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1. Auditory Scene Analysis
• Sounds rarely occurs in isolation

.. but recognizing sources in mixtures is a problem

.. for humans and machines
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Sound Mixture Organization
• Goal: recover individual sources from scenes

.. duplicating the perceptual effect

• Problems: competing sources, channel effects
• Dimensionality loss

need additional constraints
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The Problem of Mixtures

“Imagine two narrow channels dug up from the edge of a 
lake, with handkerchiefs stretched across each one.  
Looking only at the motion of the handkerchiefs, you are 
to answer questions such as: How many boats are there 
on the lake and where are they?”   (after Bregman’90) 
• Received waveform is a mixture

2 sensors, N sources - underconstrained

• Undoing mixtures: hearing’s primary goal?
.. by any means available

4
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Source Separation Scenarios
• Interactive voice systems

human-level understanding is expected

• Speech prostheses
crowds: #1 complaint of hearing aid users

• Archive analysis
identifying and isolating sound events

• Unmixing/remixing/enhancement...
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How Can We Separate?
• By between-sensor differences (spatial cues)

‘steer a null’ onto a compact interfering source

• By finding a ‘separable representation’
spectral?  sources are broadband but sparse
periodicity?  maybe – for pitched sounds
something more signal-specific...

• By inference (based on knowledge/models)
acoustic sources are redundant
→ use part to guess the remainder

6
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Outline
1.  The ASA Problem
2.  Human ASA

scene analysis
separation by location
separation by source characteristics

3.  Machine Source Separation
4.  Systems & Examples
5.  Concluding Remarks
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Auditory Scene Analysis
• Listeners organize sound mixtures

into discrete perceived sources
based on within-signal cues (audio + ...)

common 
onset 
+ continuity
harmonicity

spatial, modulation, ...
learned “schema”
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Perceiving Sources
• Harmonics distinct in ear, but perceived as 

one source (“fused”):

depends on common onset
depends on harmonics

• Experimental techniques
ask subjects “how many”
match attributes e.g. pitch, vowel identity
brain recordings (EEG “mismatch negativity”)
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Auditory Scene Analysis

• How do people analyze sound mixtures? 
break mixture into small elements (in time-freq) 
elements are grouped in to sources using cues 
sources have aggregate attributes 

• Grouping rules (Darwin, Carlyon, ...): 
cues: common onset/offset/modulation, 
harmonicity, spatial location, ... 
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Streaming
• Sound event sequences are organized into 

streams
i.e. distinct perceived sources
difficult to make comparisons between streams

• Two-tone streaming experiments:

ecological relevance?
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bregnoise

Illusions & Restoration
• Illusion = hearing more than is “there”

e.g. “pulsation threshold” 
example - tone is masked

“old-plus-new” heuristic:
existing sources continue

• Need to infer most likely real-world events
observation equally good match to either case
prior likelihood of continuity much higher
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Human Performance:
Spatial Separation

• Task: Coordinate Response Measure
“Ready Baron go to green eight now”
256 variants, 16 speakers
correct = color and number for “Baron”

• Accuracy as a function of spatial separation:

A, B same speaker                  o Range effect
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Separation by Vocal Differences
• CRM varying the level and voice character

(same spatial location)

energetic vs. informational masking
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Varying the Number of  Voices
• Two voices OK; 

More than two voices harder
(same spatial origin)

mix of N voices tends to speech-shaped noise...
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Outline
1.  The ASA Problem
2.  Human ASA
3.  Machine Source Separation

Independent Component Analysis
Computational Auditory Scene Analysis
Model-Based Separation

4.  Systems & Examples
5.  Concluding Remarks
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Scene Analysis Systems

• “Scene Analysis”
not necessarily separation, recognition, ...
scene = overlapping objects, ambiguity

• General Framework:

distinguish input and output representations
distinguish engine (algorithm) and control 
(constraints, “computational model”)
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Human and Machine Scene Analysis

• CASA (e.g. Brown’92):
Input:  Periodicity, continuity, onset “maps”  
Output:  Waveform (or mask)
Engine: Time-frequency masking
Control: “Grouping cues” from input
- or: spatial features (Roman, ...)
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Human and Machine Scene Analysis

• CASA (e.g. Brown’92):
• ICA (Bell & Sejnowski et seq.):

Input:  waveform (or STFT)
Output:  waveform (or STFT)
Engine: cancellation
Control: statistical independence of outputs
- or energy minimization for beamforming 
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Human and Machine Scene Analysis

• CASA (e.g. Brown’92):
• ICA (Bell & Sejnowski et seq.):
• Human Listeners:

Input: excitation patterns ...
Output:  percepts ...
Engine: ?
Control: find a plausible explanation
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Machine Separation
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Separation Approaches

• Very different approaches!

22

ICA
•Multi-channel
•Fixed filtering
•Perfect separation 

– maybe!

CASA / Model-based
•Single-channel
•Time-varying filtering
•Approximate 

Separation
target x

interference n
n̂

x̂
-

mix

+

proc

mix x+n
x̂

proc

spectro
gram

mask

stft
istftx



Auditory Scene Analysis - Dan Ellis 2006-05-20 -    /54

Independent Component 
Analysis

• Central idea:
Search unmixing space 
to maximize independence of outputs

simple mixing
→ a good solution (usually) exists
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Mixtures, Scatters, Kurtosis
• Mixtures of sources become more Gaussian

can measure e.g. via ‘kurtsosis’ (4th moment)
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ICA Limitations
• Cancellation is very finicky

hard to get more than ~ 10 dB rejection

• The world is not instantaneous, fixed, linear
subband models for reverberation
continuous adaptation

• Needs spatially-compact interfering sources
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Computational Auditory 
Scene Analysis

• Central idea:
Segment time-frequency into sources
based on perceptual grouping cues

... principal cue is harmonicity
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CASA Preprocessing
• Correlogram: a 3rd “periodicity” axis

envelope of wideband channels follows pitch

c/w Modulation Filtering [Schimmel & Atlas ’05] 
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“Weft” Periodic Elements

• Represent harmonics without grouping?

hard to separate multiple pitch tracks
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Time-Frequency (T-F) Masking
• “Local Dominance” assumption

oracle masks are remarkably effective!
|mix – max(male, female)| < 3dB for ~80% of cells
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Combining Spatial + T-F Masking

• T-F masks based on 
inter-channel properties
[Roman et al. ’02], 
[Yilmaz & Rickard ’04]
multiple channels make
CASA-like masks better

• T-F masking after ICA
[Blin et al. ’04]
cancellation can remove energy within T-F cells
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CASA limitations
• Driven by local features

problems with masking, aperiodic sources...

• Limitations of T-F masking
need to identify single-source regions
cannot undo overlaps – leaves gaps
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Auditory “Illusions”
• How do we explain illusions?

pulsation threshold

sinewave speech

phonemic restoration

• Something is providing the missing (illusory) 
pieces ... source models
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Adding Top-Down Constraints
• Bottom-up CASA: limited to what’s “there”

• Top-down predictions allow illusions

match observations to a “world-model”...
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combination physics source models

Separation vs. Inference
• Ideal separation is rarely possible

i.e. no projection can completely remove overlaps

• Overlaps ⇒ Ambiguity
scene analysis = find “most reasonable” explanation

• Ambiguity can be expressed probabilistically
i.e. posteriors of sources {Si} given observations X:
P({Si}| X) ∝ P(X |{Si}) P({Si})

• Better source models → better inference
.. learn from examples?

34
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Simple Source Separation
• Given models for sources, 

find “best” (most likely) states for spectra:

can include sequential constraints...
different domains for combining c and defining 

• E.g. stationary noise:
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Can Models Do CASA?
• Source models can learn harmonicity, onset

... to subsume rules/representations of CASA

can capture spatial info too [Pearlmutter & Zador’04]

• Can also capture sequential structure
e.g. consonants follow vowels
... like people do?

• But: need source-specific models
... for every possible source
use model adaptation? [Ozerov et al. 2005]
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Separation or Description?
• Are isolated waveforms required?

clearly sufficient, but may not be necessary
not part of perceptual source separation!

• Integrate separation with application?
e.g. speech recognition

words output = abstract description of signal
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p(xk|M) =
Z
p(xk,xu|M)dxu

• Speech models p(x|M) are multidimensional... 
need values for all dimensions to evaluate p(•)

• But: can make inferences given
just a subset of dimensions xk
 

• Hence, missing data recognition: 

hard part is finding the mask (segregation) 
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The Speech Fragment Decoder

• Match ‘uncorrupt’ 
spectrum to ASR 
models using 
missing data

• Joint search for model M and segregation S 
to maximize:

Barker et al. ’05
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Using CASA cues

• CASA can help search
consider only segregations made from CASA 
chunks

• CASA can rate segregation
construct P(S|Y) to reward CASA qualities:
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Outline
1.  The ASA Problem
2.  Human ASA
3.  Machine Source Separation
4.  Systems & Examples

Periodicity-based
Model-based
Music signals

5.  Concluding Remarks
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Current CASA
• State-of-the-art bottom-up separation

noise robust pitch track
label T-F cells by pitch
extensions to unvoiced transients by onset

42

Hu & Wang’03
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Prediction-Driven CASA

• Identify objects
in real-world 
scenes
using “sound 
elements”
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Singing Voice Separation
• Pitch tracking + harmonic separation

44

Avery Wang’94
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Periodic/Aperiodic Separation
• Harmonic structure + repetition of drums

45

Virtanen’03
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“Speech Separation Challenge”
• Mixed and Noisy Speech ASR task 

defined by Martin Cooke and Te-Won Lee
short, grammatically-constrained utterances:

• Results to be presented at Interspeech’06
http://www.dcs.shef.ac.uk/~martin/SpeechSeparationChallenge.htm

• See also “Statistical And Perceptual Audition” 
workshop
http://www.sapa2006.org/

46

<command:4><color:4><preposition:4><letter:25><number:10><adverb:4>
e.g. "bin white at M 5 soon" t5_bwam5s_m5_bbilzp_6p1.wav
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IBM’s “Superhuman” Separation
• Optimal inference on Mixed Spectra

model each speaker (512 mix GMM)

• Applied to Speech Separation Challenge:

47

  o Infer speakers and gain
  o Reconstruct speech
  o Recognize as normal...
•  Use grammar 
   constraints

Kristjansson et al. 
Interspeech’06
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HIGH RESOLUTION SIGNAL RECONSTRUCTION
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ABSTRACT

We present a framework for speech enhancement and ro-
bust speech recognition that exploits the harmonic structure
of speech. We achieve substantial gains in signal to noise ra-
tio (SNR) of enhanced speech as well as considerable gains
in accuracy of automatic speech recognition in very noisy
conditions.

The method exploits the harmonic structure of speech
by employing a high frequency resolution speech model in
the log-spectrum domain and reconstructs the signal from
the estimated posteriors of the clean signal and the phases
from the original noisy signal.

We achieve a gain in signal to noise ratio of 8.38 dB for
enhancement of speech at 0 dB. We also present recognition
results on the Aurora 2 data-set. At 0 dB SNR, we achieve
a reduction of relative word error rate of 43.75% over the
baseline, and 15.90% over the equivalent low-resolution al-
gorithm.

1. INTRODUCTION

A long standing goal in speech enhancement and robust
speech recognition has been to exploit the harmonic struc-
ture of speech to improve intelligibility and increase recog-
nition accuracy.

The source-filter model of speech assumes that speech
is produced by an excitation source (the vocal cords) which
has strong regular harmonic structure during voiced phonemes.
The overall shape of the spectrum is then formed by a fil-
ter (the vocal tract). In non-tonal languages the filter shape
alone determines which phone component of a word is pro-
duced (see Figure 2). The source on the other hand intro-
duces fine structure in the frequency spectrum that in many
cases varies strongly among different utterances of the same
phone.

This fact has traditionally inspired the use of smooth
representations of the speech spectrum, such as the Mel-
frequency cepstral coefficients, in an attempt to accurately
estimate the filter component of speech in a way that is in-
variant to the non-phonetic effects of the excitation[1].

There are two observations that motivate the consider-
ation of high frequency resolution modelling of speech for
noise robust speech recognition and enhancement. First is
the observation that most noise sources do not have har-
monic structure similar to that of voiced speech. Hence,
voiced speech sounds should be more easily distinguish-
able from environmental noise in a high dimensional signal
space1.
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Fig. 1. The noisy input vector (dot-dash line), the corre-
sponding clean vector (solid line) and the estimate of the
clean speech (dotted line), with shaded area indicating the
uncertainty of the estimate (one standard deviation). Notice
that the uncertainty on the estimate is considerably larger in
the valleys between the harmonic peaks. This reflects the
lower SNR in these regions. The vector shown is frame 100
from Figure 2

A second observation is that in voiced speech, the signal
power is concentrated in areas near the harmonics of the
fundamental frequency, which show up as parallel ridges in

1Even if the interfering signal is another speaker, the harmonic structure
of the two signals may differ at different times, and the long term pitch
contour of the speakers may be exploited to separate the two sources [2].
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Transcription as Separation

• Transcribe piano recordings by classification
train SVM detectors for every piano note
88 separate detectors, independent smoothing

• Trained on player piano recordings

• Sse transcription to resynthesize...
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Piano Transcription Results

• Significant improvement from classifier:
frame-level accuracy results:

Breakdown
by frame
type:

http://labrosa.ee.columbia.edu/projects/melody/
49

Table 1: Frame level transcription results.

Algorithm Errs False Pos False Neg d′

SVM 43.3% 27.9% 15.4% 3.44

Klapuri&Ryynänen 66.6% 28.1% 38.5% 2.71

Marolt 84.6% 36.5% 48.1% 2.35

• Overall Accuracy Acc: Overall accuracy is a frame-level version of the metric
proposed by Dixon in [Dixon, 2000] defined as:

Acc =
N

(FP + FN + N)
(3)

where N is the number of correctly transcribed frames, FP is the number of

unvoiced frames UV transcribed as voiced V , and FN is the number of voiced

frames transcribed as unvoiced.

• Error Rate Err: The unbounded error rate is defined as:

Err =
FP + FN

V
(4)

Additionally, we define the false positive rate FPR and false negative rate FNR
as FP/V and FN/V respectively.

• Discriminability d′: The discriminability is a measure of the sensitivity of a
detector that attempts to factor out the overall bias toward labeling any frame

as voiced (which can move both hit rate and false alarm rate up and down in

tandem). It converts the hit rate and false alarm into standard deviations away

from the mean of an equivalent Gaussian distribution, and reports the difference

between them. A larger value indicates a detection scheme with better discrimi-

nation between the two classes [Duda et al., 2001]

d′ = |Qinv(N/V )−Qinv(FP/UV )|. (5)

As displayed in Table 1, the discriminative model provides a significant perfor-

mance advantage on the test set with respect to frame-level transcription accuracy.

This result highlights the merit of a discriminative model for candidate note identi-

fication. Since the transcription problem becomes more complex with the number of

simultaneous notes, we have also plotted the frame-level classification accuracy versus

the number of notes present for each of the algorithms in the left panel of Figure 4, and

the classification error rate composition with the number of simultaneously occurring

notes for the proposed algorithm is displayed in right panel. As expected, there is an

inverse relationship between the number of notes present and the proportional contri-

bution of insertion errors to the total error rate. However, the performance degredation

of the proposed is not as significant as the harmonic-based models.
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Outline
1.  The ASA Problem
2.  Human ASA
3.  Machine Source Separation
4.  Systems & Examples
5.  Concluding Remarks

Evaluation

50
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Evaluation
• How to measure separation performance?

depends what you are trying to do

• SNR?
energy (and distortions) are not created equal
different nonlinear components [Vincent et al. ’06]

• Intelligibility?
rare for nonlinear processing 
to improve intelligibility
listening tests expensive

• ASR performance?
separate-then-recognize too simplistic;
ASR needs to accommodate separation
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Evaluating Scene Analysis
• Need to establish ground truth

subjective sources in real sound mixtures?

52
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More Realistic Evaluation
• Real-world speech tasks

crowded environments
applications: 
communication, command/control, transcription

• Metric
human 
intelligibility?
‘diarization’
annotation 
(not 
transcription)
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Summary & Conclusions
• Listeners do well separating sound mixtures

using signal cues (location, periodicity)
using source-property variations

• Machines do less well
difficult to apply enough constraints
need to exploit signal detail

• Models capture constraints
learn from the real world
adapt to sources

• Separation feasible in certain domains
describing source properties is easier
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Sources / See Also
• NSF/AFOSR Montreal Workshops ’03, ’04

www.ebire.org/speechseparation/
labrosa.ee.columbia.edu/Montreal2004/
as well as the resulting book...

• Hanse meeting:
www.lifesci.sussex.ac.uk/home/Chris_Darwin/
Hanse/

• DeLiang Wang’s ICASSP’04 tutorial
www.cse.ohio-state.edu/~dwang/presentation.html

• Martin Cooke’s NIPS’02 tutorial
www.dcs.shef.ac.uk/~martin/nips.ppt
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