
O speech separation

Model-Based Se
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Auditory Scene Analysis

® Listeners organize sound mixtures
into discrete perceived sources
based on within-signal cues (audio + ...)

O common £ o0
onset £ ;
+ continuity i ATATATATATAVATATAVATAYAY | |,

O harmonicity ! _:_‘:_f_._;__:__f___ ______ e o

-40
level / dB

0
0 0.5 1 1.5 2 2.5 3 3.5 4 time / sec

O Spatial, mOdu|ation’ Reynolds-McAdams oboe
O learned "'schema’”

Model-based Separation - Dan Ellis 2006-03-08 - 6/19

CorumsiA [JNIVERSITY
IN THE CITY OF NEW YORK



Speech Mixtures: Spatial Separation

Brungart
® Task: Coordinate Response Measure
o “Ready Baron go to green eight now”
0 256 variants, | 6 speakers
o correct = color and number for “Baron”

® Accuracy as a function of spatial separation:
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Separation by Vocal Differences

® CRM varying the level and voice character
O (same spatial location)
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Varying the Number of Voices

® Two voices OK;

More than two voices harder
O (same spatial origin)
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Outline

Audio Source Separation
Human Performance

Model-Based Separation
O Separation vs. Inference
o The Speech Fragment Decoder
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Separation Approaches

ICA CASA / Model-based
* Multi-channel * Single-channel
* Fixed filtering * [ime-varying filtering
* Perfect separation * Approximate
— maybel separation

mix X+n

A
target x X
— > sft ~{ Do’
mix ;:>—> istft
interference n " N proc A »| proc>{ mask

® Very different approaches...
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Separation vs. Inference

® |deal separation is rarely possible
O 1.e. NO projection can completely remove overlaps

® Overlaps = Ambiguity
O scene analysis = find “most reasonable™ explanation

® Ambiguity can be expressed probabilistically
O |.e. posteriors of sources {S;} given observations X:

P({S;}] X) o P(X[{S;}) P(1S;)

® Better — better inference
0. learn from examples!
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Model-Based Separation

® Central idea:
Employ strong
to disambiguate possible sources
© {S§i} = argmaxsin P(X 1 {S:})

® e.g.fit speech-trained Vector-Quantizer
to mixed spectrum:

o separate via T-F mask )/ ¥
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Separation or Description?

® Are isolated waveforms required!?
o clearly sufficient, but may not be necessary
o not part of perceptual source separation!

® |ntegrate separation with application!?
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The Speech Fragment Decoder

® Match ‘uncorrupt’ i Observation

spectrum to ASR Yo
models using Source
missing data X(f)>
freq

® |oint search for model M and
to maximize:

P(M,S|Y) = P(M)jP(X|M).

Isolated Source Model
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Using CASA cues

P(X|Y,S)
P(X)

P(M,S|Y) = P(M)J'P(X|M)- dX - P(S|Y)

® CASA can help search

o consider only segregations made from CASA
chunks

® (CASA can rate

O construct to reward CASA qualities:

A
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Speech-Fragment Recognition

® CASA-based fragments give extra gain
over missing-data recognition
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Evaluating Separation

® Real-world speech tasks
o crowded environments
o M. Cooke & T.-W. Lee “Speech Separation Challenge”
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Summary & Conclusions

® [isteners do well separating speech
O using spatial location
O using source-property variations

® Machines do less well
o difficult to apply enough constraints
o need to exploit signal detall

® Models capture constraints
o learn from the real world
O adapt to sources
° state (= recognition)
is a promising approach to separation
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Sources / See Also

® NSF/AFOSR Montreal Workshops '03,°04

o www.ebire.org/speechseparation/

o labrosa.ee.columbia.edu/Montreal2004/
o as well as the resulting book...

® Hanse meeting:

o www.lifesci.sussex.ac.uk/home/Chris Darwin/
Hanse/

® Deliang Wang’s ICASSP’04 tutorial

o www.cse.ohio-state.edu/~dwang/presentation.html

® Martin Cooke’s NIPS’02 tutorial
o www.dcs.shef.ac.uk/~martin/nips.ppt 0
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