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Abstract 

We are building a computer model of soundorganization 
and understanding in human listeners. In particular, we 
would like to be able to detect and locate acoustic events that 
will be perceived as separate objects. Our model aims to 
duplicate this aspect of the auditory system, although the 
level ofcorrespondence isspeculativegivenourcurrent state 
of know ledge. 

We describe an implementation of grouping rules corre- 
sponding to the psychoacoustic cues of harmonicity, com- 
mon onset, continuity and proximity [I]. We increase the 
system’s robustness by adding a second layer of grouping 
that looks for corroboration between primary groupings. We 
believe that such a system of repeated hierarchic grouping is 
critical for the successful modeling of auditory finctions. 

1. Introduction 

This paper describes a computer model of part of the 
human auditory system, specifically the process by which 
disparate acoustic energy incident upon the ears is ‘orga- 
nized‘ into a small number of separately-identified real- 
world sound sources. This problem of source separation is 
analogous to the segmentation problem in vision: the raw 
information available to the perceptual system is the combi- 
nation of several essentially independent sources; the most 
effective way to process this information (avoiding combina- 
torial explosion) is to isolate the contribution of each source 
and deal with it separately; therefore, the first stage of 
processing must be concerned with identifying and grouping 
sets of information by source. 

When energy in disjoint frequency bands is perceived as 
arising from a single source, the separate bands are said to be 
fused. Consider for example a complex periodic tone: The 
listener usually hears a single tone with pitch related to the 
common periodof the harmonics, and ‘quality’ depending on 
the harmonics’ amplitudes. Psychoacoustic experiments 
have resulted in a set of empirical rules to predict how 
combinations of simple sine stimuli will be organized by 
listeners [ 11. 

Signal processing of sound has typically been limited in 
its ability to cope with interfering mixtures because of the 
lack of a ‘segmenting’ front-end. This is particularly evident 
in speech recognizers that can only function when given 
clean, isolated input. Lately, several researchers have been 
investigating approaches based on these rules of auditory 
organization: Cooke [2], Brown [3] and Okuno et a1 [4] have 
focused on the problem of enhancing speech amid interfer- 
ence, whereas Mellinger [5] and Kashino [6] have consid- 
ered the related problem of separating the different melodic 
lines in polyphonic music. 

The current project is motivated by a belief that one 
critical aspect of any successful model of human auditory 
grouping is the simultaneous use of a range of different cues. 
Moreover, the process of combining these cues is itself a 
central and unique facet of such systems, perhaps more 
important than the details of the individual cues themselves, 
making the auditory perception system a ‘society’ in the 
sense of Minsky [7]. Therefore we set out to build a selection 
of simple grouping schemes in order to be able to experiment 
with the problem of combining their outputs. 

While the system we describe has an essentially ad-hoc 
and problem-specific structure, it is worth noting its similar- 
ity, both in outline and to some extent in detail, to the sound- 
understanding blackboard systems [SI, an axis of abstraction 
we hope to investigate and develop in later work. 

Although it would certainly be useful to endow machines 
with the abilities to organize and interpret sound that are 
possessed by people, our primary motivation has been to 
understand the human prototype rather than solve particular 
problems in automatic processing of signals. We chose to 
pursue this by building a functional model; this approach has 
several advantages as a method of testing the validity and 
interaction of complex theories. It may also end up perform- 
ing some useful processing. 

The next section gives an overview of the current project, 
and sections 3,4 and 5 describe in more detail the represen- 
tation, primary grouping and secondary grouping respec- 
tively. Section 6 introduces some preliminary results of 
applying the system to real sounds, and section 7 concludes 
with a brief discussion of OUT planned developments. 
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2. Overview of the system 

Figure 1 shows how the current work fits into the context 
of acompletemachine audition system. At the bottom of the 
diagram, real-world events generate sound, which is ana- 
lyzed into a time-frequency representation by a filterbank 
approximating the function of the cochlea. The output of the 
filterbank is represented as time-frequency contours (or 
trucks) lying along energy maxima, as described in section 3. 
This representation is then subject to grouping into objects: 
The two rounded boxes labeled “primary grouping” and 
“secondary grouping’’ correspond to the work described in 
this paper. 

The fiist box, primary grouping, is made up of rules for 
identifying the basic psychoacoustic cues such as harmonicity , 
common onset and proximity, and is described in more detail 
in section 4. These rules each produce multiple groups of 
time-frequency tracks. 

These groupings are called part-objects in the diagram to 
underline their preliminary nature. They are fed to the 
secondary grouping stage which performs somewhat differ- 
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Figure 1: Block diagram of a ‘complete’ sound 
processing system, including the primary and 
secondary grouping stages described in this paper. 
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ent operations to produce more robust track groupings by 
integrating the results of the primary rules. These operations 
include looking for duplicate and (near) subsets among the 
groups and reducing these down to a smaller set of canonical 
groupings. 

The pruned and non-redundant track groups produced by 
this second stage are the basic objects of the diagram, since 
they are very likely to be perceived as individual entities, yet 
they are still relatively simple in structure. In particular, they 
have been created only by consideration of general principles 
of the structure of real-world sounds, but without anyknowl- 
edge or memories of sounds they might resemble or evoke. 
This kind of acquired or knowledge-based processing would 
be accomplished by the next layer, labeled “higher process- 
ing” in the diagram, and deliberately drawn as incomplete 
since we do not have strong ideas about how far upwards this 
block diagram should really extend. The dotted arrows 
pointing down from the “world model” indicate thepossibil- 
ity of ‘goal-driven’ processing that would guide searches to 
reveal such details based on expectations. 

3. A representation for sound 

The underlying representation used for the processing, the 
Constant-Q Sinewave Model [9] based upon the Sinusoid 
Transform [lo]. We review the process very swiftly here. 
The continuous variation in air pressure as a function of time 
is converted in to a set of discrete contours or ‘tracks’ via three 
stages: first, the acoustic energy is calculated as a function of 
time and frequency by passing the signal through a constant- 
Q filterbank. At each time-instant the magnitude and fre- 
quency of the local maxima of the spectrum are recorded; 
these are matched between successive time frames to create 
tracks. These tracks comprise a set of discrete pairs of 
frequency and magnitude functions that represent the origi- 
nal sound. Subsets of the tracks may be simply resynthesized 
via sinewave oscillators achieving a high perceptual similar- 
ity to the original sound. The key properties of the represen- 
tation for the current application are that, excluding spectral 
collisions, each track represents energy of only a single 
source, and yet has meaningful attributes such as frequency 
modulation rate and magnitude variance. 

Figure 2 shows the graphical format we use to display this 
bottom-level analysis, in this case the sound of a solo clarinet 
corrupted by the sound of a can dropping onto a hard surface. 
Time goes from left to right; this example lasts a little under 
a second as indicated by the scale at the bottom. The top panel 
shows the envelope of the magnitude waveform. The lower 
panel has logarithmic frequency as its vertical axis and shows 
the energy output of the filterbank as shades of gray. We see 
the first five or six clarinet harmonics separately resolved as 
in a narrowband spectrogram, and the broadband vertical 
structures of the can impacts around t = 1.04,1.16,1.33 and 
1.47 s. 
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The lines drawn over the filterbank output, particularly 
visible along the centers of the resolved harmonics, are the 
frequency contours of the tracks formed by the analysis 
described above. The can noise is represented as a number 
of short-duration, haphazardly scattered sinusoids with 
uncorrelated modulation. 

4. Primary grouping rules 

The first stage of grouping consists of more-or-less direct 
implementations of the cues known to us from 
psychoacoustics. Each rule is written to generate several 
answers when grouping is ambiguous. Thus the overall 
strategy is to generate a large number of track groups which 
will, with high confidence, contain thedesired groups among 
many others, and then prune poor-quality and duplicate 
groups at a later stage. We consider each rule in turn. 

4.1 Harmonicity rule 

The grouping of acoustic energy by harmonicity derives 
from the real-world observation that sound is often generated 
by near-periodic mechanisms - the oscillation of the human 
vocal folds being a particularly important example. A 
Fourier analysis will represent aperiodic signal by a series of 
distinct harmonics, at least for the region of the spectrum over 
which the analysis bandwidth is less than the spacing be- 
tween the harmonics. These harmonics, which occur at 
integer multiples of the repetition frequency orfundamental, 
correspond to the Fourier series expansion of the periodic 
signal. The harmonicity rule finds regions of energy that 
show this pattem. 

It is clear that the track representation is particularly 
suitable for this purpose, since each resolved harmonic will 
typically result in a single, isolated track. The harmonicity 
rule considers all tracks that overlap in time with the seed 
track, and that are close enough in frequency to possibly be 
one of the harmonics resolvable by our filter bank (the 
constant Q nature limits this; harmonics above the sixth or 
seventh will not be resolved). 

For each candidate member of the harmonic group, the 
frequency ratio to the seed track is calculated for each sample 
point during their time overlap. In order to be added to the 
group, the ratio has to be close to integer, and close to 
constant over the track duration. 

4.2 Common onset rule 

The ‘ecological’ basis for the common onset rule (i.e. the 
regularity of the real world that makes it useful) is that if a 
particular physical process generates energy in various fre- 
quency bands, it is likely that energy will start in each of those 
bands at the same moment. This would seem to be simple to 

detect among the tracks, however it is necessary to include 
some intelligent tolerance of asynchrony to accommodate 
both phase distortion of the channel, and the intrinsic time 
uncertainty of the narrow, low-frequency filter channels. 
Onset groups are iteratively extended from a low frequency 
seed, so a single seed may give rise to a number of plausible 
onset groups. 

4.3 Continuity rule 

This rule accomplishes grouping of tracks across short 
time gaps. This may be necessary due to energy modulation 
in the source, or can be viewed as a pragmatic measure to 
‘clean up’ the output of the track-formation stage, by com- 
pensating for occasions when that stage ‘lost track‘ of par- 
ticular energy regions. We can organize the latter case into 
a continuity group (or metatrack) that in many ways behaves 
like a single, deeply modulated track. 

The actual implementation is very straightforward; a 
time-frequency region just ahead of the end of the seed is 
searched for onsets of possible continuations. The continu- 
ation is terminated when energy of the tracks being added 
falls to some threshold below the average magnitude of the 
group. 

4.4 Proximity (noise) rule 

While harmonic complexes and resonant (formant) bursts 
are represented very successfully as sums of modulated 
sinusoids, such a transformation is less obviously appropri- 
ate for wideband, sustained ‘noise’ such as speech sibilants. 
These analyze into a large number of densely packed, 
uncorrelated tracks. We would like some method to group 
such tracks into the single perceptual element to which they 
correspond. A smoothed spectrum is obtained by convolving 
the spectral magnitude function at aparticular instant with a 
Gaussian kemel; a candidate noise band is then defined as a 
range in this smoothed spectrum that lies within amagnitude 
threshold of its average value for at least a certain bandwidth. 
This search is then repeated at successive time instants; if 
highly-overlapped frequency bands are found at several 
adjacent times, a complete time and frequency range for the 
noise region is defined. Any tracks lying in this region of 
appropriate energy and duration are recruited to the corre- 
sponding noise group. 

4.5 Amplitude-modulation groups 

The last major monaural psychoacoustic grouping cue is 
common amplitude modulation, the association of energy in 
different frequency bands that exhibits synchronized fluc- 
tuations. Such a cue would help in collecting the separate 
formant trains of a single voice (since they will all be 
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Figure 2: The top image shows the analysis of the original mixture, a clarinet melody with repeated intrusions of a can hitting a hard 
surface. The lower images show two different groups formed by the system as the emphasized tracks. 

amplitude-modulated by the pitch pulses), and, with some 
modification, could help attach the formants to the resolved 
harmonics. We have yet to implement such a rule. This 
shouldbe natural and straightforward - in amanner similar to 
the harmonic grouping, pairs of tracks (or metatracks) could 
be scored for amplitude modulation correlation during their 
common time support. 

5. Secondary grouping 

We have now described in detail our implementation of 
the primary layer of group-formation, whereby 
psychoacoustic cues are used to generate a large number of 
groups of tracks showing various degrees of association 
according to the cues. The groups themselves are not yet 
useful for interpreting or explaining the sound; there are too 
many of them, there are many redundant groups, and some of 
them have only a low confidence score. To produce a small 
number of less redundant, high confidence groups, we apply 

a second stage of grouping which aims to prune and integrate 
the results of the primary rules. 

5.1 Pruning 

All the groups generated by a particular primary rule are 
sorted into one list, according to total energy. Then each 
group is compared to all the groups below it in the list; if a 
lower group is a proper subset of the larger group, or if the 
energy in their difference is less than some threshold, the 
smaller group is deemed a (near) subset which is adequately 
represented by the larger, and it is removed from further 
consideration. This typically effects a 10: 1 or greater reduc- 
tion in the number of track groups. 

5.2 Correlation 

Pruning is only applied within a particular rule since the 
existence of highly-overlapped groups between different 
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rules is very important evidence of genuine coherence for 
that group. The next stage of processing searches for this 
coherence by looking for highly-overlapped pairs. If such a 
pair has energy in their common tracks above some threshold 
of their total energy, a new ‘supergroup’ is formed by 
merging their component tracks. 

5.3 Closure 
In order to form robust groups that are not harmonically 

based we need some way of combining the results of conti- 
nuity and proximity (noise) rules. Currently we merge 
together all such rules that intersect with principal onset 
groups. Then all non-harmonic groups are ranked by total 
energy and pruned as described above; those with the highest 
energy are carried forward as higher-level objects. 

6. Results 

The lower panels in figure 2 show two typical examples of 
the groups found by the scheme. The first identifies a 
harmonic cluster comprising clarinet notes, which results 
from the correspondence between onset and harmonicity 
groups. The second shows an individual can impact, which 
is the closure between an onset group and continuity and 
noise groups. 

7. Conclusions and future work 

We emphasize that this is preliminary work, and there are 
many outstanding issues we are anxious to address. 

At the lowest level, there are still questions about the 
adequacy of the underlying track representation. The precise 
nature of the filterbank response is highly idealized (com- 
pared to physiological data) and is essentially linear; ad- 
dressing either of these could have far-reaching implications 
for subsequent processing. 

We would also like to provide for top-down processing, 
where the data provided by the early stages can be changed 
in response to higher level inferences and deductions. The 
subtraction of components in the case of an implicit spectral 
collision is a specific although difficult example in this area. 

Considering the primary grouping rules, we have noted 
some shortcomings in the description above. Most pressing 
are the need for a common-AM grouping rule, and further 
refinements or innovations in a ‘noise region’ grouping rule. 

For the secondary grouping stage, we anticipate develop- 
ing several new methods in addition to those described to 
make the best use of the primary results. We are particularly 
interested in addressing the problem of ambiguity, where 
mutually incompatible interpretations are in competition for 
pieces of observed evidence. Unlike previous levels of 
analysis, the secondary grouping stage permits the explicit 

recognition and resolution of such conflicts. There are also 
opportunities to add processing on top of this layer, for 
instance to detect still larger-scale structures, perhaps with 
some kind of learning scheme. 

In conclusion we find that the sinusoid track representa- 
tion of sound provided for a very natural and straightforward 
implementation of grouping rules based upon the cues to 
source formation known from psychoacoustics. Having the 
resultsof these first-layerrules allowed us toexperiment with 
secondary grouping methods, which led to reasonably high- 
level, robust structures identifiedin real soundexamples. We 
are very hopeful that a refined and expanded set of rules will 
allow us to build a truly useful model of human auditory 
event formation. 
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