View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Columbia University Academic Commons

KeyNote: Trust Management for Public-Key
Infrastructures

Matt Blaze' Joan Feigenbaum' Angelos D. Keromytis?

1 AT&T Labs — Research
180 Park Avenue
Florham Park, NJ 07932 USA

{mab, jf}@research.att.com

% Distributed Systems Lab
CIS Department, University of Pennsylvania
200 S. 33rd Str., Philadelphia, PA 19104 USA

angelos@dsl.cis.upenn.edu

Abstract. This paper discusses the rationale for designing a simple
trust-management system for public-key infrastructures, called KeyNote.
The motivating principles are expressiveness, simplicity, and extensibil-
ity. We believe that none of the existing public-key infrastructure pro-
posals provide as good a combination of these three factors.

1 Introduction

Trust management, introduced in the PolicyMaker system [2], is a unified ap-
proach to specifying and interpreting security policies, credentials, and relation-
ships that allows direct authorization of security-critical actions. Security cre-
dentials (which subsume the role of “certificates”) describe a specific delegation
of trust among public keys; unlike traditional certificates, which bind keys to
names, trust-management credentials bind keys to the authorization to perform
specific tasks. KeyNote provides a simple notation for specifying both local secu-
rity policies and security credentials that can be sent over an untrusted network.
Policies and credentials, called “assertions,” contain predicates that describe
the trusted actions permitted by the holders of specific public keys. A signed
assertion that can be sent over an untrusted network is called a Credential As-
sertion. Credential assertions, which subsume the role of certificates, have the
same syntax as policy assertions with the additional feature that they are signed
by the entity delegating the trust. A KeyNote evaluator accepts as input a set
of local policy assertions, a collection of credential assertions, and a collection of
attributes, called an “action environment,” that describes a proposed trusted ac-
tion associated with a set of public keys. KeyNote determines whether proposed
actions are consistent with local policy by applying the assertion predicates to
the action environment.

Although the basic design of KeyNote [1] is similar in spirit to that of Policy-
Maker, KeyNote’s features have been simplified to more directly support public-


https://core.ac.uk/display/161441236?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

key infrastructure-like applications. The central differences between PolicyMaker
and KeyNote are:

KeyNote predicates are written in a simple notation based on C-like expres-
sions and regular expressions.

KeyNote assertions always return a boolean (authorized or not) answer.
Credential signature verification is built in to the KeyNote system.
Assertion syntax is based on a human-readable “RFC-822”-style syntax.
Trusted actions are described by simple attribute/value pairs.

SPKI/SDSI [4] also essentially attempts to do trust-management for public-

key infrastructures. We believe that KeyNote provides a better solution, because
it was designed to be simpler, more extensible, and more expressive than SPKI
(and certainly than X.509 [7]). In the following sections, we expand on these
three design principles.

2

Simplicity

Simplicity in the design of KeyNote manifests itself in various aspects of the
system:

Narrow focus.

KeyNote aims to provide a common, application-independent mechanism for
use with application-specific credentials and policies. Each application (or
class of applications) will develop its own set of attributes, with application-
specific credentials and policies created to operate on them. Other approaches
include name-based schemes (such as X.509 [7]), in which the infrastructure
aims to provide a common application-independent certificate with each ap-
plication left to develop its own mechanism to interpret the security seman-
tics of the name, and SPKI/SDSI [4], which attempts to provide both an au-
thorization and a naming mechanism. Both systems are unnecessarily large
and complex (because secure naming and authorization are orthogonal).
Easily describable system.

The basic KeyNote document [1] is 15 pages long, including an extensive ex-
amples section. We believe that such a compact document makes the system
easy to understand. Constrast this size with other systems’ documentation
(especially those produced by committees!)

Easy to understand and create assertions.

The KeyNote assertion format is human-readabled, ASCII-based. Further-
more, the notation used to describe the trusted actions is based on C-like
expressions (arithmetic, string, and boolean operations), which is widely
known and used. Although we intend to provide an easy-to-use graphical
user interface, it is possible to write a KeyNote assertion using just a text
editor (except for the signature of course).



— Easy to implement.
Our reference implementation is less than 1500 lines of C and lex/yacc speci-
fication and was written with readalibity in mind. The small code size argues
for robust and relatively bug-free implementations. The same cannot be said
of all other schemes.

3 Expressiveness

The KeyNote language is designed to make it easy to express and evaluate the
kinds of policies and trust delegations that occur in “public-key infrastructure”
applications.

KeyNote syntax is minimal and reflects the system’s focus on delegation of
authority. The basic element of KeyNote programming is the assertion. Asser-
tions are the mechanism by which a key (or collection of keys) is authorized
to perform various trusted actions. Assertions are used to specify local policy.
The same assertion syntax is also used to provide signed credentials in which
one party defers authorization to another. Thus security policies and creden-
tials share a common syntax, and policy can be used as a credential simply by
signing it. Assertions are written independently from one another and are essen-
tially autonomous programs that do not communicate directly with one another
or depend on other assertions or externally-defined data structures.

Assertions are designed to be easy for humans and computers to write and
understand. In particular, simple authorizations have simple syntax, and it is
usually easy to determine what an assertion does simply by reading it. The
function of an assertion is to allow an entity to authorize another entity to per-
form specific trusted actions. An assertion is divided into sections that reflect
the logical components of such an authorization. One section identifies the au-
thorizer (either local policy or, in the case of credentials, the key that signed it).
Another section, the “key predicate,” describes the key or collection of keys being
authorized. Finally, the “action predicate” describes the action being authorized.

Assertions are designed to require only minimal computation to evaluate.
Key predicates and authorization predicates are based on simple C-like expres-
sions that match against action environment attributes. In particular, there are
no loops or function calls, and an assertion can be parsed in a single pass. The
expression semantics are rich enough to allow complex regular expression match-
ing and numeric evaluation but constrained enough to allow a KeyNote evaluator
to be built into embedded applications or operation system kernels.

Our design philosophy for KeyNote thus departs from that of PolicyMaker,
in which assertions can be arbitrary programs. PolicyMaker is designed to pro-
vide a general trust-management framework across a wide range of applications,
at some expense of efficiency. KeyNote, on the other hand, provides somewhat
simpler syntax and semantics, aimed specifically for building public-key infras-
tructure applications, at some expense of generality.



4 Extensibility

Two important components of a trust-management system are the assertion syn-
tax and the compliance-checking algorithm. (Recall that “compliance checking”
is the process of deciding whether a set of credential assertions prove that a
request complies with a policy assertion.) In the PolicyMaker trust-management
system [2, 3], both the assertion syntax and the compliance-checking algorithm
are proper generalizations of the corresponding components of KeyNote. This
implies that KeyNote is highly extensible; indeed, its natural extension has al-
ready been implemented. An application that needs more general assertions than
KeyNote provides can easily upgrade its trust-management engine: It can switch
from using the KeyNote compliance checker to using the PolicyMaker compli-
ance checker, write its new, more general assertions in PolicyMaker, and continue
to use its old KeyNote assertions, because they are compatible with PolicyMaker
assertions and can be processed by the PolicyMaker compliance checker.

The PolicyMaker notion of “proof of compliance” is beyond the scope of
this paper; it is discussed in full detail in [3]. Here we briefly explain one way
in which PolicyMaker assertions generalize KeyNote assertions and why this
generalization might be useful. A PolicyMaker assertion is a pair (f;, s;). The
“source” s; is basically identical to the KeyNote SIGNER field. The function f;
is a general program that may be written in any language that can be “safely”
interpreted within the trust-management environment; in particular, f; may be
a KeyNote assertion. Rather than simply returning TRUE or FALSE, Policy-
Maker assertions produce sets of “acceptance records.” A record has the form
(4,si, Rij) and means that “assertion number 4, issued by source s;, approves
action string R;;.” The action string may be the request that was fed to the
trust-management system by the calling application, or it may be some related
action-string that makes sense in the context of this attempted proof of compli-
ance. Each time it is executed during an attempted proof, an assertion receives
as input all of the acceptance records that have been approved so far by the
policy assertion (fo, POLICY) or by any of the credential assertions (f1,s1), - - -,
(fn=1,Sn—1). Such non-boolean assertions are useful in several standard trust-
management constructions, including those that require explicit control over
“delegation depth.” See [3, Section 3] for more details.

Ellison et al. note that some applications may require more expressive power
than the SPKI/SDSI certification framework provides, and they suggest the use
of PolicyMaker to achieve this additional power. More precisely, [5, Section 7.3]
contains the following suggestion: “For any trust policy which the full SPKI 5-
tuple reduction can not express, one must write a policy interpretation program
and PolicyMaker provides a language and body of examples for that purpose.
The result of the PolicyMaker execution can be a 5-tuple to be used within
an SPKI 5-tuple reduction.” The observation that a PolicyMaker assertion may
produce an acceptance record whose action string R;; encodes a SPKI 5-tuple
is a good one, and this may indeed be a reasonable way to extend SPKI. How-
ever, the precise relationship between the PolicyMaker definition of “proof of
compliance” and the definition given by SPKI 5-tuple reduction has not yet



been formally analyzed. (This is a potentially interesting direction for further
research.) Thus we cannot formally characterize the additional power that this
use of PolicyMaker would bring to the SPKI/SDSI framework or assess the ease
with which such an extension could be implemented.

5 Conclusions

We have presented the design principles for KeyNote and contrasted our design
with other existing proposals. We believe that the combination of simplicity, ex-
pressiveness, and extensibility makes KeyNote well-suited for trust-management,
in public-key infrastructure.

For more information about KeyNote, please read the Internet Draft [1].

References

1. M. Blaze, J. Feigenbaum, and A. D. Keromytis, “The KeyNote Trust Management
System,” work in progress. Internet Draft, April 1998,
http://www.cis.upenn.edu/~angelos/draft-angelos-spki-keynote.txt.gz.

2. M. Blaze, J. Feigenbaum, and J. Lacy, “Decentralized Trust Management,” in Pro-
ceedings of the 17th Symposium on Security and Privacy, IEEE Computer Society
Press, Los Alamitos, 1996, pp. 164-173.

3. M. Blaze, J. Feigenbaum, and M. Strauss, “Compliance Checking in the Policy Maker
Trust Management System,” in Proceedings of the 2nd Financial Crypto Conference,
Lecture Notes in Computer Science, Springer, Berlin, 1998, to appear. Available in
preprint form as AT&T Technical Report 98.3.2,
http://www.research.att.com/library/trs/TRs/98/98.3/98.3.2.body.ps.

4. C. Ellison, A Simple Public-Key Infrastructure,
http://www.clark.net/pub/cme/html/spki.html.

5. C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and T. Ylonen, “SPKI
Certificate Theory,” http://www.clark.net/pub/cme/theory.txt

6. R. Rivest and B. Lampson, SDSI: A Simple Distributed Security Infrastructure,
http://theory.lcs.mit.edu/"rivest/sdsill.html.

7. Consultation Committee, X.509: The Directory Authentication Framework, Interna-
tional Telephone and Telegraph, International Telecommunications Union, Geneva,
1989.



