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This paper explores the relationship between aggregate land 
rents and public expenditure in a residential urban economy. That 
there are important relationships between aggregate land rents and 
public goods expenditure has already been recognized in two different 
contexts. First, the practice of inferring individual valuations of public 
goods from land values is now widespread (see the literature on the 
capitalization of fiscal residuals [Oates, 1969; Edel and Sclar, 1974; 
and Meadows, 1976], for instance).1 This literature, however, does 
not directly address the relationship between aggregate land rents 
and public goods expenditure. Second, Flatters, Henderson, and 
Mieszkowski [1974], and Stiglitz [1977] have shown that in a simple 

* This paper draws on Arnott's Ph.D. thesis [1975]. He would like to thank the 
Canada Council for financial support during the period the thesis was being written. 
Stiglitz would like to thank the National Science Foundation for financial support. 
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1. The literature on the capitalization of fiscal residuals attempts to explain the 
values of individual properties. Among the explanatory variables used are jurisdic- 
tion-specific tax rates and public expenditures. There is another rather different strand 
of the capitalization literature that includes the change in aggregate land values induced 
by a transport improvement in the benefits from the improvement. Notable studies 
that employ this procedure include Fishlow [1965] and Fogel [1964] in their studies 
measuring the benefits of the American railroad. The invalidity of this procedure for 
all but small transport improvements in an open economy is argued in Arnott and 
Stiglitz 11978]. 
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spatial economy, where the spatial concentration of economic activity 
is due to a pure local public good and where population size is opti- 
mal,2 aggregate land rents equal expenditure on the pure public good.3 
This result has been dubbed the Henry George Theorem (HGT), since 
a confiscatory tax on land rents is not only efficient, it is also the 
"single tax" necessary to finance the pure public good. 

This paper is directed at providing insights into the following 
issues: 

1. How general is the Henry George Theorem? We show that it 
is far more robust than has previously been suspected; in particular, 
it holds in all large economies in which differential land rents are well 
defined, and in which the distribution of economic activity over space 
is Pareto optimal. However, it is still far from completely general. 

2. Does unfettered migration in a competitive economy result 
in a Pareto optimal distribution of population over cities? Our analysis 
shows that the answer depends on the definition of competitive be- 
havior in a spatial economy. 

3. Is there a simple relationship between the local public goods 
offered by different communities, and aggregate land rents in those 
communities? We investigate some circumstances in which there is 
a simple relationship and others in which there is not, and relate the 
results to the capitalization literature. 

In Section I we present an especially simple model that provides 
an intuitive basis for understanding the more general results derived 
in Section II. Section II examines the circumstances in which the HGT 
does and does not hold. In Section III the relationship between ag- 
gregate land rents and the benefits from public goods is analyzed. And 

2. The basic notion behind the optimal population of a city is a simple one. If 
communities were collections of individuals enjoying the same pure public good, then 
since there is no congestion in its consumption, optimal community size would be in- 
finite. But there is a cost to increasing population. In our model this comes from the 
additional transport costs and crowding of land that the added individual causes. The 
optimal population is that where the marginal benefits arising from the increasing 
returns resulting from the public good just offset the increased transport and crowding 
costs due to the added individual. 

3. The theorem is somewhat surprising, since regardless of whether additional 
population causes more crowding, higher transport costs or both, the optimal city size 
can be characterized in terms of aggregate land rents and expenditure/on public goods, 
without reference to aggregate transport costs. 

This theorem is closely related to a theorem independently proved by Mirrlees 
[1972], Starrett [1974], and Vickrey [1977]. They consider only completely planned 
economies; i.e., economies in which a social welfare function is maximized, with no 
restrictions on the imposition of lump-sum taxation. They show that when the reason 
for spatial concentration is economies of scale in production, rather than a pure local 
public good, optimal size is characterized by equality between the degree of increasing 
returns to scale (defined as the elasticity of output with respect to the input, minus 
one) times the value of production and differential land rents. 
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Section IV considers the Pareto optimality of competitive equilibria 
with free migration. 

I. AN EXAMPLE 

1.1. An Algebraic Analysis 

In this section we employ the standard residential location model, 
but as will be shown later, our central results extend to more general 
spatial economies. In this model there is a single city center, a point 
in space, at which all nonresidential urban activity takes place. Land 
is used only for the housing of identical city residents who live at 
different distances from the city center. If land is not scarce (i.e., the 
opportunity rent on land at the boundary of the city is zero), if 
transport costs are simply a function of the crow-line distance from 
the city center, and if land is homogeneous, then the city will be cir- 
cular. However, if land is so scarce that the whole plain is occupied 
by cities, then under the above conditions, every city will be 
hexagonal.4 

The identical individuals derive utility from lot size, a pure (no 
congestion) public good, and private goods, and have no preference 
for location per se. The government owns the land and auctions it off 
competitively, provides a pure local public good, and divides residual 
resources equally among residents, who use this income to purchase 
private goods and transport services, one unit of each of which costs 
one unit of resource, and to obtain a lot in the competitive land mar- 
ket. These assumptions together imply that residents' utilities are 
equal in equilibrium. Trip frequency is fixed, and tastes are such that 
everyone lives on a lot of unit size. In competitive equilibrium the 
benefits to an individual from moving a small distance farther from 
the city center must equal the costs. Let t be distance from the city 
center, f (t) be the transport costs associated with location t, and R (t) 
be land rent per unit area at t. The benefit from moving dt farther 
from the city center is the decrease in lot rent -R'(t)dt (where a prime 
denotes d/dt), while the cost is the increase in transport costs f'(t)dt. 
Thus, 

(1.1) ~~~~R'(t) -f'(t). 

For a circular city with boundary t * from the center, aggregate 
land rents (ALR) equal 

4. This result can be obtained for large economies with identical individuals and 
homogeneous land by application of theorems presented in Bollobas and Stern 
1 197 .r 
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t* 
(1.2) ALR f R(t)27rt dt. 

ALR is calculated as the rent per unit area of land at a distance t from 
the center times the number of units of land between t and t + 
dt(27rt dt), integrated over all t. Similarly, aggregate transport costs 
(ATC) are 

t* 
(1.3) ATC f(t)27rt dt. 

Integrating (1.2) by parts, and substituting (1.1), we obtain 

(1.4) 

ot* '2**20 f'wrt + (t*)*t*2. -Rwtdt + R(t*rt* 2dt + R 

The second term on the right-hand side is just the area of the city 
times the rent on marginal land; hence, the first term is differential 
rents. Denoting differential land rents by DLR, we observe, by com- 
paring (1.3) and (1.4), that with linear transport costs,5 

(1.5) DLR=1/2ATC, 

since 
f't = f for all t. 

We now consider the problem of the optimal population for this 
city. The objective is to maximize per capita utility. With transport 
costs if individuals consume only private goods and land and have no 
preference for location per se, and if there are constant or diminishing 
returns to population, optimal population size is zero. The presence 
of location-specific pure public goods introduces an inherent non- 
convexity. If individuals consume only public goods, the optimal 
population occurs at the point where the marginal productivity of an 
individual is zero; in the case of the Cobb-Douglas production func- 
tion, optimal population would be infinite. With individuals con- 

5. Mohring [1961] analyzed this case of a circular city with linear transport costs 
and uniform lot size. He provided an ingenious geometric explanation of this result. 
From (1.1) each person's expenditure on land rent plus transport costs is the same. Since 
each person resides on a lot of unit size, land rent plus transport costs are constant per 
unit area k" over the settled area of the city. Consider plotting land rent plus transport 
costs per unit area on the z-axis, where the x-y plane is the homogeneous plain on which 
the city is located. The graphed figure is a cylinder with radius t and height k". The 
volume of the cylinder is aggregate transport costs plus aggregate land rents. Aggregate 
land rents are given by the volume of a cone with the same base and height. Since the 
volume of a cone is one-third that of a cylinder with the same base and height, aggregate 
land rents are one-half aggregate transport costs. Unfortunately, this neat geometric 
interpretation does not extend to situations in which lot size varies with location. 



RENTS, PUBLIC GOODS, AND CITY SIZE 475 

suming public goods, private goods, and land, there may be a finite, 
positive optimal population size. 

A circular city of radius t * has a population of 

(1.6) N(t*)= =rt*2. 

If transport costs per unit distance are e, then using (1.3), we ob- 
tain 

rt* 2e 
(1.7) ATC = e J t(2wt)dt = - wt*3. 

3 

Hence, from (1.6), 

(1.8) ATC =kN3/2 

where 

k = 2 1/2- 
3 

Resources available Z are assumed to be proportional to population; 
i.e., Z = IN. If the resource cost of the public good provided is P, then 
per capita consumption of private goods C is 

(1.9) C = I - ATC/N - P/N. 

Substitution of (1.8) into (1.9) gives 

(1.10) C = I - kN'12 - P/N. 

The maximization of C in (1.10) with respect to N, P fixed, is 
equivalent to the maximization of per capita utility. Thus, indepen- 
dent of the functional form of the utility function and of the level of 
P, U is maximized with P = 1/2 kN3/2, which, using (1.8) and (1.5), 
gives 

(1.11) P = 12 ATC = DLR. 

For any level of the public good, when the city is of optimum popu- 
lation size, public goods expenditures equal one-half aggregate 
transport costs, which in turn equal differential land rents. The Henry 
George Theorem holds in this economy, in which the source of econ- 
omies of scale is a pure local public good, and of diseconomies of scale, 
transport costs. On a plain dense with hexagonal cities, P = 1/2 ATC 
still obtains, since population goes up as the square of the radius of 
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the hexagon, while aggregate transport costs go up as the cube.6 
A limitation of this example is that it is unclear from the analysis 

which is the more fundamental relationship, that between expenditure 
on public goods and transport costs, or that between expenditure on 
public goods and differential land rents.7 The next subsection resolves 
this. 

1.2. A Geometric Analysis 

We now consider the dual to the problem considered in subsec- 
tion 1.1, in which the objective is to minimize the per capita resource 
cost of providing all city residents with a given level of utility. As be- 
fore, P is the cost of public goods, and lots are of unit size. C units of 
the private good must be given to each resident to achieve the 
prespecified utility level. The total resource costs of providing N 
residents with this utility are AE + P + ATC, where AE is aggregate 
expenditure on the private good (which equals NC). Average resource 
costs RC equal8 

(1.12) RC = C + P/N + ATC/N. 

Marginal resource costs MRC, the costs of adding another resident 
to the city, are the cost of the private good plus the cost of transporting 
the resident to the boundary lot. Thus, 

(1.13) MRC = C + f (t*). 

With equal-size lots and no land scarcity, (1.1) implies that each 
resident's expenditure on land rent plus transport costs is the same 
and equals f (t*). Consequently, 

6. The area of a hexagon of (outer) radius t* may be calculated as twelve times 
the area of a 30?-60?-90? triangle, where the 300 vertex is the city center, and t* is the 
length of the longest side. Taking the 300 vertex as the origin, and the side of length 
/3/2 t * as base, and using polar coordinates, we obtain that the area of each triangle 
is 

A = f/6 f(t\/2)sec t dt dO = 3 
(t*)2_ 

8 

so that the area of the hexagon is (3V/3/2) (t*)2. Since population is proportional to 
area, population rises as the square of the radius of the hexagon. 

Since t is distance from the city center, then aggregate transport costs are given 
by 

ATC = 12 o J (et)t dt dO =32 (t*)3e 
76 

sec3O dO, 
which rises as the cube of the radius of the hexagon. 

7. In the way we have constructed the example, the addition of an individual 
to the community does not reduce existing residents' consumption of land. Thus, in 
this case the tradeoff determining optimal city size involves public goods and transport 
costs. 

8. We have used A to denote aggregate (ATC, ALR, e.g.) and use a bar over a 
variable to denote the average (the aggregate divided by population). 
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(1.14) f (t*) = ALR/N + ATC/N. 

Substitution of (1.14) into (1.13) gives 

(1.15) MRC = C + ALR/N + ATC/N. 

Finally, average resource costs are minimized when average resource 
costs equal marginal resource costs. Comparison of (1.15) and (1.12) 
gives the Henry George Theorem. 

We now present this formulation geometrically. Figure I portrays 
the situation where city population size is optimal; Figure II where 
it is suboptimal; and Figure III where it is superoptimal. From (1.13) 
the area under MRC equals AE + ATC; from (1.15), MRC(N)-N 

equals AE + ALR + ATC; from (1.12), RC(N)-N equals AE + P + 
ATC; and finally, from (1.13), MRC(O) N equals AE. Thus, in Figure 
II the area 1234 equals expenditure on the public good. And in Figure 
III the area 134 equals aggregate land rents, the area 146 equals ag- 
gregate transport costs, and area 1256 minus area 146 equals expen- 
diture on the public good.9 

It is easy to see from the figures that in a city with suboptimal 
population, expenditure on the public good exceeds aggregate land 
rents, while in a city of superoptimal size the opposite is true; that is 
if N* is the optimal population, 

(1.16) P ALR as N N*. 

We show later that this result generalizes. Since we made no as- 
sumption in this subsection concerning the functional form of f(t), 
it is apparent that the basic relationship characterizing optimal 
population size is that between aggregate land rents and expenditure 
on public goods. 

II. THE GENERALITY OF THE HENRY GEORGE THEOREM 

In this section we investigate the generality of the Henry George 
Theorem. We first provide a straightforward analysis of the case where 
all individuals are identical. Unfortunately, the intuition behind the 
HGT does not emerge clearly from this approach. Accordingly, in 
subsection 2.3 we consider a more abstract formulation which shows 
that the HGT holds with remarkable generality. Subsections 2.4 and 
2.5 develop generalizations of the Theorem. In subsection 2.6 we 

9. If the city is of constant width and if transport costs per unit distance are 
constant, then MRC is linear in N. From Figures I, II, and III this can be seen to imply 
that ALR = ATC, which is the analog to (1.5) for a long, narrow city. 
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discuss a set of circumstances under which the Theorem holds in a 
competitive economy. Subsection 2.7 summarizes by indicating cir- 
cumstances in which the HGT does not hold. 

2.1. No Land Scarcity, Identical Individuals 

We wish to maximize social welfare per capita, subject to the 
relevant resource constraints. All individuals are identical and have 
a utility function, 

U(C, TP), 

where C is consumption of the private good, T is consumption of land, 
and P is the supply of the pure public good. Locations are distin- 
guished only by their distance from the city center. We consider the 
first-best allocation irnwhich each individual is assigned a location 
and a certain amount of land and the private good, and in which the 
optimal amount of the public good is supplied. At any given location 
individuals are treated the same. For simplicity, we denote the level 
of utility attained by an individual at a distance t from the center by 
U(t), i.e., U(t) U(C(t), T(t),P). Then we wish to maximize 

(2.1) Jb NT'(t) 0(t dt 

where N is the (variable) number of people in the community, W is 
the social welfare function, and k(t) dt gives the area of residential 
land between t and t + dt from the city center (we call 0(t) the shape 
of the city; e.g., ?(t) = 2irt for a circular city, and 0(t) = w for a linear 
city of width w). In the case where there is no land scarcity so that the 
opportunity rent on land is zero, (2.1) is maximized subject to two 
constraints: 

(a) All individuals in the community must be located somewhere, 
and all land in the community must be used, 

10. We call an economy that is solved for by maximizing social welfare per capita, 
without reference to constraints imposed by competition, a planned economy. Because 
of the nonconvexities introduced by space, an economy may have qualitatively different 
characteristics depending on whether it is planned or organized competitively. Most 
notably, identical individuals will usually receive different utilities in a planned spatial 
economy. This result was discovered by Mirrlees [1972] and has been discussed in 
Arnott and Riley [1977]. Other cases where, due to nonconvexities, social welfare 
maximization may be associated with the unequal treatment of equals are provided 
in Stiglitz [1975, 1976, 1977]. 

We maximize social welfare per capita rather than utility per capita, since we might 
want our maximand to express the social welfare maximizer's degree of inequality 
aversion. If the social welfare maximizer has the same cardinalization of utilities as 
city residents, then the Benthamite social welfare function is appropriate. 
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pt* 00t 
(2.2) T(t) dt = N. 

(b) Expenditure must equal income, 

(2.3) r t* f (t) + C(t) (2.3) 
Jo T(t) 45(t) dt + P = NI, 

where I is per capita resources.1" The assumption of linear production 
possibilities is inconsequential. 

This can be formulated as a standard Pontryagin problem, the 
Lagrangean of which is 

(2.4) ? = NT(t) 0(t) dt + X dt -N) 

- ( t* f(t) + C(t) N) - K If fo )T(t) )0(t) dt + P -N[. 

The associated Hamiltonian (where the dependence of the variables 
on t is suppressed to simplify notation) is 

(2.5) H = {W(U(CTP)) + X - Q(f + C)] 0 

We obtain as first-order conditions: 
(i) The marginal social utility of private goods must be the same 

for all individuals, 

(2.6) $H (_ W'Ucl-) 0. 

(ii) A spatial optimality condition which specifies that the 
marginal social utility of allocating more land to individuals at a given 
distance from the center of the city must equal its marginal social 
cost,12 

(2.7) - L0 + x - f +C)1+ WIUT O 
bT T2 [N f )] NT 

11. There is an implicit assumption in (2.3) that land is effectively owned internal 
to the community. We may interpret (2.3) as implying constant returns to scale in the 
production of each of P, f, and C separately. Alternatively, city residents could be 
producing an export good with constant returns to the single factor, labor, and be 
purchasing P, f, and C at world prices. 

12. From this condition we can derive a spatial efficiency condition that states 
that the difference in the shadow rent on land between any two locations should reflect 
only the difference in the transport costs to those two locations, i.e., 

Td(UT/UC) = 
dt f 
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(iii) The condition for the optimal supply of public goods, that 
the sum of the marginal rates of substitution between the private and 
public goods equal the marginal rate of transformation (unity), 

(2.8) = fWUP X - = O 

which implies, using (2.6), that 

(2.9) Up 0 dt = 1. 

(iv) Optimal city size condition: the marginal social benefit of 
increasing population (from the increased resources available) be 
equal to the marginal social costs (the costs of the private good and 
transportation given the marginal individual, plus the crowding costs 
imposed by the marginal individual), 

(2.10) b J W(U)N dt -X+ QI =0. 
b)N o N2T 

If we integrate (2.7), subtract (2.10), and substitute (2.6), we ob- 
tain 

(2.11) P= f UT dt. 

In the city of optimal size, expenditures on public goods just equal 
(imputed) land rents. Note that this result was obtained without (2.8). 
Hence, (2.11) holds whether or not the level of the pure public good 
is optimal. Another interesting feature of the solution is that the ex 
ante identical individuals may receive different utilities at the social 
welfare optimum. 

2.2 Land Scarcity 
If the average population density in the city must equal I/, we 

have an additional constraint, 

t* 
(2.12) odt = nN, 

associated with which is a Lagrange multiplier At. The analysis is af- 
fected by this density constraint only in that the condition for the 
optimal boundary, 

b-t |4t*) [W(U) 1 
(2.13) b* T- [ + X -2f+ C)j-tt()= 0, 
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now turns out to be important. Substituting (2.7), evaluated at the 
boundary of the city, into (2.13), and using (2.6), we obtain 

(2.14) = (W'UT)t*/N = (QUT/UC)t*. 

Q is the marginal social utility of the private good. Thus, Au is the 
shadow rent on land at the boundary of the city measured in units of 
social utility. The resulting equation corresponding to (2.11) is 

(2.15) P= fd U t - (N jT-) 

From (2.12) Nij is the area of the city. The second term in (2.15) is the 
shadow rent on land at the boundary of the city times the area of the 
city, so that (2.15) states that expenditure on public goods must equal 
differential land rents (DLR). This result carries over to the cases 
where the boundary of the city is fixed at some t (a green belt, for 
instance) and where the shadow rent on land in nonresidential use 
is greater than zero (land in agricultural use, for instance). 

2.3. The Generality of the Henry George Theorem 

In Section I we showed that the Henry George Theorem applies 
in a competitive economy where residents have identical incomes, and 
where lots are of fixed and equal size. Earlier in this section we dem- 
onstrated that it also applies to an optimal city with identical indi- 
viduals, independent of the social welfare (provided that it is addi- 
tively separable and individualistic) or utility function. In this sub- 
section we investigate why the HGT holds in these two cases and the 
extent to which it generalizes. 

We begin by solving an abstract planning problem that has the 
Henry George result as a feature of its solution. We then investigate 
the class of economies whose allocation can be attained as the solution 
to special cases of this planning problem. 

The abstract planning problem is as follows. The economy's 
residents may differ. The characteristic in which they differ is par- 
ameterized by 0. The city planner is instructed to choose city popu- 
lation N so as to minimize resource costs per capita, subject to the 
following constraints: 

(i) The distribution of residents over space 0(t) is exogenously 
specified. 

(ii) The utility gradient U(0(t)) is exogenously specified. 
(iii) The relative population density gradient D(t) is exogenously 

specified. D(.t) is normalized so that Sft* D(t)o(t) dt = 1, where +(t) 
is again the shape of the city. 
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(iv) And the level of public goods P is exogenously specified. 
Note that (i), (iii), and 0(t) together imply a frequency distri- 

bution for 0, g(0). Residents derive utility from other goods C, lot size 
T, and the public good. Production possibilities are linear in C, f, and 
P, there are constant returns in production, and C, f, and P are mea- 
sured so that the production of one unit of each uses up one unit of 
resources. Thus, resource costs per capita are 

(2.16) N (C + f)NDO dt + P. 

And the planner's problem is 

(2.17) mink (4 (C + f)NDk dt + P 

subject to 

U(0(t)) = U(t). 

The urban economies in which the HGT holds have pure public goods, 
no congestion in transportation (bf(t)/bN = 0 for all t), and constant 
returns to scale in production. In such economies the first-order 
condition of (2.17) is 

(2.18) -d Dq dt-- = , dN ~ N2 

where dC(t)/dN denotes the change in C at t from a unit increase in 
N, holding the utility at t fixed. The requirement that utility at each 
location be unaltered by a change in population implies that 

(2.19) UC dC+ UT dT =0 forall t. 
dN dN 

Since T = 1/ND, then 

(2.20) dT = d(1/ND) _ 1 
dN dN N2D 

Substituting (2.19) and (2.20) into (2.18) gives the Henry George re- 
sult. The resource cost of adding "another resident" 13 is 

N X' (C + f)NDq dt + 
k 

- T 0 dt, 

while the average resource cost is 

13. "Another resident" means a proportional part of each individual in the 
economy, D(t). 
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I ot* p 

N (C+)NDOdt+I N 

Hence, as in subsection 1.2 the HGT is the result of average resource 
costs equaling marginal resource costs at the population optimum. 

Since we made no assumptions about the efficiency of 0(t), U(t), 
D(t), and P, it is clear from this formulation that the HGT charac- 
terizes the efficient density of economic activity in a wide class of 
spatial economies, not just those that are completely planned. 

Any urban planning problem in which the opportunity rent on 
land is zero and which involves maximizing social welfare per capita 
subject to an exogenous frequency distribution of 0 (without consid- 
eration of overall economy population constraints) contains some 
special case of the abstract planning problem. The primal problem 
is to maximize social welfare per capita subject to P, g(6), a land 
availability constraint, and a per capita resource cost constraint. The 
dual is to minimize resource costs per capita, subject to P, g(0), a land 
availability constraint, and a per capita social welfare constraint. If 
* denotes an optimal value, the solution to this dual problem (and also, 
of course, the primal) is completely characterized by 0* (t), U* (t), 
D* (t), N*, and P. Evidently, minimization of resource costs per capita 
with respect to N, with 0* (t), U* (t), D* (t), and P as constraints, yields 
the same solution. But this is precisely the form of the abstract 
planning problem considered earlier in the subsection, whose solution 
had the Henry George property. Hence, any optimal14 (conditional 
on P) city with an exogenous frequency distribution of population 
has the Henry George property. 

If there is an opportunity rent on land in urban use R, then this 
too would be quoted to the planner. Resource costs per capita would 
then be 

(2.21) N (C * f)ND b dt + H 50 dt + P. 

Proceeding as above, one obtains that in this case P = DLR with the 
optimal population, instead of P = ALR. When cities are closely 
packed, the opportunity rent on land varies along the boundary of the 
city, in which case differential land rents are not well defined, and the 

14. Recall that when we refer to an optimal city, we mean one that maximizes a 
social welfare function, subject to only technological constraints. Thus, a competitive 
city (which imposes additional behavioral constraints) may not be an optimal city in 
this sense. 
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HGT does not hold.15 We have thus established that differential land 
rents, when well defined, equal expenditure on the public good in any 
optimal city with an exogenous frequency distribution of residents. 

The above line of argument can be extended to any optimal re- 
gional economy in which there are pure public goods, constant returns 
in production, and no externalities. We could introduce housing, 
multiple transport modes, employment subcenters, a system of cities, 
and so on. Having specified the relative density of all economic ac- 
tivity, maximizing with respect to N would yield the Henry George 
result. If production costs differed among cities in a region, then the 
HGT would hold for the region but not separately for each city. 

We must be careful in moving from the city or regional economy 
to the overall economy, since the overall economy has aggregate 
population constraints that were not considered in the optimal city 
or regional economy problems. The difficulty can be illustrated by 
considering an economy of identical individuals. Suppose that max- 
imization of per capita utility in a single city, subject to P and the land 
availability and per capita resource cost constraints, yields an optimal 
city size of N*. What happens if the overall population in the economy 
is only 3N*/2? The HGT will not, in general, hold in this economy, 
whether one or two cities are optimal. If instead the economy popu- 
lation is 1,OOON* + N*/2, the HGT will nearly hold for the overall 
economy. We define a large economy to be one in which the number 
of residents left over after putting residents in cities of optimal size 
is infinitesmal compared to the overall population of the economy. 

15. If cities are hexagonal, their shape is a function of the outer radius of the 
hexagon t *, which will change as the city's population changes. We therefore denote 
the shape of the city by 0(t, t*). Proceeding as in subsection 2.2, using 0(t, t*) instead 
of 0(t), we obtain 

11 = ~jX WUT -? dt)/ E)1dt) 
in the place of (2.14). If we define the opportunity rent of land at a location (t, 0), 
measured in polar coordinates, to be the land rent at the boundary of the city in the 
direction 0, then expenditure on the public good can be shown to equal differential land 
rents (defined as aggregate land rents minus the integral of the opportunity rent on 
land, so defined, over the area of the city). This interpretation of differential land rents 
is, however, forced and unintuitive. It is more reasonable to define the opportunity rent 
on land as the rent at the vertices of the hexagon in which case the Henry George 
Theorem does not hold for hexagonal cities, or to say that differential land rents are 
not well defined. Starrett [1974] overlooked this problem. We have not been able to 
pinpoint precisely which of his assumptions was responsible for this, but he talks about 
the shadow rent on land at the boundary of the country [p. 432]. With a system of 
hexagonal cities, however, the shadow rent on land must vary along this boundary. 
Thus, there must be an implicit assumption in his analysis restricting the shape of 
cities. 

More generally, whenever the shadow rent on land is not the same everywhere 
along the boundary of the city, the HGT does not hold, since differential land rents 
are not well defined. 
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It can be shown that the Henry George Theorem holds exactly in large 
planned economies in which DLR are well defined, but does not, in 
general, hold in small economies. 

2.4. A Characterization of Cities of Non-Optimal Size 
Under the conditions for the HGT to hold, resource costs per 

capita, RC are from (2.16) 

st* P 
(2.16') RC = (C + f)D dt +-. 

When dRC/dN > 0, population is superoptimal. Now, 

dRC et* dC P 
dN J dNDdtN2 

and from (2.18) and (2.19), 

(2.22) dC =UT 1 
(2.22) dN UC N2D 

Thus,_ 

(2.23) dRC >,0 .== N> N* ALR > P. 
dN 

Similarly, it can be shown that 

(2.24) dRC<0 =N<N* =ALR <P. 
dN 

Consequently, aggregate (differential) land rents exceed expenditure 
on the public good in a city of greater than optimal size, and are 
smaller than expenditure on the public good in a city of less than 
optimal size. 

2.5. A Generalization of the Henry George Theorem 

When there are other sources of economies and diseconomies of 
scale, optimal city size can still be characterized by an equality rela- 
tionship between urban economic aggregates. Consider a city where 
there are pure public goods and constant returns to scale in produc- 
tion, but where there is an additional source of diseconomies of scale, 
congestion in transportation, which is modeled as f = f (N, t) with /N 
> 0. Returning to the general problem treated at the beginning of this 
subsection, we have that the analog to (2.18) is 

t* (dC P 
(2.18') I +fNDodt --= 0 

JodN )N 2 
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Equations (2.19) and (2.20) still hold. Substituting them into (2.18') 
gives 

(2.25) 3 UT dt + f (fNN)NDp dt = P. 

The second term on the left-hand side may be called the aggregate 
congestion externality (ACE). It is the amount that would be collected 
in toll revenue in a competitive city if an optimal congestion toll were 
imposed. Hence, in a city with pure public goods, constant returns to 
scale in production, and congestion in transportation, the relationship 
characterizing optimal city size is that DLR + ACE = P when N = N*, 
and its corollaries are DLR + ACE > P 4 N > N*, and DLR + ACE 
< P N < N*. 16 Arnott [1979] has derived the rules characterizing 
optimal size for residential cities with other sources of economies and 
diseconomies of scale. 

2.6. Large, Open, Competitive Economies 

In subsection 2.3 we argued that the HGT held at the social 
welfare optimum in all large planned economies in which differential 
land rents were well defined, independent of the social welfare func- 
tion. Since the set of planning optima is coincident with the set of 
Pareto optimal allocations, to ascertain circumstances under which 
the HGT holds in large competitive economies, we must identify 
circumstances under which competition results in Pareto optimality. 
As we suggested in the introduction, the Pareto optimality of com- 
petition depends critically on the definition of competitive behavior 
in a spatial, urban economy. Stiglitz [1978] has identified one defi- 
nition that results in the Pareto optimality of competition. The 
economy he considers has the following characteristics:17 

(i) Migration is costless. 
(ii) Each individual is free to form his own city on a separate 

island. Neither the number of islands nor the amount of land on each 
island is scarce. He may restrict entry but cannot coerce people to 
join. 

(iii) The economy is large in the sense that an individual forming 
a city takes as exogenous the utility of each group in the economy. 

(iv) Economies and diseconomies of scale are such that optimal 
city sizes are finite and positive. 

16. Here and elsewhere we have ignored second-order conditions. The charac- 
terization theorems imply, at least for the first-best cases we have considered, that there 
is a unique interior optimum that is a maximum. The corner solutions of N* = 0 and 

17.= - are of little interest. 
17. A formal description of the model is presented in Stiglitz [1978]. 
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(v) And land is homogeneous.18 
Utility levels are determined in the general equilibrium of the 

economy by the equality of the supply of and demand for each group. 
In Section IV we shall present alternative interpretations of com- 
petitive behavior in which competitive equilibria are not Pareto 
optimal. 

To summarize: in all large, Pareto optimal spatial economies 
in which differential land rents are well defined, the Henry George 
Theorem holds. Whether the Henry George Theorem holds in a 
competitive economy depends on, among other things, one's view of 
what constitutes competitive behavior in a spatial economy.19 

2.7. Limitations to the Henry George Theorem 

So far we have stressed the generality of the HGT. It will be 
useful to review our results from a different perspective by listing 
circumstances in which the HGT does not hold. 

If the government has full controllability (that is, in planned 
economies), then in an optimal economy the HGT does not hold if 

(i) Differential land rents are not well defined, which occurs 
whenever the opportunity rent on land is not everywhere the same 
along the boundary of the city; or if 

(ii) The overall urban economy is small. In this case, if residents 
are put into cities of optimal (defined without regard to the overall 
economy population constraints) size, there may be a significant 
number of residents, relative to the economy's population, left 
over. 

In competitive economies the HGT does not hold in the above 
two circumstances and also when competitive behavior leads to a 
distribution of population over cities that is not Pareto optimal. 

18. In this paper we treat a von Thunen economy in which locations differ only 
in terms of accessibility and land is homogeneous in quality. How are the results affected 
if, additionally, land varies in terms of its productivity or amenity value? This question 
has been treated in Flatters, Henderson, and Mieszkowski [1974], and Stiglitz [1977]. 
They consider a large economy that consists of a group of islands that may differ in 
fertility. They obtain the result that the Henry George Theorem should obtain for each 
spatial unit of replication, a group of islands, but not necessarily for each island. For 
such an economy to be Pareto optimal, it is necessary to effect lump-sum redistribution 
across islands within each spatial unit of replication. The assumption in Stiglitz [1978] 
that land is homogeneous was made to circumvent this difficulty. He could alternatively 
have allowed individuals to form their own groups of cities (the spatial unit of repli- 
cation). 

19. In our analysis we have assumed that accessibility can be parameterized by 
a single variable. We [1978] investigated the circumstances in which it is legitimate 
to do this. When location must be parameterized by two variables, differential land 
rents may not be well defined, in which case the HGT does not hold. 



RENTS, PUBLIC GOODS, AND CITY SIZE 489 

If the government can redistribute in lump-sum fashion between 
individuals and if competition leads to Pareto optimality, then any 
planning optimum can be attained. However, lump-sum redistribu- 
tion is typically infeasible, in which case the government must resort 
to distortionary policies to alter the distribution of utilities. The HGT 
does not generally hold in such second-best economies. To illustrate 
this, we consider an economy in which the government has only two 
policy instruments, a pure public good financed by means of a head 
tax and the regulation of city size, and in which competitive equilib- 
rium (with government intervention) involves all cities being the same. 
The latter assumption implies that a change in city size results in an 
equiproportional change in the population of each group in the city. 
In note 20 we present an example which indicates that the size of city 
which maximizes a specific group's utility may vary by group.20 The 
reason that different groups may have different optimal populations 
is that, while all residents receive the same benefit from the addition 
of a resident, the reduction in the head tax, they do not face the same 

20. Suppose that there are two groups in the population. The number of residents 
in each group is N/2. The tastes of the residents in the two groups are 

(i) UA{ for TA > 1 and UB | for TB < 2 
ICA for TAA UBI CB for TB >2. 

Each resident in group A has an income of YA, and each resident in group B an income 
of Y,. We assume that YA and YB are such that CA > 0 and CB > 0, in which case group 
A lot sizes are 1, and group B lot sizes are 2. Both groups' transport costs are 1 per unit 
distance. The city is long and narrow and one unit wide. The boundary of residential 
settlement is endogenous, and the opportunity rent on land is zero. Land is owned by 
the government and auctioned off competitively. The residual revenue to finance the 
public good is collected using a uniform head tax. Since the absolute value of the slope 
of the bid-rent curve equals transport costs per unit distance divided by lot size, group 
A's bid-rent curve is steeper than group B's. Thus, group B will live toward the 
boundary and group A toward the center. The rent gradient is given by 

(ii) R(t) = - t/2 for t t*/3 where t* = 1.5N. 
12t */3 - t for t ? t * /3 

Aggregate land rents, obtained by integrating (ii) over the area of the city, are 0.625 
N . Since all individuals in group A have the same utility, to ascertain the population 
that maximizes A's utility, one need determine only the population that maximizes 
the utility of the individual at the city center. The budget constraint for this individual 
is 

(iii) CA = YA -R(0) -H, 

where H is the head tax (H = P/N - ALR/N by assumption). Maximizing CA (and 
therefore UA) in (iii) with respect to N (where from (ii), R(0) = N), gives P = 0.6ALR. 
Performing the same exercise for a representative group B individual, say the individual 
at the boundary for whom 

(iv) CB=YB-t*-H, 

gives that utility-maximizing population for group B occurs where P = 1.4ALR. Since 
ALR increases with N, the group farther out has a lower optimal population. 
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cost, the increase in lot rent.21 Let Ni* be the city population size that, 
conditional on P, maximizes group i's utility. We know, given P, there 
is a unique population size for which the Henry George Theorem holds 
N*. The optimal second-best population size is 

n 
N* = L aiNi*, 

i=a1 

where 

n 

a= 1 
i= 1 

and I{aiI reflects the distributional weighting accorded each of the n 
groups by the government. Evidently, N* will not in general equal 
N*. 

III. ON USING LAND RENTS AS A MEASURE OF THE BENEFITS 

FROM PUBLIC GOODS 

In recent years there have been numerous capitalization studies, 
one aim of which has been to infer differences in the benefits from 
public goods across communities or over time from the corresponding 
differences in land values. 

The argument on which this inference is based goes as follows. 
In an economy with identical residents, utility is a function of land 
(or housing) rent gross of tax R (1 + T) ( where R is land rent, and T 

the ad valorem tax rate on land rent), the level of public services P, 
and income net of transport costs Y; i.e., V = V((1 + T)R, Y, P), where 
V is the indirect utility function. Consider two individuals who have 
the same income net of transport costs and live in different com- 
munities that have the same tax rate. Where the communities' levels 
of public services differ by an infinitesimal amount, dP, then dV = 
V1(1 + T)dR + V3dP, which, using the properties of the indirect utility 
function, becomes 

dV = V2(-T(1 + T)dR + (V3/V2)dP). 

21. If the increase in lot rent from the addition of the representative resident is 
a monotonic function of income, then the regulation of city size may be an efficient 
means of improving equity. However, if the increase in lot rent is not a monotonic 
function of income, so that a larger city improves the welfare of the very rich and very 
poor, while hurting those with intermediate incomes, for instance, the regulation of 
city size will probably prove to be of only limited efficacy in improving equity. Our 
tentative conclusion on the basis of some preliminary analysis is that the increase in 
lot rent is unlikely to be a monotonic function of income. 
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V3/V2 is the marginal benefit of the public good to the individual in 
money terms. When migration is perfect, equalizing individuals' 
utilities in different communities d V = 0, so that the difference in the 
rent gross of tax on corresponding lots in the two communities equals 
the monetary valuation of the difference in the level of public services 
provided on those lots. And the difference in lot values gross of tax, 
which equals the discounted present value of the difference in lot rents 
gross of tax, equals the discounted present value of the monetary 
valuation of the difference in the levels of public services provided. 

In this section we shall not discuss empirical applications of 
capitalization theory, but rather shall extend the theory to investigate 
whether there is any simple relationship in an open economy between 
the difference in the aggregate land rents between two communities 
and the corresponding difference in the level of services from the 
public goods provided. This is of interest for two reasons. First, the 
analysis will provide further insight into the relationship between 
aggregate land rents and expenditure on public goods, and second, 
it will cast some light on the following two aspects of capitalization 
theory: 

(i) The capitalization argument presented above was partial 
equilibrium. It does not, for instance, treat the local government 
budget balance constraint. Do such partial equilibrium capitalization 
arguments extend to general equilibrium? 

(ii) The argument applies to the marginal individual who is in- 
different between living in the two communities being compared. In 
what ways does it generalize when there are inframarginal individuals 
who prefer one community to the other? 

In subsection 3.1 we consider two cities with identical individuals 
that differ only in their locational amenities. Subsection 3.2 treats two 
cases, again with identical individuals, in which communities differ 
in their fiscal packages. And subsection 3.3 extends the analysis to 
an economy in which individuals differ. 

3.1. Locational Amenities 

In an economy with identical individuals, consider two communities 
that have the same fiscal package (head taxes and services) and that 
are identical in all exogenous respects (e.g., transport costs, shape) 
except in the level of a locational amenity, such as the quality of mi- 
croclimate or of a beach. The level of the locational amenity in one 
of the communities is A and in the other A + dA. Both communities 
are small relative to the whole economy and mobility is perfect, so that 
the level of residents' utility may be treated as parametric U, as may 
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the opportunity rent on non-urban land R. Land ownership is external 
in both communities. 

If I is gross income, an individual's indirect utility function is 

(3.1) V(R(t),I -f (t),A) = U, 

where taxes and services are suppressed to simplify notation. That 
the services from A are independent of city population and of location 
implies that A has the character of a pure, local public good. Differ- 
entiation of (3.1) with respect to A, U, and t fixed gives V1 dR/dA + 
V3 = 0, or since T =V/V2, 

(3.2) dR V3 1 

dA V2T 

Land rents adjust to offset the difference in amenity levels. Now 

1t* 
ALR = R(t)0(t) dt and V(R,I-f(t*),A) = U. 

The second equation characterizes the location of the boundary of 
the city. Differentiation of the first equation with respect to A 
yields 

dALR rt* dR (t) dt* 
(3.3) ((t) d t + R(t*)P(t*) dA dA J dA dA' 

0(t*)(dt*/dA) is the amount by which the settled area of the city in- 
creases with a unit increase in A, so that R (t* )4(t* )dt* gives the op- 
portunity rent on the extra land in the community with the higher 
level of the locational amenity. Hence, 

dALR dt = dDLR 

Thus, 

(3.4) 4A=X () (t) dt. 
dA Jo dA 

Substitution of (3.2) into (3.4) gives 

dDLR te _3 (3.5) d =X 3 dt. 
(3.5) ~~~dA -J V2 T 

Hence, in an economy with identical individuals and perfect mobility, 
when the only exogenous difference between two cities is the level of 
an amenity resource, the difference in differential land rents between 
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the two cities equals the difference in the aggregate benefits from the 
amenity resource. The above result generalizes to the case where the 
boundary of both cities is the same and fixed. However, it does not 
hold when cities have different shapes or transport cost functions. 

3.2. Different Fiscal Packages 

We now examine the case where a pure local public good is ob- 
tained at constant cost, and financed by means of a rent tax (the re- 
sults to be derived can be shown to hold with a head tax as well). To 
simplify the analysis, we assume that the opportunity rent on land 
at the boundary of the city is zero. In this case, 

(3.6) V(R(t) (1 + T), I - f(t), P) = U, 

and budget balance requires that 

(3.7) TALR = P. 

As P is varied, population and the tax rate both adjust to satisfy (3.6) 
and (3.7). Proceeding as in the previous subsection,22 we obtain 

dALR _ tC __ 

(3.8) dP =o V2T 

Now, 

XtV3 dt >(=, <)1I S T 

as the level of the public good is less than (equal to, greater than) 

22. Differentiation of (3.6) and (3.7) with respect to P gives 
(dR dT 

( i) VVI (1 + T) +R-I+ V3=0, (i) \~~~dP' dPJ 
and 

(ii) -T ALER +d T dALR 1. 
d P- dP 

Then, 
dALR ft dR 

dP -d- o dt 
t* V: dt t* Ro dT 

Jo V1(1 + T) 0 1 + T dP (using (i)) 

dt AR(1-TdR (using (ii)) 
V2(1 + T)T (1 + T) (ALR ALR dPJ 

ft*V30dt 1. 
T2 VT 
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optimal. Hence, with perfect mobility and identical individuals, and 
when cities differ in no exogenous respect other than P, dALR/dP = 
0 (<0, >0) as the level of provision of the public good is optimal 
(greater than optimal, less than optimal). 

Next we compare two communities that spend the same amount 
on the public good, but one is more efficient in providing the public 
service because of more efficient administration, for instance. Let E 
denote expenditure on the public good, P the level of service provided, 
and e an index of efficiency in the provision of public services defined 
so that P = eE. Then, 

(3.9a) V(R(t) (1 + T), I -f(t), eE) = U 

and 

(3.9b) TALR = E. 

Straightforward manipulation gives 

dALR rt* V3 0 
(3.10) - E --dt. 

de oV2 T 

Thus, the difference in the aggregate land rents between two open 
communities with identical individuals that have the same public 
expenditure but differ in fiscal efficiency equals the difference in the 
aggregate valuation of public services. 

The results of this and the previous subsections indicate that in 
an open economy with identical individuals, after correct adjustment 
for other differences between two communities, one can make valid 
inferences concerning differences in the valuation of their fiscal 
packages or amenity resources from the difference in their aggregate 
land rents. 

3.3. Heterogeneous Population 

How are the results of the previous two subsections modified 
when individuals differ? We shall not attempt to provide a full answer 
to this question, but shall instead consider only the case in which in- 
dividuals differ solely in terms of their valuation of an amenity re- 
source such as the quality of a beach. We also assume that all indi- 
viduals' indirect utility functions are separable in A so that 

(3.11) V(:) = v(R(t), I - f(t)) + /g(A), 

where : indexes increasing valuation of the amenity resource A, and 
that the population is continuously distributed over 3. We consider 
two islands in equilibrium. They differ only in that one's amenity 
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resource level is A, the other's A + dA. (3.11) implies that if Oi > OJ, 
then individual i will reside either on the same island as individual 
j or on the island with the higher amenity level. The lower amenity 
island contains individuals with /3[Omin, 3), and the higher amenity 
island, individuals with /3c[3, /max]. The individual with : = / is 
marginal in the sense that he is indifferent between living on either 
island. Individuals with 03[/min, d) and 3(/, 3max*] are inframarginal 
in that they obtain higher utility on their chosen island than they 
would on the other island. With the above form of indirect utility 
function, on each island all residents are indifferent as to where they 
locate on that island. Thus, if V'(t; /) and Vh (t; /) denote the utility 
obtained by individual : at t on islands I and h, respectively, VI(t; /) 
= Vh(t; /) for all t. Hence, 

dR (t) /3g' 

dA (0, 

which, since Vi =-v2T, gives 

dR(t) __ _ _ 

dA v2(t)T(t) 

Integrating this over all t gives 

dALR t* /3g' 
(3.12) dA = ov T dt. 

dA U2T 

(3.12) indicates that the difference in aggregate land rents between 
the two islands equals what would be the aggregate valuation of the 
difference in the amenity resource levels if all individuals had the same 
tastes as the marginal individual. The aggregate income-equivalent 
benefit of the higher amenity resource level, however, equals the 
valuation of the difference in the amenity resource levels by residents 
of the higher amenity community, 

(3(t)g'q0 dt, 
Jov2T 

which since ((t) ? 0 for all t and 0(t) > 3 for some t, is greater than 
dALR/dA. That intercommunity differences in land rents do not 
capture inframarginal benefits has important implications for the 
interpretation of capitalization studies. When individuals are not 
identical, differences in land rents between communities systemati- 
cally underestimate the value of their differences in amenities, and 



496 QUARTERLY JOURNAL OF ECONOMICS 

systematically overestimate the cost of their differences in dis- 
amenities.23 By a similar line of argument, it can be shown that when 
individuals differ, differences in land rents do not reflect the infra- 
marginal benefits of alternative fiscal packages. 

This section has shown that, in an open economy, abstracting 
from other differences between communities, there are systematic 
relationships across communities between differences in differential 
land rents, and differences in amenity resources and fiscal packages. 
These relationships are a consequence of utility-equalizing migration, 
and are unrelated to the Henry George Theorem, which is a charac- 
teristic of large economies with a Pareto optimal distribution of eco- 
nomic activity over space. The conceptual basis of capitalization 
studies is sound only when marginal individuals are very similar to 
inframarginal individuals in these communities. 

IV. COMPETITIVE ATTAINABILITY OF A PARETO OPTIMAL 
DISTRIBUTION OF ECONOMIC ACTIVITY 

The problems associated with the attainability in a free market 
economy of a Pareto optimal distribution of firms over space, when 
spatial clustering of firms occurs as a result of agglomerative econo- 
mies of scale, are familiar. Some are discussed in Starrett [1974]. Here 
we do not have these problems, because spatial clustering occurs be- 
cause of pure local goods, but we may have other problems. 

Tiebout's classic paper [1956] suggested not only that the prob- 
lem of preference revelation would be resolved by the local provision 
of public goods, but also that the resulting spatial distribution of 
population would be Pareto optimal. Stiglitz [1978] indicates one set 
of circumstances in which Tiebout's conjectures are correct. Recent 
papers by Buchanan and Goetz [1972], Flatters, Henderson and 
Mieszkowski [1974], and Stiglitz [1977], however, present alternative 
scenarios in which unrestricted migration can result in non-optima- 
lity.24 Here we discuss two other possible sources of market failure 
not previously treated in the literature. 

First, if city residents do not face the social costs or benefits of 
an in-migrant, then a Pareto optimum is not competitively sus- 
tainable. To demonstrate this proposition, we treat a simple economy 

23. In the case of a public bad such as noise or pollution, intercommunity differ- 
ences in land rents provide a consistent overestimate of costs. This results, since the 
cost of the noise to the marginal individual is larger than the cost to inframarginal in- 
dividuals in the noisy community, who by self-selection are those who are not partic- 
ularly bothered by the noise. 
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of identical individuals and cities. The economy is at a Pareto opti- 
mum with individuals receiving the same utility. Furthermore, land 
is so scarce that the cities are hexagonally closest packed. Consider 
adding an individual A to city i from a neighboring city j. The mon- 
etary benefits to residents of city i from adding A equal I, the value 
of his labor or of the endowment he brings with him. The costs, if A 
does not bring his land withfhim, are the cost of other goods given him 
C, plus the cost of transporting him f (t), plus the rent on land given 
him (crowding costs) R (t) T, where applicable. Optimum population 
occurs where average resource costs I equal marginal resource costs 
C + f (t) + R (t) T (which is the same wherever the individual is located 
since incomes are equal). If A brings his land with him, however, 
without compensation to city i, the benefits minus costs to city i from 
A are I - C - f(t), while if city i has to compensate city i, benefits 
minus costs from A are I - C -f (t) -R (t ) T. Thus, if the individual 
at the border of the city moves without the land that was allocated 
to him by city j, or else if compensation for A's land need be made by 
city i to city I, then the optimum is stable. However, if A may annex 
himself to city i without compensation to city I, the optimum is un- 
stable. To put it another way, if local government property rights are 
unrestrained and if the individual can choose which community to 
belong to, the optimal allocation cannot be sustained in a competitive 
market. 

Second, if city residents misperceive the social costs or benefits 
of an in-migrant, then a Pareto optimum is not competitively sus- 
tainable. In the economy discussed in the above paragraph, city 
residents, acting as price-takers, may consider the net benefits from 
a migrant positive if he makes a positive contribution to resources, 
i.e., if I > f (t) + C; that is, they may ignore that his presence will drive 
up land rents and increase their transport costs. If this is the case, 
cities of optimal population size will try to bribe residents of other 
cities to join their city, and the optimum is again unstable. 

24. One source of non-optimality is discussed in Buchanan and Goetz [1972], 
Flatters, Henderson, and Mieszkowski [1974], and Stiglitz [1977]. Migrants consider 
only average tax levels when making a migration decision and ignore the effect of their 
move on the tax burdens of existing residents. As mentioned in note 18, correction of 
this market failure requires lump-sum transfers between islands. 

Another source of non-optimality is treated at length in Stiglitz [1977]. Suppose 
that there are two cities of total population 2N*, where N* is optimal city size, and that 
initially there are 2N* people in one city, and none in the other. Let U(N) refer to the 
utility level of each individual in a city of population size N, where all individuals in 
the city have the same utility. Individuals are utility-takers and migrate if and only 
if the utility level in the other city is higher. If U(2N*) > U(O), then no individual acting 
alone has an incentive to migrate. Thus, stable Pareto inferior equilibria are pos- 
sible. 
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The central point is that there is no compelling interpretation 
of competitive behavior in the spatial economy treated in the paper. 
With some reasonable sets of assumptions concerning residents' 
knowledge and perception of the operation of the economy, compe- 
tition neither leads to, nor sustains, cities of optimal size. This suggests 
that the Henry George Theorem may provide a rather poor expla- 
nation of the relationship between urban economic aggregates in a 
competitive economy. 

V. CONCLUDING COMMENTS 

This paper has outlined a general set of relationships between 
aggregate urban land rents and pure local public goods. The Henry 
George Theorem, that in cities of optimal size aggregate land rents 
equal expenditures on public goods, has been established under far 
more general conditions than in previous studies. It holds (i) for all 
large economies in which (ii) the spatial distribution of economic 
activity is Pareto optimal and (iii) in which differential land rents are 
well defined. All three conditions are required, however; if any one 
of them is violated, Henry George's single tax on differential land rents 
may provide too much or too little tax revenue. When, in addition to 
pure local public goods, there are other sources of economies and 
diseconomies of scale, e.g., congestion costs, there still exists a simple 
relationship between differential land rents and a particular set of 
urban economic aggregates, provided that the three conditions above 
are still satisfied. Moreover, corollaries of our general Henry George 
Theorem provide rules indicating whether city population size is 
greater than or less than optimal. 

A quite separate set of relationships between land rents and local 
public goods is assumed in the capitalization literature, which at- 
tempts to infer consumer valuations of differences in city character- 
istics from differences in land values across cities. If individuals are 
identical, the theoretical basis of the capitalization literature is sound, 
and there is a simple relationship between the differences in aggregate 
land rents across communities and the differences in their charac- 
teristics. However, when individuals are not identical, differences in 
land rents omit inframarginal costs and benefits; the differences in 
aggregate land rents across communities systematically understate 
the value of differences in positive characteristics (amenities, local 
public goods), and overstate the value of differences in negative 
characteristics (disamenities, tax rates). 

Finally, we noted the intimate relationship between the nature 
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of the land market and the competitive attainability of optimal city 
size. A system of densely packed cities of optimal size cannot be 
competitively sustained if individuals are allowed to choose the city 
to which they belong, and also have the right to determine what city 
to annex their land to. More generally, we noted a fundamental dif- 
ficulty in convincingly characterizing competitive behavior in a spatial 
urban economy; for plausible "competitive" assumptions, even if cities 
are not densely packed, a system of cities of optimal size may not be 
competitively sustainable. 

This paper has focused on three of the basic hypotheses of urban 
economics:-(1) the Henry George hypothesis relating aggregate land 
rents to expenditures on public goods in cities of optimal size; (2) the 
capitalization hypothesis, relating differences in land rents to dif- 
ferences in public amenities; (3) and the Tiebout hypothesis, that 
individuals will sort themselves out in such a way as to lead to a Pareto 
optimal allocation of resources and distribution of population. Though 
these hypotheses hold far more generally than the simple models in 
which they were originally established, they are of sufficiently limited 
generality to warrant caution in their use for purposes of public 
policy. 

QUEEN'S UNIVERSITY, CANADA 
OXFORD UNIVERSITY, ENGLAND 
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